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Abstract 

 

Enzymatic hydroxylation of varied cellular substrates is catalyzed by the 2-

oxoglutarate and Fe(II) dependent 2-oxoglutrate (OG) oxygenase group of proteins. 

These enzymes control gene expression, from epigenetics to splicing and translation. 

The 2OG oxygenase JMJD4 has been shown to catalyse the hydroxylation of the 

eukaryotic omnipotent termination factor 1 (eRF1), and is essential for optimal 

translational termination. In this thesis, we expand on previous work by examining 

two further potential binding partners of JMJD4, GTF2I and TCP1-γ. Subsequently, 

we find that depletion of JMJD4 and eRF1 is associated with growth reduction in 

cancer cell lines in 2D and 3D. The transcriptomic changes in response to eRF1 

depletion are then assessed by RNA-Seq. Among the potential pathways identified, 

downstream targets of the transcription factor ATF4 were most prominent. 

Upregulation of ATF4 and its downstream targets was validated in an eRF1 rescue 

system and the contribution of specific subdomains of eRF1 to the transcriptional 

response assessed, indicating multiple arms of the unfolded protein response being 

upregulated downstream of defective translational termination. The implications of 

our findings and their relevance in wider biological and disease contexts, including 

cancer, is finally discussed. 
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1.1 Preface: 

 

The research described in this Thesis centres around two main axes: Investigation of 

the binding partners and cellular effects of the 2-oxoglutarate (2OG) oxygenase 

JMJD4, and studies of the cellular responses to functional defects in its substrate, the 

eukaryotic translational termination factor eRF1. Therefore, this Introduction is 

divided into two sections: The first gives an overview of 2OG oxygenases and their 

role in gene expression, with a focus on 2OG oxygenases involved in protein 

translation. The second provides a general description of protein synthesis and its 

control, with a special emphasis on translational termination and the factors involved. 

 

1.2 Overview of the discovery, structure and catalytic mechanisms of 
2OG Oxygenases 

 

2-Oxoglutarate (2OG) oxygenases, also referred to as 2OG-dioxygenases, are a 

diverse class of ~70 enzymes characterised by their capacity to perform two electron 

oxidation of their substrate. Originally identified as catalysing collagen hydroxylation 

in the extracellular matrix (reviewed in (Loenarz and Schofield, 2011)), 2OG 

oxygenases are now known to also be involved in every step of the gene expression 

pathway, from epigenetic modifications of DNA to protein synthesis. Importantly, 

with respect to this Thesis, they also catalyse the hydroxylation of targets involved in 

protein synthesis, including ribosomal proteins and translation factors (Figure 1.2) 

(reviewed in  (Ploumakis and Coleman, 2015)).  

2OG oxygenase activity is dependent on 2OG, Fe(II) and oxygen availability, while 

some enzymes also require reducing agents such as ascorbate (Reviewed in 

(Johansson et al., 2014). 2OG, also known as α-ketoglutarate, is a key intermediate in 



3 
 

the Tricarboxylic Acid (TCA) cycle, produced by the decarboxylation of D-isocitrate 

by the enzyme isocitrate dehydrogenase and sequentially converted to succinyl-CoA 

by the α-ketoglutarate dehydrogenase enzyme (Akram, 2014). The activity of 2OG 

oxygenases is generally not modulated by signaling targeting the enzyme itself (e.g. 

phosphorylation) but may be modified by modulation of co-factor availability, in 

particular oxygen, discussed in detail in section 1.3.3, and the level of expression 

within the cell (Pollard et al., 2008). That 2OG oxygenase activity may be regulated 

by the levels of 2OG in the cell, providing a link to the TCA cycle, has been proposed 

in the past and there is some evidence that certain oxygenases may detect changes in 

amino acid availability through changes in the concentration of 2OG (Duran et al., 

2013). Availability of Fe(II) may also play a role in modulating the activity of some 

2OG oxygenases, since Fe(II) supplementation is sufficient to promote hydroxylase 

activity in vitro (Knowles et al., 2003). Additionally, chaperones PCBP1&2, the iron 

chaperones for ferritin, are also responsible for carrying Fe(II) to the active site of the 

2OG oxygenases PHD1-3, potentially integrating them into the system of cellular 

control of iron availability (Nandal et al. 2009). 

Due to their wide range of substrates, 2OG oxygenases affect numerous processes 

from extracellular matrix remodelling, epigenetic modifications, oxygen sensing, 

development and cellular proliferations. This series of functions may also be closely 

entwined with their involvement in tumorigenesis, from the level of escaping growth 

suppression, to metastasis (reviewed in (Ploumakis and Coleman, 2015)). Indeed, 

numerous 2OG oxygenases are genetically altered and deregulated in a variety of 

cancers. Finally, specific 2OG oxygenases are associated with a plethora of other 

diseases, including developmental disorders most commonly affected by the 

epigenetic level of 2OG influence and metabolism (Johansson et al., 2014). 
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Structure and Catalysis 

Members of the 2OG oxygenase superfamily all share the same catalytic motif found 

in the cupin superfamily of proteins, referred to as the double stranded β-helix 

(DSBH) fold and also known as the double Greek key motif, “jelly roll” fold, or 

Jumonji C (JmjC) domain. This fold is composed of 8 antiparallel β-sheets that create 

a barrel-like structure which forms the active site of the enzyme (Figure 1.1B). Within 

the DSBH domain resides an Fe(II) binding site, the iron being coordinated by a 

moderately conserved His-Xxx-Asp/Glu...His motif. Additional binding sites for 2OG 

and the substrate are also present but tend to be more variable in sequence (Clifton, 

I.J. et al, 2006). The 2OG in the active site is further stabilised by interaction with the 

Fe(II) ion being coordinated in a bidentate manner through the ketone and C1 

carboxyl group of the 2OG (Figure 1.1C) (McDonough et al., 2010), while at least 

one Lysine/Arginine residue is used to bind the C5 carboxyl (Tarhonskaya et al., 

2014). Beyond the defining active site, 2OG oxygenases exhibit a variety of 

additional domains. For example, members of the histone lysine demethylase family 

possess CxxC type Zinc Fingers (as in KDM2A and KDM2B), Tudor (JMJD2A-D) 

and/or ARID (KDM5A-D, also mediated by ARID5 in KDM7C) domains, which are 

typically required for interaction with nucleic acids and chromatin (Johansson et al., 

2014). 

The catalytic cycle is initiated by 2OG binding, leading to the formation of a ternary 

oxygenase–2OG–substrate complex. This enables oxygen to bind followed by 

oxidative decarboxylation of 2OG, resulting in an oxo-Fe(IV) species which readily 

oxidises substrates in a 2-electron oxidation, thus yielding reduced Fe(II), succinate 

and the oxidised substrate (Aik et al., 2012) (Figure 1.1D). Compared to heme-iron 

hydroxylases such as P450, the less rigid catalytic site of 2OG oxygenases results in 
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an increased rate of oxidative modification by oxygen radical by-products of the 

reaction, which along with loss or oxidation of the iron at the catalytic site is one of 

the main reasons these enzymes have not been synthesised as catalysts on a larger 

scale (Mantri et al., 2012b). Whether these oxidative self-modifications play any 

important biological role is uncertain; however auto-modification of the JmjC domain 

JMJD6 hydroxylase has been observed in human cell cultures (Mantri et al., 2012a) 

and occurs on lysine residues, in agreement with known activity.  

Selectivity in substrate binding in 2OG oxygenases appears to be in large part 

conferred by both the architecture and polarity of the active site, as well as targeting 

by the non-catalytic domains. For the former, lysine demethylases (KDMs, examined 

more comprehensively in section 1.3.2) generally exhibit a deeper and narrower 

substrate binding pocket compared to the protein hydroxylases, along with 

hydrophobic regions near the active site (Horton et al., 2010). Demethylases targeting 

trimethylated residues (e.g. KDM4/KDM6 family members) tend to exhibit more 

open substrate binding sites closer to the surface of the protein, alongside larger 

hydrophobic patches, which would be excluded from the binding sites of KDMs 

primarily targeting mono- or di-methylated residues. (Ng et al., 2007). In contrast, 

hydroxylases rely primarily on main chain hydrogen bonds for stabilising the 

substrate in the active site, and can be stereoselective as a result (Elkins et al., 2003). 

With regard to the role of the additional domains to substrate specificity, most of the 

work has been once again performed on KDMs. For instance, the lysine demethylase 

activity of KDM7B is strongly dependent on binding of the KDM7B PHD domain to 

H3K4Me3 histones (Horton et al., 2010). In a similar fashion, the tRNA hydroxylase 

TYW5 is proposed to bind tRNAs via a positively charged patch formed by the C-

terminal α-helices near its dimerization domain (Kato et al., 2011a). JMJD6, another 
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2OG oxygenase targeting RNA, also exhibits a positively charged surface patch near 

its dimerization domain, indicating that this architecture may represent a common 

strategy for targeting the enzymes to RNA substrates (Hong et al., 2010a). Generally, 

phylogenetically related 2OG oxygenases will tend to bind to their substrates in 

similar manners. A comparison of the structure of the ribosomal oxygenases MINA53 

and NO66 for instance reveals highly similar binding approaches, consisting of a 

combination of extensive hydrogen bonding between the substrate and the DSBH 

domain, reinforced by hydrophobic contacts with additional domains (Chowdhury et 

al., 2014a). 
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Figure 1.1: 2OG Oxygenases catalyse the addition of hydroxyl group to a 
plethora of substrates: A) Types of reactions catalyzed by 2OG Oxygenases. These 
include hydroxylation of nucleic acid and protein substrates as well as demethylation 
of the other nucleic acid targets through an intermediate hydroxymethyl step. B) 
Structural features of the 2OG Oxygenase catalytic domain. The double-stranded β 
helix (DSBH, green) is assembled in a barrel-like structure which allows ligation of 
2OG, oxygen and the substrate in the fairly wide catalytic site. C) Coordination of the 
essential Fe2+ in the generic 2OG catalytic site. Fe2+ (Black) is bound by 2 Histidine 
residues and an Asp/Glu residue (all in orange), while 2OG (Green) is bound by a 
Tyrosine and Arginine residue (in blue).  D) Pictorial diagram of the 2OG catalytic 
cycle. Ascorbate is only required by some 2OG oxygenases such as the collagen 
prolyl hydroxylases not discussed here. Structural images in (B) and (C) are derived 
from PDB: 3OUJ using Chimera. Figure reproduced from (Ploumakis and Coleman, 
2015). 
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1.3 2OG Oxygenases and gene expression 

 

2OG oxygenases have been shown to be involved at every step of the gene expression 

pathway, from DNA, to histones, to RNA splicing control, tRNA modification and 

finally translation control (Figures 1.2/3). An overview of the major points of control 

is provided below, divided into the specific elements of gene expression control that 

are affected.  

 

 

Figure 1.2: Substrate based classification of 2OG oxygenases: A) Numerous 
protein substrates are targeted by 2OG oxygenases. The main two reaction types are 
hydroxylation and demethylation. Enzyme names are written in light italic font if the 
corresponding substrate is uncertain or unknown. B) 2OG oxygenases that target 
nucleic acids. JmjC-only 2OG oxygenases are marked with an asterisk. Certain 
enzyme classes are ommited. Figure reproduced from (Ploumakis and Coleman, 
2015). 
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Figure 1.3: Regulation of gene expression by 2OG Oxygenases. A) JmjC histone 
demethylases. “?” indicate possible but not confirmed activity. B) Oxidation of DNA 
modifications by 2OG oxygenases. TET enzymes hydroxylate 5-methylcytosine (5-
mC) in CpG islands. ALKBH2/ALKBH3 demethylate alkylated cytosine (3-
methylcytosine, 3-meC) and adenosine (1-methyladenosine, 1-meA). C) Regulation 
of the hypoxic response through 2OG oxygenases and the Hypoxia Inducible Factor 
(HIF) D) 2OG oxygenases affect RNA demethylation and alternative splicing. E) 
2OG oxygenase mediated control of translation. m7G = 7-methylguanosine cap. 
Figure reproduced from (Ploumakis and Coleman, 2015). 
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1.3.1 DNA Hydroxylation and Demethylation 

 

DNA targeting 2OG oxygenases are a functional paraphyletic group of nucleotide 

hydroxylases composed of members of the TET (TET1-3) and ALKBH (ALKBH1-8, 

as well as the highly related FTO protein families) (Figure 1.3B). The TET 

dioxygenase family is structurally characterised by the presence of a large insertion in 

the DBSH domain, splitting into a central and a C-terminal section (Tahiliani et al., 

2009a), while the ALKBH family is somewhat more varied, sharing an AlkB domain 

and additional structures in the more functionally derived ALKBH8 and FTO. 

 

TET Family  

 

Cytosine methylation is an important epigenetic modification with consequences in 

the binding affinity of transcription factors to DNA (Yin et al., 2017). TET1 catalyses 

three known hydroxylation reactions in the methylcytosine demethylation pathway: 

the hydroxylation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) 

and subsequently also 5hmC into 5-formylcytosine (5fC) as well as 5fC to 5-

carboxylcytosine (5caC) (Tahiliani et al., 2009b). The exact step during which 

cytosine demethylation occurs is debated. It may be either following 5hmC 

deamination into 5-hydroxymethyluracil and subsequent removal by the 

AID/APOBEC base excision repair pathway (Guo et al., 2011) or by sequential 

conversion to 5caC and removal by the Thymine DNA Glycosylase (TDG), with in 

vitro and in vivo evidence pointing to the latter (Kohli and Zhang, 2013). 

TET2 and 3 appear to share similar catalytic activity to TET1 and exhibit 5mC, 5hmC 

and 5fC dioxygenase activities at TET1 proximal kinetics and apparently serve the 
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same physiological roles in vivo (Ko et al., 2010, He et al., 2011b). Intriguingly 

however, TET2 and 3 appear to directly bind to and promote the activity of O-

GlcNAc transferase (OGT), responsible for catalyzing the O-linked GlcNacation of 

Ser and Thr residues (Chen et al., 2013b). OGT activity in mammals has been linked 

to insulin sensitivity and energy metabolism (Yang et al., 2008b), it is a modulator of 

the AKT pathway (Yang et al., 2008a) and is crucial during murine embryogenesis 

and development, including sustained embryonic stem cell maintenance (Shafi et al., 

2000).  

TET enzymes also appear to play a significant role in cancer. A potential role in 

cancer as a tumour suppressor has been described for TET1, as downregulation of 

TET1 mediated demethylation is essential for KRAS driven transformation (Wu and 

Brenner, 2014), while overexpression leads to inhibition of migration and invasion in 

cancer cell lines (Park et al., 2016) and renal carcinoma (Fan et al., 2015) and inhibits 

colon cancer growth (Neri et al., 2015). However, its role may be more nuanced, as it 

appears to act as a co-activator of the hypoxia-induced epithelial-mesenchymal 

transition (Tsai et al., 2014). It was also recently shown that tumour hypoxia results in 

DNA hypermethylation through a reduction in TET1/3 activity, with important 

implication for hypoxia driven tumourigenesis (Thienpont et al., 2016). 
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ALKB Family  

ALKB is a protein family with 9 homologues in humans, ALKBH1-8 and FTO, and 

was originally described as human orthologues of the E. coli Alkb DNA alkylation 

repair enzyme, responsible for the dealkylation of 1-methyladenosine and 3-

methylcytosine of ssDNA (Sedgwick, 2004).  

Of these, ALKBH2 and 3 have been established as significant dealkylation enzymes 

in mice and human models, with different substrate specificities. ALKBH2 shows 3-

methylcytosine (3-meC) and 1-methyladenine (1-meA) activity in dsDNA at more 

than twice the level for ssDNA, while the opposite holds true for ALKBH3 (Duncan 

et al., 2002). Overall, ALKBH2 is the more efficient of the two, while also having 

demonstrated the capacity to repair 1-ethenoadenine adducts in vitro (Lee et al., 

2005a, Ringvoll et al., 2008). Nevertheless dealkylation is remarkably rapid, with 

both enzymes acting close to the diffusion limit (Lee et al., 2005b). ALKBH2 

promotes transcription of the rRNA genes through its dealkylase activity and 

associates with DNA repair proteins Ku70 and Ku80 (Li et al., 2013). ALKBH2 and 3 

expression have been associated with a number of cancers, including aggressive 

urothelial carcinoma (Fujii et al., 2013) (Shimada et al., 2012), glioblastoma 

(Johannessen et al., 2013) and prostate malignancies (Koike et al., 2012). 

The other members of the ALKB family have different activities, described in the 

following section where appropriate. 
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1.3.2 Histone Demethylases 

 

Modification of the N-terminal tails of histone proteins represents a major level of 

gene expression regulation that is distinct from DNA demethylation. Histone tails are 

targeted by a large variety of different modifications, among which methylation is 

accepted to be extremely important. The methylation marks themselves are dynamic 

and influence the recruitment of transcriptional regulators in highly specific manners. 

For instance, although H3K9 methylation in the promoter is typically associated with 

transcriptional repression, and is considered one of the defining traits of 

heterochromatin, H3K9 di- and tri-methylation in the coding region has been 

discovered in actively transcribed genes (Vakoc et al., 2005). The JMJD (Jumonji C 

Domain containing) family of ∼20 hydroxylases (also known as Lysine 

Demethylases, KDMs) forms, along with the unrelated lysine-Specific Demethylases 

(LSDs) the two known families of histone demethylases that are responsible for 

reversing these modifications (Klose et al., 2006) (Figure 1.3A). Demethylation is 

achieved via hydroxylation of the carbon of the methyl residue, creating an unstable 

hydroxymethyl intermediate which decomposes into formaldehyde (Figure 1.4) 

(Berry and Janknecht, 2013a). The specific reaction catalysed by JMJD proteins 

allows them to also demethylate tri-methyl lysines, an inaccessible target for LSD 

demethylases (Black et al., 2012) and potentially methylated arginine residues 

(Kooistra and Helin, 2012a). 
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Figure 1.4: The catalytic mechanism of JMJC histone demethylases. Tri-methyl 
lysine is presented as an example. Hydroxylation of the methyl carbon creates an 
unstable hydroxymethyl intermediate, which decomposes into formaldehyde (CH2O), 
demethylating the residue. The methyl group available for demethylation and the 
lysine side chain amine are highlighted in red. Figure adapted from (Kooistra and 
Helin, 2012b). 

 

JMJC lysine demethylases are grouped into six distinct subfamilies (KDM2-7), based 

on sequence homology and structural similarity, though significant overlap exists on 

their activities and substrates (Kooistra and Helin, 2012b). JMJC lysine demethylases 

have been implicated in a wide range of cellular activities, including but not limited to 

establishing transcriptionally permissive chromatin microenvironments, influencing 

cell fate during differentiation, DNA replication and cell division, and resetting the 

germline (Dimitrova et al., 2015). As a result, changes in the lysine methylation status 

brought about by changes in the activity of JMJC lysine demethylases have been 

associated with numerous disease states, including, most prominently, cancer (Dhar et 
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al., 2014) (He et al., 2011a) (reviewed in (Ploumakis and Coleman, 2015, Johansson 

et al., 2014)). JMJC lysine demethylases have been shown to possess both oncogenic 

and tumour suppressor functions, depending on the specific enzyme and cancer type 

in question (Berry and Janknecht, 2013b) (Van der Meulen et al., 2014, Kandoth et 

al., 2013) (Hu et al., 2001) (Kim et al., 2012). 

Beyond the JMJC lysine demethylases, an additional 2OG oxygenase, JMJD5, also 

known as KDM8, has been putatively identified as a histone demethylase targeting 

dimethylated H3K36, despite lacking any known histone interacting domains. 

Notably, one of its binding sites is the coding region of the Cyclin A1 ORF, implying 

that JMJD5 is an important cell cycle regulator. This role has been recapitulated by 

the discovery that JMJD5 is overexpressed in a range of tumors and JMJD5 loss of 

function mutations lead to cell cycle arrest in breast cancer cell lines (Hsia et al., 

2010). Nevertheless, the role of JMJD5 as a histone demethylase has recently been 

disputed on the basis of new biochemical assays in vivo (Youn et al., 2012) and the 

elucidation of its crystal structure. The latter displays greater structural homology 

with non-histone protein hydroxylases and RNA hydroxylases, suggesting those as 

alternative roles for JMJD5 (Del Rizzo et al., 2012, Wang et al., 2013).  

 

1.3.3 Oxygen Sensing and Transcription Factor Mediated Effects 

Control of the Hypoxic Response through Hydroxylation of HIF 

One of the most well-known and studied examples of hydroxylase-mediated gene 

expression control is the regulation of the Hypoxia Inducible Factor (HIF) abundance 

and activity. HIF is a heterodimeric member of the PER-ARNT-SIM (PAS) subfamily 
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of the basic helix-loop-helix (bHLH) family of transcription factors, composed of two 

structurally related α and β subunits. There are three known isoforms of the α subunit, 

HIF1α and 2α, which share significant sequence homology (Zhao et al., 2015), and 

HIF3α, which lacks a transactivation domain (Gu et al., 1998). Under physiological 

oxygenation levels, HIF1α is hydroxylated at conserved proline residues (P402 and 

P564 in H. sapiens) by the oxygen-dependent prolyl hydroxylases PHD1-3 (also 

known as EGLN1-3) (Figure 1.3C). Prolyl hydroxylation at these sites results in the 

proteasomal degradation of HIF1α through the creation of a recognition motif for the 

von-Hippel Lindau (pVHL) E3 ubiquitin ligase subunit (Shen and Kaelin, 2013), 

which marks it for degradation. The β subunit is instead constitutively expressed 

(Ratcliffe, 2013). During limited oxygen availability, otherwise known as hypoxia, 

PHD activity is reduced, resulting in reduced HIF1α degradation and increased 

abundance. However, functional activation of HIF activity is further dependent on the 

loss of hydroxylation by a fourth HIF hydroxylase, the Factor Inhibiting HIF (FIH). 

During normoxia, FIH hydroxylates a conserved asparaginyl residue in the crucial C-

terminal transactivation domain, preventing it from binding to the crucial 

transcriptional co-activator p300/CBP (reviewed in (Lisy and Peet, 2008)). During 

hypoxia, loss of this modification allows HIF to recruit p300/CBP, thus enabling its 

function as a transcription factor. HIF1-dependent transcriptional expression in turn 

regulates itself, through a negative feedback loop involving the induction of PHD2 

and PHD3 (EGLN3) (Epstein et al., 2001a) (Jaakkola and Rantanen, 2013). An 

additional negative feedback loop exists in the form of HIF3α splicing, which can 

produce a HIF3 variant, termed IPAS, that modulates HIF1 activity in a dominant 

negative manner (Makino et al., 2001, Makino et al., 2002, Makino et al., 2007). 
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The downstream transcriptional targets of HIF expression cover a vast range of 

responses related to the hypoxic response, including more than 500 unique binding 

sites identified in the human genome by Chip-Seq (Schodel et al., 2013), including 

both promoter as well as distal regulatory elements such as enhancers. In functional 

terms, the HIF-mediated transcription program is involved in numerous cellular 

processes, including metabolism, epigenetics, cell fate determination, apoptosis, 

migration and angiogenesis (Ratcliffe, 2013, Shen and Kaelin, 2013). Perhaps 

unsurprisingly, this widespread involvement has also made HIF and important target 

in a number of diseases, including cancer. In tumours, HIF activation is often found to 

contribute to tumour development either through activation as a result of hypoxic 

conditions in the tumour, or as a result of a pseudo hypoxic state brought about by 

increased HIF1α stabilisation, for example by reduced expression or activity of 

PHD1-3 and FIH (Ratcliffe, 2013, Shen and Kaelin, 2013, Semenza, 2010, Semenza, 

2003). Notably, in at least one type of cancer, clear renal cell carcinoma, protein 

coding mutations often lead to loss of VHL activity (Gerlinger et al., 2014), resulting 

in direct activation of the HIF pathway and driving spontaneous ccRCC formation in 

mouse models (Wang et al., 2014). 

HIF2α is highly similar to HIF1α in terms of structure and has been shown to be 

regulated in the same manner by oxygen availability through PHD1-3 and FIH 

hydroxylation (reviewed in (Schofield and Ratcliffe, 2004)). Hοwever, unlike the 

ubiquitous HIF1α, HIF2α is only expressed in specific tissues and developmental 

stages (Patel et al., 2010). Additionally, the downstream targets of HIF2α appear to 

differ to an extent from HIF1α. For instance, HIF1α and HIF2α exhibit opposing roles 

in Vascular Endothelial Growth Factor (VEGF) expression in mononuclear 

phagocytes (Eubank et al., 2011) and unlike HIF1α, enhanced HIF2α expression 
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during human trophoblast differentiation suppresses transcription of the placental 

growth factor (PGF) (Epstein et al., 2001b). The role and regulation of HIF3α is less 

well understood. It retains one of the PHD hydroxylation sites and multiple splice 

variants of it are targeted by pVHL, targeting them for proteolytic degradation 

(Maynard et al., 2003) and as discussed, some splice variants negatively regulate 

HIF1α (and likely HIF2α) activity (Makino et al., 2007). A specific role in signaling 

in adipose tissue has been proposed for HIF3α (Heidbreder et al., 2007, Pfeiffer et al., 

2016). 

Non-Enzymatic Transcriptional Control through JARID2 

Beyond their activity in modifying transcription factors, 2OG oxygenases can also 

possess intrinsic transcription factor activity, as exemplified by the first identified 

member of the JMJC group, JARID2 (a member of the KDM5 subfamily). The JmjC 

domain of JARID2, despite the presence of an intact DSBH fold, lacks apparent 2OG 

oxygenase activity due to mutation of key residues in the iron and 2OG binding sites 

(Pasini et al., 2010). Nevertheless, the protein plays an important role in murine 

Embryonic Stem (ES) cell differentiation by mediating DNA binding to the 

developmentally crucial Polycomb Repressive Complex 2 (PRC2), via direct 

interaction with its SUZ12 core component (Pasini et al., 2010). A recent study 

(Kaneko et al., 2014) has also identified long non-coding RNAs (lncRNAs) from the 

developmentally significant imprinted Dlk1-Dio3 locus as JARID2 binding partners. 

Finally, JARID2 appears to be essential for cancer stem cell maintenance in bladder 

cancer (Zhu et al., 2017). 
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1.3.4 RNA Modification 

 

Splicing Control by JMJD6 

Originally thought to be a phosphatidylserine receptor involved in apoptotic 

phagocytosis (Bose et al., 2004), JMJD6 was later found  to act as a 5-lysyl 

hydroxylase of spliceosome components U2AF/U2AF65 and LUC7L2, affecting 

spliceomorph choice in a subset of pre-mRNAs (Webby et al., 2009) (Figure 1.3D). 

Interestingly, it would appear that lysine hydroxylation of spliceosome components 

by JMJD6 only partially accounts for its activity and JMJD6 may also determine 

splicing events through non-enzymatic means (Yi et al., 2017). An additional function 

has been proposed for JMJD6 as a histone arginine demethylase targeting H3R2me 

(histone 3, Arginine 2 methylation) and H4R3me (Chang et al., 2007), with some 

further evidence for single stranded RNA hydroxylase activity (Hong et al., 2010b). 

However, both of these assignments appear not to represent the primary roles in vivo 

(Webby et al., 2009). Additionally, JMJD6 overexpression is associated with poor 

prognosis in breast cancer (Lee et al., 2012). 

 

Demethylation of N6-Methyladenosine 

Adenosine methylation to N6-methyladenosine (6-meA), catalysed by the N6-

adenosine methyltransferase complex (Bokar et al., 1997), is a highly evolutionarily 

conserved nucleotide modification, encountered from viruses (Beemon and Keith, 

1977) to eukaryotes (Zhong et al., 2008, Wei and Moss, 1977). It primarily affects 

mRNA, where it is the most common post-transcriptional modification, found in 25% 
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of all transcripts, typically located in the 5′ UTR or in the proximity of the stop codon 

(reviewed in (Yue et al., 2015)). This modification has been found to be dynamic and 

reversible by two identified 2OG oxygenases, ALKBH5 and the Fat Mass and 

Obesity associated protein (FTO) (Figure 1.3D). 

In contrast to ALKBH2/3 (discussed above), ALKBH5 exhibits 6-meA RNA 

demethylase activity, and appears to be crucial in murine spermatogenesis (Zheng et 

al.). Despite the similarity to FTO (discussed below), ALKBH5 does not appear to 

play a significant role in metabolic disorders (Shen et al., 2015). Interestingly, 

ALKBH5 has been shown to be a target of HIF, adding an further layer of complexity 

to the regulation of gene expression by 2OG oxygenases (Thalhammer et al., 2011). 

Another member of the ALKB family, FTO, has been established as a 6-meA 

demethylase with additional in vitro DNA 3-methylthymine and 3-methyluridine 

ssRNA demethylase activity (Gerken et al., 2007)(Jia et al., 2011). Nevertheless, 

recent evidence indicates that FTO preferentially demethylates N6,2′-O-

dimethyladenosine (m6Am,containing an additional methylation at the 2’-hydroxyl 

position of the ribose), a modification that is generally observed adjacent to the m7-

methylguanosine cap of mRNA, where it has a major role in regulating mRNA 

stability (Mauer et al., 2017). FTO appears to play an important role in regulating 

energy intake and is a likely genetic factor for obesity and associated co-morbidities 

(Fredriksson et al., 2008) (Do et al., 2008) (Jacobsson et al., 2008). Interestingly, FTO 

may also have a role in cancer, acting as an oncogene promoting cell transformation 

and tumorigenesis in types of acute myeloid leukemia (Li et al., 2017). Furthermore, 

FTO variants have also been associated with increased risk of breast cancer (Garcia-

Closas et al., 2013) and melanoma (Iles et al., 2013). 
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1.3.5 Roles of Hydroxylases in Protein Synthesis 

Translation represents one of the major targets of gene expression control by 2OG 

oxygenases and ribosomal oxygenases are potentially the phylogenetically oldest 

oxygenase class (Chowdhury et al., 2014b). 2OG oxygenases have been shown to 

catalyse the hydroxylation of factors involved in every step of translation, from 

ribosomal subunit proteins (Ge et al., 2012a) to the eukaryotic termination factor 

eRF1 (Feng et al., 2014b) (Figure 1.3E). The dependence of 2OG oxygenases on 

2OG, Fe(II), and oxygen presents a unique junction for the integration of energy 

availability, the redox state of the cell, and oxygen availability to mechanisms of 

translational control (reviewed in (Ploumakis and Coleman, 2015)). In terms of 

pathology, the tumour microenvironment may be associated with limitations in all 

three of these cofactors, perhaps explaining the upregulation of translational 

oxygenases in several cancer types as a necessary adaptive response (Zhuang et al., 

2015). 

tRNA Hydroxylation 

Post transcriptional modification of tRNAs has been postulated to enable tRNA 

folding and translation fidelity (El Yacoubi et al., 2012). Thus far, three 2OG 

oxygenases which hydroxylate tRNA have been discovered: TYW5, ALKBH8 and 

ALKBH1.  

TYW5 is a homodimeric tRNA hydroxylase involved in the generation of the 

hypermodified guanosine-derived base wybutosine (yB), found in position 37 of 

tRNA(Phe). Specifically, it catalyses one of the steps in the pathway, the conversion 

of 7-(a-amino-a-carboxypropyl)wyosine (yW-72) to undermodified 

hydroxywybutosine (OHyW*) (Kato et al., 2011b).  
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ALKBH8 is composed of a JMJC domain and a predicted methyltransferase domain. 

Uniquely, within the ALKBH family, the methyltransferase domain of ALKBH8 

catalyses the methylation of 5-carboxymethyl uridine to 5-methylcarboxymethyl 

uridine in the wobble position in the anticodon loop Glu- and Arg-tRNA’s (Fu et al., 

2010a). An ALKBH8 truncation mutant that lacks the methyltransferase domain is 

capable of hydroxylating methoxycarbonylmethyluridine to 5-

methoxycarbonylhydroxymethyluridine (Fu et al., 2010b), though this activity has not 

been confirmed for the full-length protein. Interestingly, ALKBH8 is overexpressed in 

urothelial carcinomas where it appears to promote cell survival, similar to other 

members of the ALKBH family (Shimada et al., 2009).  

ALKBH1 was recently shown to catalyse the demethylation of N1-methyladenosine 

(m1A) in the stem loop structure of tRNAs, the only enzyme known to be able to 

reverse this type of modification. ALKBH1-mediated m1A demethylation appears to 

play a role in coupling nutrient status with translational control, as glucose 

deprivation results in elevated ALKBH1 levels, leading to increased m1A tRNA 

demethylation and an attenuation of polysome translation (Liu et al., 2016). 

Additionally, ALKBH1 appears to catalyse N5-methylcytosine (m5C) demethylation 

in the wobble position of the anti-codon stem loop of the mitochondrial initiator 

methionine tRNA (Haag et al., 2016). Finally, a potential role for ALKBH1 in DNA 

demethylation has been suggested due to it exhibiting 3-methylcytosine and 1-

methyladenosine dioxygenase on ssDNA in vitro. However, the potential 

physiological relevance of these activities is unclear (Westbye et al., 2008). 
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Ribosomal Oxygenases 

In humans, the large ribosomal subunit is modified by two oxygenases, Nucleolar 

Protein 66 (NO66) and the Myc Induced Nuclear Antigen (MINA53), which catalyse 

the C3 H216 hydroxylation of ribosomal protein Rpl8 and the C3 hydroxylation of 

Rpl27a H39, respectively (Ge et al., 2012a). Structurally, both share high sequence 

homology and are closely related to the bacterial homologue ycfD, an arginine 

hydroxylase of the 50S ribosomal subunit Rpl16 (Ge et al., 2012b, Chowdhury et al., 

2014c). 

Recent structural studies have indicated that the Rpl8 hydroxylase activity of NO66 is 

dependent on its homooligomerisation into a tetramer, recognising the consensus 

sequence motif NHxH (Wang et al., 2015). An additional role has been suggested for 

NO66 as a histone demethylase targeting H3K4me1, 3 and to a lesser extent 

H3K4me2 as well as H3K36me2 and me3 as its substrates (Sinha et al., 2010b). 

Within this context, NO66 has been proposed to bind to and inhibit the osteoclast-

specific transcription factor Osterix (OSX) (Sinha et al., 2010a), resulting in defects in 

osteoclast differentiation in histone demethylase activity dependent manner (Tao et 

al., 2013). However, this role has been disputed on functional and structural grounds 

(Chowdhury et al., 2014b). NO66 is likely pro-tumorigenic, as it is often 

overexpressed in non-small cell lung cancer, the most common form of lung cancer 

(Suzuki et al., 2007b). It is further associated with increased metastatic potential in 

invasive colorectal cancer (Nishizawa et al., 2017), while ectopic expression of NO66 

leads to an increased proliferation phenotype (Suzuki et al., 2007a). 

As with NO66, a potential role for MINA53 as a histone lysyl demethylase targeting 

H3K9me has been proposed (Lu et al., 2009, Chen et al., 2013a), but without in vivo 
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evidence. In terms of physiology, MINA53 appears to play a significant role in the 

immune response by acting as a determinant of Th2 T cell bias, a genetic trait that 

increases the likelihood of allergies and autoimmune disorders, as well as affecting 

pathogen susceptibility (Okamoto et al., 2009). In this context, Th2 T cell bias 

appears to be mediated through suppression of Interleukin-4 (IL4) expression, in turn 

caused by MINA53 binding to the IL4 promoters in an IL4 and NFAT dependent 

manner (Okamoto et al., 2009). Despite its role in immunity, it is difficult to establish 

MINA53 as a prognostic marker, as its pattern of overexpression is inconsistent and 

associated with poor prognosis in renal cell carcinoma (Ishizaki et al., 2007), 

favourable prognosis in early stage lung cancer (Komiya et al., 2010) and poor 

prognosis in breast cancer (Thakur et al., 2014). 

The final ribosomal oxygenase known in humans is OGFOD1, which catalyses the 

trans-3 hydroxylation of Pro62 of the 40S ribosomal subunit protein Rps23 (Singleton 

et al., 2014a). Rps23 hydroxylation by homologues of OGFOD1 (e.g. Tpa1p in S. 

cerevisieae) is conserved across eukaryotes, though in basal eukaryotes 3,4-

dihydroxyproline appears to be the final product (Loenarz et al., 2014). The trans-3 

prolyl hydroxylation of Rps23 by OGFOD1 or its Tpa1p homologue appears to be 

significant in controlling translational termination efficiency, as knockdown of Tpap1 

results in changes in stop codon readthrough (Loenarz et al., 2014). Whether an 

increase or decrease in stop codon readthrough occurs appears to be dependent on the 

termination context and specifically on the nucleotide following the stop codon. The 

hydroxylated Proline and its surrounding sequence are likely extremely important in 

translation, as all the Proline mutational variants are lethal in yeast (Loenarz et al., 

2014). OGFOD1 is necessary for optimal growth across a range of human cell lines in 

an activity dependent manner and its knockdown results in the formation of stress 
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granules and translational arrest (Singleton et al., 2014b). Finally, OGFOD1 may play 

a role in cancer, as it is frequently overexpressed in breast cancer tissues and 

associated with poor prognosis (Kim et al., 2015). 

1.3.6 The Termination Factor Hydroxylase JMJD4 

JMJD4, investigated later in this Thesis, is a 52.5 kDa JMJC 2OG oxygenase sharing 

~34% sequence homology with JMJD6. In the first comprehensive study of JMJD4 

(Feng et al, 2014), potential targets and binding partners of JMJD4 were identified by 

generation of a catalytically inactive mutant substituting H189A at the Fe(II) binding 

site of JMJD4, followed by affinity purification and mass spectrometry, and 

comparison to wild-type JMJD4 data. Despite the high sequence homology with 

JMJD6, none of the latter’s binding partners were identified. Instead, the major 

activity dependent JMJD4 interactors were found to be the eukaryotic omnipotent 

termination factor eRF1 and its binding partner eRF3a (discussed later in the 

introduction), with stoichiometric evidence indicating that JMJD4 specifically 

interacts with eRF1. In vitro and in vivo experiments further demonstrated that JMJD4 

specifically catalyses the C-4 lysyl hydroxylation of K63 on eRF1. K63 of eRF1 

resides within a conserved ‘NIKS’ sequence motif, which  participates in stop codon 

recognition during translational termination (for a further analysis on the NIKS motif 

and eRF1 please section 1.4.4 of this introduction). Interestingly, JMJD4 is the only 

known 2OG lysyl hydroxylase capable of catalysing a C-4 hydroxylation; all other 

reported lysyl hydroxylases target the C-5 carbon. The catalytic activity of JMJD4 is 

dependent as with other 2OG oxygenases of its family, on Fe(II), 2OG and molecular 

oxygen. Despite the dependence on oxygen, JMJD4 maintains high levels of activity 

even under severe hypoxia (≤1% O2), indicating it is likely not a physiological oxygen 

sensor.  
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JMJD4 was further found to be abundantly expressed in several mouse tissues, 

including brain, heart, lung, liver, kidney and testes, with an exclusively cytoplasmic 

distribution. JMJD4 mediated eRF1 hydroxylation has over 90% abundance in 

immortalized cell lines and mouse tissues and is essential for optimal termination. 

Knockdown of JMJD4 in multiple cell lines resulted in an increase in translational 

termination readthrough, where the translating ribosome proceeds past the normal 

stop codon, resulting in an extended C-terminus. This data was further validated by 

the finding that in an in vitro system hydroxylated eRF1 was more efficient at 

releasing stalled termination complexes than the unmodified version, at all three stop 

codons (Feng et al., 2014b). While the mechanism by which JMJD4 hydroxylation 

confers increased termination efficiency to eRF1 is not yet well understood, it is 

hypothesized to occur likely via an interaction between the hydroxylated lysine in the 

NIKS motif and the uridine in the first nucleotide of a stop codon (Chavatte et al., 

2002). The mechanism of stop codon recognition by eRF1 and the contribution of the 

K63 hydroxylation in that is explored in greater detail in section 1.4.4 (eRF1). 

The physiological role that JMJD4 might play has not been established as well. 

Attempts to describe the in vivo importance of JMJD4 have only occurred recently 

(Yoo et al., 2016b). In this study, JMJD4 knockout mice were generated to assess 

developmental and other phenotypes. In contrast to the study by Feng et al, 

expression of JMJD4 was found to be sporadic and concentrated primarily in the eyes 

and gut. Additionally, overall JMJD4 expression appears to decrease as cells become 

increasingly differentiated, overall suggesting a specialized or limited developmental 

role. Embryonic Stem Cell (ESC) colonies derived from these mice exhibited a 

normal level of proliferation and appeared to be indistinguishable from WT ESC 

colonies. Finally, JMJD4 -/- homozygous mice develop apparently normally, without 
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demonstrating growth retardation or reduction in viability, indicating that JMJD4 is 

dispensable for embryonic development in mice. Nevertheless, the aforementioned 

study only verified knockout of JMJD4 in the affected mice and ESC colonies at the 

transcript rather than protein level. Additionally, the level of JMJD4 activity in the 

mice tissues or whether an increase in translational readthrough occurred was not 

tested for. 

Profiling of the global gene expression in response to JMJD4 knockdown in mice has 

also been recently performed (Hu and Imbalzano, 2016), but without any attendant 

data analysis. Due to difficulties in accessing the dataset, the data contained where not 

analysed further in this Thesis. Finally, a possible mechanism of JMJD4 regulation 

was proposed by (Zhang et al., 2017), reporting that knockdown of the miR-370 

miRNA in porcine induced Pluripotent Stem Cells (piPISCS) results in an increase in 

JMJD4 expression, part of more general upregulation of development associated 

genes. Finally, no work has been performed on the disease relevance of JMJD4. 

However, using publicly available datasets, evidence for a potential involvement in 

cancer can be found, and is presented in section 3.2 of this Thesis. 
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1.4 Translation 

 

1.4.1 Overview of Translation 

Translation is the process by which proteins are synthesised, consisting of the 

sequential addition of single amino acids at the end of a growing polypeptide chain 

and is catalysed by a large protein and ribonucleic acid complex known as the 

ribosome. Translation can be conceptually divided into its initiation, elongation and 

termination stages. In a mechanism shared by prokaryotes and eukaryotes, a mature, 

translation competent ribosome is assembled from two distinct subunits, a large and 

small one, at the site of an initiation codon on mRNA, with the aid of initiation 

Factors (eIFs in eukaryotes). Aminoacyl tRNA synthetases load tRNAs with specific 

aminoacids dependent on their anti-codon loop sequence. The ribosome has three 

tRNA binding sites, the aminoacyl site (A), the peptidyl site (P) and the exit site (E), 

located in an E-P-A sequence relative to the mRNA orientation. The aminoacyl 

groups of charged tRNAs are then added to the growing polypeptide chain based on 

the Watson-Crick base pairing of the mRNA codons and the tRNA anti-codon loop 

and elongation continues in a GTP dependent manner. Termination of translation is 

the result of a stop codon in the mRNA, which causes the recruitment of a Release 

Factor (RF1 and 2 in prokaryotes, eRF1 in eukaryotes), allowing release of the 

polypeptide chain.  The process by which this protein synthesis occurs and is 

regulated is widely covered in literature and beyond the scope of this Thesis; 

therefore, a brief overview of translational initiation and elongation is provided, 

followed by a more in-depth look into the process of termination. 
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1.4.2 Translation Initiation 

Translational initiation is the process of assembly of translation competent 80S 

ribosomes so that the start codon in mRNA is paired with an initiator Methionine-

loaded Met-tRNA (Met-tRNAMet
i) at the P-site of the ribosome, through their 

codon:anti-codon loop base pairing. The first step of translation initiation is the 

formation of the 43S preinitiation complex, composed of the 40S subunit, the eIF2-

GTP-Met-tRNAMet
i ternary complex, eIF1, eIF1A and potentially eIF5 (Jackson et al., 

2010). The 43S complex subsequently attaches to the modified 5’- methylguanosine 

cap of mRNA and recruits eIF4A, eIF4B and eIF4F, resulting in the loss of the local 

mRNA tertiary structure (Sonenberg and Hinnebusch, 2009). The 43S complex then 

scans along the 5’ untranslated region (5’-UTR) (Pestova and Kolupaeva, 2002), until 

it encounters an initiator codon. To guarantee fidelity of translation it is necessary to 

ensure that partial binding of the anti-codon loop of Met-tRNAMet
i with the 5’UTR 

does not occur. For this reason, the initiator methionine codon (AUG, highlighted in 

bold below) is typically presented in an optimal recognition sequence, 

GCC(A/G)CCAUGG (Kozak, 1991). Fidelity of initiation is enhanced by eIF1, which 

increases selectivity for correct initiation contexts and decomposes ribosomes 

assembled at Met codons that are in a poor sequence context (Pestova and Kolupaeva, 

2002).   Binding and commitment to the initiator Met codon is mediated by eIF2 in a 

GTP-dependent manner, resulting in the formation of the 48S complex. Hydrolysis of 

GTP is caused by eIF2γ aided by eIF5 and eIF5B binding to eIF2β. The latter is 

predicted to occur by either eIF5 acting as a classic GTPase Activator Protein and 

providing an arginine finger (Paulin et al., 2001), or by de-repressing eIF2γ GTPase 

activity (Marintchev and Wagner, 2004). eIF2 GTP hydrolysis subsequently 

participates in the displacement of the eIFs and allows binding of the 60S subunit and 
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consequently permits translational elongation to begin. (Jackson et al., 2010). A 

schematic of the process of translation initiation can be found in Figure 1.5. 
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Figure 1.5: The process of eukaryotic translation initiation. Binding of eIF1, 
eIF1A and eIF5 to the 40S ribosomal subunit results in the formation of the 43S pre-
initiation complex, which then recruits the eIF4 complex bound mRNA, forming the 
48S initiation complex. The mRNA is scanned for an initiation codon in an optimal 
context, and the choice committed to via hydrolysis of the eIF2 bound GTP. This 
results in the dissociation of the initiation factors and recruitment of the 60S subunit, 
forming the 80S initiation complex, allowing translation elongation to begin. 
Individual components not to scale. 
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1.4.3 Translational Elongation  

Following translational initiation, the Met-RNAMet
i is base paired to the mRNA start 

codon and located at the P-site of the 80S ribosome. The subsequent codon in a 5’-

3’direction is then open to the A site. Binding of a cognate aminoacyl-tRNA to that 

codon is mediated by the eukaryotic elongation factor 1A (eEF1A), which directs 

aminoacyl tRNAs to the A site in a GTP dependent manner. In the event of a base pair 

match, GTP hydrolysis occurs by eEF1A, which dissociates from the translating 

complex (Dever and Green, 2012). Accommodation of the aminoacyl-tRNA at the A 

site is rapidly followed by peptide bond formation with the P-site peptidyl tRNA, 

through the Peptidyl Transferase Centre (PTC) of the large (60S) subunit, so that the 

polypeptide chain is now bound only to the tRNA at the A site. The latter is almost 

universally conserved among eukaryotes and prokaryotes and is composed in large 

part by ribosomal RNA (rRNA), with crucial roles in the catalysis of the reaction. 

Following peptide bond formation, the small and large ribosomal subunits move 

relative to each other, so that the tRNAs previously at the P- and A-sites are now in a 

hybrid P/E and A/P configuration respectively. Specifically, the acceptor arms 

containing the aminoacid groups are moved to the E and P sites, while the anti-codon 

loops remain in the P and A sites. This hybrid state is stabilised by GTP binding 

through the eukaryotic Elongation Factor 2 (eEF2). The latter acts as a translocase, 

pushing the peptidyl-tRNA into the P-site and the deacylated tRNA into the E-site, 

freeing the A-site for another round of elongation (Rodnina and Wintermeyer, 2009, 

Dever and Green, 2012). It is currently not clear whether release of the deacylated 

tRNA at the E-site is coupled to eEF1A mediated binding of a new aminoacyl-tRNA 

at the A site as an allosteric effect, or whether it occurs earlier (Nierhaus, 1990, Chen 

et al., 2011). A schematic of this process is presented in Figure 1.6. 
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Figure 1.6: The eukaryotic translational elongation cycle. eEF1A delivers the 
aminoacyl-tRNA to the 80S ribosomal A-site. There, if the aminoacyl-tRNA 
anticodon loop is cognate to the triplet in the codon loop, GTP hydrolysis occurs and 
eEF1A is released. Peptidyl transfer of the aminoacyl-tRNA in the A position then 
occurs by peptide bond formation to the ribosomal PTC. Subsequently, ratcheting of 
the ribosome causes the two aminoacyl tRNAs to adopt hybrid positions, which 
ribosomal translocation across the mRNA causes to shift to the E and P positions 
respectively, accompanied by GTP hydrolysis and eEF2 dissociation.   (Figure 
adapted from (Schneider-Poetsch et al., 2010)) 
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1.4.4 Translational Termination 

 

Translational termination occurs when a stop codon (UGA, UAA or UGA) enters the 

A site of a translating ribosome. In both bacteria and eukaryotes, this process is 

controlled by Class I and II ‘release factors’, which acts as either a tRNA mimic or as 

a GTPase, respectively, and function cooperatively (Zhouravleva et al., 1995). In 

eukaryotic organisms, the class I release factor is eRF1 and the class II is eRF3a. In 

bacteria these are referred to as RF1/2 and RF3, respectively (Atkinson et al., 2008). 

Of these, eRF1 is the major focus of study in this Thesis. 

 

eRF1 

Encoded by the ETF1 gene, eRF1 (also known as TB3-1) is a protein which in 

eukaryotes acts as an omnipotent termination factor, i.e. is able to decode all three 

UGA, UAA and UAG termination codons (Goldstein et al., 1970, Konecki et al., 

1977). eRF1 is a functional counterpart of eubacterial RF1 and RF2 but unrelated in 

primary structure and with significant differences in secondary and tertiary structure 

(Figure 1.7). However, it exhibits 30% pairwise sequence identity with archaeal RFs, 

indicating the presence of two distinct protein families with convergent function and 

characteristics (Vestergaard et al., 2001). 
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Figure 1.7: Eukaryotic, eubacterial and archaebacterial translation Release 
Factors are not structurally similar: Corey-Pauling-Koltun-type molecular 
representations of translation Release Factors across the domains of life, including a 
typical charged tRNA structure for comparison (figure adapted from (Vestergaard et 
al., 2001)) 

 

As discussed, termination of protein biosynthesis is signalled by the presence of an in-

frame stop codon. eRF1 recognises the stop codon and causes the peptidyl transferase 

centre of the ribosome to hydrolyse the amide bond between the peptidyl-tRNA site 

and the polypeptide (Song et al., 2000). Termination efficiency can vary among 

sequences, and in S. cerevisiae and E. coli it has been shown to be affected by the 

bases flanking the stop codon with a specific bias towards the 3’ base in the latter 

(Bonetti et al., 1995, Poole et al., 1995, Mottagui-Tabar et al., 1998). 

The crystal structure of eRF1 was determined at 2.8Å in 2000 by Song et al (Song et 

al., 2000) and was shown to be composed of three approximately equally sized 

domains in an approximate ‘Y’ shape, in contrast to the tRNA and bacteria RF ‘L’ 

shape, demonstrating that eRF1 is not as dependent on molecular mimicry as its 

prokaryotic counterparts. In general, it would appear that each of the three domains of 

eRF1 is broadly associated with a different function: Domain 1 (N-terminal) is 

responsible for conferring stop codon specificity (Frolova et al., 2000, Inagaki et al., 
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2002), domain 2 (Middle) mimics the tRNA acceptor arm and is responsible for 

peptidyl bond hydrolysis leading to release of the polypeptide (Song et al., 2000, Seit-

Nebi et al., 2001b) and domain 3 (C-terminal) mediates eRF3a binding (Nakamura 

and Ito, 1998, Kononenko et al., 2008, Cheng et al., 2009) (Figure 1.8). 

 

 

Figure 1.8: Domains and structural features of the eukaryotic Termination 
Factor eRF1. A) Ribbon diagram of H. sapiens eRF1. The protein is composed of 
three domains, outlined in blue, green and orange respectively. The conserved NIKS 
and GGQ motifs are indicated by arrows. B) Orthogonal view of the same (Figure 
adapted from (Song et al., 2000)). 
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Domain 2 exhibits one particular sequence of great importance, the ‘GGQ’ motif, 

which is found within the conserved GRGGQS sequence context, in turn located 

within a turn connecting the N-terminus of the α-5 helix with a β-strand, forming a 

GGQ minidomain (Song et al., 2000). The GGQ sequence motif is universally 

conserved among all eubacteria, archaebacterial and eukaryotic release factors 

(Frolova et al., 1999, Song et al., 2000). Mutations abolish the peptidyl-tRNA 

hydrolysis activity during termination, indicating that it is likely essential for the 

hydrolytic activity of the ribosomal peptidyl transferase centre. Specifically, mutation 

of the two glycine residues (G183 and G184 in H. sapiens) causes complete loss of all 

release factor activity, with mutant eRF1 competing with wild type for the ribosome 

binding sites in in vitro assays and displaying a dominant negative phenotype. 

However, mutations in the GGQ motif do not appear to affect the ability of eRF1 to 

stimulate eRF3 GTPase activity (Frolova et al., 1999). Additionally, mutations within 

the broader minidomain context that do not affect the GGQ sequence directly 

generally result in wild type phenotypes (Song et al., 2000). A proposed mechanism 

by which the GGQ motif functions in peptidyl-tRNA hydrolysis is that the amide 

nitrogen on the Gln residue plays a crucial role by coordinating a water molecule, 

which performs a nucleophilic attack on the peptidyl-tRNA ester (in a manner similar 

to the nucleophilic attack by the amino group of the aminoacyl-tRNA during normal 

elongation)  (Song et al., 2000). The Glutamine on GGQ undergoes N-5 methylation 

in yeast and metazoa by the methyltransferase HEMK2 in complex with its obligate 

biding partner Trm112 (Figaro et al., 2008). Though the function of the methylation is 

yet unknown, deletion of HEMK2 results in growth defects in yeast (Polevoda et al., 

2006) and early embryonic lethality in mice (Liu et al., 2010). 
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Domain 1 contains three conserved sequences of interest: the NIKS motif, the 

YxCxxxF motif and the GTS loop, all of which have been linked to stop codon 

specificity (Bulygin et al., 2010, Cheng et al., 2009). The Tyrosine (Y125 in H. 

sapiens eRF1) in the YxCxxxF motif is invariant and along with another highly 

conserved residue, E55, has been shown to be involved in the formation of hydrogen 

bonding networks with the stop codon and each other (Kolosov et al., 2005). Mutant 

eRF1 terminating at UGA stop codons only has been shown to exhibit different 

positioning of the GTS loop, suggesting that it too participates in conferring 

specificity to stop codons (Wong et al., 2012).  

The primary contribution to stop codon recognition by eRF1 is likely mediated by the 

NIKS motif, based on a 3.5-3.8Å Cryoelectron Microscopy (Cryo-EM) structure of 

the stalled eukaryotic termination complex (Brown et al., 2015). eRF1 is able to 

decipher between stop and sense codons by exploiting the architecture of the local 

rRNA and mRNA sequences (Figure 1.9). Specifically, nucleotide A1825 of the 18S 

ribosomal RNA is rotated during binding of eRF1, causing it to stack on positions 2 

and 3 of the codon bases. As a result, base G626 of the 18S rRNA can stabilise the 

base in the 4th position, securing it within the A-site of the ribosome. This results in an 

overall compaction of the mRNA conformation, resulting in a hydrogen bonding 

network between the codon, the 18S rRNA and the NIKS motif of eRF1 in which 

only uridine can be accommodated in the +1 position. More specifically, an additional 

hydrogen bond can form between the uracil carbonyl groups and the main chain 

carbonyl of N61 since the N61 and K63 side chains are now within hydrogen-bonding 

distance. In this context, JMJD4-mediated C4 hydroxylation of K63 is thought to 

permit the formation of an additional interaction with the mRNA phosphate backbone, 

thus optimising hydrogen bonding through the C5 aminogroup. (Brown et al., 2015). 
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Figure 1.9: Interaction networks conferring specificity of stop-codon recognition 
during translational termination. A) eRF1 K63 permits bonding with the +1 
Uridine in stop codons. JMJD4 mediated hydroxylation of K63 occurs at C4 (white 
asterisk) and would permit hydrogen bonding to the mRNA backbone, stabilising the 
interaction. Ribosome bound AAQ-eRF1 in purple, eRF1 crystal structure in light 
grey. B) The stop codon proposed interaction network between AAQ-eRF1, the stop 
codon (UAG) and 18S rRNA. eRF1 in purple, stop codon in slate, rRNA in yellow. 
C) Model for stop codon discrimination based on hydrogen bonding of eRF1 Glu55. 
Hydrogen bonding to all three stop codons is possible, but not to the UGG sense 
codon. D) Response of eRF1 conformation to different stop codons. UGA bound 
AAQ-eRF1 in purple, UAG bound AAQ-eRF1 in white. Figure adapted from (Brown 
et al., 2015). 
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Furthermore, the NIKS motif lines the top of the stop codon forming extensive 

hydrogen bond networks with it, the YxCxxxF motif participates in stabilising the 

flipped A1825 and forms the middle part of the pocket, and Thr32 of the GTS loop is 

responsible for closing the binding pocket near position 3 of the stop codon (Brown et 

al., 2015). Stop codon specificity is then granted through the interactions of these 

motifs with the codon. Hydrogen bonding by K63 of the NIKS motif selectively 

allows only codons initiating with a Uracil to bind, while the local rRNA architecture 

necessary to accommodate eRF1 and mRNA in the site would preclude purines due to 

size and cytosine would be destabilised. In the second position, stacking between 

A1825 and position 3 of the stop codon as well as Tyr of the YxCxxxF motif favours 

purines. Based on this model, E55 derived electrostatic interactions should reduce 

guanosine affinity for the site and favour adenine (Brown et al., 2015). The study used 

UAA(A) as the stalled stop codon, which may account for the decoding architecture 

specifically favouring adenine in position 2, given that E55 could adopt any rotameric 

conformation and ease the energy barrier for guanine. Finally, the third position in a 

UNR turn must always be a purine and position 4 stacks with G626 of the 18S RNA, 

stabilising the whole structure. (Brown et al., 2015). 
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eRF3a 

eRF3a is a class 2 release factor which is not codon specific and enforces GTP 

dependence on this process, accelerating peptide release and increasing termination 

efficiency (Alkalaeva et al., 2006, Eyler and Green, 2011). In contrast to its 

prokaryotic counterparts, eRF3 GTPase activity requires the presence of eRF1 

(Frolova et al., 1996). Binding of GTP-eRF3 to the termination complex likely occurs 

following binding of eRF1, as GTP-eRF3 exhibits significantly lower constant of 

dissociation when in the presence of the eRF1: ribosome complex (Pisareva et al., 

2006), with eRF1 acting as a dissociation inhibitor. Overexpression of eRF1 is enough 

to promote efficient translational termination in the absence of eRF3a (Frolova et al., 

1994), however S. cerevisiae viability is eRF3a dependent (Stansfield et al., 1995).  
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1.4.5 Aberrant Translation in Cancer 

A role for translation in cancer has been indicated since the early days of cancer 

molecular biology. Specifically, cancer cells had been noted to exhibit increased rates 

of global protein synthesis (Johnson et al., 1976) along with increased ribosome 

abundance (Zetterberg et al., 1995) and recruitment of mRNAs unique to tumour cells 

in the polyribosomal assemblies (Getz et al., 1976). 

Further work has concentrated primarily on the regulation of translation initiation in 

cancer. One of the best examined factors in that regard is the m7G-cap binding eIF4 

complex, whose abundance is rate limiting for translation (Gingras et al., 1999). Of 

the proteins participating in the complex, two have been specifically pinpointed as 

cancer relevant: eIF4e and eIF4g. Overexpression of eIF4e is by itself sufficient to 

reduce the doubling time and relieve contact inhibition in cell cultures and is 

associated with increased activity of the GTPase Activating Protein (GAP) Ras, a 

known oncogene (Kevil et al., 1996). Additionally, eIF4e expression is upregulated 

by the MYC oncogene (Rosenwald et al., 1999) and is required for MYC dependent 

transformation of primary mouse fibroblasts (Lazaris-Karatzas and Sonenberg, 1992). 

In accordance to its observed role in vitro, eIF4e expression is increased in breast, 

head and neck, colon and ovarian carcinoma (Li et al., 1997, Sorrells et al., 1999, 

Rosenwald et al., 1999, Noske et al., 2008). Similarly, eIF4g has been shown to be 

upregulated in squamous cell carcinoma, inflammatory breast cancer and naso-

pharyngeal carcinoma (Brass et al., 1996, Silvera et al., 2009) (Tu et al., 2010). 

Another initiation factor which has received interest with regards to its role in cancer 

is eIF3. Several of the subunits of eIF3 have been shown to be overexpressed in a 

number of malignancies, including breast, colon, prostate and lung (Chen and Burger, 
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2004, Goh et al., 2011, Pincheira et al., 2001). In vitro, ectopic overexpression of 

specific eIF3 subunits has been shown to promote cell growth and malignant 

transformation, while overexpression of others curtails cell proliferation (Zhang et al., 

2007). The reason for this difference is not as of yet understood. However, it is 

notable that eIF3 has been recently shown to be capable of binding to mRNA 

transcripts of genes associated with cell cycling, growth, and differentiation. These 

include the proliferation regulators c-Jun and BTG1, and eIF3 can either activate or 

repress their translation depending on the type of RNA stem loop binding it (Lee et 

al., 2015). 

Overexpression of the translation initiation factor eIF5A has also been observed in 

lung, pancreatic, colorectal and ovarian tumours and is associated with poor prognosis 

(Mathews and Hershey, 2015). Furthermore, induced overexpression of EIF5A has 

been shown to promote metastasis and tissue invasion via upregulating expression of 

the genes Metastasis Associated protein 1 (MTA1) and Matrix Metalloproteinase 2 

(MMP2) in colorectal and gastric and liver cancer respectively (Zhu et al., 2012, 

Meng et al., 2015, Wang et al., 2014). eIF5A physiologically undergoes hypusination, 

a posttranslational modification that is catalyzed by deoxyhypusine synthase (DHS) 

and deoxyhypusine hydroxylase (DOHH) (Rossi et al., 2014, Landau et al., 2010) and 

is necessary for eIF5A to associate with ribosomes (Jao and Chen, 2006, Saini et al., 

2009). Pharmacological obstruction of hypusination and knockdown of eIF5A has 

been shown to result in reduction of cell proliferation, motility and invasiveness 

(Memin et al., 2014, Zhu et al., 2012) as well as tumour growth in vivo (Fujimura et 

al., 2014). 

Nevertheless, there are some evidence that the upregulation of eIFs in cancer is more 

complex than a shift to increased translation initiation, as indicated by the pattern of 
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eIF6 expression, eIF6 binds to free 60S ribosomal subunits and prevents their 

association with 40S subunits, effectively preventing translation from initiating 

(Miluzio et al., 2009). Surprisingly however, eIF6 is also upregulated in a variety of 

cancers, including acute promyelocytic leukemia, head and neck carcinomas, ovarian 

serous carcinomas and colorectal (Harris et al., 2004, Rosso Md et al., 2004, Flavin et 

al., 2008, Sanvito et al., 2000). 

Another example of conflicting activities for a translation initiation factor is eIF2. 

Phosphorylation of the eIF2 subunit eIF2α by the kinase PERK results in a generally 

cytoprotective phenotype (Koromilas, 2015). However, the type, severity, and 

duration of the cellular stress can result in a pro-apoptotic phenotype (Koromilas and 

Mounir, 2013). Increased levels of PERK activity promote cancer cell survival but 

inhibit progression through the cell cycle, resulting in a quiescent tumour phenotype 

(Ranganathan et al., 2008). At the same time, PERK mediated phosphorylation of 

eIF2a is required for tumour growth and angiogenesis under hypoxia (Bi et al., 2005). 

Ectopic overexpression of a non-phosphorylatable S51A mutant promotes malignant 

transformation of NIH 3T3 cells (Donze et al., 1995), however inhibition of 

dephosphorylation results in sensitisation of cells to apoptosis (Teng et al., 2014). 

Other than eIFs, a surprising new mechanism by which the process of translation can 

contribute to tumorigenesis and maintenance of cancer is by modulation the 

abundancies of specific tRNAs. Specifically, tRNAGluUUC and tRNAArgCCG have 

been characterized as promoting breast cancer metastasis by promoting translation of 

mRNA transcripts enriched for these codons, in this case EXOSC2 and GRIPA1 

(Goodarzi et al., 2016). This would be in accordance with previous studies in mice, 

where substitution of rare codons with synonymous mutations in the KRAS oncogene 

reduced tumour prevalence following carcinogen exposure (Pershing et al., 2015). 
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In addition to the above, evidence has arisen over the years that mutations in 

ribosomal components, or modifiers thereof, have the capacity to promote 

tumourigenesis. An example of this is the X-linked Dyskeratosis Congenita (XDC), 

resulting in the inactivation of the conserved dyskerin enzyme, which catalyses the 

post transcriptional pseudouridylation of specific uridines in ribosomal RNA (rRNA) 

(Heiss et al., 1998). Among other pathophysiologies, XDC is associated with an 

increased malignancy risk, which has been linked to defects in translation of specific 

mRNAs, specifically including p53 mRNA, even though the overall volume of 

translation remains unperturbed (Montanaro et al., 2010). Furthermore, differential 

expression of specific ribosomal proteins has been observed in colorectal cancer, 

although this could be attributed to extra-ribosomal functions (Lai and Xu, 2007). 

With regard to the ribosomal RNA (rRNA) components of the ribosome, aggressively 

malignant cells have displayed increased synthesis of 45S pre-rRNA, with activation 

of an alternative pre-mRNA synthetic pathway containing a 43S precursor and 

enhanced post-transcriptional methylation of specific sites located in the 28S rRNA. 

Additionally, these changes in nucleolar appearance are associated with reduced 

translation efficiency of a number of mRNAs, prominently including p53 (Belin et al., 

2009). 

Changes in appearance and activity of the nucleolus, the site of ribosome biogenesis, 

have also been noted. Nucleolar hypertrophy and upregulation of ribosome production 

are common, though not universal, features of neoplastic cells (Derenzini and Trere, 

1991) and nucleolar hypertrophy is considered a marker of poor prognosis (Derenzini 

et al., 2004). However significant variability in this attribute may be seen even within 

the same tumour, with the nucleolar changes strongly correlated with the number of 

proliferating cells within the tumour and the rapidity of cell division, attributes that 
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vary greatly among tumours (Derenzini and Trere, 1991). The increase in nucleolar 

size and ribosomal production rate is thought to be the result of changes in the activity 

of multiple well characterized oncogenes and tumour suppressor genes, including 

MYC, p53 and the Retinoblastoma Protein (pRb). For example, wild type p53 binds 

to the selectivity Factor 1 (SL1) protein, hindering the formation of the UBF-SL1 

complex necessary for RNA polymerase I recruitment to the rRNA gene promoter and 

resulting in repression of RNA Pol I and reduced rRNA expression (Zhai and Comai, 

2000). In contrast, c-Myc binds to consensus elements in the promoters of genes 

coding for rRNA and recruits SL1, enhancing transcription by RNA Pol I (Arabi et 

al., 2005). 

There has been very little work on a potential role for translation termination and the 

associated factors in cancer. Certain alleles of eRF3a are found at higher frequencies 

among the breast cancer patient population compared to average, but those mutations 

are not associated with any apparent changes in termination efficiency (Malta-Vacas 

et al., 2009a). Additionally, while eRF3a levels are increased in a number of tumour 

types, this is not associated with changes in the total volume of translation in the cell 

(Malta-Vacas et al., 2009b). A potential role has been described for eRF1 as a tumour 

suppressor gene in acute myeloid leukemia (Dubourg et al., 2002). However this is 

unlikely to be true, as loss of the eukaryotic termination factor results in lethality 

(Blanchet et al., 2015).  Finally, no role in cancer has been described for JMJD4 thus 

far. 
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1.5 Aim and Scope of this Thesis 

As summarised through this Introduction, 2OG oxygenases have been implicated in a 

wide variety of fundamental cellular processes, and throughout the gene expression 

pathway. In general, the 2OG oxygenases involved in such processes have been 

relatively well characterised, their physiological relevance realised and, in several 

cases, a role in disease elucidated. In contrast, our understanding of the physiological 

importance of JMJD4 and its potential role in disease was far less clear. Similarly, 

compared to the processes of translational initiation and elongation, our understanding 

of termination is relatively poor, particularly with respect to cell biology, physiology 

and disease. Therefore, as part of this Thesis we intend to broaden our understanding 

of JMJD4 and its known binding partners, and to characterise the response of cells to 

defective translational termination. To this end, in Chapter 2, following previous 

work, we attempt to identify a potential novel interactor and target of JMJD4. In 

Chapter 3, the effects of JMJD4, HEMK2 and eRF1 on cell proliferation are 

examined. In Chapter 4, the transcriptional effects of defective translational 

termination are examined and potential pathways identified. Finally, in Chapter 5, the 

most promising of these transcriptional pathways are evaluated and their mechanism 

of regulation investigated. 
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CHAPTER 2: Investigating Novel Binding 
Partners of JMJD4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

2.1 Introduction 
 

As described in the Introduction, JMJD4 was originally identified as a C-4 lysyl 

hydroxylase that targets K63 within the NIKS motif of the eukaryotic termination 

factor, eRF1 (Feng et al., 2014a). The proteomic screen which led to the discovery of 

eRF1 as a substrate of JMJD4 compared the binding of proteins co-

immunoprecipitated from HEK293T cells overexpressing WT JMJD4 with a 

catalytically inactive H189A JMJD4, thus yielding a list of activity-dependent 

interactors (Figure 2.1). Other than eRF1, and its binding partner eRF3A, the screen 

identified several other candidate activity-dependent binding proteins, albeit at 

generally lower abundance (M. L. Coleman, personal communication). Of these, the 

General Transcription factor 2I (GTF2I, also known as TFII-I) was of interest and 

explored further here in this Chapter as a potential JMJD4 substrate. 
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Protein Description Number of Peptides Spectral Count 
IPI0055
2715 

CCT3 T-complex protein 1 subunit gamma 
isoform c 46 2 

IPI0101
3471 

GTF2I General transcription factor II-I, 
isoform 2 87 2 

IPI0042
9191 

ETF1 Eukaryotic peptide chain release factor 
subunit 1 (eRF1) 33 206 

IPI0090
9083 

GSPT1 eukaryotic peptide chain release 
factor GTP-binding subunit ERF3A isoform 2 32 79 

IPI0003
1617 C6orf125 Uncharacterized protein C6orf125 2 2 
IPI0064
7163 

TCEAL4 Isoform 2 of Transcription 
elongation factor A protein-like 4 3 5 

IPI0001
5671 

TUBAL3 Isoform 1 of Tubulin alpha chain-
like 3 7 2 

IPI0021
9889 

UQCC Isoform 2 of Ubiquinol-cytochrome c 
reductase complex chaperone CBP3 homolog 2 2 

IPI0000
1684 ZNF180 Zinc finger protein 180 2 1 
IPI0001
1374 FAM76A Isoform 4 of Protein FAM76A 2 1 
IPI0021
9114 DCTN1 Isoform p135 of Dynactin subunit 1 4 3 
IPI0054
9766 FAM40A Isoform 1 of Protein FAM40A 3 6 
IPI0029
7723 RBM6 RNA-binding protein 6 4 2 
IPI0030
5698 

GGCX Vitamin K-dependent gamma-
carboxylase 3 2 

IPI0029
6909 PARP4 Poly [ADP-ribose] polymerase 4 3 1 
 

Figure 2.1: List of potential activity dependent JMJD4 interacting proteins. To 
identify potential JMJD4 substrates HEK293T cells stably expressing Empty Vector 
(EV) control, WT FLAG-JMJD4 or H189A FLAG-JMJD4 were subjected to 
immunoprecipitation using α-FLAG beads. The immunoprecipitates subsequently 
underwent tryptic cleavage and analysed using Liquid Chromatography-Mass 
Spectrometry (LC-MS/MS). The proteomic hits were cross-referenced with the 
human UniProt database through the use of the Mascot search engine. Since the 
H189A mutation ablates the iron binding site of JMJD4 and consequently its catalytic 
activity, proteins which bind to WT but not the H189A JMJD4 should be JMJD4 
substrates. The list shown is of those proteins identified in the WT JMJD4 expressing 
cells alone.  Spectral Count is the total number of fragmentation spectra that map to 
peptides of a given protein and can be used as a semiquantitative measure of protein 
abundance (reviewed in (Lundgren et al, 2010)). Experiment performed by Dr 
Mathew L. Coleman. 
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GTF2I is a 112kDa multifunctional transcription factor with 4 recorded isoforms that 

is involved in a rare developmental disorder known as Williams-Beuren syndrome, 

and is likely also involved in B-cell development via NF-kΒ regulation and c-Myc 

upregulation (Ashworth and Roy, 2007, Novina et al., 1999). GTF2I isoforms are not 

equivalent in role and in fact the nuclear localisation of isoforms 2 and 4 is mutually 

exclusive as they display opposing functions (Novina et al., 1999).  Additionally, 

GTF2I has been shown to be a significant factor in embryonic heart and craniofacial 

development, at least partly through regulation of the TGFRII and VEGFR signal 

transduction cascades (Roy, 2012).  GTF2I has been identified in the past to interact 

with the C-terminus of the breast and ovarian cancer associated Breast Cancer Type 1 

susceptibility protein (BRAC1) (Tanikawa et al., 2011), making it of interest with 

respect to its potential association with JMJD4, which is upregulated in breast cancer 

(see Chapter 3). Here we test GTF2I as an activity-dependent JMJD4 interactor in 

order to investigate whether it, and by extension the other candidates presented in 

Figure 2.1, are potentially novel JMJD4 substrates. 
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2.2 Results 

 

2.2.1 Subcellular distribution of JMJD4 and GTF2I 

 

GTF2I is reported to be present in both the cell nucleus and the cytoplasm in an 

isoform specific manner (Roy, 2012). To examine which isoform JMJD4 would 

potentially interact with and hydroxylate, several cell lines were fractionated into 

cytoplasmic and nuclear samples and then Western Blotted for JMJD4, GTF2I as well 

as nuclear (histone H3) and cytoplasmic (tubulin) marker proteins. In all cell lines, 

JMJD4 was found to be exclusively cytoplasmic (Figure 2.2A).  Bioinformatic 

analysis of predicted nuclear-associated sequences for JMJD4 further indicated that 

JMJD4 is likely to be restricted to the cytoplasm (Figure 2.2B). In contrast, the major 

pool of GTF2I was in the nuclear compartment of HeLa, A549, and SW620 cells. 

Interestingly, GTF2I was restricted to the cytoplasm of HEK293T cells (Figure 2.2A), 

which was the cell line in which the potential JMJD4:GTF2I association was first 

detected. This might suggest that, if physiologically relevant, JMJD4:GTF2I binding 

could be restricted to cell lines or tumours with cytoplasmic localisation of GTF2I. 
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Figure 2.2: JMJD4 and GTF2I subcellular distribution: A: Cellular Fractionation 
of HeLa, HEK293T, A549 and SW620 followed by Western Blot of the whole cell 
lysate, the cytoplasmic and the nuclear fractions against JMJD4 and GTF2I. Tubulin 
is used as a marker of cytoplasmic material and histone H3 as a nuclear marker. 
(W=Whole cell Lysate, C=Cytoplasmic Fraction, N=Nuclear Fraction). B: NucPred 
prediction of the likelihood of nuclear localisation of JMJD4 based on its sequence 
(Brameier et al., 2007).  
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2.2.2 Examination of the GTF2I-JMJD4 association 
 

Following the assessment of JMJD4 and GTF2I localisation, we proceeded to 

examine whether an interaction between the two proteins could be confirmed. 

Therefore, we initially attempted to replicate the conditions of the proteomic screen 

which identified GTF2I as a candidate substrate. Consequently, HEK293T FLAG-

tagged wild type JMJD4 (WT-JMJD4) and catalytically inactive JMJD4 (H189A 

JMJD4) cell lines were analysed (cells provided by Dr Mathew L. Coleman) in a co-

immunoprecipitation (IP) experiment. The cells were lysed and underwent 

immunoprecipitation using an α-FLAG antibody to precipitate JMJD4, followed by 

western blotting using an α-GTF2I antibody. Importantly, we found that we could 

detect a weak interaction between GTF2I and WT, but not H189A, JMJD4, under 

conditions in which the reported eRF1 interaction was also detected (Figure 2.3). 

Unfortunately however, we found that this interaction was unreliable and not detected 

in subsequent repetitions of the same experiment.   

 

 



55 
 

 

Figure 2.3: Potential GTF2I and FLAG-JMJD4 interaction. Assessment of 
endogenous GTF2I binding to EV, FLAG-JMJD4 and FLAG-JMJD4 H189A. The 
cells were lysed and subjected to α-FLAG (JMJD4) pulldown, prior to western 
blotting. ‘Input’ denotes whole cell extract (10%) prior to immunoprecipitation. This 
result suggests an interaction, which was not however found to be reliably 
reproducible. 

 

The lack of reproducibility led us to consider whether the interaction might be weaker 

and/or more transient than eRF1. A cell permeable pan-2OG oxygenase inhibitor 

Dimethyloxalylglycine (DMOG) has been shown to stabilise the interaction of 

substrates with some 2OG-oxygenases (Rose et al., 2011). Therefore, we tested 

whether treating cells with DMOG enabled a JMJD4:GTF2I interaction to be 

detected. However, even in this context we were unable to detect an association 

between endogenous GTF2I and FLAG-JMJD4 (Figure 2.4).  

As discussed earlier, different GTF2I isoforms have different subcellular distributions 

and properties. We considered the possibility that a JMJD4 interaction could be 

isoform specific, and that overexpression of GTF2I could enable an interaction to be 

reliably detected. Therefore, we proceeded to test binding of JMJD4 to both isoform 2 
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as well as full length GTF2I. Due to difficulties in cloning full-length H. sapiens 

GTF2I, M. musculus full length GTF2I was used instead. M. musculus GTF2I is 

highly similar to the human version, differing at only three of 998 residues and was 

therefore considered a reliable substitute. 

 

 

 

Figure 2.4: DMOG treatment does not induce binding of GTF2I to JMJD4. 
HEK293T EV, WT-JMJD4 and H189A JMJD4 cells were treated with 1 mM of the 
cell permeable 2OG Oxygenase inhibitor DMOG for 12h, after which they were lysed 
and used in α-FLAG IP. The known JMJD4 substrate eRF1 is used as a positive 
control. Any binding of GTF2I is non-specific. 
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HEK293T FLAG-JMJD4 cells were transfected with pCDNA3 ‘empty vector’ (EV), 

a pCDNA3 plasmid expressing M. musculus full-length V5-Tagged GTF2I or a 

pCDNA3 plasmid expressing isoform 2 of the H. sapiens V5-Tagged GTF2I. The 

cells were allowed to rest for 48h, after which they were lysed and subjected to α-

FLAG pulldown, followed by western blotting. Unfortunately however, even under 

those conditions, no interaction was observed with either GTF2I isoform (Figure 2.5).  

 

 

Figure 2.5: No interaction of overexpressed GTF2I and FLAG-JMJD4. Human 
isoform 2 (HsGTF2I) and full-length mouse GTF2I (MmGTF2I) were transfected into 
HEK293T EV, WT-JMJD4 or H189A-JMJD4 expressing cells, while one sample of 
HEK293T EV cells received no transfection and served as a negative control. The 
cells were lysed and subjected to α-FLAG pulldown and blotted for V5 (GTF2I) and 
FLAG (JMJD4). ‘Input’ denotes whole cell extract (10%) prior to 
immunoprecipitation. No binding is suggested by the data. 

 

Next, we repeated the same experiment in an independent panel of JMJD4 stable cell 

lines where the JMJD4 protein was tagged with the HA epitope, rather than FLAG.  

Following 72h of transfection, cells were lysed and cell extracts immunoprecipitated 
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using anti-HA antibodies prior to western blotting. However, under these conditions 

we still failed to detect a JMJD4:GTF2I interaction (Figure 2.6).  

 

 

Figure 2.6: Lack of GTF2I and HA-JMJD4 interaction. pCDNA3 Empty Vector 
(EV), pCDNA3 HA-JMJD4 and pCDNA3 HA-JMJD4 H189A cells were transfected 
with either EV pCDNA3, pCDNA3 expressing M. musculus full length GTF2I, or 
pCDNA3 expressing H. sapiens GTF2I isoform 2. After 48h the cells were lysed and 
the lysate underwent α-HA pulldown. ‘Input’ denotes whole cell extract (10%) prior 
to immunoprecipitation. HA-JMJD4 shows no consistent interaction with V5-GTF2I 

 

For hydroxylase substrates that are modified to >90% in the steady state, the pool of 

unhydroxylated material available for enzyme interaction is limited, which might 

prevent reliable detection. Therefore, we considered whether an interaction with 

JMJD4 might be more detectable using a pool of unhydroxylated GTF2I. To test this, 

we used an in vitro transcription/translation system to generate V5-tagged full length 

mouse GTF2I and isoform 2 of HsGTF2I. Importantly, these proteins were 

synthesised in the presence of the non-hydrolysable 2OG competitive inhibitor N-

Oxalylglycine (NOG), in order to prevent hydroxylation by the endogenous rabbit 

JMJD4 (as described in Feng et al, 2014). Samples were then incubated with FLAG-
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JMJD4 in the presence of NOG to potentiate enzyme: substrate interactions. Although 

GTF2I was detected in the FLAG-JMJD4 immunoprecipitates (Figure 2.7), it was 

also present in control MmGTF2I samples without FLAG-JMJD4, indicating non-

specific pulldown. Overall, therefore, no interaction between JMJD4 and GTF2I 

could be reliably detected, despite using a variety of in vitro and in vivo approaches. 

Taken together these data suggest that GTF2I is unlikely to be a bona fide JMJD4 

substrate. 

 

Figure 2.7: Examination of GTF2I and FLAG-JMJD4 using an in vitro 
Transcription/Translation (IVTT) system. HsGTF2I and MmGTF2I correspond to 
the IVTT preparations using Homo sapiens isoform 2 and Mus musculus full length 
GTF2I respectively. Samples of HsGTF2I and MmGTF2I were incubated with whole 
cell lysate from EV, WT and H189A HEK293T in the presence of NOG and then 
FLAG-IP was performed. ‘Input’ denotes whole cell extract (10%) prior to 
immunoprecipitation. Any binding of GTF2I is non-specific. 
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2.2.3 Mass spectrometry fails to identify JMJD4-dependent hydroxylation sites 
on GTF2I 

 

Parallel to the interaction experiments described in section 2.2.2, we attempted to 

directly examine GTF2I for post-translational modifications using mass spectrometry. 

To this end, HEK293T EV and FLAG-JMJD4 cells were each transfected with either 

empty vector plasmid, or H. sapiens V5-GTF2I. After 24h the cells were harvested 

and immunoprecipitated overnight using α-V5 beads and purified immunocomplexes 

electrophoresed in a polyacrylamide gel. The relevant band was excised (Figure 2.7A) 

and submitted for mass spectrometry at the Target Discovery Institute, University of 

Oxford. 

Prior to mass spectrometry, samples underwent in-solution digest using either Trypsin 

or Elastase. Because these two proteases have different cleavage specificities this 

approach reduces the possibility that any modified peptides are not detected because 

of incomplete sequence coverage.  The method of mass spectrometric analysis of the 

peptides was similar to that previously reported (Savitski and Savitski, 2010). In this 

approach, standard database identification of peptides is followed by a search for 

peptides of similar mass/charge (m/z) ratio and likely similar composition. These 

peptides are likely to be modified and the specific modification can be determined 

assuming high mass accuracy of peptide fragment measurements. Unmodified 

peptides were specifically compared against likely modified ones for four specific 

post-translational modifications: carbamidomethylation (+57.02 m/z), deamidation 

(+0.98 m/z) ubiquitination (+114.04 m/z) and hydroxylation (+15.99 m/z ratio). Of 

these, only potential hydroxylation sites will be discussed. 
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Accession -10lgP Coverage 
(%) 

#Peptides #Unique PTM Avg. 
Mass 

Description 

P78347|GTF2I_HUMAN  271.56 95 944 943 Y 112416 
General 

transcription 
factor II-I 

P04264|K2C1_HUMAN 139.94 51 52 41 N 66039 
Keratin, type II 

cytoskeletal 

P35527|K1C9_HUMAN 132.1 48 36 36 Y 62064 
Keratin, type I 
cytoskeletal 

Q9UNI1|CELA1_HUMAN  104.3 42 21 21 Y 27798 
Chymotrypsin-

like elastase 
family member 1 

Q66K89|E4F1_HUMAN  96.14 28 25 25 Y 83496 
Transcription 
factor E4F1 

 

 

 

 

 

 

 

Figure 2.8: Mass spectrometric analysis of post translational modifications of 
GTF2I. HEK293T EV and WT-JMJD4 cells were transfected with isoform 2 of H. 

sapiens GTF2I for 24h. Subsequently the proteins were IPed, separated on a standard 
polyacrylamide gel and the band corresponding to GTF2I in size submitted for mass 
spectrometry. A) Coomassie gel of samples analysed via mass spectrometry. Excised 
bands are indicated. B) Western Blot validation of JMJD4 expression in the cell 
extracts prior to IP C) Table of top 5 identified proteins in mass spectrometry sample. 
-10logP indicates the probability of correct assignment. Coverage (%) is the percent 
of the total protein length for which corresponding peptides were found. #Peptides 
indicates the number of total peptides assigned to the protein in question. #Unique 
indicates the number of peptides which can be uniquely assigned to that protein. PTM 
indicates if post translational modifications were found in any of the uniquely 
assigned peptides.  D) Representative example of post-translational modification 
search in H. sapiens GTF2I using mass spectrometry. The sequence of GTF2I is 
indicated via single letter code, with the corresponding matched peptides in blue. 
Post-translational modifications are indicated on their likely position on the peptide. 

D 

A 

C 
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 HEK293T EV HEK293T FLAG-JMJD4   
Residue Peptides 

Modified 
Peptides 

Total 
Relative 
Abund. 

Peptides 
Modified 

Peptides 
Total 

Relative 
Abund. 

Fold 
Change 

K94 5 20 0.25 5 16 0.31 1.25 

N100 6 24 0.25 9 25 0.36 1.44 
K140 8 58 0.14 5 27 0.19 1.34 
D144 11 48 0.23 10 25 0.40 1.75 
N355 8 30 0.27 8 29 0.28 1.03 
K456 4 38 0.11 3 25 0.12 1.14 
K561 4 50 0.08 5 43 0.12 1.45 
 

 
 

HEK293T EV HEK293T FLAG-JMJD4   
Residue Peptides 

Modified 
Peptides 

Total 
Relative 
Abund. 

Peptides 
Modified 

Peptides 
Total 

Relative 
Abund. 

Fold 
Change 

K35 3 10 0.30 2 6 0.33 1.11 

K94 5 20 0.25 5 16 0.31 1.25 

N100 6 24 0.25 9 25 0.36 1.44 
R101 16 30 0.53 10 28 0.36 0.67 
N252 7 20 0.35 6 21 0.29 0.82 
N355 8 30 0.27 8 29 0.28 1.03 
N565 13 50 0.26 7 44 0.16 0.61 
R567 11 43 0.26 5 33 0.15 0.59 
N727 3 9 0.33 4 8 0.50 1.50 
P808 12 20 0.60 9 17 0.53 0.88 
D907 3 7 0.43 1 3 0.33 0.78 
P996 10 29 0.34 6 25 0.24 0.70 
 

Figure 2.9: Potential hydroxylation sites in H. sapiens GTF2I identified by 
unbiased mass spectrometry in the Elastase digested HEK293T and HEK293T 
FLAG-JMJD4 samples. The GTF2I hydroxylation sites for HEK293T EV and 
HEK293T FLAG-JMJD4 cells were identified and the modified as well as total 
peptides for each of the sites counted and used to calculate a crude measure of PTM 
abundance (denoted as Relative Abundance (Relative Abund.) here). Relative 

Abundance=Peptides Modified/Peptides Total detected for those peptides in which 
the specific residue in question was included. Fold Change=Relative Abundance 

FLAG-JMJD4/EV. A) Table of the GTF2I residues exhibiting an increase in 
hydroxylation (Tryptic Digest).  A lower limit of 4 modified peptides detected was set 
for consideration. B) Table of the GTF2I residues exhibiting the greatest basal 
hydroxylation.  A lower limit of 25% modification in the EV cells was set for the 
residues to be considered. Lysyl residues in italics. 

 

A 

B 
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 HEK293T EV HEK293T FLAG-JMJD4   
Residue Peptides 

Modified 
Peptides 

Total 
Relative 
Abund. 

Peptides 
Modified 

Peptides 
Total 

Relative 
Abund. 

Fold 
Change 

K171 5 28 18 5 23 22 1.22 

N355 6 15 40 6 13 46 1.15 
R462 4 26 15 5 26 19 1.25 
P808 6 11 55 5 9 56 1.02 
P889 9 19 47 11 21 52 1.11 
P996 4 11 36 6 14 43 1.18 
 

 HEK293T EV HEK293T FLAG-JMJD4   
Residue Peptides 

Modified 
Peptides 

Total 
Relative 
Abund. 

Peptides 
Modified 

Peptides 
Total 

Relative 
Abund. 

Fold 
Change 

K35 2 3 0.67 2 3 0.67 1.00 

K92 2 7 0.29 3 10 0.30 1.05 

K94 2 4 0.50 2 4 0.50 1.00 

P137 3 9 0.33 2 8 0.25 0.75 
D227 3 11 0.27 3 10 0.30 1.10 
N355 6 15 0.40 6 13 0.46 1.15 
D471 3 9 0.33 4 10 0.40 1.20 
P655 7 16 0.44 6 17 0.35 0.81 
N727 4 10 0.40 4 11 0.36 0.91 
P808 6 11 0.55 5 9 0.56 1.02 
P889 9 19 0.47 11 21 0.52 1.11 
P901 3 11 0.27 3 12 0.25 0.92 
D907 6 12 0.50 4 13 0.31 0.62 
P996 4 11 0.36 6 14 0.43 1.18 
 

Figure 2.10: Potential hydroxylation sites in H. sapiens GTF2I identified by 
unbiased mass spectrometry in the Trypsin digested HEK293T and HEK293T 
FLAG-JMJD4 samples. The GTF2I hydroxylation sites for HEK293T EV and 
HEK293T FLAG-JMJD4 cells were identified and the modified as well as total 
peptides for each of the sites counted and used to calculate a crude measure of PTM 
abundance (denoted as Relative Abundance (Relative Abund.) here). Relative 

Abundance=Peptides Modified/Peptides Total detected for those peptides in which 
the specific residue was included. Fold Change=Relative Abundance FLAG-

JMJD4/EV. A) Table of the GTF2I residues exhibiting an increase in hydroxylation 
(Tryptic Digest).  A lower limit of 4 modified peptides detected was set for 
consideration. B) Table of the GTF2I residues exhibiting the greatest basal 
hydroxylation.  A lower limit of 25% modification in the EV cells was set for the 
residues to be considered. Lysyl residues in italics. 

 

A 

B 
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Following mass spectrometry, the potential hydroxylation sites were compared 

between the EV and FLAG-JMJD4 overexpressing cells. We predicted that any site 

showing partial modification in HEK293T EV cells should be more completely 

modified in the HEK293T FLAG-JMJD4 cells. Specifically, based on previous 

examples, overexpression of the candidate substrate results in 10-25% hydroxylation 

on a physiological site (e.g. Feng et al, 2014), with overexpression of the 2OG 

oxygenase increasing the prevalence of the modification to >90%. Accurate 

quantification of peptide modification usually relies on comparing the abundance of 

eluted peptides by liquid chromatography MS (LC-MS), which requires detailed 

analyses of raw data. However, for the purposes of quickly screening the data for 

candidate hydroxylation sites we used a crude measure of modified peptide 

abundance by comparing the number of times the modified and unmodified peptides 

were sequenced in each sample, which we express here as an approximate percentage. 

Although a large number of such sites could be identified in the elastase digest data 

(Figure 2.9), only two of these sites, R101 and P808, appeared to be >50% 

hydroxylated in either of the samples tested. Neither of these however showed an 

increase in hydroxylation during overexpression of FLAG-JMJD4 and both are 

residues atypical of JMJD4, which is a lysyl hydroxylase. The greatest increases in 

apparent hydroxylation were observed at D144 and K561, which however still 

exhibited low relative abundance, at 40% and 12% modified/unmodified peptides 

under JMJD4 overexpression. Furthermore, neither of these sites replicate under 

tryptic digest of the sample (Figure 2.10A). 

The fold increase in hydroxylation of specific GTF2I residues was even more modest 

in the trypsin treated samples (Figure 2.10). This dataset included three peptides with 

over 50% hydroxylation: K35, K94, and P808 as before. The greatest increase 
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observed is in R462, where hydroxylation apparently increased by just 25% (Figure 

2.10A). However, none of these sites experienced a significant increase in 

hydroxylation upon overexpression of JMJD4. Overall, our mass spectrometry 

analysis failed to identify an abundant and reliable JMJD4-dependent hydroxylation 

site that warranted further investigation. Together with the negative interaction data 

presented above we therefore conclude that GTF2I is unlikely to represent a bona fide 

JMJD4 substrate. 

 

2.2.4 JMJD4 potentially binds to the TCP-1 chaperone 

 

During the course of the interaction experiments described above, we routinely 

observed a prominent Ponceau-staining band specifically co-precipitating with 

FLAG-JMJD4 in an activity-independent manner, i.e. binding was detected equally to 

both the wild type and the H189A mutant. Coomassie staining of batch-scale FLAG-

JMJD4 immunoprecipitates identified two major bands, located at ~50 and ~65 kDa 

(Figure 2.11A). These bands were excised, washed and subject to trypsinolysis prior 

to LC-MS/MS based identification. The 50 kDa band was confirmed as full length 

JMJD4, as expected. Interestingly, the 65 kDa band contained subunits of T-complex 

protein 1 (TCP-1), a member of the Chaperonin Containing TCP-1 Complex (CCT) 

(Figure 2.11). One of the most abundant CCT subunits in the WT and H189A 

expressing HEK293T cells was TCP1-γ, which was also detected in the original 

JMJD4 proteomic screen (Figure 2.1). 
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Accession Description Score Coverage 

P17987 T-complex protein 1 subunit alpha OS [TCPA_HUMAN] 18.51 11.87 

P49368 T-complex protein 1 subunit gamma OS [TCPG_HUMAN] 17.81 13.94 

B7ZAR1 T-complex protein 1 subunit epsilon [B7ZAR1_HUMAN] 159 12.52 

B4DQH4 T-complex protein 1 subunit theta OS [B4DQH4_HUMAN] 6.11 11.37 

B7Z712 60 kDa heat shock protein, mitochondrial OS [B7Z712_HUMAN] 5.55 15.82 

 

Accession Description Score Coverage 

Q99832 T-complex protein 1 subunit gamma OS [TCPG_HUMAN] 428.58 62.98 

P17987 T-complex protein 1 subunit alpha OS [TCPA_HUMAN] 3534 73.02 

P48643 T-complex protein 1 subunit epsilon OS [TCPE_HUMAN] 345.17 77.63 

P78371 T-complex protein 1 subunit beta OS [TCPB_HUMAN] 331.98 68.41 

P49368 T-complex protein 1 subunit eta OS [TCPH_HUMAN] 325.02 64.22 

 

Figure 2.11: Overexpressed FLAG-JMJD4 co-immunoprecipitates with T-
complex proteins, including TCP1-γ. A) Coomassie gel of immunoprecipitate 
following polyacrylamide gel electrophoresis. The Mm IgG band corresponds to the 
anti-FLAG antibody used for the IP. The FLAG-JMJD4 is visible at the bottom. The 
TCP-1 band is composed of multiple subunits, listed in the tables B&C. B) Table of 
top 5 proteins identified by LC-MS/MS in the 65kDa band of WT-JMJD4 
overexpressing cells. Score is short for Binomial Peptide Score, a peptide score based 
on the cumulative binomial probability that the observed match is a random event. 
The value of the Binomial Peptide score heavily depends on the data scored, but 
usually scores above 50 indicate a good match. Coverage indicates the percentage 
protein sequence covered by peptides unique to the protein. C) Table of top 5 proteins 
identified by LC-MS/MS in the 65kDa band of H189A-JMJD4 overexpressing cells. 
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In order to independently confirm binding of TCP1-γ to JMJD4, HEK293T EV, WT-

JMJD4 and H189A JMJD4 cells were lysed and subjected to α-FLAG pulldown, 

followed by Western Blotting. We observed that TCP1-γ co-immunoprecipitates with 

FLAG-tagged JMJD4 in both WT and H189A-JMJD4 (Figure 2.12A), confirming the 

previous observation that TCP1-γ appears to interact with JMJD4 in an activity-

independent manner. 

Next, we wished to determine whether endogenous TCP1-γ also interacts with the 

endogenous JMJD4 enzyme. We aimed to immunoprecipitate endogenous JMJD4 

using a previously validated monoclonal antibody. However, it was not known 

whether this JMJD4 antibody was capable of successfully co-precipitating TCP1-γ. 

Therefore, we first immunoprecipitated JMJD4 from cell extracts derived from stable 

FLAG-JMJD4 cells where the interaction was shown to exist previously. As a 

negative control, one set of samples from the EV cells was immunoprecipitated using 

beads coated with an anti-p53 antibody. In those samples no JMJD4 pulldown should 

be observed. Although the anti-JMJD4 antibody was able to immunoprecipitate some 

TCP1-γ in complex with FLAG-JMJD4 (Figure 2.12B), the level of JMJD4 

enrichment was modest compared to that observed by anti-FLAG 

immunoprecipitation (Figure 2.12A). The amount of co-purified TCP1-γ was 

correspondingly lower. Immunoprecipitation from EV cells purified a minor amount 

of endogenous JMJD4, and no TCP1-γ was detected. As expected, a similar 

experiment conducted in extracts from cells treated with DMOG failed to improve the 

outcome, with no detectable JMJD4:TCP1-γ interaction (Figure 2.12C). Although the 

current results may not be consistent with a strong and constitutive endogenous 

JMJD4:TCP1-γ interaction, it cannot be ruled out that the anti-JMJD4 antibody, in 

addition to being relatively inefficient at immunoprecipitation, may also (partially) 
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interfere with the interaction. However, considering these uncertainties, and the lack 

of a more positive and reliable endogenous interaction with the currently available 

reagents, it was decided not to pursue this further. 
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Figure 2.12: TCP1-γ binds to overexpressed but not endogenously expressed 
JMJD4. A) Western Blot of immunoprecipitate following polyacrylamide gel 
electrophoresis. TCP1-γ binds to overexpressed JMJD4. B) Co-IP of TCP1-γ. 
HEK293T EV, WT-JMJD4, or H189A JMJD4 cells were lysed and subject to 
pulldown using α-JMJD4 or α-p53 (negative control) coated beads. The 
immunocomplexes were subsequently electrophoresed and blotted for using α-JMJD4 
and α-TCP1-γ antibodies. No significant binding of TCP1-γ to endogenous JMJD4 
can be found. C) Co-IP of TCP1-γ under DMOG. HEK293T EV, WT-JMJD4, or 
H189A JMJD4 cells were treated with 1 mM of the cell permeable 2OG oxygenase 
inhibitor DMOG before being lysed lysed and subject to pulldown using α-JMJD4 or 
α-p53 (control) coated beads in buffer which contained the 2OG-Oxygenase inhibitor 
NOG. No significant binding of TCP1-γ to endogenous JMJD4 can be found. 
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2.3 Discussion 

 

In this series of experiments, we attempted to discover novel proteins interacting with 

JMJD4. As such, we have demonstrated that FLAG-JMJD4 is co-immunoprecipitated 

with subunits of the TCP-1 complex, principally alpha, gamma, epsilon and theta. 

Significantly, the proteomic screen which identified eRF1 also identified the TCP-1 

subunit gamma, although as an activity-dependent interactor (Figure 2.1), which was 

not observed in subsequent experiments. The TCP-1 subunits combine to form 

heteroligomeric rings composed of 8 subunits which are then stacked on top of each 

other to form the CCT complex. The CCT complex acts as an ATP dependent protein 

chaperone, whose activity is essential for the folding of highly expressed cytoskeletal 

proteins such as actin and tubulin (Brackley and Grantham, 2009). The protein folding 

capacity of the TCP-1 chaperone makes it possible that the observed association is the 

result of an overabundance of misfolded FLAG-JMJD4 from the expression 

constructs used. Indeed, JMJD4 has been predicted to have significant structural 

disorder (Figure 2.2B), making it possible that association with the chaperone is 

necessary for JMJD4 activity by stabilising its conformation. Furthermore, the 

apparently stoichiometric nature of the interaction with overexpressed JMJD4 (Figure 

2.12A), under conditions in which JMJD4 is known to be active (Feng et al., 2014a) 

and interacting with its substrate eRF1 (Figure 2.4 and 2.12C), may be consistent with 

a physiologically relevant interaction. Interestingly, isolated JMJD4 only has modest 

activity in vitro (Dr Mathew Coleman, Personal Communication). Therefore, it is 

interesting to speculate that JMJD4 requires an obligate binding partner for activity. 

We are interested in the possibility that such a function could be mediated by the 

TCP-1 complex. This would not be the first time that such an interaction was 
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observed; the TCP-1 complex and the PHD3 hydroxylase have been previously 

shown to interact, with a possible role in regulating PHD3 function and enzyme 

targeting (Masson et al., 2004). Nevertheless, an endogenous interaction between 

JMJD4 and TCP1-γ could not be confirmed (Figures 2.12B&C). However, it remains 

possible that endogenous JMJD4 interacts with TCP1-γ but that the signal strength 

was consistently too low to detect, potentially due to the limitations of currently 

available reagents. Even if TCP1-γ only binds to overexpressed JMJD4 however, this 

activity could become significant under conditions where endogenous JMJD4 

expression is significantly upregulated, as is the case in several tumour types, as 

analysed in the next chapter. 

At the beginning of this Chapter we characterised GTF2I as a candidate JMJD4 

substrate. We investigated an interaction between the two proteins by 

immunoprecipitation, using stable HA- or FLAG-tagged JMJD4 cell lines and under a 

range of conditions including both endogenous and overexpressed GTF2I and in vitro 

experiments. However, we were unable to reliably detect an interaction in any of the 

models used. Therefore, we conclude that, despite its identification in a former 

proteomics screen, GTF2I cannot be supported as a substrate of JMJD4. Consistent 

with this conclusion, GTF2I and JMJD4 localisation and protein expression appear to 

be largely independent of each other (Figure 2.2). Furthermore, mass spectrometry 

analysis of GTF2I post-translational modifications failed to identify any convincing 

JMJD4-dependent hydroxylation sites. Several residues were detected with apparently 

high levels of JMJD4-independent hydroxylation however, the most prominent of 

which, P808, was shared between the tryptic and elastase digest preparations. It is 

possible that this site is hydroxylated, perhaps by a related enzyme with prolyl 

hydroxylase activity. The modification site surrounding P808 (FIIKKP) is quite 
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dissimilar to the LxxLAP sequence recognised by the well characterised HIF prolyl 

hydroxylases PHD1-3 (Huang et al., 2002) and also the poly-Pro or PPG sequences 

preferred by collagen prolyl hydroxylases (Myllyharju, 2003), indicating that neither 

of these gene families are likely to catalyse this hydroxylation. 

Here in this Chapter we have examined two potential new JMJD4 interactors, GTF2I 

and TCP1-γ. Although the known interaction of eRF1 with JMJD4 was also observed 

here, neither GTF2I nor TCP1-γ could be confirmed as physiologically relevant 

substrates or interactors. Possessing a single substrate is not impossible among 2OG-

oxygenases. As discussed in the Introduction, some other closely related oxygenases 

involved in translation (e.g. NO66) have thus far only been reported to have a single 

substrate. While it is possible that other JMJD4 targets exist, it may be less likely that 

they are as abundant or as physiologically relevant as eRF1. Therefore, we switched 

our focus to examining the role of JMJD4 and eRF1 in growth control and cancer, and 

to exploring the cellular response to defective translational termination. 
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CHAPTER 3: The role of JMJD4 and eRF1 
in cell growth and stop codon readthrough 
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3.1  Introduction 

The process of translation is fundamental in gene expression and as such it plays a 

major role in cell growth and a variety of diseases. With respect to cancer, research 

has primarily focused on the deregulation of translational initiation and elongation 

(Spilka et al., 2013), particularly the role of the elongation Initiation Factors (eIFs) in 

driving tumour growth (Dong and Zhang, 2006). While initiation and elongation have 

been widely examined however, the role and effects of translational termination and 

associated factors have been relatively poorly characterised. Studies in yeast indicate 

a role for the yeast orthologue of eRF1, Sup45p, in growth and invasion (Petrova et 

al., 2015). Furthermore, depletion of the eRF1 associated factor eRF3A in HCT116 

cells has been shown to result in G1 cell cycle arrest (Chauvin et al., 2007). Whether 

eRF1 depletion induces a similar phenotype in human cells is not known. However, 

knockdown of the eRF1 glutamine methyltransferase HEMK2 results in a moderate 

reduction of growth in vitro and mouse embryonic lethality in vivo, consistent with 

important roles in cellular homeostasis and embryonic development (Liu et al., 2010). 

Whether other important eRF1 post-translational modifiers and regulators, such as 

JMJD4, also regulate normal growth and development is unclear. Furthermore, 

whether these factors support tumourigenesis, similar to initiation and elongation 

factors, is not known. Specifically, no work has been performed regarding any 

potential importance of JMJD4 in cancer. 
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Here, we wished to explore the potential role of eRF1 and JMJD4 in cancer, by 

assessing alterations and deregulated expression in cancer databases, and the effect of 

their inhibition on tumour cell growth. Subsequently, we engineered cell line models 

for conditional shRNA-mediated knockdown of JMJD4 and eRF1. These models 

were validated by first confirming the reported effects of eRF1 and JMJD4 depletion 

on translational termination (Feng et al., 2014a). We then applied these models to 

explore the role of eRF1 and JMJD4 in the growth of tumour cell lines in both 2D and 

3D assays, and extend our findings into independent cell lines, knockdown 

approaches and termination assays. Finally, we establish a new cell model of 

inducible siRNA-resistant eRF1 mutants in order to perform structure-function 

analyses of eRF1 in tumour cell growth. 
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3.2  Results 

 

3.2.1 Cancer Bioinformatics 

 

To begin to explore the potential importance of translational termination in cancer, we 

initially examined the prevalence of amplifications, deletions and mutations in genes 

encoding eRF1 and its modifier JMJD4, using the tumour sequencing database 

cBioPortal (Gao et al., 2013). We find that significant amplification of eRF1 was only 

detected in two studies, Neuroendocrine Prostate Cancers (NEPC; 15%) and Clear 

Cell Renal Carcinomas (ccRCC, 5-14% depending on the study) (Figure 3.1A), 

suggesting that amplification of the eRF1 gene is not a common occurrence in all 

cancer types. To explore whether eRF1 expression may be deregulated by other 

mechanisms we next explored its mRNA levels in normal versus cancer samples 

using the Oncomine database (Rhodes et al., 2004). Interestingly, a statistically 

significant, but modest, increase in eRF1 mRNA levels was observed in a wide 

variety of tumour types (see Figure 3.2 for examples). Next, we undertook similar 

analyses for JMJD4, observing JMJD4 gene amplification in a variety of tumour 

types, including breast (4-14%, depending on the study stage), liver (12%), lung (8%) 

and uterine (5%) (Figure 3.1A). Furthermore, JMJD4 mRNA was frequently elevated 

in a variety of cancer types (Figure 3.3). Overall, these data indicate that deregulated 

expression of eRF1 and JMJD4 may be relatively common in cancer. To explore 

whether this deregulation might impact on tumour survival, we used the KMPlot 

database (Szasz et al., 2016) to identify any associations between eRF1 and JMJD4 

mRNA levels and patient prognosis. 
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Figure 3.1: Cancer Genomics of eRF1 and its modifier JMJD4. A) eRF1 is 
amplified by up to 14% in NEPC and Kidney Renal Cell Clear Carcinoma (ccRCC). 
B) JMJD4 is amplified by up to 14% in a number of cancers, principally breast, liver 
and lung adenocarcinoma Data obtained through cBioPortal (Gao et al., 2013).
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Figure 3.2: Bioinformatics of eRF1 mRNA expression in tumours. eRF1 transcript 
abundance can be shown to be significantly increased in adenocarcinoma, colon 
carcinoma, B cell lymphoplastic leukemia and Diffuse Large B Cell Lymphoma 
compared to healthy tissues. p=Probability that there is no difference between the 
populations by two-tailed Student’s t-test. Analysis through ONCOMINE (Rhodes et 
al., 2004). 
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Figure 3.3: Bioinformatics of JMJD4 mRNA expression in tumours. JMJD4 
transcript abundance can be shown to be significantly increased in squamous cell lung 
carcinoma, benign prostatic hyperplasia, Hodgkin’s lymphoma and invasive breast 
carcinoma compared to healthy tissue. p=Probability that there is no difference 
between the populations by two-tailed Student’s t-test. Analysis through ONCOMINE 
(Rhodes et al., 2004). 

 

 

 

 

 

 



80 
 

 

 

Figure 3.4: Kaplan-Meier Survival analysis of eRF1 mRNA expression in Breast, 
Ovarian, Lung, and Gastric cancers. The probe identifier is located atop each plot. 
HR=Hazard Ratio, the ratio at which survival is modified by amplification of the 
corresponding gene in each cancer type. Logrank P= Probability that the difference 
between the two groups is significant using the log-rank non-parametric hypothesis 
test for survival distribution. Probability refers to the percentage probability of 
survival. Patient numbers in each curve are found below each blot. Analysis via the 
Kaplan Meier Plotter (Szasz et al., 2016) 
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Figure 3.5: Kaplan-Meier Survival analysis of JMJD4 mRNA expression in 
Breast, Ovarian, Lung, and Gastric cancers. The probe identifier is located atop 
each plot. HR=Hazard Ratio, the ratio at which survival is modified by amplification 
of the corresponding gene in each cancer type. Logrank P= Probability that the 
difference between the two groups is significant using the log-rank non-parametric 
hypothesis test for survival distribution. Probability refers to the percentage 
probability of survival. Patient numbers in each curve are found below each blot. 
Analysis via the Kaplan Meier Plotter (Szasz et al., 2016) 
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Based on the Kaplan-Meier survival analysis in four different cancers (Figure 2.4), 

eRF1 mRNA overexpression is associated with a worse prognosis in breast, ovarian 

and gastric cancer. Furthermore, JMJD4 mRNA overexpression is associated with a 

37-63% increase in patient mortality in Breast, Lung and Gastric cancers (Figure 2.5). 

Overall, the combined genomic, expression and prognostic data suggest that eRF1 and 

JMJD4 may support tumourigenesis. In light of this, we therefore aimed to directly 

test the role of JMJD4 and eRF1 in cancer cell proliferation using in vitro cell line 

models. 

 

3.2.2 Engineering tumour cell lines with Doxycycline-inducible JMJD4 and 

eRF1 shRNA  

In order to characterise of the consequences of JMJD4 and eRF1 loss-of-function, a 

series of cell lines capable of conditional shRNA knockdown were previously 

generated (by Dr Tianshu Feng, Coleman lab) and characterised and applied in detail 

here. A conditional system was chosen in order to avoid any potential selection 

pressures against cells with constitutive JMJD4/eRF1 knockdown. The commercially 

available lentiviral vector pTRIPZ (Figure 3.6) was utilised for this. This vector 

features a tetracycline inducible promoter, allowing expression of downstream 

sequences conditional to induction with tetracycline or one of its derivatives (e.g. 

doxycycline). Three prime to the promoter lies the coding sequence of Red 

Fluorescent Protein (RFP), followed by a site allowing cloning of shRNA sequences. 
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Figure 3.6: Schematic diagram of the pTRIPZ vector. Initiation of RFP and 
shRNA expression by doxycycline requires binding of the rtTA3 transactivator which 
is constitutively expressed via the H.sapiens Ubiquitin C promoter (UBC) but is only 
functional in the presence of a tetracycline, in this case Doxycyline (Figure derived 
from the Dharmacon website, http://dharmacon.gelifesciences.com/shrna/tripz-
lentiviral-shrna/). 

 

Addition of doxycycline would therefore allow the expression of a silencing shRNA 

against the transcript of interest and also permit visual tracking through RFP 

expression. The pTRIPZ vector also includes constitutive expression (driven by a 

ubiquitin promoter) of the reverse tetracycline-transactivator protein rtTA3 (for 

doxycycline-mediated gene expression) and a Puromycin resistance cassette to enable 

antibiotic selection. 

 

 

http://dharmacon.gelifesciences.com/shrna/tripz-lentiviral-shrna/
http://dharmacon.gelifesciences.com/shrna/tripz-lentiviral-shrna/
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For the generation of inducible shRNA cell lines, U2OS human bone Osteosarcoma-

derived epithelial cells were chosen because of prior detailed characterisation with 

respect to translational termination and protein synthesis (Dr Tianshu Feng PhD thesis 

and Feng et al, 2014).   

The following U2OS cell lines were previously generated by transduction of lentiviral 

particles carrying the following pTRIPZ vectors: 1) pTRIPZ containing a non-

targeting control shRNA sequence referred to as shFF3, 2) pTRIPZ containing an 

shRNA against JMJD4 (to achieve acceptable knockdown it was necessary to screen 

clones (data not shown), resulting in the generation of two lines designated 

shJMJD4#2 and #11), and 3) pTRIPZ containing an shRNA against eRF1 and 

referred to as sheRF1.  

To confirm the validity of these stable cell lines we first treated them with a range of 

doxycycline concentrations for 72 hours prior to assessing RFP levels by fluorescence 

microscopy and target knockdown by western blot. As expected, robust RFP 

expression was observed in all of the cell lines and in a dose-dependent manner for 

shFF3 and the shJMJD4 cell lines (Figures 3.7 & 3.8). Importantly, we confirmed 

doxycycline dose-dependent knockdown of eRF1 and JMJD4 in parallel samples, in 

the absence of altered expression of control proteins including -actin for eRF1 and 

-actin and a JMJD4-related hydroxylase (MINA53) for JMJD4. It was concluded 

that a common dose of 1-2 μg ml-1 Doxycycline was able to induce efficient 

knockdown across all three cell lines (Figure 3.9). The two clones of shJMJD4 both 

show reduced levels of JMJD4 even in the absence of doxycycline stimulation, likely 

a result of “leaky expression” of a highly efficient shRNA, as did sheRF1 to a lesser 

extent. 
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Figure 3.7: Characterisation of RFP expression in stable cell lines expressing 
inducible shRNA. U2OS cells were stably transduced with pTRIPZ containing the 
desired shRNA insert using lentivirus. pTRIPZ contains RFP in the same Open 
Reading Frame (ORF) as the shRNA insert which can be used to assess the extent of 
efficiency of transduction. In every image set, top is red fluorescence at 588nm (RFP 
emission maximum), bottom is brightfield of the same position in the plate. RFP 
expression is ubiquitous and appears to plateau at 1 µg ml-1 Doxycycline after 72h. A) 
U2OS expressing the non-targeting sequence shFF3 B) U2OS shJMJD4 clone #11, 
and C) U2OS shJMJD4 #2. Scale bar is 200 µm. Magnification under a 10x objective. 
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Figure 3.8: Characterisation of RFP expression in a stable cell line expressing 
inducible shRNA against eRF1. U2OS cells were stably transduced with pTRIPZ 
containing the desired shRNA insert using lentivirus. pTRIPZ contains RFP in the 
same Open Reading Frame (ORF) as the shRNA insert which can be used to assess 
the extent of efficiency of transduction. In every image set, top is red fluorescence at 
588nm (RFP emission maximum), bottom is brightfield of the same position in the 
plate. RFP expression is ubiquitous following induction with 1 µg ml-1 Doxycycline 
after 72h. Scale bar is 100 µm. Magnification under a 20x objective. 
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Figure 3.9: Validation of shRNA mediated knockdown of JMJD4 and eRF1 in 
the inducible cell lines generated. A) Western Blot of the inducible shJMJD4 cell 
line clones and the non-targeting sequence shFF3. Both shJMJD4#2 and shJMJD4#11 
exhibit dose responsive knockdown of JMJD4. Both clones exhibit a basal level of 
JMJD4 knockdown, likely due to leaky expression even in the absence of doxycycline 
stimulation. The knockdown is specific, as demonstrated by lack of knockdown in the 
related 2OG oxygenase MINA53. B) Western Blot of the inducible sheRF1 cell line, 
showing dose dependent knockdown of eRF1 in response to doxycycline. C) Western 
Blot of the shRNA knockdown for all cell lines, comparing uninduced cells to 
induced with 1 μg ml-1 doxycycline. This experiment was performed separately from 
3.9A&B.  Samples were taken following 72h of doxycycline treatment for all blots. 
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3.2.3 Knockdown of eRF1 or JMJD4 in conditional U2OS shRNA cell models promotes 

stop codon readthrough 

Prior to characterising the role of eRF1 and JMJD4 in growth using the models 

described above, we first determined whether the level of knockdown achieved was 

sufficient to cause termination defects similar to those reported previously using 

siRNA (Feng et al., 2014a). In order to achieve this, a stop codon readthrough assay 

was employed using the U2OS shRNA knockdown cell lines shFF3, 

shJMJD4#2&#11 and sheRF1, as follows. Translational termination activity was 

measured in cells using an established dual luciferase luciferase based assay based on 

the p2luc vector (Figure 3.10A) (Grentzmann et al., 2000). This vector contains in-

frame Firefly and Renilla Luciferase sequences separated by a polylinker insertion 

window, under the control of an SV40/T7 promoter. If a sequence containing no stop 

codons is inserted in the polylinker insertion window then both Firefly and Renilla 

Luicferase will be expressed at the same ratio as a fused protein connected by a short 

linker sequence. The sequence used in the following assays for this purpose is derived 

from a Tobacco Mosaic Virus termination site, with the stop codon (UAG) 

subsitituted for a Gln (CAG) and referred to as ‘TMVR’.  

Should a sequence containg a stop codon be introduced into the polylinker insertion 

window, only Renilla luciferase will be expressed because translation is halted prior 

to the Firefly luciferase sequence (assuming maximal termination efficiency). The 

only event in which Firefly luciferase is translated in the presence of a prior stop 

codon in the linker sequence is termination efficiency is impaired, and the ribosome 

reads through the stop codon, resulting in a fused Renilla-Firefly luciferase. 

Therefore, reduced translational termination efficiency and increased stop codon 

readthrough can be measured by an increase in Firefly relative to Renilla luciferase 
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activity. The Renilla and Firefly luciferases possess different substrate requirements 

and inhibitors specific to each luciferase exist, allowing the experimental 

deconvolution of the signals, despite the signal being in both cases luminescence. 

Initially, the activity of Firefly activity is assayed by addition of a reagent mix 

containing luciferin, ATP and Mg2+. Subsequently, the Renilla luciferase substrate 

coelenterazine is added along with a Firefly luciferase inhibitor, allowing for the 

specific measurement of the Renilla luminescence.  

In order to measure specific changes in translational termination, several controls are 

required. Firstly, the Firefly/Renilla ratio of a treatment group with a p2luc vector 

containing a stop codon (e.g. ‘TMV TGA’) is divided by the Firefly/Renilla ratio of 

the matched treatment group of cells transfected with a p2luc vector containing a 

sense codon (TMVR). This controls for potential technical differences between 

groups, such as the level of transfection efficiency.  Secondly, this value is further 

divided by the Firefly/Renilla ratio of the cells which have received no treatment 

(control cells) to derive the ‘Fold-increase’ in translational readthrough in response to 

the treatment of interest (in this case shRNA knockdown). This process is 

schematicaly depicted in Figure 3.10B. 
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Figure 3.10: Schematic diagram of p2luc vector and mechanism of the 
translational readthrough assay. A) Schematic Diagram of the p2luc vector 
(adapted from Grentzmann et al, 2002) B) Operation of a translational readthrough 
assay and calculation of the Fold Readthrough parameter. i) In the presence of a sense 
codon, the translation products of p2luc will always be both Renilla and Firefly 
Luciferases linked by a short sequence. This plasmid is referred to as TMVR and 
represents the maximal activity of Firefly that can be achieved in a certain 
experiment. ii) If a stop codon is present in the linker sequence only Renilla Firefly 
should be expressed. iii) In the presence of translational readthrough, the stop codon 
may be skipped, allowing translation to continue. This leads to a mixed population of 
Renilla and Renilla + Firefly luciferases, the relative ratio of which can be used to 
determine the fold readthrough. 
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To assess the level of translational readthrough following eRF1 or JMJD4 

knockdown, U2OS shRNA cells were treated with 2 μg ml-1 Doxycycline for 72h 

before transfection with p2luc containing either one of the following three different 

termination contexts (or a corresponding control sequence containing a sense codon). 

The termination context sequences used were A) The tobacco mosaic virus (TMV) 

with the wild type termination codon UAG substituted with UGA, B) CFW1282*, a 

nonsense mutation found in cystic fibrosis patients and C) the Barley Yellow Dwarf 

virus termination sequence (BYDV), utilizing UAG as the stop codon. Multiple 

sequences were selected in order to test the robustness of the termination phenotype in 

diverse sequence contexts. After harvesting cell extracts 72h post transfection, 

samples were analysed for stop codon readthrough as described above and in the 

Materials and Methods. 

Consistent with loss of eRF1 function, shRNA-mediated eRF1 knockdown results in a 

significant increase in translational readthrough in all three stop codon contexts. 

Consistent with previous observations (Unpublished Doctoral Thesis, Feng 2014 and 

Feng et al, 2014), JMJD4 knockdown also induced context-independent stop codon 

readthrough although, as expected, to a lesser extent than that observed with eRF1 

(which was particularly evident in the context of TMV). Overall, these data indicate 

that both the sheRF1 and shJMJD4 systems demonstrate a replicable stop codon 

readthrough phenotype, thereby validating their use in subsequent experiments. 
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Figure 3.11: Knockdown of JMJD4 and eRF1 results in an increase in the level 
of translational readthrough. A) Western Blot validating knockdown of JMJD4 and 
eRF1 at the protein level. B) The sequences shown here were the Tobacco Mosaic 
Virus with the wild-type termination codon TAG substituted for TGA (TMV TGA), 
the cystic fibrosis mutation CFW1282* and the Barley Yellow Dwarf Virus 
termination sequence (BYDV), known to exhibit readthrough. Cells were treated with 
doxycycline for 72h. n=3 ± Standard Deviation 
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3.2.4 JMJD4 and eRF1 are required for normal cellular proliferation 

Having confirmed that our shRNA knockdown models induce the anticipated 

functional consequences we wished to determine whether these changes might be 

associated with altered cell proliferation.  

Two-dimensional cell proliferation was assayed using both MTS and CyQuant assays. 

MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-

2H-tetrazolium) is a tetrazolium salt, which in the presence of phenazine methosulfate 

(PMS) can be metabolised by NAD(P)H-dependent cellular oxidoreductases into 

coloured formazan salts. These salts absorb at 490nm, which can then be used as a 

measure of cell number (Mosmann, 1983) (Cory et al., 1991). Because the MTS 

approach requires there to be no indirect changes in mitochondrial content and/or 

metabolic rate, we also used a second independent approach: The CyQuant Assay 

utilizes a dye that binds directly to DNA to quantify cell number by DNA content. 

U2OS shFF3, sheRF1 and shJMJD4 clones #2 and #11 were subjected to 72h of 2 μg 

ml-1 Doxycycline treatment and subsequently transferred into 96 well plates for 

growth assays over a period of 5 days. Interestingly, we find that shRNA-mediated 

knockdown of eRF1 results in near complete cessation of growth using both assays. 

The effect observed under JMJD4 knockdown is less dramatic, but is more prominent 

in clone shJMJD4#2, perhaps reflecting increased knockdown efficiency (we note that 

clone #2 displays lower levels of JMJD4 even in the absence of doxycycline, Figure 

3.9). Importantly, the growth curves between the MTS and CyQuant assays were 

quite similar, indicating that NAD(P)H oxidoreductase activity within the cells is not 

affected by eRF1 or JMJD4 knockdown, validating the use of MTS assays in future 

2D growth experiments.  
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Figure 3.12: JMJD4 and eRF1 knockdown restricts 2D growth in U2OS cells. 
U2OS shFF3, shJMJD4#2&11 and sheRF1 cells were treated with 1 μg ml-1 
doxycycline for 5 days. A) U2OS shJMJD4#11, shJMJD4#2, sheRF1 and shFF3 cells 
were induced with Doxycycline and then their growth measure using MTS+PMS over 
5 days. B) As before, however growth was measured using the DNA binding Dye 
CyQuant. FI=Fluorescence Intensity (Arbitrary Units) emission at 520 nm. For A&B 
n=4 ± Standard Deviation  
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Next, we sought to determine whether the requirements for eRF1 and JMJD4 in 2D 

growth extend into more relevant cancer cell growth assays. Tumour cells acquire the 

ability to grow in an anchorage-independence manner, and in vitro assays that mimic 

such conditions can be used to assess the transformation potential of cells. For 

example, the growth of tumour cell colonies in low percentage agar (‘soft-agar’ assay) 

is thought to reliably predict growth rate in xenograft tumour experiments (Pavelic et 

al., 1980). Therefore, shFF3, sheRF1 and shJMJD4#2 and #11 were treated with 1 μg 

ml-1 doxycycline for 72h, then seeded into liquid noble agar and their growth 

measured five days later using Alamar Blue, a detection reagent operating on a similar 

principle to MTS.  Colonies were also imaged using phase contrast microscopy. 

The results for three-dimensional growth largely reflect the two-dimensional results 

discussed previously, with eRF1 knockdown resulting in the greatest reduction in 

growth, followed by shJMJD4#2 and shJMJD4#11. The results can be visually 

confirmed in the light microscopy images, where reduced growth can be seen in 

shJMJD4 #2 and #11 colonies, with effectively no colonies visible in the sheRF1 

group. 
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Figure 3.13: Knockdown of JMJD4 and eRF1 curtails 3-dimensional anchorage 
independent growth in stable inducible U2OS cells. Cells were seeded in noble 
agar and after 7 days their growth assessed using Alamar Blue. A) Western Blot 
confirmation of knockdown following 72h of Doxycycline treatment. B) Visual 
appearance of colonies inside representative wells. C) Mean Fluorescence Intensity 
(FI) Ratio of samples treated with Doxycycline over untreated. n=6 ± Standard 
Deviation *, **, *** =0.5, 0.1 and 0.01 confidence levels respectively. Student’s two-
tailed t-test. 
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3.2.5 shRNA knockdown of JMJD4 or eRF1 does not overtly alter cell cycle 

distribution  

Following the observation that an increase in translational readthrough upon 

JMJD4/eRF1 depletion was accompanied by a reduction in growth in 2D and 3D, we 

considered the possibility that this might be due to the activation of a specific cell 

cycle phase checkpoint. In order to test this, U2OS shJMJD4#2, #11, sheRF1 and 

shFF3 were treated with and without 1 μg ml-1 Doxycycline for 72h before analysis 

by western blot (to confirm knockdown, Figure 3.14A), MTS growth assay (to 

confirm reduced growth, Figure 3.14B) and flow cytometry, as follows. Cells were 

trypsinised, fixed with cold ethanol and stained with Propidium Iodide (PI), a DNA 

binding stain. Consequently, cells at G1 have the lowest PI signal, cells at G2 the 

highest (barring multinucleate cells) and cells in the S phase should possess a 

continuum of values between the two peaks. Following staining, cells were analysed 

using Flow Cytometry gated on the live cell population using FACS-DIVA software. 

The distribution of the cells by cell cycle phase was determined using Watson fitting 

on the Flow Cytometry Suite FlowJo and presented as Sub-G1, G1, S, G2 and super-

G2 populations. 
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Figure 3.14A & B: Restriction of growth by JMJD4 and eRF1 is not associated 
with changes in the cell cycle profile. U2OS shFF3, shJMJD4#11, shJMJD4#2 and 
sheRF1 cells were induced with 1 μg ml-1 doxycycline for 72h to knockdown their 
respective targets and then fixed. The cell cycle profile was then assessed using the 
DNA binding dye propidium iodide. A) Western Blot validation of eRF1 and JMJD4 
knockdown B) Comparison of cell growth by MTS over 5 days (n=3, ± Standard 
Deviation 
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Figure 3.14C, D & E (previous page): Restriction of growth by JMJD4 and eRF1 
is not associated with changes in the cell cycle profile. U2OS shFF3, shJMJD4#11, 
shJMJD4#2 and sheRF1 cells were induced with 1 μg ml-1 doxycycline for 72h to 
knockdown their respective targets and then fixed. The cell cycle profile was then 
assessed using the DNA binding dye propidium iodide. C) Histograms of the cell 
cycle profiles with prediction of area covered by each cell cycle phase. Green=G1, 
Yellow=S, Cyan=G2) D) Table of estimated percentage of cells in each part of the 
cell cycle calculated by FACS-DIVA. Negative values are calculation artifacts and 
indicate non-existent populations. E) Histogram representation of the data in D. n=2. 

 

In all cases, sub-G1 and super-G2 cells constituted less than 3% of the populations 

and were thus not depicted on the graphs for visual clarity. Any negative values in 

those populations arise due to the calculation algorithm deducting the overlap of 

populations from the reported value, causing small population whose distribution is 

predicted to lie entirely within a larger one to be estimated as negative. These values 

should be regarded as being in effect zero.  The majority of the cells in the samples 

examined are found in G1 phase. However, no obvious difference in the cell cycle 

distribution was observed between cell lines or following doxycycline treatment 

(Figure 3.14C). The subtle variations observed are disproportionately small compared 

to the observed reductions in growth (Figures 2.14B&C). These data would suggest 

that reduced growth following eRF1 and JMJD4 knockdown may not be associated 

with the activation of a single cell cycle checkpoint. Rather, it would appear that the 

transition through each cell cycle phase may be slowed, rather than paused or stopped. 

Importantly, this type of proliferative block is not unprecedented, as discussed later. 

 

 

 



101 
 

3.2.6 Validation of growth phenotypes using an alternative cell line and 

knockdown system 

Thus far, the effects of JMJD4 and eRF1 knockdown on growth have been tested on 

U2OS cells using an inducible shRNA system. In order to determine whether the 

effects observed were cell line and intervention-specific, we aimed to extend our 

findings using an siRNA approach in an additional cell line. In this experiment HeLa 

cells were twice transfected with 25 nM siRNA against JMJD4, eRF1 or a non-

targeting control sequence (universal negative control #1). The siRNAs used were 

different to the one resulting from the processed hairpin in the U2OS shJMJD4 and 

sheRF1 cells. Following the second siRNA treatment the cells were trypsinised and 

transfected with p2luc reporter plasmids containing the termination sequences TMV 

TGA, TMV TAA, or the control plasmid TMVR. The samples were subsequently 

harvested 72h post-transfection along with protein samples, which confirmed 

successful knockdown (Figure 3.15A).  
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Figure 3.15: siRNA Knockdown of JMJD4 and eRF1 recapitulates the shRNA 
growth phenotype. HeLa cells were treated with siRNA against JMJD4, eRF1 or a 
non-targeting sequence. After 48h they were transferred to either 12 well plates for 
translational readthrough assay or 96 well plates and their 2D growth measured using 
MTS+PMS over 5 days. A) Western Blot validation of JMJD4 and eRF1 knockdown 
at 72h after the first siRNA transfection B) HeLa cells treated with siRNA against 
JMJD4, eRF1 or a non-targeting sequence were transfected with p2luc plasmids 
containing the Tobacco Mosaic Virus termination context, with the stop codon either 
the TAA or TGA. C) Cell proliferation was assayed by MTS over a period of 5 days. 
n=3 ± Standard Deviation  
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In 3.15A, an apparent increase in eRF1 upon knockdown of JMJD4 was not 

reproducible in other experiments. Knockdown of eRF1 by siRNA in HeLa cells 

resulted in comparable levels of stop codon readthrough (Figure 3.15B) to the shRNA 

data obtained in U2OS cells (Figure 3.11B). Interestingly however, stop codon 

readthrough caused by JMJD4 siRNA was substantially higher than with shRNA, and 

in the same range as eRF1 knockdown. This, along with the observation that 

shJMJD4#2 results in increased translational readthrough and reduced growth, may 

suggest that extremely good knockdown of JMJD4 may be necessary to elicit full 

growth responses and translational termination defects. Alternatively, the increased 

stop codon readthrough observed compared to the inducible JMJD4 shRNA cells may 

be due to the leaky knockdown in the latter, resulting in increased basal stop codon 

readthrough and thus a smaller dynamic range. Additionally, such an effect may have 

been also caused by habituation of the shRNA cells to leaky expression, leading to a 

reduction in stop codon readthrough due to potential compensatory mechanisms.  

Importantly however, the termination defects observed following eRF1 and JMJD4 

knockdown in this model were also associated with reduced growth potential. Similar 

to the U2OS shRNA results, eRF1 knockdown caused a strong cytostatic effect, while 

knockdown of JMJD4 reduced the growth rate of HeLa cells. In both cases however 

the effects appear to be more pronounced than in the inducible shRNA cell lines, with 

evidence of cytotoxicity in the sieRF1 samples past day 4 of knockdown (as 

evidenced by a reduction in A490 absorbance). An apparent increase in eRF1 in the 

siJMJD4 treated cells in Figure 3.15A is stochastic. 
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3.2.7 HEMK2 knockdown leads to a reduction in growth and an increase in 

translational readthrough 

Having observed that JMJD4 depletion is associated with both translational 

termination and growth phenotypes, we aimed to confirm whether another known 

eRF1 modifier, the glutamine methyltransferase HEMK2, might play a similar role. 

To that end, U2OS cells were transfected with either control or HEMK2 siRNA, 

followed by analyses of protein knockdown, stop codon readthrough and growth. 

Although commercially available HEMK2 antibodies do not perform well in western 

blotting (Figure 3.16A), it was possible to confirm knockdown of HEMK2 protein 72 

hours post-transfection of siRNA. Under these conditions, HEMK2 knockdown 

resulted in a modest increase in translational readthrough, consistent with a role in 

promoting eRF1 activity (Liu et al., 2010). Similar to JMJD4 and eRF1, siRNA 

knockdown of HEMK2 also induced a significant growth deficit (Figure 3.16C).  

JMJD4 and eRF1 are required for normal cell growth, and their expression may be 

deregulated and associated with poor prognosis in cancer (section 3.2.1). Therefore, 

having confirmed a role for HEMK2 in cell growth, we next asked whether HEMK2 

expression was also deregulated and associated with prognosis in cancer. The 

cBioPortal database indicates that the HEMK2 gene is not commonly amplified, with 

only breast cancer patient xenograft samples (30%), neuroendocrine prostate cancers 

(14%) and typical prostate cancers (5%) showing evidence of amplification (Figure 

3.17). However, similar to other termination factors eRF1 and JMJD4, HEMK2 

mRNA appears to be upregulated in a variety of cancer types (Figure 3.18). 
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Interestingly, although overexpression of HEMK2 mRNA was only associated with 

reduced survival in breast cancer (Figure 3.19), a trend towards worse prognosis was 

observed in breast, lung and gastric cancer patients with tumours expressing increased 

mRNA levels of the HEMK2 co-activator Trm112 (Figure 3.20). 
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Figure 3.16: HEMK2 affects translational readthrough and growth. A) Western 
Blot shows knockdown of endogenous HEMK2 by HEMK2 siRNA B) RT-qPCR 
validation of HEMK2 knockdown following HEMK2 siRNA treatment. Performed 
independently of the western blot. C) U2OS shFF3, sheRF1, shJMJD4#2 (sh2) and 
shJMJD4#11 (sh11) were treated with Doxycycline for 48h, transfected with HEMK2 
or control siRNA and subsequently plated with p2luc reporter plasmid BYDV. D) 
U2OS shFF3 and sheRF1 were treated with Doxycycline for 48h, transfected with 
HEMK2 or control siRNA and subsequently transferred to 96 well plates and assayed 
for proliferation by MTS. Measurements were taken at 3h post addition of MTS. n=3 
± Standard Deviation. 
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Figure 3.17: Cancer Genomics of eRF1 methylase HEMK2: HEMK2 is amplified 
by up to 30%, principally in breast and neuroendocrine prostate cancers (NEPC). Data 
obtained through cBioPortal (Gao et al., 2013). 
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Figure 3.18: Bioinformatics of HEMK2 gene expression in tumours. HEMK2 
transcript abundance can be shown to be significantly increased in invasive ductal 
breast carcinoma, anaplastic large cell lymphoma, renal oncocytoma and rectal 
adenocarcinoma compared to healthy tissue. p=Probability that there is no difference 
between the populations by two-tailed Student’s t-test. Analysis via ONCOMINE 
(Rhodes et al., 2004). 
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Figure 3.19: Kaplan-Meier Survival analysis of HEMK2 mRNA expression in 
Breast, Ovarian, Lung, and Gastric cancers. The probe identifier is located atop 
each plot. HR=Hazard Ratio, the ratio at which survival is modified by amplification 
of the corresponding gene in each cancer type. Logrank P= Probability that the 
difference between the two groups is significant using the log-rank non-parametric 
hypothesis test for survival distribution. Probability refers to the percentage 
probability of survival. Patient numbers in each curve are found below each blot. 
Analysis via Kaplan Meier Plotter (Szasz et al., 2016). 
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Figure 3.20: Kaplan-Meier Survival analysis of the HEMK2 transactivator 
Trm112 RNA expression in Breast, Ovarian, Lung, and Gastric cancers. The 
probe identifier is located atop each plot. HR=Hazard Ratio, the ratio at which 
survival is modified by amplification of the corresponding gene in each cancer type. 
Logrank P= Probability that the difference between the two groups is significant using 
the log-rank non-parametric hypothesis test for survival distribution. Probability refers 
to the percentage probability of survival. Patient numbers in each curve are found 
below each blot. Analysis via Kaplan Meier Plotter (Szasz et al., 2016). 
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3.2.8 Generation of an siRNA-resistant eRF1 rescue system 

Having demonstrated the importance of JMJD4 and HEMK2 in translational 

readthrough and growth, we wished to explore the role of the corresponding eRF1 

modification sites in greater detail. Consequently, a set of eRF1 cDNA sequences 

were designed containing an N-terminal Hemagglutinin (HA) epitope tag and either i) 

wildtype eRF1, (ii) ablation of the JMJD4 K63 hydroxylation site in the NIKS motif 

of eRF1 by mutation to Alanine or iii) mutation of the HEMK2 Q185 methylation site 

in the GGQ subdomain of eRF1 to Asparagine (as reported in (Seit-Nebi et al., 

2001a)). Ideally, the effect of these mutants on growth and translational termination 

would be studied in the absence of confounding wildtype endogenous eRF1. In order 

to achieve this, the exogenous eRF1 cDNA sequences were engineered to contain a 

number of silent mutations in a validated siRNA target site (Figure 3.15). Sufficient 

mismatches in the exogenous eRF1 cDNA sequences would thus protect them from 

knockdown under conditions in which the endogenous eRF1 was depleted (Figure 

3.21). These eRF1 cDNA sequences were then cloned into a variant pTRIPZ plasmid 

lacking RFP (‘pTIPZ’), to allow conditional and physiological re-expression of eRF1. 

This system would thus allow for switchable expression of wildtype and mutant eRF1 

while being able to selectively knock down the endogenous form.  
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Stable puromycin-resistant U2OS cells were generated following lentiviral delivery of 

these vectors (as described above for shRNA). Initial validation of this eRF1 siRNA 

rescue ‘structure/function’ system was undertaken using 25nM siRNA and 0.1 μg ml-1 

Doxycycline (Figure 3.22). eRF1 siRNA was found to successfully deplete 

endogenous eRF1 as indicated by the absence of detectable eRF1 in control pTIPZ 

cells not expressing HA-eRF1 (designated empty vector, or ‘EV’). 

 

 

 

 

 

 

Figure 3.22: Validation of the generation of an eRF1 rescue cell line system. Cells 
were treated with 25nM eRF1 siRNA for 48h with a single dose of Doxycycline at 0.1 
μg ml-1 during the second day of knockdown. Harvesting occurred 48h after the 
doxycycline treatment. 

 

Overexpression of eRF1 was readily observed in doxycycline-treated eRF1 wildtype 

(WT) and K63A mutant pTIPZ cell lines and, as anticipated, this was not affected by 

eRF1 siRNA treatment. In contrast, the level of re-expression achieved with the 

Q185N mutant was significantly lower, suggesting that this mutant may be unstable. 

Unfortunately, the differences in expression between exogenous and endogenous 

eRF1, and between WT/K63A mutant and Q185N exogenous eRF1 would likely 

hinder appropriate comparative analyses. Therefore, empirical optimisation of the 

doxycycline induction protocol was undertaken in order to better equalise eRF1 
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expression (data not shown). This resulted in doxycycline doses of 0.03 g ml-1 for 

WT and K63A and 0.5 g ml-1 for Q185N eRF1. 

 

3.2.9 Examining the effect of eRF1 re-expression on translational termination 

and cell proliferation 

Following optimisation of eRF1 expression in this system, we proceeded to determine 

the ability of wildtype and mutant eRF1 to rescue the effects of eRF1 siRNA on 

translational readthrough and cell growth. EV, WT, K63A and Q185N U2OS cells 

were treated with 25nM eRF1 or control siRNA along with the relevant optimised 

doxycycline concentrations. Twenty-four hours after the second siRNA treatment the 

cells were trypsinised and either reverse transfected with p2luc stop codon 

readthrough reporters or transferred to 96 well plates for MTS growth assays. 

Additional samples were taken for western blotting which confirmed successful 

siRNA knockdown and HA-eRF1 re-expression (Figure 3.23A). 

eRF1 siRNA in the control ‘EV’ U2OS cells resulted in an increase in stop codon 

readthrough comparable to that seen in the sheRF1 U2OS and sieRF1 HeLa 

experiments discussed previously (Figure 3.23B). Consistent with an ‘on-target’ 

effect of eRF1 siRNA on translation termination, re-expression of WT eRF1 

suppressed the majority of stop codon readthrough despite sieRF1 knockdown 

treatment. Interestingly however, re-expression of K63A completely failed to rescue 

the stop codon readthrough phenotype, with reporter values similar to those of the EV 

+ sieRF1 treatment group. Similarly, re-expression of Q185N eRF1 completely failed 

to rescue stop codon readthrough induced by eRF1 siRNA.  
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Figure 3.23: Validation of eRF1 re-expression in U2OS cells inducibly expressing 
HA-eRF1, HA-eRF1 K63A and HA-eRF1 Q185N. HA-eRF1, HA-eRF1 K63A 
were induced with 0.03 μg ml-1 and HA-eRF1 Q185N with 0.5 μg ml-1 doxycycline 
for 48h.  A) Western Blot of eRF1 expression in the presence or absence of siRNA 
targeting the endogenous eRF1 only. B) Quantification of the fold translational 
readthrough during re-expression of the introduced forms of eRF1. n=3 ± Standard 
Deviation 
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With regards to cell proliferation (Figure 3.24), eRF1 siRNA led to a profound 

cytostatic response in the EV control cells, as expected. Reconstitution with siRNA 

resistant WT-eRF1 completely restored normal growth to comparable levels observed 

in the control siRNA treated group. Consistent with the stop codon readthrough data, 

neither K63A nor Q185N mutants were able to restore normal growth control in eRF1 

knockdown cells. In the absence of eRF1 knockdown, all cell lines grew at an 

approximately equal pace, with the notable exception of Q185N: The severe loss of 

growth in the presence of endogenous eRF1 may indicate that this mutant acts in a 

dominant negative manner. While the mechanism is unknown, mutation of the GGQ 

motif to AAQ has previously been used to trap ribosomes in a termination state 

(Brown et al., 2015). It is therefore possible that Q185N may ‘poison’ the ribosome, 

by stalling termination and preventing the release of mature proteins. 
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Figure 3.24: Characterisation of the effect of eRF1 rescue variants on 2D 
proliferation. A) Expression of the inducible forms by addition of 0.03 µg ml-1 
Doxycycline (0.5 μg ml-1 for Q185N) for 48h with simultaneous treatment with 
control siRNA. B) Expression of the inducible forms by addition of 0.03 µg ml-1 
Doxycycline (0.5 μg ml-1 for Q185N) for 48h with simultaneous treatment with eRF1 
siRNA. C) Comparison of the +siCtrl and +sieRF1 groups on day 5. n=3± Standard 
Deviation 
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3.3 Discussion 

Previous work describing JMJD4 as a novel termination factor, as well as our 

observation of its widespread gene amplification in cancer, attracted our interest in 

how translational termination factors may generally influence cell growth. Here we 

present evidence that support a role for eRF1, JMJD4 and HEMK2 in translational 

termination and cell proliferation. We extended these findings using an siRNA 

resistant eRF1 structure/function system to interrogate the requirement for specific 

modification sites in normal translational termination and growth control. 

Our initial analyses of translational termination factors in cancer initially focused on 

identifying genetic alterations, particularly amplifications, of the eRF1, JMJD4 and 

HEMK2 genes using the cBioPortal cancer genome database. This identified that 

whereas eRF1 and HEMK2 genes were only amplified in a small number of tumour 

types, JMJD4 was frequently amplified, and in a wide variety of cancers. However, 

amplification in cancers does not automatically imply a functional role, as copy 

number alterations are not necessarily associated with increased expression (for 

instance only 40% of amplified genes in breast cancer are also overexpressed) 

(Hyman et al., 2002) and may simply be a side effect of chromosomal abnormalities 

(Tsafrir et al., 2006). Since important cancer genes can be deregulated by multiple 

mechanisms (Asghar et al., 2015), we therefore also monitored altered expression 

levels using the online Oncomine transcriptomic database. Using this approach we 

identified widespread upregulation of eRF1, JMJD4 and HEMK2 mRNA across 

cancer types, which in some cases was associated with worse patient prognosis. 

Overall, this preliminary analysis using public ally available data suggested that the 
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translational termination pathway may be commonly upregulated during 

tumourigenesis. This would be entirely consistent with evidence that deregulation of 

translational initiation and elongation factors supports tumourigenesis (Truitt and 

Ruggero, 2017): Presumably, coordinating the upregulation of the termination process 

with earlier steps of the translation process is critical in order to maximize protein 

synthesis rate and fidelity. 

To explore the role of termination factors in cell growth we first developed a variety 

of cell models including transient siRNA, conditional shRNA and an siRNA-resistant 

‘rescue’ system. Prior to their application in growth analyses these systems were first 

validated using established stop codon readthrough assays based on the dual 

luciferase p2luc vector described above.  These experiments confirmed the anticipated 

translational termination defects following HEMK2, JMJD4 and eRF1 knockdown. 

Consistent with this, eRF1 mutants that cannot be modified by JMJD4 or HEMK2 

were unable to rescue termination defects when re-expressed in eRF1 knockdown 

cells. 

Interestingly, knockdown experiments indicated that the effect of JMJD4 depletion 

may not be equal in all termination contexts. In the case of the TMV TGA context 

JMJD4 knockdown resulted in only 1.5-fold increase in translational readthrough, 

compared to approximately 3-fold for BYDV and CFW1282* termination contexts 

(Figure 3.11B).  

Context-dependent translational termination has been previously described. For 

example, several ciliate species utilise a non-standard genetic code lacking 

termination codons, with the context for termination provided by the mRNA 3’ ends 

(Swart et al., 2016). In a less extreme example, the +1 position following the stop 



120 
 

codon has been shown to influence termination efficiency in viruses, bacteria and 

mammals (Tate et al., 1995, Li and Rice, 1993, McCaughan et al., 1995), while the 

bases at positions -1&-2 to the stop codon have also been studied (Cassan and 

Rousset, 2001).  

Additionally, it is of note that siRNA mediated transient knockdown of JMJD4 

(Figure 3.15B) resulted in much higher levels of apparent translational readthrough 

than either of the shJMJD4 cell lines in the same termination context, to levels similar 

to those obtained by eRF1 knockdown. Since the increase in translational readthrough 

observed during depletion of eRF1 is similar for sieRF1 and sheRF1 (5-7 fold) the 

difference is likely specific for JMJD4 rather than dependent on the methodology. 

There are a number of possible explanations for this. The shJMJD4 cells exhibited 

significantly reduced levels of JMJD4 even in the absence of doxycycline, so it is 

likely that habituation to a permanent lack of JMJD4 availability had taken place, 

resulting in a less dramatic phenotype. Additionally, the reduced JMJD4 baseline in 

the shJMJD4 cells may have resulted in a lower dynamic range, further impacting 

measurements. 

Concerning the role of termination factors in cell proliferation, we find that JMJD4 or 

HEMK2 knockdown results in a reduction in cell proliferation, whereas eRF1 

depletion results in a strongly cytostatic phenotype. However, growth reduction by 

JMJD4 siRNA was more pronounced than shRNA, in line with the greater 

translational readthrough values measured in this approach. Three-dimensional noble 

agar growth experiments also further supported the idea that JMJD4 and eRF1 have 

important roles in supporting cell growth, including in more complex conditions 

designed to mimic physiologically and pathologically relevant micro-environments. 

Interestingly, our JMJD4 growth data contrasts with a previous study indicating that 
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JMJD4 appears to be non-essential for mouse embryonic development and may not 

affect cell growth in vitro (Yoo et al., 2016a). Although, the reasons for this 

discrepancy are unclear at present, it is interesting to note that our study focussed on 

tumour cells, whereas the study by Yoo et al was restricted to non-transformed 

primary cells. Whether this might highlight a role for eRF1 hydroxylation in 

specifically supporting tumour cell growth is not clear, but of interest. 

Surprisingly, growth reduction following eRF1 or JMJD4 depletion was not 

associated with specific changes in cell cycle profile. It would appear that affected 

cells either stop (eRF1) or slow (JMJD4) their progression through each part of the 

cell cycle equally, rather than activating a single specific cell cycle checkpoint 

blockade.  A similar manner of regulation has been found to occur for the ribosomal 

proteins RPL5 and RPL11, where their depletion has been shown to result in a 

reduction of cell cycle proliferation without the induction of checkpoints. Instead, 

reduced global protein synthesis causes cyclin levels to drop below the minimum 

threshold for cell cycle progression, causing the cells to halt their cycling rate (Teng 

et al., 2013). It is likely that a similar mechanism operates during both eRF1 and 

JMJD4 depletion, and which may therefore be a general cell cycle response to 

defective translational termination. 

The consistent growth and cell cycle phenotype following termination factor 

knockdown raised questions regarding the molecular mechanism(s) involved. Since 

other JMJD4 substrates have not (yet) been reported (see also Chapter 2), it is 

seemingly likely that its role in growth is via modification of eRF1. Beyond its 

activity as the translation termination factor, eRF1 has been implicated in the 

formation of a complex with eRF3 and the non-sense mediated decay proteins Upf1 

and SMG-1, resulting in the phosphorylation and activation of UPF1 (Kashima et al., 
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2006). However, depletion of UPF1 has been shown to result in an early S phase 

arrest of the cell cycle (Azzalin and Lingner, 2006), while SMG-1 knockdown results 

in arrest at G2 (Brumbaugh et al., 2004). Consequently, defective eRF1 function in 

nonsense mediated decay signalling would appear unlikely to explain the 

characteristics of the growth phenotypes described here. Rather, one could 

hypothesise that loss of efficient termination would result in nascent polypeptides 

with abnormally long C-termini, resulting in misfolding and degradation. A number 

of other potential mechanisms might also occur and contribute to the observed 

phenotypes. For example, stop codon readthrough can result in extended C-termini 

that have functional consequences, conferring specific new biological attributes to the 

protein in question (Loughran et al., 2014, Schueren et al., 2014). Though not yet 

formally proven, it is also possible that some genes may act as specific termination 

‘sensors’: It has been hypothesised that the expression of transcription factors whose 

translation is regulated by upstream open reading frames (uORFs) could respond to 

changes in translational termination efficiency (Ait Ghezala et al., 2012a). 

An important caveat of the work presented in this chapter is that the actual eRF1 

modifying activity of JMJD4 and HEMK2 were not examined. While knockdown of 

JMJD4 specifically was tested at the protein level and a translational readthrough 

phenotype consistent with literature could be observed, its actual level of activity was 

not measured. This could have been achieved in two ways: presenting cell extracts 

with JMJD4 peptide substrates in vitro and measuring the rate of hydroxylation in 

order to determine the overall activity of JMJD4 in the samples, and by directly 

assessing the level of eRF1 hydroxylation within the cells by mass spectrometry. 

Similarly, following knockdown of eRF1, the level of eRF1 ribosomal occupancy and 

how it differed from the physiological state was not measured. 
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In conclusion, eRF1 and its post translational modifiers JMJD4 and HEMK2 appear 

to play an important role in cell growth, likely mediated by their requirement for 

efficient translational termination. Exactly how translational termination supports cell 

growth, and how defects in this fundamental process elicit growth inhibition are not 

known. The work presented in the chapters that follow aimed to address these 

questions. 
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CHAPTER 4: Characterising the cellular 

response to defective translational 

termination using RNA Sequencing 
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4.1 Introduction 

 

In chapter 3, knockdown of translational termination factors was associated with a 

reduction in cellular proliferation. Combined with the discovery that the reduction in 

growth was not associated with changes in cell cycle profile, and therefore unlikely to 

be due to activation of classical cell cycle checkpoints, the question arose how these 

phenotypes came about. We propose that the observed reduction in growth would be 

most likely associated with altered cell signalling transduction, the unfolded protein 

response, other stress-activated pathways, or a combination of these. Such stress and 

adaptive responses often cause specific transcriptional changes due to the modulation 

of specific transcription factors (Hetz, 2012). Therefore, in order to begin to 

understand responses to defective translational termination we proposed an analysis of 

the transcriptome of cells under eRF1 knockdown. Emphasis was initially placed on 

solely examining the effects of eRF1 because of the robust phenotypes observed, and 

limited resources. Using bioinformatic tools, differential expression analyses of the 

transcriptomes was performed followed by biological pathway analyses.  
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4.2 Results 

 

4.2.1 RNASeq 

 

The data presented throughout this chapter were in large part obtained via RNA 

Sequencing, commonly referred to as RNA-Seq and formally known as whole 

transcriptome shotgun sequencing. During RNA-Seq, RNA is extracted from cells and 

its quality assessed through the RNA Integrity Number (RIN) algorithm via capillary 

gel electrophoresis measurements. Subsequently, the RNA can be further purified to 

select only specific types, e.g. only mature 3’-polyadenylated mRNAs or to 

selectively deplete the abundant ribosomal rRNAs. Following the selection stage, the 

RNA is reverse transcribed into cDNA using random primers and fragmented to 

create short overlapping sequences. After cDNA synthesis, sequencing adapters are 

added to the 5’ and 3’ ends of the short fragments and the results are amplified by 

PCR prior to sequencing. The results of the sequencing are then typically aligned 

against the genome of the organism used, the types of RNA expressed are identified 

and their relative expression quantified (Figure 4.1). 

In order to begin to identify the transcriptomic changes associated with defective 

translational termination, the previously described sheRF1 and shFF3 knockdown 

cells were used. U2OS sheRF1 and shFF3 were treated with 2 μg ml-1 Doxycycline 

for four days to ensure complete knockdown of eRF1, before being harvested for 

RNA extraction and Western Blotting. To assess RNA quality the extracts were 

assayed using a ScreenTape assay, where the 18S/28S rRNA ratio is calculated as a 

measure of the integrity of total RNA (Figure 4.2). The RNA samples were then 



127 
 

submitted for sequencing using a NeoPrep kit (performed by Dr Celina Whalley, 

University of Birmingham). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Schematic of a typical RNA-Seq workflow. Processes have been 
abbreviated and simplified for clarity. RNA is purified, converted into cDNA and 
fragmented. The sequence fragments are then ligated to known adapter sequences 
which are used as the binding site for sequencing primers. The reads are then aligned 
to the genome of the organism the RNA was isolated from and regulated genes 
identified based on the level of expression. 

 

 

 

 

 
  



128 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: RNA ScreenTape Assay of RNA samples used in the RNASeq and 
validation of knockdown. Integrity is evaluated based on the ratio of 18S/28S rRNA 
and an RNA Integrity (RIN) value assigned on a scale 1-10. Higher RIN values 
indicate higher RNA integrity, with values >8 being useful for transcriptomic 
analyses. A) Western blot of the control vs eRF1 knockdown following 96h of 1 μg 
ml-1 doxycycline treatment. B) Gel Image and cumulative Table of RIN values for all 
samples. C) Representative individual electropherogram validating RNA integrity for 
each of the samples examined.  
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Bioinformatic analysis was performed by Dr Robert Hollows (Institute of Cancer and 

Genomic Sciences, University of Birmingham), as follows. Gene level differential 

expression analysis of the results was performed by comparing the data from control 

and sheRF1 cells. RNA-Seq data for the two control replicates and the two eRF1 

knockdown replicates were aligned to the hg19 human genome using Rsubread 

aligner and assigned to individual genes using the featureCounts function. Read 

counts were then normalised between samples and converted to counts-per-million 

reads (“cpm”) for each gene using the edgeR package in R. Only genes with a cpm of 

more than 1 in at least 2 samples were considered for subsequent differential 

expression analysis. Genes were deemed to be differentially expressed between 

control and knock-out groups if the fold-change (knock-down/control) was greater 

than 1.5 or less than -1.5 and the probability value was less than 0.05 (Liao et al., 

2013).  

Based on these criteria, lists of the most upregulated and downregulated genes were 

compiled. The top 20 most affected genes on each list are catalogued in Figures 4.3 

and 4.4, respectively. In 4.4, successful knockdown of the eRF1 gene ETF1 is also 

validated. The complete gene lists were compared via centroid linkage clustering, 

demonstrating that the shFF3 and sheRF1 samples clustered independently, a 

representative example of which is shown in Figure 4.5.  
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Gene Description PValue FDR Fold Change 

C2orf80 chromosome 2 open reading frame 80 0 0 13998.55 

IGFBP4 insulin-like growth factor binding protein 4 0 0 2387.30 

MLPH melanophilin 9.65E-52 5.68E-50 759.66 

LOC101927697 uncharacterized LOC101927697 5.03E-191 3.17E-188 645.04 

CRYGA crystallin, gamma A 5.08E-26 1.11E-24 419.90 

HOXB-AS1 HOXB cluster antisense RNA 1 7.82E-24 1.54E-22 375.41 

CDCA7 cell division cycle associated 7 9.67E-278 1.22E-274 209.45 

CDH11 cadherin 11, type 2, OB-cadherin (osteoblast) 7.83E-287 1.09E-283 152.92 

GALNT13 polypeptide N-acetylgalactosaminyltransferase 13 1.30E-80 1.54E-78 139.40 

ALS2CR11 
amyotrophic lateral sclerosis 2 (juvenile) chromosome region, 

candidate 11 
1.66E-44 7.95E-43 130.12 

HOXB2 homeobox B2 3.32E-227 2.83E-224 125.53 

SYK spleen tyrosine kinase 1.31E-28 3.27E-27 83.60 

C17orf96 chromosome 17 open reading frame 96 1.93E-92 2.88E-90 76.21 

FOXG1 forkhead box G1 3.95E-24 7.89E-23 69.82 

ZNF730 zinc finger protein 730 7.51E-19 1.11E-17 53.90 

ETV1 ets variant 1 1.92E-44 9.15E-43 53.32 

ITGA4 integrin, alpha 4 7.71E-96 1.27E-93 49.71 

GJD3 gap junction protein, delta 3, 31.9kDa 3.95E-42 1.70E-40 39.88 

SYCE1L synaptonemal complex central element protein 1-like 2.26E-46 1.15E-44 36.38 

ALDH3B2 aldehyde dehydrogenase 3 family, member B2 7.34E-25 1.51E-23 30.30 

 

Figure 4.3: Gene expression is affected by knockdown of eRF1. Top 20 most 
upregulated. Genes identified following bioinformatic analysis of the RNA-Seq data 
ranked by fold change (high to low). PValue=The probability that the difference 
between shFF3 and sheRF1 is not real, FDR=False Discovery Rate, the number of 
anticipated false positives/number of regulated genes. Any value depicted as zero is 
small enough to be registered as such by the pathway analysis software. 
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Symbol Description PValue FDR Fold Change 

MGAT4D MGAT4 family, member D 2.57E-89 3.60E-87 -1338.87 

CD36 CD36 molecule (thrombospondin receptor) 0 0 -678.30 

CACNG3 calcium channel, voltage-dependent, gamma subunit 3 1.88E-40 7.58E-39 -554.69 

HTN3 histatin 3 8.29E-44 3.84E-42 -138.04 

TMPRSS11E transmembrane protease, serine 11E 1.86E-161 8.47E-159 -109.80 

DNAJC18 DnaJ (Hsp40) homolog, subfamily C, member 18 4.77E-189 2.93E-186 -55.77 

SPINK1 serine peptidase inhibitor, Kazal type 1 6.94E-34 2.18E-32 -38.39 

HTN1 histatin 1 7.04E-56 4.67E-54 -34.39 

PTPN22 protein tyrosine phosphatase, non-receptor type 22 1.14E-32 3.39E-31 -34.37 

LINC00861 long intergenic non-protein coding RNA 861 4.55E-268 5.01E-265 -32.86 

UGT3A2 UDP glycosyltransferase 3 family, polypeptide A2 1.42E-24 2.91E-23 -32.56 

ATP6V0D2 ATPase, H+ transporting, lysosomal 38kDa, V0 subunit  6.74E-69 6.00E-67 -32.55 

LOC100507351 uncharacterized LOC100507351 4.96E-42 2.12E-40 -30.86 

ABCA8 ATP-binding cassette, sub-family A (ABC1), member 8 3.36E-29 8.60E-28 -29.89 

CXCL12 chemokine (C-X-C motif) ligand 12 0 0 -29.06 

LYPD6B LY6/PLAUR domain containing 6B 7.91E-33 2.38E-31 -28.24 

LOC101927482 uncharacterized LOC101927482 2.14E-43 9.68E-42 -27.34 

CRISP3 cysteine-rich secretory protein 3 3.05E-124 8.48E-122 -26.88 

LOC100129520 testis expressed sequence 13-like 1.02E-30 2.80E-29 -26.08 

ADAM28 ADAM metallopeptidase domain 28 5.48E-165 2.73E-162 -25.74 

ETF1 (eRF1) Eukaryotic Termination Factor 1 0 0 -12.15 

 

Figure 4.4: Gene expression is affected by knockdown of eRF1. Top 20 most 
downregulated. Genes identified following bioinformatic analysis of the RNA-Seq 
data ranked by fold change (high to low). PValue=The probability that the difference 
between shFF3 and sheRF1 is not real, FDR=False Discovery Rate, the number of 
anticipated false positives/number of regulated genes. Any value depicted as zero is 
small enough to be registered as such by the pathway analysis software. In the last 
column, the gene coding for eRF1, ETF1, is presented to validate knockdown. 
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Figure 4.5: Heatmap of the top 200 upregulated genes. Genes and samples have been 
clustered in the heatmap using 1 – (Pearson) correlation (between genes / samples) as the 
distance measure and using centroid linkage for determining groups. The linkage method 
determines how the distance between two clusters is defined. With the centroid linkage 
method, the distance between two clusters is the distance between the cluster centroids or 
means. The control and eRF1 knockdown samples cluster independently. Graph provided by 
Dr Robert Hollows, University of Birmingham. 
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These lists were subsequently further processed through the pathway analysis 

platform Reactome, in order to determine any pathways which might be significantly 

regulated at the RNA level. The lists obtained following RNA-Seq were analysed 

using overrepresentation analysis, an analytic approach in which the abundance of 

regulated genes is tested against the probability of them being randomly modulated, 

using a binomial test. The probabilities obtained were further corrected through the 

Benjamini-Hochberg procedure for multiple testing since the list is compared to every 

pathway. Pairwise protein-protein interaction data of the European Bioinformatics 

Institute (EMBL-EBI) database IntAct were included as part of the extended analysis.   

The results are summarised in Figures 4.6-4.9, along with an explanation of the major 

metrics involved in their identification. Unfortunately, manual analysis indicated a 

large degree of overlap in the gene lists by which pathways were identified. 

Therefore, Reactome pathways were further manually curated so that individual 

pathways sharing both functional similarity and highly similar gene lists have been 

condensed in broader categories, as indicated in the figures.  
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Figure 4.7: Fold Regulation of genes identified to participate in pathways 
classified by pathway analysis as upregulated. Pathways sharing both functional 
similarity and highly similar gene lists have been grouped together as previously. The 
composites used are formed of the following pathways: A) Collagen and ECM: 
Assembly of collagen fibrils and other multimeric structures, ECM proteoglycans and 
laminin interactions B) Ribosomal Associated Pathway Components: Formation of a 
pool of 40s subunits, Eukaryotic Translational Elongation, Eukaryotic Translational 
Termination, SRP dependent co-translational targeting of proteins to membrane, Viral 
mRNA Translation and Nonsense mediated Decay. C) Selenocysteine and Selenium 

Metabolism: Selenocysteine synthesis and Selenoaminoacid Metabolism. Genes 
shared with the ribosomal associated pathway components are not shown. 

0

10

20

30

40

50

60

C
O

L1
8

A
1

C
O

L6
A

3

C
O

L6
A

1

C
O

L5
A

3

C
O

L4
A

4

C
O

L6
A

2

C
O

L1
3

A
1

C
O

L1
2

A
1

C
O

L5
A

1

C
O

L4
A

2

C
O

L1
A

1

G
U

LP
1

IT
G

B
4

IT
G

A
3

N
ID

1

LA
M

C
3

LA
M

B
2

LA
M

B
3

IT
G

A
4

IT
G

B
2

IT
G

B
L1

IT
G

A
3

IT
G

A
2

B

Fo
ld

 m
R

N
A

 C
h

an
ge

Collagen and ECM

0

0.5

1

1.5

2

2.5

R
P

S1
8

R
P

S1
5

R
P

L7
A

R
P

S1
4

R
P

S1
5

A

R
P

S1
7

R
P

S2
5

R
P

S2
4

R
P

L1
0

R
P

L1
3

R
P

L1
9

R
P

S3

R
P

S8

R
P

L2
3

R
P

L2
6

R
P

L2
2

L1

R
P

L2
7

R
P

L1
8

A

R
P

L3
1

R
P

L3
2

R
P

L3

R
P

L3
6

R
P

L8

EI
F3

F

Fo
ld

 m
R

N
A

 C
h

an
ge

Ribosomal Associated Pathway Components

0

0.5

1

1.5

2

2.5

SECISBP2 SARS IARS NNMT CTH CBS

Fo
ld

 m
R

N
A

 C
h

an
ge

Selenocysteine and Selenium Metabolism

A 

B 

C 



136 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pa
th

w
ay

 n
am

e 
#E

nt
iti

es
 fo

un
d 

#E
nt

iti
es

 to
ta

l 
En

tit
ie

s r
at

io
 

En
tit

ie
s p

V
al

ue
 

En
tit

ie
s F

D
R

 
D

ef
ec

tiv
e 

B
3G

A
LT

L 
ca

us
es

 P
et

er
s-

pl
us

 sy
nd

ro
m

e 
(P

pS
) 

10
 

39
 

0.
00

29
13

70
9 

0.
00

18
89

57
 

0.
97

19
57

49
6 

R
N

A
 P

ol
ym

er
as

e 
I C

ha
in

 E
lo

ng
at

io
n 

13
 

61
 

0.
00

45
57

34
 

0.
00

22
04

9 
0.

97
19

57
49

6 
O

-g
ly

co
sy

la
tio

n 
of

 T
SR

 d
om

ai
n-

co
nt

ai
ni

ng
 p

ro
te

in
s 

10
 

41
 

0.
00

30
63

13
 

0.
00

26
93

70
5 

0.
97

19
57

49
6 

R
N

A
 P

ol
ym

er
as

e 
I P

ro
m

ot
er

 O
pe

ni
ng

 
9 

34
 

0.
00

25
40

15
7 

0.
00

43
72

80
6 

0.
97

19
57

49
6 

D
is

ea
se

s a
ss

oc
ia

te
d 

w
ith

 O
-g

ly
co

sy
la

tio
n 

of
 p

ro
te

in
s 

14
 

76
 

0.
00

56
77

99
8 

0.
00

60
76

53
2 

0.
97

19
57

49
6 

In
su

lin
 re

ce
pt

or
 re

cy
cl

in
g 

7 
28

 
0.

00
20

91
89

4 
0.

00
98

15
26

8 
0.

97
19

57
49

6 
PR

C2
 m

et
hy

la
te

s h
is

to
ne

s a
nd

 D
N

A
 

9 
45

 
0.

00
33

61
97

2 
0.

01
43

69
67

8 
0.

97
19

57
49

6 
O

-li
nk

ed
 g

ly
co

sy
la

tio
n 

20
 

13
3 

0.
00

99
36

49
6 

0.
01

65
34

26
4 

0.
97

19
57

49
6 

D
N

A
 m

et
hy

la
tio

n 
9 

37
 

0.
00

27
64

28
8 

0.
01

84
37

15
1 

0.
97

19
57

49
6 

N
uc

le
os

om
e 

as
se

m
bl

y 
10

 
55

 
0.

00
41

09
07

7 
0.

01
85

03
62

3 
0.

97
19

57
49

6 
D

ep
os

iti
on

 o
f n

ew
 C

EN
PA

-c
on

ta
in

in
g 

nu
cl

eo
so

m
es

 a
t t

he
 c

en
tro

m
er

e 
10

 
55

 
0.

00
41

09
07

7 
0.

01
85

03
62

3 
0.

97
19

57
49

6 
In

te
ra

ct
io

ns
 o

f n
eu

re
xi

ns
 a

nd
 n

eu
ro

lig
in

s a
t s

yn
ap

se
s 

13
 

60
 

0.
00

44
82

63
 

0.
03

29
85

57
8 

0.
97

19
57

49
6 

In
te

rle
uk

in
-2

0 
fa

m
ily

 si
gn

al
in

g 
3 

9 
6.

72
E-

04
 

0.
04

00
86

99
9 

0.
97

19
57

49
6 

Tr
an

sf
er

rin
 e

nd
oc

yt
os

is
 a

nd
 re

cy
cl

in
g 

8 
39

 
0.

00
29

13
70

9 
0.

04
08

59
12

 
0.

97
19

57
49

6 
Tr

an
sc

rip
tio

na
l r

eg
ul

at
io

n 
by

 sm
al

l R
N

A
s 

13
 

81
 

0.
00

60
51

55
 

0.
04

42
68

59
5 

0.
97

19
57

49
6 

In
su

lin
-li

ke
 G

ro
w

th
 F

ac
to

r-
2 

m
R

N
A

 B
in

di
ng

 P
ro

te
in

s (
IG

F2
B

Ps
/IM

Ps
/V

IC
K

Zs
) b

in
d 

R
N

A
 

4 
13

 
9.

71
E-

04
 

0.
05

49
21

30
9 

0.
97

19
57

49
6 

In
te

ra
ct

io
n 

be
tw

ee
n 

L1
 a

nd
 A

nk
yr

in
s 

6 
33

 
0.

00
24

65
44

6 
0.

05
97

92
58

9 
0.

97
19

57
49

6 
G

en
e 

Si
le

nc
in

g 
by

 R
N

A
 

16
 

11
5 

0.
00

85
91

70
7 

0.
06

59
19

23
3 

0.
97

19
57

49
6 

G
lu

ca
go

n-
lik

e 
Pe

pt
id

e-
1 

(G
LP

1)
 re

gu
la

te
s i

ns
ul

in
 se

cr
et

io
n 

8 
49

 
0.

00
36

60
81

4 
0.

06
60

17
82

 
0.

97
19

57
49

6 

 

Fi
gu

re
 

4.
8:

 
Pa

th
w

ay
s 

do
w

nr
eg

ul
at

ed
 

du
ri

ng
 

eR
F1

 
kn

oc
kd

ow
n 

in
 t

he
 R

N
A

Se
q.

 A
) 

Li
st

 o
f 

th
e 

20
 p

at
hw

ay
s 

m
os

t 
lik

el
y 

to
 s

ho
w

 t
ru

e 
re

gu
la

tio
n 

ba
se

d 
on

 R
ea

ct
om

e 
A

na
ly

si
s, 

ra
nk

ed
 b

y 
pr

ob
ab

ili
ty

 o
f 

be
in

g 
a 

tru
e 

po
si

tiv
e.

 
E

n
ti

ti
es

 
fo

u
n
d

: 
th

e 
nu

m
be

r 
of

 
cu

ra
te

d 
an

d 
in

te
ra

ct
in

g 
m

ol
ec

ul
es

 th
at

 a
re

 c
om

m
on

 b
et

w
ee

n 
th

e 
su

bm
itt

ed
 d

at
a 

se
t 

an
d 

th
e 

pa
th

w
ay

. E
n
ti

ti
es

 t
o
ta

l: 
Th

e 
to

ta
l n

um
be

r o
f c

ur
at

ed
 

an
d 

in
te

ra
ct

in
g 

m
ol

ec
ul

es
 w

ith
in

 th
e 

pa
th

w
ay

. E
n
ti

ti
es

 r
a
ti

o
: 

Th
e 

ra
tio

 o
f 

en
tit

ie
s 

fr
om

 t
hi

s 
pa

th
w

ay
 t

ha
t 

ar
e 

m
ol

ec
ul

es
 

vs
. 

al
l 

en
tit

ie
s 

of
 t

he
 t

yp
e 

se
le

ct
ed

 w
ith

 R
es

ul
ts

 T
yp

e.
 

E
n
ti

ti
es

 P
va

lu
e:

 T
he

 r
es

ul
t 

of
 t

he
 s

ta
tis

tic
al

 t
es

t 
fo

r 
ov

er
-

re
pr

es
en

ta
tio

n.
 E

n
ti

ti
es

 F
D

R
: F

al
se

 d
is

co
ve

ry
 ra

te
, c

or
re

ct
ed

 
ov

er
-r

ep
re

se
nt

at
io

n 
pr

ob
ab

ili
ty

. 
B

) 
G

ra
ph

ic
al

 s
um

m
ar

y 
of

 
m

aj
or

 p
at

hw
ay

s 
as

so
ci

at
ed

 w
ith

 g
en

es
 d

ow
nr

eg
ul

at
ed

 a
s 

a 
re

su
lt 

of
 

eR
F1

 
kn

oc
kd

ow
n 

fo
llo

w
in

g 
m

an
ua

l 
cu

ra
tio

n.
 

Pa
th

w
ay

s 
sh

ar
in

g 
bo

th
 f

un
ct

io
na

l 
si

m
ila

rit
y 

an
d 

hi
gh

ly
 

si
m

ila
r g

en
e 

lis
ts

 h
av

e 
be

en
 g

ro
up

ed
 to

ge
th

er
. 

. 

A
 

B
 



137 
 

 

Figure 4.9: Fold Regulation of genes identified to participate in pathways 
classified by pathway analysis as upregulated. Pathways sharing both functional 
similarity and highly similar gene lists have been grouped together as previously. The 
composites used are formed of the following pathways: A) ECM Glycoproteins and 

Remodelling: Peter plus Syndrome via BGALTL, O-linked Glycosylation, Diseases 
associated with O-linked Glycosylation of proteins and O-linked Glycosylation of 
TSR Domain Containing Proteins B) Protein Components of Chromatin: RNA Pol-I 
chain elongation alone C) Vacuolar ATPases: Insulin Receptor Recycling, Glucagon-
like Peptide 1 (GPL1) regulating Insulin Secretion, and Insulin-like Growth Factor 2 
mRNA binding proteins D) RNA Pol-I/II Transcription: RNA Pol-I promoter opening 
alone.  
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During shRNA-mediated knockdown of eRF1 in U2OS cells a number of different 

pathways were found to be affected. Initially, the pathways derived from pathway 

analysis of genes showing upregulation were examined. Specifically, these pathways 

were heavily associated with an increase in ribosomal components and translation 

termination and initiation, extracellular matrix component proteins and selenium 

metabolism.  

The collagen and extracellular matrix (ECM) pathway group is characterised by an 

abundance of upregulated collagen synthesis genes (COL*), along with laminin 

(LAM*) and integrin (ITG*) genes. Laminins are a group of ECM glycoproteins 

involved in structural scaffolding, cell adhesion, migration and signalling 

(Domogatskaya et al., 2012), while integrins are transmembrane receptors binding to 

the ECM, including laminins (Nishiuchi et al., 2006). Nidogen-1 (NID1) is another 

basement membrane glycoprotein, whose function is to connect laminins and 

collagens (Yurchenco and Patton, 2009).  The presence of multiple upregulated 

pathways for ECM components may indicate a signal towards greater ECM secretion, 

particularly in relation to collagen. 

In the RNA-Seq data, a general upregulation of multiple ribosomal proteins was 

notable, resulting in the identification of numerous related ribosomal pathways, which 

have been manually grouped together as the ‘Ribosomal Component’ Pathways. This 

potential increase in the availability of ribosomal components could be consistent 

with a cellular response to defects in translation. Although a nonsense mediated decay 

(NMD) pathway was identified by automatic assignment (Figure 4.6A), all the genes 

associated with the pathway are actually proteins of the small and large ribosomal 

subunits, rather than NMD exclusive genes. Therefore, the NMD pathway found here 
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is most likely a ‘false positive’ pathway assignment and has been folded under the 

Ribosomal Component Pathway group. 

The genes list comprising the Selenocysteine synthesis and metabolism pathway is of 

interest. Selenocysteine Insertion Sequence Binding Protein 2 (SECISBP2) is 

responsible for binding to the mRNA to enable insertion of selenocysteine (Fradejas-

Villar et al., 2017). Seryl-tRNA Synthetase (SARS) is involved in the first step of the 

Selenocysteine production pathway (Vincent et al., 1997). Additionally, two further 

genes closely associated with selenocysteine synthesis could be identified as 

upregulated by eRF1 depletion, namely Cystathione Beta Synthase (CBS) and 

Cystathionine Gamma Lyase (CTH), which were upregulated by 2.01 and 1.79-fold, 

respectively (Aitken et al., 2011). Nicotamide-N-Methyltransferase (NNMT) and 

Isoleucyl-tRNA Synthetase (IARS) are only peripherally associated with the pathway, 

but were also upregulated. 

Genes that were downregulated resulted in predicted pathways which can be grouped 

as ECM Glycoproteins and Remodelling, Protein Components of Chromatin, 

Vacuolar ATPases and potentially Pol-I/II Transcription. 

A large number of pathways were identified as participating in O-Glycosylation and 

Peter-Plus Syndrome (Figure 4.8A) by the automated pathway designation algorithm. 

However, a detailed manual analysis of the individual genes identified in those 

pathways resulted in their reassignment and amalgamation as the ‘ECM 

Glycoproteins and Remodelling’ pathway group. Specifically, comparing the lists for 

Peter-Plus Syndrome (PpS), a hereditary developmental disorder, and the O-

glycosylation pathways, it becomes apparent that the PpS syndrome pathway, despite 

being rated as the most likely pathway during the analysis, is itself only a subset of 
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the O-glycosylation associated pathways. In both cases, these pathways are dominated 

by a decline in the ADAMTS family of matrix metalloproteases, which are 

responsible for the cleavage of ECM glycoproteins (Figure 4.9A) (Brocker et al., 

2009). The other gene family originally pinpointed in the PpS pathway geneset and 

integrated ECM Glycoproteins and Remodelling into is that of the THS 

(Thrombospondin) and THDS (THS Domain containing) group of glycoproteins. Of 

the members identified, at least two have been shown to be involved in cell migration 

(Kuo et al., 2011, Haviv et al., 2005). The overall O-linked glycosylation pathways 

identified by Reactome contain all the aforementioned proteins in addition to mucin 

(MUC) and glycosyltransferases (GALNT) family members. Mucins are important 

gel forming ECM proteins and the GLNTs are crucial for the first reaction in 

performing a mucin-type O-linked glycosylation (Bennett et al., 2012) in a possible 

parallel to the identification of ECM components during pathway analysis of 

upregulated genes. Consequently, the PpS and O-Glycosylation pathways identified 

are actually more likely to represent a generalized reduction in both glycosylated 

ECM components as well as ECM metalloproteases, likely resulting in a reduced rate 

of ECM remodelling.  

Numerous chromatin protein genes were found to be downregulated as part of the 

analysis. Genes associated with Pol-I promoter opening and chain elongation in the 

pathway analysis (Figure 4.8) consisted primarily of histone genes, which can be 

relatively safely dismissed as a ‘false positive’ and therefore grouped under the 

manually assigned ‘Protein Component of Chromatin’ pathway group (Figure 4.9B). 

The only non-histone component of this group, CBX3 is a heterochromatin 

participating protein (Ye and Worman, 1996). The reduction in chromatin 
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components may possibly be the result of the reduction in cell growth phenotype 

observed. 

The manually assigned Vacuolar ATPase pathway group is an aggregation of 

pathways identified in the automated analysis as part of the Insulin-related signalling 

pathways (Figure 4.8A). However, as previously, manual assessment reveals that the 

associated genes contain exclusively subunits of the vacuolar ATPase, a large 

multiprotein complex which mediates acidification of cellular compartments similar 

to a reverse ATP Synthase and with a multitude of physiological roles (Finnigan et al., 

2012).  

Finally, some evidence exists for regulation of RNA Pol-I and Pol-II transcription. 

POLR2L and TWISTNB are both components of the RNA Pol-I transcribing complex 

(Acker et al., 1996). Additionally, MNAT is part of the Cyclin Dependent Kinase 

Activating Complex (CAK), which is responsible for activating RNA Pol-II 

elongation by phosphorylating the large subunit POLR2A (Eki et al., 1998). Similar 

to the observed reduction in chromatin components, the downregulation of RNA Pol 

transcription components could be consistent with effects of eRF1 depletion on 

growth. 

Of the pathways identified, none were clearly associated with a direct role in 

signalling reduced cell growth. It is possible that the immediate transcriptional 

responses could be masked by widespread direct and indirect downstream signalling 

changes as a result of eRF1 depletion. Consequently, we reasoned it would be useful 

to compare gene lists following eRF1 knockdown to the equivalent transcriptomic 

data resulting from the depletion of other translational termination factors.  

Knockdown of the eRF1-associated factor eRF3a has been shown to result in an 
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increase in the level of readthrough in human cell lines (Chauvin et al., 2005), and a 

microarray analysis of the transcriptional effects of eRF3a depletion has been reported 

(Ait Ghezala et al., 2012a) using the HCT116 human colon cancer cell line. Since the 

latter study utilised the same bioinformatics thresholds as in our analysis (i.e. fold 

change>1.5, P<0.05, cpm≥1), a direct comparison was possible (Figure 4.10). Among 

the upregulated genes, only ~4.4% are shared by both eRF1 and eRF3a knockdown. 

The ratio of shared/total genes upon comparison of the upregulated genes is 20.3% for 

the eRF3a study however. For downregulated genes the overlap is smaller: the ratio of 

shared/total genes is ~2.8% for eRF1 and ~8.6% for eRF3a.  The list of common 

genes described in 4.10A subsequently underwent pathway analysis via Reactome 

using the same assessment criteria as for the datasets earlier. These data are presented 

in Figures 4.11-12.  The list of common downregulated genes was not processed in 

the same manner as no significant enrichment could be found in these by Fisher’s 

Exact test (Figure 4.10C). 
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FUT1 SLC6A9  
GPT2 SLC7A11  

HDAC4 SNTB1  
HERPUD1 SPIN1  

  

Figure 4.10: eRF1 and eRF3a knockdown result in changes in expression of a 
common list of genes. The lists of genes upregulated and downregulated by eRF1 
knockdown where compared with the equivalent lists caused by eRF3a knockdown in 
literature. A) List of upregulated genes shared with eRF3a knockdown study by 
Ghezala et al, 2012, performed in HCT116 (human colon cancer) cells B) List of 
downregulated genes shared with eRF3a knockdown study. (Figure Continued next 
page) 
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Figure 4.10 (Continued from previous page): eRF1 and eRF3a knockdown result 
in changes in expression of a common list of genes. C) Table of percentage 
similarity between the two data sets. Statistics for the unique and shared percentages 
are given for each dataset due to their different size. eRF1/eRF3a Total=Total number 
of genes in each study. Number Shared= Number of genes in each study found to be 
upregulated in the other study as well. % Shared eRF1/eRF3a=The percent ratio of 
Shared/Total genes identified in each list. pValue: The probability that the overlap 
between the two groups is random, through Fisher’s Exact test. Only the upregulated 
gene overlap is significant at P<0.5 E) Venn diagrams of the intersection between the 
eRF1 and eRF3a knockdown datasets. 
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eRF1 Total 1444 1148 
eRF3a Total 310 374 

Number Shared 63 32 

%Shared eRF1 4.362 2.787 
%Shared eRF3a 20.322 8.556 
pValue 5.849*10-13 0.05897 
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Figure 4.12: Fold Regulation of genes commonly upregulated between eRF1 and 
eRF3a knockdown and identified to participate in pathways. Pathways sharing 
both functional similarity and highly similar gene lists have been grouped together as 
previously. The Fold mRNA Change values presented are derived from the eRF1 
dataset. The composites used are formed of the following pathways: A) ATF4 and 

PERK Regulated Gene Expression: ATF4 gene activation and PERK regulated gene 
expression B) Transamination: Transamination, Serine Biosynthesis, and Metabolism 
of aminoacids and derivatives C) ECM and Motility: Laminin interactions, 
Invadopodia formation, Basigin interactions, Anchoring Fibril formation, MET 
activates PTK2 signalling, and MET promotes cell motility. 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ASNS HERPUD1 EXOSC6 DDIT3 DDIT4 TRIB3

Fo
ld

 m
R

N
A

 C
h

an
ge

ATF4 and PERK Regulated Gene Expression

0.0

0.5

1.0

1.5

2.0

2.5

ASNS CCBL1 GPT2 SERINC2 PHGDH PSPH PSAT1

Fo
ld

 m
R

N
A

 C
h

an
ge

Transamination

0.0

0.5

1.0

1.5

2.0

2.5

LAT2 ITGA3 SLC7A11 LAMB3 SH3PXD2A

Fo
ld

 m
R

N
A

 C
h

an
ge

ECM and Motility

A 

B 

C 



147 
 

We find that a new set of regulated pathways now dominates the list (Figures 4.11-

12), most prominently regulation of downstream factors of the Activating 

Transcription Factor 4 (ATF4), along with PERK regulation of gene expression, 

transamination, and ECM components. 

The gene identity profile for the transamination pathway (Figure 4.12B) is 

characterised by transaminases (CCBL1, GPT2), a serine phosphotransferase (PSPH), 

a unique protein incorporating serine into lipid membranes (SERINC2), Asparagine 

Synthase (ASNS), and a gene believed to code for a phosphoserine aminotransferase 

(PSAT1). While providing strong evidence for an involvement of transamination in 

the response to translational termination readthrough, none of the genes listed 

immediately explain the reduced growth phenotype. 

A large number of closely-associated pathways are found concerning the extracellular 

matrix and motility, similar to the original pathway analysis (Figure 4.12C). Unlike 

the former however, which was dominated by ECM components and anchoring 

proteins, only two of these appear here, integrin α3 (ITGA3) and laminin B3 

(LAMB3) are co-regulated by both eRF1 and eRF3a knockdown. The other identified 

proteins have a mix of functions which are associated with EVM and motility. Of 

these, LAT2 (Linker for Activation of T cells 2) is a transmembrane adaptor protein 

linking FCER1 and FGER1 signalling by mast and B cells to GRB2 (Brdicka et al., 

2002, Tkaczyk et al., 2004). SLC7A11 (Solute Carrier Family 7 Member 11) is a 

sodium independent anionic aminoacid transporter which exchanges Glu for Cys in 

the plasma membrane (Gasol et al., 2004). On the other hand, SH3PXD2A, better 

known as Tsk5, is a member of the Tsk family of adapter proteins, known as Src 

substrates and binding to a variety of proteins, prominently matrix metaloproteases. 
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Tsk5 is strongly associated with the formation of invadopodia, degradation of the 

ECM, and motility in cancer cells (Courtneidge, 2012). 

The two categories exhibiting the highest pValue in Figure 4.12A&B, ATF4 and 

PERK signalling, have been grouped together as part of the ATF4 and PERK 

signalling pathway (Figure 4.12A). The genes included in the PERK mediated gene 

activation pathway are a subset of the ones associated with the ATF4 gene activation 

pathway, which is rated higher in terms of statistical confidence. Since PERK signals 

upstream of ATF4 (Liu et al., 2015), the specific response seen here is that of ATF4 

mediated gene activation. The combined geneset consist of ASNS, also seen in 

transamination and induced by ATF4 (Ye et al., 2010), three ATF4 downstream 

factors (DDIT3, DDIT4 and TRIB3), HERPUD1 (which is a protein associated with 

the Unfolded Protein Response (UPR), and EXOSC6, an mRNA degradation 

mediating exosome subunit. Overall, these combined analyses indicate that defective 

translational termination induces the UPR, which could be consistent with stop codon 

readthrough and the production of misfolded proteins with extended C-termini. 

Interestingly, with respect to our date on growth control and translational termination, 

ATF4 has been implicated in cell death and cell cycle progression (Frank et al., 2010).  
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4.2.2 Validation οf RNA-Seq Data via qPCR 

 

In order to determine whether the results presented above were reliable, we proceeded 

to replicate the conditions of the experiment, extracted RNA and then tested a number 

of candidate regulated genes using Real-Time Quantitative PCR (RT-qPCR). The 

genes initially selected were based on two factors, either: i) Having been identified as 

having high levels of inducible expression in the RNA-Seq (e.g. IGFBP4, See Fig. 

3.3) upon eRF1 knockdown and/or ii) being a member of one of the major pathways 

identified in the eRF1 alone or eRF1/eRF3A combined analysis. SYBR-Green RT-

qPCR was utilized for these assays. Since this type of assay is potentially sensitive to 

genomic DNA contamination and non-specific binding to similar sequences, primers 

were designed to overlap intron-exon sites and preliminary melt curve assays were 

performed to ensure that only single products existed respectively. Additionally, 

perfect duplication of any given DNA sequence per cycle cannot be assumed due to 

differences in binding efficiency of the primers to the target sequence. Consequently, 

the amplification exponent of each primer was calculated in advance by testing the 

rate of amplification across a 104 range of dilutions and used in the fold change 

calculations presented. The empirically derived amplification factors for each primer 

are listed in Materials and methods, Section 7.3.7. We find that all the genes tested 

validate as reproducible. Reassuringly, we also find that the level of fold change in the 

independent replicates closely matches that in the RNA-Seq data (Figure 4.14), with 

the exception of some very highly upregulated targets, namely IGFBP4, Cadherin 11 

and Integrin α4. 
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Figure 4.13: RT-qPCR validation of the shRNA RNA-Seq data. A) Western Blot 
validation of ERF1 knockdown following treatment with 1 μg ml-1 doxyxyline for 
72h. B) The level of fold regulation of each gene obtained in the qPCR is compared to 
the value obtained by RNA-Seq. n=3±Standard Deviation. The genes included cover 
eRF1 as a negative control, IGFBP4 and Cadherin 11 due to their observed high 
upregulation and the ATF4 downstream targets TRIB3, DDIT3 and DDIT4. (Figure 
Continued on next page) 

B 

A 
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Figure 4.13: RT-qPCR validation of the shRNA RNA-Seq data (Cont. from 
previous page). The level of fold regulation of each gene obtained in the qPCR is 
compared to the value obtained by RNA-Seq. n=3±Standard Deviation. The genes 
covered are Integrin α4 as a representative gene from the collagen and ECM group, 
RPL7a from the ribosomal associated pathways group and CTH, CBS and SECISBP2 
for the selenocysteine and selenium metabolism pathway group. 
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4.2.3 Validation of RNA-Seq data with qPCR via siRNA 

 

Thus far, the RNA-Seq data have been validated using independent samples from the 

U2OS shFF3 and sheRF1 cell models through the use of qPCR. We wished to further 

validate these findings using an alternative approach, to rule out potential method-

specific responses. To this end, parental U2OS were transfected with control or eRF1 

siRNA for 48h before being harvested. Subsequently, RNA was purified and reverse 

transcribed, and utilised to perform RT-qPCR against representative target genes. 

We find that several differences are apparent compared to the results from the shRNA 

qPCR validation (Figure 4.14B). Most notably, IGF4BP and Cadherin 11, both very 

highly upregulated in the original screen and the RNA-Seq, show little or no 

differential expression in the siRNA experiment. Of the two other ECM and adhesion 

gene tested, Integrin α4 and Cadherin 13, only the former demonstrated a modest 

difference, which is still very substantially smaller than that observed in the RNA-Seq 

and shRNA knockdown qPCR validation. RPL36 and SECISBP2 both demonstrate an 

increase of just ~20% compared to control siRNA treatment which, although 

significant at p≤0.05, is also substantially less than that observed in the previous 

experiments. However, all the ATF4 downstream targets tested appear to be 

upregulated at slightly higher levels than those anticipated by the RNA-Seq and 

shFF3/sheRF1 qPCR data.  

Taken together therefore, the most robust genes induced by eRF1 knockdown were 

those in common between our dataset and the published eRF3A analysis. These 

include DDIT3, DDIT4, and TRIB3, all of which are target genes of the transcription 

factor ATF4. 
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Figure 4.14: RT-qPCR validation of the siRNA RNA-Seq data. Parental U2OS 
cells were treated with 25 nM control or eRF1 siRNA for 48h prior to harvest and 
qPCR. A) Western Blot validation of eRF1 knockdown. B) Cumulative chart of the 
changes in fold expression of 8 representative genes tested via RT-qPCR under 
siRNA mediated knockdown of eRF1. The fold regulation is expressed relative to the 
control siRNA treatment. n=3±Standard Deviation. Significance testing using 
student’s two-tailed t-test assuming homoscedasticity. ***P<0.001, *P<0.5. 
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4.2.4 eRF1 knockdown potentially promotes cell motility 

 

A major pathway identified as part of the screen was collagen and extracellular matrix 

involved proteins. This led us to examine the possibility that eRF1 knockdown may 

affect adherence and motility. In order to test the effect that eRF1 knockdown might 

have on cell motility, in vitro wound healing assays were performed. In this type of 

assay, a monolayer of the inducible shRNA cell lines was grown, induced for 48 h, 

scratched and the migration of cells imaged in 8h intervals with brightfield 

microscopy. Subsequently the area remaining uncovered was measured using ImageJ 

and the rate of wound healing over time measured and quantified as (Area Free of 

Cells)/(Area Covered by Cells).  We find (Figure 4.17Β) that knockdown of eRF1 

results in modestly faster migration, a result that appears statistically significant at the 

95% confidence level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



155 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Cell motility may be affected by eRF1 knockdown. Cells were treated 
with 1 μg ml-1 doxycycline for 72h before the monolayer was scratched. Photos of the 
wound were taken every 8h afterwards and the area free of cells quantified. A) 
Representative photos of wound closure experiment, with the converging cells on 
either side outlined in yellow. B) Quantification of the percentage covered area (Area 
Covered by Cells/Total Area) as a function of time. n=3±Standard Deviation. * 
P<0.05, n.s.P>0.05. Student’s two tailed t-test. 

n.s. B  

* 
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4.3 Discussion 

 

In this chapter, we have performed whole transcriptome RNA-Sequencing analyses in 

order to determine the gene expression changes that eRF1 knockdown caused at the 

mRNA level. These transcriptional changes were subsequently cross-referenced with 

another study and further validated where appropriate. 

Technical assessment of the results of the qPCR revealed two major points of 

contention: 1) very high-level upregulation of selected genes, that were not 

subsequently validated, and 2) a high proportion of potential false positives during 

pathway identification. With regard to the former, a number of genes in the RNA-Seq 

were found to exhibit very high levels of fold upregulation (Figure 4.3), which could 

not be observed in the siRNA validation (Figure 4.14). This may potentially indicate 

that the control shRNA might actually result in mRNA suppression of ‘off-targets’ as 

an unintended side effect, rather than eRF1 shRNA-mediated upregulation.  

As for the second potential technical issue, during subsequent pathway analysis, a 

large number of false positive identifications occurred, especially during analysis of 

the list of downregulated genes (Figures 3.6-3.9). The reason for this is an inherent 

limitation of the overrepresentation analysis used to determine the relevant pathways. 

The genes involved in each pathway are not necessarily exclusive to it, so that 

pathways may appear significantly affected when only components peripheral to it are 

regulated. For this reason, manual evaluation of the results of the Reactome based 
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pathway analysis was necessary in order to identify the actual pathways likely 

regulated. This led to the identification of three upregulated and three downregulated 

pathways. The former included ribosomal components, Collagen and ECM, and 

Selenocysteine metabolism.  

As might be anticipated from a process which affects protein translation, a general but 

relatively low-level upregulation of the expression of ribosomal components can 

easily be identified. Despite those relatively low levels of increase (1.5-2.5 fold), 

taking into consideration that ribosomal proteins are amongst the most highly 

expressed proteins in the cell, this increase likely represents a significant increase in 

the metabolic expenditure of the cell dedicated to translation machinery. Additionally, 

expression levels of ribosomal components are generally invariant, to the extent they 

used as controls in gene expression assays in literature. The widespread increase 

observed here likely implies that the normally high capacity translational machinery is 

underperforming sufficiently to trigger an attempt by the cell to improve the its 

translation performance and forms a cautionary tale about the use of ribosomal 

components as controls in qPCRs. Ribosomal protein expression control has also been 

shown before in literature to occur during cellular stress, through mTOR and its 

downstream targets PKA, FHL1 and SFP1 (Martin et al., 2004, Marion et al., 2004), 

though it results in suppression of ribosomal protein gene transcription in that context. 

Nevertheless, during qPCR validation using siRNA only RPL36 showed a significant 

level of increase, so it is possible that this effect may be overestimated in the RNA-

Seq and shRNA based qPCR. Whether this pattern holds true in the eRF1 rescue cells 

needs to be assessed and will be examined in the next chapter. 

The inclusion of selenocysteine (Sec) synthesis and selenium metabolism among the 

regulated pathways was a surprise (Figures 4.6-4.7). Further inspection reveals that 
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three proteins are unique to this pathway and responsible for the assignment: 

Selenocysteine Insertion Sequence Binding Protein 2 (SECISBP2), Cystathionine 

Beta Synthase (CBS) and Cystathionine Gamma Lyase (CTH). The Seryl-tRNA 

Synthetase (SARS) was also found to be upregulated and it does catalyse the first step 

in Sec-tRNA synthesis. However, its primary function is the synthesis of Ser-tRNA 

and a manual sorting through the data reveals several other tRNA synthetases as 

upregulated (data not shown). Therefore, it is likely that SARS is not upregulated as 

part of an increase in Sec synthesis but rather a general increase in aminoacyl-tRNA 

synthesizing enzymes. Among the SECISBP2, CTH and CBS group, CBS and CTH 

by themselves form the reverse transsulfuration pathway in mammals, critical for the 

conversion of methionine to cysteine (Aitken et al., 2011). Specifically, CBPS 

catalyses the reaction of Ser+HomocysteineCystathionine, while CTH cleaves 

Cystathionine into α-Ketobutyrate and Cysteine. Therefore, the critical gene which 

must be validated for the pathway assignment to be accurate is SECISBP2. While the 

latter was indeed validated by the shRNA qPCR, in the siRNA qPCR screen only a 

~20% increase over control siRNA treatment could be found, below the level of 

statistical significance. This may imply that either the upregulation of SECISBP2 in 

the shRNA knockdown cell lines is limited to that specific cell line or experiment set 

up or possibly the control siRNA used may have resulted in an increase in SECISBP2 

compared to the shFF3. If the upregulation of SECISBP2 observed was spurious, then 

the cells demonstrate an increase in the production of cysteine. If true however, the 

upregulation of a selenocysteine producing pathway fits unexpectedly elegantly with 

translational termination defects. Selenoprotein translation in mammals occurs at a 

UGA, normally a stop codon. Termination at the specific codon however can be 

avoided in the presence of a selenocysteine insertion sequence (SECIS) located in the 
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3’ Untranslated Region (3’ UTR) in a process known as translation recoding (Baranov 

et al., 2002). Following transcription to mRNA, the ~ 60 nucleotides SECIS element 

adopts a stem-loop structure. The structure of the SECIS element is conserved among 

eukaryotes, bacteria and archaea, though the sequence itself is not conserved apart 

from the presence of non-Watson-Crick base pairing 5’-UGAY-3’:5’-UGAU-3’ 

motifs essential to its structure (Walczak et al., 1996). The SECIS element is bound 

by SECISBP2 which recruits further factors which result in binding of Sec-tRNASec to 

the ribosome instead of eRF1 and insertion of the selenocysteine. Consequently, it 

might be the case that in the presence of defective translational termination the cell 

may be upregulating factors in an attempt to bypass normal termination signals, 

perhaps in some form of compensation mechanism. While other crucial components 

of the selenocysteine production pathway such as PSTK [O-phosphoseryl-

tRNA[Ser]Sec kinase]) and selenocysteine synthase (Xu et al., 2007) were not found 

to have been upregulated, it is possible that these pathways may simply not constitute 

rate limiting steps for the expression of selenoproteins. 

Comparison of eRF1 knockdown with eRF3a knockdown data from the literature 

indicated that the list of upregulated genes shared a statistically significant overlap 

(Figure 4.10). A single pathway group immediately stood out as in the top two 

positions by statistical significance (Figure 4.8A). That being the ATF4/PERK gene 

activation pathway, which was of immediate interest here because of its known roles 

in growth control and the integrated stress and unfolded protein responses (Jackson et 

al., 2010). ATF4 is a known regulator of the cytoplasmic stress response and its 

downstream targets, DDIT3, DDIT4, TRIB3 and ASNS, were upregulated to 

statistically significant levels in the RNA-Seq, the shRNA qPCR and the siRNA 
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qPCR, rendering it by far as the most robust and reproducible of the identified 

pathways. 

ATF4 has been implicated as a modulator of cell cycle progression by interaction with 

CDK4 and p27KIP1. However, an increase in ATF4 expression in this context is 

associated with a G1 cell cycle block (Bagheri-Yarmand et al., 2008), which may not 

be consistent with the apparent lack of a single cell cycle checkpoint being activated 

in the cell cycle experiments presented in Chapter 3. Indeed, depletion of eRF3a is 

also associated with an increase in ATF4 (Ait Ghezala et al., 2012a), but this increase 

results in a G1 cell cycle arrest through inhibition of the mTOR pathway (Chauvin et 

al., 2007). Interestingly, upregulation of ATF4 has also been observed as a result of 

defects in another hydroxylase pathway that targets translation. Knockdown of the 

prolyl hydroxylase OGFOD1, which hydroxylates the RPS23 ribosomal component 

protein, results in growth restriction and increased ATF4 activity and expression 

(Singleton et al., 2014c).  

In summary, knockdown of eRF1 has been found by RNA-Seq and subsequent 

bioinformatic analysis to result in the upregulation of a number of pathways, principal 

among them those associated with translation, selenocysteine synthesis and collagen 

and ECM components. Comparison of this data with previous studies additionally 

indicated an upregulation of the cytoplasmic stress response through ATF4. 

Validation of the RNA-Seq results through qPCR was in full agreement when 

performed using the same shFF3-sheRF1 cell lines but less so using siRNA mediated 

knockdown. How ATF4 activity is induced in response to eRF1 depletion in unclear, 

but is the focus of the following chapter. 
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5.1 Introduction 

In Chapter 4, a comparison of genes upregulated by eRF1 or eRF3a knockdown 

highlighted downstream targets of the Activating Transcription 4 (ATF4/CREB2) as 

the pathway upregulated at the highest confidence level by defective translational 

termination. Subsequent experiments using qPCR further validated the RNA-Seq 

results, and demonstrated that ATF4 downstream targets were among the most clearly 

upregulated genes during either shRNA or siRNA-based knockdown of eRF1. 

However, the mechanism of potential ATF4 activation following eRF1 knockdown 

was not known.  

ATF4 expression is regulated at multiple levels including by transcriptional and post-

transcriptional mechanisms. However, analysis of our RNA-Seq data did not support 

a significant induction of ATF4 transcription: ATF4 mRNA was only induced ~1.4-

fold by eRF1 knockdown (data not shown). We felt this change was probably too low 

to account for the significant upregulation of downstream ATF4 targets observed (3-

13 fold).  Therefore, subsequent analysis in this Chapter focusses on understanding 

potential post-transcriptional regulation of ATF4 by eRF1. Importantly, there is 

substantial precedent in the literature for post-transcriptional control of ATF4 

translation in response to stress, as outlined below. 

Protein synthesis is tightly regulated in response to diverse cellular stresses. 

Endoplasmic reticulum stress, e.g. as part of the unfolded protein response, results in 

activation of the eukaryotic Initiation Factor 2 α (eIF2α) kinase PERK (Ron and 

Walter, 2007). eIF2α is a subunit of the eukaryotic Initiation Factor 2 (eIF2), which is 

essential for translational initiation as it forms part of the 43S preinitiation complex 

along with mRNA and the 40S subunit (Jackson et al., 2010). eIF2α modulates this 
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process via PERK-mediated S51 phosphorylation, resulting in overall suppression of 

translation. Specifically, S51 phosphorylated eIF2α binds to, and sequesters, the 

eIF2B guanidine nucleotide exchange factor, inhibiting its activity and resulting in 

reduced total eIF2α-GTP availability for formation of preinitiation complexes 

(Jackson et al., 2010). However, the translation of a specific set of upstream open 

reading frames (uORFs) located in the 5’ region of a number of genes is actually 

promoted (Vattem and Wek, 2004). The Activating transcription factor 4, a 

transcription factor that binds to the cAMP Response Element (CRE), and which 

plays an important role in the integrated stress response, has two such uORFs, uORF1 

and uORF2, with uORF2 overlapping the translation start site. Under physiological 

conditions translation is initiated from uORF1 and uORF2, thus preventing the ATF4 

ORF from being translated (See Figure 5.1 for a schematic of this process) (Vattem 

and Wek, 2004). However, S51 phosphorylation of eIF2α results in inability to 

recharge the GTP at the downstream uORF, leading to reduced ribosomal ternary 

complex formation and thus preventing the downstream uORF from being recognised.  

Instead, the ATF4 ORF is recognised and expressed. Interestingly, eIF2α-independent 

upregulation of ATF4 upon knockdown of eRF3α, a termination factor that stimulates 

eRF1 activity, has recently been reported (Ait Ghezala et al., 2012a). The proposed 

mechanism involves ribosomal readthrough of the uORF1 stop codon due to defective 

translational termination. Given our observations that eRF1 knockdown induces stop 

codon readthrough (Chapter 3) and an increase in ATF4 target gene expression 

(Chapter 4), such a mechanism might also apply here.  

In this chapter, we provide detailed characterisation of ATF4 regulation by eRF1 

knockdown. We demonstrate that increased ATF4 protein expression is controlled at 

the level of the uORFs, and assess how different mutants of eRF1 affect this response. 
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Furthermore, we explore the expression of eRF1-regulated and ATF4 target genes 

using the eRF1 rescue cell lines and describe differential patterns of gene regulation 

which subsequently implicate specific arms of the UPR in the response to defects in 

individual eRF1 sub-domains. 
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Figure 5.1 (previous page): Regulation of ATF4 by eIF2α Phosphorylation. A) 
Endoplasmic reticulum stress results in the activation of the kinase PERK, which 
catalyses the phosphorylation of eIF2α on S51. Phosphorylated eIF2α inhibits the 
eIF2α Guanidine Nucleotide Exchange Factor (GEF), eIF2B, resulting in reduced 
availability of eIF2α-GTP. This results in suppression of overall translation due to 
reduced rates of 43S pre-initiation complex assembly. B) The ATF4 ORF is preceded 
by two upstream ORFs (uORFs), uORF1 and uORF2. The ATF4 ORF is located 
within the uORF2 reading frame. C) Under normal conditions the ribosome initiates 
at uORF1, translates a short abortive sequence and then reinitiates at uORF2, thus 
bypassing the ATF4 ORF. During stress conditions (D), increased phosphorylation of 
eIF2α results in slower ribosomal assembly, preventing the ribosome from reinitiating 
at uORF2 and instead allowing ATF4 translation. (Figures B, C and D are reproduced 
from (Jackson et al., 2010)) 
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5.2 Results 

5.2.1 qPCR validation of target gene induction in eRF1 rescue cell lines  

In the previous chapter a consistent and reproducible increase in ATF4 downstream 

targets was demonstrated using both shRNA and siRNA eRF1 knockdown 

approaches. To determine whether these effects were ‘on-target’ and to explore the 

role of different sub-domains of eRF1, gene expression analyses were performed in 

the eRF1 ‘rescue’ cell lines described in Chapter 3. Therefore, the expression of genes 

described in Chapter 4 pathway analyses were tested in this system as follows. U2OS 

EV, WT, K63A and Q185N eRF1 cell lines were treated with 25 nM of either control 

or eRF1 siRNA with concurrent doxycycline stimulation (as optimised in Chapter 3) 

for 48h, followed by extraction of RNA, reverse transcription and SYBR Green qPCR 

(western blot validation of eRF1 knockdown and rescue is presented in Figure 5.7B). 

A total of 17 genes were tested across the following manually curated eRF1 response 

pathways; Ribosomal Components, Selenocysteine and Reverse Trans-sulfuration 

Components, ECM genes and ATF4 downstream targets. 
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Figure 5.2: Validation of endogenous eRF1 knockdown and HA-eRF1 expression 
in the eRF1 rescue cells. EV, WT and K63A were treated with 0.03 μg ml-1 and 
Q185N with 0.5 μg ml-1 doxycycline for 48h.  A) qPCR validation of eRF1 mRNA 
expression. Comparison of the fold change of transcript abundance between control 
and eRF1 siRNA knockdown (2ΔΔCt, where Ct is the threshold cycle), normalized to 
the EV+siCtrl sample. n=3±Standard deviation. B) Western blot validation of 
endogenous eRF1 knockdown and HA-eRF1 expression. The electrophoretic 
mobilities of endogenous and HA-eRF1 are indicated. The blots presented are the 
same as in Figure 5.7B.   
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Figure 5.3: qPCR validation of ‘ECM, Adhesion and Motility’ associated genes 
in the eRF1 rescue cells. Comparison of the fold mRNA change of transcript 
abundance between control and eRF1 siRNA knockdown, normalized to the 
EV+siCtrl sample. EV, WT and K63A were treated with 0.03 μg ml-1 and Q185N 
with 0.5 μg ml-1 doxycycline for 48h. Genes aligned with the ECM, adhesion and 
motility pathway group are shown. n=3±Standard deviation. 
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Figure 5.4: qPCR validation of ‘Ribosomal Component Pathway’ gene induction 
in the eRF1 rescue cells. Comparison of the fold change of transcript abundance 
between control and eRF1 siRNA knockdown, normalized to the EV+siCtrl sample. 
EV, WT and K63A were treated with 0.03 μg ml-1 and Q185N with 0.5 μg ml-1 
doxycycline for 48h. Selected genes aligned with the ribosomal component pathway 
group are shown. n=3±Standard deviation. 
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Figure 5.5: qPCR validation of ‘Seleno-aminoacid Metabolism’ gene induction in 
the eRF1 rescue cells. Comparison of the fold change of transcript abundance 
between control and eRF1 siRNA knockdown, normalized to the EV+siCtrl sample. 
EV, WT and K63A were treated with 0.03 μg ml-1 and Q185N with 0.5 μg ml-1 
doxycycline for 48h. Genes aligned with the selenocysteine insertion and 
selenoaminoacid metabolism pathway group are shown. n=3±Standard deviation. 
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Figure 5.6: qPCR validation of the induction of ‘ATF4 downstream targets’ in 
the eRF1 rescue cells. Comparison of the fold change of transcript abundance 
between control and eRF1 siRNA knockdown, normalized to the EV+siCtrl sample. 
EV, WT and K63A were treated with 0.03 μg ml-1 and Q185N with 0.5 μg ml-1 
doxycycline for 48h. Genes aligned with the ATF4 gene activation pathway group are 
shown. n=3±Standard deviation. 
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As anticipated, near complete loss of eRF1 mRNA occurs on eRF1 knockdown in the 

EV+sieRF1 samples (Figure 5.2). Expression of eRF1 transcript is restored by 

expression of the WT and K63A eRF1 mutants, demonstrating that they are resistant 

to sieRF1 knockdown, as expected. Expression of Q185N eRF1 mRNA is much 

higher than all the other samples in both the siCtrl and sieRF1 treated groups (Figure 

5.7). This is presumably due to the higher dose of doxycycline required to induce 

expression of Q185N eRF1 protein to levels comparable to the WT and other mutants 

(Chapter 3).  

Next we sought to use the eRF1 rescue system to help determine whether or not 

relatively modestly regulated gene sets identified in Chapter 4 could be confirmed. 

Therefore, we first analysed the eRF1-responsive cell adhesion proteins Integrin α4, 

Cadherin 11 and Cadherin 13 (Figure 5.3). Integrin α4 showed the anticipated 

increase in mRNA expression in response to eRF1 knockdown, which was rescued by 

WT eRF1 re-expression, but not the K63A mutant. Surprisingly, the expression of the 

eRF1 Q185N mutant appeared to further induce Integrin α4 mRNA expression. 

Cadherin 11 remained relatively unaffected by eRF1 knockdown and expression of 

any of the eRF1 mutants with the exception of Q185N, where its expression dropped 

to half the normal level in both the control and eRF1 knockdown samples. In contrast, 

the Cadherin 13 transcript shows a modest 2.4-fold increase in abundance following 

eRF1 knockdown, which is rescued by WT eRF1 re-expression, but not by K63A, as 

expected. Surprisingly, Q185N re-expression appeared to rescue normal Cadherin 13 

transcript abundance in response to endogenous eRF1 knockdown. However, in light 

of other data presented below, this likely represents a failure to induce Cadherin 13, 

rather than a bona fide rescue, which would also be at odds with the stop codon 

readthrough data presented in Chapter 3. 
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Next we assessed the regulation of ribosomal components by eRF1 knockdown and 

reconstitution. Consistent with data presented in Chapter 4, eRF1 knockdown resulted 

in a low-level upregulation of ribosomal components, ranging from 1.5-fold in RPL7a 

to 2.5-fold in RPS3 (Figure 5.4). Expression of WT eRF1 universally rescued this 

increase, confirming its eRF1-dependence. However, the effects of eRF1 K63A re-

expression were less clear, possibly due to the generally modest levels of regulation. 

However, Q185N eRF1 expression resulted in approximately 2-fold upregulation 

under eRF1 knockdown of all four ribosomal components examined, as well as a 

consistent 1.5-fold increase under control siRNA knockdown. Overall, the changes 

observed are quite modest. However, the pattern of regulation is unlikely to be 

stochastic as it is quite consistent among the 4 cell lines and also in line with the 

previous RNA-Seq data and independent qPCR validation performed in Chapter 4.  

In contrast, Selenocysteine and Reverse Trans-sulfuration pathway components 

demonstrated more striking eRF1-dependent regulation (Figure 5.5). Depletion of 

eRF1 caused a 4-fold increase in CBS transcript abundance, a 14-fold increase of 

CTH and a 3-fold increase in SECISBP2. In each case, expression of WT eRF1 fully 

rescued normal expression, while K63A eRF1 expression completely failed to do so. 

Interestingly, normal expression appears to be fully restored in response to Q185N re-

expression which, similar to its regulation of Cadherin 13, is at odds with its apparent 

lack of activity in stop codon readthrough assays described in Chapter 3. In fact, 

Q185N re-expression actually results in a reduction in transcript abundance, to levels 

below that observed in the WT rescue cells. This decline occurs whether endogenous 

eRF1 is present or not, as it is also present in the samples treated with control siRNA.  

Subsequently, the response of the ATF4 target genes TRIB3, DDIT3 and DDIT4 was 

analysed. Of these, TRIB3 and DDIT4 exhibit a similar pattern of regulation to each 



175 
 

other, with an increase in the EV + sieRF1 cells which is rescued by WT eRF1 

expression but not K63A expression, similar to Selenocysteine and Reverse Trans-

sulfuration pathway components. Interestingly, the expression of TRIB3 and DDIT4 

mRNA also showed a reduction upon Q185N eRF1 expression. DDIT3 is however 

unique in that while its pattern of regulation is highly similar to the DDIT4 and 

TRIB3 for the EV, WT and K63A cell lines, the greatest increase in expression 

appears to occur during Q185N expression in both the control and sieRF1 treated 

groups. In this respect, regulation of DDIT3 mRNA by eRF1 is more similar to 

Integrin 4. 
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Figure 5.7: Transcript and protein level expression of ATF4 in the eRF1 rescue 
cell lines. EV, WT and K63A were treated with 0.03 μg ml-1 and Q185N with 0.5 μg 
ml-1 doxycycline for 48h to induce expression of the recombinant forms A) RT-qPCR 
of ATF4 mRNA in response to eRF1 knockdown in the eRF1 rescue cells. 
n=3±Standard deviation. B) Western Blot validation of ATF4 and target gene 
induction in the eRF1 rescue cells. Comparison of the fold change of protein 
abundance between control and eRF1 siRNA knockdown. Cystathionine γ-lyase 
(CTH) was chosen as a representative target gene among those tested in the qPCR 
analysis above. The electrophoretic mobilities of endogenous and HA-eRF1 are 
indicated. The eRF1 and β-Actin blots presented were also used in Figure 5.2B. 
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To further understand the unusual regulation of eRF1-responsive genes by the Q185N 

mutant, we measured ATF4 mRNA expression in the eRF1 rescue cell lines (Figure 

5.7A). Consistent with the RNAseq data (Chapter 4), ATF4 mRNA appears to be 

slightly upregulated following eRF1 siRNA, although this appeared not to be rescued 

by WT eRF1 re-expression.  Interestingly however, Q185N expression caused a 

significant reduction in ATF4 mRNA levels, which could perhaps explain the lack of 

ATF4 target gene regulation under these conditions (Figure 5.6). 

To explore whether eRF1 knockdown increases ATF4 protein expression in a 

‘rescuable’ manner, and whether this is suppressed by the expression of eRF1 Q185N, 

ATF4 protein expression was examined by western blotting (Figure 5.7B). 

Importantly, abundant ATF4 protein was induced by eRF1 siRNA in EV cells, and in 

a manner that was suppressed by re-expression of WT eRF1. Consistent with its lack 

of activity seen in previous Chapters, K63A eRF1 expression failed to suppress ATF4 

protein expression. Interestingly, ATF4 protein was also increased in the siCtrl K63A 

cells, which likely accounts for the low moderate increase in mRNA expression of 

some of the genes tested via qPCR for those samples (e.g. Figure 5.5/5.6). This would 

suggest that the K63A mutant has some dominant negative activity with respect to the 

endogenous wild-type protein. Similar to the ATF4 target gene analyses, Q185N 

eRF1 appeared to suppress ATF4 protein induction by eRF1 siRNA. However, in 

light of the reduction in ATF4 mRNA levels seen in Figure 5.7A, this apparent 

reduction is likely due to a failure to respond to eRF1 siRNA. Overall, the discord 

between the response of ATF4 mRNA and protein levels to eRF1 depletion highlights 

some level of post-transcriptional regulation (further explored below). 

Next we took the opportunity to further validate our gene expression analyses by 

testing whether induction of eRF1 responsive genes also result in increased target 
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protein expression, using a commercially available CTH antibody. Importantly, we 

find an expression pattern identical to that presented in Figure 5.5. CTH protein 

abundance was increased in response to eRF1 siRNA and rescued by WT eRF1 but 

not the K63A mutant. CTH expression was suppressed by expression of the Q185N 

mutant. Overall, the expression of CTH closely mirrored that of ATF4 protein. 

Indeed, there is some evidence supporting components of the Selenocysteine and 

Reverse Trans-sulfuration pathway as ATF4 target genes, including CTH (Dickhout 

et al., 2012a).  

Overall, the data presented in this section suggests that eRF1 knockdown results in 

post-transcriptional upregulation of ATF4 protein levels, but that this induction is 

dependent on basal ATF4 transcription (as exemplified by Q185N). 

 

5.2.2 eRF1 depletion increases ATF4 protein expression via regulation of 

upstream open reading frames in the ATF4 5’-UTR 

Having validated that increased ATF4 target gene expression following eRF1 

knockdown is associated with significantly increased ATF4 protein levels, but not 

mRNA, we wished to investigate whether this post-transcriptional regulation occurred 

at the level of its uORFs. In order to achieve this, a specific ATF4 uORF 

Firefly/Renilla based luciferase assay system was used, as obtained from Dr Gavin 

McNee (University of Birmingham, UK) and described previously (Harding et al., 

2000a). Briefly, the Homo sapiens uORF1&2 sequences 5’ to the ATF4 ORF (and the 

relevant linker sequences) were inserted upstream of the Firefly luciferase coding 

gene and driven by a Thymidine Kinase (TK) promoter in a pGL3 plasmid. The 

resulting vector, termed ‘pGL3 ATF4 uORF’ positions the luciferase start site in the 
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same position as the ATF4 start site and is preceded by the same regulatory sequences 

(Figure 5.8A). Therefore, conditions which result in ‘translational expression’ of 

endogenous ATF4 should also control translational expression of the Firefly 

luciferase. In order to control for differences in transfection efficiency and/or basal 

transcription, a plasmid expressing Renilla luciferase under a constitutive Cystic 

Megalovirus (CMV) promoter was also co-transfected (pRL-CMV). Therefore, 

translational regulation of ATF4 can be followed by monitoring the ratio of 

Firefly/Renilla activity (the signals of which can be deconvoluted as discussed in 

Chapter 3), and normalised to an untreated sample (Figure 5.8B). Therefore, the 

U2OS eRF1 rescue cell lines EV, WT, K63A and Q185N were treated with their 

respective optimised Doxycycline concentrations for 48h, with simultaneous 

transfection of 25 nM control or eRF1 siRNA, before being trypsinised and reverse 

transfected with the pGL3 ATF4 uORF/pRL-CMV plasmid mixture. The cells were 

then allowed to rest for 48h before being harvested for luciferase assays and western 

blots.  
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Figure 5.8: Control of ATF4 expression occurs during translation. Translational 
control of eRF1 expression in the eRF1 rescue system A) Assay mechanism. B) 
Western Blot demonstrating knockdown of endogenous eRF1 and expression of the 
exogenous forms C) Translational control of ATF4 expression in the eRF1 rescue cell 
lines. Fold Luminescence Change = (Firefly Lum) ⁄ (Renilla Lum), normalised to 
the EV+siCtrl sample. In (B) and (C) EV, WT and K63A were treated with 0.03 μg 
ml-1 and Q185N with 0.5 μg ml-1 doxycycline for 48h to induce expression of the 
recombinant forms of eRF1. n=3, Mean ± StDev. *P<0.05, ***P<0.001. Student’s 
two tailed t-test. 
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Western blot validation of the eRF1 interventions and ATF4 protein response (Figure 

5.8B) were highly similar to those obtained during our initial analysis of ATF4 

expression in the eRF1 rescue cells (Figure 5.7). Importantly, under these conditions 

we observed that eRF1 knockdown in the EV cell line results in an increase in 

translational expression of ATF4 (Figure 5.8C), as indicated by increased Firefly 

luciferase activity. Although the observed increase of approximately two-fold was 

notably lower than might be anticipated based on the western blots in Figure 5.8B, as 

well as earlier blots of ATF4 (Figure 5.7B), this level of regulation is line with 

previously published work using this system (Harding et al., 2000a). Importantly, re-

expression of WT eRF1 fully rescues the increase in ATF4 translational expression, 

and actually results in a modest, but statistically significant, reduction in ATF4 

translational expression in control knockdown samples. This would suggest that basal 

ATF4 expression is also under the control of eRF1-dependent uORF regulation, a 

notion supported by the detection of low levels of ATF4 protein in control cells, and 

their reduction by eRF1 re-expression (Figure 5.8B). Consistent with the stop codon 

readthrough analyses (Chapter 3), both the K63A and Q185N mutants were 

completely inactive, and unable to restore normal translational control of ATF4 

protein in response to endogenous eRF1 knockdown. Interestingly, the difference in 

translational (Figure 5.8C) and transcriptional (Figure 5.7A) regulation of ATF4 by 

the eRF1 Q185N mutant highlights how the cellular response to this mutant appears 

to specifically uncouple these steps of ATF4 synthesis.  
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5.2.3 eRF1 knockdown induces eIF2α phosphorylation 

Thus far we have demonstrated that eRF1 knockdown is associated with increased 

uORF-mediated post-transcriptional regulation, elevated ATF4 protein levels, and 

ATF4 target gene induction. As described earlier, two mechanisms could thus far 

potentially explain the regulation of ATF4 uORF regulation by eRF1: a) its 

knockdown activates the UPR, causing an increase in eIF2α phosphorylation which in 

turn stimulates increased ATF4 translation via its uORFs, or b) eRF1 knockdown 

increases stop codon readthrough, which causes ribosomes to translate through the 

uORF1 stop codon, bypassing the uORF2 start site and initiating at the ATF4 ORF.  

If the former possibility were correct, then one would expect to observe an increase in 

eIF2α phosphorylation following eRF1 knockdown. To examine this possibility, a 

timecourse experiment was designed in which the U2OS shFF3 and sheRF1 

knockdown cells were treated with 1 μg ml-1doxycycline for a total of 5 days, with 

protein and RNA samples taken daily. Protein and RNA samples were subsequently 

analysed to explore the temporal relationship between eRF1 knockdown, ATF4 

protein induction, ATF4 target gene activation, and any potential increase in eIF2α 

phosphorylation. 
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Figure 5.9: eIF2α phosphorylation and eRF1 knockdown timecourse: U2OS 
shFF3 and sheRF1 were treated with 1 μg ml-1 doxycycline for a total of 5 days, with 
protein and RNA samples harvested daily. An additional sample of shFF3 + 0.5 μM 
of the known ER stress inducer thapsigargin was also prepared. A) Western Blot of 
the timecourse B) RT-qPCR of the ATF4 downstream target genes ASNS and TRIB3 
during the timecourse. Values are displayed for days 3-5. No upregulation could be 
detected before that. n=3 ± Standard Deviation C) Fold change of band intensity in 
the western blots was quantified by densitometry analysis and normalized to shFF3 
Day 0 for that protein. Phospho-eIF2α/eIF2α is the ratio of the phosphorylated-eIF2α 
to total eIF2α, in turn normalized to the value for that ratio at day 0.   
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In the associated western blot (Figure 5.9A), complete knockdown of eRF1 occurs 

after 3 days of continuous doxycycline treatment. That same day is also the first time 

at which ATF4 protein expression is clearly induced. The expression of ATF4 is not 

transient, with expression continuing to rise during Days 4 and 5. Importantly, ATF4 

target gene expression, as judged by qPCR analyses (Figure 5.9B), was only detected 

after ATF4 protein induction from Day 4. This increase in ASNS and TRIB3 mRNA 

increase was also not transient, increasing further from Day 4 to 5, in line with ATF4 

levels.  

Having determined the timecourse of ATF4 protein and target gene induction 

following eRF1 knockdown we next assessed the levels of total and phospho-eIF2α 

(Figure 5.9C). Total eIF2α levels appear mostly unchanged throughout the timecourse 

for sheRF1 cells, though a slight reduction was observed in the shFF3 cells. In both 

shFF3 and sheRF1 cells the level of eIF2α phosphorylation appeared to increase 

throughout the timecourse. Importantly however, eIF2α phosphorylation was greater 

at every time point in sheRF1 cells than shFF3 control cells. Interestingly, this 

difference was also apparent at 0 Days, where reduced eRF1 levels were already 

apparent, possibly reflecting leaky shRNA expression. In order to quantify these 

changes, western blot signals were measured by densitometry analysis and the ratio of 

phosphorylated to total eIF2α were calculated for each day (Figure 5.9C). We find 

that the lowest level of eIF2α phosphorylation occurs in the shFF3 cells at the 

beginning of the experiment and increases steadily through the timecourse to a 4.5-

fold increase by Day 5. Phospho-eIF2α levels in sheRF1 cells start on Day 0 at levels 

comparable to those of the shFF3 cells on Day 5, and increase steadily to 

approximately 6-8-fold (relative to Day 0 control cells). 
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Therefore, while an increase in eIF2α phosphorylation under eRF1 knockdown does 

occur, an increase also occurs in the control group. However, the overall level of 

eIF2α phosphorylation is consistently greater in the eRF1 knockdown samples. 

Whether this would be sufficient to explain the increase in ATF4 protein expression 

remains unclear. Certainly, the fold change is quite small compared to the level of 

ATF4 upregulation, and the increase is gradual rather than occurring just beforehand. 

However, it may be possible that a threshold level of eIF2α phosphorylation is 

required in order to drive efficient ATF4 translation, and that this threshold is only 

surpassed in the sheRF1 cells at Days 3-5 of Doxycycline treatment.  

To further explore the potential regulation of eIF2α phosphorylation by eRF1 

depletion, we turned to the eRF1 rescue model, using the same experimental samples 

presented in Figure 5.7. Based on the subsequent western blot (Figure 5.10A) and 

associated densitometry (Figure 5.10B), knockdown of eRF1 via siRNA in the EV 

cells results in a ~3-fold increase in the phospho-eIF2α/ eIF2α ratio, which is visually 

confirmed on the western blot. Importantly, expression of siRNA resistant WT, but 

not K63A, eRF1 rescues this phenotype. Meanwhile the Q185N + sieRF1 sample 

displays low amounts of phosphorylated eIF2a but also reduced total eIF2α, which is 

reflected as a high phospho-eIF2α/eIF2α ratio. The presence of incomplete eRF1 

knockdown in the latter however makes estimation of the magnitude of the effect 

more difficult. Overall, the pattern of eIF2a phosphorylation in the eRF1 siRNA 

group strongly resembles that of the stop codon regulation presented in Chapter 3 and 

importantly, with respect to the mechanism of ATF4 regulation, the ATF4 

translational reporter results presented in Figure 5.8C. 
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Figure 5.10: eIF2α phosphorylation in the eRF1 rescue cell lines. The cells were 
transfected with 25 nM control or eRF1 siRNA and induced for 48h with 0.03 μg ml-1 
Doxycycline for EV, WT and K63A and 0.50 μg ml-1 for Q185N. A) Western Blot of 
Phospho- and total eIF2α B) Fold change of band intensity in the western blots for 
phospho-and total eIF2α was quantified by densitometry analysis and normalized to 
the value for +siCtrl EV. 
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5.2.4 ATF4 induction in response to eRF1 knockdown may be dependent on 
eIF2α phosphorylation 

 

The data presented above are generally supportive of eIF2α phosphorylation 

following eRF1 knockdown being associated with ATF4 protein induction. However, 

this association does not demonstrate that eIF2α phosphorylation is required for 

ATF4 induction. To specifically test this, we aimed to determine whether ATF4 

translational expression could still be induce by eRF1 knockdown under conditions in 

which eIF2α phosphorylation was prevented. To inhibit eIF2α phosphorylation we 

decided to overexpress GADD34, a largely unstructured protein with two primary 

sequence features: a series of four (in H. sapiens) PEST repeats, which allow binding 

of eIF2α, and a KVRF sequence close to the C-terminus which is responsible for 

binding the Ser/Thr phosphatase Protein Phosphatase 1 (PP1) (Rojas et al., 2015). As 

illustrated in the Figure 5.11, GADD34 acts as an intermediary, allowing PP1 to 

dephosphorylate eIF2α by binding to both proteins via different domains. Previous 

studies have established that overexpression of GADD34 results in major loss of 

eIF2α phosphorylation, presumably by permitting better access of PP1 to eIF2α (Choy 

et al., 2015). Therefore, GADD34 was cloned into the pCDNA3 expression vector for 

transient overexpression in cells, with and without eRF1 knockdown. Because this 

experimental approach was based on transient transfection, where only a fraction of 

the cells would express GADD34, we considered it appropriate that the ‘readout’ of 

the assay would also be limited to the transfected cells (rather than the whole pool, as 

for western blotting for example). Therefore, we co-transfected GADD34 with the 

ATF4 uORF translational reporter system described above, where we previously 
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demonstrated eRF1-dependent regulation (Figure 5.8). U2OS EV cells were 

transfected with either control or eRF1 siRNA for 48h. Subsequently, they were 

transfected with an empty pCDNA3 control vector, or pCDNA3-GADD34 in addition 

to the pGL3-ATF4 and pRL indicator plasmids. Following 48h of transfection and 

expression, samples were harvested for luciferase activity assays and western blotting. 

 

 

Figure 5.11: GADD34 domains and function. GADD34 contains a series of four 
PEST repeats which allow binding of eIF2α and a KVRF sequence allowing binding 
of Protein Phosphatase 1 (PP1).  
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Figure 5.12: GADD34 overexpression leads to reduction of ATF4 translational 
expression. U2OS EV cells were transfected with a pCDNA3 plasmid containing 
GADD34 under a constitutive promoter, as well as the pGL3/pRL ATF4 translational 
expression system. A) Western Blot B) ATF4 reporter translational activity. n=3. 
Mean±St.Dev. ***P<0.001. Student’s two-tailed t-test. 
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The results from the luciferase assay (Figure 5.12B) indicate a 2.5-fold increase in 

translational expression during eRF1 knockdown (compared to control siRNA 

treatment) in the absence of GADD34 overexpression, comparable to that observed in 

the initial ATF4 uORF assays (Figure 5.8). Interestingly, overexpression of GADD34 

in control siRNA-treated cells reduced ATF4 uORF reporter activity to only ~30% of 

the +pCDNA3 control group: This might indicate that ATF4 expression is under the 

control of eIF2 even under basal conditions. Importantly, overexpression of 

GADD34 in eRF1 knockdown cells completely rescued the ATF4 translational 

expression phenotype (despite the reduced GADD34 expression achieved in these 

cells, Figure 5.12A). This would potentially indicate that expression of ATF4 in 

response to eRF1 depletion is dependent on eIF2α phosphorylation. 

 

5.2.5 Contribution of other arms of the UPR to the eRF1 rescue phenotypes 

So far, we have demonstrated that eRF1 depletion results in a robust increase in the 

expression of ATF4, and provided evidence that this occurs via eIF2α 

phosphorylation. eIF2α phosphorylation is one arm of a multi-faceted cellular 

response to misfolded proteins and translational stress known as the Unfolded Protein 

Response (UPR), which regulates cell survival, apoptosis, and gene expression 

control (Figure 5.13). Other than ATF4, the transcription factors X-Box Binding 

Protein 1 (XBP1) and another ATF family member, ATF6, are also heavily involved 

in the UPR. Whether ATF6 and/or XBP1 are also induced by eRF1 knockdown as 

part of a general UPR response, or whether eRF1 depletion specifically activates 

ATF4, is not yet known. 
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We considered that the unique regulation of DDIT3 and ATF4 mRNA by the eRF1 

Q185N mutant in the eRF1 siRNA rescue model might indicate activation of 

additional arms of the UPR, for the following reasons. While DDIT3 has been well 

documented to be an ATF4 downstream target (Su and Kilberg, 2008) the increased 

DDIT3 mRNA expression observed during Q185N eRF1 re-expression (Figure 5.6) 

cannot be due to ATF4, the activity and expression of which was heavily reduced in 

those samples (Figures 4.7A&B). Interestingly however, previous literature has 

suggested that DDIT3 transcription is also regulated by the activated forms of ATF6 

and XBP1 (Oyadomari and Mori, 2004).  

XBP1 mRNA can be spliced by the Inositol Requiring Enzyme 1α (IRE1α) at the 

Endoplasmic Reticulum under conditions of stress, resulting in the removal of a 26nt 

intronic sequence (Figure 5.13 and 5.14A). This produces an alternative reading 

frame, causing XBP1 that has been spliced in this way to have a different C-terminal 

sequence (Figure 5.14B). The transcriptional targets also change, and it is the spliced 

XBP1 which participates in UPR signaling: activation of XBP1 can be assayed by the 

ratio of spliced to unspliced XBP1. We analysed the expression profile of XBP1 in 

response to eRF1 knockdown and re-expression: Spliced (i.e. active) XBP1 

(henceforth XBP1s) mRNA was quantified by qPCR and gel electrophoresis (Figures 

5.14C& 5.15). 
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Figure 5.13: Schematic summary of the Unfolded Protein Response (UPR). 
Misfolded proteins in the Endoplasmic Reticulum (ER) as might be caused by 
defective termination, cause the BiP chaperones to bind to them, triggering three 
transmembrane signalling cascades.  PERK and IRE1α dimerization result in 
increased eIF2α phosphorylation and splicing of XBP1 to its active form. Meanwhile 
the transmembrane protein ATF6 translocates to the Golgi where it is cleaved into its 
activated form by the S1P/S2P proteases. (Figure reproduced from (Wang and 
Kaufman, 2014)). 
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Figure 5.14: Schematic of XBP1 PCR approach. Two different approaches for 
examining the splicing status of XBP1 were utilized, RT-qPCR, and standard PCR 
followed by gel imaging. A) Positions of the PCR primers used on the XBP1 sequence. 
The primers for standard PCR will yield two products, one from unspliced XBP1, 441 bp 
long and one from spliced XBP1 26 bp shorter. Splicing of the intron occurs in the ER by 
IRE1 under stress conditions. Lengths not to scale. B) ER-Stress mediated splicing of 
XBP1 results in a frameshift and consequently in a completely different aminoacid 
sequence post aa 164. The following domains appear: Basic Motif (Basic), Leucine 
Zipper (ZIP), Hydrophobic Region (HR), Translational Pausing (TP), necessary for 
pausing of translation and targeting to relevant cell environments, and a Transactivation 
domain. C) Mechanism of selectivity of the qPCR primers for spliced XBP1. The forward 
primer contains a sequence (GGTG, highlighted in red) overlapping the splice site, so that 
amplification can occur only from spliced XBP1 cDNA. 
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Figure 5.15: eRF1 depletion induces spliced XBP1 (XBP1s). EV, WT and K63A 
were treated with 0.03 μg ml-1 and Q185N with 0.5 μg ml-1 doxycycline for 48h to 
induce expression of recombinant eRF1. A) RT-qPCR of XBP1s in the eRF1 rescue 
cells. The primers used were [Forward: 5′-TGCTGAGTCCGCAGCAGGTG-3′] 
[Reverse: 5′-GCTGGCAGGCTCTGGGGAAG-3′] n=3, Mean±StDev. ***P<0.001, 
**P<0.01, *P<0.05. Student’s two tailed t-test. B) 3% agarose gel electrophoresis 
features two bands most prominently in the Q185N cells. 
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Expression of XBP1s (Figure 5.15A) follows a pattern highly similar to that observed 

for ATF4 target genes, with the exception of Q185N, which phenocopies that 

observed for DDIT3 mRNA regulation (Figure 5.6). eRF1 knockdown in control EV 

cells causes an increase in XBP1s which is suppressed by WT eRF1 re-expression but 

not the eRF1 K63A mutant. In contrast, re-expression of eRF1 Q185N causes a 

significant increase in XBP1s levels in both control and eRF1 siRNA treated cells. 

Visualisation of XBP1 mRNA products by agarose gel electrophoresis further 

supported this qPCR analysis (Figure 5.15B). Overall, the XBPs analyses would 

suggest that this arm of the UPR is also activated by eRF1 knockdown, in addition to 

eIF2/ATF4, and that re-expression of the Q185N mutant ‘super-activates’ XBP1s. 

We postulate that this may, in turn, may play a role in suppressing ATF4 expression 

and activity (possibly via ATF6).  

Taken together, our analysis of eRF1-dependent gene expression control and ATF4 

regulation allow us to propose the following model by which eRF1 and its functional 

sub-domains regulate various branches of the UPR (Figure 5.16). eRF1 knockdown 

results in activation of both the ATF4 and XBP1s pathways, which is rescued by 

eRF1 in a K63-dependent manner. In contrast, expression of eRF1 Q185N results in a 

very significant upregulation of the XBP1s branch of the UPR while resulting in 

almost complete loss of ATF4 mRNA, protein and activity. Whether ATF6 is also 

upregulated by eRF1 depletion and Q185N expression is not yet known, but would 

seem highly likely in light of the results presented here. 
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Figure 5.16: Model of the effect of eRF1 mutations on branches of the Unfolded 
Protein Response (UPR). Mutation of K63 to an Ala at the NIKS motif results in an 
increase in translational readthrough leading to protein misfolding and increased 
eIF2α phosphorylation. eIF2α phosphorylation results in increased translation at the 
ATF4 ORF and an increase in ATF4 protein abundance, activating downstream 
factors such as DDIT3, DDIT4 and TRIB3). Expression of Q185N eRF1 results in a 
reduction of ATF4 mRNA and consequently of ATF4 protein. Contemporaneously, 
Q185N eRF1 expression results in stronger upregulation of other components of the 
UPR, such as spliced XBP1, which results in the upregulation of a number of ATF4 
downstream targets such as DDIT3, despite the suppression of ATF4. Though no 
direct evidence exists of ATF6 cleavage and activation it likely occurs as part of the 
UPR. 
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5.3 Discussion 

Overview 

In the series of experiments presented in this Chapter, we have further validated the 

induction of ATF4 following eRF1 knockdown and examined the underlying 

mechanisms involved. We find that eRF1-dependent regulation of ATF4 expression 

may be mediated at the level of eIF2α phosphorylation and the uORFs in the ATF4 

mRNA 3’UTR. Having also explored the regulation of ATF4 in the eRF1 rescue 

system, we observed that re-expression of eRF1 Q185N was unique in its control of 

eRF1-responsive ATF4 target genes, which in turn led to the discovery that eRF1 and 

its mutants also control other arms of the UPR.  

Validation of eRF1-dependent gene expression using the eRF1 rescue model 

With regard to the gene expression profiles identified by pathway analysis in Chapter 

4, we provide further evidence here in this Chapter implicating ATF4 target genes in 

the response to eRF1 knockdown. qPCRs mRNA analyses of ATF4 downstream 

target expression generally showed a consistent pattern of regulation characterised by 

an increase in mRNA in the EV+siERF1 and K63A+sieRF1 samples, and a severe 

reduction in Q185N eRF1-expressing cells. A strikingly similar pattern of regulation 

was observed for selected genes with the Selenoaminoacid Metabolism pathway 

(Figure 5.5): SECISBP2, CTH and CBS all show clear rescue phenotypes, with loss 

of induction on expression of WT, but not K63A, eRF1. Of these however, only CTH 

is potentially regulated by ATF4 (Dickhout et al., 2012b)  

qPCR analyses of the eRF1 rescue model also appeared to validate the low-level 

upregulation of multiple Ribosomal Proteins reported in Chapter 4. All four genes 
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tested were upregulated following eRF1 knockdown, to levels comparable to those 

seen in the RNA-Seq, and rescued by expression of WT (Figure 5.4). In this case 

however the response to K63A eRF1 was less clear. Whether the increased abundance 

of ribosomal protein transcripts observed here leads to increased ribosome biogenesis  

is not yet known, since unassembled ribosomal proteins have been shown to be 

targeted for proteasomal degradation (Sung et al., 2016). However, the level of 

expression of ribosomal proteins can have important implications in growth. For 

example, two ribosomal proteins, RPL5 and RPL11, are involved in pathways leading 

to activation of p53, cell cycle arrest and apoptosis (Marechal et al., 1994, Zhang et 

al., 2003). Rather than a direct signaling role downstream of eRF1 knockdown, the 

transcriptional response of ribosomal proteins might reflect an indirect adaptive 

response that primes it for protein synthesis when normal homeostasis is restored. 

Elucidating the mechanism of eRF1-dependent ATF4 regulation 

Using a combination of shRNA and siRNA knockdown models we have shown that 

eRF1 depletion likely induces eIF2 phosphorylation and ATF4 synthesis, including 

ATF4 uORF regulation, protein expression and target gene induction. We did not, 

however, formally demonstrate that increased eIF2α phosphorylation results in ATF4 

upregulation at the protein level. Importantly, we show using the eRF1 siRNA rescue 

model that these phenotypes are ‘on-target’ and fully suppressed by re-expression of 

WT eRF1. In contrast, reconstitution with similar levels of an eRF1 NIKS motif 

mutant, K63A, completely prevented eRF1 from restoring normal eIF2 

phosphorylation or ATF4 regulation, thus demonstrating the critical importance of 

this domain for eRF1 function in cells. Although the importance of the NIKS domain 

in translational termination is accepted (Brown et al., 2015) (Feng et al., 2014a), those 
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studies focussed on in vitro assays, and its importance in cells, and the physiological 

consequences of its dysfunction in vivo, were not previously explored. 

Surprisingly, re-constitution of eRF1 knockdown cells with an siRNA-resistant eRF1 

variant with a mutation in the GGQ motif, Q185N, resulted in the complete 

disappearance of all ATF4 protein and reduced expression of most of the ATF4 target 

genes analysed. Interestingly, it also led to reduced mRNA expression of other 

selected eRF1-reponsive genes including CBS, CTH, DDIT4 and TRIB3. Notably 

however, ATF4 mRNA, largely unaffected in any of the other knockdown and eRF1 

mutant combinations, was substantially reduced when the eRF1 Q185N mutant was 

expressed. Control of ATF4 at the transcriptional level has been indicated before, 

specifically where ER stress caused by UV irradiation resulted in a reduction in ATF4 

mRNA transcription, a well-documented response (Dey et al., 2010, Jiang and Wek, 

2005). The reduction in this case was recently shown to proceed via the LIP isoform 

of the CCAAT/Enhancer-binding Protein β (C/EBPβ), which binds to the ATF4 

promoter to suppress its transcription (Dey et al., 2012). However, it is not known 

whether a similar mechanism is at work during Q185N eRF1 expression.  

Surprisingly, Q185N eRF1 expression was also sufficient to induce of a sub-set of 

eRF1 responsive genes, including DDIT3, and integrin α4, even in the absence of 

eRF1 knockdown (despite this mutant being shown in Chapter 3 to be completely 

inactive with respect to stop codon readthrough). Potential explanations for this 

phenomenon, and a detailed discussion of the activation of different arms of the UPR 

by dysfunction of specific eRF1 sub-domains, are provided in the Final Discussion, 

Chapter 6. 
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Overall, we have shown that upregulation of ATF4 and its downstream targets occur 

via eIF2α phosphorylation in response to depletion of eRF1. This pathway induction 

is supplemented by at least another branch of the UPR and may be a signal of general 

UPR induction. eRF1 depletion has been validated to also likely results in 

upregulation of genes associated with selenocysteine incorporation into proteins, 

along with potentially ribosomal proteins and at least some ECM, adhesion and 

motility associated proteins. While they might participate in the reduction of cell 

proliferation observed during eRF1 depletion, these pathways cannot be exclusively 

responsible for it, due to differences in the anticipated cell cycle arrest profile. Further 

research is consequently necessary in order to determine the exact mechanism of 

proliferation control by defective translational termination, as discussed in the next 

chapter. 
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CHAPTER 6: Discussion and Future Work 
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6.1 Overview 

 

Prior research on JMJD4 identified it as a lysyl hydroxylase with a role in promoting 

translational termination through hydroxylation of eRF1. However, at this point there 

had been limited investigation of the physiological roles and potential involvement in 

pathologies (including cancer) of JMJD4, or indeed other translational termination 

factors, including eRF1. In this Thesis, we have begun to address this knowledge gap. 

In Chapter 2, we probed for potentially novel JMJD4 functions by investigating other 

candidate substrates and binding partners.  In Chapter 3, we find that JMJD4, HEMK2 

and eRF1 are essential for efficient translational termination and for the growth of 

cancer cell lines. In Chapter 4, the transcriptional response to defective translational 

termination was examined and major pathways validated. Finally, in Chapter 5, the 

most robustly regulated of these pathways, the induction of downstream targets of 

ATF4, is examined in greater detail and the mechanism of ATF4 regulation explored. 

 

6.2 Defective Translational Termination in Growth and Cancer 

Here in this Thesis we demonstrate that changes in the abundance of factors essential 

to translational termination result in concomitant changes in cell growth. Depletion of 

eRF1 results in almost complete cytostasis, while JMJD4 or HEMK2 knockdown also 

significantly reduce proliferative capacity (Chapter 3). Whether the effects of JMJD4 

and HEMK2 on growth are explained by their modification of eRF1, as opposed to 

other potential substrates, was not formally proven however. Circumstantial evidence 

supporting an eRF1-dependent role of JMJD4 in growth includes the similar cell cycle 

phenotype induced by JMJD4 and eRF1 knockdown (Figure 3.14).  
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These data are in contrast to those obtained in previous mice studies (Yoo et al., 

2016b), where knockout of JMJD4 was not found to result in growth retardation and 

JMJD4 -/- homozygous mice appeared physiologically typical. However, our research 

was performed on human cancer cell lines, rather than murine cell cultures or live 

animals. This implies that a number of different factors may be at play regarding the 

disparity in observations. Initially, it is possible that JMJD4 plays a more important 

role in humans compared to mice. While human and murine JMJD4 are highly similar 

as highlighted in chapter 2, it is possible that the regulatory network surrounding them 

and the importance of the eRF1 K63 hydroxylation to translational termination differs 

between mice and humans. Furthermore, it is possible that JMJD4 mediated 

hydroxylation of eRF1 only acquires an important role in growth in a cancer context. 

Indeed, all the work presented in this thesis was performed in cancer cell lines, which 

might explain the observed difference. Certainly, JMJD4 levels can significantly 

affect outcome in at least some cancers based on bioinformatic analysis as discussed 

in section 3.2.1. It should be noted here that the Yoo et al, 2016 study only measured 

JMJD4 knockdown at the transcript level. JMJD4 protein levels, the level of 

translational readthrough caused by the absence of JMJD4, as well as the level of 

eRF1 hydroxylation in the cell were not examined and therefore the effective level of 

JMJD4 activity in the mice is not known. 

It is also unclear whether JMJD4 targets any substrate other than eRF1: Our 

investigation of GTF2I in Chapter 2 suggests that other potential activity-dependent 

interactors identified in the original JMJD4 proteomic screen are unlikely to be true 

substrates. Nevertheless, it is important to highlight that other JMJD4 substrates might 

exist: Expanding the range of conditions in which the substrate proteomics was 

performed (e.g. different lysis buffers) could yield different results.  That being said, 
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we currently have no evidence that JMJD4 has more than one substrate. Indeed, this 

possibility would not be without precedent, as other hydroxylases involved in 

translation generally have only one reported substrate (e.g. NO66), as discussed in the 

Introduction. It is therefore possible that the results presented here are consistent with 

a unified role for termination factors in growth control, and possibly cancer: Using 

publicly available cancer databases we observed that the expression of translational 

termination factors are generally upregulated in tumours, and that this may be 

associated with poor patient prognosis in some cases. These observations would be in 

agreement with extensive work performed in recent years highlighting the important 

role of translation initiation and elongation factors in tumourigenesis, and the 

potential for treatments targeting translation in cancer (Bhat et al., 2015, Pelletier et 

al., 2015). Indeed, it is perhaps unsurprising that termination factors must be 

upregulated in unison with other steps of protein synthesis pathway in order to 

maintain sequence fidelity in the context of higher protein synthesis rates. In light of 

the findings presented in this thesis it may be worthwhile to now consider 

translational termination as a new target for cancer therapy.  

Therapeutic targeting of translational termination could be achieved by developing 

inhibitors of enzymatic termination factors, such as JMJD4 and/or HEMK2. The 

suitability of JMJD4 and HEMK2 as medically relevant targets is difficult to assess 

however, partly due to the small amount of work yet performed. Previous evidence 

indicates that JMJD4 knockout in normal mouse tissues results in no major phenotype 

(Yoo et al., 2016a). This, together with our observations that JMJD4 is required for 

cancer cell line proliferation, might cast it as a potential anti-cancer target with a 

favourable therapeutic window. 
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Due to their status as emerging targets for the treatment of a variety of important 

diseases, 2OG-oxygenases, such as JMJD4, have been the subject of significant 

medicinal chemistry and translational research. Generic inhibitors of 2OG-oxygenases 

such as N-oxalylglycine (NOG) and Dimethyloxalylglycine (DMOG) are widely 

known and were utilised in Chapter 2 to stabilise potential enzyme:substrate 

complexes. These function as competitive inhibitors by mimicking the structure of 

2OG and thus compete with it for the enzyme active site (Rose et al., 2011). Indeed, 

most 2OG-oxygenase inhibitors under development tend to be competitive inhibitors 

of 2OG (Rose et al., 2011). For example, oxalyl amino acids and other mimics of 

2OG such as 2-thioglutarate can function as inhibitors of the HIF prolyl hydroxylases 

PHD1-3 (Rose et al., 2011). The glycinamide class of compounds has also been 

shown to bind and inhibit HIF prolyl hydroxylases, with crystal structures of 

isoquinolinyl glycinamide compounds bound to PHD2 (McDonough et al., 2006) 

(Yan et al., 2010, Rose et al., 2011). Another class of compounds, the 8-

hydroxyquinolines, have been identified in high throughput approaches aimed at 

identifying inhibitors of histone lysine demethylases (King et al., 2010, Rose et al., 

2011). Finally, members of the lysine demethylase family KDM4, contain structural 

Zn2+ ions in their catalytic domains whose removal leads to their permanent 

inactivation (Labbe et al., 2013), opening the possibility of additional classes of 2OG-

oxygenase inhibitors (Sekirnik et al., 2009). 

It is perhaps less clear whether HEMK2 has potential as a novel therapeutic target. 

For example, a recent study suggests that HEMK2 could methylate a range of targets 

(Kusevic et al., 2016), possibly increasing the potential for off target effects. 

However, this study relied on candidate peptides tested in vitro using recombinant 

HEMK2 protein, and without subsequent mass spectrometry validation in vivo. 
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Targeting the obligate binding partner of HEMK2, Trm112, would also be a 

suboptimal approach, as it lacks enzymatic activity, is widely involved in translation, 

and its depletion is associated with substantial toxicity (Bourgeois et al., 2017).  

Therapies targeting translational termination could have advantages in addition to 

reducing growth potential, by potentially restoring the expression of prematurely 

terminating (nonsense mutated) tumour suppressor genes. It is known that nonsense 

mutations result in premature termination of tumour suppressor genes in cancer, and it 

has been proposed that it may be possible to restore their expression by promoting 

stop codon readthrough (Bordeira-Carrico et al., 2012, Floquet et al., 2011). This 

approach could involve JMJD4/HEMK2 inhibitors as discussed above, possibly in 

combination with established chemical inducers of stop codon readthrough, such as 

aminoglycoside antibiotics. Aminoglycoside compounds were originally developed as 

therapeutic agents against gram negative bacteria, capable of binding, often 

irreversibly, to the ribosome and disrupting translation. The mechanisms of 

translational disruption differ among specific compounds but generally affect the 

elongation step (Mingeot-Leclercq et al., 1999), functioning by impairing translational 

proofreading, resulting in widespread mis-incorporation of near cognate residues, 

including at stop codons (Fan-Minogue and Bedwell, 2008). Though normally 

selective for the prokaryotic ribosome, hence their use as antibiotics, certain modified 

aminoglycoside compounds, such as G418 (Geneticin) and Gentamicin, can also bind 

to eukaryotic ribosomes (Eustice and Wilhelm, 1984). Such compounds have already 

been used to partially restore expression of a prematurely terminating protein in 

mouse models of Proximal spinal muscular atrophy (Heier and DiDonato, 2009). 

With respect to cancer, aminoglycosides have been used to bypass nonsense 

mutations in the Adenomatous Polyposis Coli tumour suppressor (Floquet et al., 
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2011). However, the efficacy of aminoglycoside treatment can vary greatly (Bidou et 

al., 2004) and more importantly they tend to be poorly tolerated (Turnidge, 2003), 

possibly because of the pleiotropic effects on translation. JMJD4 or HEMK2 

inhibitors could be considered as more targeted approaches to target translational 

termination in cancer. Nevertheless, it should be noted that at least with respect to 

restoration of nonsense mutated disease genes, the efficacy of targeting JMJD4 might 

depend on the sequence content of the nonsense mutation in question, as readthrough 

mediated by JMJD4 knockdown appeared dependent on the termination context in 

Chapter 3. Additionally, whether combining JMJD4 or HEMK2 inhibitors with 

aminoglycoside antibiotics could enable the dose of the latter to be lowered to more 

acceptable (non-toxic) levels, is of interest. 

6.3 The cellular response to defective translational termination 

The effective medicinal translation of targeting translational termination would 

benefit from a greater understanding of the potential cellular responses to such 

treatment strategies. Indeed, we showed in Chapter 3 that eRF1, JMJD4 or HEMK2 

knockdown all cause a significant growth inhibition, but via an unknown mechanism. 

Therefore, we used gene expression profiling by RNAseq as a means to begin 

profiling, in an unbiased and genome-wide manner, the cellular response to defective 

translational termination. Although our analyses identified transcriptional regulation 

of several cellular processes following eRF1 knockdown, the ATF4 pathway was the 

most consistently and highly upregulated.  

The targets of ATF4 tested in our conditional siRNA-resistant eRF1 reconstitution 

system included DDIT3, DDIT4 and TRIB3, all of which are known to participate in 

cellular stress response mechanisms. DDIT3 (DNA-Damage Induced Transcript 3, 
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also known as CHOP), is a multifunctional transcription factor with roles in cell 

survival and apoptosis. Normally expressed at low levels but induced by endoplasmic 

reticulum stress (Ron and Habener, 1992) (Wang et al., 1996), DDIT3 binds to 

members of the C/EBP family in a dominant negative manner, thereby inhibiting their 

activity (Jauhiainen et al., 2012). DDIT3 also associates with ATF4 and reduces the 

efficacy of transcriptional induction of some of its target genes (Su and Kilberg, 

2008). Increased DDIT3 expression has also been associated with increased apoptosis 

(Yamaguchi and Wang, 2004). DDIT4 (also known as REDD1) is another member of 

the same transcription factor family as DDIT3, but has important roles in the 

regulation of mTORC1 signaling (Brugarolas et al., 2004). Induction of DDIT4 has 

been mostly described in the context of energy stress and hypoxia, where it was found 

to be an important controller of cell size as a result of its effects on mTORC1 (Sofer 

et al., 2005). TRIB3 is a member of the Tribbles family of pseudokinases which have 

no detectable catalytic activity, but rather appear to be involved in transcription factor 

regulation (Eyers et al., 2017). Interestingly, the TRIB3 promoter has binding sites for 

both DDIT3 and ATF4 and knockdown of either of these results in drastic reduction 

of TRIB3 expression in vitro (Ohoka et al., 2005). This is in agreement with our data, 

where TRIB3 mRNA failed to be induced in Q185N eRF1 expressing cells, despite 

the induction of DDIT3, perhaps due to the loss of ATF4 expression (Figures 

4.6&4.7). Interestingly, TRIB3 also downregulates the transcriptional activity of both 

ATF4 and CHOP, thereby creating a negative feedback loop, similar to ATF4/DDIT3 

(Jousse et al., 2007). TRIB3 is also reported to have a pro-apoptotic role, and its 

knockdown increases resistance to tunicamycin (Ohoka et al., 2005). Finally, 

Asparagine Synthetase (ASNS), which was upregulated following shRNA 
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knockdown of eRF1 and induction of ATF4 (Figure 5.9B), is required for normal cell 

growth and its knockdown results in S-phase cell cycle arrest (Yang et al., 2014). 

As outlined above, the upregulated ATF4 target genes characterised in response to 

eRF1 knockdown are generally implicated in cell growth and survival, and may 

therefore contribute to the observed decreased in cell proliferation observed under 

such conditions. It would seem that the ATF4 response is unlikely to entirely explain 

the growth response to defective translational termination however, as the associated 

cell cycle profile was not restricted to a single phase: The unfolded protein response, 

eIF2α phosphorylation, and ATF4 upregulation, generally cause a G1 cell cycle arrest 

(Brewer and Diehl, 2000, Hamanaka et al., 2005). Therefore, in addition to the ATF4 

pathway, other additional mechanisms are also likely to contribute to the cellular 

adaptive response to defective translational termination. 

6.4 eRF1-dependent ATF4 regulation 

In Chapter 5 we showed that eRF1 controls ATF4 protein synthesis via eIF2α 

phosphorylation. This is in contrast to the eRF1-associated termination factor eRF3a, 

the knockdown of which is reported to increase ATF4 expression through an increase 

in stop codon readthrough of an ATF4 mRNA uORF (Ait Ghezala et al., 2012b). 

While our GADD34 overexpression data indicate that inhibiting eIF2α 

phosphorylation is sufficient to prevent ATF4 translational expression in response to 

eRF1 knockdown, we did not directly test whether stop codon readthrough of the 

uORFs occurred and whether it contributed to ATF4 protein synthesis. Overall 

however, our results probably suggest that the major mechanism of eRF1-dependent 

ATF4 regulation is likely to proceed via activation of the UPR. In the future it could 

be possible to determine whether eRF1 knockdown stimulates stop codon readthrough 
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of the ATF4 mRNA uORFs using a technique known as Ribosomal Footprinting. In 

this approach, mRNA bound to translating ribosomes is treated with nucleases in the 

presence of translation inhibitors or translation-incompetent lysis conditions, causing 

the degradation of the parts of the mRNA sequence not protected by the ribosome (the 

ribosomal “footprint”). The free mRNA fragments are subsequently purified and 

reverse transcribed. Their sequence is then deduced in a manner quite similar to RNA-

Seq, providing a snapshot of the total population of translating ribosomes within the 

cells and their position on the mRNAs (Ingolia et al., 2009). The appearance of a 

ribosomal population between the ATF4 uORF1 and uORF2 could therefore indicate 

that stop codon readthrough of uORF1 had occurred following eRF1 knockdown  

It remains possible that eRF3a depletion also induces ATF4, at least partly, via 

activation of the UPR and eIF2α phosphorylation. Importantly, the dependence of the 

eRF3a phenotype on eIF2α phosphorylation was not formally tested (e.g. by 

GADD34 overexpression, as in Chapter 5) (Ait Ghezala et al., 2012b). Rather the 

absence of an increase in eIF2α phosphorylation at three time points was noted. It is 

possible that eRF3a depletion induces transient activation of eIF2α phosphorylation 

and ATF4 expression, which is sufficient to induce ATF4 target gene expression. 

However, other differences in the response to eRF3a depletion could be consistent 

with alternative stress signaling downstream of these two termination factors. For 

example, eRF3a knockdown is associated with a G1 cell cycle arrest, as opposed to 

eRF1 knockdown where a single checkpoint appeared not to be activated (Chauvin et 

al., 2007). As discussed in Chapter 3, a similar cell cycle response to eRF1 and 

JMJD4 knockdown has been reported following RPL5 and RPL11 depletion, which 

was found to proceed by reduced global translation preventing the accumulation of 

Cyclins (Teng et al., 2013). Whether the similar growth arrest phenotype of eRF1 and 
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JMJD4 knockdown cells is due to reduced global protein synthesis is not yet known, 

but of interest. There is some evidence to support a reduction in protein synthesis 

following eRF1 depletion: Previous polysome analyses (Feng et al, 2014, PhD 

Thesis) indicated that eRF1 knockdown results in a translation phenotype, with an 

increase in the abundance of free 60S and 40S subunits, and a simultaneous reduction 

in translating polysomes (data not shown). Additionally, during our stop codon 

readthrough experiments, the expression of both luciferases, including the 

constitutively expressed Renilla, were consistently much lower in eRF1 or JMJD4 

knockdown samples (data not shown), potentially consistent with reduced global 

protein synthesis rates. 

Our cell models have relied on RNA interference as a loss-of-function approached to 

study the cellular consequences of defective translational termination. However, an 

important question that then arises is whether changes in eRF1 expression, or 

modulation of the release factor activity of eRF1, might also occur physiologically.  

Interestingly, we observed that only a very modest increase in eRF1 levels, such as in 

the induction of WT eRF1 in control siRNA samples, was sufficient to suppress basal 

ATF4 translational expression and ATF4 protein synthesis (Chapter 5, Figure 5.8B). 

This might potentially indicate that translational termination efficiency is poised to 

regulate the UPR under physiological conditions, potentially making eRF1 

availability and/or activity a major determinant of ATF4 expression. However, there 

are few examples of mechanisms that regulate eRF1 function. Phosphorylation of 

eRF1 has been reported in S. cerevisiae, but it does not appear to affect the efficiency 

of translational termination or disrupt binding to the ribosome (Kallmeyer et al., 

2006). Furthermore, eRF1 expression levels appear to be fairly constant and 

ubiquitous in healthy cells, and are normally invariant throughout the cell cycle, as is 
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the case with eRF3a (Chauvin et al., 2007). Thus far, the only reports of functional 

control of eRF1 activity are by JMJD4 and HEMK2. In the future it will be necessary 

to determine whether depletion of these termination factors phenocopies eRF1 

knockdown, particularly with respect to the regulation of ATF4 expression and 

activity. Some evidence supporting this possibility is provided by the discovery that 

K63A and Q185N eRF1 mutants completely fail to restore normal eRF1 translational 

termination activity and ATF4 regulation. 

An initial step in the direction of future research would be to examine whether 

knockdown of JMJD4 or HEMK2 replicates the transcriptional phenotype observed in 

the RNA-Seq, ideally by performing additional RNA-Seq experiments. Assuming that 

the common set of upregulated genes shared by eRF1 and eRF3a knockdown is 

indeed due to an increase in translational readthrough, JMJD4 and potentially 

HEMK2 knockdown should result in a broadly similar response. Any affected 

pathways not shared with those identified by eRF1 knockdown could therefore be 

unique to JMJD4 and HEMK2 and independent from their activity as eRF1 modifiers. 

Even in the absence of additional RNA-Seq experiments, the validated set of eRF1 

knockdown downstream genes can be tested in the JMJD4 and HEMK2 knockdown 

cells to illuminate whether JMJD4/HEMK2 and eRF1 knockdown share downstream 

targets. Additionally, measuring the level of ATF4 translational expression via the 

system described in 5.2.2 using the pGL3 ATF4 uORF plasmid, accompanied by RT-

qPCR of ATF4 mRNA, should indicate whether knockdown of JMJD4 or HEMK2 

phenocopy eRF1 knockdown in resulting in an increase in translational but not 

transcriptional expression of ATF4. These results can then be validated using the anti-

JMJD4 antibody already in place to directly assess ATF4 protein levels. Finally, 

epistatic experiments to determine which phenotypes supersede each other would be 
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useful in determining whether the ATF4 response is contingent to eRF1 or its post-

translational modifications. This could be performed by, for instance, combined 

JMJD4/eRF1 knockdown or HEMK2/eRF1 knockdown and assessing the resultant 

growth, readthrough, transcriptional and ATF4 expression phenotypes. 

 

6.5 The cellular response to eRF1 Q185N 

As discussed, we employed a ‘structure-function’ approach to investigate the role of 

critical sub-domains or eRF1 targeted by JMJD4 and HEMK2 by introducing 

missense mutations known to inhibit their function (and prevent their post-

translational modification). Whereas the K63A NIKS mutant eRF1 variant behaved as 

expected, being inactive with respect to translational termination, and unable to 

restore normal growth and ATF4 regulation following endogenous eRF1 knockdown, 

the Q185N GGQ eRF1 variant produced a variety of unexpected effects.  We find that 

expression of Q185N eRF1 fails to rescue stop codon readthrough resulting from 

eRF1 knockdown, as expected, but has a dominant negative phenotype with respect to 

growth (Chapter 3). Interestingly, modifications to the convergently evolved GGQ 

motif on bacterial RF1 and RF2 to are also associated with significant reduction in 

growth (Mora et al., 2003). 

Interestingly, human Q185N eRF1 expression completely suppressed ATF4 protein 

expression, despite the level of ATF4 translational expression (as indicated by the 

uORF reporter) being induced similarly to EV and K63A eRF1 expressing cells 

(Chapter 5). This disparity appears to be due to a significant reduction in ATF4 

mRNA levels, by an unknown mechanism. It is unlikely however that this mechanism 

operates exclusively through a general increase in stop codon readthrough, as it would 



214 
 

then be expected to phenocopy the EV and K63A eRF1 results. We considered two 

other explanations which might account for it however. Firstly, it may be possible for 

Q185N to affect termination of stop codons in specific contexts, resulting in signaling 

independent of the broader stop codon readthrough response. Alternatively, it is 

possible that Q185N results in the ribosome stalling at the stop codon. The latter 

mechanism would be supported by the use of eRF1 GGQ mutants (e.g. eRF1AAQ) to 

capture the translating complex at the termination step for structural studies (Brown et 

al., 2015).  

6.6 Regulation of the Unfolded Protein Response by eRF1 depletion 

Through our work on the eRF1 Q185N variant, evidence accumulated to suggest a 

more widespread response of the UPR to defective termination. Specifically, it 

appeared that induction of eRF1 Q185N was associated with an increase in other 

transcription factors, notably spliced XBP1. Interestingly, the regulation of XBP1s by 

eRF1 depletion and Q185N expression correlated with the unusual regulation of a 

sub-set of eRF1-responsive genes, including DDIT3. ATF4 and XBP1s form two of 

the three major signaling arms of the UPR, in addition to ATF6. While we were not 

able to also investigate potential regulation of ATF6 by eRF1, due to a lack of 

reagents, it would seem likely ATF6 is also activated, as all three arms of the UPR 

share the same upstream signaling mechanism via the chaperone BiP (Wang and 

Kaufman, 2014).  

The question then arises as to how eRF1 depletion and Q185N expression activate the 

various arms of the UPR. Defective termination might result in the accumulation of 

misfolded proteins in the ER due to stop codon readthrough producing proteins with 

extended and disordered C-termini. Misfolded proteins would in turn be bound by BiP 
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chaperones and sequester them, resulting in the upregulation of IRE1α and PERK 

activity, splicing XBP1 mRNA to its active isoform and phosphorylating eIF2α at 

Ser51, respectively (Figure 5.13) (Somers et al., 2013). Testing this hypothesis would 

involve assaying the extent of protein misfolding in the ER, for which several 

techniques exist, primarily through Green Fluorescent Protein (GFP) tags attached to 

constitutively expressed indicator proteins (Waldo et al., 1999) or enzymatic 

indicators e.g. chloramphenicol acetyltransferase (Maxwell et al., 1999). Furthermore, 

assays for the determination of PERK and IRE1 activity are well known (Yan et al., 

2002, Hikiji et al., 2015) and could be easily performed to test this hypothesis. 

Overall, the UPR appears to be at least one major adaptive response that cells mount 

in the face of defective translational termination. The UPR is likely contributing to 

adaptation and survival of the cells (Harding et al., 2000b) and is known to affect 

cellular proliferation and differentiation (Tsang et al., 2010), in addition to varied pro-

proliferative roles in tumorigenesis (Zanetti et al., 2016). It is plausible to consider 

that cells treated with inhibitors targeting translational termination could become 

‘addicted’ to activation of the UPR, potentially creating an opportunity for combined 

therapies. 

 

6.7 Conclusions 

The work presented in this Thesis has highlighted a potential role for translational 

termination as an important factor affecting cell growth and stress, and that it has 

potential as a novel target for cancer therapy. Future efforts are necessary to better 

understand the mechanism by which JMJD4, HEMK2 and eRF1 knockdown cause 

reduced cell growth, particularly exploring the impact of global protein synthesis 
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inhibition. Finally, future work should also aim to understand the molecular 

mechanism(s) by which defective translation termination signals to the UPR, and how 

inhibiting the function of eRF1 in peptidyl-tRNA hydrolysis (e.g. by Q185N 

mutation) leads to the unique regulation of eRF1-responsive genes and XBP1 

splicing. 
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CHAPTER 7: Materials and Methods 
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7.1 Reagents 

Where not specified, reagents were purchased from Sigma-Aldrich. Common 

laboratory solvents (e.g. ethanol, methanol) were purchased from Thermo-Fisher-

Scientific. 

7.1.1 Solutions 

Phosphate Buffered Saline (PBS; 10X): 1.37 M NaCl, 27 mM KCl, 43 mM 

Na2HPO4, 14 mM KH2PO4, pH adjusted to 7.4. 1X PBS was prepared by diluting 

10X concentrated stock with ultrapurified water. 1X PBS-Tween (PBST) was 

prepared by adding 0.1 % Tween-20 (v/v) to 1X PBS. 

Tris-Borate-EDTA (TBE) Buffer: 1X TBE running buffer was prepared by diluting 

10X TBE concentrated stock with ultrapurified water to a final concentration of 89 

mM Tris-borate and 2 mM EDTA, pH 8.3. 

SDS-PAGE Resolving Gel Buffer (4X): 1.5 M Tris-HCl pH 8.8, 0.4 % (w/v) SDS. 

SDS-PAGE Stacking Gel Buffer (4X): 0.5 M Tris-HCl pH 6.8, 0.4 % (w/v) SDS. 

Laemmli SDS-PAGE loading buffer (6X): 350 mM Tris-HCl pH 6.8, 10 % (w/v) 

SDS, 50 % (v/v) glycerol, 0.6 M dithiothreitol (DTT), 0.1 % (w/v) bromophenol blue. 

JIES Lysis Buffer: 20 mM Tris-HCl pH 7.4, 100 mM NaCl, 5 mM MgCl2, 0.5 % 

(v/v) NP-40. Protease inhibitor (Sigma-Aldrich) and phosphatase inhibitor (Roche) 

cocktails were added immediately prior to cell lysis. 

RIPA Lysis buffer: 150 mM NaCl , 5 mM EDTA, 50 mM Tris, 1 % (v/v) NP-40, 0.5 

% (v/v) Sodium Deoxycholate, 0.1  % (v/v) SDS. 
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Passive Lysis Buffer (PLB): 1X passive lysis buffer was prepared from 5X Passive 

Lysis Buffer (Promega, from Dual Luciferase Kit, Cat. # E1910) diluted with 4 

volumes ultrapurified water. 

3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium, inner salt (MTS) solution: In a dark environment, 42 mg of CellTiter 

96® AQueous MTS reagent powder (Promega) were dissolved in 21 ml of Dulbecco's 

PBS and the pH adjusted to 6-6.5. Subsequently, it was filtered through a 0.2µm pore 

opening filter, aliquoted and stored at -20°C in an opaque container. 

Phenazine methosulfate (PMS) solution: In a dark environment, 9.2 mg of PMS was 

dissolved in 10 ml of Dulbecco's PBS and vortexed until fully dissolved. The solution 

was subsequently filtered through a 0.2 µm pore opening filter, aliquoted and stored at 

-20°C in an opaque container. 

7.2 Bacterial Techniques 

7.2.1 Media and Reagents 

Luria-Bertani media:  Luria-Bertani (LB) media were prepared by diluting LB 

granules (Invitrogen, Cat.# 12780029) 1:50 w/v in ultrapure water, followed by 

autoclaving at 121 °C, 100 kPa. LB agar plates were prepared by addition of 15:103 

agar powder, followed by autoclaving as above. For antibiotic addition, the agar was 

melted, mixed and antibiotics added at ~50 °C. 

SOC Media: SOC (Super Optimal Broth + 20 mM Glucose) media was purchased 

from New England Biolabs (NEB) (Cat.# B9020S). 
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Ampicillin: For selection purposes 100 μg ml-1 Ampicillin was added to LB and LB 

agar were appropriate. 

Bacterial Strains: All bacteria used were NEB® 5-alpha Competent E. coli (High 

Efficiency) (Cat.# C2987I) 

7.2.2 Transformation 

Competent E. coli were thawed on ice and ligation mix was diluted in bacteria at a 

ratio of 1:10, or 50-100 μg of plasmid DNA were added. The tube was flicked to 

ensure even mixing, followed by a 30 minute on-ice incubation. Subsequently, the 

bacteria were heat shocked at 42 °C for 30 sec, followed by an additional 5 min 

recovery on ice. The bacteria were then added to 450 μl SOC media and incubated at 

37 °C for 1 hour. Cultures intended for plasmid extraction were then added to an 

appropriate volume of LB and incubated overnight in a shaking incubator at 220 rpm, 

37 °C. Cultures intended for LB plating were centrifuged at 3000 rpm until a pellet 

formed. The supernatant was removed and the bacteria resuspended in 50 μL LB and 

spread onto an agar plate. Incubation occurred for 12-16 hours h at 37 °C or until 

colonies were visible. 

7.2.3 Plasmid DNA Isolation and Purification 

Small scale plasmid preparation (Miniprep) was performed using a GenElute™ 

Plasmid Miniprep Kit (Sigma, Cat.#PLN70) following manufacturer’s instructions. 

Briefly, bacterial cultures were centrifuged, subjected to alkaline lysis and then 

precipitated. The DNA in the supernatant was bound in a silica binding column, 

washed and then extracted using ultrapure water or the kit’s own extraction buffer, 

dependent on downstream applications. Large scale preparations were performed 
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using a GeneJet Plasmid Maxiprep kit (ThermoFisher Scientific, Cat.# K0491), the 

process being broadly similar to the above. 

 

7.3 Nucleic Acid Techniques 

7.3.1 DNA/RNA Quantification 

DNA and RNA quantification was performed using a NanoDrop (ThermoFisher 

Scientific) tabletop Microvolume Spectrophotometers and Fluorometer using a 1 μl 

volume of liquid. Quality of DNA was considered acceptable when A260/A280 ratio 

was ≥1.8 and the RNA A260/A280 ratio ≥2.0 

7.3.2 Polymerase Chain Reaction (PCR) 

PCR mixes were prepared in 25/50 μL reaction volume containing 0.5 μΜ primers 

and Phusion High-Fidelity PCR Master Mix with HF Buffer (NEB, Cat.# F531S) at 

half of the total reaction volume. DNA amplification was performed using a T100 

Thermal Cycler (BioRad). Cycling conditions had to be adjusted for individual 

products but were typically [Initial denaturation temp: 98 (30sec), then 35 cycles of: 

[Denature 98 °C (10 s), Annealing 58 °C (10 s), Extension time 72 °C (15-30 s/1kbp 

of amplified DNA)] with Final extension 72 °C (10 min) x35 cycles. 

7.3.3 Site Directed Mutagenesis (SDM) 

SDM was performed through the use of specific primers designed to contain 

mismatches coding for the intended amino acid, with the PCR protocol as above. 

Following amplification samples were treated with DpnI for 1 hour at 37 °C. 

7.3.4 Plasmid Engineering 
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Restriction digest was performed on 500-1000 ng of plasmid using High Fidelity 

Restriction Endonucleases (NEB) at manufacturer recommended amounts in the 

presence of 1x High Fidelity Restriction Buffer (NEB), at 37 °C, for 30 min-1 h. The 

plasmid DNA was further treated with Calf Intestinal Phosphatase (10-20 U) at 37 °C 

for 1 h in order to dephosphorylate plasmid ends and prevent reannealing during 

subsequent ligation. Ligation of the plasmid was achieved using T4 DNA ligase 

(NEB, Cat.# M0202S) for 10 min at 16°C, followed by a denaturation of the ligase 

enzyme at 65°C for 10 minutes, at insert:plasmid molar ratios of 3:1, 6:1 and 9:1. 

7.3.5 DNA Sequencing 

All plasmid DNA sequencing was performed by Eurofins Genomic Services using 

plasmid specific primers. 

7.3.6 RNA extraction and cDNA Synthesis 

RNA extraction was performed using the GenElute Mammalian Total RNA Miniprep 

Kit (Sigma-Aldrich, Cat.#TRN70). Briefly, cells were lysed in a solution containing 

guanidine isothiocyanate and 2-mercaptoethanol, inactivating RNAses. Subsequently, 

cellular debris and DNA shearing occurs via column centrifugation and RNA in the 

eluate bound to a silica column, followed by washes and elution with a low salt buffer 

and quantified as described in 7.3.1. 

cDNA synthesis took place with the use of the High Capacity cDNA Reverse 

Transcription kit (Applied Biosystems, Cat.# 4368814). A typical reaction contained 

1 µg RNA template, 2 µl 10X Reverse Transcription buffer, 4 mM dNTPs, 2 µl 10X 

random primers, 50 U MultiScribe Reverse Transcriptase, 20 U RNAse inhibitor, 

topped to 20 μl with nuclease-Free water. The PCR machine used was a T100 
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Thermal Cycler (BioRad) set to the following program: 25 °C (10 min), 37 °C (120 

min), 85 °C (5 min). 

 

7.3.7 Real-Time Quantitative PCR (RT-qPCR) 

In order to quantify transcript abundance in the cells, RT-qPCR was performed using 

custom primers and SYBR Green. For each gene to be examined, a search was 

performed on Primer-BLAST (National Centre for Biotechnology Information) using 

the following criteria: PCR product size 90-150 nt, Tm 60 °C, spans an intron-exon 

junction. Amplification efficiency for each primer set was calculated by performing 

RT-qPCR using the primers across four orders of magnitude of substrate (cDNA) 

concentration, 0.1, 1, 10 and 100 ng/μL and producing a graph plotting log10cDNA vs 

the Threshold Cycle (Ct) of the RT-qPCR. The slope of the graph can be used to 

assess replication efficiency as: Amplification Efficiency = [10(-1/slope)] – 1. In 

order to confirm that only single melt peaks could be observed, i.e. no confounding 

unintended primer targets existed, a Melt Curve was obtained by increasing the 

temperature of the mix in 5 °C increments, up to 90 °C, every 3 min.  

Reactions were performed as follows: 200 mM in 1 ul  of each forward and reverse 

primer were mixed with 10 μl SYBR Green qPCR Mastermix (Thermo-Fisher 

Scientific, Cat.# 4309155), followed by the addition of 1 ng of template cDNA and 

nuclease-free water to a Vtot=20μl. All samples were pipetted onto a 96 well qPCR 

plate. RT-qPCR amplification and measurements were performed using a Bio-Rad 

iQ5 Real Time PCR detection System (BioRad). Cycling conditions were 95 °C (10 

min), [60 °C (1 min)] x50 cycles, followed by obtaining a melt curve as described 
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above. Preliminary data analysis was performed using the iQ5 proprietary software to 

determine raw Ct values, with all further analysis performed in Excel (Microsoft). 
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Name Primer (5'-3') 
RPL36A_F GGGCCCTCAAATTTATCAAGA 
RPL36A_R GTCTTTCTTGGCAGCAGCTT 
RPL7A_F CACACAGGTGAACTCGGAAG 
RPL7A_R ACATTGCCACCCCAGTGA 
RPS3_F AGGTGGCCACTAGAGGTCTG 
RPS3_R CATGATGAACCGCAGCAC 
RPS15_F TTCTGAGGATCCGGCAAG 
RPS15_R CATCAGCTGCTCGTAGGACAT 
Cadherin 11_F ACGGCCAATGGACCAAGATT 
Cadherin 11_R TACAAGTCCTGCTTCTGCCG 
Cadherin 13_F GAATTCCAAAGTGGACTGCAA 
Cadherin 13_R CAGACGTCAGGAGTTCTCACA 
Integrin α4_F CCGGCCATCCATTTTAGA 
Integrin α4_R CCTTGTTTAGTTCAATTACTCTTGGA 
SECISBP2_F CGCCCCACTGATGAAGAA 
SECISBP2_R TGCTTTCTCTCTTGCCGTTC 
CBS_F AAACAGATCCGCCTCACG 
CBS_R TCCCGGTGCTGTGGTACT 
CTH_F AAGCTTTGAAGGCAGCACA 
CTH_R TGGTCCATTTAATTACTCAGGAAGAT 
IGFBP4_F CCTCTACATCATCCCCATCC 
IGFBP4_R GGTCCACACACCAGCACTT 
DDIT3_F AAGGCACTGAGCGTATCATGT 
DDIT3_R TGAAGATACACTTCCTTCTTGAACAC 
TRIB3_F CCGTCTTGGGCCCTATGT 
TRIB3_R CTTCCTGGACGGGGTACA 
DDIT4_F CAGGCACTGAGTATACCTGCAA 
DDIT4_R GTACCAGCCAGGACCTCAGT 
ATF4_F CTGGAGAGCTCGGACTGC 
ATF4_R CATCCAGGTAAGCCGTGTCT 
XBP1_F (from van Schadewijk et al, 2012) GGTCAGTCCCTCCAACAACA 
XBP1_R (from van Schadewijk et al, 2012) CTATACCCAACAGGGCATCC 
eRF1_F TGAGATATGTTCTTCATTGCCAAG 
eRF1_R CATGTTCCTGTCCGGTCTC 
Human beta actin _F CTCTTCCAGCCTTCCTTCCT 
Human beta actin _R GGATGTCCACGTCACACTTC 
GADD34_F CGGTGTCCTACGTCAGAGC 
GADD34_R GCCATCTTCTCGCCTCCT 
JMJD4_F CACCTACTGGAAAGAGTACATACAGG 
JMJD4_R GGGTGAAAACGTCCTCCA 
HEMK2_F GCTTCTGGCAGACCGAAC 
HEMK2_R GTAGCCTGATGGGGTGCTT 



226 
 

Figure 7.1 (previous Page): Table of all RT-qPCR oligonucleotide primer 

sequences utilised. 

 

Figure 7.2: Table of empirically derived amplification factors for each primer 
pair used to calculate fold change in the RT-qPCRs. Any values > 2 were rounded 
to 2 in the calculations. 

 

 

 

 

 

 

Gene Name Amplification Factor 
RPL36A 1.98 
RPL7A 2.01 
RPS3 1.99 
RPS15 1.90 
Cadherin 11 1.93 
Cadherin 13 2.02 
Integrin α4 1.89 
SECISBP2 1.97 
CBS 1.93 
CTH 1.95 
IGFBP4 1.96 
DDIT3 1.96 
TRIB3 2.10 
DDIT4 1.92 
ATF4 1.95 
XBP1 (from van Schadewijk et al, 2012) 1.93 
eRF1 1.94 
Human beta actin  1.97 
JMJD4 1.96 
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7.3.8 Agarose Gel Electrophoresis 

Agarose gels were prepared by suspending 1 % (w/v) agarose (Sigma Aldrich) in 

TBE buffer. The colloidal suspension was then heated in a microwave oven until fully 

homogeneous and 1:20000 (v/v) of SYBR Safe DNA Gel Stain (Thermo-Fisher 

Scientific, Cat.# S33102) was added as an in-gel DNA stain. The liquid agarose was 

then cooled under water and poured into a casting tray until fully solid. 

Electrophoresis of all gels took place at 150 V current. For the XBP1 gels a 3 % 

agarose gel was prepared to permit better separation between bands. Any bands to be 

extracted for downstream use were removed with a steel scalpel under UV light to 

visualized the DNA. 

7.3.9 RNA-Seq 

Dr Celina Whalley (Institute of Cancer and Genomics, University of Birmingham) 

performed the library prep and operated the NextSeq sequencer described below. 

Analysis of the raw data was performed by Dr Robert Hollows to obtain the lists of 

regulated genes. 

A 4200 TapeStation (Agilent) was used to determine RNA quality of the samples to 

be used downstream by calculation of the RNA Integrity Number (RIN) as described 

in chapter 5 following quantification by NanoDrop and QuBit (Thermo-Fisher 

Scientific). RNA samples were then diluted to 6 ng/μl in ultrapure nuclease-free water 

and submitted for analysis. Library Preparation was performed using a v1 TrueSeq 

Neoprep mRNA kit (Illumina, Cat.# NP-202-1001). Briefly, poly-A containing RNAs 

were precipitated using oligo-dT RPB2 RNA purification beads and loaded onto a 

library card, after which they underwent thermal cycling, cDNA synthesis and adaptor 

binding. Sequencing was performed using a NextSeq 500 Sequencer (Illumina), set to 
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use single indexing and paired-end reads (i.e. sequencing each transcript from both 

ends). 

RNA-Seq data for the two control replicates and the two eRF1 knockdown replicates 

were aligned to the hg19 human genome using Rsubread aligner and assigned to 

individual genes using the featureCounts function. Read counts were then normalized 

between samples and converted to counts-per-million reads (“cpm”) for each gene 

using the edgeR package in R. Only genes with a cpm of more than 1 in at least 2 

samples were considered for subsequent differential expression analysis. Genes were 

deemed to be differentially expressed between control and knockdown groups if the 

fold-change (knockdown / control) was greater than 1.5 or less than -1.5 and the 

probability value was less than 0.05. Further manipulation of the data was performed 

in Microsoft Excel 2013. 

7.4  Mammalian Cell Culture Techniques 

7.4.1 Cell Culture 

All cells were cultured in Dulbecco’s Modified Eagle Media (DMEM) with 10 % 

fetal calf serum, 2 mM L-Glutamine and 1 % penicillin and streptomycin at 37°C at 

5% CO2 in a humidified incubator. Stable inducible shRNA cell lines were cultured 

with an additional 1 µg ml-1 Puromycin to maintain the selection. 

7.4.2 Cell Lysis 

Cells were washed with ice-cold PBS, drained and then samples were lysed in RIPA 

buffer with the addition of 1X cOmplete Protease Inhibitor (Roche, Prod. No. 

04693116001) and 1x Halt Phosphatase Inhibitor Cocktail (Thermo Scientific, 

Catalog No. 78440). 
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7.4.3 Sub-cellular Fractionation 

Sub-cellular fractionation was performed using the NE-PER Nuclear and Cytoplasmic 

Extraction Reagent kit (Thermo Scientific, Prod. No. 78833) and associated protocol.  

7.4.4 2D Growth Assays 

Cells were seeded in triplicates or quadriplicates in 96 well plates at 4x103 cells/well 

in 100 μl Vtot and their proliferation assayed over 5 days using either MTS ((3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium)) (CellTiter 96® AQueous MTS Reagent Powder – Promega G1112, G11) 

and Phenazine methosulfate (PMS, Sigma P9625) or CyQuant™ NF Direct Cell 

Proliferation Assay (Life Technologies, Cat. #C35006). For the MTS+PMS approach, 

20 μl of an 20:1 (v/v) MTS:PMS (individual solutions prepared as described in 7.1.1) 

mix were added into each well and following 1 h of incubation at 37˚C its 490nm 

absorbance was measured. For CyQuant assay manufacturer instructions were 

followed and fluorescence 508/527 was measured. All measurements were taken 

using on an EnSight Multimode Plate Reader (Perkin Elmer). 

7.4.5 3D Growth Assays 

Noble agar (Sigma-Aldrich, Cat.#A5431) was prepared at a 2 % (w/v) stock solution 

and maintained at 4˚C for up to 2 months. Prior to the experiment an appropriate 

volume was melted at 42˚C and mixed with cell culture media as described in section 

7.4.1 with an additional 20 % FBS to prepare a 0.6 % (w/v) nobal agar solution. 100 

μl of this solution was aliquoted into each well of a 96 well plate and allowed to 

solidify. Another solution of 0.6 % (w/v) noble agar solution with an equal volume of 

media+cells was mixed to produce a 0.3 % (w/v) noble agar: media + cells mix. 200 

μl of this mix was added on top of the 100 μl 0.6 % layer in each well and allowed to 
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solidify at room temperature. Once set, they were returned to a humidified incubator 

at normal cell culture conditions. Following this, 20 μl of cell culture media was 

added to the cells every 72 h until cell colonies were clearly visible under the 

microscope. The mass of cell colonies was quantified by adding 100 μl of Alamar 

Blue cell indicator. After 1 h of incubation the Alamar Blue supernatant was moved to 

a new 96 well plate and fluorescence at 590 nm was measured. 

7.4.6 Plasmid Transfection 

All plasmid transfections took place using the FuGene6 transfection reagent 

(Promega, Cat. #E2691), as per the manufacturer’s protocol. The optimal conditions 

for 1ml of cells in a 12-well plate were found to be 0.5 µg of plasmid DNA added to 

50 μl of reduced serum media, Optimem (Thermo-Fisher Scientific, Cat.#31985070), 

followed by addition of 1.5 μl FuGene6. The solution was mixed on a benchtop 

vortex and incubated at room temperature. After 30 minutes the solution was added to 

the cells, this protocol was scaled accordingly for larger preparations. Two different 

types of transfections were performed: In plasmid transfections of p2luc and pGL3 

plasmids described above, the DNA-media-transfection reagent mix was added to the 

well before the cells, a technique known as reverse transfection. This was used to 

simultaneously knockdown the endogenous gene, while inducing expression of the 

rescue and luciferase gene. In all other cases forward transfection was used, where the 

transfection mix was added to adherent cells when reaching ~30% confluence, ~24 h 

post seeding. 
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7.4.7 siRNA mediated Knockdown 

The procedure described has been optimised for transfection of single 6 cm plate 

containing 5 ml of media, with single cells at 30% confluence. 5 μl of 50 mM siRNA 

is added to 1233 μl Optimem in an Eppendorf tube and the mixture briefly vortexed. 

In a separate tube, 87 μl Optimem is added to 13 μl of Oligofectamine Transfection 

Reagent (Cat. #12252011) and the tube briefly vortexed. Both tubes are left to form 

complexes for 5 min at room temperature, after which they are mixed together and 

left to incubate for an additional 45 min. Following that, the siRNA transfection mix 

is pipetted into the cell media and mixed in by gentle agitation, resulting in 25 nM 

final siRNA concentration. After 24 h, the media was changed and the treatment 

repeated in order to maximise knockdown. 

Target transcript siRNA description Sequence start position 
Negative Control MISSION siRNA Universal Negative 

Control # 1 
Not Applicable 

JMJD4 (NM_001161465) MISSION siRNA SASI_Hs01_00053631 475 
eRF1 (NM_001256302.1) MISSION siRNA SASI_Hs01_00015827 396 
 

Target transcript shRNA Sequence 
shFF3 (Control) 5' GGGCTCGGTGCGAATCTATTAtcaagagTAATAGATTCGCACCGAGCCC 3' 
JMJD4  5' GTCCGACTGGCTGAATGAGTTtcaagagACTCATTCAGCCAGTCGGAC 3' 
eRF1 5' GAACTGCATCTAACATTAAGTtcaagagCTTAATGTTAGATGCAGTTC 3' 
 

Figure 7.3: List of siRNAs and shRNAs used in this thesis. A) siRNAs: NM_[X] 
indicates the RefSeq entry on which this sequence is based. Sequence start site 
indicates the position of the first nucleotide on the target sequence recognised by the 
siRNA B) shRNAs: The hairpin loop sequence is in lowercase. 

 

 

 

 

 

A 

B 
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7.4.8 Stop Codon Readthrough 

Knockdown was achieved using protocol from section 7.4.5 with 25 nM of 

JMJD4/eRF1 siRNA. After 48 hours of knockdown, the cells were trypsinised and 

seeded into 12-well plates at 2x105 cells/well, 1 ml/well, where they were reverse 

transfected with 50 ng of p2luc promoter plasmid. After 24 h the media in the wells 

were changed to fresh. 48/72 h after the seeding in 12 well plates the cells were 

washed with ice cold PBS, drained and lysed with 50 μl of 1x PLB on a rocker for 15 

min. The lysates were then either used directly for analysis or frozen for later use. 

During examination of the eRF1 rescue cell lines, an additional step to the 

aforementioned was the addition of doxycycline at empirically determined amounts 

(described per cell line in Chapter 4) during the second siRNA knockdown of eRF1. 

That concentration of doxycycline was then maintained throughout the experiment. 

 Stop codon readthrough was assayed using the Dual Luciferase Reporter Assay 

System (Promega, E1910), as described in the kit with the following modifications: 

10 µl of sample/well and 50 µl of LARII and Stop&Glo were used respectively, in an 

“Opti-Plate 96” white, opaque bottom 96 well plate (Perkin Elmer, Cat.# 6005290). 

Additionally, measurements for Firefly were taken first for the entire plate before the 

Renilla results were acquired to prevent contamination by luminescence of nearby 

wells. All samples were taken in biological triplicates. An EnSight Multimode plate 

reader was used to assess luminescence. After the addition of each substrate 

Luminescence was measured over 12 seconds at 0.5 sec intervals. A focal height of 10 

mm was used for scanning the plate and the sum of the values was used in 

downstream calculations as described in chapter 4. 



233 
 

P2luc reporter plasmids were kindly donated by Dr Penny Feng (Wellcome Trust 

Institute, Oxford). The sequences cloned into the recording window were:  

 

Figure 7.4: Termination contexts used in the stop codon readthrough assays. 
TMVR: Tobacco Mosaic Virus replicase termination context where the wild type 
UAG stop codon has been substituted with a sense codon. TMV TGA: Tobacco 
Mosaic Virus replicase termination context where the UAG stop codon has been 
substituted with a UGA stop codon. TMV TAA: Tobacco Mosaic Virus replicase 
termination context where the UAG stop codon has been substituted with a UAA stop 
codon BYDV: Barley Dward Virus PAV Coat Protein Readthrough Termination 
Context. CFW1282* :Nonsense Mutation in the CTFR of a number of Cystic Fibrosis 
patients. 

 

7.4.9 ATF4 Translational Reporter Assay 

U2OS cells were siRNA transfected twice over 48 h with 25 nM eRF1 siRNA in 6 cm 

plates at 30 % confluence prior to trypsinisation and reseeded into 12 well plates (1 

ml/well at 105 cells ml-1). Concurrently, they were reverse transfected with 50 μl 

Optimem containing 450 ng of pGL3-ATF4 uORF plasmid, a reporter incorporating 

the uORF1/uORF2 motif in the ATF4 promoter coupled to the Firefly Luciferase 

gene, and 50 ng of pRL-CMV plasmid, a Renilla Luciferase containing plasmid 

coupled to a CMV constitutive promoter. The following day the media was removed 

and replaced with fresh. 48 h after transfection the cells were washed with ice-cold 

PBS, drained and lysed in 1x PLB. The Renilla and Firefly luciferase activities were 

then assayed as in the stop codon readthrough assay. Both plasmids used were kindly 

Name Sequence (5'-3') 
TMV R CAGGAACACAACAGCAATTACAG 
TMV TGA CAGGAACACAATGACAATTACAG 
TMV TAA CAGGAACACAATAACAATTACAG 
BYDV ACGTCTCCCAAAUGAGUAGAC 
CFW1282* ACTTTGCAACAGTGAAGGAAAGCCTTT 
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donated by Dr Gavin McNee. The same process as for stop codon readthrough assays 

was used to obtain measurements and analyse the Firefly/Renilla ratio. 

 

7.4.10 Establishment of stable cell lines 

Parental HEK293T cells were seeded into 6 well plates, 2 ml/well and transfected 

with the following transfection mix (per well): 100 μl Optimem, 500 ng lentiviral 

vector (pTIPZ), 150 ng pMD2 plasmid, 350 ng psPAX2 plasmid and 3 μl FuGene. 

The pMD2 and psPAX2 plasmids encode components of the viral capsid, allowing 

the transfected cells to package the lentiviral vector into viral particles. After 

incubation for 48 h, the supernatant containing the viral particles was diluted 1:2 with 

fresh media and sterilised through a 0.2 μm filter directly before adding to wells 

containing sub-confluent U2OS cells. After 48 h the media was changed to fresh 

media containing 1 μg ml-1 Puromycin and antibiotic selection took place. 

7.4.11 Cell Microscopy 

The images in Figure 3.7 were obtained using a Nikon Eclipse TE200 Inverted 

Fluorescence Phase Contrast Microscope. The cells in Figure 3.8 were imaged using 

an EVOS AMB fluorescence microscope. 
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7.5 Protein Techniques 

7.5.1 Western Blotting 

Samples were electrophoresed on homemade 12 % polyacrylamide gels and 

transferred to PVDF membranes using wet transfer cassettes (320 mA, 25 

min/membrane). For gels with over 14 samples Criterion TGX precast gradient gels 

were used and transferred to PVDF membranes using the TransBlot Turbo Semi Dry 

Transfer System (BioRad). The membranes were blocked using PBS-Tween with 5 % 

(w/v) milk for 1 h and immunoblotted with the intended antibodies. For phospho-

sensitive blots 5 % BSA in TBST was instead used for blocking and antibody 

dilutions. Blots were imaged using a Vilber Lourmat 

Chemilluminescence/Fluorescence GelDoc System. 
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Antigen Antibody Source Cat. # Dilution 
eRF1 Mouse 

Polyclonal 
Santa Cruz Biotech sc-365653 1:1000 

JMJD4 Mouse 
Monoclonal 

University of Oxford 
(Produced by Dr Helen 
Turley) 

N/A 1:50 

ATF4 Rabbit 
Monoclonal 

Cell Signalling 11815 1:1000 

β-Actin Mouse 
Monoclonal 

Abcam ab8227 1:20000 

FLAG  Mouse 
Monoclonal 

Sigma-Aldrich F3165 1:3000 

HA Mouse 
Polyclonal 

Roche 12CA5 1:10000 

CTH Rabbit 
Monoclonal 

Santa Cruz Biotech sc-374249 1:1000 

TCP1-γ Rabbit 
Polyclonal 

Santa Cruz Biotech sc-33145 1:1000 

eIF2a Rabbit 
Monoclonal 

Cell Signalling 9722 1:1000 

Phospho-
eIF2a 

Rabbit 
Monoclonal 

Cell Signalling 9721 1:1000 

GTF2I Rabbit 
Polyclonal 

Bethyl Laboratories A301-330A 1:1000 

HEMK2 Rabbit 
Polyclonal 

GeneTex GTX32649 1:200 

 

Antibody Source Cat. # Dilution 
Goat anti-Rabbit IgG, HRP-linked Cell Signalling 7074 1:2000 
Horse anti-Mouse IgG, HRP-linked Cell Signalling 7076 1:2000 
 

Figure 7.5: List of antibodies used in this thesis. A) Primary Antibodies B) 
Secondary antibodies 

 

 

 

 

 

A 

B 
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7.5.2 Immunoprecipitation 

i. FLAG-tagged JMJD4: The procedure was performed on cells from 6 well 

plates for overexpression experiments and 15 cm plates for endogenous 

interactions. Cell cultures were washed using cold PBS and harvested with 

ice cold JIES lysis buffer containing 1 mM N-oxalylglycine (NOG) and 

protease inhibitors. The samples were then centrifuged at 4 °C for 5 min at 

14000 rpm on a Micro200R Hettich centrifuge, an aliquot of the 

supernatant was retained and Laemmli sample buffer added. M2 anti-

FLAG magnetic beads were washed 4 times with 1 ml cold JIES using a 

magnetic stand and incubated with the remaining supernatant on a rotating 

wheel overnight at 4 °C. The supernatant was discarded and the samples 

washed 4x with 1 ml JIES + NOG + protease inhibitors and then boiled 

with 2x Laemmli buffer for 5 min.  

ii. HA-Tagged JMJD4/V5-Tagged GTF2I: the procedure was as above with 

the substitution of α-HA and α-V5 beads, respectively, with additional 

centrifugation steps since the beads used were not magnetic. 

 

7.5.3 In vitro Transcription/Translation 

In vitro Transcription/Translation (IVTT) was performed using the TNT Quick 

Coupled Transcription/Translation kit (Promega, Cat.# L1170) as per the 

manufacturer’s instructions. The plasmids used were pCDNA3 expressing full length 

M. musculus V5-GTF2I and pCDNA3 expressing H. sapiens isoform 2 V5-GTF2I. 
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7.5.4 Mass Spectrometry 

Operation of the Instrument was performed by Dr Cleidiane Zampronio (Advanced 

Mass Spectrometry Facility, University of Birmingham) for determination of band 

identity in the TCP1-γ experiments and Dr Rebecca Konietzny (Proteomic Group, 

University of Oxford) for the GTF2I mass-spectrometry based PTM identification. 

7.5.4.1 Protein ID by LC-MS/MS analysis (Gel sample) 

Protease digestion 

Samples from HEK293T cells modified to stably contain and express pIPZ Empty 

Vector, pIPZ FLAG-JMJD4 and pIPZ FLAG-JMJD4 H189A were 

immunoprecipitated using M2 Magnetic anti-FLAG resin, and the resulting samples 

electrophoresed on an 8-16% NuView polyacrylamide gradient gel. The gel was then 

stained with Coomassie, relevant bands identified, excised and sent for identification 

to the Birmingham Proteomics Facility. The total amount of protein used for the 

digestion was 100 μg, corresponding to ~10μl of sample volume. To that, 40 μl of 100 

mM ammonium bicarbonate (pH 8) were added. Following ammonium bicarbonate 

addition 50 µL 10 mM dithiothreitol (DTT) were further added and the samples 

incubated at 56 ˚°C for 30 mins. Samples were then cooled to room temperature and 

50 µl of 50 mM iodoacetamide was added in order to alkylate cysteines, after which 

the samples were incubated at room temperature in the dark for 30 mins. Finally, 25 

µl of 6 ng/µl Trypsin Gold (Promega) or Elastase (Promega) were added to each 

sample, followed by 37 ˚C overnight incubation.  
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LC-MS/MS Experiment 

After having undergone tryptic digest, the peptide samples were separated and 

concentrated using a Dionex UltiMate 3000 Ultra Performance Liquid 

Chromatography. The purified samples were subsequently bound on a Dionex 

uPrecolumn Cartridge (Acclaim PepMap 100 C18, 5 μm, 100 Å 300 µm i.d. x 5 mm) 

and gradient separated using a 75 µm Nano Series™ Standard Columns (75 µm i.d. x 

15 cm, packed with C18 PepMap100, 3 µm, 100 Å pore size) (Dionex) by eluting 

with a 3.2 % to 44 % ratio of 0.1 % methanoic acid in acetonitrile solvent for 30 min. 

A Triversa Nanomate nanospray source (Advion Biosciences) was used to directly 

elute peptides into an LTQ Orbitrap Elite ETD mass spectrometer (ThermoFisher 

Scientific) at a flow rate of 350 nL min-1. Following an initial full FT-MS scan 

between m/z 380 – 1800), the top 7 peptides were subsequently selected and analysed 

via collision-induced dissociation (CID) MS/MS. The Xcalibur 2.1 software package 

was utilised for analysis of the raw scanning data. 
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7.5.4.2 Post-Translational Modification via MS 

Following tryptic or elastase digest, desalted samples were analyzed by nLC-MS/MS. 

A Dionex UltiMate 3000 Ultra Performance Liquid Chromatography (UPLC) system 

(250 nl/min flowrate) (Thermo-Fisher Scientific) was used as frontend separation. 

Peptides were separated using a PepMAP C18 column (75 μm × 500 mm, 2 μm 

particle size) and a one-hour gradient of 2-35 % Acetonitrile in 5 % DMSO/0.1 % 

formic acid. The MS and MS/MS scan modes were FT-ICR/Orbitrap in both cases, 

using an ESI (nanospray) ion source and CID/CAD fragmentation mode. 

The PEAKS 7.0 (Bioinformatics Solutions) engine was used to search for PTMs, set 

to parent Mass Error Tolerance of 10.0 parts per million (ppm) and a fragment Mass 

Error Tolerance of 0.05 Da. Precursor Mass Search Type was set as monoisotopic. 

Deamidation, carbamidomethylation, ubiquitination and hydroxylation were all 

recorded but only hydroxylation is presented here. Of these, Carbamidomethylation 

on Cysteine was selected as a fixed modification, while Oxidation (M), Deamidation 

(N, Q) and Hydroxylation (P, K, D, N, R, Y) were selected as variable modifications 

for the database search. The peptide false discovery rate was set to 1 % as part of a 

target/decoy fusion approach. Peptide abundance was measured as accumulated ion 

counts after extraction of the chromatographic elution profile of the precursor mass of 

interest using Qual Browser, Xcalibur 3.0.63 (Thermo-Fisher Scientific). 
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