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Abstract

This thesis is devoted to the construction, optimization and characterization of an experimental appa-

ratus, capable of creating spinor condensates of ' 1 × 105 atoms with a repetition rate of 10s, using

an all-optical evaporation technique. I report a complete description of the experimental apparatus and

techniques used in the experiment and a characterization of the BEC sample. We study the transmission

of absorption imaging pictures through a coherent fiber bundle. We show that the fiber bundle introduces

spurious noise in the picture mainly due to the strong core-to-core coupling. We demonstrate that we can

retrieve exact quantitative information about the atomic system using this technique. We also explore

the equilibration dynamics of ferromagnetic spin-1system as a function of the initial magnetization of

the sample and the external magnetic field. We show that the magnetization of the system is conseverd

despite of the presence of dissipative processes that are intrinsic to any experiment. We investigated the

formation of the BEC in a spin-1 quantum gas in the presence of an external magnetic field. We report

on the spontaneous magnetization of the condensate fraction during the evaporation process at low mag-

netic fields. We as well observe multi-step condensation, and found signatures of a possible interspecies

Feshbach resonance.
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INTRODUCTION

At temperatures close to the absolute zero, the wave nature of particles becomes apparent and quantum

mechanics plays a dominant role. In this regime, bosonic particles occupy macroscopically the lowest

energy state and a phase transition to the Bose-Einstein condensate occurs. Below the critical temperature

(Tc) of such transition the dynamic presents coherence and collective behaviour, and the condensate can

be described by a macroscopic wave-function that is given by the product of N identical single-particle

wave-functions in their ground state, Φ(~x) =
∏
i φi(~x). This scalar function characterizes the condensed

phase of the system, and it is zero above Tc.

The experimental realization of Bose-Einstein condensates was pursuit for many years since the early

1970’s, especially in liquid Hydrogen, but it was not finally achieved until 1995 by [1] and [2] in dilute

atomic gases of Rubidium and Sodium respectively, and in Hydrogen finally in 1998 [3]. These first

experimental realizations of Bose-Einstein condensation were possible in dilute atomic gases due to the

advances carried out in the 1980’s in the field of laser cooling and magnetic trapping of neutral atoms.

The first manipulation of suspended particles using radiation pressure is due to A.Ashkin in 1970 [4],

and the first observation of optically trapped atoms was at Bell laboratories [5] in 1986. These advances

are summarized and historically reviewed in the Nobel lectures given by S.Chu [6], C.Cohen-Tanoudjii

[7] and William E.phillips [8] in 1998 and by W.Ketterle [9] later in 2002. It is important to emphasize

the work of Pritchard in the study of collisions and relaxation processes in these cold atomic systems.

It allowed to understand and optimize the cooling process for different atomic species. Multicomponent

condensates started to be investigated in 1997 at Jila [10], where two Bose-Einstein condensates of 87Rb

particles in different hyperfine states of the F = 1 and F = 2 manifold where mixed [11]. Unlike magnetic

traps, optical traps are not sensitive to the magnetic sublevels of the atoms, and condensation can be

achieved using only optical means [12]. This allows the formation of spinor condensates, with a richer

physical picture due to the interplay between the different componenets of the system. Indeed, if the

particles within the condensate belong to different states, they can not be described by the same particle

wave-function. In case these condensates possess an internal degree of freedom they are called spinor

condensates and their wave-function is a spherical tensor in spin space [13, 14].
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Thesis overview

This thesis describes the steps that I have followed to build an experimental apparatus to study spinor

condensates of 87Rb atoms. At the time I started working in this project, the research direction was

set towards the construction of an experimental setup to produce spinor Bose-Einstein condensates of

87Rb atoms in ultra-low magnetic fields (∼nT), aiming to look for signatures of magnetic dipole-dipole

interactions (DDI) [15–18]. DDI are due to the permanent magnetic moment of alkali atoms and present

interesting properties such as long-range order and anisotropy [19]. The magnetic DDI energy can be

expressed as:

Udd = Add
~F1 · ~F2 − 3(~F1 · r̂)(~F2 · r̂)

(~r · ~r)3/2
(1)

where Add is a constant which depends on the atomic specie. ~F1,2 are the spin vectors of two interacting

particles, and ~r is the relative position vector between the two. The need to work in such ultra-low

magnetic field regime arises because 87Rb possess a small permanent magnetic moment of µ = 1µB

compared with other species like Dy(µ = 10µB) or Er (µ = 7µB). Therefore, the effects of the DDI

interactions (∼ h× 1Hz) are completely ruled out by the Zeeman shift of the levels in the presence of a

non zero magnetic field (' h× 7× 109 Hz/T).

The process of building an experimental apparatus to produce spinor BEC in ultra-low magnetic fields

was really challenging. The system had to be designed according to stringent constrains, for example

the materials of the vacuum chamber and the optical elements surrounding the chamber had to be

non-magnetic, and special fibers with non-magnetic connectors were purchased. Additionally, a custom

science cell was bought with a long arm (≈ 30cm) capable of accomodating several layers of µ−metal

shielding around it. All these special features of our system have consequences on the planification of

light delivery to the experiment, the accommodation of a compatible imaging system in a reduced space

and many other technical considerations. Shortly after the project started, Bose-Einstein condensation

of Dy and Er atoms were achieved [20, 21]. These species are more suitable to study dipolar effects in

quantum degenerate gases than 87Rb , due to their larger magnetic moment. Another major event during

the time I spent in this project was a change of supervisor. Dr. Giovanni Barontini become the PI in

our project. Although the goal of building a state of the art experiment to produce spinor condensates

persisted, due to the advances that other groups had in cooling highly magnetic species, the research

direction was modified. The main focus is now on the spinor dynamics of the system, and we are looking

at implementing a Digital Mirror Device (DMD) to imprint different phases on the the condensate to

study vortex dynamics and use the system as a simulator of complex quantum processes.
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The setup comprises a double 2D-3D MOT system to collect and pre-cool the atoms in the glass cell

before they are loaded into the dipole trap. The path towards quantum degeneracy is all-optical, and

exploits a crossed dipole trap. The all-optical technique and the use of a glass cell permits to have a good

optical access. This gives our experiment the flexibility to accomodate different optical elements around

it, such as high resolution imaging optics. New experimental paths can be implemented quickly and with

simplicity.

The second part of the thesis is dedicated to present the first experimental results obtained with

the setup that I built. Within the spirit of the first experimental proposal, we have investigated the

transmission of absorption imaging pictures through a fiber bundle. Additionally we have explored the

thermalization dynamics and the formation of spontaneous magnetization in ferromagnetic spin-1 systems

in presence of an external magnetic field.

The thesis is organized in the following way:

• To put our research into context and provide the necessary theoretical background to understand the

techniques and results presented through this thesis, Chapter 1 reviews the mean field description

of weakly interacting Bose-Einstein condensates, and its generalization to the multicomponent spin-

1 case.

• Chapter 2 contains the detailed description of the experimental setup that I built, and all the

techniques that I have used to create a Bose-Einstein condensate. I will describe the vacuum

system, the computer control that I have implemented, the laser systems and the detection scheme.

A brief overview of the laser cooling theory is also presented here.

• In Chapter 3 I present the experimental sequence for the realization of spin-1 Bose-Einstein

condensates of 87Rb . This represents the fundamental milestone of my thesis work and it is the

starting point for all subsequent results achieved. I will present and discuss the evaporation in

the crossed beam configuration and I dedicate the last section to present and discuss the most

important measurements that characterize the BEC.

• Chapter 4 is dedicated to the first results obtained with this experimental setup: an investigation

of the transmission of absorption images of the BEC through a fiber bundle.The contents of this

chapter have been published in [22].

• Chapter 5 contains the results of our investigation of the equilibrium state of a ferromagnetic spin-

1 system in an external magnetic field. The study of the thermalization properties of the system is

3



importat to confirm that we are accessing the true equilibrium state, and it has been investigated

with detail.

• In Chapter 6 I will present the preliminary investigation of the spontaneous magnetization of a

spin-1 87Rb condensate in an external magnetic field. We have investigated the process of the BEC

formation during the forced evaporation when this is realized in the presence of an external magnetic

field up to ' 40G. Although preliminary, we have already observed some interesting phenomena

that will be subject to further investigations.
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CHAPTER 1

THEORETICAL BACKGROUND

Spinor quantum gases are characterized by possesing an internal degree of freedom, which corresponds

to the orientation of the spin. As a consequence, the order parameter describing the system is not a scalar

but a multicomponent or vectorial order parameter. Under rotations, they transform according to the

laws of the symmetry group they belong to. This means that the particle number of each substate is

not fixed, offering a richer dynamics than the scalar condensates. They also differ from multicomponent

quantum gases. The latter ones are formed of Bose-Einstein condensates in different hyperfine manifolds

[23], with different species [24], or even condensates formed in spatially separated locations which are later

brought together [25]. In atomic Bose-Einstein condensates, spinorial samples are typically created by

forming the condensate in all the different Zeeman substates of the corresponding hyperfine manifold. The

non-linear and complex coupling induced by the interactions between the different hyperfine substates

introduces interesting properties to the dynamics, and the enhancement of the interaction energy due

to the macroscopic occupation of the ground state can compete with the kinetic energies that usually

dominate the behaviour of such systems.

Since the achievement of Bose-Einstein condensation in 1995 [26], the study of spinor condensates was

a natural next step to follow. Early theoretical work are the seminal papers from Ho [27] and Ohmi

and Machida [28]. More theoretical work on spinor BECs can be found in [29, 30]. The experimental

work on spinor condensates was first stablished at MIT, where they studied the spin-domain dynamics

of a Spin-1 condensate [31–33] creating magnetically trapped condensates of Na atoms which were later

transfered into an optical dipole trap. Spin domain dynamics was further studied theoretically [34, 35] and

experimentally [36–38]. These systems provide a good ground to study non-equilibrium physics [39–42].

The realization of higher spin-F quantum gases have been achieved for spin-2 using 87Rb in the |F = 2〉

hyperfine manifold [43], and spin-3 with 52Cr [44]. The all-optical evaporation technique developed at

Georgia University [12], allows to directly condense the atoms independently of their internal magnetic
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state, allowing for a faster and more direct route to create spinor samples. Since then, several experiments

have explored the spin mixing collision phenomena giving rise to spin oscillations [45, 46], spin squeezing

and entanglement [47–49]. Also, spinor vortices [50] and solitons [51] have been observed. The ground

state properties of spin-1 condensates have been subject of many theoretical [52–54] and experimental

[55–57] studies.

Another interesting regime is when the system is in the ultra-low magnetic field regime. For the

particular case of 87Rb , the dipole-dipole interactions ' h× 1Hz, while the Zeeman shift of the levels is

' h× 109Hz/T. The DDI are predicted to play a major role in determining the ground state properties

in a regime where the Zeeman splitting is comparable to the interaction energy i.e for magnetic fields

'pT-nT. Dipolar effects and quantum magnetism are predicted to appear under certain conditions in a

number of theoretical works [58? –61].

In this chapter, I will introduce the basic theory supporting the rest of this work. The single-particle

quantum mechanical description of the 87Rb atoms in the presence of a static and time dependent mag-

netic field is reviewd. The basic theory of scalar Bose-Einstein condensation in the mean field approxi-

mation is presented before generalizing the description to the case of multicomponent spin-1condensates.

1.1 Energy level structure of 87Rb and spin-1 physics

Rb is an alkali mtetal with two natural isotopes, 85Rb and 87Rb. We will concentrate on 87Rb . It has

Z = 37 electrons and N + Z = 87 nucleons, where N is the number of neutrons. Its principal quantum

number is n = 5, and it has a single valence electron. The interaction of this outer electron with the

nuclear spin, and the angular momentum of the whole atom will give rise to the fine energy level structure.

The nuclear spin is I= 3/2 the ground state is n2s+1LJ → 52S1/2, where L is the angular momentum of

the atom, S is the spin of the outermost electron. The spin orbit coupling between the spin of the last

electron and the magnetic field created by its movement around the core makes it convenient to introduce

the quantum number J = L+S, that can take the values 1
2 +{0, 1, 2...} = { 1

2 ,
3
2 ....}. This means that the

first two excited states of 87Rb are 52P1/2 and 52P3/2. And the corresponding transitions from the ground

state to the latter ones are called D1 and D2 lines respectively. Under this description, the projections

mJ corresponding to the eigenvalues of the Jz operator are degenerate. The coupling between the spin of

the atom and the spin of the nucleus I lifts the degeneracy and gives rise to the hyperfine level structure,

characterized by the total angular momentum

F = I + J with |J − I| ≤ F ≤ J + I in integer steps
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The energy shift of this coupling mechanism for the ground state of 87Rb is ∼ 6.8GHz, while for the

first excited states is ∼300MHz. The states are labelled by the quantum numbers |I, J, F,mF 〉. The

different hyperfine levels can be calculated [62]

∆Ehfs =
1

2
KAhfs +Bhfs

3
2K(K + 1)− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
(1.1)

+ Chfs
5K2(K/4 + 1) +K[I(I + 1) + J(J + 1) + 3− 3I(I + 1)J(J + 1)]− 5I(I + 1)J(J + 1)

I(I − 1)(2I − 1)J(J − 1)(2J − 1)

(1.2)

Where Ahfs is the magnetic dipole constant, Bhfs is the electric quadrupole constant, Chfs is the

magnetic octupole consatant and K = F (F + 1)− I(I + 1)− J(J + 1). The corresponding levels for the

D2 line of 87Rb are depicted in figure 1.1.

The single atom Hamiltonian describing the interaction with an external magnetic field is

ĤB =
µB
~

(gSS + gLL + gII) ·B (1.3)

where gS , gL and gI are the electron spin, orbital and nuclear g-factors, and µB is the Bohr magneton.

The presence of an external field induces a shift in the energy levels of the atom. If the energy shift is

small compared to the hyperfine energy splitting, F is a good quantum number and the Hamiltonian can

be written

H = µBgF ·
(
Bxfx +Byfy +Bzfz

)
(1.4)

where (fx, fy, fz) = ~F are the spin-1 pauli matrices

fx =
1√
2


0 1 0

1 0 1

0 1 0

 fy =
i√
2


0 −1 0

1 0 −1

0 1 0

 fz =


1 0 0

0 0 0

0 0 −1

 (1.5)

In the case of a magnetic field oriented along the ẑ quantization axis ~B = Bz ẑ, the Hamiltonian is

ĤB = gFµBfzBz, which lifts the degeneracy of the energy levels corresponding to the mF projections of

the quantum operator Fz as shown in figure 1.3.

∆E|F,mF 〉 = gFµBmFBz = −1

2
µBmFBz = −~p (1.6)
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Energy level structure of the D2 line 
of 87Rb

5 2S1/2

5 2P3/2

F=1

F=2

F'=0

F'=1

F'=2

F'=3

780.241209686(13) nm

193.7407(46) MHz

72.9112(32) MHz

156.9470(70) MHz

72.2180(40) MHz

2.56300597908911(4) GHz

4.27167663181519(6) GHz

gF=2/3

gF=1/2

Δ1

Δ2

gF=-1/2

Figure 1.1: Energy levels representation of the D2 atomic line transition in 87Rb. The values of the
transitions are taken from [62]. The two transitions used for laser cooling are indicated with the dashed
arrows. gF indicates the Landé factor of the levels.
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whith p = µBBz
2~ . In the case of alkali atoms in the L = 0 states with J = 1

2 , as 87Rb atoms in the

|F = 1〉 manifold, the so-called “Breit-Rabi” formula allows to diagonalize the Hamiltonian in equation

1.3 and obtain analytical results for the energy levels for the case of bigger fields. The analytical expression

can be found in [62]

E+1 = −Ehfs
8
− gIµIBz −

Ehfs
2

√
1 + x+ x2 (1.7a)

E0 = −Ehfs
8
− Ehfs

2

√
1 + x2 (1.7b)

E−1 = −Ehfs
8

+ gIµIB −
Ehfs

2

√
1− x+ x2 (1.7c)

where x = gIµIB+gJµBB
Ehfs

.

Another important situation is the presence of a time varying small magnetic field in one of the

perpendicular x̂, ŷ directions, like the one produced using a small radio frequency antenna, for instance

~B = Brf cos
(
ωrf · t

)
x̂. Usually, such fields are small enough to be treated well within the linear regime.

Therefore, the Hamiltonian can be expressed

Ĥrf = −gFµBBrf cos
(
ωrf · t

)
fx (1.8)

The total Hamiltonian H = HB +Hrf up to linear terms reads

Ĥ = ~


−p gFµBBrf

~
√

2
cos
(
ωrf · t+ φ

)
0

gFµBBrf
~
√

2
cos
(
ωrf · t+ φ

)
0

gFµBBrf
~
√

2
cos
(
ωrf · t+ φ

)
0

gFµBBrf
~
√

2
cos
(
ωrf · t+ φ

)
p

 (1.9)

This Hamiltonian describes the Zeeman energy shift of the ground state levels of the atoms ∝ fz, and

a coupling between the mF energy levels induced by the time varying field ∝ fx.

If |φα〉 forms a complete orthogonal basis, in the Schrödinger picture the state vector describing the

quantum state of a system |ψ〉 =
∑
α cα |φα〉, evolves according to the Schrödinger equation

9
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Figure 1.2: In a) a plot of the energy of the Zeeman substates of the |F = 1〉 manifold of 87Rb as a
function of the magnetic field. In figure b), a comparison between the linear and quadratic part of the
Zeeman shift. As we can appreciate, for magnetic fields ∼ 1G, the linear shift is more than 4 orders of
magnitud bigger than the quadratic shift.
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B = 0 B = Bz

F = 1

mF = +1

mF = 0

mF = -1

Δ

Wrf

q

Δ

pWrf

p

Figure 1.3: Pictorial representation of the Zeeman splitting of the 87Rb |F = 1〉 manifold in the presence
of an external magnetic field. p, q indicate the linear and quadratic zeeman shifts of the levels. Ωrf refers
to the Rabi frequency coupling strength between the levels due to an oscillating magnetic field, with ∆
being the detuning of the oscillating field with respect to the transition energy ∆ = ~p− ~ωrf .

i~
d |ψ〉
dt

= Ĥ |ψ〉 → i~



..

..

∂tcα

..

..


= Ĥ



..

..

cα

..

..


(1.10)

To better understand the dynamical behaviour of the atom under the Hamiltonian in Eq. 1.9 it is

convenient to use the interaction picture. In this picture, we transform the coordinate system into a

rotating frame at the frequency ωrf in order to remove the time dependence of the Hamiltonian. The

transformation that we will use is given by the unitary operator

T =


1 0 0

0 eiwrf t 0

0 0 e2iwrf t

 (1.11)

The Hamiltonian transforms according to Ĥ ′ = T−1
(
Ĥ − i~dT

−1

dt

)
T . The Hamiltonian resulting
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from this transformation is time independent under the rotating wave approximation1 (RWA), and can

be written as

Ĥ = ~ ·


−∆

Ωrf√
2

0

Ωrf√
2

0
Ωrf√

2

0
Ωrf√

2
∆

 (1.12)

Where ∆ = ~p − ~ωrf is the detuning between the energy levels splitting and the energy of the

coupling field, and Ωrf =
µBBrf

~2 is the Rabi frequency that characterizes the coupling strength between

the levels, as depicted in figure 1.3

The time evolution of the atomic state under this Hamiltonian gives rise to the so-called Rabi os-

cillations. The probability of an atom to be in each mF state is given by solving the corresponding

Schrödinger equation

i~
d |ψ〉
dt

= H |ψ〉 → |ψ(t)〉 = |ψ(t = 0)〉 e− i
~Ht (1.13)

Two simple cases are considered here because they are of practical use in the experiment. I will

consider the initial samples to be completely magnetized i.e all the atoms populating the mF = +1 state,

or to be completely polarized, meaning that all the atoms populate the mF = 0 state.

To find analyticall solutions we solve the system of coupled differential equations

i~


∂tc+1

∂tc0

∂tc−1

 = ~ ·


−∆

Ωrf√
2

0

Ωrf√
2

0
Ωrf√

2

0
Ωrf√

2
∆




c+1

c0

c−1

 (1.14)

with initial conditions (c+1, c0, c−1) =
{

(1, 0, 0), (0, 1, 0)
}

. The solutions are found using standard

linear algebra methods. In particular, for the simpler case of the polarized sample, the system behaves

as an effective two-level system due to the symmetry of the initial conditions. The pobabilities of finding

1The RWA is a general procedure to simplify time dependent Hamiltonians discarding the terms whose contribution to
the dynamics, within the relevant timescales of the problem, can be averaged to zero. It is widely used in the light matter
interaction problem when the detuning of the light from the transition of interes is sufficiently large.
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an atom in each substate are [63]:

c2+1 = c2−1 =
1

2

Ω2

Ω2
eff

sin

(
Ωeff t

2

)2

(1.15a)

c20 = 1− Ω2

Ω2
eff

sin

(
Ωeff t

2

)2

(1.15b)

where Ωeff =
√

Ω2
rf + ∆2. On the other hand, for the case of the magnetized sample, the solution is

found as in [64]:

c2+1 =
Ω4

Ω4
eff

sin4(
1

2
Ωeff t) (1.16a)

c20 =
1

2

[
4∆2Ω2

Ω4
eff

sin4(
1

2
Ωeff t) +

Ω2

Ω2
eff

sin2(Ωeff t)

]
(1.16b)

c2−1 = 1− c2+1 − c20 (1.16c)

In figure 1.4 I have plotted the probabilities of each Zeeman substate with the same initial conditions

(1, 0, 0) for different detunings {a),c),e)} and different Rabi frequencies with a fixed detuning {b),d),f)}.

In the case of different detunings (left column), we can observe how at ∆ = 0, the population is fully

transfered from the |mF = +1〉 → |mF = −1〉 with a frequency Ωrf . As the detuning increases, the

population transfer to the |mF = −1〉 is never complete, and some atoms remain in the |mF = 0〉 state.

The frequency of the oscilations in the probability distribution increases with the detuning, because

Ωeff =
√

∆2 + Ω2
rf . For the case of fixed detuning and increasing Ωrf (right column), the population

transfer from the |mF = +1〉 to |mF = −1〉 is always the same, but as Ωrf increases, the transfer occurs

faster.

1.2 Spin-1 Bose-Einstein condensation

Up to now, the physical description of single spin-1 atoms have been reviewed. Now we will consider what

happens in the many particle regime. I will first review the basic concepts of single species Bose-Einstein

condensation, which we will extend to the spin-1 case.

In this section I will review the theoretical description of a Spin-1 condensate. The collisional prop-

erties of the Zeeman sub-states determine the ground state properties of the spin-1 gases. They can

be classified into ferromagnetic or antiferromagnetic depending on the sign of c2 that is related to the
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Figure 1.4: Theoretical plots of Rabi oscillations. The blue, red and magenta lines correspond to the
mF = +1, mF = −1, and mF = 0 states respectively. In the left column, typical Rabi oscillations for
different values of the detuning are shown. On the right column, the detuning is constant, and the rabi
frequency is increased.
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difference between the scattering lenghts associated with the two collisional channels present on the sys-

tem. In the case of 87Rb , the spin dependent interactions make c2 < 0, that in turns determine the

ferromagnetic character of its ground state. This has been confirmed by several groups [43, 65, 66]. First,

I will introduce the most general description of the system using the second quantization language. We

will use the Mean-Field (MF) approximation to simplify the description. I will mainly follow [27, 28].

For a review on the subject with a more advanced and detailed mathematical description, see [67]. The

Single-Mode-Approximation will be discussed, which consists in assuming that the three components of

the order parameter share the same spatial wavefunction. This approximation can be made when the

size of the condensate is less than the spin healing length ξs =
√

~
2mc2n

[68].

1.2.1 Overview of Bose-Einstein Condensation

It is known that a system of bosons at temperature T is well described using the grand canonical ensemble,

with the partition function and number of atoms given by

Z =
∏
i

1

1− ze−βεi
(1.17a)

N =
∑
i

ze−βεi

1− ze−βεi
=
∑
i

Ni (1.17b)

where i runs over all energy levels of the system with energy εi, with Ni atoms occupying each level.

The reduced temperature is β = 1
kBT

, and the fugacity z = eβµ, with µ being the chemical potential. In

the case of a weakly interacting gas of bosons with N particles confined in a 3D harmonic potential, the

system undergoes a transition at a temperature Tc given by [69]:

kBTc = 0.94~ω̄ 3
√
N (1.18)

where ω̄ is the geometric average of the trapping frequencies characterizing the harmonic potential

and kB is the Boltzmann constant. Below this temperature, the occupation of the lowest energy state

becomes macroscopically large N0 ∼ N , while the occupation of the excited levels is Ni>0 ∼ 1. The total

number of atoms in the excited states is N −N0 = 1.202
(
kBT
~ω̄

)
.

The Hamiltonian of the system in the second quantization language is
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Ĥ =

∫
d~xψ̂†(~x)

(
−~2∇2

2m
+ Uext(~x)

)
ψ̂(~x) +

1

2

∫
d~xd~x′ψ̂†(~x)ψ̂†(~x′)V (~x− ~x′)ψ̂(~x′)ψ̂(~x) (1.19)

where Uext(~x) is the external trapping potential, m is the mass of the atoms, V (~x−~x′) is the interaction

potential between atoms in the condensate. In the case of low energy collisions, as it is the case, it can be

reduced to a contact potential of the form V (~x− ~x′) = gδ(~x− ~x′) with g = 4π~2a
m where a is the s-wave

scattering length. ψ̂†(~x) is the boson field operator that creates a particle in ~x.

The equations for the time evolution of the condensate wavefunction under the Heisenberg picture

can be obtained from the expression:

i~
∂ψ̂

∂t
=
[
ψ̂, Ĥ

]
(1.20)

The mean field approach to describe Bose-Einstein condensation was first stablished by Bogoliubov in

1974. Within this approximation, we replace the field operator by its expectation value φ(~x, t) = 〈ψ̂(~x)〉

i.e, replacing a complex quantum field by a classical field. φ(~x, t) is also called the order parameter of

the condensate. Following the previous relations, the scalar wave function of a Bose-Einstein condensate

is generally described in the mean field approach by the Gross-Pitaevskii equation:

i~∂tφ(~x, t) =

(
−~2∇2

2m
+ U(~x) + ~g|φ(~x, t)|2

)
φ(~x, t) (1.21)

The ground state of the condensate is derived following a variational approach from the energy func-

tional:

H =

∫
d3~x

φ∗(~x)

(
−~2∇2

2m
+ U(~x)

)
φ(~x) +

~g
2
|φ(~x)|4

 (1.22)

1.2.2 Mean-field description of a Spin-1 BEC

In the case of a spin-1 BEC, the interaction term in the Hamiltonian needs to be revisited, since the

different internal states interact with each other in different ways. This interaction between the particles

in the different substates plays a major role in the dynamics of the condensate. As in the case of the

scalar BEC considered before, we only consider two-body collisions in the s-wave scattering limit. This is

a valid assumption at low energies in dilute gases. Every particle in the system has an individual spin ~f .

When two atoms collide, the total angular momentum of the two-particle system is ~F = ~f1 + ~f2. In the

s-wave scattering limit and for bosonic particles, there are only two allowed scattering channels for total

spins F = 0 and F = 2. This can be deduced by symmetry arguments about the rotational symmetry of

the spin and the symmetry of the wave-functions with respect to the interchange of particles [67]. The
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general form of the interaction can be written as

Vint = δ(~x1 − ~x2)
2F∑
F=0

gFPF (1.23)

where PF is the projector of the subspaces of the total momentum space F, PF =
∑
mF
|F,mF 〉 〈F,mF |

[27]. For a system of f = 1 particles, V = g0P0 + g2P2. The projectors P0,2 can be written in terms of

products of the individual spin operators ~f1 · ~f2 [27]. Then it is easy to rewrite the interaction potential

as

Vint = δ(~x1 − ~x2)
(
c0 + c2 ~f1 · ~f2

)
(1.24)

where c0, c2 parameters describe the spin-independent and spin-dependent parts of the atomic inter-

actions. They are given by:

c0 =
4π~2

m

a0 + 2a2

3
(1.25)

c2 =
4π~2

m

a2 − a0

3
(1.26)

with a0, a2 being the s-wave scattering lengths of binary collisions with total spin F = 0, 2 respectively

(see Tab. 1.1). Using the second quantization formalism, the total Hamiltonian of a spin-1 Bose condensed

gas can be writen:

Ĥ =

∫
d~x

∑
i,j

ψ̂†i

(
−~2∇2

2m
+ Uext(~x)

)
ψ̂j +

c0
2
ψ̂†i ψ̂

†
j ψ̂jψ̂i +

c2
2

∑
α,i,j,k,l

(fα)i,j(fα)k,lψ̂
†
i ψ̂
†
kψ̂lψ̂j

 (1.27)

The field operator ψ̂i(~x, t) destroys a particle in the state i at position ~x. The subscripts i, j, k, l =

−1, 0,+1 specify the magnetic substate of the atom.

This Hamiltonian gives us already useful information about the system:

• The actual values of a0, a2 determine the ground state properties of the spin-1 BEC. When a0 >

a2 → c2 < 0. This favours a state in which the spin-dependent interaction term of the Hamiltonian

(equation 1.27) is maximized. This makes the ground state show ferromagnetic properties i.e it

favours the alignment of the spins in the same direction.

• On the other hand, for a0 < a2 → c2 > 0. And therefore, a state in which the spin-dependent
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interaction is minimized is more favorable. In this case the system will have antiferromagnetic

properties, and the more energetically favorable configuration will be that in which the spin of the

atoms are aligned in opposite directions.

• In the interaction term (second and third terms in equation 1.27) we can distinguish between two

types of collisions: intra-species and inter-species collisions, and spin-exchange collisions. In the

first kind, the two particles collide and exchange their internal angular momentum |f = 1,mf = i〉+

|f = 1,mf = j〉 ←→ |f = 1,mf = j〉 + |f = 1,mf = i〉. In the second case, the pair of atoms that

result from the collisional process have different internal angular momentum, while conserving the

total. This corresponds to collisions 2×|f = 1,mf = 0〉 ←→ |f = 1,mf = +1〉+ |f = 1,mf = −1〉.

These are called spin-exchange collisions.

• In 87Rb the mean-field energy associated with the spin-dependent part of the Hamiltonian |c2|n '

200pK for densities in the order of 1014cm−3. This energy scale is typically much smaller than the

temperature of the gas, or the scalar mean field energy, but nonetheless, it induces a non-negligible

coupling between the magnetic substates that induces a rich variety of dynamical trajectories of

the spinor condensates.

• The Uext potential represents the trapping potential, but it can be modified to include the effect of

external magnetic fields by adding UBext = −pm+qm2, where p, q represent the linear and quadratic

Zeeman terms, and m is the internal state of the particle.

The presence of an external magnetic field ~B, as mentioned above, has important consequences for

the evolution of the system. In the first place, it sets a quantization axis and lifts the degeneracy of

the Zeeman substates. It is convenient to choose the quantization axis to be along the ẑ direction. The

energy of each Zeeman state under such a field ~B = Bz ẑ, including the quadratic Zeeman effect is given

by EZeemanm = −pm+ qm2 with p = 1
2
µBBz

~ and q = p2

whfs
. We can check that the total number of atoms

and the magnetization, defined as

N =

∫
d~x
(
|ψ1|2 + |ψ0|2 + |ψ−1|2

)
(1.28)

M =

∫
d~x
(
ψ̂†i (fz)i,jψ̂j

)
=

∫
d~x
(
|ψ1|2 − |ψ−1|2

)
(1.29)

commute with the Hamiltonian in equation 1.27 [52]. Therefore they are conserved quantities. This

has important consequences. In principle, the Zeeman energy associated with the presence of an external

magnetic field is much higher than the spin-dependent mean-field energy. This means that the dynamics

18



87Rb 23Na

a0 101.8±0.2aB 47.36±0.8aB
a2 100.4±0.1aB 52.98±0.4aB

a2 − a0 -1.45±0.32aB 3.5±1.5aB

Table 1.1: Measured s-wave scattering lengths for 87Rb and 23Na. The direct values of a2, a0 have been
measured using molecular spectroscopy in [70] for 23Na and [65] for 87Rb . The value given for the
difference was inferred from measurements of the spin dynamics for 87Rb [46] and 23Na [31]. aB =
0.0529nm is the Bohr radius.

due to the spin-exchanging collisions should be suppressed unless the magnetic field present on the

system would be on the order of ∼ µG. Nevertheless, the conservation of the magnetization makes the

spin-mixing collisions the only path that the system can take to lower its energy in the presence of an

external magnetic field. This enhances this collisional processes and allows the observation of spin-mixing

dynamics for fields up to ' 100mG.

1.2.3 Dyamical equations and Single Mode Approximation

The dynamics of a spin-1 system can be derived as a set of three coupled equations by applying the

Heisengberg equation of motion to each ψ̂i separately

i~
∂ψ̂i
∂t

=
[
ψ̂i, Ĥ

]
for i = 0,±1 (1.30)

In the mean-field description, the dynamical equations for this three components order parameter are

i~
∂φ+1

∂t
= L+1φ+1 + c0nφ+1 + c2(n1 + n0 − n−1)φ1 + c2φ

∗
−1φ0φ0 (1.31)

i~
∂φ0

∂t
= L0φ0 + c0nφ0 + c2(n1 + n−1)φ0 + 2c2φ

∗
0φ+1φ−1 (1.32)

i~
∂φ−1

∂t
= L−1φ−1 + c0nφ−1 + c2(n−1 + n0 − n+1)φ−1 + c2φ

∗
1φ0φ0 (1.33)

where L±,0 =
(
−~2∇2

2m + Uext±,0

)
. n is the total density and ni is the density of each spin component.

Some remarks from the above equations:

• The first two terms of the rhs of these equations describe the spin-independent part of the dynamics,

accounting for the spatial dynamics of the wave-function.

• The third term couples the spatial dynamics of the three components.

• The last term drives the coherent spin-mixing dynamics of the system, leading to population ex-
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change between different spin components.

A great simplification of the above equations is possible if we assume that the spatial degrees of

freedom are not coupled to the spin degrees of freedom [68]. The assumption is valid when the spin

dependent energy is small compared to the spin independent energy. The criterion can be expressed in

terms of the spin healing length. The SMA approximation will be valid if the size of the condensate is

smaller than the spin healing length RTF < ξs. This can be expressed formally writing the spinor order

parameter as a product of two decoupled functions:

φi = φ(~x)e−
iµt
~ χi(t), subject to the normalization |~χ|2 = 1, and

∫
d~x|φ(~x)|2 = N (1.34)

where µ is the chemical potential and ~χ is the internal state vector. We can substitute this ansatz into

equation 1.33. Then, we can solve separately the spatial and internal dynamics. The spatial wave-function

can be found using the same methods that are applicable to the scalar Bose-Einstein condensates. For

the spin-dependent part, we arrive at the coupled equations [46]:

i~∂tχ1 = E1χ1 + c (ρ1 + ρ0 − ρ−1)χ1 + χ2
0χ
∗
−1 (1.35)

i~∂tχ0 = E0χ0 + c (ρ1 + ρ−1)χ0 + 2χ∗0χ−1χ1 (1.36)

i~∂tχ−1 = E−1χ−1 + c (−ρ1 + ρ0 + ρ−1)χ−1 + χ2
0χ
∗
1 (1.37)

with ρi is the fractional population of each spin component and c = c2
∫
d~x|φ(~x)|4.
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CHAPTER 2

EXPERIMENTAL SETUP

In this chapter I will present a detailed description of the experimental apparatus that I have built

during my time in this project. The main building blocks of the setup are the vacuum system, the laser

system and the computer control. The vacuum system is formed by two different vacuum chambers that

are connected through a differential pumping stage, the 2D MOT chamber and the science chamber.

The atoms are collected in the 2D MOT chamber before we push them to the science chamber where we

cool them using standard laser cooling techniques to 50µK in a 3D Magneto Optical Trap (MOT) before

transfering them to an optical dipole trap, where we perform evaporative cooling to achieve condensation.

The chapter is organized as follows. In section section 2.1 I give a brief overview of the laser cooling

and trapping techniques to better understand the requirements of the experiment. In section 2.2 I will

describe the vacuum setup. I will explain the need of using two chambers, the differential pumping stage

that we implemented and the sealing technique that we used. In section 2.3 I will present with detail

the laser system used to cool, trap and probe the atoms, including the locking techniques required for

tuning and stabilization of their frequency. Here I will also describe the laser system used for the optical

dipole trap (ODT), which is composed of two different wavelengths. Section 2.5 is dedicated to describe

the detection scheme and to present the absorption imaging technique that we use to acquire information

about the atomic sample. To finalize, section 2.6 gives an overview of the computer control system and

software implemented in the experiment.

2.1 Laser cooling

Light-matter interaction at the single atom level is a very complex quantum mechanical problem that I do

not intend to cover here. For the purposes of this thesis, we just need to understand how we use coherent

light to manipulate the external and internal degrees of freedom of the atoms. Let’s consider an atom

with only two levels, a ground state represented by |0〉 and an excited state |1〉. When the atom absorbs
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a photon with energy ~ω corresponding to the transition energy between |0〉 → |1〉 and momentum ~~k,

it acquires a recoil momentum ~precoil = −~~k in the opposite direction of the propagating photon. The

change of momentum is equivalent to a force that pushes the atom in the opposite direction. After

absorbing the photon, the atom will re-emit it in a random direction and decay to its ground state. This

decay process has a natural lifetime τ associated with it. The lifetime depends on the atomic properties

and the particular transition which has been excited. Associated with the lifetime, the linewidth of the

transition is defined as Γ = τ−1. For the D2 line of 87Rb has a value of Γ = 2π ·6.0666MHz [62]. When the

absorption/emission process occurs many times, there is a net force applied to the atoms in the direction

of the wave-vector ~k of the photons:

Fsc = Rsc~~k (2.1)

where Rsc = Γ
2

I/Is
1+4(∆/Γ)2+(I/Is)

is the scattering rate. Γ is the linewidth of the transition, ∆ = ω−ω0

is the detuning of the light from the transition frequency, I is the intensity of the light and Is is the

saturation intensity of the transition.

We can consider an atom and two counterpropagating red detuned beams. Due to the Doppler effect,

the atom will preferentially absorb photons from the beam propagating in the opposite direction to its

velocity. This will exert a slowing force that will eventually make the atom travel in the opposite direction.

In that moment, it will start to feel the force in the opposite direction due to the other beam. The force

resulting from this cooling mechanism is velocity dependent, as shown in figure Fig. 2.1b. The minimum

temperature achievable using this method has intrinsic limits, the Doppler temperature, that for 87Rb is

TD = ~Γ
2kB
≈ 146µK.

Using the described configuration, one can slow down an atomic ensemble, but there is no trapping

force. We need a position dependent force mechanism to trap the atoms in a particular point in space.

This is realized applying a quadrupole magnetic field. The presence of such field introduces a position

dependent energy landscape for atoms in different magnetic substates due to the linear Zeeman effect

(see section 1.1). The transitions induced between states with different mF quantum numbers need to

be compatible wiht the conservation of angular momentum. The state of polarization of the photons

needs to be taken into account. Right handed circularly polarized light σ+, will induce transitions from

mF → mF ′+1, while left haded polarized light σ− will induce mF → mF ′−1. Transitions between states

with the same mF number are induced by linearly polarized light π. The polarization of the beams can

be chosen in a way that the atoms feel a scattering force that depends on their velocity and position, and

that points towards the centre of the magnetic field gradient. The generalization of this scheme to the

three spatial dimensions creates a Magneto-Optical Trap (MOT) that constitutes the basic tool of cold
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Figure 2.1: In a), a schematic drawing of the cooling technique using the scattering force from two
counterpropagating beams. In figure b), a plot of the scattering force (equation 2.1) that an atom
experiences in the previous configuration as a function of its velocity and for three different detunings of
the light with respect to the transition frequency.

atoms experiments.

2.2 Vacuum system

The typical energy scale of cold atoms experiments is ∼100nK. At room temperature, gas molecules have

a typical energy ∼300K, around 9 orders of magnitude higher. This means that any collision between

cold atoms and thermal atoms will completely destroy the properties of the cold atom system. To avoid

collisions with background particles, ultra-cold atoms experiments need to be perform in UHV environ-

ments, ranging from ∼ 10−7mbar for typical atom interferometers to ≤ 10−10mbar for Bose-Einstein

condensate experiments. To achieve the low pressure needed, the vacuum system has to be carefully

designed. In this section I will describe the vacuum system that we have designed and implemented in

our experimental set up.

Our vacuum system, sketched in figure 2.3b is formed of two chambers. The two chambers configura-

tion is needed to keep a differential pressure between both of them. In the 2D MOT chamber, the vapour

pressure of 87Rb atoms needs to be sufficiently high (' 10−7mbar) to load the MOT from background

gas. However, in the science chamber, we need to keep a pressure lower than 10−10mbar. This is achieved

by connecting the two chambers with a differential pumping stage. The differential pumping stage is a

tube-like hole in between the two chamber of the vacuum system. It has a diameter of 1.1 mm and it is

21 mm long. The conductance of the tube is very low, and can be calculated as:
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(a) (b)

Figure 2.2: Figure (a) shows a picture of the titanium vacumm chamber wit the indium wire placed on
the groove to allow proper sealing. Figure (b) shows the vacuum chamber after the windows and the
compression flanges have been attached.

C =

[
1 +

3l

8r

]−1

· πv̄r
2

4
≈ 8× 10−6m3s−1 (2.2)

Where v̄ is the average velocity of air molecules at 25oC, l is the length of the tube and r is the radius

of the tube. This allows to maintain a pressure difference between the two chambers of at least three

orders of magnitude, as it is indicated by the reading from our ion-pumps. This differential pumping

stage also acts as a collimation pathway for the 87Rb atoms that are transfered from the 2D to the science

chamber, where the experiments are performed. The 2D MOT chamber and the differential pumping

stage are custom designed and have been machined from a single titanium block in the workshop at

the University of Birmingham. The material choice was determined by two main factors. First, the low

outgassing rate of the material. In the second place, titanium was chosen because it is non-magnetic.

On the back side of the 2D MOT chamber there is a viewport to allow optical access to the chamber.

We use this viewport to send a weak resonant beam to push the atoms to the science chamber. A 20 l/s

ion pump (Vinci Technologies) is connected through a “T” to the 2D MOT chamber. On the other arm

of the “T” we connected a UHV valve. This valve is used to rough out the system using a turbo pump.

The elliptical windows on the four sides of the titanium chamber allow for the optical access neces-

sary to create the 2D MOT. They are approximately 8cm × 2.5cm to allow big elliptical beams to pass

through, since bigger beams allow for a more efficient loading, cooling and transfer of the atoms to the

science chamber. These windows are sealed to the titanium chamber using a sealing technique in which

a thin Indium wire is squashed between two different materials to provide sealing. A thin groove was

machined along the window frame of the chamber to allow the Indium wire to be easily set, as shown

in figure 2.2a. The groove has a rectangular shape of 1.1mm wide and 0.5mm depth. The indium wire

(GoodFellow) has a diameter of 1.8mm. To attach the window to the chamber, the coated window was

positioned over the chamber frame, and an uniform pressure of ' 0.4N was applied over the sides of the
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window using custom designed compression flanges, which are attached to the main chamber using 26

M-3 screws as shown in figure 2.2b. The atoms are collected into the 2D MOT from the background gas.

To deliver the atoms, a flexible metal bellow that contains a glass ampule of ≈ 1gr of Rb is connected to

the 2D chamber using a valve. This tube is bent after the baking, breaking the glass ampule and allowing

the Rb to flow into the chamber with a vapour pressure corresponding to the temperature of the room.

The conductance (C < 1) between the bellow and the chamber reduces the available vapour pressure on

the 2D side. To obtain a higher Rb pressure, we heat up the tube to about 50oC, which corresponds to

' 4× 10−6mbar within the valve, calculated according to the formula given in [62].

The science chamber is a glass cell (Precision-Glassblowing) attached to the titanium chamber at

the end of the pumping stage. It is a glass tube of ' 30 cm ending in a rectangular laser bonded glass

cell. The size of the cell is 2.5 × 2.5 × 10 cm. The cell is coated on the outside for 780nm and 1550nm

wavelength light to minimize reflections. The long tube is a peculiarity of our set up, as compared to

other similar experiments. The reason for the glass cell to be so long is to allow for the accomodation

of several layers of magnetic shielding material as mentioned before. The glass chamber is connected to

the titanium chamber using a CF-40 flange. We attached a NEXTorr-100D (SAES Getters) pump to the

titanium chamber on the science side of the chamber to pump the glass chamber. It has a pumping speed

of 6l/s and a “getter” attached to it. It is attached to the titanium chamber through a special “nipple”

tube (SAES Getters) with a conical shape to increase the performance of the pumping.

2.3 Laser system

In this section I will present the general layout of the set up that we use to combine, distribute and

modulate the laser light used for cooling and detection of the 87Rb atoms. This laser system is based

on commercial ECDL’s and tappered amplifiers (TA) for light amplification. Their central wavelength

is around 780nm, close to the D2 line transition of 87Rb. To correctly control and tune the frequency of

the lasers, we use two locking techniques. The two locking schemes will be described in detail. Later,

I will describe the laser system used for the dipole trap and evaporative cooling stage, the last step to

reach the quantum degenerate regime. This laser system is formed by two different lasers: an Ytterbium

fiber laser (IPG photonics) with a wavelenght of 1070nm, and an external cavity laser (Thorlabs) with

1550nm wavelength working as a seed for a fiber amplifier (Nufern).

The cooling scheme presented in section 2.1 requires the use of two different light wavelengths. The

cooling light drives transitions between |F = 2〉 → |F ′ = 3〉 hyperfine states. The repumper light acts
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Figure 2.3: Figure (a) shows the CAD design of the vacuum chamber. A more detailed schematics of the
chamber is showed in figure (b). The two valves are used to rough out the system before the baking stage.
They are UHV valves from VAT. The total length of the set up is ≈ 80cm. The differential pumping
tube was machined directly on the titanium chamber, and it is shown with dash lines in the sketch.
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on the |F = 1〉 → |F ′ = 2〉 (see figure 1.1). If the polarization of the cooling light is chosen to be σ+

polarized, it will drive a cyclic transition between the states |F = 2,mF = 2〉 → |F ′ = 3,mF = 3〉. How-

ever, the decay of atoms from the |F = 2〉 to the |F = 1〉 state is unavoidable. In order to ‘close’ the

transition and increase the efficiency of the cooling mechanism, we need to introduce the repumper light

to bring the atoms that are lost in the |F = 1〉 state back into the cooling cycle. The light that we

use needs to be precisely controlled both in power and frequency to address the correct transition. The

bandwith of the light source needs to be smaller than the linewidths of the transitions. In the case of

87Rb the linewidth of the cooling transition is Γ ≈ 6.066MHz. External Cavity Diode Lasers (ECDL) are

a common choice for atomic physics experiments because they usually have a narrow linewidth ∼ 1MHz

and an acceptable power output ∼ 50mW. Their frequency can be tuned by changing the voltage applied

to a piezo-transducer. This allows for an easy implementation of a frequency locking technique using an

electronic servo loop.

2.3.1 780nm laser system

As mentioned before, the laser system of light with a wavelength of 780nm is used to trap, cool and

transfer the atoms in the 2D-3D MOT stages and also to probe them. The light sources are three

commercial TLB-6900 VortexIITM ECDL’s from New Focus. Their output power ranges from 15mW to

35mW. They have single mode, linearly polarized outputs, and their linewidth was measured to be '1

MHz. In order to stabilize their frequency we adopt the following locking scheme: one laser acts as a

master laser and it is locked to the peak of the cross-over transition of the |F = 2〉 → |F ′ = 3〉 absorption

line (CO23) of a frequency modulated (FM) spectrum of 85Rb (see figure 2.4). A commercial LB1005

PID controller box from New Focus is used to close the feedback loop. The other two slave lasers are

locked to the master laser using an offset-lock technique based on [71]. The general locking scheme for

the master and one of the slave lasers is shown in figure 2.6a.

The error signal is derived from a beat signal between the master laser and each one of the slave

lasers. The signal is generated by beating a small fraction of the two laser outputs to a fast photodiode

with a wide bandwidth of 7GHz (Hamamatsu), connected to a bias-Tee (Mini-Circuits). The electronic

signal generated by the photodiode will contain the sum of the two signals ν1 + ν2 and its multiples,

and the difference ν1 − ν2 and its multiples. We require the signal to be at a frequency corresponding

to the difference between the 85Rb cooling transition and the 87Rb cooling(repumper) transition, which

is ≈ 1.7(5.3)GHz respectively. The difference signal is mixed with a reference signal provided by a VCO

using a frequency mixer (ZMX-10G+). The error signal is generated by the electronic circuit shown in
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Figure 2.4: Saturated absorption spectrum of 85Rb showing the hyperfine transitions of the cooling line.
We lock our master laser to the CO23 feature in the cooling of the 85Rb D2 line.

figure 2.6a, that has been adapted from in [71]. The DC output of this board is the frequency dependent

error signal that we use to lock the slave lasers to the master. To produce the error signal, on the board,

the mixed signal (reference and beat signal) is split in two branches. In one of the branches, the signals

passes through a high pass filter and converts it into a DC frequency dependent signal with a steep slope

and a zero crossing point (set by the filter). The other branch is also converted into a DC signal using

the same configuration of diode, resistors and capacitors. The second branch is used for normalization.

The error signal as a function of the input frequency is shown in figure 2.6b for different input powers.

The zero crossing point of the DC output does not depend on the input power and it is ≈ 171 MHz. It

is set by the high pass filter frequency of the circuit, which is controlled by the attenuation of the two

branches. On the other hand, the slope of the signal depends on the input power. A higher slope allows

for faster and more robust corrections of the frequency deviations.

The actual frequency of the laser can be calculated combining all the changes applied to the frequency

in the lock scheme and the ones introduced by the AOM’s in the optical setup. Fig. 2.5 summarizes

these changes. The green arrow is located at the frequency of the master lock, in the CO23 resonance of

the D2 line of 85Rb. The purple arrows are located at the cooling and repumper frequencies. The actual

frequency of the lasers is detuned to the red of those transitions by few MHz, indicated in the figure by

∆1,2.

Once the lock is acquired, the frequency of the lasers can be easily tuned by changing the reference fre-

quency, that is provided by a VCO. This technique gives the possibility of tuning the slave laser frequency

directly by changing the voltage applied to the VCO (ZX95-1600-W+ for cooling, and ZX95-5540-C+

for the repumper). A drawback of this method can be the limited speed to tune the VCO frequency.

This locking scheme allows the locking range to be wider than what we need for this experiment. Our
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Figure 2.5: Summary of the laser locking and frequency set points in the experiment to lock the repumper
and cooling lasers with respect to the master.

typical frequency shifts in the cooling frequency to perform the different stages of the cooling and probing

sequence are on the order of ∼ 10MHz. The biggest frequency shift is applied to the cooling laser during

the dark MOT stage that we use to compress the atoms for efficient loading into the dipole trap, when we

have to detune the cooling laser to the red in a linear way by 80 MHz during 100ms before we bring the

laser back to resonance for imaging purposes. In the case of the repumper frequency, we do not change

its frequency, so it is sufficient to set a constant value to the VCO that is maintanied throught all the

experimental sequence.

Once we have fixed the frequency output of the lasers, in order to achieve an acceptable optical power

to perform the experiments we need to amplify the laser outputs. Both the cooling and repumper lasers

are amplified using two tappered amplifiers TA-700 from New Focus with output powers '600mW and

'100mW. After being amplified, the beams are sent through an AOM in double pass configuration and

further split, recombined and coupled into fibers to deliver the light to the experiment. The shcematic

of this set up is displayed in figure 2.7 and figure 2.8.

In figure 2.7, the three lasers and two TA are displayed. The Master laser is split in three beams.

The first beam is sent to the Rb vapor cell to obtain the FM spectroscopy signal for the lock. The

rest of the light is split in two, each beam is mixed with a small fraction of the cooling/repumper laser
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Figure 2.6: Figure (a) shows the general scheme for the offset lock system. A fast Hamamatsu photodiode
connected to a Bias-Tee generates the beat signal between the master and slave lasers (cooling and
repumper). This signal is latter mixed with a LO signal generated with a VCO which is controlled from
the computer, providing a fast, continuous control over the frequency of the lasers. The error signal is
generated in the ESC board from the mixed signal, and sent to the lockbox. The output signal from the
lockbox is fed back into the slave laser to close the servo loop. In figure (b) I plotted the output signal
from the ESC board as a function of the frequency. The different series correspond to different input
powers.
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Figure 2.7: Stage 1. Laser sources, locking scheme and light amplification stage.
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outputs into two fast photodiodes to create the mixed signals necessary to lock the cooling/repumper

lasers. The output of the repumper is also split in two. One part, as mentioned before, is used to create

the beat signal for locking. The rest is fiber coupled and sent to feed TA3. TA3 has an output power

of ' 100mW. This beam is sent through an AOM in double pass configuration before coupling it into

another fiber. The latter goes into the splitting box (which is shown in figure 2.8) where it will be further

split and combined with the cooling light, as I will explain later. The coolin light, in the same fashion

as the repumper, is split in two. The first beam is used to mix it with the master laser light, and the

second beam to couple it to feed TA1. The output of TA1 is split in 3 beams: the cooling light for the

3D MOT, the push/imaging beam, and a third beam that is coupled to feed TA2. The 3D MOT cooling

beam goes through another AOM in double pass configuration and it is coupled into a fiber which is

sent to the splitting box. The push/imaging beam goes through the same AOM configuration as the

cooling beam, and afterwards split in two, and each branch coupled into a different fiber. The third beam

goes through an optical isolator before we couple it to feed TA2, which is located in the splitting box.

The optical isolator helps to avoid any back reflected light from TA2 to contaminate the other beam paths.

In figure 2.8 it is displayed the layout of the splitting box, where we combine the cooling with the

repumper light, divide the power between beams and couple them into fibers that deliver the light to the

experiment. The TA2 output provides the cooling light which is used for the 2D MOT. Its output goes

first through another AOM in double pass configuration. After the AOM it is mixed with one part of

the repumper and then coupled into a 1:2 PM fiber splitter. The repumper output, coming from TA3

in Fig. 2.7, is split in two. The first part is combined with the 2D MOT light in a PBS(1) and the

rest is combined with the cooling light for the 3D MOT into PBS(2). The cooling output is mixed with

the repumper in PBS(2). Then, this combined beam is split into three equal power beams. Each one is

coupled to a 1:2 PM fiber splitter.The six outputs make the beams for the 3D MOT system.

A really important issue for a good performance of the experiment is to maintain the polarization of

the light fixed. Fluctuations of the polarization are prone to appear when the light is transmitted through

a fiber, since the mechanical stress of the fiber and the temperature of the environment can change the

refractive index properties of the core, giving rise to fluctuations of the output polarization. Although

using polarization maintaining fibers (PM) helps to minimize these effects, some extra precautions must

be taken. First, the fibers should be fixed in place applying a small amount of stress to them. Also,

to help the temperature of the fibers to be as constant as possible it is good to fix them to the optical
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table, that acts as a heat sink and is at constant termperature during the day. The laser system must be

covered to isolate it from any air flow or temperature fluctuations. The polarization of the light at the

input must be aligned wiht the slow axis of the PM fiber. This is done by placing and adjusting a half

waveplate in front of each fiber coupler in the experiment.

The optical power available at the experiment is sufficient to have 70mW of cooling light and ' 12mW

of repumper light in each beam of the 2D MOT. For the 3D MOT, we use '15mW of cooling light per

beam, and we send a total of ' 8mW of repumper light through the vertical beams. The imaging beam

has a total power of 1.5mW and the push beam has also 1.5mW. Summarizing, I have presented and

described the laser system for cooling. The locking technique is robust, the lasers stay locked during the

full day. We can precisely stabilize and control the frequency of the cooling and repumper lights. Overall,

the system is good to achieve loading rates of 109atoms s−1 of the 3D MOT. This is important to have

a good repetition rate of the experiment. In 4s, we load ∼ 109 atoms into the 3D MOT with a typical

temperature of 350µK.

2.3.2 Dipole trap laser system

During the last stage of Bose-Einstein experiments, forced evaporation is used to cool down the atoms

to the quantum regime. Typically, this is achieved either in magnetic or dipole traps. Some experiments

also use a combination of the two, with a first stage of evaporation in the magnetic trap after which the

atoms are transfered into the dipole trap. In our experiment, we have implemented an all-optical dipole

trap to do the evaporative cooling. This method was first developed by Barret [12]. Our experiment can

create a pure BEC sample every ' 10s. This is quicker than typical experimental sequences using the rf

evaporation in a magnetic trap that typically last ∼ 1min. It is also more simple, since it removes the

need of using a high power rf source and big magnetic coils.

To implement the all-optical evaporation technique (which will be explained in detail in section 3.1)

we use a bichromatic cross trap configuration. It is formed by two beams: one at 1070nm wavelength and

the other at 1550nm. The former one is produced by an Ytterbium fiber laser (YLR-20 from IPG), which

gives an unpolarized output of up to 21W of total power. The 1550nm beam is produced by an ECL

laser (SFL1550P) from Thorlabs, with a typical output power of 25mW. The output beam is coupled

into a fiber and further amplified using a fiber amplifier (NU-B10-0010). The output of the amplifier is

a single mode, polarized 10W beam. We use the 1070nm beam as our primary beam to create a deep

potential for the atoms in the first place. The 1550nm beam is needed to provide a tighter confinement

in the perpendicular direction to the propagation of the 1070nm beam. This is necessary to succesfully
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Figure 2.9: Pictorial representation (not to scale) of the dipole trap laser system. The yellow/green beam
represent the 1070nm/1550nm beams respectively.

implement the evaporative cooling as we will see later.

As depicted in figure figure 2.9, the 1070nm fiber laser has a collimated output with a 1/e2 waist

of w0 = 2.58mm. This beam is delivered into the experiment using free-space optics. It is first sent

through an AOM (Isomet M1080-T80L) in single pass configuration. The AOM has two purposes: to

control the intensity of the light reaching the experiment and to allow for fast switching of the beam.

In order to fit the beam within the active aperture of the AOM, the collimated output from the laser

is first demagnified using a 3:1 telescope made of two achromatic lenses (f = 150mm and f = 50mm).

After the AOM, another pair of lenses in a 1:2.5 telescope configuration collimates the beam to a waist of

w = 1.95mm. This beam is sent in free space towards the science cell using a periscope with a precision

alignment mirror as the last optical element. A final lens with a focal distance of 150mm is place in front

of the glass cell to focuse the beam to an expected waist of wf = λ · f/π · ωLens = 26.2µm at the centre

of the science cell. The measured waist is reported in figure 2.10a and is 33.1 ± 0.3µm at the expected
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Figure 2.10: Figure (a) shows the fitting of the w(z) to the measured waists along the propagation axis
for the 1070nm laser. The fit gives a waist of w0 = 30.0 ± 0.3µm at a distance of ≈138mm from the
focusing lens. Figure (b) shows the corresponding waist measurements for the 1550nm beam propagating
after the OZ optics focuser.

position of the atoms. We mount the lens onto a 1-axis translation stage to fine tune the position of the

focal point. The total power available before the glass cell is 16W.

The 1550nm beam is sent to another AOM in single pass configuration (Isomet M1099-T50L-1.55) and

then it is coupled into a fiber using a high power coupler. The fiber has a pigetailed focuser output (OZ

Optics) that focuses the light at a working distance of 52mm from the last lens with a measured waist of

30.5± 0.3µm as reported in figure 2.10b. The available power after the AOM (efficiency ≈ 70%) and the

fiber coupling (efficiency ≈ 60%) is 4.5W. The focuser is mounted into a very stable, non-magnetic flexure

mount to allow precision alignment of the beam, which is positioned into the breadboard at about 50mm

from the center of the science cell. Another 1-axis translation stage is used to adjust the position of the

focal point. This beam is sent at an angle of '80 degrees with respect to the 1070nm beam, forming the

crossed dipole trap.

Combining these two beams into a crossed dipole trap allows us to cool down the atoms from ∼ 100µK

to ∼ 10nK, and to increase the phase space density of our sample. This makes possible to reach the Bose-

Einstein condensation regime within few seconds, as it will be described later.

2.4 2D-3D Magneto-Optical Trap configuration

I have already reviewed the laser cooling mechanism, the vacuum system and the laser systems. In this

section I will describe how all these elements work together in our experimental sequence.

The cooling process starts in the 2D MOT chamber. The 87Rb atoms are loaded from the vapour
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into the 2D MOT. A 2D MOT consists of a 2-axis MOT in which the atoms are cooled and trapped

in two spatial directions. In the direction of the zero-field line, only atoms from a low velocity class

are selected. This is because they will not be cooled in any of the other two directions if they pass

through the MOT region faster than the cooling cycle. This is a standard configuration which has been

extensively studied in the literature and is commonly used in many cold atoms experiments [72, 73]. We

use two elliptical beams of approximately 5× 2cm that are sent through the rectangular windows of the

chamber and then retro-reflected using two rectangular mirrors with a quarter wave-plate in front to set

the polarization. This chamber has also a set of anti-Helmholtz elliptical coils mounted around the top

and bottom windows to create a cuadrupole field along the symmetry axis of the chamber. The coils give

≈10 G/cm at the centre of the chamber while running a current of 5A.

As mentioned before, the light is delivered using optical fibers that already contain light at both

cooling and repumper frequencies. Two cylindrical lenses shape the beam output from the fibers. A

first lens is placed shortly after the fiber output to expand the beam in the horizontal direction. After

' 150mm, a second spherical lens collimates the beam in both vertical and horizontal directions. The

two telescopes are mounted directly into the chamber as seen in figure 2.11(a) using a set of screws and

springs that allow us to roughly align the cooling axis. Afterwards, the mirrors placed on the opposite

sides of the chamber give us the necessary alignment freedom. Two elliptical coils are placed in each

cooling direction to allow precise alignment of the field axis with the differential pumping stage.

To transfer the atoms to the science cell, we push the atoms through the differential pumping tube using

a push beam. This linearly polarized beam has a power of ' 1.5mW, and it is carefully aligned with the

differential pumping tube. It pushes the pre-cooled atoms from the 2D MOT into the 3D MOT at rate

of ∼ 109atoms s−1, as mentioned previously, to load our 3D MOT.

The 3D MOT is in a standard configuration using 3 pairs of counter propagating beams. Each beam

is collimated by simple plano-convex lenses to a diameter of 1 inch using a telescope tube. The tubes

are mounted on 6 threaded high precision mirror mounts. They are fixed to the optical breadboard with

1 inch aluminium posts. The polarization of the MOT beams have been carefully set to be circularly

polarized with the same handness in all beams with respect to the propagation direction. The frequency

of the cooling light is detuned to the red ∆ ' −2.5Γ of the atomic transition.

The quadrupole field is created by a pair of circular coils made of flat wire and mounted on the vertical

direction, as shown in figure 2.12. They are supported in a 3D printed plastic arm which is attached to the

breadboard. They have 50 turns with a diameter of 6.5cm and a separation of 5cm. They create a field

of '10G/cm at the center of the chamber when running 2.3A of current. They are switched on and off

using a MOSFET triggered with a TTL signal which allows for fast switching off the magnetic field in less
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(a)

(b)

Figure 2.11: Figure (a) shows the side view of the 2D chamber. The telescope used to create the elliptical
beams for the 2D MOT can be appreciated. Also, the sets of coils used to create the quadrupole and
compensation fields. The aluminium foil is wraped around the bellow that contains the Rb ampule while
it is being heated. Figure (b) is a top view of the science chamber. The MOT telescopes, as well as
the MOT coils can be well appreciated. The blue mirror on the left, that is mounted on a thick and
tall aluminium post is the second mirror of a periscope that delivers the 1070nm dipole beam into the
experiment.
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Figure 2.12: Pictorical representation of the dipole trap beams crossing at the center of the chamber at
an angle of ' 80 degrees with the MOT beams and coils.

than 1µs. On top of the quadrupole coils, we have added another pair of coils in Helmhotz configuration

in order to correct for the residual magnetic fields in the vertical direction. This compensation coils are

supplied with a voltage controlled current source that is able to provide a current of ±10A. They give a

field of 3.83G/A measured at the centre of the science chamber.

The lifetime of our MOT is ≈10s, and the typical temperature of the atoms in the MOT is '350µK.

The PSD is estimated to be ' 7× 10−8. After the 3D MOT, we transfer the atoms into the dipole trap

to perform forced evaporation. To load the atoms efficiently into the dipole trap we need to lower the

temperature of the atoms further, which is achieved adding a Dark MOT stage that will be described in

section 3.2.

To finish this section, I have to mention that we have also placed a small radio-frequency coil very

close to the science chamber. This can be used for state preparation of the atomic sample and also as an

experimental tool to introduce a coupling between the different states. The coil has a diameter of one inch,

and is made of three loops. A capacitor ' 1µF is connected in paralell to make the resonance frequency

of the coil be ωres = 1√
LcoilC

. The measured resonant frequency of the coil is ' 1.557MHz with a -3dB

linewidth of 0.2MHz. Using this frequency, we will need to apply a magnetic field |B| ' 1.557/0.7G to

induce resonant coupling between the states. We use a commercial signal generator (Keysight) connected

to a radio frequency amplifier (Mini-Circuits) to generate the frequency.
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2.5 Detection

In the previous sections I have described how to create and prepare a cold atomic sample. Now I will

describe the absorption imaging technique that we use to probe the atomic cloud and extract information

from the system. This technique is used in most of cold atoms experiments. This requires to precisely

control the exposure time of the camera, and to synchronize it with the experiment. We trigger the

exposure of our camera using a digital channel from the computer control system. Our camera is from

Allied Vision Technologies (AVT), model Guppy Pro F-031. The CCD chip has 656×492 pixels with a

size of 5.6 µm. We control it using a software written in Python, which is a wrapper for the AVT “Vimba

C API” available online [74]. This is used with another Python GUI, which reads in the images captured

by the camera and processes them to extract the necessary information by performing two dimensional

fits to the images.

For absorptionimaging, we use a 3mm collimated beam at a frequency resonant with the |F = 2〉 →

|F ′ = 3〉 transition of the D2 line of 87Rb . The atoms in our condensate are in the |F = 1〉 ground state.

Therefore, just before taking the picture, we need to flash some repumper light to drive them into the

|F = 2〉 ground state. After a short 15µs pulse of repumper light, the imaging beam is then sent to the

atoms. The atoms absorb it and leave a shadow on the beam intensity distribution. This shadow is

imaged onto a CCD camera. The amount of light which has been absorbed by the atoms is given by the

Beer-Lambert law: I = I0 exp
[
−
∫
n(z)σdz

]
, where z is the direction of propagation of the beam, n(z)

the density of the cloud, I0 the intensity of the beam, and σ = σ0/(1+4(∆/Γ)2 +I0/Is) is the absorption

cross section with σ0 = ~ωΓ/(2Is) the resonant cross section. Ω =
∫
ndz is the column density. For each

realization of the experiment, we take three pictures. First, the picture of the imaging beam with the

atoms I1, then one picture of the imaging beam without atoms I2, and finally another picture with no

light and no atoms I3. We can then calculate the column density of the atomic cloud pixel by pixel as

Ω(x, y) = −ln[I(x, y)/I0(x, y)] = −ln[(I1(x, y) − I3(x, y))/(I2(x, y) − I3(x, y))] [75]. Some care is taken

during the experiment to take the pictures at an intensity Iimaging << Is ≈ 3.57mWcm−2. This is to

avoid saturation of the transition.

We image the atoms along both vertical and horizontal directions. The horizontal direction is mainly

used for diagnostic purposes and to calibrate the vertical imaging. In the horizontal direction, we use

a telescope system with two lenses. A first f = 10cm lens working at its focal distance and another

f =30cm placed at 40cm from the first. The CCD chip is located at 30cm from the second lens. With

this imaging system we expect to obtain a magnification factor of m = 3. We calibrate it as follows.
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Figure 2.13: Calibrating the magnification of the imaging system looking at the cloud from the horizontal
direction using the gravity as a reference. The experimental points corresponding to the center of mass
of the cloud for different expansion times is fitted to a quadratic function (red line). a∗2 = (−2.64 ±
0.06)pix/ms.

First, the sample is prepared in the mF = 0 Zeeman substate. Then, we let the atomic cloud fall into

gravity for a variable amount of time, and record the position of the center of mass of the atomic cloud

in the vertical direction. This is shown in figure 2.13. The experimental points are fitted to a quadratic

function cm(t)= a0 + a1t + a2t
2. Since we know the size of the pixels 5.6µm, and the theoretical curve

that the cloud should follow cm(t)= cm0−9.81t2 +v0t we can determine the magnification of the imaging

system to be m = 3.014. This value is in good agreement with the expected value from our imaging

telescope.

The vertical imaging beam is sent to the atoms from the top of the MOT coils at the smallest

angle available '15o. After passing through the cell, a similar telescope made of two achromatic lenses

collects the image of the absorption shadow and re-image it on the CCD. To accurately determine the

magnification of the vertical imaging system, we compare the radius of the atomic clouds at different TOF

for the vertical and horizontal imaging systems. This gives us a ratio of that we can use to determine the

magnification of the vertical imaging system.

Another technique that we use for imaging is Stern-Gerlach separation of the clouds to image each

Zeeman state independently. We switch on a gradient magnetic field during the time of flight. This

gradient magnetic field ∂z|B(z)| will induce a force on the atoms that depends on the magnetic substate

of each atom
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Fz = µBgFmF∂z|B(z)| (2.3)

In this way, we separate the clouds and we can extract the different column densities of each species.

In our experiment, we use the MOT quadrupole field during 26ms of the TOF stage. Typical images

of the three clouds obtained by absorption imaging after applying the Stern-Gerlach pulse are shown in

figure 3.4. Using the absorption imaging technique, as explained above one can extract the spatial distri-

bution of the optical density Ω(x, y, t = TOF ) of the sample which is related to the density distribution

of the atoms. We can extract all the relevant physical parameters of the system performing 2D fits to

the optical density profile.

The fitting function will be determined by the conditions of the experiment. If the temperature of

the atoms is T > Tc, the density of the cloud is expected to have a gaussian distribution, related to the

optical density in the following way

Ω = σ0
N

2πσxσy
exp

[
− (x− x0)2

2σ2
x

− (y − y0)2

2σ2
y

]
(2.4)

Where N is the total number of atoms, σ0 is the absorption cross section as defined earlier, and

σx, σy are the widths of the cloud. From the fitting amplitude and widths we can then extract the total

number of atoms N . The widths of the cloud are related to the temperature of the atoms, because the

density distribution in TOF reflects the momentum distribution of the cloud at t = 0s. The momentum

distribution of the atoms always follows a Maxwell-Boltzmann distribution f(~p) ∝ e
− ~p2

2σ2p , and the width

of that distribution is related to the cloud temperature.

σ2
TOF = σ2

0 +
TOF 2TkB

m
≈ TOF 2TkB

m
(2.5)

where T is the temperature of the cloud at t = 0ms, kB is the Boltzmann constant and m the mass

of the atoms. The approximation assumes that the cloud size at t = 0s is small compared to the cloud

after TOF (σ0 << σTOF ). Using this approximation we can calculate a higher limit for the temperature

of the cloud.

If T << Tc, and all the atoms are condensed the initial momentum distribution of the atoms is zero

by definition. In this case, the shape of the cloud can be approximated using the Thomas-Fermi profile,

with the condensate density given by

nTF = max

(
µ− Utrapping

g
, 0

)
(2.6)
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where µ is the chemical potential and g is the one-body s-wave interaction parameter. The column

density distribution can be expressed as

Ω = n0
TF max

(
1− (x− x0)2

r2
x

− (y − y0)2

r2
y

, 0

)3/2

(2.7)

In the regime where the temperature of the atoms is similar to the condensation temperature (T ' Tc),

the cloud will have a condensed fraction and a thermal fraction. In this case, we apply a bimodal fitting,

that consists on the sum of a 2D gaussian plus a Thomas-Fermi distribution. This allows us to determine

the fractional populations of the condensate and thermal parts of the clouds.

2.6 Control system

The computer control system of this experiments is based on National Instruments DAQ cards and the

software developed at MIT, called ”Cicero Word Generator” [76]. The use of such a program has

the advantage of using off the shelf components available at a relatively low cost. It is easy to implement

and to use it.

The hardware that we use are National Instruments I/O DAQ cards mounted on a PXI-e 1602Q chasis.

The analog card is a PXI-6713 which provides eight 14-bit analog outputs with a voltage range from

-10V to +10V. The digital card is a PXIe-6535 that has 32 channels with a high level signal output of

3.3V. The chasis is connected to the control computer. To provide a variable timebase reference clock

the software requires an external FPGA (Opal-Kelly XEM3001) connected to the computer digital card

with a BNC cable and to the computer via USB. The reference clock is set to 10MHz, which means that

the achievable resolution of our experimental sequences is 0.2µs. The output of the cards are connected

to home-made breakout boards that are later buffered and isolated from the PXI. The analog buffers

provide up to 50mA on each channel, with a frequency bandwidth of 10MHz. The software, developed at

MIT, consists on two C# different programs, that are available in [77]. Atticus is the name of the server

that communicates with the PXI cards. Cicero is the software that writes the instructions that Atticus

converts into buffer instructions and sends them to the PXI cards.
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CHAPTER 3

ALL-OPTICAL REALIZATION OF A BOSE-EINSTEIN

CONDENSATE

Experimentally, the realization of Bose-Einstein condensation implies increasing the phase-space den-

sity PSD= nλ3
th to values ∼ 1. After we have cooled the atoms in the 3D MOT (PSD' 7×10−8), we still

need to increase the PSD by several orders of magnitude to achieve Bose-Einstein condensation. To this

end, we use the evaporative cooling technique. This is a well stablished procedure that is implemented

in every BEC experiment [78, 79]. The process of evaporative cooling is intuitively simple. It consists in

removing the hottest atoms from the trap, and wait sufficient time for the remaining ones to thermalize

through elastic collisions. This brings down the average energy distribution of the atoms. The efficiency

of the evaporative cooling process is a trade-off between elastic collisions leading to thermalization and

collisions with the background gas that induce losses. Using this technique, one can achieve a reduction

of several orders of magnitude in the temperature at the price of loosing atoms. This process is realized

in two ways: radio-frequency evaporation in a magnetic trap and evaporation in a dipole trap, where the

trapping potential is created by the light intensity distribution of a powerful laser. In our experiment,

we have chosen this latter, since it circumvents the use of bukly and power-consuming magnetic coils,

simplifying the experiment and increasing the repetition rate. Our evaporative cooling stage exploits a

crossed beam configuration as in [80]. The two beams have different wavelengths, 1.07µm and 1.55µm.

This method of evaporative cooling was first achieved in [12]. Since then, a variety of experiments have

successfully employed this technique to condense several atomic species [81–83].

In this chapter, I will present the main milestone of my thesis work, which is the all-optical realization

of a spinor Bose-Einstein condensate of 87Rb . In section 3.1 I will present the basic principles of the

all-optical dipole trap setup that we use. The crossed beam configuration will be discussed and justified.

The trap will be characterized later in section 3.3. In section 3.2 I will describe the evaporation path
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that we follow to achieve the Bose-Einstein condensation. In section 3.3 I will present some important

measurments that characterize the condensates such as the lifetime, the trapping frequencies and the

transition temperature.

3.1 Basic principles of dipole traps

The all-optical trapping mechanism is based on the dipole force that a powerful and far-off resonant light

field induces on the atoms. The presence of the light field induces a shift of the atomic energy levels, also

called a.c Stark Shift. Unlike the scattering force, the dipole force exerted by a light field into an atom

is not dissipative and can be used to directly trap the atoms in the potential created by the intensity

distribution of the light field. Another advantage of this trapping mechanism is that, under the correct

conditions, the trapping potential is independent of the internal state of the atoms. This allows to obtain

samples of multi-species Bose-Einstein condensates after the evaporation process. In general, the force

exerted on the atoms by the light field is [84]:

~Fd = −∇Ud(~x) (3.1a)

Ud = −Re(α)

2ε0c
I(~x) = ∆Ea.cStark (3.1b)

with α the complex polarizability of the atoms, ε0 the permitivity in free space, c the speed of light

in vacuum and I(~x) the intensity of the light field. For alkali atoms with a complex hyperfine structure,

like 87Rb, to compute the Ud it is necessary to take into account the contribution to the polarizability

from both D1 and D2 lines. If the detunings are large compared to the excited state hiperfine splitting

∆� ∆′HFS such as in our setup, the dipole potential and the scattering rate due to the far-detuned light

can be expressed as

Ud =
πc2Γ

2ω3
0

(
2 + PgFmF

∆D2,F
+

1− PgFmF

∆D1,F

)
I(~x) (3.2a)

Γsc =
πc2Γ2

2~ω3
0

(
2 + PgFmF

∆2
D2,F

+
1− PgFmF

∆2
D1,F

)
I(~x) (3.2b)

where gF is the Landé factor, mF = 0,±1 is the projection of F along the quantization axis for each

state, ∆D1,D2,F = ωi − ω are the detunings with respect to the two D1 and D2 lines, and P represents
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the polarization of the light. P = 0 for linearly polarized light (π), and P = ±1 for circularly polarized

light (σ±). ω0 is the central frequency of the transition. The scaling laws of the potential and scattering

rate are Ud ∝ I
∆ , and Γsc ∝ I

∆2 . This means that we can increase the power of the light fields as soon

as we keep the detuning large enough to avoid the scattering rate to become large. This is important

since the scattering constitutes a heating mechanism of the atomic sample. The heating rate due to the

scattering is ∆T
∆t = 2

3
Trecoil

Γsc
[84]. In our case, because of the large detuning that we choose, this effect is

negligible.

If the beam is a gaussian beam, we can write the intensity I(~x) as

I(~x) =
2P0

πw2(z)
exp

[
− 2r2

w2(z)

]
(3.3)

where r2 = x2 + y2, z is the propagation direction, and w(z) = w0

√
1 + z

z2R
is the waist of the beam

along the propagation direction. zR =
πw2

0

λ is the Rayleigh length. λ is the wavelength of the light, and P0

is the total power of the beam. In a red detuned trap where ∆ = ω−ω0 < 0, the atoms will be attracted

to the maximum of the light intensity, which means the waist of the beam. The trapping potential at the

position of the beam waist can be approximated as a harmonic potential with axial symmetry. Expanding

the expression of the potential in equation 3.2(a) up to first order with respect to r/w0 and z/zR:

Ud ' −U0

(
1− 2

(
r

w0

)2

−
(
z

zR

)2
)

(3.4)

where U0 = |Ud(~x = 0)| and the negative sign implies red detuning of the trapping light with respect

to the resonance. The harmonic potential in equation 3.4 is characterized by the trapping frequencies:

ωr =

√
4U0

mw2
0

(3.5a)

ωz =

√
2U0

mz2
R

(3.5b)

The ratio between the trapping frequencies ωr/ωz =
√

2πw0

λ . This slows the thermalization process as

it will be discussed later. The way to overcome this problem is using two beams propagating in orthogonal

directions. The second beam will provide tight confinement also in the axial direction of the first beam.

In the case of two gaussian trapping beams crossing at 90o, beam 1 propagating along the ẑ axis and

beam 2 along the ŷ axis, the potential resulting from the combination of the two can be approximated

up to the second order:
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Ucross ' −U0,1 − U0,2 +

(
2U0,1

w2
0,1

+
2U0,2

w2
0,2

)
x2 +

2U0,1

w2
0,1

y2 +
2U0,2

w2
0,2

z2 (3.6)

And the corresponding trapping frequencies are given by

ωx =

√
4U0,1

mw2
0,1

+
4U02

mw2
0,2

(3.7a)

ωy =

√
4U0,1

mw2
0,1

(3.7b)

ωz =

√
4U0,2

mw2
0,2

(3.7c)

(3.7d)

These expressions do not include the effect of gravity. This adds a tilt to the trapping potential along

the vertical direction, and all the expressions become more complicated. Alternatively, we have calculated

the trapping potentials numerically including the effect of gravity and the fact that our beams do not

cross exactly at 90o. Our two laser beams are both far detuned from the D1 and D2 lines. The 1070nm

beam has a completely unpolarized output, while the output of the 1550nm beam is linearly polarized.

In figure 3.1, I have plotted the crossed beam trapping potential geometry as a function of the vertical

and horizontal directions for beam powers of P1550 = 155mW and P1070 = 61.5mW, corresponding to the

final trapping powers of our experimental sequence, and I have assumed a crossing angle of 80o. I used

the formulas given above assuming that both laser beams are independent and do not interfere with each

other.

3.2 All-optical evaporative cooling and realization BEC

After the 3D MOT stage, we need to transfer the atoms into the dipole trap to start the evaporation

process. We start with a single beam. As mentioned in section 2.1, to efficiently load the dipole trap we

add a Dark MOT stage of 80ms. During this time the MOT is compressed, and the atoms can achieve

sufficiently high PSD to start the evaporation stage.

3.2.1 Dipole trap loading

As mentioned in section 2.1, we load our dipole trap from a compressed MOT. The most powerful 16W,

1070nm beam focused to a waist of 33µm is kept on during the MOT loading. After typically 5s of
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(a)

(b)

Figure 3.1: Figure (a) shows the trap depth including the effect of gravity, as a function of the height z,
with z=0 being the centre of the trap. In figure (b) the equipotential contour lines of the function are
plotted as a function of the horizontal spatial directions.

48



loading, the MOT has ' 109 atoms at a temperature of ≈ 350µK. The MOT is then compressed by

detuning the cooling light frequency from its value during the MOT (∆ ≈ −2.5Γ) to ∆ ≈ −10Γ in 80ms,

and lowering the repumper power to ≈ 20µW cm−2. The repumper light is turned off a few µs before the

cooling light to ensure that the atoms are pumped to the |F = 1〉 manifold. At the end of the Dark MOT

stage, we have ∼ 108 atoms at a typical temperature of 50µK. This results in an increase of the PSD to

' 3× 10−6, that helps to start the evaporation process in more ideal conditions. The dipole trap is then

loaded, and we measure the number of atoms after 50ms of thermalization to be ∼ 107. This is a rough

under estimation because the anisotropic geometry of the single beam makes the assessment difficult.

Before starting to optimize the evaporation, we need to align the dipole beams to cross. The alignment

process is performed as follows. First, we shine the 1070nm beam at full power during the MOT loading

and detect the atoms after a very short TOF ∼ 0.5µs using absorption imaging, until we see the beam

structure in the picture. This is almost straightforward after taking some care to prealign the beam with

respect to the 3D MOT. Then we to do the same with the 1550nm beam. Once we can see both beams

within our field of view, we start the evaporation ramp with the 1070nm beam. As we will discuss later,

the power of the beam is ramped down in an exponential way with a time constant of 0.1s. We stop the

evaporation after ' 1.2s, and then we switch on the 1550nm beam at full power. We scan the vertical

alignment of the latter until we can observe the cross structure appearing on the CCD (see figure 3.2).

From there on, the optimization of the evaporation ramp and the cross alignment can be done iteratively.

The figure of merit to optimize during this process is the PSD.

Once the atoms are in the dipole trap, we start the evaporation. We need to choose carefully the way

in which we lower the trapping potential. The rate at which it is lowered has to be slow enough to allow

the remaining atoms in the trap to thermalize through elastic collisions. The elastic collisional rate is

given by

Γc =
√

2 ¯nvσ (3.8)

where n̄ = Nω̄3
(

m
4πkBT

)3/2

is the mean density in a harmonic trap [85], being ω̄ the geometrical

average of the trapping frequencies, v̄ = 8kBT
πm is the average velocity of the atoms and σ = 8πa2 is the

elastic scattering cross section with a the scattering length of the atoms. The collision rate scales as

Γc ∼ ω̄3/kBT . This rate decreases when lowering the trap depth, because it scales with the trapping

frequency that, in turns, depends on the the power. Following [80], we define the parameter η = U0

kBT
as the

ratio between the trapping depth and the averaged temperature of the atomic distribution. Lowering the
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Figure 3.2: The picture shows the crossing beam configuration. After some time of evaporation in the
single beam dipole trap, we switch on the crossing beam. The efect of the crossing beam can be appre-
ciated clearly. It increases the trapping frequencies along the axial direction of the most powerful beam,
creating a ‘bulb’ where atoms that were populating the wings of the single beam are then preferentially
trapped. The picture is taken after few ∼ 5ms of TOF.

trapping potential results in an increase of η, and the thermalization process is slowed down because the

most energetic atoms spend more time in the wings of the trapping potential. Typically, the evaporative

cooling process does not lead to an increase in the PSD if η ≥ 8. To avoid stagnation of the process, we

use the cross beam to increase the thermalization rate. This provides a tighter confinement in the axial

direction that increases the rate of elastic collisions and allows the atomic sample to thermalize faster.

Figure 3.2 shows an experimental picture of the crossed beam geometry. We can clearly observe how

the weaker beam provides confinement in the axial direction of the most powerful beam. Where the

beams cross, the trap becomes deeper, and some of the atoms that were in the wings of the powerful

beam gather at the crossing point, forming a ‘bulb’ with tighter confinement in all directions.

Taking into account the previous considerations, we choose our evaporation ramp as follows. We

start the evaporation in the single beam dipole trap by ramping down the power of the 1070nm beam

with a linear piecewise ramp as sketched in figure 3.3b. We break down the sequence in linear ramps for

simplicity, but we aim to create a ramp that resembles as much as possible an exponential curve.

During the first stage without the crossing beam, we have four ramps, which are summarized in table

3.3a. We decrease the power from 100% to 4% in 3.16s with a time constant τ ' 0.1s. At t=2.16s

from the beginning of the ramp, we switch on the crossing 1550nm beam with a power of 1.2W that

corresponds to 28% of the total power available. We then keep it at a constant power during 2s in the
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Ramp 1 Ramp 2 Ramp 3 Ramp 4 Ramp 5 Ramp 5 Ramp 7

Duration [ms] 90 20 150 900 2000 1500 1900
1070nm end power [%] 48% 31% 16% 7% 4% 1.7% 1%
1550nm end power [%] 28% 9% 5%

(a)

Basic Experimental Sequence
MOT
Loading

Dark 
MOT

Ramp 1Ramp 2 Ramp 3Ramp 4Ramp 5Ramp 6Ramp 7 TOF Imaging

4s 80ms 90ms 20ms 150ms 1s 2s 1.5s 1.9s 30ms ~1s

Cooling
detuning

Repumper
intensity

1070nm 
intensity

1550nm 
intensity

MOT field

48%
31%

16% 7% 4% 1.7% 1%

100%

28%

9%
5%

10 G/cm

Off
Stern-Gerlach 
pulse

Imaging
Flash 

ms20100%

1.5%

(b)

Figure 3.3: Figure (a) shows the tabulated powers of the dipole trap beams during the evaporation
sequence. Figure (b) shows a schematic diagram of the basic experimental sequence to achieve a Bose-
Einstein condensed sample of atoms. The most relevant experimental parameters are displayed as a
function of time. Within each time step, step-wise of linear ramps are applied to the experimental
parameters. The short repumper pulse at the end of the TOF step is to pump the atoms to the F=2
ground state to perform absorption imaging, since the cooling light, used to image the atoms is tuned to
the resonance of the F = 2→ F ′ = 3 transition.
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5th step of the evaporation ramp. From there on, we ramp both beams with time constants τ1550 ' 1.5s

and τ1070 ' 1.15s. After 6.56s of total evaporation time, we end up with a pure Bose-Einstein condensate

of N' 1× 105 atoms in the F=1 spin manifold, as shown in figure 3.4, where we can see a typical BEC

picture after TOF=30ms with and without applying a Stern-Gerlach pulse to separate the three different

mF substates.
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(b)

Figure 3.4: Figure (a) shows a purely condensed BEC sample with ' 1 × 105 atoms. In (b) it is shown
the same sample after applying a Stern-Gerlach pulse during time of flight to separate the three clouds.

In figure 3.7 I have displayed the integrated density profiles of the atomic cloud at different tempera-

tures1. The transition from a purely gaussian distribution to a bimodal distribution is clearly visible. The

minimum temperature that we can measure is ' 150nK. When we have a pure condensate, the typical

thermal wings of the bimodal distribution disappear giving rise to a Thomas-Fermi distribution of the

measured optical density.

Another typical feature of the BEC is the inversion of the aspect ratio (relation between the widths

of the density distribution) during the expansion time. It is clearly observable in our system, as it is

shown in figure 3.5. We can see pictures of the cloud for different TOF between 8ms and 28ms. We

can appreciate how at 8ms, the cloud is elongated in the perpendicular direction with respect to the

elongation axis of the cloud at 28ms. In the two middle pictures for times 12ms and 20ms we can see

how the cloud is more or less symmetric, and has a rounded shape. Note that the ring pattern around

the cloud in the pictures for short TOF is due to the high densities of the cloud.

In this section, I have describe with detail the experimental path that we follow in our experiment to

achieve Bose-Einstein condensation, with an emphasis in the evaporative cooling stage, which has been

adapted to our bichromatic crossed configuration.

1We say that we are at T ' 0K when the temperature of the thermal cloud is so small that we can not measure it.
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(d) TOF = 28ms

Figure 3.5: Pictures of a pure condensate cloud at different times of flight, showing the change of the
aspect ratio during the expansion. This is a typical feature of the BEC that is not observed in non
condensed clouds.
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3.3 Characterization of the Bose-Einstein condensate

In this section, I will present some characterization measurements of the BEC. In the first place, I will

show the measurements of the condensate fraction as a function of the temperature of the clouds. From

this, we will be able to determine the transition temperature of our condensate. Then I will measure the

trapping frequencies of the trap using two techniques: parametric heating and collective mode excitation.

These are important to determine the density, size and chemical potential of the BEC, as described in

section 1.2. Then, I will present a measurement of the lifetime, which is important to determine the

available time to perform experiments in our system.

3.3.1 Transition temperature

The critical temperature Tc is a function of the trap frequencies ω̄ and the number of atoms N: kBTc =

~ω̄(N/1.202)1/3. Once the system has reached the critical temperature, the number of condensed atoms

grow according to N0/N = 1 −
(
T
Tc

)3

. In a dipole trap, lowering the power of the beams have two

different effects: lowering the temperature of the atoms but also the trapping frequencies. We have

established previously (see equation 3.5b) the scaling of the trapping frequencies with the power to be

ω̄ = U1/2 3
√

(4/mω2
0)(2/mz2

R)1/2. If U is the depth of the trapping potential, the temperature of the

atoms scales kBT = χU . Typically χ ≈ 1/6. Therefore, the condensate fraction in an optical dipole trap

as a function of the critical temperature is

N

N0
= 1−

(
T

T̃c

)3/2

(3.9a)

T̃c =
1.88~2N2/3

kBχm(ω2
0zR)3/2

(3.9b)

In figure 3.6 I plotted the condensate fraction as a function of the temperature of the thermal cloud

for different temperatures set by the depth of the trap. The dashed line is a fit to the data using the

function given in equation 3.9b. The points are averaged over three experimental runs and the error

bars correspond to the standard deviation. The result of the fit gives us the transition temperature

T̃c = 207± 4nK.
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Figure 3.6: The condensate fraction (red circles) is plotted against the temperature of the thermal cloud.
Each point is the average over three experimental runs. The error bars correspond to the standard
deviation of the measurements. The dashed line is a fit to the data using equation 3.9b.

3.3.2 Trapping frequencies

As discussed in the previous sections the trapping frequencies are very important experimental quantities.

The method that we use to determine the high frequencies of the trap is parametric excitation. This

consists in applying a sinusoidal modulation to the trapping potential. We realize it by applying the

modulation to the amplitude of the 1070nm beam. The atomic cloud will be parametrically excited

when the frequency of the modulation is twice the fundamental frequency of the trap [86, 87]. The

results of these measurements are shown in figure 3.8. The solid points are averages over three distinct

measurements, and the error bars correspond to the standard deviations. To perform the measurement,

we stop the evaporation with trapping beam powers of P1550 = 200mW and P1070 = 100.mW, slightly

above our final trap powers. Then we apply a modulation of ' 10% to the 1070nm beam. The frequency

that results in a heating up of the cloud is 510Hz, where the width of the cloud peaks at 70µm, as compared

to the baseline of 40µm. We can see that at the same frequency, the number of atoms decreases due to

the heating mechanism. Another low peak at 510/2Hz can be observed in the number of atoms. These

losses correspond to the fundamental frequency of the trap. At this modulation frequency, no heating

mechanism is observed. From these results, we can calculate the corresponding trapping frequencies at

the end of the evaporation, where the power of the beams are P1550 = 155mW and P1070 = 80mW, taking

into account that ω ∝
√
P → ωtrap ' 2π × 200Hz.
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Figure 3.7: Different integrated density profiles of the atomic cloud are shown for different temperatures
across the BEC transition, together with a double fit to the profiles, showing the development of the
bimodal distribution. In picture d) the thermal cloud can not be distinguished and it makes the estimation
of the temperature difficult.
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Figure 3.8: In (a) the figure shows the average width of the atomic cloud measured after 30ms TOF
as a function of the modulation frequency applied to the main dipole beam. The error bars are the
statistical standard deviations of three measurements. The depth of the modulation applied was ' 10%
of the total beam power. The dashed line is a gaussianl fit to the data. We can observe a clear peak in
the temperature of the cloud at ' 510Hz. In (b) the figure shows the number of atoms measured as a
function of the frequency. The error bars are the statistical standard deviations of the measurements.

As we can see from figure 3.8 we could observe only the response due to the high frequencies of

the trap. This allows to determine the high frequencies of the trap. To measure the low frequency, we
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Measured frequencies [Hz] Calculated frequencies [Hz]

ω1 2π×200 ± 10 2π× 233
ω2 2π×200 ± 10 2π× 235
ω3 2π×87 ± 13 2π× 42
ω̄ 2π×151 ± 11 2π× 131

Table 3.1: Trapping frequencies of the cross potential, both calculated using the theoretical formulas
given before and the values found exlperimentally using parametric heating and collective mode excitation
techniques for the final trapping laser powers of P1550 =155mW and P1070 =80mW

use another approach. We excite the collective mode of the condensate and observe the center of mass

oscillations of the BEC within the trap itself. The excitation of the collective modes of a Bose-Einstein

condensate have been studied in [88]. The center of mass motion is triggered applying a small magnetic

field gradient pulse at the end of the evaporation. After the excitation pulse, we wait for a variable

amount of time, with the trapping potential fixed and finally we release the atoms to detect the centre of

mass of the cloud with a fixed TOF. Experimental results are shown in figure 3.9. The solid points are

the average of three repeated measurements and the error bars the corresponding standard deviations,

as before. The dashed grey line is a fit to a sinusoidal function. The result of the fit gives an angular

frequency ωl = 547± 13 rad/s.
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Figure 3.9: The figure shows the centre of mass of the atomic cloud measured after 30ms TOF as a
function of the waiting time after the magnetic field pulse is applied. The error bars are the statistical
standard deviations of the measurements. The dashed line is a sinusoidal fit to the data, resulting in an
angular frequency of ωl = 547± 13 rad/s.

A summary of the results is presented in table 3.1, where I have summarized the predicted and
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measured parameters, that are in good agreement. From the experimental results reported above, we can

calculate some useful parameters of our trapped condensate. The theory of interacting trapped Bose-

Einstein condensed gases can be found in [69] and references therein. The geometrical averaged trapping

frequency (ω̄ho) and the corresponding oscillator length (aho) of our trap are

ω̄ho ≈ 2π × 131Hz (3.10a)

aho =
~

mω̄ho
≈ 0.94µm (3.10b)

These parameters allow us to estimate the condensation temperature Tc of our system, the chemical

potential µ and the Thomas-Fermi radius RTF :

Tc =
0.94~ωhoN1/3

kB
= 256nK (3.10c)

µ =
~ωho

2

(
15Na

aho

)2/5

= 98.5nK (3.10d)

RTF = aho

(
15Na

aho

)1/5

= 5.8µm (3.10e)

where a is the scattering length of 87Rb.

3.3.3 Lifetime

Another important quantity to characterize the performance of the BEC is the lifetime. A typical lifetime

measurement is presented below. We prepare the BEC and then we hold it at the final trap depth of the

evaporation for a variable amount of time. We then release it and measure the number of atoms. The

results are fitted to a double exponential decay curve Na = NT (exp
[
−t/τ1

]
+ exp

[
−t/τ2

]
). In figure 3.10

it is shown a typical lifetime measurement in our system. The high densities of the BEC sample make

the system to suffer from three-body losses, which are reflected in the τ1 contribution to the exponential.

After that short period of time, the loss mechanism is mainly due to collisions with the background gas

particles, that limit the lifetime of our condensate in the long term, and is given by τ2. The lifetime of

our condensate ' 10s, within the usual range of BEC experiments.

Fit parameter Error

NT 61.3 ×103 ±2.1
τ1 0.31 s ±0.1
τ2 9.43 s ±0.5

Table 3.2: Result of the fitting in figure 3.10.
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Figure 3.10: The figure shows an example of a typical lifetime measurement in our system. The results
of the double exponential fit to the data is presented in the table below. The error bars on the graph are
standard deviations of three measurements.
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CHAPTER 4

ENDOSCOPIC IMAGING THROUGH A FIBER BUNDLE

Up to now, I have presented the basic theory concerning spin-1 systems and the efforts towards a

working experiment to produce spin-1 Bose-Einstein condensates. The last chapter was dedicated to the

characterization of the BEC samples. In this chapter, I will present the first results obtained with the

setup that we built. This chapter is a re-formatted version of the article published in [22]. All the data

acquisition and the data analysis have been carried out by me.

This chapter is a result of the initial plan to explore the spin-1 physics of a 87Rb BEC in the ultra-

low magnetic field regime, and the need to transport reliable images of the physical system outside a

shielded environment. Within this spirit, we started to investigate how the properties of absorption

imaging pictures are affected when they are transmitted through a coherent fiber bundle. These devices

are widely used for optical diagnosis in medicine, and for fluorescence imaging in biology, but they have

not been used in quantum gas experiments. Here,we use a coherent fiber bundle to demonstrate the

endoscopic absorption imaging of quantum gases. We show that the fiber bundle introduces spurious

noise in the picture mainly due to the strong core-to-core coupling. By direct comparison with free-

space pictures, we observe that there is a maximum column density that can be reliably measured using

our fiber bundle, and we derive a simple criterion to estimate it. We demonstrate that taking care of

not exceeding such maximum, we can retrieve exact quantitative information about the atomic system,

making this technique appealing for systems requiring isolation form the environment.

4.1 Introduction

Cold atoms systems are at the core of the emerging quantum technologies and represent an invaluable

resource for the exploration of quantum phenomena. On the one hand they enable the development

of increasingly precise sensors and measurement devices, on the other hand they can be manipulated
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with great control, allowing the engineering of complex hamiltonians for quantum simulation. Often,

to achieve such exquisite level of control and precision, cold atoms systems need to be isolated from

the environment. Magnetically sensitive experiments, such as atom magnetometers [89, 90], atom clocks

[91], atom interferometers [92] and quantum simulators [93], need to be accurately shielded from external

magnetic fields using one or more layers of µ-metal. Experiments that require cryogenic temperatures

[94, 95] need instead to be performed inside cryostats. Thermal isolation is also desirable to increase the

performance of atomic clocks [96].

Within the experiments aiming at realizing quantum simulations, there are those that require extreme

isolation from the environment to explore the effects of dipolar interactions in quantum gases [97, 98].

Unless one employs atomic species with permanent magnetic dipole moment like Dy [99] or Er [100], to

investigate such effects it is necessary to ensure that the interaction energy of the atomic dipole moments

is not washed out by the Zeeman coupling to any residual magnetic fields. For example, since in 87Rb

the dipole-dipole energy is only ' h × 1Hz, with h the Planck constant, and the Zeeman splitting goes

approximately as ' h× 7× 109 Hz/T, it follows that the external magnetic field should be below 10−9T

for dipolar effects to become relevant. Our experiment has been built to explore such extreme regime

and has been designed to be completely non magnetic and to accommodate 5 layers of µ-metal magnetic

shield, in combination with active field compensations.

In our experiment, as in all those that require a strong shielding, retrieving information from the

system inevitably leads to an unwanted coupling with the environment. Particularly disruptive is the

use of the widely employed absorption imaging, since it requires high numerical aperture optics and

sophisticated CCD cameras. These latter are not compatible with a shielded environment so they need

to be accommodated outside the shield. Then, to allow the image of the atoms to reach the camera, one

or more holes must be cut in the shield resulting in a detrimental loss of shielding factor [101].

In this work, we follow a different approach and we demonstrate the use of a fibre bundle to per-

form endoscopic absorption imaging of quantum degenerate gases. Fibre bundles are fibre optic devices

composed of thousands of standard optical fibres which are packed together. They are widely used in

biological applications for fluorescence imaging techniques [102–104] and in medical endoscopy for optical

coherence tomography and multiphoton microscopy [105–108]. If the spatial ordering of the fibres is

preserved on both ends, the bundle is regarded as coherent and can be used to transfer an image from

one end to the other. Fibre bundles have a diameter of only a few mm and are flexible, making them

ideal candidates to transport the absorption images through small holes in the shield, therefore causing

only minor disruption in the shielding. By accounting for the spurious effects introduced by the fibre

bundle, we show that quantitative information can be retrieved from the absorption pictures, making our

62



Figure 4.1: Schematics (not in scale) of the optical setup used. The atomic cloud casts a shadow on the
imaging beam that is magnified by a factor of 1.8 by a first telescope. A flipping mirror send the image
of the shadow of the atomic cloud either on the CCD or on the fiber bundle setup. In this latter a 2:1
telescope images the focal plane on the input facet of the fiber bundle. A 1:2 telescope then images the
output facet on the CCD camera.

technique extremely appealing for experiments requiring high shielding factors.

4.2 Endoscopic absorption imaging

As shown in Fig. 4.1, to perform the endoscopic imaging of our ultracold sample, instead of sending the

light directly to the CCD camera, we send it to a leached fiber bundle. This latter is a commercially

available fiber bundle (Schott 1249311 RLIB CVET,1.00 X 670,8.2M,13.5K,QA 0.80) that is 67 cm long

and contains a total of 13500 fibers with 8.2 µm core diameter. The fibers are coherently packed in an

hexagonal pattern so that the input/output facet at each end has 1 mm outer diameter. After magnifi-

cation, the focal plane of the atoms is imaged on the input facet of the bundle with a 2:1 telescope made

of two achromatic lenses (Thorlabs MAP1050100-B). A similar optical set up with a 1:2 magnification is

used to image the output facet of the fiber bundle onto the CCD chip. It is formed by two lenses: a high

NA (0.5) f = 8 mm aspheric lens (Thorlabs AC240TME-B) and a f = 16 mm lens (Thorlabs AC080-16-B).

It is mounted on a cage system to allow for precision alignment. This allows us to properly collect the

light coming out the bundle since the typical NA of the fibers is ≈ 0.35. With this setup, the overall

magnification for the fiber bundle optical system is also 1.8. To characterize the absorption imaging

through the bundle, we use a simple flipping mirror that allows to switch between the two imaging paths

and therefore to have the direct comparison of the pictures transmitted through the bundle with the

63



a )                                                                                    b )

c )                                                                                 d )

0 . 0 0 . 2 0 . 4 0 . 6 0 . 80 . 0

0 . 2

0 . 4

0 . 6

0 . 8

F r e q u e n c y  i n  X

Fre
qu

en
cy 

in 
Y

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8

 

F r e q u e n c y  i n  X

7 . 0 0 0

8 . 6 0 0

1 0 . 2 0

1 1 . 8 0

1 3 . 4 0

1 5 . 0 0

  I n c o h e r e n t  l i g h t                                C o h e r e n t  l i g h t

Figure 4.2: Image of the output facet of the fiber bundle when injected with incoherent (a) and coherent
light (b). c) and d) are the corresponding two-dimensional Fourier transforms. The color scale is in dB.
While in a) it is possible to appreciate the hexagonal packing of the fiber bundle, in b) only a speckle
pattern is visible. Equivalently, in c) clear peaks emerge from the spectrum while in d) no peaks are
visible.

pictures taken in free space.

By passing through the fiber bundle, pictures can suffer from spurious effects such as multimodal

coupling [109], cross talk between the fiber cores [110] and pixelation due to the packing structure of

the bundle that can potentially alter the information transmitted. All this, in addition to a non-unitary

quality area, also severely limit the transmission efficiency [111].

To limit pixelation and have a better image quality we have chosen a bundle with a large number

of small core fibers closely packed. The price to pay is a non-negligible core-to-core coupling. We have

found that the cross talking between fibers must be accounted especially when working with coherent

laser light. In Fig. 4.2(a) and (b) we report an image of the output facet of the bundle when it is injected

with incoherent and coherent light respectively. In the case of incoherent light, the underlying matrix of

fibers is clearly visible. This becomes even more clear when performing the 2D Fourier transform of the

image, see Fig. 4.2(c), where the regular structure of the fibre packing give rise to clear peaks in the power

spectrum. When instead we use coherent light, a speckle pattern appears and the regular lattice of fibres

is completely washed out. This is due to the fact that the laser light acquires a different phase inside
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Figure 4.3: Peak column density measured using the fiber bundle Ωb0 as a function of the peak column

density measured in free space Ωf0 for the same atomic sample. The dashed line is the curve Ωb0 = Ωf0 .
The errorbars are one standard deviation statistical errors.

each different fiber. The cross-talking between different fibers inside the bundle creates the interference

that generates the speckle pattern. By performing the 2D Fourier transform we confirm the absence of

the peaks on the power spectrum, see Fig. 4.2 (d) and we observe that the noise level is significantly

increased. The appearance of a noisy speckle pattern is not per se a problem for the absorption imaging

since it is stationary and it is eliminated when computing Ω. However we will see in the following that

the percolation of light into adjacent fibers severely affects images of objects with high optical density.

In principle, another major effect to take into account is the low transmission efficiency of the bundle,

which acts as an optical attenuator. We have measured the efficiency of our fiber bundle to be η ' 0.33% at

780nm, which is compatible with the typical values quoted by the manufacturer and in other studies [111].

However it is easy to verify that absorption imaging is robust against this effect. Indeed, in the absence

of other spurious effects, even in case of very poor efficiency the column density obtained using the fiber

bundle is identical to the one in free space: Ωb = −ln[(Ib1−Ib3)/(Ib2−Ib3)] = −ln[η(If1 −I
f
3 )/(η(If2 −I

f
3 ))] =

Ωf , where the superscripts b and f stand for bundle and free-space respectively.

To measure the effect of the cross-talk and of the transmission efficiency we take absorption pictures

of our atomic clouds at different temperatures and number of atoms. For each set of parameters we vary

the intensity of the probe beam from ' 0.05 to 0.7 I0/Is. To make a direct comparison, we take the

absorption picture of the cloud with the same parameters, both using the fiber bundle and in free space.

We then fit each absorption image Ω(x, y) using a 2d Gaussian function and extract the peak column
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a )                                                              b )

c )                                                              d )

Figure 4.4: a) and b) Direct picture of the absorption profile of a Bose-Einstein condensate in free space

(If1 ) and through the fiber bundle (Ib1) respectively. c) and d) the corresponding absorption pictures Ωf

and Ωb. The colour scale is the same in c) and d). Each picture is 656×492 pixels.

density Ω0, that is directly proportional to the number of atoms in the cloud N = 2πΩ0σxσy/σ0, where

σx,y are the widths of the Gaussian distribution and σ0 is the resonant scattering cross section. We

have verified that, within our errorbars, σx,y measured through the fiber bundle are identical to those

measured in free space, as expected since the overall magnification of the two imaging system is equal.

In Fig. 4.3 we summarize our results reporting Ωb0 as a function of Ωf0 . We observe that, within our

errorbars, Ωb ≡ Ωf for values below ΩM ' 0.7. We conclude therefore that for small column densities the

impact of the fiber bundle in the images has a negligible effect. For values of Ω above 0.7 however, the

peak column density measured with the bundle starts to be lower than the one measured in free space,

and the difference increases as Ωf increases. Note that we have taken care that no saturation effects were

present in the free-space picture and consequently in the pictures taken through the bundle. Indeed this

latter transports the light only after it has interacted with the atoms, so it does not play any role in the

atom-light interaction. The reason for the discrepancy at higher Ω can be understood from Fig. 4.4(a)

and (b), where we report If1 and Ib1 for a dense BEC. In particular, in Fig. 4.4 (b) it is possible to observe

that even in case of a very dense sample, the atomic shadow is not completely dark, as it is in free space
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-Fig. 4.4 (a). As described above, when passing through the bundle the image acquires a faint speckle

pattern created by the core-to-core coupling. This percolates into the fibers that transport the shadow of

the atoms preventing this latter to be completely dark on the output facet. This effect is therefore more

important in the pictures with high column density samples. The resulting effect can be observed in the

absorption pictures in Fig, 4.4(c) and (d) (same colour scale), where the column density measured with

the bundle is significantly lower than the one measured in free space.

Whenever it is possible to make a direct comparison, like in our case, it is easy to correct for the effect

of the cross-talking by doing a simple calibration. For example, one can fit the curve Ω ≡ Ωf = Ωb(Ωf ).

However problems arise when this direct comparison cannot be done, as it will be the case once our setup

will be enclosed in the five-layer µ-metal shield. In that case the only information available will come

from the pictures taken through the bundle.

A quantitative description of the core-to-core coupling is a challenging task, especially for thousands of

fibres and this goes beyond the scope of this work. Here instead we derive a simple criterion to ascertain

the maximum reliable column density ΩM that can be measured with the fiber bundle, using only the

information available through the fiber bundle itself. For very dense samples, that in normal conditions

would feature a high column density, it is possible to remain below ΩM and therefore to obtain correct

quantitative information either using a probe beam well above the saturation intensity or increasing the

detuning of the probe light ∆. If on the one hand remaining below ΩM guarantees to extract correct

information, on the other it inevitably penalizes the signal-to-noise ratio. We will see in the following

that, at least for the parameters of interest for our experiment, the increase in the signal-to-noise ratio is

negligible.

Our method requires to prepare samples with different densities in order to span a wide range of

column densities. In this work the three samples are A=(1.8×105, 250 nK); B=(1.2×105, 100 nK) and

C=(1×105, 20 nK), where the first number indicates the number of atoms and the second the temperature

of the cloud. Samples A and B are dilute thermal clouds while sample C is a BEC, and they are prepared

changing the final point of the evaporation ramp. For each sample we perform the absorption imaging

with different intensities of the probe I0 (in alternative one can scan the detuning ∆). We then perform

a Gaussian fit of the shadow cast by the atoms in Ib1(x, y), retrieving the value of the background light

b and the amplitude of the Gaussian s 1. We verify that the value of b coincides with the one obtained

from Ib2(x, y). In the region of maximum absorption the number of counts in the CCD drops from b to

m = b−s, and it is easy to verify that Ω0 ' −ln(m/b). In the absence of spurious effects and for I0 < Is,

we expect both s and b to increase linearly with the probe intensity I0 and therefore that m is a linear

1The correct fitting function for a BEC is a Thomas-Fermi profile. We have verified that within our errorbars, using a
Gaussian profile does not introduce any appreciable systematic error in the determination of the parameters here discussed.
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Figure 4.5: a) Number of counts in the region of maximum absorption m as a function of the average
number of counts in the background b, evaluated from the direct picture Ib1. All the units are counts per
pixel. The three data sets are described in the text. The solid lines are linear fits to the data using the
procedure described in the text. The errorbars are one standard deviation statistical errors. b) Absolute
value of the residuals of the linear fits reported in a) as a function of b. The dashed lines correspond to
the errorbars in a).

function of b. As reported in Fig. 4.5(a), this is the case for the low density sample A. From a linear fit

to the data set of the sample A, we obtain the slope m/b that should be common to all data sets not

significantly affected by the core-to-core coupling. We then fit the data sets corresponding to samples B

and C using a linear function keeping the offset as the only free parameter, as shown in Fig. 4.5(a). As a

criterion to estimate ΩM , we discard all the points whose absolute value of the residuals is larger than the

errorbars, corresponding to the points above the dashed lines in Fig. 4.5(b). Using this simple method

that relies only on the information acquired through the bundle, we find that ΩM ' 0.7, in agreement

with what we have observed from the direct comparison with the free space pictures.

To give a specific example we have measured the BEC transition using both imaging systems, taking

care not to exceed ΩM while using the fiber bundle. To this end we have measured the fraction of

condensed atoms N0 as a function of the temperature. This is done fitting Ω(x, y) with a two-dimensional

bimodal distribution made by the sum of a Thomas-Fermi and a Gaussian profile. As can be seen from

Fig. 4.6, the results obtained using the fibre bundle are in very good agreement with those taken in free

space. For both imaging systems, we are not able to detect any thermal component for condensed fractions

above ' 60%. From the (integrated) density profiles reported in Fig. 4.6, it is possible to appreciate

the modest increase in the signal-to-noise ratio using the fiber bundle, that does not significantly affect

our measurements. For example, in the leftmost panel of the upper row of Fig. 4.6, the signal-to-

noise ratio drops from 168 (free-space) to 104 (fiber bundle). More quantitatively, we compare the

critical temperatures Tc measured with the two methods. In three dimensions, the condensate fraction

scales as N0/N = 1 − (T/Tc)
3, with kBTc = 0.94~ω̄N1/3, where ω̄ is the average trapping frequency
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Figure 4.6: The Bose-Einstein condensate transition. Upper row: integrated density profiles of our atomic
sample across the BEC transition measured using the fiber bundle and in free space. From the right to
the left: a thermal cloud, a partially condensed cloud and a pure BEC. Lower row: condensate fraction
as a function of the temperature. The lines are the fit functions explained in the text.
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and kB the Boltzmann constant [69]. In an optical dipole trap, the evaporation has two effects: it

lowers the temperature of the cloud and reduces the trapping frequencies. Indeed, if U is the depth

of the trap (proportional to the trapping laser intensity), we have that kBT ' ξU , with ξ ' 1/6, and

ω̄ = U1/2[(4/mw2
0)(2/mz2

R)1/2]1/3, being m the mass of the atom and w0 and zR the waist and the

Rayleigh length of the trapping beam [112]. From this, it follows that for our trap the condensate

fraction scales as N0/N = 1 − (T/T̃c)
3/2, with T̃c = 1.88~2N2/3/[kBξm(w2

0zR)2/3]. By fitting the two

curves shown in Fig. 4.6 we obtain that T̃c
b

= 189 ± 7 nK and T̃c
f

= 198 ± 7 nK, whose difference is

within our statistical uncertainty, demonstrating the reliability of absorption imaging through the fiber

bundle.
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CHAPTER 5

THERMALIZATION PROPERTIES OF A SPIN-1

FERROMAGNETIC CONDENSATE

Trapping the atoms in an all-optical dipole trap allows us to prepare Bose-Einstein condensates in

which the different hyperfine states of the F-manifold are macroscopically populated. The presence of

multiple Zeeman substates that are condensed together adds a degree of freedom to the dynamics of

the system (see section 1.2). This makes spinor condensates a versatile system to study a wide range

of problems, from quantum magnetism to spin squeezing including non-equilibrium physics and coreless

vortices [47–50, 60].

Spin-1 condensates are ferromagnetic(antiferromagnetic) if the difference between the scattering lengths

of the different collisional channels c2, is negative(positive). The ferromagnetic character of 87Rb was

predicted theoretically [65], and experimentally confirmed since the first experimental realizations of 87Rb

spinor gases [46, 66, 113].

In this chapter I will report on our experimental investigation of the thermalization properties of

spin-1 ferromagnetic condensates in a non-zero magnetic field. We have focused on two main subjects. In

section 5.1 we investigate the long term thermalization dynamics of the system magnetization. In section

5.2 we report on the long term equilibrium state of a spin-1 ferromagnetic condensate as a function of

both initial magnetization and external magnetic field.

5.1 Magnetization dynamics

The ground state properties of a spin-1 system in an external non-zero magnetic field are determined

by the competition between two energy scales: a) the interspecies interaction energy given by c2n where

n is the density and c2 characterizes the spin-mixing collisions. For our experimental parameters, this

energy is |c2|n ' 10×h Hz; b) the quadratic zeeman effect induced by the external field parametrized by
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Figure 5.1: Pictorial representation of spin-mixing dynamics. The arrows show the direction of the
population transfer.

q = E+1+E−1−2E0

2 ' h×70×B2 Hz/G2, where Ei are the energies of each Zeeman sublevel (see equation

1.7c). As mentioned before in section 1.2, due to the conservation of the magnetization, spin-mixing

collisions |F = 1,mF = −1〉 + |F = 1,mF = +1〉 ↔ |F = 1,mF = 0〉 as depictedn in figure 5.1, become

a relevant process in the dynamics of such systems. Indeed, the relaxation towards the ground state can

only happen via spin-mixing collisions because they conserve the total angular momentum of the system.

However, to reach the ground state the system has to overcome two main issues then. On the one hand,

the spin-mixing dynamics is suppressed for magnetic fields that induce a quadratic zeeman shift larger

than the energy associated with the spin-mixing coupling |q| > 2|c2|n, as reported in [114, 115]. On the

other hand, the magnetization can vary during the experimental window due to dissipative processes.

The question arises, does the magnetization of experimentally accesible states reach an equilibrium within

the experimental window?

In what follows, I will report on the investigation of these effects in our experimental setup, showing

the boundaries under which the system can effectively relax to an equilibrium state, therefore setting

some boundaries for the study of equilibrium physics in this system.

5.1.1 Zero Magnetization

The case of M = ρ+1 − ρ−1 = 0 is somewhat special, since any population distribution with ρ−1 = ρ+1

corresponds to zero magnetization, with ρmF =
NmF
Nt

as the fractional populations of each Zeeman state,

whit mF = {−1, 0,+1}. All these states can be accessed experimentally by preparing the initial sam-
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ple in the mF = 0 state and applying a radio-frequency pulse afterwards. The experimental sequence

is the same as explained in section 3.2. The only difference is that during the last two stages of the

evaporation, we switch on the quadrupole field produced by the MOT coils. This induces a loss channel

for the magnetically sensitive states. We end up with a pure condensate of N ' 8 × 104 atoms in the

mF = 0 state. After that, we apply a variable length rf pulse to select the initial state populations of the

form ((1 − ρ0)/2, ρ0, (1 − ρ0)/2). After the initial state preparation, we adiabatically ramp the external

magnetic field to the desired value. This external field is produeced by the compensation coils in the

vertical direction. We control the field by varying the voltage (Vset) applied to the current source. The

coils produce a magnetic field of Bz = (3.83/0.5× Vset − 1.5)G at the center of the cell. The end of the

magnetic field ramp sets the starting point t0 of our experimental window. We then wait for a variable

time t for the system to evolve, and probe the clouds using the Stern-Gerlach technique.

In figure 5.2 I have plotted the temporal evolution of the fractional populations of each Zeeman state

for different initial populations ρ0 ∈ (0.39, 0.16, 0.07), and for two different values of the applied field:

B ' 38mG (q ' 0.1×h Hz) and B ' 422mG (q ' 12×h Hz). Each point corresponds to 3 experimental

runs, and the error bars are the corresponding standard deviations. We can observe that the amplitude

of the spin oscillations is bigger for smaller fields. The period of the oscillations, on the other hand, has

a resonant value at a finite value of the magnetic field around ' 100mG [46, 114], and it also depends

on the initial value of ρ0. The lifetime in our system, however, exceeds the observation times of previous

studies [36, 46], as we have observed spin dynamics up to 7s. This gives us an excellent opportunity

to explore the long-term equilibration properties of the system. After 7s the number of atoms in our

system becomes too low to be detected. However, already after ≈5s, the oscillations of the populations

are already damped and close to their equilibrium values for most of the accessed points on the ρ0 − B

parameter space.

In figure 5.3 it is shown the difference between the final and initial population of the mF = 0 state as

a function of the the initial population and the applied magnetic field for two different evolution times

t = 3s, 5s. We can clearly appreciate two things. First, that the spin dynamics is strongly suppressed for

initial fractions ρ0 > 0.6. Second, it does not strongly depend on the magnetic field within our parameter

region B ∈ (0, 0.08)G.

We can observe a similar behaviour in both plots for different evolution times. The main differences

are observed for very low initial populations of the ρ0 state (ρ0 < 0.2) and for small magnetic fields

(0 < B < 500mG). In that region, we can observe spin dynamics that does not equilibrate within our

experimentally accessible evolution times. For bigger fields and bigger initial ρ0 fractions, the system
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Figure 5.2: Temporal evolution of ρ0 at different magnetic fields and initial population fractions. The
solid points correspond to the average of three expreimental runs of the experiment. The error bars are
the standard deviation, and the dashed lines are displayed as a guide to the eye. The blue, green and red
points correspond to the ρ0, ρ+1 and ρ−1 respectively.
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clearly reaches an equilibrium state within 5s. For all these cases, the total magnetization has been

measured to be M = 0.0± 0.02.

Remarks To conclude, we can say that the magnetization is conserved for all cases studied here. We

have also framed the region for which the spin-dynamics equilibrate within our experimentally accessible

evolution time. We observed a small region for which the oscillations of the population do not reach an

equilibrium within 5s of evolution.

We have to note that inhomogeneous spin textures are observed in our system (see figure 5.4). Some

of the dynamical properties of this spin-structure formation and evolution has been studied in [37].

They observed that the evolution dynamics of this structures is longer than the experimental time for

large values of |q|. How the formation and dynamics of such spin textures affects our measurements

is unclear. But taking everything into account we cannot talk about accessing the ground state of a

ferromagnetic spin-1 BEC because we have seen that there are equilibration processes that last longer

than our experimentally accessible times.

It is worth noticing that in our experiment the BEC has a substantially higher number of atoms with

respect to previous experiments. Due to this, the spin-mixing dynamics is highly suppressed especially

in the 2 × |F = 0〉 → |F = −1〉 + |F = +1〉 channel. Indeed, this can be explained considering that the

high density of our samples leads to mean field energies on the order of 4πa~2

m n ' h × 3KHz, almost

three orders of magnitude bigger than the energy associated to the spin-mixing dynamics. This effect is

analogous to the self-trapping effect observed in double-well systems[].

5.1.2 Finite magnetization

We have seen that for the case of M = 0, the magnetization does not change despite the fact that the

system presents spin dynamics up to 7s. The M 6= 0 are studied separately. We investigate the final

magnetization M state of the system as a function of the initial magnetizatio (i.e the magnetization set

at t = 0) and of the magnetic field B, B ∈ (0, 0.8)G and for initially set magnetizations M ∈ (0, 1).

To prepare the initial magnetization state, we apply a magnetic field gradient during the last 3s of

the evaporation. The magnetic field gradient increases the trap depth for the mF = +1 atoms, while

it lowers the trap depth for the mF = −1. Therefore, the thermalization process is enhanced for the

mF = +1 atoms, and the other two species are selectively evaporated before. By varying the magnetic

field gradient applied we can reach different initial states. The fully magnetized sample is achieved by

applying a magnetic field gradient of ' 0.25G/cm. The gradient coil, placed in the vertical direction, is

physically mounted on top of the quadrupole coils for the 3D MOT to ensure optimal alignment. The coil
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Figure 5.3: In the figures it is displayed the difference between the final and initial ρ0 as a function of
the initial fraction set using radio frequency pulses and the applied magnetic field for holding times of 3s
and 5s.
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Figure 5.4: Images of spin domains observed in our system during the course of this experiment. We can
observe how the condensate clouds have distorted shapes, indicating that the SMA can not be applied.

is made of flat wire, it has 20 turns and provides a magnetic field gradient of 1.18G/cmA at the centre

of the cell. In what follows,I will present the calibration of the BEC as a function of the magnetic field

gradient applied .

In figure 5.6(a) and (b) we plot the final magnetization of the system after 3s and 5s of evolution

time in the M − B parameter space. We observe that in both cases the difference between the initial

and final magnetization of the system is within our error bars (' 5%), proving that the magnetization is

conserved in the parameter space that we have explored. Notably, this highlights that dissipative effects

such as two and three body losses do not substantially alter the magnetization. Due to the symmetry of

the problem, the same behaviour is expected for negative magnetizations.
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Figure 5.5: In figure (a) it is displayed the magnetization created on the sample by applying a small mag-
netic field gradient during the last steps of the evaporation. This method has proven to be reproducible
and accurate as a way to prepare initial state samples. The maximum magnetic field gradient applied is
' 0.18Gcm−1. In (b) we can see the evolution of the number of atoms for each substate as a function of
the magnetic field gradient applied to the sample. The red squares corresponds to the mF = +1 state.
The blue circles represent the mF = 0 and magenta diamonds stand for mF = −1. The error bars are
standard deviations of three different runs of the experiment.
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Figure 5.6: In figure (a) and (b) it is shown the final magnetization of the sample as a function of the
initial set magnetization and the external magnetic field applied for 3s and 5s of evolution time.
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5.2 Long term equilibrium state of a ferromagnetic spin-1 con-

densate

While the ground state of an antiferromagnetic condensate has been studied in a number of experimental

works and reported extensively [31, 55–57, 116], to the best of our knowledge the ground state of 87Rb

has not been reported in a systematic way as a function of both magnetization and external magnetic

field. In the previous section 5.1, with the exception of the cases with M = 0, ρ0 < 0.2 and B < 0.1G (see

figure 5.1), I have shown that the magnetization is conserved and that the spin dynamics is completely

damped after ' 5s, as can be observed in figure 5.5. However, the question arises wether or not the

system has reached its ground state, because there are other dynamical processes that have an even

longer equilibration time, such as the formation and structural evolution of spin domains. Unfortunately,

probing such dynamics requires the use of techniques that can not be implemented in our experiment.

This phenomena has been reported in [37].

In this section, we will compare the equilibrium state reached by our system with the ground state

predicted by the theory. Typically, theoretical studies of the ground state of these systems do not take

into account the dissipative processes that are unavoidable in experiments such as forced evaporation and

two and three body losses. Additionally, as explained above, our condensate contains ∼ 105 atoms and

therefore we can not apply the SMA as RTF ∼ 4× ξs. On the contrary, theoretical studies of the spin-1

ground state properties rely on the validity of the SMA approximation i.e RTF < ξs. The importance of

the SMA in this investigation is unclear.

The ground state of a spin-1 ferromagnetic system has been predicted in the limit of zero magnetic

field [27, 28]. For zero magnetic field, the ferromagnetic ground state is simply the state in which all spins

point in the same direction, and because the spinor object has rotational symmetry, it can be generally

expressed as

~χ = eiθR


1

0

0

 = ei(θ−τ)


e−iα cos2(β2 )

√
2 cos

(
β
2

)
sin
(
β
2

)
eiα sin2(β2 )

 (5.1)

The predictions at zero magnetic field are not possible to achieve experimentally, because the presence

of any magnetic field will break the rotational SO(3) symmetry of the spinorial wavefunction as discussed

in [68]. The non-zero field needs to be introduced in the theoretical predictions, as in [31, 52, 54].

The presence of the non-zero magnetic field can be taken into account including an extra term HZ in
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the external trapping potential of the Hamiltonian: Uext = Vtrap(~x) + HZ . The Zeeman Hamiltonian

is HZ = δi,jEi, each Ei given by the Breit-Rabi formula (see equation 1.7c). Within the SMA, the

wavefunction of the spinor condensate can be written as φi(~x) =
√
NiΦi(~x)e−iθi with the convention∫

d~x
∑
i Φ2

i = 1 and θ+1 + θ−1 − 2θ0 = 0 as stablished in [28] for ferromagnetic systems. To find the

ground state of the spin-1 Hamiltonian with the Zeeman Hamiltonian included we need to minimize the

corresponding energy functional:

H[φi] = HS + E0N +
c2
2
〈~F 〉

2
− p〈fz〉+ q〈f2

z 〉 (5.2)

The term HS is symmetric for the exchange of the spin components, and therefore it is independent of

the magnetic field value. This implies that to correctly derive the ground state it is necessary to introduce

constraints for both the particle number and the magnetization.

From the Hamiltonian in equation 1.27 we can derive the following energy functional within the MF

approximation [117]

Where p = E−1−E+1

2 and q = E+1+E−1−2E0

2 parametrize the linear and quadratic Zeeman effect.

Following [54] for the minimization of equation 5.2, the ground state of the system is found by finding

the minimum of the spinor energy function that depends on the external magnetic field:

K = 2cρ0(
√
ρ+1 +

√
ρ−1)2 + q(ρ+1 + ρ−1) (5.3)

As a consequence of the conservation of number of particles, 1 = ρ+1 + ρ−1 + ρ0 and magnetization

M = ρ+1 − ρ−1, for a condensate in the presence of a fixed magnetic field B, we can parametrize the

above equation using a single parameter α = ρ+1 + ρ−1,

K = 2c (1− α)
(
α+

√
α2 −M2

)
(5.4)

The solution to the equation above is displayed in the right column of figure 5.7a.

5.2.1 Results and discussion

After loading the dipole trap from the MOT, we do a standard evaporation ramp until we reach the last

two stages of the evaporation. Then, we prepare the initial magnetization of the system as described

before. At the end of the evaporation, we adiabatically ramp up the power of the 1070nm beam in 50ms

to about 10mW. This serves to prevent the system to loose atoms by plain evaporation. During that

time, we also ramp the value of the magnetic field from the usual evaporation value to a fixed set value B.

The system is left to thermalize for about 100ms more, and then we let the system evolve for another 4s.
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Each data point in figure 5.7b is the average of three experimental runs. We sample the space parameter

M −B, and we measure the fractional population of each Zeeman state. As mentioned before, to obtain

the full information about the system, we only need to know the population of the ρ0 state, and the

magnetization. The results are compared with the theoretical predictions in figure 5.7a, for a system

within the SMA regime.

We can inmediately notice the clear difference between the theoretical prediction and our results. The

theoretical prediction shows a clear increase of ρ0 for low magnetizations and high fields. On the contrary,

our data shows a clear increase for low magnetizations and low fields. The data is in agreement with all

our previous observations of spin-mixing dynamics in the system. For high fields, the spin dynamics in

our experimental system is greatly suppressed, and therefore the system effectively “freezes” at the initial

population values set by the magnetization. This clearly shows that the ground state is not reached,

but rather the system equilibrates in a metastable state that does not evolve within our experimental

window. For low fields, vanishing magnetizations and small ρ0, however, the system is still evolving after

7s, and therefore the system does not even reach equilibrium state.
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Figure 5.7: In figure (a) it is plotted the theoretical phase diagram of ρ0 in the ground state as a function
of the external magnetic field and the magnetization of the sample, calculated using equations 5.4 under
the SMA approximation. In figure (b), I have plotted the experimental data in the M − B parameter
space explored in the experiment.
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CHAPTER 6

STUDY OF SPONTANEOUS MAGNETIZATION IN AN

EXTERNAL MAGNETIC FIELD

In the previous chapter we have studied the equilibration dynamics of a spin-1 BEC of 87Rb . Our

starting point was always a Bose-condensed sample with fixed magnetization, that was our control param-

eter together with the external magnetic field. In this chapter we are going to investigate the evaporative

cooling of the multicomponent spinor BEC in the presence of an external magnetic field. Some theo-

retical studies have tried to assess this question [118, 119]. However, the assumptions made in these

studies are not met in the experiment. This is simply because to achieve the condensation in atomic

gases, the experimentalist relies on evaporative cooling, that is a dissipative process. One of the general

conclusions of the theoretical studies is that condensation occurs at different temperatures for each Zee-

man component. Which component condenses first? At which temperature? Do all three components

always condense as a function of the magnetic field? These are natural questions that need to be assessed

experimentally. Evaporative cooling does not conserve the number of atoms, but is the magnetization of

the system conserved during this process? Does this dissipative process give rise to any magnetic phase of

the condensates as a function of the external magnetic field, i.e does a particular value of the field favour

the condensation in one of the states? This is expected to happen since the presence of the magnetic

field will change the energy of the levels due to the Zeeman shifts, that can be expressed up to quadratic

terms as ∆EB = pmF + q(m2
F − 1).

The all optical evaporation technique that we use is essential in this study. Other experiments that

investigate spinor systems use a combination of radio-frequency evaporation in a magnetic trap in the

first place, to later transfer the atoms into a dipole trap for the last stage of the evaporation. The forced

evaporation in a magnetic trap produces samples of atoms in the |F = 2,mF = −2〉 that need to be

transfered to other magnetic substates artificially to prepare an equally distributed sample among the

Zeeman levels at a given temperature. In our case all the Zeeman substates are equally populated from

84



the beginning of the experiment, and we can study the process starting from a high temperature regime.

Experimental Sequence
MOT
Loading Ramp 1Ramp 2 Ramp 3Ramp 4Ramp 5Ramp 6Ramp 7 TOF Imaging

4s 90ms 20ms 150ms 1s 2s 1.5s 1.9s 30ms ~1s

1070nm 
intensity

1550nm 
intensity

MOT field
10 G/cm

Off
Stern-Gerlach 
pulse

t

Holding
time

B 
MOT 
field

BIAS field MOT 
field

500ms

t0

(a)

Figure 6.1: Sketch of the sequence used in this experiment.

6.1 Experimental sequence

In chapter 5, we have presented results showing the long term equilibration dynamics of the system,

showing the dependence of the spin-dynamics and relaxation times with the magnetic field applied. We

will take this into account when performing our experimental sequence, that starts with loading the atoms

into the dipole trap from the MOT following the methods described in section 3.2. Then we start the

evaporation sequence. At the same time, we ramp the magnetic field in the vertical direction to a fixed

value adiabatically. The evaporation ramp is then performed as usual. We set initial experimental time

t0 (see figure 6.1) at 1.9s before the end of the evaporation ramp. From there on, we stop the evaporation

at different times t ∈ (800, 1900)ms. Each time will correspond to a trap depth, that in turn sets a

certain temperature T (t). The calibration of the temperature was done measuring the temperature of

the whole BEC for each evaporation time. After the evaporation stops, we wait 100ms more to allow

thermalization of the atoms in the trap, and then we wait for 3s more to allow the system to equilibrate

through spin-mixing collisions. Then we perform a Stern-Gerlach measurement of the population of each

Zeeman sublevel. We do this for values of B ∈ (0, 37)G in steps of ' 0.8G. We detect the atoms after

30ms TOF, and we apply different fits to the clouds depending on their properties (Gaussian, Bimodal
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or Thomas-Fermi profiles are fitted in a post-processing stage) to extract the total number of atoms and

the condensate fraction of the clouds.
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Figure 6.2: The figure shows the total number of atoms in each Zeeman state during the forced evaporation
as a function of the magnetic field. The color scale displays the total number of atoms in thousands.
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6.2 First results

In figure 6.2 I have plotted the total number of atoms in each Zeeman state for each temperature and

magnetic field (the color bar indicates number of atoms in thousands). Although at high temperatures

we start with an equally distributed population among the three levels, we can appreciate that in general,

the number of atoms in mF = −1 is smaller than in the other two states. For temperatures T > 150nK,

we can observe two clear regimes as a function of the magnetic field applied. For magnetic fields B < 10G,

the population of the mF = +1 is larger than the other two states. For higher fields, such that B > 25G,

it is in turn the mF = 0 state that it is most populated, while the mF = −1 decreases. Overall, the

number of atoms decreases with the temperature, as expected due to the evaporation process.

Remark A common feature in the data shown in figure 6.2 is a depletion of the number of atoms around

B ' 10G. The effect is enhanced by plotting a horizontal slice, as in figure 6.3. We can also observe

that this feature is already present at high temperatures, and it has sharp boundaries as a function of

the magnetic field. The atom losses are higher for the mF = 0 and mF = +1 states. This might be the

signature of a Feshbach resonance happening at high temperatures between these two Zeeman states. For

now, the nature of this feature remains unexplored, and it will be the subject of future investigations.
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Figure 6.3: Number of atoms in each state as a function of the magnetic field, for a temperature of 313nK.
Blue, green and red solid points correspond to mF = 0, mF = +1 and mF = −1 states. The dash line
serves as a guide for the eye.
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In figure 6.4, I have plotted the number of condensed atoms in each magnetic substate. We observe

the different behaviour of each state. In the first place we can observe that condensation occurs at dif-

ferent temperatures for each Zeeman state as a general feature. The mF = 0 state tends to condense

always first, followed by the mF = +1. The mF = −1 condenses the last. For fields B > 25, the

number of atoms in mF = −1 is too low to achieve condensation. Overall, we can observe two different

regimes of the condensed fraction as a function of the magnetic field. At low magnetic fields B < 5G,

the condensate fraction of the mF = +1 increases towards vanishing fields and becomes the most pop-

ulated state. On the contrary, at magnetic fields B > 25G, the mF = 0 becomes the most populated state.
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Figure 6.4: The figure shows the total number of condensed atoms in each Zeeman state during the forced
evaporation as a function of the magnetic field. As before, the color scale displays the total number of
atoms in thousands.
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Regarding the magnetization, we observe two interesting things. In figure 6.5a, we can observe a plot

of the magnetization corresponding to the whole system i.e thermal and condensed fractions. Surprisingly,

despite the evaporation being a dissipative process, we observe that the magnetization of the system is

almost uniform, with a slightly positive value in the whole region of parameters that we have explored,

excepting a slightly negative area around the values of the magnetic field that enhance the losses of the

mF = 0 and mF = +1 states. In figure 6.5b, I have plotted the magnetization of the BEC fraction of

the sample. Also here, we can observe a uniform distribution of the magnetization, except for a small

region. This region is located at low magnetic fields B ≤ 5G and high temperatures T > 150nK. The

BEC magnetization there shows a peak M ' 0.8, indicating a highly magnetized region. In general,

at low fields, there is a preference for the mF = +1 state, which is what should be expected from the

theoretical predictions of the ground state of a ferromagnetic spin-1 system in the absence of a magnetic

field.
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Figure 6.5: Figure (a) shows the total magnetization of the system during the forced evaporation process
as a function of the magnetic field. Figure (b) shows the magnetization of the condensate fraction of the
system.

To conclude, I have shown the preliminary results of the investigation of the BEC formation process in

a spin-1 ferromagnetic quantum gas subject to an external magnetic field. The system displays non trivial

features, such as multi-step condensation and enhaced losses as a function of the magnetic field. These

are consequence of the interspecies collisional processes, as well as the interplay between the condensed

atoms and the thermal cloud during the evaporation process.
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SUMMARY AND OUTLOOK

The majority of my thesis work has been devoted to the construction, optimization and characterization of

an experimental apparatus, capable of creating spinor condensates of' 1×105 atoms with a repetition rate

of 10s, using an all-optical evaporation technique. In this thesis, I have reported a complete description

of the experimental apparatus and techniques used in the experiment and a complete characterization of

the BEC sample. The achievement of a working experiment has represented the milestone of my thesis

work, and allowed me to start investigating some interesting physics:

• We have studied the transmission of absorption imaging pictures through a coherent fiber bundle.

This paves the way towards the use of such devices in quantum degenerate gases experiments in

which the system requires strong isolation from the environment.

• We have explored the equilibration dynamics of our system as a function of the initial magnetization

of the sample and the external magnetic field. We have assessed some questions regarding the

conservation of magnetization during the equilibration of the system. An interesting effect due to

the size of our BEC samples that supresses the spin dynamics of the system has been observed.

The equilibrium state at long evolution times was reported and compared to the SMA theoretical

prediction of the ground state of a spin-1 ferromagnetic system.

• The process of the formation of a BEC remains as an interesting question, despite the fact that the

issue was raised long ago [120, 121]. In particular, I have presented the first results of an ongoing

investigation on the BEC formation of a spin-1 quantum gas in the presence of an external mag-

netic field. Interesting phenomena such as step-wise condensation or possible interspecies Feshbach

resonances at low magnetic fields have been observed, and they will be subject of a more in-depth

investigation in the future.

The possibility of realizing BEC samples in which multiple components are present, including the

possibility of coupling these states to different hyperfine manifolds enriches the possibilities of using this

system as a powerful quantum simulator. To this end, we will additionally implement a high resolution

imaging system and a DMD, that will allow us to imprint topological defects onto our spinor BEC. It has
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been demonstrated that coherently driven spinor Bose gases can simulate classical field theory confinement

and string breaking [122]. In this system, dimer vortices appear as couples of half-vortices (one vortex

in each component) connected by a well defined pattern in the relative phase (sine-Gordon soliton),

corresponding to a constant force. When the distance between the half-vortices exceeds a certain value,

the dimer spontaneously breaks into pairs of half-vortices, with a mechanism similar to that of string

breaking in QCD. This simulator will allow to understand the role of creation and decay of domain walls

in the sine-Gordon field theory, with immediate impact on the theory of axions and on the physics of high-

density quark matter (like neutron stars). Additionally, Hawking radiation is one of the effects predicted

by Quantum Field Theories on curved spacetime, which represents a first step towards including effects

of gravity into the dynamics of quantum matter fields. This phenomenon, firstly introduced studying

black holes, seems to be practically not observable in this context. However, the close analogy between

sound propagation on a background hydrodynamic flow and field propagation in a curved spacetime led

to the first realization of sonic Hawking radiation with an event horizon (the region between a subsonic

and a supersonic flow) for a single BEC [123]. The richer structure of a multicomponent system and the

possibility of coherent coupling between the different components allows new insights in the physics of

Hawking radiation [124]. Furthermore, it will be possible to circumvent the issues that make Hawking

radiation in single component BECs still devated, like the presence of quantum correlations between the

phonons across the event horizon.
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[51] Wenxian Zhang, Ö. E. Müstecaplıoğlu, and L. You. Solitons in a trapped spin-1 atomic condensate.

Phys. Rev. A, 75:043601, Apr 2007.

[52] Wenxian Zhang, Su Yi, and L. You. Bose-einstein condensation of trapped interacting spin-1 atoms.

Phys. Rev. A, 70:043611, Oct 2004.

[53] Keiji Murata, Hiroki Saito, and Masahito Ueda. Broken-axisymmetry phase of a spin-1 ferromag-

netic bose-einstein condensate. Phys. Rev. A, 75:013607, Jan 2007.

[54] Wenxian Zhang, Su Yi, and Li You. Mean field ground state of a spin-1 condensate in a magnetic

field. New Journal of Physics, 5(1):77, 2003.

[55] David Jacob, Lingxuan Shao, Vincent Corre, Tilman Zibold, Luigi De Sarlo, Emmanuel Mimoun,

Jean Dalibard, and Fabrice Gerbier. Phase diagram of spin-1 antiferromagnetic bose-einstein con-

densates. Phys. Rev. A, 86:061601, Dec 2012.

[56] Y. Liu, S. Jung, S. E. Maxwell, L. D. Turner, E. Tiesinga, and P. D. Lett. Quantum phase transitions

and continuous observation of spinor dynamics in an antiferromagnetic condensate. Phys. Rev. Lett.,

102:125301, Mar 2009.

[57] J. Jiang, L. Zhao, M. Webb, and Y. Liu. Mapping the phase diagram of spinor condensates via

adiabatic quantum phase transitions. Phys. Rev. A, 90:023610, Aug 2014.

[58] Yuki Kawaguchi, Hiroki Saito, and Masahito Ueda. Can spinor dipolar effects be observed in

bose-einstein condensates? Phys. Rev. Lett., 98:110406, Mar 2007.

[59] M. Takahashi, Sankalpa Ghosh, T. Mizushima, and K. Machida. Spinor dipolar bose-einstein

condensates: Classical spin approach. Phys. Rev. Lett., 98:260403, Jun 2007.

[60] Kevin Gross, Chris P. Search, Han Pu, Weiping Zhang, and Pierre Meystre. Magnetism in a lattice

of spinor bose-einstein condensates. Phys. Rev. A, 66:033603, Sep 2002.

[61] Dariusz Kajtoch and Emilia Witkowska. Spin squeezing in dipolar spinor condensates. Phys. Rev.

A, 93:023627, Feb 2016.

V



[62] Daniel A. Steck. “Rubidium 87 D Line Data”, avilable online at http://steck.us/alkalidata (revision

2.1.5, 13 January 2015) .

[63] Christopher J. Foot. Atomic Physics. Oxford University Press, 2013.

[64] Christopher Gill. Simulating Transport Through Quantum Networks in the Presence of Classical

Noise Using Cold Atoms. PhD thesis, School of Physics and Astronomu, University of Birmingham,

2016.

[65] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen, and B. J. Verhaar. Interisotope

determination of ultracold rubidium interactions from three high-precision experiments. Phys. Rev.

Lett., 88:093201, Feb 2002.

[66] Ming-Shien Chang, Qishu Qin, Wenxian Zhang, Li You, and Michael S. Chapman. Coherent spinor

dynamics in a spin-1 bose condensate. Nature Physics, 1:111–116, 2005.

[67] Yuki Kawaguchi and Masahito Ueda. Spinor bose-einstein condensates. Physics Reports,

520(5):253–381, 2012.
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[113] J. Kronjäger, C. Becker, M. Brinkmann, R. Walser, P. Navez, K. Bongs, and K. Sengstock. Evolu-

tion of a spinor condensate: Coherent dynamics, dephasing, and revivals. Phys. Rev. A, 72:063619,

Dec 2005.

[114] Ming-Shien Chang, Qishu Qin, Wenxian Zhang, Li You, and Michael S. Chapman. Coherent spinor

dynamics in a spin-1 Bose condensate. Nature Physics, 1(2):111–116, October 2005.
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