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ABSTRACT 

Concentrations of selected organophosphate flame retardants (PFRs) were determined in 

samples of living room dust from Spain, Jordan, the Czech Republic, Greece, Finland, USA, 

and Mexico, with international differences in absolute concentrations and relative abundance 

of different PFRs highlighted and discussed. When previous data from the UK were 

considered, TCIPP was found to be the most abundant target PFR, with concentrations of 

TCIPP highest in the UK, followed by the USA and Mexico.  Other substantial international 

differences were observed that are likely attributable to variations in flame retardant 

legislation and use between different countries. Within-room, within-home, and between-

home temporal and spatial variation in concentrations of PFRs in floor dust and elevated 

surface dust was studied in 3 homes from Birmingham, UK. Of particular note are the 

seasonal variations in PFR concentrations whereby higher concentrations were observed in 

spring and summer especially for TCIPP; and that between-home spatial variation was largely 

attributable to differences in flooring composition (carpeted or tile). Moreover, higher 

concentrations were generally found in elevated surface rather than floor dust.  Concentrations 

of PFRs were determined in indoor air from houses and offices in Birmingham, UK. The 

relative order of abundance of PFRs in air was TCEP, TCIPP, TnBP and TPhP. This contrast 

with the order in dust samples from the UK where the order of abundance was TDCIPP, 

TPhP, EHDPP and TnBP. TCEP has the highest vapor pressure of the chlorinate PFRs. TCEP 

is about six orders of magnitude more volatile than TDCIPP and as a result, binding of 

TDCIPP to dust or soil particles is much likely than TCEPP and TCIPP. Finally, controlled 

chamber experiments were conducted to examine the magnitude and rate of PFR transfer from 

a treated fabric to dust via direct fabric-dust contact.  
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A key finding was that source-to-dust transfer via direct contact occurs and over the time 

period of our experiments was proportional to the duration of contact; with the majority of 

PFRs, transfer from fabric to dust via direct contact occurs within the first 4 days of contact.  
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CHAPTER I. INTRODUCTION 

1.1 Organophosphate flame retardants 

Since the discovery of fire, multiple advantages have accrued: food can be 

cooked, houses heated, and combustion has also transformed transportation. 

On the other hand, this amazing discovery also presented disadvantages 

related to the danger that fire represents, such as human life loss caused by 

fire; according to the European Flame Retardant Association (2012a). 

Furthermore crops, goods, houses and offices may also be damaged by fire; in 

2009 alone, the UK reported losses of £1,800 million due to fire damage (The 

Geneva Association, 2012).   

Flame retardants (FR) are chemicals added to materials to impart resistance to 

fire. Fire is a chemical reaction and flame retardants interrupt it by physical 

dilution, chemical interaction, inert gas dilution, thermal quenching and 

protective coatings (Kemmlein et al., 2003).  The relative role played by these 

mechanisms will depend on the flame retardant used and material. Flame 

retardants can be divided into additive and reactive flame retardants. Additive 

flame retardants are those added but not bonded chemically to the raw material. 

By comparison, reactive flame retardants are those that are chemically bound to 

the raw material. Organophosphate flame retardants (PFRs) are additive FRs 

and thus are susceptible to release into the environment (EPA, 2005).  
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Chemically, FRs can be divided into four broad groups: halogenated (containing 

chlorine or bromine for example: TCEP, TDCIPP, and TCIPP), inorganic (based 

on metals such as aluminium trihydrate (ATH) and magnesium hydroxide 

(Mg2OH4), other non-halogenated organic species like TnBP, EHDPP, TPhP 

and TCP (Coelho et al., 2016) and nitrogen compounds which their main 

applications are melamine for polyurethane flexible foams, melamine cyanurate 

in nylons, dicyandiamide in intumescent paints and sulfamate for wallpapers. 

Their advantages are the absence of dioxine and halogen acids as well as their 

low evolution of smoke. (Horacek and Grabener, 2016). 

1.2 Organophosphorus flame retardants: usage volumes and applications 
 

At the turn of the 21st century, the most commonly used organic flame 

retardants (OFRs) were brominated flame retardants (BFRs) like 

polybrominated diphenyl ethers (PBDEs) but over the last decade, scientific 

research has established the toxicity, persistence and bioaccumulative 

tendencies of PBDEs and other BFRs such as hexabromocyclododecane 

(HBCD) as well as evidence of water, air and soil contamination (Harrad et al., 

2009b; Harrad et al., 2010a). Such findings have led to restrictions and bans on 

the use of different PBDE formulations across the world (Reemtsma et al., 

2008); Stapleton et al., 2009; USEPA, 2005). This is exemplified by the listing of 

HBCD and the Penta- and Octa-BDE formulations under the UNEP Stockholm 

Convention on Persistent Organic Pollutants (European Flame Retardant 

Association, 2008). Moreover, the most extensively used PBDE formulation, 

Deca-BDE has recently been listed under this Convention. 
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Due to restrictions on manufacture and new use of these “classic” BFRs, 

alternatives are sought and hence the use of organophosphorus flame 

retardants (PFRs) has increased substantially (Ven der Veen et al., 2012).   

According to Stapleton et al. (2012) 50 % of the sofas in American homes have 

been treated with TDCIPP with a similar frequency of application reported in 

Japan by Takigami et al., (2009). Meanwhile in Europe the use of TCIPP in 

domestic and office furniture foam is more widespread due to the high price of 

TDCIPP (almost double that of TCIPP). As a result, in Europe TDCIPP use is 

largely confined to applications requiring a greater degree of flame retardancy 

such as in the automobile industry (EU RAR, 2008c). Table I-1 summarises the 

seven most commonly-used PFRs studied and their applications. And table I-2 

summary of the relative production volumes of the major PFRs in different 

countries. 

Table I-1Shows the seven most common PFRs studied and their applications 
as well their name and formula. 

PFR Applications and uses: 
Tri-n-butyl phosphate TnBP 

 

Manufacture of plastics and vinyl resins, fire-
resistant aircraft hydraulic fluids (ACG,1999) 

Tri(2-chloroisopropyl) phosphate TCIPP 

 
 

Rigid polyurethane foams, spray systems for 
building insulation as well as clock and panels 
for the same purpose, flexible polyurethane 
foams for furniture and its upholstery and 
mattresses, polyurethane carpet backing, 
principally in the United Kingdom and 
Ireland. The rest of Europe and USA have 
limited its use. (WHO, 2009) also been 
reported in PVC, glass fibre wallpaper use, 
wood preservation coating (Ni et al., 2007)  
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PFR Applications and uses: 
Tri(2-chloroethyl) phosphate TCEP 

 

Flame retardant plasticiser in furniture, 
flexible polyurethane foams, PVC materials, 
textile, and floor covering. Other uses in 
minor grade are flame resistant paints, cars, 
aircraft and trains manufacture. High levels in 
ceiling coating (EFRA. 2010 a, b; Stapleton et 
al., 2009). 

Tri(1,3-dichloropropyl) phosphate TDCIPP 

 
 
 
 

In flexible and rigid polyurethane foams, 
mattresses, and upholstery (EFRA. 2010 a, b; 
Stapleton et al., 2009) 

(2-ethylhexyldiphenyl phosphate) 
EHDPP 

 

PVC plasticizer, rubber, photofilms, paints, 
pigments, adhesives and textile coatings, food 
packing. (Weil, E.D., 1993; NTP 2013; 
USFDA, 2006).  

Triphenyl phosphate TPhP 

 

Plastic (PVC) and rubber preparations, 
coatings and adhesive products, commercial 
mixtures such as FM® 550 from Chemtura, 
application in linoleum floor and plastic of 
computers. (Marklund et al., 2003; Van den 
Eede et al., 2011). 

Tri-cresyl phosphate TCP 

 

PVC, artificial leather, tents, tarpaulins, 
electrical cables, conveyor belts, cellulosic 
polymers, thermoplastics & synthetic rubber, 
lubricants, hydraulic fluids, engine oil for 
motorcycle and automobiles. (EFRA, 2010 a, 
b) 

 

 

 

 

 

 

 

 

 

http://upload.wikimedia.org/wikipedia/commons/5/57/Tri-o-cresyl_phosphate.svg
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Table I-2 Summary of the relative production volumes of the major PFRs in 
different countries. 

PFR Production/usage  
Volume (t/year) 

Country Year 

TnBP 33.8 Norway 2008 
TCIPP  
 

22950  
2750  
40000 
50 
42.7 
177 
16429 
132 

Europe 
UK 
Worldwide 
Norway 
Norway 
Denmark 
Finland 
Sweden 

1995 
1995 
1997 
2001 
2008 
2008 
2008 
2008 

TCEP  
 

2040  
400  
1286 
798.5 
1598 
227–454 
261.3 
0.1 
198 

Europe 
UK 
Norway 
Norway 
Finland 
United States 
Norway 
Denmark 
Finland 

1995 
1995 
2003 
2004 
2004 
2006 
2008 
2008 
2008 

TDCIPP  
 

8000 
4500–22700 
<10000 
134.1 
4500–22700 

Worldwide 
United States 
Europe 
Denmark 
United States 

1997 
1998 
2000 
2002 
2006 

EHDPP 2.8 
30.1 

Norway 
Norway 

2002 
2005 

TPhP  
 
 
 
 
 
 
 
 
 

4500–22700 
4500–22700 
55 
1592 
4500–22700 
18.4 
2.3–16.7 year-1 
9.8–57.1 year-1 
46.0–88.0 year-1 

United States 
United States 
Norway 
Sweden 
United States 
Norway 
Denmark 
Finland 
Sweden 

1998 
2002 
2004 
2005 
2006 
2008 
2004–2008 
2004–2008 
2003–2008 

TCP  
 

454–4500 
454–4500 
0.8 
0.6 
3.6 
5.0 

United States 
United States 
Norway 
Denmark 
Finland 
Sweden 

1998 
2006 
2008 
2008 
2008 
2008 

WHO (1997), UNEP (2002), US-EPA (2002), US-EPA (2006), EU (2008a, 2008b), Green et al. 
(2008) and SPIN (2011). 
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One of the major components of the flame retardant formulation FM-550 that 

has found widespread application in furniture PUF in North America is TPhP 

(Stapleton et al., 2008).  According to Stapleton et. al, (2012) the increasing use 

of PFRs is further demonstrated by a study of 102 US sofas where 24 % of 

sofas purchased before 2005 contained TDCIPP versus 52 % in sofas 

purchased after 2005. Overall, Table I-2 shows the PFRs for which there is the 

greatest demand are: TPhP, TDCIPP and TCIPP.  

 

1.3 Physicochemical properties and mechanism of action 

1.3.1 Physicochemical properties 
 
It is evident that there will be substantial variation in environmental fate and 

behaviour between different PFRs. For example, those like TCP and EHDPP 

with high Kow values will likely partition preferentially to dust, sediment and soil 

rather than air and water, compared to TCEP which with its low Kow and 

comparatively high vapour pressure, is more likely to partition to air and water 

than soil or dust.  

PFRs with higher vapour pressure also undergo more facile volatile emission 

from treated goods. TCIPP has a low Kow making it more soluble in water with 

similar considerations applying to TDCIPP. Meyer et al (2004) reported that 

chlorinated alkyl phosphates such as TCEP, TCIPP and TDCIPP may be 

persistent as a result of their resistance to degradation and affinity for soil and 

dust organic carbon, a conclusion supported by estimates that the half-lives of 

TCEP and TDCIPP in groundwater range from 20 to 45 years (Regnery et al., 

2011).  
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Table I.3 summarises values of key physicochemical properties for selected 

PFRs. Of note the half-life of EHDPP in different environmental compartments 

are: water 50 days, atmosphere 9.7 hours, and soil and sediment 300 days 

(Environmental risk evaluation report: CAS no. 1241-94-7, 2009). This suggests 

EHDPP to be more persistent in particles than air.  

Table I-3 Values of key physicochemical properties of PFRs of interest (ATSDR, 
2012).  

PFR State at 
room 

temperature 

Solubility in 
Water 

(mg L-1) 
at 25 °C 

Log 
Kow 

Vapour 
Pressure 
(mm Hg) 
at 25 °C 

Henry’s Law 
constant 

(atm-3 mole1) 
at 25 °C 

TnBP Liquid 280 4 1.1 x 10-3 1.5x10-7 

TCEP Liquid 7.0x103 1.4 1.1 x 10-4 3.3x10-6 

TCIPP Liquid 1.60x103 2.6 0.75 6.0x10-8 

TDCIPP Liquid 1.50 3.8 7.4 x 10-8 2.6x10-9 

TPhP Liquid 1.9 4.6 1.2x10-6 3.3x10-6 

EHDPP Liquid 0.067 5.7 6.29×10-5 2.48x10-7 

TCP Liquid 0.36 5.1 1.8×10-7 9.2x10-7 
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1.3.2 Mechanism of action  

The general mechanisms of action of flame retardants are of two broad types: One 

mechanism is via preventing ignition it reduces the capability of the product to 

catch fire. The second mechanism is by reducing the formation of no-combustible 

gases to stop the spread of fire.  

In the case of PFRs, the mechanism of action depends on the chemicals involved, 

for halogenated PFRs in the gas phase OH. and H. radicals are removed and 

replaced with Cl, thereby retarding the burning reaction and thus the fire spread. 

The benefit of this mechanism is that halogen atoms as well as phosphorus offer 

additional flame retardancy as they both act independently in the polymer 

molecule (Van der Veen et al., 2012).  

On the other hand, for non-halogenated PFRs, during the fire phosphorus from the 

PFR component is transformed into phosphoric acid forming a char on the burned 

material that limits further combustion (European Flame Retardants Association, 

2012b). 

1.4 Environmental contamination with PFRs 
 

As a result of the widespread use of PFRs as additive FRs they may be released 

easily through volatilization and abrasion from treated goods and accumulate in 

indoor and outdoor environments (Wensing et al., 2005). Marklund et al. (2005) 

reported concentrations of EHDPP in municipal sludge to range from 0.32 to 4.6 

μg/g in Sweden.  
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Meanwhile, Andersen et al., (2004) and Stachel et al., (2005) reported 

concentrations of TCIPP between 100 to 350 ng/L in surface water and up to 311 

ng/g on sediments.  

There are also reports of concentrations of PFRs in indoor air as well as in house 

dust (Kim et al. 2011), (Van den Eede et al. 2010) (Ali et al 2012) (Brommer et al 

2012) (Van den Eede 2011). PFRs have also been detected in drinking water 

(Stackelberg et al., 2007), in sediment and in biota, including human tissues such 

as breast milk (Sundkvist et al. 2010; Kim et al. 2011a).  

The detection of TCIPP and TDCIPP in groundwater older than 20 years indicates 

their persistence (Regnery el al 2011). Moreover, TCEP and TDCIPP proved 

resistant to photodegradation in a laboratory experiment (Regnery et al. 2010).  

Overall, PFRs have been detected throughout the world, including countries such 

as the USA (Stapleton et al., 2009), Japan (Kanazawa et al., 2010b), Belgium 

(Van den Eede et al 2010), Spain, Romania and Belgium (Van den Eede, et al., 

2011), Germany (Brommer et al 2012), the Philippines (Kim et al 2012), New 

Zealand (Ali, et al. 2012), Kuwait, and Pakistan (Ali, et al. 2013). 

1.4.1 Dust  
 

Cao et al (2014) studied dust from 56 offices in Beijing, concluding that 

concentrations of PBDEs and NBFRs were minor compared to those of PFRs 

likely as a result of phasing out of BFRs. Such a higher concentration of PFRs 

compared to BFRs has also been reported in indoor environments in Japan 

(Mizouchi et al., 2015).  
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Moreover, according to Van den Eede et al. (2011), the median concentrations 

(µg/g) of PFRs in Belgian indoor dust samples were significantly higher (20 to 30 

times) than those of PBDEs and HBCD in Belgian dust reported by Roosens et al. 

(2010), suggesting that exposure to PFRs through dust ingestion is significantly 

higher than for BFRs. 

Over the last 15 years concentrations of PFRs have been determined in indoor 

dust from different micro environments such as: homes, work places, daycare 

centres, cars and so on (Brommer et al., 2012, 2015; Abdallah et al., 2014; 

Luongo et al., 2015; He et al., 2015; Araki et al., 2014; Cequier et al., 2014; Ali et 

al., 2013). Table I.4 summarises the available data on key PFRs, highlighting the 

difference in concentrations of PFRs between the EU and the US, in particular for 

TCEP where in Europe (Romania, Belgium, Spain, Netherlands) concentrations 

are lower than in the US and Japan (Van den Eede et al., 2011b; Dirtu et al., 2012, 

Brandsma et al., 2014). Such international differences in concentrations are 

thought to be due to the difference in use and type of FR in each country (Kim et 

al., 2013).  

Temporal variation in PFR contamination of indoor dust is an important factor 

influencing human exposure assessments and according to Cao et al., (2014) the 

major seasonal variation concentration occurs in late winter and early spring 

because of the sensitivity of PFRs to temperature changes as they are more 

volatile than PBDEs or NBFRs.  
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In winter, low ventilation and temperatures decrease PFR concentrations in 

contrast with the conditions in early spring and summer that favor emission of 

PFRs from products to indoor environments with subsequent accumulation in dust 

(Cao et al., 2014). There are three main factors that may contribute to temporal 

variation in PFR concentration in indoor environments: 1) the introduction or 

removal of a possible FR source such as carpet, furniture, television or other FR 

treated product, 2) temperature variation which may influence the release from 

treated products (Zhang et al., 2009) as well as air: dust partitioning (Hazrati and 

Harrad, 2006) and 3) ventilation (Cao et al., 2014). In one study, spatial variability 

was studied in three homes and three offices finding a variation in dust 

contamination depending on the proximity to the possible source. Specifically, the 

highest concentration of ΣHBCD and γ-HBCD was observed closest to a TV, 

whilst lower concentrations were detected in dust sampled floor areas of the same 

room sampled further away from the TV (Harrad et al., 2009). The same study 

also reported within-room temporal variability in concentrations of HBCD in dust. 

 In particular, the introduction to and temporary withdrawal of a TV from one room 

resulted in changes in HBCD concentrations in monthly dust samples of up to a 

factor of 2.5 that matched the temporal change in presence/absence of the TV in 

the room (Harrad et al., 2009).  

TCIPP has been reported as the predominant PFR in living room dust in countries 

such as UK, Japan and other European countries, in contrast to North America 

where TDCIPP and TPhP are the most abundant (Brommer et al., 2015). 

Meanwhile, in office dust TCIPP is predominant in the UK and Germany, while 

TPhP was the major PFR detected in Kazakhstani dust (Brommer et al. 2015).  
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Studies of PFRs in indoor dust from other countries such as Kuwait have attributed 

high PFR concentrations to the import of furniture from Japan, China and USA (Ali 

et al., 2013). In Egyptian indoor dust TDCIPP, TCIPP and TCEP were detected at 

average concentrations of 233, 229 and 144 ng/g respectively (Abdallah et al, 

2014). Meanwhile in the same study, TPhP was the most frequently detected and 

most abundant PFR which was attributed to the wide use of TPhP as a plasticizer 

in addition to its application as an FR in different consumer goods; while 

concentrations (average 50 ng/g) of EHDPP in Egyptian dust were lower than 

reported from other countries (Abdallah et al., 2014). Further afield, countries like 

Mexico import a substantial mass of goods from the US that may contain high 

concentrations of PFRs. In addition, Mexico has an important flame retardant 

manufacturing industry. For example, Mexico is home to the following companies: 

Thor (an international company originally from UK, who manufacture and distribute 

PFRs to South America from Mexico, e.g. the commercial product AFLAMMIT ®); 

WSFR (Zhejiang Wansheng Co. LTD) another international company originally 

from China, which manufactures and distributes FRs for use in plastics, flexible 

and rigid polyurethane from Mexico to South America; and Polyrob Plastics, S.A. 

de C.V. - a Mexican company that distributes FR for different applications 

throughout South America.  
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1.4.1.1 Differences between PFR concentrations in elevated surface versus 

floor dust. 

Tajima et al., (2014) reported higher concentrations of TPhP, TCIPP, TCEP and 

TnBP in elevated surface dust than in floor dust and attributed this potentially to 

more frequent cleaning of floors than elevated surfaces. Concentrations of TCIPP 

in floor dust and elevated surface dust were significantly correlated (r=0.886, 

p<0.001) suggesting that floor material might be a possible source for this 

compound, especially where the dominant floor surface material was wall-to-wall 

carpet and PVC rather than wood floors (Tajima, et al., 2014). TCEP is used in 

carpet and PVC floor material (ECHA, 2010). In elevated surface dust, the TnBP, 

TCEP and TPhP were more abundant than in floor dust, with one possible 

explanation being lower cleaning frequency of elevated surfaces compared to 

floors in some houses (Tajima, et al., 2014).  

Van den Eede et al., (2011) also report similar concentrations of TnBP, TPhP, and 

TDCIPP in Belgian and Spanish indoor dust, but detected TCEP at higher 

concentrations in Spain.   Meanwhile concentrations in indoor dust from 

Portuguese houses were low compared to those reported in other European 

countries and the US (Coelho et al., 2016). TPhP and TCIPP were the most 

abundant PFRs reported in five sampled sites in China, with concentrations of 

TCIPP comparable to those in other countries such as Kuwait, Pakistan, Belgium, 

Romania and Spain. 

In contrast, high levels of TPhP were found in indoor dust from the US (Zheng et 

al., 2015), presumably attributable to the widespread use of FM-550 in furniture. 
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Also in the US, high levels of TDCIPP were found in living areas compared to 

bedrooms, indicating the presence of more upholstered furniture in living areas 

than bedrooms (Wei et al., 2015). On the other hand, concentrations of TnBP and 

TPhP in bedrooms in New Zealand implied mattress dust as a common emission 

source to floor dust (Ali et al., 2012).  Variations in concentrations between house 

dust from different countries are likely attributable to differences in the numbers 

and types of putative sources such as floor materials, electronics, and furniture, as 

well as the degree and type of ventilation with low concentrations observed in 

houses with a high frequency of window opening (Araki et al., 2014).   
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Table I-4 Median concentrations (µg/g) of PFRs in indoor floor house dust reported in selected studies.  

Country n year TnBP TCEP TCIPP TDCIPP TPhP EHDPP TCP Reference 
Spain 8 2007 0.23 0.50 3.8 0.12 1.9 N/A N/A (Garcia et al., 2007) 
Belgium 33 2011 0.13 0.23 1.4 0.36 0.50 N/A 0.20 (Van den Eede et al., 2011) 
Sweden 10 2011 0.3 2.1 1.6 10 1.2 0.5 N/A (Bergh et al., 2011) 
Romania 47 2010 0.04 0.10 0.86 0.06 0.50 N/A N/A (Dirtu et al., 2012) 
US 16 2006 <0.08 5.1 2.1 2.8 3 0.61 N/A (Dodson et al., 2012) 
New Zealand 34 2011 0.08 0.15 0.35 0.23 0.6 N/A 0.12 (Ali et al., 2012) 
Kuwait 15 2011 0.05 0.71 1.46 0.36 0.43 0.19 N/A (Ali et al., 2013) 
Pakistan 15 2011 <0.02 0.15 <0.02 0.25 0.16 0.06 N/A (Ali et al., 2013) 
Japan 148 2014 1.0 5.8 8.7 2.8 4.5 N/A <0.4 (Araki et al., 2014) 
Japan 48 2014 N/A N/A 0.74 <0.59 0.9 N/A <0.4 (Tajima et al., 2014) 
Egypt 20 2014 0.017 0.022 0.028 0.072 0.067 0.042 N/A (Abdallah et al., 2014) 
Norway 48 2014 0.06 0.41 2.68 0.50 0.98 0.62 0.31 (Cequier et al., 2014) 
China 6 2015 N/A 2140 720 110 600  N/A  N/A (He et al., 2015) 
China 56 2015 0.15 0.35 2.17 0.49 0.36 0.61 N/A (Zheng et al., 2015) 
China 25 2015 0.14 1.93 1.22 0.15 1.09 0.31  N/A (He et al., 2015) 
China 11 2015 0.08 3.78 0.75 0.75 0.13 0.15 0.36 (He et al., 2015) 
Sweden 62 2015 5.6 4.0 11 2.0 4.3 2.7 2.7 (Luongo et al., 2015) 
Portugal 28 2016 0.02 0.01  N/A 0.02 0.66 0.62 N/A (Coelho et al., 2016) 
UK 32 2015 0.03 0.81 21 0.71 3.3 1.6 N/A (Harrad et al., 2016) 
Australia 42 2015 0.06 0.60 1.8 0.32 1.2 0.38 N/A (Harrad et al., 2016) 
Canada 14 2015 0.13 0.69 1.2 1.1 1.6 0.39 N/A (Harrad et al., 2016) 
Germany 22 2015 <0.03 0.21 1.0 0.08 0.23 0.14 N/A (Harrad et al., 2016) 
Kazakhstan 9 2015 0.11 1.4 1.0 0.11 3.8 0.27 N/A (Harrad et al., 2016) 

N/A Not available/not investigated  
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Table I-5 Concentrations of PFRs in indoor dust in different microenvironments and countries (µg/g dust). 

Country Place TnBP TCEP TCIPP TDCIPP TPhP TCP Reference 
Kuwait  Car N/A 1.76 3.07 7.63 1.76 N/A Ali et al. (2013) 

New 
Zealand 

Mattress 0.07 0.04 0.25 0.11 0.24 0.16 Ali et al. (2012) 

Belgium  Shop 0.21 0.59 2.94 0.76 1.97 0.2 Van de Eede et al. 
(2011) 

Sweden Public 
place 
Day care 
centres 
Work 
places 

 
0.4 
1.2 
 
0.2 

 
1.4 
30 
 
6.7 

 
2.4 
3.1 
 
19 

 
1.1 
9.1 
 
17 

 
3.1 
1.9 
 
5.3 

 
N/A  
N/A  
 
N/A  

Marklund et al. 
(2003) 
Bergh et al. (2011) 

Germany  Cars 
Offices 

0.11 
0.22 

0.95 
0.12 

3.10 
3.00 

130 
0.15 

3.0 
2.5 
 

0.24 
0.37 

Brommer et al. 
(2012) 

N/A not applicable 
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Generally speaking TCIPP and TCEP are the most important PFRs in indoor dust not 

just with respect to their frequency of detection, but also due to their absolute 

concentrations in different microenvironments such as hotels, offices, day care 

centers, hospitals, and shops etc. 

1.4.2 Air 
 

PFRs are reported to be persistent in the atmosphere and be capable of medium or 

long-range transport (Lui et al., 2014). However, only a few studies of their presence 

in outdoor air exist. In La Coruña, Spain, Quintana et al. (2007) reported TCEP and 

TCIPP to be present in outdoor air at 0.52 ng m-3 and 1 ng m-3 respectively. 

Meanwhile, concentrations of TCEP (0.0016 ng m-3), TCIPP (0.81 ng m-3) and 

TDCIPP (0.02 ng m-3) were reported for Finland (Marklund et al., 2005).  In pine 

needles (used as a natural passive sampler) in the Sierra Nevada Mountains, USA, 

concentrations of TCEP (1950 ng/g), TCIPP (763 ng/g) and TDCIPP (1320 ng/g) 

were reported (Aston et al., 1996).  

With respect to indoor air, PFRs may arise as a result of volatilization from putative 

sources and subsequently partition between gas and particulate phases (Van den 

Eede et al., 2011). Air samples from 169 apartments in Stockholm were analysed for 

PFRs, revealing median concentrations of TCEP (4 ng m-3), TCIPP (14 ng m-3) and 

TPhP (<3.1 ng m-3) (Bergh et al., 2011).  Concentrations of PFRs in urban outdoor air 

from Toronto, Canada were measured by Shoeib et al. (2014) during 2010-2011, 

reporting a yearly mean (2.64 ng m3) of ΣPFRs. The same study reported significant 

positive correlations between TCEP and both TCIPP and TPhP indicating similar 

sources of these compounds.  
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According to Staff et al. (2005) PFRs are established as ubiquitous indoor air 

pollutants, with concentrations in the range of 1-870 and 1-2300 ng m-3 for TCIPP 

and TCEP respectively and for TPhP and TnBP 1-220 ng m-3 and 1-170 ng m-3 

respectively. The observation that homes contain lower concentrations than offices 

has been attributed to the existence of more sources of contamination in offices than 

in homes as a result of more stringent fire safety regulations in public spaces (Staaf 

et al. 2005). The offices sampled were almost new and modern with acoustically 

damped ceilings, new computers, and new polyurethane foam upholstery, suggesting 

greater emissions from such new goods and materials than from older ones (Staaf et 

al. 2005). Related to this, chamber experiments have documented TCIPP 

volatilisation from upholstery, insulating material and foam (Kemmlein et al., 2003).  

1.4.3 Fabrics as a source of PFRs to indoor environments 

The majority of current commercial FRs used to treat textiles originate from those 

developed before 1980 such as Fyrol 6 and 51 (containing TDCIPP and TPhP), 

which were specifically recommended for textile applications (Horrocks, 2011). The 

widespread use of such FRs to meet flame retardancy regulations (such as the UK’s 

Furniture and Furnishings (Fire Safety) Regulations 1988) has substantial relevance 

as textiles and fabrics constitute a substantial proportion of the surface area in many 

indoor microenvironments (Molander et al., 2012). Thus, there is substantial potential 

for FRs present in such fabrics to transfer to indoor dust via: volatilization with 

subsequent partitioning to dust; by abrasion of an FR-containing fabric resulting in 

direct transfer of FR-laden fibres to dust; and transfer via direct contact between 

treated fabric and dust (Suzuki et al., 2009; Webster et al., 2009; Wagner et al., 

2013; Cao et al., 2014; Rauert et al., 2016).  
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In the US, the California legislature recently approved a law (SB1019) requiring 

labels in furniture to indicate if a product contains FR or not. TDCIPP is more 

commonly used as flame retardant in US furniture, as evidenced by Stapleton et al. 

(2012), who report the presence of TDICPP in 50 % of residential furniture PUF 

samples analysed. In a recent study, 40 samples of furniture (foam, fabric covers, 

synthetic fibres and beads) were analysed finding the following concentrations of 

PFRs: cover fabrics (TCIPP 6.26 ppm, TCEP 5 ppm, and TPhP 4.6 ppm) synthetic 

cover pad and batting (TCIPP <6.25 ppm, TCEP 4.6 ppm) foam (TCIPP 6.3 µg g, 

TCEP <4.6 ppm, TDCIPP 3.8 ppm). The study observed that products manufactured 

before 2013 displayed the highest concentrations (Petreas et al., 2016). 

A recent study was conducted in the UK to measure FR concentrations in carpets, 

curtains, mattress fabric, furniture foam, and furniture upholstery textile. It found that 

8 of the 9 furniture foams analysed were treated with PFRs at a mean concentration 

of 1.9 % w/w TCIPP, and 1.1% and 0.5% of TDCIPP and TCEP respectively 

(Stubbings et al., 2016).  

1.5 Toxicity 
Evidence of the presence of elevated concentrations of PFRs in indoor environments 

has raised concerns about human exposure. Such exposure concerns are 

exacerbated by evidence of PFR toxicity. Toxicology studies to date have included 

long-term exposure in laboratory animal tests (WHO, 2000B, 1998) to TCIPP, 

TDCIPP, and TCEP that demonstrate adverse effects including potential 

carcinogenicity in rats and mice, mutagenic, teratogenic, haemolytic effects and 

neurotoxicity which some have suggested render them inappropriate substitutes for 

BFRs (Van de Veen et al 2012).   
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Exposure to TnBP has also been linked to sick building syndrome (Kanazawa et al., 

2010), while TPhP has been linked to dermatitis as well as respiratory problems, as 

well also associated with altered prolactin levels and decreased sperm count in men 

(Camarasa et al., 1992; Kim et al., 2013; Dodson et al., 2012).  

Table I-6 Summary of knowledge of the toxicity of PFRs.  

PFR Reported effects 
TnBP 
 

Possible neurotoxicity and carcinogenicity, 
as well as testicular, kidney and liver 
damage. (Meeker and Stapleton, 2010; 
NTP, 1990; WHO, 1991, 1998).  

TCIPP(tri(2-chloroisopropyl) phosphate Ni et al., 2007 considered it potentially 
carcinogenic. Leisewitz et al., 2000 
reported chronic toxicity, accumulation in 
liver & kidneys. As well as skin and eye 
irritation in rats, Dishaw et al., 2011 found 
that TCIPP diminishes cell numbers & 
alters neurodifferentiation.  

TCEP (tri(2-chloroethyl) phosphate WHO (1998) report TCEP to be 
carcinogenic to animals. Chapin et al., 
1997 report TCEP reduces fertility, sperm 
mobility, and sperm density in humans. In 
the EU, it is classified as a “potential 
human carcinogen” and was classified by 
the Californian EPA as a “known 
carcinogen” in 1992.   

TDCIPP (tri 1,3dichloropropyl) 
phosphate) 

Andersen et al., 2004 & WHO 1998 report 
TDCIPP to be a possible carcinogen and in 
the EU, it is classified as a level 2 
carcinogen (EURAR, 2008c). Also reported 
to be associated with decreased thyroid 
hormone levels (Meerker et al., 2010). 
Additionally, linked to inhibited DNA 
synthesis and decreased cell number 
alternating neurodifferentiation. (Dishaw et 
al., 2011).  

EHDPP 
 
 
 

Possible human skin irritant, with prolonged 
exposure resulting in eye irritation and 
conjunctivitis. Neurotoxicity reported in rats 
as well as reproductive toxicity (Sprague et 
al., 1981, IARC 1990, NTP 2010a).  
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PFR Reported effects 
TPhP (triphenyl phosphate) Andersen et al 2004 reported TPhP 

displays possible neurotoxicity, but Pakalin 
et al., 2007 reported low neurotoxicity. 
Meeker and Stapleton 2010 sampled 
house dust and related TPhP with 
diminution of sperm concentration.  
Camarasa et al., 1992 reported it linked to 
dermatitis. 

TCP (tri-cresyl phosphate) McPherson et al 2004 found a possible 
relationship between TCP and reproductive 
effects. Bolgar et al., 2008 reported CNS 
toxicity.  

 

1.6 Pathways of human exposure to PFRs 
 

While a study of PFRs in indoor dust and blood serum showed concentrations of 

TCIPP, TCEP and TDCIPP to be detected in dust only, evidence for human exposure 

to PFRs is provided by recent studies that have detected metabolites of chlorinated 

PFRs in urine samples suggesting urine to be an important human exposure 

biomarker. (Dodson et al., 2014; Hoffman et al., 2015). Likewise, EHDPP was 

detected in pooled breast milk samples of Swedish women, at levels ranging from 3.5 

- 7.9 ng/g lipid. In the one individual breast milk sample that was analysed, EHDPP 

was found at a concentration of 13 ng/g lipid. (Sundkvist et al., 2010).  

While such biomonitoring studies provide irrefutable evidence that humans are 

exposed to PFRs, they do not explain via pathways such exposure occurs.  

The widespread presence of PFRs in various goods and materials leads to 

contamination of indoor air and dust and consequent potential for human exposure 

via contact with these matrices in indoor environments (Cao et al., 2014). Of 

particular concern is the recognition that exposure to PFRs via indoor dust is 

especially important for young children partly because of the greater hand-to-mouth 
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behaviour of young children compared to adults, but also because given equal 

intakes, their exposure will exceed that of adults on a body weight-normalised basis 

(Harrad et al 2008). With respect to dust contact rate, while definitive data has yet to 

be generated the USEPA (2005) estimated that children between 1 to 5 ingest on 

average 100-200 mg dust/day, while adults ingest about 20-50 mg dust/day (Jones-

Otazo et al. 2005). Moreover, dermal uptake of PFRs has been demonstrated 

(Abdallah et al, 2016). 

With respect to inhalation exposure, airborne particles can be divided between 

inhalable particles (<4 mm nominal diameter) that deposit in the upper respiratory 

tract, and respirable air particles which are capable of penetrating deep inside the 

lung´s gas-exchange region (Schreder et al., 2015). TCIPP and TDCIPP were 

detected in inhalable particles at mean concentrations of 371 ng/m3 and 19.1 ng/m3 

respectively in indoor air from Washington, US (Schreder et al., 2015). In Sweden, 

Marklund et al (2005) reported TCIPP concentrations to range between 38 and 210 

ng/m3 in houses, with a maximum concentration of 570 ng/m3 TCIPP in a prison 

corridor, with concentrations in offices reaching as high as 730 ng/m3 (Marklund et 

al., 2005).  

FRs are used in a large variety of consumer products. These compounds are 

continuously released into the aquatic environment from sources such as wastewater 

treatment plants, where aquatic organisms tend to accumulate these contaminants in 

their body (Richardson, 2008).  
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Kim et al., (2011) report in fish, mean concentrations of TCP (2.14 ng/g) and of TPhP 

and EHDPP (23.9 and 3.9 ng/g) respectively. Andresen et al. (2004) reported that in 

2004 in the River Ruhr in Germany, concentrations of TCIPP were between 20-200 

ng/L, while those of TCEP and TDCIPP were ~50 ng/L and those of TnBP and TPhP 

were 30-40 ng/L and 10-30 ng/L respectively. 

With respect to guidelines limits on safe levels of human exposure to PFRs, Table I.7 

summarises current based on a chronic no observed adverse effect level (NOAEL) 

divided by an uncertainty factor of 1000, HBLVs for 22,000, 80,000 and 15,000 ng/kg 

bw/day were derived for TCEP, TDCIPP and TDCIPP respectively (Ali et al., 2012).  

Table I-7 NOAEL (ng/ (kg bw)/day) for different PFRs 

PFR NOAEL 
ng/ (kg bw)/day 

Comments 

TnBP 24000 NOAEL based on carcinogenic effects  
(Pharmaco LSR Inc, 1994 Report No. 89-3533). 

TCEP 22000 NOEL based on relative liver and kidney weight  
(Matthews et al., 1990). 

TCIPP 80000 NOAEL of male rats based on changes in liver  
weight and cellular changes in kidney (Stauffer report, 
1981). 

TDCIPP 15000 NOAEL based on relative liver weight (Kamata et al., 1989). 
TPhP 70000 NOEL based on liver weight and depression of weight gains  

(Sutton et al., 1960). 
TCP 13000 LOAEL 13–15 mg/kg (NOAEL 7 mg/kg based 

 on lesions in adrenal gland, ovary and liver) (NTP, 1994). 
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1.7 Aims of this study 
 

Against the backdrop of current knowledge outlined above, the primary objectives of 

this study are to:  

• Compare concentrations of seven PFRs in floor dust from a number of different 

countries to test the hypothesis that PFR contamination of indoor dust will be 

influenced by international differences in flame retardant use. 

• Evaluate within-room and within-home spatial and temporal variability in 

concentrations of seven PFRs in floor and elevated surface dust from a number of 

homes in Birmingham, UK. This will test the hypothesis that such variability can 

exert an appreciable influence on human exposure assessments. 

• Measure concentrations of seven PFRs in both indoor air and dust from offices 

and homes in Birmingham, UK. These data will be used to test the hypothesis 

that the relative significance of inhalation and dust ingestion as pathways of 

human exposure will vary according to the physichemical properties of the PFR. 

• Use a test chamber to test the hypothesis that direct fabric-dust contact is an 

important pathway via which PFRs may transfer from a PFR-containing fabric to 

dust. 
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CHAPTER II. SAMPLING AND ANALYTICAL METHODOLOGY 
 

This chapter covers the sampling, extraction and analytical methods used in this 

thesis to determine concentrations in indoor air and dust of 7 of the most widely 

used PFRs. Method validation and quality assurance/quality control data are 

included and explained. The methods used were optimisations of those 

developed previously in this research group (Brommer et al., 2015).  

2.1 Sampling  

2.1.1 Dust sampling 

2.1.1.1 Dust sampled for the purposes of studying temporal and spatial 
variations in PFR concentrations.  
 

Within-room spatial and temporal variability in PFR concentrations in dust were 

studied in three homes in Birmingham under normal room use conditions to 

reflect actual human exposure, table II.1. Dust samples were collected monthly 

for 1 year starting November 2013 to evaluate temporal and seasonal 

variability. 

Sampling was conducted using a TESCO VC207 1400 W vacuum cleaner in 

accordance with a previously reported protocol (Harrad et al., 2008b). For floor 

dust, a 1 m2 area was vacuumed for 2 minutes where the floor is carpeted, while 

for bare floors (e.g. wood or tiled) a  4 m2 area was sampled for 4 minutes. 

(Harrad et al., 2008 a, b). Samples were collected using nylon sample socks (25 

μm pore size) that were mounted in the furniture attachment tube of the vacuum 

cleaner. After sampling, socks were closed with a twist tie, sealed in a plastic 

bag and stored until analysis.   



 

40 
 

Table II-1 Areas sampled in houses in this study. 

House Area 

House 1 Living room 1 bedroom kitchen 

House 2 Living room 1 bedroom Kitchen 

House 3 Parents’ bedroom Children’s bedroom Kitchen 

 

To facilitate study of spatial variation in PFR concentrations, care was taken to 

avoid overlap of each sampling area, with study of temporal variation facilitated 

by ensuring that the same areas were sampled each month.  Table II.1 show 

the areas sampled in each house. Figure II.1, II.2 and II.3 shows the sampling 

configuration in houses (H1, H2 and H3), while figure II.4 illustrates the dust 

sampling methodology used.  

 

 

Figure II-1Floor areas and rooms sampled in H1. 
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Figure II-2 Floor areas and rooms sampled in H2. 

 

  

Figure II-3 Floor areas and rooms sampled in H3. 
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Figure II-4 Examples of sampling method. 

2.1.1.2 Dust sampling to provide samples to study the relationship 

between PFR concentrations in indoor air and dust 

In order to study the relationship between PFR concentrations in indoor air and 

dust collected from the same rooms over the same period; passive air samplers 

(see below) were deployed for one month in homes and offices in the West 

Midlands conurbation. Dust samples were collected at the end of each air 

sampling period in accordance with the protocol described in 2.1.1.1. In total, air 

and dust samples were collected from 21 living rooms, 21 bedrooms from the 

same houses as the living rooms, and 20 offices. 

Carpet floor vacuumed  Tied Sock   

Surface vacuumed Tiled floor  vacuumed 
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2.1.2 Passive air sapling 
 

During January to May 2016, indoor passive air samplers were deployed in 20 

different offices in the University of Birmingham, as well as 21 bedrooms and 21 

living rooms from the same houses within the West Midland conurbation, UK. In 

addition, outdoor air samplers (n=7) were deployed during May 2017 at the 

Elms Road Observatory Site (EROS) in the University of Birmingham, UK. 

Table II.2 summarises the total number of air samples collected. 

Table II-2:Numbers of passive air samples collected in indoor and outdoor 
environments 

 

 

 

The passive air samplers deployed are illustrated in figure II.5. They comprise a 

pre-cleaned polyurethane foam (PUF) disk (140 mm diameter, 12 mm 

thickness, 360.6 cm2 surface area 0.07 g cm-3 density, PACS, Leicester, UK) 

sheltered by stainless steel housing (18 cm diameter bottom housing –not used 

in the “part-sheltered” configuration deployed indoors, and a 23 cm top 

housing). The shelters were cleaned carefully and acetone solvent rinsed to 

remove potential contamination between deployments.   

 

Area Number of samples 

Living rooms 21 

Bedrooms 21 

Offices  20 

Outdoor 7 
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PUF disks were washed in tap water, dried at room temperature and pre-

cleaned using pressurised liquid extraction (Dionex Europe, UK, ASE 350). PUF 

disks were treated with PCB 129 (1 µg/mL; 50 µL) as a sampling evaluation 

standard (SES) prior to field deployment. The total sampling time was one 

month (Newton, et. al., 2016). 

 

Figure II-5 PUF disk passive air samplers used to sample (a) indoor air (part-
sheltered) and (b) outdoor air (full-sheltered). 

 

2.1.3 Chamber experiments to study transfer of PFRs to dust via direct 
source: dust contact 
A stainless-steel chamber designed at the University of Birmingham was utilized 

– see Figure II.6. With an internal surface area of 785 cm2, the dimensions were 

10 cm diameter and 20 cm height, and a total volume of 1,570 cm3. A piece of 

upholstery fabric (30 x 20 cm) that had previously been established to contain 

elevated concentrations of TCIPP was vacuumed thoroughly before the 

experiment to remove dust as well as any loosely adhering fabric fibers (Rauert 

et al. 2016).  

(a) Part-sheltered 
(b) Full-sheltered 
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This fabric was green wool, used as a covering for a seat cushion from a desk 

chair sampled June 2012 in the University of Birmingham as part of a previous 

project within our research group. A smaller piece of the vacuumed fabric (5 x 5 

cm) was cut, weighed and placed onto a (GFF that was placed onto a wire 

mesh 10 cm above the chamber floor. A layer of approximately ±0.13 g of pre-

characterized dust (a mix from different living room floors from Ciudad Victoria, 

Mexico, sampled December 2014 and January 2015) was spread over the 

surface of the fabric, using a small spatula. The experiment was conducted at 

room temperature with the chamber sealed to avoid external contamination. 

The following contact times were investigated: 1, 2, 4, 7 and 10 days. After each 

sampling period, the dust was gently brushed off from the fabric, collected and 

weighed again prior to extraction and analysis.  This entire procedure was 

conducted in triplicate. The dust and fabric were extracted and analysed 

separately.   

 

 

Figure II-6 Configuration of the chamber experiments studying source-to-dust 
transfer of PFRs via direct contact. 
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2.2 Sample extraction and purification 
 

2.2.1 Chemicals 
The native compounds (TnBP, TCEP, TPHP, EHDPP, TDCIPP, TCIPP and 

TPhP), TnBPD27 and TPhPD15 used as internal standards and D10-anthracene 

and D12-benz[a]anthracene used as recovery determination (or syringe) 

standards were purchased from Wellington Laboratories (Canada) as stock 

solutions in toluene at 1 mg/mL. The standards used are summarised in table 

II.3. 

HPLC grade acetone and hexane were supplied by Fisher Scientific UK Ltd, 

while ethyl acetate, iso-octane, florisil, and glass wool were supplied by Sigma 

Aldrich. Nitrogen used for solvent evaporation was oxygen free and supplied by 

BOC Gases. 

Table II-3 Native and labelled organophosphate standards used in this study. 

Compound Abbreviation Molecular 
formula 

Molecular 
Weight 

Purity 
(%) 

Native Standards     

Tri-n-butyl phosphate TnBP C12H27O4P 266.32 98 

Tris(2-chloroethyl) phosphate TCEP C6H12Cl3O4P 285.49 98 

Triphenyl phosphate TPHP C18H15O4P 326.29 98 

2-Ethylhexyl diphenyl phosphate EHDPP C20H27O4P 362.41 98 

Tri (2-chloroisopropyl) 

phosphate 
TCIPP C9H18Cl3O4P 327.57 98 

Tri (1,3-dichloropropyl) 

phosphate 
TDCIPP C9H15Cl6O4P 430.91 98 

Tri-cresyl phosphate TCP C21H21O4P 368.37 98 

Internal Standards     

Tri-n-butyl phosphate D27 TnBP D27 C12D27O4P  98 

Triphenyl phosphate D15 TPHP D15 C18D15O4P 341.38 98 
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Compound Abbreviation Molecular 
formula 

Molecular 
Weight 

Purity 
(%) 

Recovery Standard     

Anthracene D10 Ant D 10 C14D10 188.29 99 

Benz[a]anthracene D 12 B[a]A D 12 C18H12 228.29 99 

Sampling Evaluation Standard     

2,2',3,3',4,5-hexachlorobiphenyl PCB 129 C12H4Cl6 360.87 99 

 

2.2.2 Dust sample preparation, extraction and clean up 
 

The dust samples were homogenised by sieving though 500 μm mesh 

aluminium sieve and removing undesirable fibres using acetonerinsed 

tweezers. After sieving, the dust was weighed and stored in glass jars with 

aluminium foil lined lids and stored at 4 ˚C until extraction.  

The extraction method used followed that developed by Brommer et al (2013) in 

our laboratory.  50 mg of dust was spiked with 150 µL ISTD solution (100 ng 

each of TnBPD27 and TPHPD15). Then the samples were extracted with 2 mL 

Hex-Ac (hexane: acetone 3:1 v/v) combining vortexing for 1 min, followed by 

ultrasonication for 5 min (2 cycles). Between cycles the dust samples were 

centrifuged at 2,000 rpm for 2 min and the supernatants collected in a clean 

glass tube.  
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A baked Pasteur pipette was filled with 1 g of precleaned Florisil (baked for 1 hr at 400 

°C) then subjected to ASE using hexane as solvent (1 cycle).  The Florisil column was 

prewashed using 8 mL of methanol then 4 mL of hexane. Following addition of the 

sample extract, the column was eluted with 8 mL of hexane which was discarded, to 

remove PBDEs. The PFRs were then eluted with 10 mL ethyl acetate, the eluate 

evaporated to incipient dryness before resolubilization with 100 µL of iso-octane 

containing 100 ng of Ant D10 and B[a]A D12 as recovery determination standards ready 

for injection into the GC-MS. The extraction and clean-up processes followed are 

summarised in fig. II.5 (Brommer, et.al 2015). 

 

Figure II-7 Diagrammatic summary of dust extraction and extract purification 
processes. 
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2.2.3 Air samples extraction and clean up 
 

After a month deployment, PUF disks were harvested from air samplers and 

loaded into precleaned ASE 350 (Dionex) cells as shown in figure II.8. The 66 

mL stainless-steel cells (Thermo Scientific, UK) were spiked with (150 µL) D27 

TnBP and D15 TPHP as internal standards. The ASE cells were extracted with: 

hexane: ethyl acetate (3:4 v/v) (15 mL hexane: 20 mL ethyl acetate) at 70 ˚C 

and 1500 psi. The heating time was 5 minutes static time 5 minutes, purge time 

100 s, flush volume 60 % with 3 static cycles.  

 

Figure II-8 Pre-packed ASE cell. 

2.2.4 Fabric extraction and clean up 
 

Fabric samples were extracted for analysis of PFRs in accordance with the 

soaking extraction procedure of Kajiwara et al. (2009). Approximately 0.2 g of 

fabric was placed in 20 mL of toluene in a glass bottle with a lid then vortexed 

for 2 minutes followed by storage in the dark at room temperature for 2 days.  
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After 2 days, a 2 μL aliquot of the crude extract was injected onto the GC-MS 

and analysed using the procedures outlined in 2.3.1 below. The test textiles 

were analysed in triplicate. 

2.3 Analysis 
 

In accordance with Brommer et. al., (2015) the methodology followed was thus: 

the analysis was conducted on an Agilent 5975 GC/MS fitted with a 30 m DB-5 

MS column (0.25 mm id, 0.25 μm film thickness). The carrier gas was helium 

with a constant flow rate of 1.0 mL/min. Mass spectrometer temperatures used 

were: injector 290 °C under splitless conditions and MS solvent delay of 3.8 

min.  

The ion source, quadrupole and interface temperatures were 230 °C, 150 °C 

and 300 °C respectively. The GC temperature programme is as shown in fig 

2.5, at the beginning 100 °C, hold for 1.25 min, ramp 10 °C/min to 240 ˚C, ramp 

20 °C/min to 310 °C, and hold for 5 min. Total run time estimate 23.75 min.  

 

Figure II-9 GC-MS Temperature programme  
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The MS was operated in electron ionisation (EI) selected ion monitoring (SIM) 

mode. An overview of the ions monitored for identification and quantification 

purposes can be found in table II.4. d27TnBP was used to quantify TnBP, TCP, 

TCIPP and TCEP while TDCIPP, TPhP and EHDPP were quantified using 

d15TPhP.  Dwell times were 30 ms. 

Illustrative chromatograms are shown in the next seven figures. Specifically, 

these are: figure II.10   1 μg/mL mixed PFR standard, figure II.11 an extract of 

SRM 2858, figure II.12 a dust sample, figure II.13 a field blank, II.14 an indoor 

air sample, II.15 an outdoor air sample, and figure II.16 a fabric sample.  

 

Table II-4 Ions (m/z) monitored for PFRs. 

Compound Quantification 
Ion 

Identification 
Ion 

TnBP 211 155 

TCEP 249 251 

TCIPP 277 279 

TPhP 326 325 

TDCIPP 381 379 

EHDPP 251 250 

TCP 368 368 

D27 TnBP 103 167 

D15 TPHP 341 339 

Anthracene d10 188  

Benz(a)anthracene d12 240  
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Figure II-10 GC MS chromatogram of a 1 μg/mL PFR standard mixture. 

D27-
TnBP 

TnBP 

TCPP 

TCEP 

D10-
Anthracene 

TDCPP 

EHDPP 

D15-
TPP 

TPhP 

D12-
Benzo(a)anthracene 

ToCP 



 

53 
 

 
 

Figure II-11 GC MS chromatogram for an extract of SRM 2585.  
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Figure II-12 GC MS chromatogram for a dust sample. 
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Figure II-13 GC MS chromatogram of a field blank. 
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Figure II-14 GC MS chromatogram of an indoor air sample. 
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Figure II-15 GC MS chromatogram of outdoor air sample. 
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Figure II-16 GC-MS chromatogram for a fabric sample.  
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2.4 Validation and QA/QC criteria 

2.4.1 Analyte identification and quantification criteria 
 

A calibration plot covering 7 concentration points was conducted (0.05, 0.2, 0.5, 

1.0, 2.0, 5.0 and 10.0 ng µL-1) to assess the linearity of the GC/MS response.  

Linearity was indicated by R2>0.99 for all target compounds. Data from this 

calibration plot were used to calculate relative response factors (RRFs) for each 

of the target compounds. The RRF is defined as the instrument response for a 

unit amount of target pollutant relative to the instrument response obtained for 

the same amount of the internal standard (IS).   

Equation 1 is the algorithm to calculate relative response factors (RRFs) for 

each of the target compounds.  

Equation 1: RRF =
ANAT

AIS
×

cIS

cNAT
 

Where ANAT is the peak area for the native compound; AIS is the peak of the 

internal standard; (CNAT) is the concentration of the native compound; and CIS is 

the concentration of internal standard.  The relative standard deviation (RSD) of 

the RRFs calculated for each target compound at each concentration point of 

the calibration plot did not exceed 5%. 

 

2.4.2 Sampling evaluation standard (SES) 
 

To assess any losses during passive air sampling, pre-cleaned PUF disks were 

treated with 50 μL of a sampling evaluation standard (SES) (PCB 129) prior to 

field deployment providing a quantitative measure of the efficiency of sampling.  
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2.4.3 Recovery determination (syringe) standard (RDS). 
 

The recovery of the SES and the ISs used were determined by use of a RDS 

added to the sample extracts just before GC-MS analysis. In this study 

anthracene d10 and benz[a]anthracene d12 were used.  

The recoveries of the IS in each sample were calculated using equation 2. 

 

 

Where (AIS/ARDS)s = ratio of IS peak area to recovery determination standard 

peak area in the sample; (ARDS/AIS)STD = ratio of recovery determination 

standard peak area to the internal standard peak area in the calibration 

standard; (CIS/CRDS)STD = ratio of concentration of internal standard to 

concentration of recovery determination standard in the calibration standard; 

and (CRDS/CIS)S = ratio of concentration of recovery determination standard to 

concentration of internal standard of the sample.   

For air samples, equation 3 was used to calculate SES recoveries 

 

     

Where (ASES/ARDS)S = ratio of sampling evaluation standard peak area to 

recovery determination standard peak area in the sample; (ARDS/ASES)STD = ratio 

of recovery determination standard peak area to sampling evaluation standard 

peak area in the calibration standard (the average of calibration standard run 

before and after batch samples);  

 

Equation 3 % SES Recovery =                  X              X                X                     X 100      A SES 
A RSD 

S 

ARSD 

A SES 
STD 

C SES 
C RSD 

STD 

C RSD 
C SES 

S 

Equation 2 % IS Recovery =                  X                 X                 X                  X 100      A IS 
ARSD 

S 

ARSD  
A IS 

STD 

C IS 
C RSD 

STD 

C RSD 
C IS 

S 
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(CSES/CRDS)STD = ratio of concentration of sampling evaluation standard to 

concentration of recovery determination standard in the calibration standard and 

(CRDS/CSES)S = ratio of concentration of recovery determination standard to 

concentration of sampling evaluation standard in the sample.  

 

Table II-5 Statistical summary of the recoveries of the SES and ISs in all 
samples (µg/g). 

Standard n SD Median Mean Range %RSD 
aD27 TnBP 620 17 93 91 42-135 18 
aD15 TPhP 620 16 94 92 44-137 17 
bAnthracene d10

 620 8 67 66 59-84 12 
bBenz[a]anthracene d12

 620 3 58 58 53-62 6 
c PCB 129 70 17 73 72 30-73 23 

 
a Internal Standard, b Recovery standard and c Sampling evaluation standard. 

 

2.4.4  Accuracy and precision. 
 

As part of the quality assurance for the entire method, aliquots of NIST standard 

reference material (SRM2585, organic contaminants in indoor dust) table II.6 

show the results were analysed regularly to provide on-going assessment of 

method accuracy and precision.  

As neither certified nor indicative concentration data were available for PFRs in 

this SRM, our data were compared to literature data (Van den Eede et al., 

2011), (Bergh et al., 2012), (Brandsma et al., 2013) as shown in table II.7: RSD 

(<20 %) values obtained indicate the precision of the method.  
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Table II-6 Summary of PFR concentrations in SRM 2585 in this study (μg/g). 

SRM 
(n=46) 

TnBP TCEP TCIPP TDCIPP EHDPP TPhP 

Mean  0.23 1.07 1.06 2.02 1.06 1.09 

Minimum  0.15 0.71 0.76 1.55 0.74 0.87 

Maximum  0.27 1.29 1.37 2.26 1.28 1.28 

SD 0.03 0.12 0.11 0.15 0.09 0.09 

%RSD 13 11 11 7 9 9 

 

 Table II-7 PFR concentrations in dust SRM2585 compared with literature data 
(µg/g). 

 TnBP TCEP TCIPP TDCIPP EHDPP TPhP Reference 

Mean 
STDEV 

0.18 

0.02 

0.70 

0.17 

0.82 

0.10 

2.00 

0.26 

NA 0.99 

0.07 

Van den 

Eede et al., 2011 

Mean 
STDEV 

0.19 

0.02 

0.84 

0.06 

0.88 

0.14 

2.30 

0.28 

1.30 

0.12 

1.10 

0.10 

Bergh et al., 2012 

Mean 
STDEV 

0.29 

0.01 

0.81 

0.04 

0.75 

0.02 

2.50 

0.01 

1.23 

0.02 

0.89 

0.04 

Brandsma et al., 2014 

Mean 
STDEV 

0.23 

0.03 

1.07 

0.12 

1.06 

0.11 

2.02 

0.15 

1.06 

0.09 

1.09 

0.09 

This study 

 

2.4.5 Analysis of Blanks, LOD and LOQ 
 

To further assess the quality of the method, every 6th sample run on the GC-MS 

was a reagent blank, which consisted of 50 mg pre-baked Na2SO4 extracted 

and cleaned as a sample. In the case of air samples, a clean PUF was 

extracted and analysed as a sample. For dust, field blanks were also collected 

in all countries sampled (except Mexico and the USA for logistical reasons).  
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These field blanks consisted of pre-baked Na2SO4 vacuumed from the surface 

of aluminium foil into a sampling sock and thereafter treated as a dust sample. 

Where the blank associated with a particular batch contained analyte 

concentrations <5 % of those present in a sample from that batch, no blank 

correction was conducted; however, where analyte concentrations in the blank 

fell between 5-20 %, concentrations in samples of the analyte in question were 

corrected by subtracting the blank concentration.  

Finally, where blanks revealed a target PFR concentration > 20 %, all samples 

from that batch were discarded and re-analysed. This latter action was 

necessary for some of the earliest dust samples analysed due to high 

concentrations of TCIPP in blanks. Subsequent corrective action to minimise 

TCIPP contamination of blanks was successful and blank correction of further 

dust samples was not needed. Table II.8 summarises the levels of target PFRs 

detected in field blanks following corrective action to minimise TCIPP 

contamination. Table II.9 summarises the levels of target PFRs detected in 

reagent blanks. None of the target compounds were detected in field blanks (n= 

16) for air samples, consisting in a pre-cleaned PUF disk, extracted and 

cleaned as a normal passive air sample, placed in the sampling location and 

immediately removed.  

Table II-8 Summary of field blank concentration (μg/g) assuming 50 mg of dust 
analysed 

Field 
Blank (n=92) 

TnBP TCIPP TCEP TDCIPP EHDPP TPHP TCP 

MEAN 0.02 0.07 0.04 0.05 0.02 0.02 0.01 

MIN 0.00 0.02 0.01 0.01 0.00 0.01 0.00 

MAX 0.08 0.18 0.34 0.09 0.08 0.08 0.02 

SD 0.02 0.04 0.05 0.02 0.02 0.01 0.01 

%RSD 11 5 12 4 9 5 3 
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Table II-9 Summary of reagent blank concentration (μg/g) assuming 50 mg of 
dust analysed. 

Reagent 
Blank (n=92) 

TnBP TCIPP TCEP TDCIPP EHDPP TPHP TCP 

MEAN 0.01 0.06 0.03 0.03 0.00 0.02 0.01 

MIN 0.00 0.04 0.02 0.01 0.00 0.02 0.00 

MAX 0.01 0.08 0.04 0.04 0.00 0.02 0.02 

SD 0.01 0.02 0.01 0.01 0.00 0.00 0.01 

%RSD 8 4 3 6 5 4 3 

 

Instrumental limit of detection (LOD) values were calculated for each of the 

studied compounds based on 3 times the standard deviation of the mass of that 

PFR detected in the procedural blanks. Method limits of quantification (LOQ) 

were then calculated based on the LOD, final extract volume (FEV), volume of 

final extract injected (VFEI), sample size (SS) and percentage of internal 

standard recovery (% IS Rec). LOQs were calculated following equation 4. 

 
Equation 4   LOQ= LOD x FEV         100 

                            SS x VFEI          %  ISRec 
Where FEV= 100 μL, SS = 50 mg, VFEI= 1 μL and %IS Rec= 70 

Table II-10 Calculated LOD and LOQ for PFRs in this study. 

 

 

Analyte LOD  LOQ 

TnBP 0.06 0.2 

TCEP 0.15 0.5 

TCIPP 0.12 0.4 

TDCIPP 0.06 0.2 

EHDPP 0.01 0.2 

TPhP 0.01 0.1 

TCP 0.03 0.1 

X 
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2.5 Statistical Analysis 
 

Statistical analysis was conducted using Microsoft Excel (Microsoft Office 2011) 

and SPSS version 22. Where concentrations were below the LOQ, 

concentrations were assumed to equal half the LOQ. The distribution of each 

data set was evaluated using Kolmogorov-Smirnov test and visual inspection; 

moreover, inspection of the concentration data for dust and indoor air revealed 

it to be log-normally distributed. Consequently, independent sample t-tests, 

ANOVA and Pearson correlations were performed on log transformed 

concentrations to evaluate statistical significance of the difference in variance 

between tested data sets. Confidence intervals in SPSS were preset at 95 % (p 

= 0.05). 
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CHAPTER III. CONCENTRATION OF PHOSPHATE FLAME RETARDANTS IN DUST 
FROM DIFFERENT COUNTRIES 

3.1 Synopsis 

The demand for PFRs has increased worldwide. Consequently, knowledge of the 

concentrations of these flame retardants in indoor dust and how this varies around the 

world is vital, given the various adverse health effects reported.  In this chapter, the 

concentrations of seven PFRs in indoor dust from seven countries Jordan (Amman) plus 

2 from North America (Victoria city, Mexico and Houston, USA) and 4 from Europe 

(Barcelona, Spain, Prague, Czech Republic, Athens and Crete, Greece and Helsinki, 

Finland) will be reported. To our knowledge, this is the first report of PFRs in indoor dust 

from Mexico and Jordan.  

3.2 Sampling strategy 
 

Dust from living room floors was sampled and analysed from Ciudad Victoria, Mexico 

and Houston, USA specifically for this project between December 2014 and January 

2015.  The living room floor dust samples analysed here from other countries were 

obtained as part of another project (HEXACOMM). Table III.1 lists the countries studied. 

All samples were collected in accordance with the protocol reported in section 2.1.1.1 
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Table III-1 Dust samples collected and analysed for PFRs in this chapter. 

Country (n) Living rooms  Country (n) Living rooms  
Ciudad Victoria, 
Mexico 

39 Prague, 
Czech 
Republic 

17 

Houston, USA 19 Athens and 
Crete, Greece 

11 

Barcelona, Spain 3 Helsinki, 
Finland 

10 

Amman, Jordan 7 
 

3.3 International differences in PFRs concentrations of house dust 
 

All seven PFRs were detected and quantified in all dust samples. A statistical summary 

is given in table III.2. Median concentrations were: Ciudad Victoria, Mexico = 20.83 μg 

ΣPFRs g-1; Houston, United States = 35.36 μg ΣPFRs g-1; Barcelona, Spain = 7.54 μg 

ΣPFRs g-1; Amman, Jordan = 4.64 μg ΣPFRs g-1; Prague, Czech Republic = 8.71 ng 

ΣPFRs g-1; Athens/Crete, Greece = 12.12 ng ΣPFRs g-1; Helsinki, Finland =12.17 ng 

ΣPFRs g-1.  
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Table III-2 Statistical summary of concentrations (µg/g). 

 

Location Statistical 
Parameter 

TnBP TCEP TCIPP TDCIPP EHDPP TPhP TCP Σ 
Total 
PFRs 

Mexico 
n= 39 

Average 0.12 2.28 8.30 5.47 1.87 2.38 0.41 20.83 

SD 0.28 5.14 4.47 4.15 2.99 2.31 0.59 19.93 

Median 0.05 0.85 6.14 4.06 0.90 1.44 0.20 13.63 

Minimum 0.02 0.47 4.30 0.61 0.24 0.11 0.05 5.79 

Maximum 1.60 31.75 18.99 16.85 13.18 9.31 2.71 94.37 

USA n= 
19 

Average 0.10 3.74 12.19 11.84 1.93 5.23 0.33 35.36 

SD 0.06 5.09 7.15 13.51 2.34 4.57 0.46 33.17 

Median 0.09 1.93 9.23 5.85 1.00 3.01 0.18 21.28 

Minimum 0.01 0.15 4.62 0.25 0.14 0.52 0.18 5.88 

Maximum 0.23 19.00 28.69 45.36 9.70 17.96 2.11 123.05 

Spain n= 
3 

Average 0.01 1.13 1.45 4.05 0.50 0.35 0.05 7.54 

SD 0.01 1.50 1.95 5.26 0.70 0.47 0.07 9.95 

Median 0.14 1.51 3.27 1.25 1.44 0.84 0.16 8.61 

Minimum 0.14 0.97 2.25 0.86 0.55 0.70 0.15 5.62 

Maximum 0.16 3.79 6.01 10.16 1.93 1.56 0.27 23.89 

Jordan 
n= 7 

Average 0.05 0.75 1.17 0.81 0.26 0.84 0.75 4.64 

SD 0.04 0.71 0.78 0.67 0.09 0.78 0.93 4.00 

Median 0.04 0.41 1.13 0.70 0.27 0.65 0.15 3.35 

Minimum 0.03 0.18 0.21 0.13 0.14 0.16 0.15 0.99 

Maximum 0.14 1.76 2.27 1.61 0.37 2.29 2.05 10.50 
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Location Statistical 
Parameter 

TnBP TCEP TCIPP TDCIPP EHDPP TPhP TCP Σ 
Total 
PFRs 

Czech  

Republic 

 n= 17 

  

  

Average 0.23 1.89 2.51 1.60 0.92 1.18 0.38 8.71 

SD 0.37 1.00 0.94 0.92 0.42 0.50 0.42 4.58 

Median 0.10 1.59 2.15 1.48 0.82 1.26 0.15 7.56 

Minimum 0.02 0.52 1.46 0.42 0.32 0.46 0.15 3.35 

Maximum 1.54 4.22 4.06 3.66 1.93 1.95 1.50 18.86 

Greece  

n= 11 

  

  

  

Average 0.10 1.20 5.65 1.79 1.92 1.10 0.36 12.12 

SD 0.09 0.89 2.30 1.60 3.12 1.05 0.61 9.65 

Median 0.08 0.83 6.51 1.14 0.66 0.79 0.15 10.17 

Minimum 0.02 0.25 2.27 0.21 0.22 0.29 0.15 3.42 

Maximum 0.32 3.03 8.36 4.62 10.60 3.88 2.18 32.99 

Finland  

n= 10 

  

  

  

Average 0.14 0.98 4.08 1.35 2.73 2.27 0.62 12.17 

SD 0.08 0.56 1.05 1.38 1.85 0.65 0.60 6.18 

Median 0.12 0.71 4.04 0.70 2.32 2.04 0.39 10.31 

Minimum 0.08 0.38 2.66 0.25 0.56 1.37 0.15 5.45 

Maximum 0.33 1.87 6.21 4.04 7.37 3.31 2.16 25.27 



PFR concentrations in the dust from Houston, USA were the highest in this study 

followed by those from Mexico. With respect to individual PFRs, the predominant in the 

USA and Mexico, is TCIPP at median concentrations of 12.19 μg/g and 8.30 μg/g 

respectively, reflecting its use as a major PFR globally. The second predominant is 

TDCIPP that is present at a median concentration of 11.84 μg/g and 5.47 μg/g in the 

USA and Mexico respectively.  
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By comparison, Dodson et al. 2012 reported house dust sampled in California in 2006 to 

contain median concentrations of TCIPP of 2.1 μg/g and 2.8 µg/g of TDCIPP, with 

roughly similar concentrations (TCIPP 2.2 μg/g and TDCIPP 2.1 μg/g) detected in the 

same houses in 2011.  

The higher concentrations detected in our US samples may be down to a number of 

factors, including: (a) small sample numbers in our case; (b) inter-state differences in FR 

use (our study samples were from Texas, rather than California; and (c) increased PFR 

use between 2011 when the latest Dodson et al samples were taken and 2015-2016 

when our samples were procured – this is plausible, given the recent restrictions on BFR 

use that may have shifted FR use to PFRs. The country with the lowest median 

concentration is Jordan for which TCIPP = 1.17 μg/g and TDCIPP = 0.81 μg/g. It is thus 

of note that Abdallah et. al. 2014 reported dust from Egyptian houses to display among 

the lowest PFR levels concentrations worldwide. Our ΣPFR concentrations are 

consistent broadly with previous studies in both United States and Europe (Brommer et 

al., 2015; Araki et al., 2014; Brandsma et al., 2014; Cequier et al., 2014; Brommer et al., 

2012; Van de Eede., 2011 (Table III.3).  Due to the low sample numbers it is not 

possible to draw firm conclusions without analysing more dust samples. 
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Table III-3 International comparison between median concentrations of PFRs (µg/g) reported in indoor dust from 
houses from different countries.  

Reference Country n TnBP TCEP TCIPP TDCIPP TPhP EHDPP TCP 

Brommer et al., 2015 UK 32 0.03 0.81 21 0.71 3.3 1.6 N/A 

Abdallah et al.,  
2014 

Egypt 20 0.01 0.02 0.02 0.07 0.06 0.04 N/A 

Araki et al.,  
2014 

Japan 14
8 

1.0 5.8 8.7 2.8 4.5 N/A N/A 

Brandsma et al.,  
2014 

The 
Netherlands 

 0.03 1.3 1.3 0.28 0.82 0.35 N/A 

Cequier et al., 2014 Norway 48 0.05 0.41 2.7 0.50 0.98 0.62 N/A 

Ali et al.,  
2012 

New Zealand 34 0.08 0.11 0.35 0.23 0.6 N/A 0.12 

Brommer et al.,  
2012 

Germany 6 0.13 0.20 0.74 0.38 N/A N/A N/A 

Van de Eede., 2011 Belgium 33 0.13 0.23 1.38 0.36 0.5 N/A 0.24 
This study Mexico 

USA 
Spain 
Jordan 
ChRep 
Greece 
Finland 

39 
19 
3 
7 
17 
11 
10 

0.05 
0.09 
 

0.14 
 

0.04 
 

0.10 
 

0.08 
 

0.12 

0.85 
 

1.93 
 

1.51 
 

0.41 
 

1.59 
 

0.83 
 

0.71 

6.14 
 

9.23 
 

3.27 
 

1.13 
 

2.15 
 

6.51 
 

4.04 

4.06 
 

5.85 
 

1.25 
 

0.70 
 

1.48 
 

1.14 
 

0.70 

0.90 
 

1.00 
 

1.44 
 

0.27 
 

0.82 
 

0.66 
 

2.32 

1.44 
 

3.01 
 

0.84 
 

0.65 
 

1.26 
 

0.79 
 

2.04 

0.20 
 

0.18 
 

0.16 
 

0.15 
 

0.15 
 

0.15 
 

0.39 
 N/A Not available/investigated  
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Figure III.1 shows median concentrations (µg/g) of target PFRs in dust from different 

counties. The similar concentrations between Mexico and USA may be because 

Mexico imports, uses and consumes many US goods that are likely to be flame-

retarded such as chairs, sofa, TVs, and other electronic items etc. due to the North 

America Free Trade Agreement (NAFTA). While concentrations of PFRs in the US 

environment are relatively well-characterised, this study constitutes to our 

knowledge, the first report of PFRs in Mexican indoor dust, although Rauert et al., 

(2016) reported PFR concentrations in outdoor air from the southwest of Mexico. 

Interestingly, TCIPP was predominant in outdoor air, in line with our findings for 

indoor dust. Another possible source of PFR emissions in Mexico may be from the 

Great Lakes Chemical Corp (GLCC) production plant in Reynosa (just 3 hours drive 

from Ciudad Victoria) (Focusonpigments.com 2003). According to Brommer et al., 

(2015) TCIPP is the predominant PFR in UK, in contrast to the US where TDCIPP 

and TPhP predominate. Another study points out that in house dust from Australia, 

UK and Germany, the major PFR is TCIPP, while in the US and Canada the most 

abundant PFR is TPhP (Harrad et al., 2016). About 50 % of TPhP is used as a flame 

retardant in PVC, with other uses including as a flame retardant in other polymers (22 

%), printed circuit boards (11 %) and photographic films (7 %) (Ferro, 2011). Other 

market names for TPhP are: Reofoss® TPP, Reomol® TPP, Celluflex TPP, 

Phosplex® TPP (Lassen et al., 1999; ATSDR, 2012). During 2002, the worldwide 

production of TPhP was estimated at between 20,000 to 30,000 tones, with 40 % 

produced in USA followed by 35 % from Asia and 25 % from Western Europe, i.e. 

production in USA exceeds that in Europe (Leonards, 2011).  
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Even though Spain, Finland, the Czech Republic, and Greece occupy the same 

continent and are subject to European Union legislation, differences in PFR 

concentrations might arise as a result of between-country variations in types of flame 

retardant products such as: textiles, plastics, furniture, mattresses, etc. According to 

the Freedonia Group, an acceleration in manufacturing has stimulated a global 

demand for flame retardants projecting an expansion of 4.6 % per year until 2018 

especially in the USA, Japan and Western Europe. The enhanced increased demand 

in these regions might be because the construction codes are more strictly enforced 

there, as well as the increment in flame retardant sales for use in products such as: 

plastic products, automobiles, foamed plastics insulation and vinyl flooring, this study 

says (Additives for polymers, 2015). 

 
 
Figure III-1 Median concentrations (µg/g) of target PFRs in dust from different counties. UK 
PFRs concentration (see table V.5). 

*Due the low concentrations of TnBP and TCP the results were multiplied by 10 for these two compounds.  
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Between-country variations in the relative abundance of individual PFRs – expressed 

as a percent contribution to PFRs - is shown in figure III.2. The major contributor in all 

countries is TCIPP (30-80 %) followed by TDCIPP (5-30 %) and TCEP (5-20 %), a 

finding consistent with data on PFR concentrations in house dust from Birmingham, 

UK (Brommer et al., 2015). Concentrations of PBDEs reported by the same grup 

(Harrad et al., 2008) in the same city reported average concentrations of ΣPBDEs in 

domestic dust to be 0.07 µg/g.  

Dust samples from 40 dormitories in Beijing, China were analysed in 2012 and found 

to have an average concentration of ΣPBDEs 2.82 µg/g. The authors suggested that 

the low concentrations compared to PFRs might be due to the global phase-out of 

PBDEs (Cao et al., 2014). Indoor dust samples from Belgium were reported to 

contain average concentrations for PFRs of: TnBP 0.58 µg/g, TCEP 0.35 µg/g, 

TCIPP 0.44 µg/g, TPhP 0.69 µg/g, TDCIPP 0.24 µg/g and TCP 0.25 µg/g 

respectively, while the average concentration of ΣHBCDs was 0.60 µg/g (Van den 

Eede et al., 2012).  
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Figure III-2 Average relative contribution (expressed as % PFR) of PFRs in the studied 
samples. UK PFR concentration data are from: Brommer et al., 2015. 

 
The data were evaluated statistically for differences in concentrations between the 

different countries studied, with the exception of our data from Spain as the number 

of samples for this country (n=3) were too few to be of statistical validity. As a first 

step, the distribution of concentrations within countries was evaluated using a 

Shapiro-Wilks test. The data were log-transformed prior to ANOVA testing, owing to 

the log-normal distribution of our data. Using ANOVA with Tukey and Games-Howell 

test post-hoc tests, data on PFR concentrations in our study countries were 

analysed, finding some significant differences (p<0.05) for our target PFRs. Table 

III.4 summarises the statistically significant (p<0.05) differences in concentrations of 

PFRs in living room dust from different countries.  
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Table III-4 Summary of statistically significant (p<0.05) differences in concentrations of 
PFRs in living rooms dust from different countries.  

PFR Significant difference 

TCEP USA   >  Jordan 

TCIPP Mexico and USA  

Czech Republic   

Greece and Finland  

> 

> 

> 

Czech Republic, Greece, Finland and 

Jordan Finland and Jordan 

Jordan 

TDCIPP Mexico and USA  > Czech Republic, Greece, Finland and 

Jordan 

EHDPP  Finland  > Jordan 

TPhP Mexico and USA   > Czech Republic, Greece and Jordan 

 

For TnBP and TCP, ANOVA analysis revealed no significant (p<0.05) international 

differences, while TCEP concentrations in US dust significantly exceed those in 

Jordanian dust (p=0.08). For TCIPP, concentrations were significantly greater in 

Mexico and the USA than those in the Czech Republic, Greece, Finland and Jordan 

(p<0.01, 0.08 and 0.01 respectively). Moreover, those in the Czech Republic 

exceeded significantly those in Finland and Jordan (p<0.01 in both cases) with those 

in Greece and Finland significantly higher than those in Jordan (p<0.01). Similar 

observations were made for TDCIPP, with concentrations in Mexico and the USA 

significantly exceeding those in the Czech Republic, Greece, Finland and Jordan 

(p<0.01, 0.02, 0.01, 0.01 respectively).  

Meanwhile, concentrations of EHDPP were significantly greater in dust from Finland 

than in dust from Jordan (p< 0.01) while concentrations of TPhP in Mexico and USA 

exceed significantly those in the Czech Republic, Greece and Jordan (p<0.01 in all 

cases). 
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3.4 Implications for human exposure. 

Human exposure to the seven PFRs of interest was estimated for adults and toddlers 

from the 7 countries studied using the concentration of house dust from each 

individual country and assuming average weights of 70 kg and 12 kg for adults and 

toddlers respectively, along with mean dust ingestion rates of 50 and 20 mg day-1 

and high-end dust ingestion rates of 200 and 50 mg day-1 for adults and toddlers 

respectively, and assuming 100 % absorption of intake (Jones-Otazo et al., 2005).  

Various possible dust ingestion exposure scenarios were estimated, using 5th 

percentile, median, average and 95th percentile concentrations in dust samples 

reported in this experiment.  

As toddlers spend most of their times indoors, the assumption is that domestic indoor 

dust was the only source of dust exposure (Harrad et al., 2008). It is important to 

state that the estimates provided here are only an indication of the likely population-

level exposure due to the relatively small number of dust samples analysed and the 

uncertainties in our assumed dust ingestion rates, also it is important to mention that 

these estimates here are based only on house dust and that dust from other 

microenvironments such as cars, nurseries or offices are not included in these 

estimates.  Table III.5 shows estimated daily exposures for adults and toddlers based 

on the 5th percentile, arithmetic mean and 95th percentile from average and high rates 

concentrations of our seven target PFRs.  
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Table III-5 Daily exposure to PFRs via dust ingestion (ng kg body weight per day) of adults 
and toddlers  

  Average dust ingestion rate           High dust ingestion rate 
     Adults  Toddler Adults Toddler 

Mexico 
5th percentile 2 30 5 119 

Median 6 87 10 227 
95th percentile 18 263 45 1053 

USA 
5th percentile 2 25 4 98 
Median 10 147 15 355 
95th percentile 35 513 88 2051 

Spain 
5th percentile 2 25 4 99 

Median 4 53 6 143 
95th percentile 6 93 16 372 

Greece 
5th percentile 1 15 3 62 

Median 3 50 7 170 
95th percentile 8 114 20 456 

Finland 
5th percentile 2 25 4 99 
Median 3 51 7 172 
95th percentile 6 94 16 377 

Czech Republic 
5th percentile 1 17 3 67 
Median 2 36 5 126 
95th percentile 5 66 11 264 

Jordan 
5th percentile 0 5 1 19 

Median 1 19 2 56 

95th percentile 3 41 7 165 

UK (Brommer et al 2012) 
5th percentile 0 5     
Median 7 106   
95th percentile 31 459     
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Table III-6 Comparison of assessment of human exposure to PFRs via dust ingestion 
using mean dust intake rates (ng per kg body weight per day) for adults and toddlers 
from somewhere reports. 

Reference  TnBP TCIPP TCEP TDCIPP EHDPP TPhP TCP ΣPFRs 
Belgium 

Van den 
Eede et 
al., 2011. 

Toddler 
Average 
High 
Adult 
Average 
High 

 
0.05 
6.4 

 
0.05 
0.9 

 
5.6 
92 
 

0.5 
10 

 
1.0 
19 
 

0.1 
1.5 

 
1.5 
9.8 

 
0.3 
7.7 

  
2.0 
40 
 

0.1 
5.1 

 
1.0 
9.6 

 
0.1 
2.5 

 
11.1 
176 

 
1.15 
27 

New Zealand 
Ali et al., 
2012. 

Toddler 
Average 
High 
Adult 
Average 
High 

 
0.31 
10 
 

0.02 
0.46 

 
1.37 
39 
 

0.09 
1.7 

 
0.34 
6.8 

 
0.02 
0.29 

 
0.73 
25 
 

0.04 
1.1 

  
1.5 
23 
 

0.1 
1.0 

 
0.54 
7.2 
 
0.04 
0.31 

 
4.79 
111 

 
0.31 
4.86 

Philippines 
Kim et al., 
2013. 

Toddler 
Average 
High 
Adult 
Average 
High 

 
0.82 
3.3 

 
0.24 
0.61 

 
 

 
1.5 
5.9 

 
0.43 
1.1 

  
4.7 
19 
 

1.4 
3.5 

 
3.8 
15 
 

1.1 
2.8 

 
0.78 
3.1 

 
0.23 
0.57 

 
11.6 
46 
 

3.4 
8.58 

Egypt 
Abdallah 
et al., 
2014. 

Toddler 
Average 
High 
Adult 
Average 
High 

 
1.3 
5.2 

 
0.5 
1.3 

 
4.7 
18 
 

1.9 
4.7 

 
3.2 
13 
 

1.3 
3.2 

 
7.5 
30 
 

3 
7.5 

 
2.4 
9.6 

 
1 

2.4 

 
7.5 
30 
 
3 

7.5 

  
22.5 
90 
 

9 
22.5 

China (Nanjing City) 
He et al., 
2015. 

Toddler 
Average 
High 
Adult 
Average 
High 

  
51 
20 
 

2.3 
8.8 

 
161 
626 

 
6.7 
27 

 
241 
1396 

 
9.1 
51 

  
20 
39 
 

1.1 
2.3 

  
473 
2081 

 
19 
89 

China (Guangzhou City) 
He et al., 
2015. 

Toddler 
Average 
High 
Adult 
Average 
High 

 
0.28 
0.54 

 
0.02 
0.05 

 
2.7 
7.3 

 
0.24 
0.64 

 
13.7 
34.6 

 
1.20 
3.03 

 
0.47 
23.5 

 
0.04 
2.06 

 
1.32 
11 
 

0.12 
0.97 

 
0.53 
2.64 

 
0.05 
0.23 

 
0.00 
15 
 

0.00 
0.35 

 
23.5 
110 

 
2.06 
9.61 
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Our data are consistent with previous reports that indoor dust ingestion represents a 

substantial pathway of human exposure to PFRs. This is especially so in the USA 

and Mexico, for which our exposure estimates (see Table III.7), are similar to those 

reported by Brommer et al (2012) for the UK.  

Elsewhere, Van den Eede et al., (2011) reported exposure in Belgium via dust 

ingestion. Other countries with lower exposures than the USA are Egypt and the 

Philippines; according to Abdallah et al., (2014) and Kim et al., (2013) exposures in 

these countries are similar to those reported in this work for toddlers (assuming 

average dust ingestion and median dust concentrations) in Jordan, the Czech 

Republic, and Spain.  

 

Table III-7 Summary of average and high-end estimates of daily exposure to PFRs 
via dust ingestion (ng/kg b/w per day) of adults and toddlers in seven countries.  

 

   TnBP TCIPP TCEP TDCIPP EHDPP TPhP TCP ΣPFRs 
MEXICO 

Mean 
Adults  
  

P5 0.01 1.24 0.13 0.52 0.07 0.06 0.01 2.03 
Median 0.03 2.37 0.65 1.56 0.53 0.68 0.12 5.95 
P95 0.26 5.26 2.16 4.30 3.19 2.31 0.58 18.0 

Toddler 
  

P5 0.08 18.0 1.96 7.53 0.99 0.94 0.21 29.7 
Median 0.49 34.5 9.50 22.8 7.80 9.91 1.71 86.8 
P95 3.72 76.6 31.4 62.6 46.5 33.7 8.52 263 

High 
Adults  

P5 0.01 3.10 0.34 1.29 0.17 0.16 0.04 5.1 
Median 0.08 5.93 1.63 3.91 1.34 1.70 0.29 14.8 
P95 0.64 13.1 5.39 10.7 7.99 5.78 1.46 45.1 

Toddler  
  

P5 0.31 72.2 7.85 30.1 3.96 3.74 0.83 119 
Median 1.96 138 37.9 91.2 31.1 39.6 6.85 347 
P95 14.8 307 126 251 186 135 34.0 105 
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 TnBP TCIPP TCEP TDCIPP EHDPP TPhP TCP ΣPFRs 
USA 

Mean 
Adults  
  

P5 0.00 1.32 0.04 0.07 0.04 0.15 0.05 1.68 
Median 0.03 3.48 1.07 3.38 0.55 1.49 0.09 10.1 
P95 0.06 8.20 5.43 12.9 2.77 5.13 0.60 35.1 

Toddler 
  

P5 0.05 19.2 0.63 1.06 0.60 2.17 0.75 24.5 
Median 0.40 50.7 15.6 49.3 8.04 21.8 1.38 147 
P95 0.94 120 79.1 189 40.4 74.8 8.80 513 

High 
Adults  

P5 0.01 3.30 0.11 0.18 0.10 0.37 0.13 4.20 
Median 0.07 8.71 2.67 8.46 1.38 3.74 0.24 25.2 
P95 0.16 20.4 13.5 32.4 6.93 12.8 1.51 87.8 

Toddler  
  

P5 0.20 76.9 2.54 4.23 2.40 8.70 3.00 98.0 
Median 1.59 203 62.3 197 32.1 87.2 5.50 589 
P95 3.77 478 317 756 162 299 35.2 205 

SPAIN 
Mean 
Adults  
  

P5 0.04 0.67 0.29 0.26 0.18 0.20 0.04 1.69 
Median 0.04 1.10 0.60 1.17 0.37 0.30 0.06 3.63 
P95 0.04 1.64 1.02 2.65 0.54 0.43 0.07 6.38 

Toddler 
  

P5 0.59 9.79 4.28 3.74 2.66 2.96 0.63 24.6 
Median 0.62 16.0 8.71 17.0 5.43 4.31 0.81 52.9 
P95 0.66 23.9 14.8 38.6 7.82 6.22 1.09 93.1 

High 
Adults  

P5 0.10 1.68 0.73 0.64 0.46 0.51 0.11 4.23 
Median 0.11 2.75 1.49 2.92 0.93 0.74 0.14 9.08 
P95 0.11 4.10 2.54 6.62 1.34 1.07 0.19 15.9 

Toddler  
  

P5 2.37 39.1 17.1 14.9 10.6 11.8 2.52 98.6 
Median 2.47 64.0 34.8 68.1 21.7 17.2 3.23 212 
P95 2.62 95.6 59.3 154 31.2 24.8 4.23 373 
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Continuation estimated daily exposure to PFRs via dust ingestion (ng per kg body 
weight per day) of adults and toddlers in seven countries. 
 
   TnBP TCIPP TCEP TDCIPP EHDPP TPhP TCP ΣPFRs 

CZECH REPUBLIC 
Mean 
Adults  
  

P5 0.01 0.44 0.23 0.13 0.12 0.16 0.04 1.14 
Median 0.07 0.72 0.54 0.46 0.26 0.34 0.11 2.49 
P95 0.23 1.15 0.97 0.82 0.50 0.54 0.31 4.52 

Toddler 
  

P5 0.11 6.45 3.40 1.88 1.81 2.40 0.63 16.6 
Median 0.96 10.4 7.87 6.68 3.82 4.93 1.56 36.2 
P95 3.42 16.7 14.1 12.0 7.24 7.84 4.53 65.9 

High 
Adults  

P5 0.02 1.11 0.58 0.32 0.31 0.41 0.11 2.86 
Median 0.16 1.79 1.35 1.14 0.66 0.85 0.27 6.22 
P95 0.59 2.87 2.43 2.06 1.24 1.34 0.78 11.3 

Toddler  
  

P5 0.45 25.8 13.6 7.53 7.25 9.60 2.50 66.7 
Median 3.83 41.8 31.4 26.7 15.2 19.7 6.25 145 
P95 13.6 66.9 56.7 48.0 28.9 31.3 18.1 264 

GREECE 
Mean 
Adults  
  

P5 0.01 0.67 0.11 0.07 0.07 0.09 0.04 1.05 
Median 0.03 1.62 0.34 0.51 0.55 0.31 0.10 3.46 
P95 0.08 2.35 0.82 1.26 2.14 0.82 0.35 7.82 

Toddler 
  

P5 0.11 9.75 1.57 1.04 1.04 1.28 0.63 15.4 
Median 0.42 23.5 4.99 7.45 7.99 4.58 1.49 50.4 
P95 1.10 34.2 11.9 18.3 31.2 11.9 5.17 114.0 

High 
Adults  

P5 0.02 1.67 0.27 0.18 0.18 0.22 0.11 2.65 
Median 0.07 4.04 0.86 1.28 1.37 0.79 0.26 8.66 
P95 0.19 5.88 2.05 3.15 5.36 2.05 0.89 19.5 

Toddler  
  

P5 0.44 39.0 6.28 4.17 4.15 5.13 2.50 61.6 
Median 1.69 94.2 19.9 29.7 31.9 18.3 5.97 202 
P95 4.38 137 47.7 73.5 125 47.7 20.6 456 

FINLAND 

Mean 
Adults  
  

P5 0.02 0.76 0.12 0.08 0.25 0.42 0.04 1.69 
Median 0.04 1.17 0.28 0.38 0.78 0.65 0.18 3.48 
P95 0.08 1.61 0.53 1.15 1.67 0.94 0.47 6.46 

Toddler 
  

P5 0.33 11.1 1.73 1.13 3.58 6.17 0.63 24.7 
Median 0.58 17.0 4.09 5.61 11.3 9.45 2.58 50.6 
P95 1.20 23.5 7.74 16.7 24.3 13.7 6.86 94.1 

High 
Adults  

P5 0.06 1.91 0.30 0.19 0.61 1.06 0.11 4.24 
Median 0.10 2.91 0.70 0.96 1.95 1.62 0.44 8.69 
P95 0.21 4.04 1.33 2.88 4.17 2.35 1.18 16.1 

Toddler  
  

P5 1.30 44.5 6.91 4.52 14.3 24.7 2.50 98.8 
Median 2.33 68.0 16.3 22.4 45.4 37.8 10.3 203 
P95 4.80 94.1 30.9 67.1 97.3 54.7 27.4 377 
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Continuation estimated daily exposure to PFRs via dust ingestion (ng per kg body 
weight per day) of adults and toddlers in seven countries. 
   TnBP TCIPP TCEP TDCIPP EHDPP TPhP TCP ΣPFRs 

JORDAN 
Mean 
Adults  
  

P5 0.01 0.08 0.05 0.04 0.04 0.06 0.04 0.32 
Median 0.02 0.33 0.22 0.23 0.08 0.02 0.21 1.11 
P95 0.03 0.61 0.49 0.46 0.10 0.56 0.57 2.82 

Toddler 
  

P5 0.12 1.16 0.77 0.54 0.63 0.80 0.63 4.65 
Median 0.23 4.88 3.14 3.36 1.09 3.52 3.13 19.3 
P95 0.50 8.97 7.12 6.68 1.52 8.22 8.33 41.3 

High 
Adults  

P5 0.02 0.20 0.13 0.09 0.11 0.14 0.11 0.80 
Median 0.04 0.84 0.54 0.58 0.19 0.60 0.54 3.33 
P95 0.08 1.54 1.22 1.14 0.26 1.41 1.43 7.08 

Toddler  
  

P5 0.48 4.64 3.08 2.15 2.51 3.21 2.50 18.5 
Median 0.91 19.5 12.5 13.4 4.38 14.0 12.5 77.3 
P95 1.98 35.8 28.4 26.7 6.09 32.8 33.3 165 

HBLV*  24,000 80,000 22,000 15,000 - 70,000 13,000  
*HBLVs (Health based limit values) are those cited by Brommer et al., 2015.  

 

The highest exposures in this study were in the USA and Mexico for TCIPP with 

these countries generally displaying the highest exposures to all our target PFRs.  

Comparison of our data with those from elsewhere, reveals that our exposures to 

TCEP are lower than those reported previously for China; (He et al., 2015).  

Indeed, exposures to TCEP reported by He et al., (2015) were similar to those 

reported here for TDCIPP.  Note our exposure estimates are below the HBLV (health 

based limit values) for all target PFRs (Table III.7).  

However, as highlighted by Brommer et al., 2015 dust ingestion is only one potential 

exposure pathway; thus, other exposure sources have to be considered.   
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CHAPTER IV.  WITHIN-ROOM AND WITHIN-HOME SPATIAL AND TEMPORAL 
VARIABILITY IN CONCENTRATIONS OF PFRS IN INDOOR DUST. 

 

4.1 Synopsis 

A substantial body of evidence exists that flame retardants (FRs) used in everyday 

products undergo transfer into indoor dust and that contact with this dust is an 

important pathway of human exposure. To date, the overwhelming majority of 

assessments of human exposure to FRs via contact with indoor dust relies on 

measurements of FRs in samples of dust taken from a single point within a room and 

at a single point in time. Recent studies suggest that for brominated FRs (BFRs), 

there can be substantial spatial and temporal variability in BFR concentrations in dust 

samples. However, no studies of such variability have been conducted to date for 

PFRs. In this chapter, the concentrations of seven PFRs measured in house dust 

samples from a number of rooms within different homes to examine spatial and 

temporal variability in PFR concentrations both between different rooms (R) in the 

same home (H) and between different floors (F) areas in the same rooms (R). 

 

4.2 Sampling strategy 
Within-room and within-home spatial and temporal variability in concentrations of 

PFR in indoor dust were studied in three different rooms (R) within three homes (H) 

(three R for each of H1, H2 and H3) in Birmingham, UK under normal room use 

conditions to reflect actual human activity and exposure. Table IV.1 shows the 

sampling period, F type and R sampled.  

H2 was an apartment where the bedroom, living room and kitchen were located on 

the same floor. In all living rooms and bedrooms, the floors were carpeted, with three 

1 m2 floor (F) areas sampled (each referred to as H#R#F1, F2 and F3).  
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By comparison, the kitchen floor areas were all bare and thus only a single 4 m2 area 

was sampled in each kitchen. In house 3, two samples were lost. Sampling was 

conducted using a TESCO VC207 1400 W vacuum cleaner according to a previously 

reported protocol (Harrad et al., 2008b).  

Table IV-1 Period of sampling, areas of House sampling and Floor type.  

House Sampling period Room 1 Room 2 Room 3 
House 1 Nov 2013 Oct 2014 Living room 

Carpeted floor 
1 Bedroom 
Carpeted floor 

Kitchen 
Bare floor 

House 2 Feb 2014 March 2015 Living room 
Carpeted floor 

1 Bedroom 
Carpeted floor 

Kitchen 
Bare floor 

House 3 May 2014 Apr 2015 Parents’ bedroom 
Wood floor 

Child’s 
bedroom 
Wood floor 

Kitchen 
Bare floor 

 

In addition to F dust, elevated surfaces (ES) dust was collected from ES such as 

sofas, tables, chairs, shelves and large items of furniture. Dust was not sampled from 

highly ES (from the top of wardrobes for example) with which human contact is 

unusual nor from under furniture for the same reason.   

 

Following sample collection, the low dust loading for the ES dust samples led us to 

combine three monthly samples into one sample to provide sufficient dust for 

analysis.  

To facilitate study of spatial variability, the samples were taken carefully to avoid 

overlap of each sampling area, with study of temporal variation facilitated by ensuring 

that the same areas were sampled each month. Section 2.1.1.1 shows the sampling 

distribution of each house and room.   

 



 

86 
 

4.3 Results and discussion 

4.3.1 Within-room spatial differences between PFRs in Floor (F) and Elevated 
Surface (ES) Dust. 
 

Variations in dust concentration were analysed to elucidate within-room spatial 

differences between PFRs in F and ES dust sampled from H1, H2 & H3 every month 

for one year. Tables IV.2, 4.3 and 4.4 provide statistical summaries of concentrations 

found in floor dust from H1, H2, and H3 respectively.  

Tables IV.5, IV.6 and IV.7 provide statistical summaries of concentrations found in 

elevated surface dust from H1, H2 and H3 respectively, while Figures IV.1, IV.2 and 

IV.3 illustrate the average contribution of each PFR in each room studied. To 

illustrate, figure IV.? depicts average ± standard deviation concentrations of PFRs in 

floor dust and elevated surface dust in each room of each house.  

Table IV-2 Concentrations (µg/g) of PFRs in indoor floor dust from H1. 

 
Location 

Statistical 
parameter 

TnBP TCIPP TCEP TDCIPP EHDPP TPhP ΣPFRs 

Bedroom Average 0.14 51.2 1.00 1.31 1.25 24.1 79.1 

F1 

  

  

Min 0.07 26.1 0.72 0.90 0.62 2.37 30.8 

Max 0.27 100 1.92 1.71 2.70 91.2 198 

Median 0.13 44.4 0.95 1.36 0.87 10.3 58.1 

% RSD  41.0 47.5 31.9 19.1 60.5 112 67.0 

F 2 

 

 

 

 

Average 0.15 47.4 1.13 4.63 1.80 16.8 72.0 

Min 0.07 25.5 0.72 1.41 0.62 3.98 32.3 

Max 0.23 96.0 1.74 18.4 9.04 49.4 174 

Median 0.14 40.0 1.14 1.85 0.99 11.88 56.0 

% RSD 

 

33.3 44.6 25.3 124 131 78.29 59.5 
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Location 

Statistical 
parameter 

TnBP TCIPP TCEP TDCIPP EHDPP TPhP ΣPFRs 

F 3 Average 0.14 56.4 1.04 3.38 2.07 42.89 105 

Min 0.08 31.5 0.71 1.98 0.91 3.54 38.7 

Max 0.24 132 1.46 5.81 7.99 141 289 

Median 0.11 48.6 1.02 3.35 1.26 16.3 70.7 

% RSD 39.7 46.3 22.4 31.0 97.0 110 72.5 

Living 
room 

Average 0.20 34.3 3.16 4.23 1.71 7.51 51.2 

F1 

  

  

Min 0.08 11.8 1.65 2.70 1.01 2.01 19.3 

Max 0.41 79.2 5.50 6.70 2.79 15.9 110 

Median 0.21 22.4 3.00 3.93 1.56 5.01 36.2 

% RSD 50.4 70.6 33.9 28.5 33.5 65.6 62.8 

F 2 Average 0.30 38.7 2.90 8.51 1.36 10.1 61.9 

Min 0.09 16.7 1.28 3.07 0.67 1.10 22.9 

Max 0.71 78.2 5.37 19.1 1.81 33.1 138 

Median 0.30 31.6 2.36 6.14 1.63 4.55 46.6 

% RSD 52.6 45.5 50.6 65.6 33.9 108 58.6 

F 3 Average 0.65 28.1 2.64 3.94 1.43 2.88 39.6 

Min 0.26 8.42 0.46 2.07 0.86 0.70 12.7 

Max 1.00 119 21.6 17.7 2.14 13.3 175 

Median 0.68 19.3 0.96 2.66 1.30 1.67 26.5 

% RSD 36.2 107 227 111 28.6 121 112 

Kitchen Average 0.14 20.1 1.52 0.64 0.36 2.20 24.9 

F1 

  

  

  

Min 0.02 2.82 0.55 0.13 0.18 0.27 3.97 

Max 0.72 54.0 4.34 3.27 0.57 12.8 75.8 

Median 0.07 11.7 1.00 0.33 0.35 0.65 14.1 

% RSD 30.1 67.0 48.2 22.2 9.1 126 62.9 

 

 



 

88 
 

Table IV-3 Concentrations (µg/g) of PFRs in indoor floor dust in H2. 

 
 

Statistical 
parameter 

TnBP TCIPP TCEP TDCIPP EHDPP TPhP ΣPFRs 

Bedroom Average 0.16 34.8 0.72 0.52 6.81 0.69 43.7 
F1 
  
  

Min 0.08 17.2 0.44 0.26 3.48 0.29 21.7 
Max 0.31 87.9 1.10 1.09 13.9 1.91 106 
Median 0.14 25.7 0.71 0.42 6.05 0.54 33.5 
% RSD 48.5 55.5 29.2 52.8 42.0 68.6 53.1 

F 2 Average 0.29 35.7 1.14 2.38 7.96 2.18 49.7 
Min 0.08 17.5 0.55 0.33 3.51 0.56 22.5 
Max 1.72 85.7 5.29 14.4 12.0 9.17 128 
Median 0.14 31.8 0.69 0.98 7.92 1.35 42.9 
% RSD 155 50.3 115 170 28.7 111 57.4 

F 3 Average 0.16 31.6 0.67 0.93 6.20 0.72 40.3 
Min 0.08 17.9 0.46 0.23 4.25 0.34 23.3 
Max 0.32 50.2 1.09 6.14 9.17 1.94 68.9 
Median 0.08 10.5 0.18 1.67 1.36 0.42 14.2 
% RSD 46.3 33.3 27.0 178 21.9 58.8 35.3 

Living 
room 

Average 0.23 98.9 0.87 1.96 28.6 1.39 131 

F1 
  
  

Min 0.11 37.11 0.59 0.83 19.0 0.62 58.3 
Max 0.42 236 1.81 6.43 51.7 2.30 299 
Median 0.19 83.8 0.76 1.15 27.0 1.42 114 
% RSD 47.8 60.4 39.3 87.7 29.3 41.4 53.7 

F 2 Average 0.20 153 0.73 1.30 39.6 3.03 198 
Min 0.10 29.2 0.25 0.18 24.9 1.44 56.1 
Max 0.47 384 1.09 3.05 60.0 7.52 456 
Median 0.14 136 0.72 1.15 37.5 2.39 178 
% RSD 63.9 69.7 30.9 53.5 27.2 63.3 60.5 

F 3 Average 0.23 57.2 1.06 1.76 16.2 4.83 81.2 
Min 0.09 30.5 0.55 0.67 9.55 1.38 42.7 
Max 0.41 108 3.07 4.14 20.7 17.5 154 
Median 0.22 49.1 0.84 1.17 16.4 2.14 69.9 
% RSD 43.7 41.5 63.7 67.4 21.2 109 42.3 

Kitchen Average 0.36 65.3 1.40 0.83 13.1 1.61 82.7 
F1 
  
  

Min 0.16 25.3 0.70 0.23 4.81 0.51 31.7 
Max 1.13 218 2.65 3.11 33.1 4.47 263 
Median 0.26 44.9 1.22 0.47 11.0 1.51 59.4 
% RSD 74.7 81.7 37.3 100 56.1 64.0 76.7 
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Table IV-4 Concentration (µg/g) of PFRs in indoor floor dust from H3. 

Location Statistical 
parameter 

TnBP TCIPP TCEP TDCIPP EHDPP TPhP ΣPFRs 

Bedroom Average 0.08 20.6 1.43 6.99 2.26 0.86 32.2 

F1 
  
  

Min 0.04 8.60 0.69 0.87 0.32 0.26 10.7 

Max 0.14 45.1 4.32 44.4 14.0 1.48 109 

Median 0.07 18.8 1.08 1.87 0.91 0.97 23.7 

% RSD 42.2 52.2 69.0 174 170 43.8 87.6 

Kids 
Bedroom 

Average 0.09 29.3 1.43 8.38 1.37 2.19 42.7 

F1 
  
  

Min 0.04 12.4 0.79 1.49 0.53 0.47 15.8 

Max 0.20 53.9 2.59 43.2 3.56 15.1 118 

Median 0.09 26.6 1.34 2.55 1.18 0.74 32.5 

% RSD 56.3 44.2 41.2 148 56.4 190 72.4 

Kitchen Average 0.08 19.1 1.29 3.24 4.47 0.46 28.6 

F1 
  
  

Min 0.03 5.97 0.56 1.09 0.47 0.25 8.37 

Max 0.18 49.2 2.86 4.89 31.9 0.81 90.0 

Median 0.07 9.99 0.96 3.20 1.18 0.38 15.8 

% RSD 52.6 89.7 59.1 31.8 217 44.1 100 

 

 

Table IV-5 Concentrations (µg/g) of PFRs in indoor dust from ES in H1. 

Location Statistical 
parameter 

TnBP TCIPP TCEP TDCIPP EHDPP TPhP ΣPFRs 

Bedroom Average 0.62 65.1 3.42 6.56 2.96 3.96 82.6 

ES1 
  
  
 

Min 0.06 37.2 2.33 1.02 2.52 1.39 44.5 

Max 1.92 94.1 4.11 15.6 4.19 6.67 126 

Median 0.26 64.5 3.61 4.78 2.58 3.88 79.6 

% RSD 139 39.3 22.5 103 27.5 58.0 44.9 
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Table IV-6 Continuation concentrations (µg/g) of PFRs in indoor dust from ES in H1. 

 

Location Statistical 
parameter 

TnBP TCIPP TCEP TDCIPP EHDPP TPhP ΣPFRs 

ES 2 Average 0.81 71.8 5.65 11.7 5.22 6.27 101 
Min 0.06 31.33 2.39 1.61 1.05 3.77 40.2 
Max 2.87 107 13.5 27.9 8.37 10.4 170 
Median 0.16 74.4 3.35 8.78 5.73 5.43 97.8 
% RSD 169 54.4 93.3 101 59.2 46.8 62.7 

ES 3 Average 11.1 77.2 4.60 24.4 2.44 7.88 127 
Min 0.07 56.8 1.56 11.3 1.14 4.24 75.1 
Max 44.1 109 13.0 61.9 4.23 18.1 251 
Median 0.18 71.1 1.91 12.1 2.20 4.57 92.2 
% RSD 197 32.9 122 102 53.4 86.8 67.5 

Living 
room 

Average 3.46 43.0 9.11 6.10 1.41 2.70 65.8 

ES1 Min 0.08 17.5 7.48 2.08 0.44 1.90 29.5 
Max 12.9 75.2 10.9 11.2 1.75 3.97 116 
Median 0.43 39.6 9.01 5.56 1.73 2.45 58.8 
% RSD 181 55.7 15.7 65.6 45.9 34.9 56.6 

ES 2 Average 2.65 48.9 16.7 7.33 0.49 8.19 84.5 

 

Min 0.11 33.0 6.67 1.99 0.27 2.97 45.0 
Max 9.97 65.6 42.1 12.1 0.70 15.7 146 
Median 0.27 48.4 9.59 7.59 0.49 7.00 73.4 
% RSD 183 30.5 99.0 67.2 38.0 76.9 56.8 

ES 3 Average 1.64 54.2 10.3 40.9 2.70 9.77 119 

 

Min 0.25 27.1 4.04 3.06 1.11 2.62 38.2 
Max 5.34 79.9 24.1 140 5.48 23.5 279 
Median 0.48 54.9 6.58 10.0 2.12 6.46 80.5 
% RSD 151 41.0 89.7 162 73.6 96.4 93.7 

Kitchen Average 0.59 22.4 2.28 0.92 1.35 5.58 33.15 
ES1 
  
  

Min 0.05 3.25 0.79 0.11 0.30 0.42 4.92 
Max 1.74 63.1 5.29 2.98 2.73 19.6 95.5 
Median 0.29 11.6 1.52 0.30 1.19 1.13 16.0 
% RSD 132 123 89.9 149 75.5 168 127 

ES 2 Average 0.26 31.5 3.88 0.62 1.06 0.46 37.8 
Min 0.04 5.00 1.51 0.17 0.61 0.25 7.59 
Max 0.74 97.1 10.1 1.09 1.48 0.63 111 
Median 0.13 12.06 1.94 0.61 1.08 0.48 16.3 
% RSD 122 138 107 64.2 40.0 38.6 130 
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Table IV-7 Concentrations (µg/g) of PFRs in indoor dust from ES in H2. 

 

 

Location Statistical 
Parameter 

TnBP TCIPP TCEP TDCIPP EHDPP TPhP ΣPFRs 

Bedroom Average 0.61 89.0 3.53 1.81 19.6 1.95 116 

ES1 
  
  

Min 0.35 70.9 2.86 0.41 16.0 1.45 92.1 

Max 1.28 100 5.15 5.72 22.9 2.77 137 

Median 0.40 92.3 3.06 0.55 20.0 1.79 118 

% RSD 73.8 15.5 30.8 144 13.7 31.0 18.2 

ES 2 Average 0.80 95.0 4.03 2.62 15.5 2.10 120 

Min 0.18 63.0 1.73 0.19 6.26 0.76 72.1 

Max 2.17 130 6.89 7.79 29.9 4.57 181 

Median 0.42 93.4 3.76 1.25 12.9 1.53 113 

% RSD 117 37.8 52.8 134 66.6 83.7 45.5 

ES 3 Average 0.91 97.3 4.50 3.69 17.4 3.00 126 

Min 0.37 69.3 3.59 0.65 10.6 1.57 86.1 

Max 1.79 136 5.85 9.94 27.7 5.18 187 

Median 0.74 91.5 4.27 2.08 15.7 2.63 116 

% RSD 71.4 30.0 23.3 114 42.1 52.9 34.7 

Living 
room 

Average 0.45 52.4 2.37 1.83 8.84 3.89 69.8 

ES1 
  
  

Min 0.27 22.3 1.80 1.10 6.97 0.75 33.2 

Max 0.68 74.9 2.82 3.34 12.2 7.51 101 

Median 0.42 56.2 2.42 1.45 8.09 3.65 72.2 

% RSD 42.2 41.7 21.0 56.1 27.1 90.0 42.2 

ES 2 Average 0.40 48.3 2.28 3.79 10.2 4.07 69.0 

Min 0.24 36.4 1.23 2.86 8.26 1.42 50.4 

Max 0.74 59.3 3.49 4.76 12.3 6.76 87.4 

Median 0.31 48.7 2.21 3.77 10.0 4.05 69.1 

% RSD 57.2 19.3 40.6 20.9 20.1 65.5 23.2 

ES 3 Average 0.50 60.6 2.46 3.63 11.6 4.26 83.1 

Min 0.21 54.6 1.61 3.23 7.05 1.82 68.5 

Max 1.30 72.1 3.49 4.29 18.9 10.9 111 

Median 0.24 57.9 2.36 3.51 10.2 2.15 76.4 

% RSD 108 13.1 33.9 12.5 44.0 104 23.2 
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Table IV-8 Continuation concentrations (µg/g) of PFRs in indoor dust from ES in H2. 
 
Location Statistical 

Parameter 
TnBP TCIPP TCEP TDCIPP EHDPP TPhP ΣPFRs 

Kitchen Average 0.31 57.2 3.98 2.55 11.1 1.64 76.9 

ES1 
 

Min 0.17 35.6 1.52 0.36 7.19 0.89 45.7 

Max 0.57 76.1 9.07 6.94 13.5 3.04 109 

Median 0.25 58.7 2.66 1.45 11.9 1.31 76.3 

% RSD 58.2 31.9 87.3 120 25.3 58.5 37.4 

ES 2 Average 0.59 61.5 4.99 3.65 8.43 0.98 80.1 

Min 0.17 34.3 2.33 0.57 5.92 0.79 44.1 

Max 1.65 101 11.8 8.17 12.4 1.50 137 

Median 0.28 55.1 2.88 2.93 7.71 0.82 69.7 

% RSD 119 50.5 92.1 93.6 36.0 35.2 53.8 
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Table IV-9 Concentrations (µg/g) of PFRs in indoor dust from ES in H3. 

Location Statistical 
parameter 

TnBP TCIPP TCEP TDCIPP EHDPP TPhP ΣPFRs 

Bedroom Average 0.05 23.4 2.29 0.94 0.52 1.15 28.4 

ES1 
  
  

Min 0.03 7.53 1.15 0.79 0.16 0.30 9.96 

Max 0.08 50.5 3.99 1.15 1.11 1.87 58.7 

Median 0.21 69.5 3.48 6.78 4.15 4.65 88.7 

% RSD 41.2 87.2 53.2 16.4 82.1 60.8 80.8 

ES 2 Average 0.09 27.9 2.39 1.36 1.04 1.24 34.0 

Min 0.03 11.8 0.92 0.45 0.28 0.37 13.9 

Max 0.18 37.9 3.44 2.04 1.33 1.94 46.8 

Median 0.07 31.0 2.59 1.48 1.27 1.32 37.7 

% RSD 72.8 41.7 50.6 50.7 49.0 52.6 43.4 

Kids 
Bedroom 

Average 0.06 50.4 2.09 4.38 0.89 0.77 58.6 

ES1 
  
  

Min 0.04 12.7 1.24 0.58 0.28 0.25 15.1 

Max 0.09 102 2.80 7.91 1.23 1.05 115 

Median 0.05 43.4 2.16 4.51 1.03 0.90 52.1 

% RSD 40.3 75.8 30.9 84.5 47.0 46.2 74.0 

ES 2 Average 0.29 32.5 2.71 2.69 0.88 1.09 40.1 

Min 0.09 5.96 1.29 1.23 0.37 0.21 9.15 

Max 0.66 57.6 3.80 6.06 1.29 2.56 72.0 

Median 0.21 33.2 2.87 1.73 0.94 0.79 39.7 

% RSD 88.3 67.1 39.9 84.4 45.0 93.8 66.8 

Kitchen Average 0.09 23.7 3.35 4.54 0.69 0.58 33.0 

ES1 
  
  

Min 0.03 203 0.98 2.39 0.49 0.29 24.4 

Max 0.18 29.4 8.68 9.66 0.80 1.22 49.9 

Median 0.08 22.6 1.87 3.05 0.72 0.40 28.8 

% RSD 66.4 16.6 107 75.5 21.0 75.3 35.1 

ES 2 Average 0.15 34.3 4.00 2.25 0.57 0.57 41.9 

Min 0.11 6.84 1.48 1.34 0.32 0.24 10.3 

Max 0.20 95.2 10.4 3.15 0.89 1.23 111 

Median 0.15 17.7 2.06 2.25 0.53 0.40 23.0 

% RSD 25.6 119 106 37.6 51.6 79.0 112 
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Figure IV-1 Average contributions (%) of individual PFRs in Floor Dust from different 
rooms in H1.   

 

 

 
 

Figure IV-2 Average contributions (%) of individual PFRs in Floor Dust from different 
rooms in H2.   
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Figure IV-3 Average contributions (%) of individual PFRs in Floor Dust from different 
rooms in H3.  
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Figure IV-4 Within- home spatial variation in concentrations (µg/g) of PFRs of interest 
in different floor areas (F1, F2 and F3) in different rooms from H1, H2 and H3. 

Due to low concentration *10^1 and **10^2 
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Figure IV-5 Average contributions (%) of individual PFRs in Elevated Surface dust 
from different rooms in H1. 

 

 
Figure IV-6 Average contributions (%) of individual PFRs in Elevated Surface Dust 

from different rooms in H2. 
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Figure IV-7 Average contributions (%) of individual PFRs in Elevated Surface Dust 
from different rooms in H3. 
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Figure IV-8 Within- home spatial variation in concentrations (µg/g) of PFRs of 
interest. 
in ES1 and ES2 in different rooms of H1, H2 and H3. 
Due to low concentrations *10^1 and **10^2 
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Table IV.8 shows t-test was performed to investigate significant differences between 

ES and F samples within the same room.  

 
House Area TnBP TCIPP TCEP TDCIPP EHDPP TPhP 

H1 R1/F123/ES123 0.14 0.02 0.01 0.02 0.02 0.00 

R2/F123/ES123 0.06 0.01 0.01 0.14 0.47 0.50 

R3/F123/ES123 0.19 0.32 0.16 0.42 0.04 0.41 

H2 R1/F123/ES123 0.01 0.00 0.00 0.07 0.00 0.02 

R2/F123/ES123 0.03 0.02 0.00 0.00 0.00 0.17 

R3/F123/ES123 0.38 0.41 0.12 0.13 0.15 0.16 

H3 R1/F123/ES123 0.12 0.18 0.07 0.04 0.06 0.20 

R2/F123/ES123 0.35 0.37 0.19 0.00 0.15 0.01 

R3/F123/ES123 0.09 0.23 0.06 0.21 0.11 0.02 

 

Significant differences were found between rooms in H1R1 TCEPP, TCEP, TDCIPP, 

EHDPP and TPhP; H1R2 significant differences between TCIPP and TCEP; H1R3 

significant differences just to EHDPP. H2R1 significant differences reported to TnBP, 

TCIPP, TCEP, EHDPP, and TPhP; H2R2 significant differences to TnBP, TCIPP, 

TCEP, TDCIPP and EHDPP. H3R1 report a difference between TDCIPP, EHDPP 

and TPhP. H3R2 significant differences to TDCIPP and TPhP. H3R3 significant 

differences to TPhP.  

Table IV-10 Resume t-test within-room spatial differences between PFRs in Floor (F) 
and Elevated Surface (ES) Dust.  
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4.3.2 Within-room spatial differences between PFR concentrations for: (1) Floor 

(F) and (2) Elevated Surface (ES) Dust. 

Within-room spatial differences in concentrations may exist between dust samples 

taken at the same time from different locations in the same room (Harrad et al., 

2008). In this study, within-room spatial differences in concentrations of PFRs from F 

and ES dust were analysed. To do so, an ANOVA was performed comparing PFR 

concentrations in elevated surface dust from 3 areas in R1H1, R2H1, R1H2, R2H2, 

as well as in floor dust from 3 areas in R1H1, R2H1, R1H2, and R2H2. The results of 

this are shown in Table IV.9.  Table IV.10 shows the results of a paired t-test 

comparison of PFR concentrations in elevated surface dust from R3 H1, R3H2 and 

R3H3 since in each of these R3s just two elevated surface areas were sampled.  

Table IV-11 ANOVA comparison of within-room variation in PFR concentrations in 
floor dust from room #s 1, 2, and 3 
in homes 1 and 2. 

 

 

 

 

 

 

 

 

NSD (not significant difference)  

 

 

 

H1  
R1ES123 NSD  
R1F123 TDCIPP F2>F1 (0.040) 
R2ES123 EHDPP ES3> ES2 (0.015) 
R2F123 TnBP F3> F1 (0.001) 

H2  
R1ES123 NSD 
R1F123 TPhP F2>F1>F3 (0.015) 

(0.020) 
R2ES123 TDCIPP ES2>ES3>ES1 (0.013) 

(0.017) 
R2F123 EHDPP F2>F1>F3 (0.019) 

(0.001) 
TPhP F1>F3 (0.026) 
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Table IV-12 Results of Paired t-test comparison of within-room variation of PFR 
concentrations in elevated surface dust from room #3s in homes 1, 2, and 3. 

 

 

 

 

 

 

 

NSD (not significant difference)  

 

Clearly, our data indicate some within-room spatial differences in PFR concentrations 

in both floor and elevated surface dust. As suggested for BFRs by Harrad et al., 

2008, such within-room variations in contamination may imply a more biologically-

relevant measure of exposure may require collecting dust from the most frequented 

part of a room.  

4.3.3 Within-home spatial differences between PFR concentrations in Floor (F) and 

Elevated Surface (ES) Dust from different rooms.  

In this section, we examine our data for the existence of significant differences in 

concentrations of PFRs in: (a) floor dust from different rooms in the same houses, 

and (b) elevated surface dust from different rooms in the same houses. To do so, we 

compared using ANOVA, the average concentration in floor dust in the single area 

sampled in the kitchen in each house, with the average of the three floor areas 

sampled in the other two rooms (R1 and R2) in H1 and repeated the same process 

for H2 and H3.  

House  

H1R3ES12 NSD 

H2R3ES12 TPhP (0.020) 

H3R1ES12 TnBP (0.040) 

H3R2ES12 NSD 

H3R3ES12 NSD 
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For ES, we used a similar approach, whereby the average concentrations in ES1, 

ES2 and ES3 from R1 were compared using ANOVA with the average 

concentrations of PFRs in elevated surface dust from R2 and R3 in the same house. 

Table IV.11 shows the results of these analyses.  

Table IV-13 Results of ANOVA test of within-home spatial differences in PFR 
concentrations (µg/g) in Floor and Elevated Surface Dust. 

House/Dust 
Type 

TnBP TCIPP TCEP TDCIPP EHDPP TPhP 

 
H1/ES 

 
NSD 

R1>R3 
(p<0.037) 

R2>R3 
(p<0.018) 

R1>R3 
(p<0.006) 

R1>R3 
(p<0.042) 

 
NSD 

 
H1/F 

R2>R3 
(p<0.028) 

R1>R3 
(p<0.036) 

 
NSD 

R2>R3 
(p<0.004) 

R1>R3 
(p<0.001 

R1>R3 
(p<0.003) 

H2/ES NSD 
 
H2/F 

 
NSD 

R2>R3 
(p<0.016) 

R3>R1 
(p<0.036) 

 
NSD 

R2>R3 
(p<0.000) 

R2>R3 
(p<0.008) 

H3/ES NSD 
 
H3/F 

 
NSD 

R2>R1 
(p<0.042) 

NSD (not significant difference)  

In all 3 houses studied, at least 1 significant difference was detected, with the 

greatest within-house variation present in H1, where room 3 displayed concentrations 

of several PFRs that were exceeded significantly by those in the other rooms. 

Overall, while some significant differences were observed for elevated surface dust, 

these were observed on fewer occasions. This may be attributed to less frequent 

cleaning of elevated surfaces than floors (Tajima, et al., 2014).  
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4.3.4 Seasonal variation in PFR concentrations in F and ES Dust. 
 

Although it is difficult to distinguish seasonal variability from month-to-month, it is 

plausible that seasonal variation in PFR concentrations in dust may occur.  

To evaluate its existence, we used a t-test to compare concentrations of PFRs in 

colder (September, October, November, December, January and February) and 

warmer (March, April, May, June, July and August) seasons. Figures IV.13-IV.18 

depict the seasonal differences for floor dust and elevated surface dust for each 

house, while Table IV.12 and IV.13 summarise the results of the t-tests conducted.  

PFR concentration were higher from later winter and early spring; but they were the 

lowest in autumn to early winter. PFR concentrations change in contrast whit the 

trend of temperature. The PFR variation pattern was attributable to seasonality.  
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Figure IV-9 House (H) 1 average concentrations (µg/g) of PFRs in floor (F) dust 
samples from room (R) 1, 2 and 3.  
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Figure IV-10 H2 average concentrations (µg/g) of PFRs in F dust samples from  

R 1, 2 and 3. 
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Figure IV-11 H3 average concentrations (µg/g) of PFRs in in floor dust samples from 
R 1, 2 and 3. 
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Figure IV-12 Seasonal variation in PFR concentrations (µg/g) in elevated surface 
(ES) dust from house (H) 1 in room (R) 1, 2 and 3 
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Figure IV-13 Seasonal variation in PFR concentrations (µg/g) in ES dust from H2 in  

R 1, 2 and 3.  
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Figure IV-14 Seasonal variation in PFR concentrations (µg/g) in ES dust from H3 in 

R 1, 2 and 3.  
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Table IV-14 t-test results evaluating seasonal variation in PFR concentrations in floor 
dust from H1, H2 and H3. 

F TnBP TCIPP TCEP TDCIPP EHDPP TPhP 

H1 

R1 0.03 0.00 0.04 0.08 0.01 0.00 

R2 0.23 0.32 0.04 0.10 0.10 0.12 

R3 0.24 0.32 0.10 0.20 0.46 0.24 

H2 

R1 

0.10 0.03 0.09 0.05 0.40 0.11 

R2 0.08 0.09 0.30 0.47 0.49 0.23 

R3 0.21 0.47 0.03 0.28 0.34 0.07 

H3 

R1 

0.14 0.40 0.17 0.21 0.13 0.24 

R2 0.44 0.45 0.37 0.41 0.21 0.03 

R3 0.31 0.31 0.29 0.31 0.22 0.29 

 

Table IV-15 t-test results evaluating seasonal variation in PFR concentrations in 
Elevated Surface dust from H1, H2 and H3. 

ES TnBP TCIPP TCEP TDCIPP EHDPP TPhP 

H1 

R1 0.15 0.17 0.09 0.06 0.12 0.05 

R2 0.05 0.40 0.12 0.14 0.17 0.19 

R3 0.09 0.10 0.13 0.16 0.01 0.20 

H2 

R1 

0.06 0.17 0.05 0.03 0.03 0.04 

R2 0.49 0.21 0.20 0.37 0.24 0.01 

R3 0.14 0.14 0.08 0.02 0.01 0.07 

H3 

R1 

0.23 0.33 0.24 0.02 0.30 0.10 

R2 0.12 0.47 0.49 0.14 0.44 0.28 

R3 0.24 0.25 0.48 0.26 0.49 0.46 
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4.3.5 Temporal variation in PFR concentrations in Floor and Elevated Surface Dust. 

Clear evidence was found of temporal variability in PFR concentrations in both F and 

ES dust, with table IV.14 to IV.19 showing the results. The large ratios between the 

maximum and minimum concentrations and the relative standard deviations in these 

tables provide evidence that estimates of exposure based on a single dust sample 

(either floor or elevated surface) taken at a single point in time, will be subject to 

considerable uncertainty of typically an order of magnitude. This is consistent with 

similar studies that showed concentrations of BDE 209 in floor dust sampled from 

three rooms sampled monthly over 10 months could vary by up to 400-fold, 

dependent on month-to-month changes in room contents, such as an introduction or 

removal of specific product, ventilation, and occupant life style (Harrad et al., 2008).  

Moreover, it has been suggested that two or four replicate dust samples from one 

sampling site over a full calendar year are not sufficient to represent temporal trends 

of FRs (Cao et al., 2014).  
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CHAPTER V. ORGANOPHOSPHATE FLAME RETARDANTS IN INDOOR AIR 
AND DUST FROM OFFICES AND HOMES IN BIRMINGHAM, UK. 
 

5.1 Synopsis 
Indoor air contamination represents a potentially important route of exposure via 

inhalation since we spend typically at least 85 % of our time in indoor environments 

in contact with different indoor contaminants with resultant exposure (Liagkouridis et 

al., 2014).   Moreover, as well as inhalation, exposure via ingestion of dust has been 

shown to be an important contributor to exposure to contaminants such as phosphate 

flame retardants (Schreder et al., 2015). Hence in this chapter, concentrations of 

PFRs are measured in samples of indoor air and settled dust from a range of 

different indoor microenvironments in Birmingham, UK, specifically: living rooms, 

bedrooms and offices. The relationship between these flame retardants in the 

analysed air and dust samples will be studied and compared in this chapter.  

 

5.2 Sampling strategy 

5.2.1 Air 
Passive air samplers possess various advantages over active air samplers such as: 

cost-effectiveness, less researcher involvement (just deploy and harvest), no 

requirement for electricity, and silent operation, which is a distinct advantage to study 

participants.  

Indoor passive air samples were collected between January and May 2016 from the 

following microenvironment categories: 23 bedrooms and 23 living rooms from the 

same houses within the West Midlands conurbation, UK, 20 offices from the 
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University of Birmingham, and 7 outdoor air samples taken from the Elms Road 

Observatory Site (EROS) on the same University campus.  

Table V-1 Numbers of passive air samples taken. 

Microenvironment Number  

of samples 

Living rooms 23 

Bedrooms 23 

Offices  20 

Outdoor 7 

 

 

At the end of each indoor air sampling period (methodology followed in section 2.1.2 

to passive air sampling) floor dust was collected from each microenvironment, in 

accordance with the methodology explained in 2.1.1.1.  All samples (air and dust) 

were collected under normal room use conditions to reflect actual human exposure.  

5.2.2 Dust 
In order to study the relationship between PFR concentrations in indoor air and dust 

collected from the same rooms over the same period dust samples were collected at 

the end of each air sampling period in accordance with the protocol described in 

2.1.1.1. In total, air and dust samples were collected from 21 living rooms, 21 

bedrooms from the same houses as the living rooms, and 20 offices in the same 

period of time and the same places and areas as for the air samples collected.  

5.3 Concentrations of PFRs in air from different microenvironments 
Passive air sampling rates for PAS have been shown to differ depending on whether 

they are deployed indoors or outdoors for semi-volatile organic compounds (Newton, 

et al., 2016), (Zhang, et. al., 2012).  Indoor sampling rates were obtained by dividing 
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the outdoor rates by two, to allow for factors such as the lower air flow and the part-

sheltered sampler configuration used indoors. The rates used are from Abdollahi et 

al., (2017) and are listed in Table V.2. These sampling rates for PFRs are not 

dissimilar to those reported elsewhere for PBDEs e.g. 2.5 m3 d-1 (Wilford, et al 2004) 

and other POPs for which a default sampling rate of 4 m3 d-1 has been used (Pozo, et 

al. 2008).  

 

Table V-2 Passive air sampling rates used in this study. 

Compound Outdoor 
rate (m3 day-1) 

Indoor 
 rate (m3 day-1) 

TnBP 3.7 1.8 

TCIPP 3.2 1.6 

TCEP  3.2 1.6 

TDCIPP 5.3 2.7 

EHDPP 3.8 1.9 

TPhP 2.5 1.3 

TCP 3.7 1.8 

 

As shown in figure V.2 and V.3, indoor air concentrations are higher than those 

detected in outdoor air in this study, except for TDCIPP, EHDPP and TPhP for which 

the outdoor air average concentration is (0.17, 0.62 and 1.99 ng m3) respectively, 

compared to those in living rooms, (0.25, 0.68 and 1.73 ng m-3) respectively; 

bedrooms, (0.19, 0.43 and 1.39 ng m-3) respectively and average concentrations in 

offices of TDCIPP, EHDPP and TPhP (0.23, 0.75 and 1.40 ng m-3) respectively. Low 

concentrations of TDCIPP were reported in previous studies consistent with low 

concentrations found in our study and its low vapor pressure.  TPhP was the 
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predominant PFR in Toronto semi-urban outdoor air (average 1.06 ng m3) (Abdollahi 

et al., 2017). 

 Moreover, the average outdoor air concentration of TPhP in a remote area from 

Finland was 12 ng m3 which the authors attributed to traffic emissions (Marklund et 

al. 2005c), consistent with the study of Green et al., (2008) who also reported a 

significant proportion of airborne TPhP to arise from traffic emissions.  

In our study, outdoor sampling was conducted near a main road and this may provide 

at least a partial explanation for the observed higher outdoor compared to indoor 

concentrations of TPhP. 

Our concentrations of TPhP in outdoor air are also consistent with those reported for 

China and Norway (2.92 and 1.0 ng m-3 respectively, Liu et al., (2016)). However, our 

concentrations exceed those reported for Chicago and Cleveland (0.10 and 0.18 ng 

m-3 respectively) (Salamova et al., 2013).  Additionally, our outdoor air samples were 

collected in May and June, which – given observations of higher concentrations of 

PFRs in summer than winter (Takeshi et al, 2006) may provide a rationale for the 

higher outdoor compared to indoor concentrations in our study. The presence of 

PFRs in outdoor air might be due to the wide use of these compounds in applications 

such as polyurethane foam (both rigid and flexible), plastics, resins, acrylic, latexes, 

for back coating and binding of non-woven fabrics (WHO, 1998). Although TPhP was 

present at higher concentrations in higher outdoor than indoor air, the predominant 

PFR in outdoor air was TCIPP followed by TCEP with average concentrations of 60 

and 12.5 ng m-3 respectively, TCIPP concentrations were higher than TCEP might 

due recent restrictions on the uses of TCEP and the rising usage of TCIPP.  
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These concentrations compare with previous reports of those for TCIPP in China of 

4.92 ng m-3, Finland 0.81 ng m-3 and Norway 0.49 ng m-3; and those for TCEP in 

Toronto of 0.76 ng m-3, China 2.99 ng m-3, Norway 1.45 ng m-3 and Japan 14.3 ng m-

3 (Abdollahi et al., 2017; Salamova et al., 2013 and Liu et al., 2016).  

  

Indoor air concentrations of TCIPP are on average two orders of magnitude higher 

than those detected in outdoor with indoor average concentrations of 883 ng m-3 

(living rooms), 632 ng m-3 (bedrooms) and 641 ng m-3  (offices). Our data are 

consistent with those reported for concentrations on inhalable particles in US indoor 

air (average 371 ng m-3, Schreder et al., 2015). Concentrations in bedroom, living 

room and office air all exceeded significantly those in outdoor air (p<0.01 for each). 

The second most abundant PFR we detected in indoor air was TCEP followed by 

TnBP, for which the average concentrations were for TCEP and TnBP respectively: 

living rooms (44.0 and 4.5 ng m-3), bedrooms (33.0 and 4.2 ng m-3) and offices (41.0 

and 2.8 ng m-3).  

Concentrations of TCEP exceeded significantly those outdoors (p<0.021, <0.00 and 

<0.01 for bedrooms, living rooms, and offices respectively) with those of TnBP 

significantly higher than outdoors for bedrooms and living rooms only (p<0.03, <0.01 

respectively). Within the 3 indoor microenvironment categories we studied, the 

highest concentrations were present in living rooms and bedrooms rather than 

offices, but no significant statistical differences were observed.  
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Figure V-1 Average air concentration (ng m-3) of TnBP, TDCIPP, EHDPP, TPhP and 
TCP for all microenvironments. 

 

Figure V-2 Average concentrations (ng m-3) of TCIPP and TCEP in air for all 
microenvironments. 

 

Table V.3 gives an overview of previously reported data on PFR concentrations in 

outdoor and indoor air. These data provide context to those reported in this study, 

which are summarised in Table V.4. 
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Table V-3 Summary of previously reported PFR concentrations (ng m-3) in air samples from outdoor and indoor 
microenvironments.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OUTDOOR AIR 
Reference Microenvironment TnBP TCIPP TCEP TDCIPP EHDPP TPhP TCP 

Marklund, 
et al. 2005 
 

Average  
Finland  
Air traffic   

 
 
0.28 

 
 
0.81 

 
 
0.10 

 
 
0.02 

 
 

N.D. 

 
 
12.0 

 
 
N.D. 

Saito, et 
al. 2007 
 

Maximum  
Japan  
n=8 

 
 1.7 

 
3.1 

 
N.D. 

 
N.D. 

 
N.D. 

 
N.D. 

 
N.D. 

Möller et 
al. 2012 

Arctic 
Mean  

N.D. 0.29 0.28 N.D. N.D. 0.02 N.D. 

Salamova 
et al., 
2014 

Average  
Chicago (27) 
Cleveland 

 
0.25 
0.15 

 
0.53 
0.85 

 
0.18 
0.12 

 
0.12 
0.52 

 
N.D. 

 
0.14 
0.20 

 
0.09 

Shoeib et 
al., 2015 

Mean  
Toronto 

 
N.D. 

 
0.70 

 
0.58 

 
0.18 

 
N.D. 

 
0.83 

 
N.D. 

Rauert et 
al 2016 
 

Mean  
Brazil 
Mexico 

 
 
N.D. 

 
0.69 
1.28 

 
0.36 
0.15 

 
0.05 
0.02 

 
 
N.D. 

 
0.11 
0.13 

 
 
N.D. 
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Table V-4 Continuation summary of previously reported PFR concentrations (ng m-3) in air samples from outdoor and indoor 
microenvironments.  

INDOOR AIR 
Reference Microenvironment TnBP TCIPP TCEP TDCIPP EHDPP TPhP TCP 

Carlsoon,  
et al.,  1997 

Mean 
 Sweden 
Offices 

 
 
18 

 
 
N.D. 

 
 
N.D. 

 
 
N.D. 

 
 
N.D. 

 
 
0.7 

 
 
N.D. 

Staaf et al., 
2005 

Homes  
Offices 
ranging 

7-80 
3-7 

5-330 
41-120 

4-115 
6-780 

 
N.D. 

 
N.D. 

 
N.D. 

 
N.D. 

Saito, et al., 
2007 
 

Median  
Japan 
House (18) 
Office (14) 

 
 
4.0 
6.6 

 
 
1.9 
6.0 

 
 
1.3 
3.3 

 
 
 
N.D. 

 
 
 
N.D. 

 
 
 
N.D. 

 
 
 
N.D. 

Bergh et al., 
2011 

Median 
Sweden 
Houses (10) 
Offices (10) 

 
 
9.1 
2.3 

 
 
64 
100 

 
 
4.8 
10 

 
 
17 
28 

 
 
N.D. 

 
 
0.08 
2.7 

 
 
1.0 

Takeuchi, 
et al. 2014 
 

Average  
Japan 
Living rooms (6) 
Bedrooms (6) 

 
 
 
N.D. 

 
 
 
N.D. 

 
 
36200 
22400 

 
 
18000 
 

 
 
3000 

 
 
19800 
51200 

 
 
 
N.D. 

Schreder et 
al., 2015 

Mean 
Washington 
Indoor air 

 
N.D. 

 
371 

 
19.1 

 
19.1 

 
N.D. 

 
N.D. 

 
N.D. 

 
 
 
 

http://www.sciencedirect.com.ezproxyd.bham.ac.uk/science/article/pii/S0048969714005051?np=y&npKey=ae4b9f4116b6874e6d698f833fe09e5c42da848c620be0e3a3c175e3e3043615
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Table V-5 Summary of PFR concentrations (ng m-3) in air samples from this study in different microenvironments.  

 
Area Statistical 

parameter 
TnBP TCIPP TCEP TDCIPP EHDPP TPhP TCP 

Living 
Room  
n=23 

Average 
SD 
Median 
Minimum 
Maximum 

4.51 
4.52 
3.21 
0.41 
19.97 

 

883 
582 
847 
139 
1961 

 

43.99 
26.94 
38.45 
12.69 
116 

 

0.25 
0.22 
0.19 
0.004 
0.82 

 

0.68 
0.38 
0.55 
0.09 
3.02 

 

1.73 
2.04 
0.95 
0.51 
8.21 

 

0.38 
1.56 
0.002 
<0.002 
7.49 

 

Bedroom 
n=23 

Average 
SD 
Median 
Minimum 
Maximum 

4.23 
3.67 
3.58 
0.15 
13.14 

 

632 
712 
489 
113 
3308 

 

32.92 
20.74 
27.51 
2.38 
82.72 

 

0.19 
0.36 
0.11 
0.004 
1.81 

 

0.43 
0.42 
0.24 
0.02 
1.56 

 

1.39 
1.80 
0.65 
0.10 
9.09 

 

0.06 
0.18 
<0.002 
<0.002 
0.88 

 

Offices 
n=20 

Average 
SD 
Median 
Minimum 
Maximum 

2.82 
3.73 
1.29 
0.53 
15.39 

 

641 
502 
499 
62 
1964 

 

40.99 
21.82 
33.48 
15.60 
93.51 

 

0.23 
0.11 
0.22 
0.04 
0.73 

 

0.75 
1.34 
0.28 
0.09 
5.34 

 

1.40 
1.34 
1.05 
0.27 
6.21 

 

0.06 
0.20 
<0.002 
<0.002 
0.89 

 

Outdoor 
n=7 

Average 
SD 
Median 
Minimum 
Maximum 

0.49 
0.05 
0.48 
0.42 
0.55 

 

60 
9 
56 
52 
78 

 

12.52 
2.69 
11.46 
9.47 
16.44 

 

0.17 
0.17 
0.0.9 
0.15 
0.47 

 

0.62 
0.63 
0.43 
0.40 
1.51 

 

1.99 
0.25 
1.96 
1.63 
2.28 

  

<0.0022 
<0.0020 
<0.0021 
<0.0021 
<0.0021 
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5.4 Concentrations of PFRs in dust from different microenvironments. 
 

A statistical summary of the concentrations of our target PFRs in floor dust samples 

from different microenvironments (living rooms, bedrooms and offices) is provided in 

table V.5 and illustrated in figure V.4. PFRs were detected in all samples, with TCIPP 

the most abundant PFR in all three microenvironments. Visual analysis and 

Kolmogorov-Smirnov test revealed the data were not normally distributed, and thus 

concentrations were log-transformed prior to ANOVA with Tukey post-hoc testing.  

For TCIPP, no statistically significant differences were observed between 

concentrations in different microenvironments (p>0.05). This is consistent with the 

findings of Brommer et al (2015) for Birmingham, UK who reported TCIPP median 

concentrations to be: living rooms (29 µg/g), classrooms (16 µg/g) and offices (33 

µg/g). These compare closely with those we detected – i.e. median concentrations of 

TCIPP were: living rooms (30.0 µg/g), bedrooms (32.8 µg/g) and offices (54.8 µg/g) 

respectively.  

Elsewhere, median concentrations of TCIPP similar to those reported here for the UK 

have been reported – i.e. 39.54 µg/g in offices in China (Cao et al 2014), 18.7 µg/g in 

living rooms in Japan (Kanazawa et al., 2010), and 33 µg/g in Kuwaiti homes (Ali et 

al., 2013). On the other hand, Abdallah et al., (2014) and He et al., (2015) reported 

lower concentrations of TCIPP (0.02 and 0.75 µg/g) from houses in Egypt and China 

respectively. Abdallah et al., (2014) also report a lower TCIPP median concentration 

in Egyptian offices (0.08 µg/g).  
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As well as TCIPP, TnBP, TCEP, TDCIPP, EHDPP and TPhP also feature strongly in 

one or more microenvironments.  Concentrations on our study of these compounds 

are broadly similar in concentrations to those reported in previous studies, albeit with 

some differences in the relative abundance of the different PFRs. In living rooms in 

this study, median concentrations of EHDPP (2.32 µg/g), TCEP (1.98 µg/g), TDCIPP 

(1.61 µg/g), TPhP (1.44 µg/g) and TnBP (0.09 µg/g) were detected, with median 

concentrations in bedroom dust being: TPhP (3.48 µg/g), EHDPP (2.86 µg/g), TCEP 

(1.76 µg/g), TDCIPP (1.52 µg/g) and TnBP (0.08 µg/g). Our data compare quite 

closely with those of Brommer et al., (2015) who reported concentrations in living 

rooms from Birmingham, UK to be: TPhP (3.3 µg/g), EHDPP (1.6 µg/g), TCEP (0.81 

µg/g) and TDCIPP (0.71 µg/g). Median concentrations in office dust in this study 

were: TPhP (4.54 µg/g), EHDPP (2.61 µg/g), TDCIPP (1.44 µg/g), TCEP (1.41 µg/g), 

and TnBP (0.08 µg/g). By comparison, median concentrations in office dust from 

Japan and the USA have been reported as: TCEP (5.8 and 2.7 µg/g), TPhP (4.5 and 

2.8 µg/g) and TDCIPP (2.8 and 2.1 µg/g) respectively. Moreover, in offices median 

concentrations of EHDPP (0.56 µg g) and TnBP (0.08 µg g) have been reported in 

dust from US (Araki et al., 2014), (Dodson et al., 2012).   

 

Concentrations of TCIPP and TPhP in offices were significantly higher (p<0.00) than 

those in living rooms. Our lack of significant differences between TDCIPP 

contamination in different indoor microenvironments contrasts with the findings in the 

USA of Carignan et. al., (2013), who reported significantly higher TDCIPP 

concentrations in dust from offices   (geometric mean 6.06 μg/g) than in dust from 

living rooms (geometric mean 4.21 μg/g) and bedrooms (geometric mean 1.40 μg/g). 
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Our observation that the TPhP concentrations were highest in office dust may be 

attributable to the greater abundance of computers in offices. This is because TPhP 

has been detected in dust from computer housing and displays at concentrations of 

3.3-4 μg/g (Marklund et. al., 2003).  

Table V-6 Summary of PFR concentrations (μg g-1) in UK dust samples from different 
microenvironment categories.   

 
Location Statistical 

Parameter 
TnBP TCIPP TCEP TDCIPP EHDPP TPhP TCP 

Living 
rooms 
n=21 

Average 
SD 
Median 
Min 
Max 

0.09 
0.04 
0.09 
0.01 
0.15 

 

40.7 
23.6 
30.0 
2.73 
95.8 

 

1.89 
0.93 
1.98 
0.09 
4.60 

 

7.24 
17.1 
1.61 
0.10 
75.6 

 

4.76 
7.42 
2.32 
0.63 
27.6 

 

6.08 
9.62 
1.44 
0.75 
39.6 

 

0.00 
0.02 
0.00 
0.00 
0.10 

 

Bedrooms 
n=21 

Average 
SD 
Median 
Min 
Max 

0.10 
0.05 
0.09 
0.03 
0.20 

 

41.5 
21.5 
32.8 
16.5 
104 

 

1.92 
0.68 
1.76 
0.99 
3.66 

 

1.57 
0.74 
1.52 
0.00 
2.74 

 

3.76 
2.74 
2.86 
0.50 
10.7 

 

5.83 
5.99 
3.48 
0.77 
21.9 

  

0.45 
2.06 
0.00 
0.00 
9.46 

Offices 
n=20 

Average 
SD 
Median 
Min 
Max 

0.10 
0.06 
0.08 
0.04 
0.28 

 

76.4 
35.5 
54.7 
24.3 
117 

 

1.70 
0.64 
1.41 
0.60 
2.72 

 

1.66 
0.58 
1.44 
0.57 
2.82 

 

3.87 
2.05 
2.61 
0.62 
8.36 

 

8.00 
4.67 
4.54 
0.83 
17.5 

  

0.00 
0.00 
0.00 
0.00 
0.00 
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Table V-7Comparison of median concentrations (μg g-1) of PFRs detected in indoor floor dust from this study and others.  

Reference Country TNBP TCIPP  TCEPP TDCIPP EHDPP TPhP 
Living rooms 

Kanazawa 
et al., 2010 

Japan (n=41) 1.4 18.7 7.5 4.0 N.D 5.4 

Araki et 
al., 2014 

Japan (n=148) 1.0 8.7 5.8 2.8 N.D 4.5 

Abdallah 
et al., 2014 

Egypt (n=20) 0.01 0.02 0.02 0.07 0.04 0.06 

Luongo et 
al., 2015 

Sweden (n=62) 5.6 11 4.0 2.0 2.7 4.3 

He et al., 
2015 

China (n=11) 0.08 0.75 3.48 0.13 0.36 0.15 

Brommer 
et al., 2015 

UK (32) <0.03 21 0.81 0.71 1.6 3.3 

Harrad, S. 
et al., 2016 

Germany (n=22) <0.03 1.00 0.21 0.08 0.14 0.23 

Harrad, S. 
et al., 2016 

Kazakhstan (n=9) 0.11 1.00 1.40 0.11 0.27 3.80 

Harrad, S. 
et al., 2016 

Australia (n=11) 0.06 1.80 0.60 0.32 0.38 1.20 

Harrad, S. 
et al., 2016 

Canada (n=14) 0.13 1.20 0.69 1.10 0.39 1.60 

This study UK (n=21)  0.09 30.01 1.98 1.61 2.32 1.44 
Bedrooms 

This study UK (n=21)  0.09 32.79 1.76 1.52 2.86 3.48 
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Table V-8 Continuation comparison of median concentrations (μg g-1) of PFRs detected in indoor floor dust from this study and 
others.  

 

Reference Country TNBP TCIPP  TCEPP TDCIPP EHDPP TPhP 
Offices 

Bergh et al., 
2011 

Sweden 
(n=10) 

0.2 19 6.7 17 1.0 5.3 

Brommer et 
al., 2012 

Germany 
(n=10) 

0.22 3.0 0.12 0.15 N.D 2.5 

Cao, Z., et 
al., 2014   

China (56) 0.44 39.54 3.25 1.8 1.02 2.24 

Abdallah et 
al., 2014 

Egypt (n=20) 0.02 0.08 0.03 0.04 0.04 0.07 

Brommer et 
al., 2015 

UK (n=61) <0.03 33 0.87 0.48 5.3 4.3 

Min, W., et 
al., 2016   

China (n=23) N.D 11.29 10.59 0.91 N.D 2.00 

Harrad, S. et 
al., 2016 

Germany 
(n=22) 

N.D 1.60 N.D 0.14 0.36 1.50 

Harrad, S. et 
al., 2016 

Kazakhstan 
(n=9) 

N.D 2.20 N.D 0.91 0.26 5.30 

This study UK (n=20) 0.08 54.77 1.41 1.44 2.61 4.54 
 N.D. not determinated
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Figure V-3 Median concentrations (ng/g) of PFR of interest in dust from different 
indoor microenvironment. * Due to the lower concentrations of TnBP, values are 
multiplied by 10 on the figure. 

 

5.5 Correlations between PFRs concentrations in air and dust. 
 

Pearson rank analyses revealed positive correlations between air and dust 

concentrations in the three sampled microenvironments with a significant linear 

regression correlation especially for the more volatile compounds. Table V.7 shows 

the results of the correlation analyses.  
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Table V-9 Correlation analyses between air and dust concentrations. 

Compound Correlation coefficient R2 

TnBP 0.988 0.976 

TCIPP 0.990 0.985 

TCEP 0.847 0.718 

TDCIPP 0.770 0.592 

EHDPP 0.962 0.924 

TPhP 0.949 0.901 

 

The good correlation between dust and air concentrations might be practically due to 

the fact that the passive air samplers retain some dust particles as well as vapour. 

On the other hand, elevated R2 values suggest that equilibrium conditions were 

reached between dust and air for the majority of the PFRs studied. Cequier et al., 

(2014) report a similar correlation between PFR concentrations in dust and air in 

Norwegian houses and classrooms.  In Stockholm, Sweden three different 

environment categories were analysed (houses, daycare centres and workplaces). 

PFRs were detected in both in air and dust, with significant correlation reported 

between dust and air concentrations for TnBP, TCEP, and TCIPP. The authors took 

this as evidence that dust: air equilibrium was reached for these PFRs, concluding 

also that high molecular weight PFRs were more abundant in dust than air because 

of their lower vapour pressures (Bergh et al., 2011). 
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5.6 Exposure estimates via inhalation and dust ingestion. 
 

Dairy intake is the principal exposure pathway from many FRs, but recent studies 

have concluded that ingestion of indoor dust can be significant exposure pathway to 

FRs (Mercier et al., 2011). The total daily intake of PFRs via indoor dust ingestion 

and inhalation was calculated using the following equation used by another author 

(Harrad et al., 2006) with some modifications: 

∑exposure(ng/kgbw/day) = dust intake (mg/day) {(CL)x(SL)+(CB)x(SB)+(CO)x(SO)}/bw 

Where CL, CB and CO are the dust concentrations from living room, bedroom and 

office respectively and SL, SB and SO are the time spend in different 

microenvironments.  

We assumed an average body weight (bw) of 70 kg for adults and 12 kg for toddlers 

(http:www.disable-world.com). To make a preliminary assessment of the likely 

magnitude of human exposure via indoor dust ingestion, a calculation method 

described by Harrad et al. (2008) was adopted. In absence of evidence, we assumed 

100% absorption of contaminants from ingested dust and average dust intake of 20 

and 50 mg/day, and high dust ingestion figures of 50 and 200 mg/day for adults and 

toddler, respectively. We assumed that an average adult person spend 23.8% in 

office, 33.3% in bedroom and 42.9% in living rooms, and toddlers spend 41.7% in 

bedroom and 58.3% in living rooms (Harrad and Abdallah, 2011). We assume for 

inhalation that dults spend 38.4% of their time in living room, 33.3% in bedroom, 23.8 

in office and 4.5% outdoor and toddlers spend 53.8% in living rooms, 41.7 in 

bedrooms and 4.5% outdoor. Air inhalation rate figures for adults and toddlers were 

assumed to be on average 20 and 3.8 m3/day respectively (Currado et al., 1998) and 
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(Wilford et al., 2004). Different exposure scenarios were calculated using 5th 

percentile, media, mean and 95th percentile concentrations from house and office 

dust and house, office and outdoor air. However, it is stressed that the range 

exposure estimated in only an indication of the likely range for toddlers and adults 

within the population. This is partly due to the small number of dust sample analyse, 

the substantial inter-individual variation depending on the time spend in different 

microenvironments and the quantity of dust ingest and air inhaled. 

Calculated intake of intake dust and inhalation PFR with different exposure scenarios 

for adults and toddlers is showed in table V-8 and V-9 For both groups, the estimate 

exposure levels of ∑PFRs were several orders of magnitude lower than their 

reference dose (RfD) values.  
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Table V-10 Estimated exposure to PFRs (ng/ (kg bw)/d) via dust ingestion assuming 
mean and high dust ingestion rates. 

Adults   Toddlers 

                                  P5  Median     P95     P5  Median    P95 

TnBP Mean 0.01 0.03 0.05 0.17 0.38 0.64 

High 0.03 0.06 0.12 0.67 1.50 2.54 

TCIPP Mean 5.06 13.1 22.8 64.2 130 289 

High 12.7 32.8 57.0 257 520 1158 

TCEP Mean 0.26 0.53 0.84 4.00 7.87 12.7 

High 0.65 1.32 2.10 16.0 31.5 50.8 

TDCIPP Mean 0.12 0.45 4.05 1.16 6.55 76.4 

High 0.30 1.12 10.1 4.64 26.2 306 

EHDPP Mean 0.25 1.10 4.41 3.35 10.6 76.1 

High 0.62 2.74 11.0 13.39 42.4 304 

TPhP Mean 0.34 1.07 5.41 3.81 9.53 83.7 

High 0.86 2.68 13.5 15.25 38.1 335 
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Table V-11 Estimated inhalation exposure to PFRs ng/ (kg bw)/day. 

                    Adults                              Toddlers 

 P5 Median P95  P5 Median P95 

TnBP 0.12 0.79 2.86 0.13 1.03 3.32 

TCIPP 4.18 9.25 22.2 4.11 10.3 24.5 

TCEP 38.3 174 482 48.9 210 561 

TDCIPP 0.01 0.04 0.13 0.01 0.05 0.16 

EHDPP 0.04 0.09 0.55 0.04 0.11 0.43 

TPhP 0.15 0.29 1.25 0.17 0.31 1.52 

 
RfD (ng/ (kg bw)/d): TnBP 24,000; TCEP 22,000; TCIPP 80,000; TDCIPP 15,000; 
TPhP 70,000; TCP 13,000 (Ali et al., 2012).  

 

For each of the studied compounds, estimated exposure via dust ingestion exceeded 

estimated exposure from inhalation except for TnBP and TCEP. To illustrate, in our 

study average adult intake of TCIPP via dust ingestion was an estimated 5.06 ng/ (kg 

bw)/d; with the high end estimated intake of TCIPP for adults an estimated 12.7 ng/ 

(kg bw)/d. By comparison, estimated inhalation exposure to TCIPP of adults was 

4.18 ng/ (kg bw)/d.  

Our UK estimates are lower than previous estimates of exposure via dust ingestion 

for e.g. California which found that 51 % of children in a study of daycare centres 

were exposed to TDCIPP levels exceeding a child-specific “No significant risk level” 

based on California proposition number 65 carcinogen guideline (Bradman et al., 

2014).   

By comparison, in our study, exposure estimates for both adults and toddlers were 

several orders of magnitude lower than their corresponding reference dose (RfD) 
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values (ng/ (kg bw)/ d) derived by dividing the relevant chronic NOAEL values by a 

factor of 1000 (Ali et al., 2012). However, it is important to note that due to the 

relatively small number of samples in our study, coupled with the uncertainties 

introduced to our estimates associated with our assumed dust ingestion and air 

inhalation rates; our exposure estimates are indicative only; and larger studies may 

lead to different estimates.  
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CHAPTER VI. TRANSFER OF PFRS TO DUST VIA DIRECT CONTACT BETWEEN 
A FABRIC SOURCE AND DUST 

6.1 Synopsis 

The everyday use of PFRs results in redistribution from the original source into 

particles. Despite their presence at elevated concentrations in indoor dust, relatively 

little is known about PFR transfer to dust from goods which are in direct contact.  In 

this chapter, the transfer of PFRs via direct contact from fabric to dust is investigated 

via a series of controlled test chamber experiments. Additional information about the 

experimental set up employed can be found in chapter 2.1.3, with details of the 

extraction and clean-up procedures provided in chapter 2.2.2.  

 

6.2 Sampling strategy 
 

The major material content in many indoor environments is fabrics (Molander et al., 

2012). Many such fabrics are treated with flame retardants; however, these 

chemicals are not bound to fabric, they accumulate in dust with resulting potential 

adverse health impacts for human contact/exposure – e.g. for toddlers who spend 

large periods of time playing and crawling over surfaces and display frequent hand-

to-mouth contact (Jones-Otazo et al., 2005). Figure VI.1 some of the most commonly 

used FRs in upholstered furniture are halogenated and/or contain phosphorus 

(Cooper et al., 2014).  
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Figure VI-1 Pathways via which PFRs in fabrics transfer to dust in indoor 
environments. 

The majority of PFRs are incorporated into products via an additive process where 

the PFR is blended into the material, but remains unbound. This may lead to possible 

migration from treated fabrics to indoor dust via pathways such as: volatilization with 

subsequent partitioning to dust; by abrasion of an FR-containing fabric resulting in 

direct transfer of FR-laden fibers to dust; and transfer via direct contact between 

treated fabric and dust (Suzuki et al., 2009; Webster et al., 2009; Wagner et al., 

2013; Cao et al., 2014; Rauert et al., 2016).  

In the US, the California legislature recently approved a law (SB1019) requiring 

labels in furniture to indicate if a product contains FR or not. TDCIPP is more 

commonly used as flame retardant in US furniture, as evidenced by Stapleton et al. 

(2012), who report the presence of TDICPP in 50 % of residential furniture PUF 

samples analysed.  

 

 

 

 

FRs in 
fabric  

Accumulate in 
dust 

Contact with 
dust 
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In a recent study, 40 samples of furniture (foam, fabric covers, synthetic fibers and 

beads) were analysed, finding the following concentrations of PFRs: cover fabrics 

(TCIPP 6.26 µg/g, TCEP 5 µg/g, and TPhP 4.6 µg/g), synthetic cover pad and batting 

(TCIPP <6.25 µg/g, TCEP 4.6 µg/g), foam material (TCIPP 6.3 µg/g, TCEP <4.6 

µg/g, TDCIPP 3.8 µg/g). The study observed that products manufactured before 

2013 displayed the highest concentrations of these compounds (Petreas et al., 

2016). 

A series of chamber experiments were conducted to investigate the migration of 

BFRs to dust as a result of direct source: dust contact. After 1 week with plastic 

containing PBDEs, substantial transfer of BDE-209 to dust was observed, with the 

greater transfer after 1 week compared to 24 hr. contact suggesting that dust: source 

equilibrium was not attained within 24 hours (Rauert et al., 2015).  

In this chapter, we use the same experimental chamber configuration to study the 

transfer of PFRs from a treated fabric to dust via direct fabric: dust contract. The 

fabric used was characterised as wool which is used commonly due to advantages 

such as: lower rate of flame spread, no melt or drip; ability to form a char when 

combusted which is insulating and self-extinguishing, and lower emissions of toxic 

gases and smoke than synthetic materials.  

Wool carpets are specified for environments with high fire safety requirements, such 

as trains and aircraft. Wool is usually specified for garments worn by firefighters, 

soldiers, and others in occupations where they are exposed to the likelihood of fire.  
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In addition to clothing, wool has been used for blankets, horse rugs, saddle cloths, 

carpeting, felt, and upholstery. It is resistant to static electricity, because the moisture 

retained within the fabric conducts electricity. The use of wool car seat covers or 

carpets reduces the risk of a shock when a person touches a grounded object. Wool 

fiber exteriors are hydrophobic and the interior of the wool fiber is hygroscopic. 

Moreover, wool possesses good abrasion resistance, is comfortable, resists dirt, and 

is water repellent and as specified above is fire resistant, etc. (Sedlak, 2011).  

The fabric segment (30 cm x 20 cm) used for the experiment was kept refrigerated at 

4 °C before use. The fabric was originally from a chair obtained for analysis in 

another project (Stubbings et al., 2016) examining concentrations of BFRs and PFRs 

in waste soft furnishings. The characteristics of the fabric were: green wool covering 

the seat cushion of a desk chair sampled in June 2012 in the University of 

Birmingham. The year of manufacture and purchase was unknown.  Details of the 

extraction and clean-up procedures are provided in chapter 2.2.2.  

To examine the transfer of PFRs from the fabric to dust via direct dust: fabric contact, 

a controlled chamber experiment was conducted, whereby a known amount of dust 

containing known concentrations of target PFRs was placed on the surface of the 

fabric. Aliquots of the dust were removed at various time points and analysed for their 

PFR content. To avoid volatilisation and atmospheric inputs during the experiment, 

the chamber used was sealed to the air and was and operated at room temperature 

(22 ± 1 °C). Fig 6.2 shows the chamber set up. 
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Figure VI-2 Chamber configuration for experiments examining PFR transfer due to 
direct fabric: dust contact.  

 

A 5 x 5 cm square of fabric was weighed accurately and placed on a clean filter 

paper into the chamber with a known mass of dust (~0.3 g, accurately weighed) 

spread as gently and evenly as possible over the fabric surface, before the chamber 

was sealed (Rauert et. al., 2016). Five different contact times were studied, 1, 2, 4, 7 

and 10 days, with each studied in triplicate.  After each contact time, the dust was 

collected very carefully with a soft brush avoiding the removal of fabric fibres with the 

dust.  

The use of the soft brush stemmed from the findings of Clausen et al. (2004), who 

when studying the direct transfer of the phthalate plasticiser DEHP to dust from a 

treated PVC material, found that vacuuming the dust from the PVC material resulted 

in artificially elevated DEHP concentrations in dust which they presumed arose as a 

result of removal of abraded source material during vacuuming. After removal of our 
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dust sample and homogenisation, two subsamples were weighed accurately, 

extracted and analysed for PFR concentrations. 

 

6.3 Initial PFR concentrations in dust and fabric 
 

The dust used in these direct fabric: dust contact experiments was a mixture of five 

living room dust samples collected from Ciudad Victoria, Mexico between December 

2013 and January 2014. These samples were selected for this purpose, as TCIPP 

concentrations in Mexican dust are substantially lower compared with the UK, with a 

median concentration in Mexico of 6.86 µg/g versus a median concentration in the 

UK of 40 µg/g (this study - see table V.5 for details). TCIPP is the primary FR used in 

the UK for treatment of soft furnishings to meet flammability standards. The initial 

concentrations of PFRs determined in the dust and fabric used in this experiment is 

shown in table VI.1. Both the dust and the fabric were analysed for TCEP, TCIPP 

and TDCIPP, as the literature suggests these are the PFRs used in fabrics. 

Table VI-1 Initial concentrations of PFRs of interest in fabric and dust used in this 
study. 

Analysis 
# 

TCEP TCIPP TDCIPP 

Dust (µg/g) (n=5) 
1 1.70 7.60 5.30 
2 1.90 8.00 5.30 
3 2.00 6.10 4.70 
4 1.90 6.20 4.80 
5 2.10 6.40 5.20 

Average 1.92 6.86 5.06 
SD 0.15 0.88 0.29 

Fabric (mg/g) (n=3) 
1 0.011 11.82 0.042 
2 0.011 11.55 0.041 
3 0.011 11.89 0.041 

Average 0.011 11.75 0.041 
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Each piece of fabric used in these experiments was cut fresh from the main bulk 

fabric. Hence, PFR concentrations in the fabric at the start of each individual 

experiment may vary in concentration (due to the heterogeneity of distribution of 

PFRs across the fabric).  

6.4 Influence of fabric: dust contact time 

6.4.1 Concentrations in fabric 
 

Concentrations of PFRs in the fabric both pre- and post- experiment are given table 

VI.2. The average TCIPP concentration present in the fabric at five different exposure 

durations reveal greater mass transfer, as the average fabric concentration after 1 

day contact 44.6 mg/g exceeds that after 10 days contact 22.7 mg/g. Similar 

observations were made for TCEP and TDCIPP where, after 1 day contact, the 

average concentrations in fabric were 0.11 mg/g and 0.28 mg/g respectively, while 

after 10 days, contact fabric concentrations were 0.03 mg/g and 0.19 mg/g 

respectively. These data suggest that, after 1 day contact, our PFRs of interest had 

not reached fabric: dust equilibrium maybe due to the heterogeneous distribution of 

the TCIPP concentration in the fabric.  

 

 

Table VI-2 Concentrations (mg/g) in fabric after different fabric: dust contact times. 

 
Fabric contact 
time TCEP TCIPP TDCIPP 

Initial concentration (no contact) 
1 0.12 51.65 0.41 
2 0.19 48.60 0.31 
3 0.19 51.72 0.32 

Average 0.17 50.66 0.35 
SD 0.04 1.78 0.02 
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Fabric contact  
time     TCEP    TCIPP    TDCIPP 

1 day contact 
1A 0.114 47.21 0.292 
1B 0.094 48.31 0.293 
2A 0.090 45.08 0.290 
2B 0.117 44.03 0.286 
3A 0.111 41.31 0.286 
3B 0.140 41.72 0.282 

Average 0.11 44.61 0.29 
SD 0.02 2.84 0.004 

2 days contact 
1A 0.070 47.73 0.283 
1B 0.067 47.16 0.262 
2A 0.076 43.55 0.277 
2B 0.070 51.26 0.287 
3B 0.080 33.92 0.301 
3C 0.098 39.46 0.282 

Average 0.08 43.85 0.28 
SD 0.01 6.31 0.01 

4 days contact  
1A 0.045 41.73 0.265 
1B 0.051 28.56 0.286 
2A 0.042 29.88 0.231 
2B 0.063 44.95 0.249 
3A 0.073 44.92 0.261 
3B 0.075 29.91 0.271 

Average 0.06 36.66 0.26 
SD 0.01 8.00 0.02 

7 days contact 
 1A 0.038 23.16 0.212 
 1B 0.036 30.03 0.216 
 2A  0.039 29.25 0.215 
 2B  0.046 17.67 0.219 
 3A 0.041 27.60 0.218 
3B  0.049 29.80 0.215 

Average 0.04 26.25 0.22 
SD 0.01 4.92 0.01 

10 days contact  
 1A 0.024 15.02 0.180 
1B 0.027 18.25 0.179 
 2A 0.031 19.05 0.182 
 2B 0.035 27.41 0.210 
 3A  0.039 27.34 0.195 
 3B 0.035 29.32 0.198 

Average 0.03 22.73 0.19 
SD 0.01 5.99 0.01 
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Figure VI-3 Average concentrations (mg/g) of PFRs in fabric over contact time. 

Statistical analysis via ANOVA with a post-hoc Tukey test reveals concentrations of 

PFRs of interest in the fabric to vary significantly (p<0.05) between different contact 

times.   
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Table VI-3 Results of one-way analysis of variance test with post-hoc Tukey test 
comparing concentrations of TCEP, TCIPP and TDCIPP in fabric determined in 
experiment examining the effects of dust: fabric contact time.  

Compounds D1 D2 D4 D7 D10 
TCEP D1 

D2 
D4 
D7 

.000 .000 
.081 

.000 

.000 

.143 

.000 

.000 

.006 

.631 
TCIPP D1 

D2 
D4 
D7 

.999 .163 
.242 

.000 

.000 

.037 

.000 

.000 

.003 

.837 
TDCIPP D1 

D2 
D4 
D7 

.892 .004 
.031 

.000 

.000 

.000 

.000 

.000 

.000 

.009 
 
 

6.4.2 Influence of fabric: dust contact time on PFR concentrations in dust 
 

Concentrations of PFRs in the dust both pre- and post- experiment are given in table 

VI.3. The average concentration of TCIPP in dust increases from day 1 (86.3 µg/g) to 

194.5 µg/g after 10 days of contact. Similar observations were made for TCEP and 

TDCIPP where, after 1 day contact with fabric, the average concentrations in dust 

were 2.16 µg/g and 9.32 µg/g respectively and after 10 days contact were 4.10 µg/g 

and 11.81 µg/g respectively. While transfer to dust occurs in the early stages of 

contact, it continues to increase (most markedly for TCIPP due to its far greater 

starting concentration in the fabric) throughout the experiments, suggesting that 

fabric: dust equilibrium takes longer than 10 days to be attained.  
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Table VI-4 Concentrations (µg/g) in dust after different fabric: dust contact times. 

Fabric contact 
time TCEP TCIPP TDCIPP 

Initial concentration contact 
1 1.70 7.60 5.30 
2 1.90 8.00 5.30 
3 2.00 6.10 4.70 
4 1.90 6.20 4.80 
5 2.10 6.40 5.20 

Average 1.92 6.86 5.06 
1 day contact 

1A 2.02 57.47 9.02 
1B 2.06 65.63 9.19 
2A 2.21 74.23 9.28 
2B 2.21 104.86 9.41 
3A 2.24 107.99 9.30 
3B 2.24 108.02 9.74 

Average 2.16 86.37 9.32 
SD 2.02 57.47 9.02 

2 days contact 
1A 2.24 110.60 9.59 
1B 2.20 111.91 9.97 
2A 2.30 114.19 9.98 
2B 2.48 129.15 10.01 
3B 2.59 144.06 10.54 
3C 2.59 149.39 10.66 

Average 2.40 126.55 10.12 
SD 0.17 17.07 0.40 

4 days contact  
1A 2.59 146.32 10.60 
1B 2.69 154.23 10.88 
2A 2.72 153.18 10.87 
2B 2.70 160.61 10.87 
3A 2.70 162.46 10.58 
3B 2.73 167.74 10.78 

Average 2.69 157.42 10.76 
SD 0.05 7.66 0.14 
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Table VI-5 Continuation concentrations (µg/g) in dust after different fabric: dust 
contact times. 

Fabric 
contact time TCEP TCIPP TDCIPP 

7 days contact 
    

 1A 2.72 173.68 11.08 
 1B 2.75 171.02 11.18 
 2A  2.76 180.01 11.20 
 2B  2.88 176.50 11.42 
 3A 2.85 172.33 11.50 
3B  2.87 167.01 11.07 

Average 2.80 173.43 11.24 
SD 0.07 4.49 0.18 

10 days contact 
 1A 3.59 207.02 11.49 
1B 3.86 209.31 12.54 
 2A 3.39 190.68 12.72 
 2B 3.98 188.00 11.04 
 3A  4.83 184.01 11.76 
 3B 4.96 188.27 11.33 

Average 4.10 194.55 11.81 
SD 0.65 10.79 0.68 

 
 

 

Figure VI-4 Average concentrations (µg/g) of PFRs in dust over contact time.  
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Statistical analysis via ANOVA with a post-hoc Tukey test reveals concentrations of 

PFRs of interest in the analysed dust all significantly (p<0.05) increase with 

increasing contact time. The transfer seen in our experiments is likely due to the PFR 

concentration gradients between the fabric and the dust, which may be expressed in 

terms of the fugacity of the compounds as stated by Rauert et al. (2016). The 

fugacity potential of a chemical can be defined as the escape potential of that 

chemical in a given phase (air, water, solid, dust, fabric). When the fugacity of the 

chemical in two phases are equal the chemical is in equilibrium between the two 

phases and no net chemical transfer between the phases (e.g. fabric and dust) 

occurs; however when chemical fugacity in the phases are different there is net 

transfer of the chemical from the phase in which its fugacity (concentration) is higher 

into the other phase. This net transfer will continue until equilibrium is reached – i.e. 

fugacity of the chemical in the two phases are equal (Rauert et al., 2016). The exact 

mechanisms governing the migration of SVOCs from source to dust via direct contact 

are not completely understood; however, Schripp et al. (2010) suggested that 

transfer occurs as a result of contact between dust and gas phase FRs present in the 

boundary layer directly above the source (e.g. fabric). According to this theory, 

compounds with low vapour pressures will be less abundant in this layer and thus are 

less efficiently transferred. Alternatively, Clausen et al. (2004) suggested that source-

dust transfer may occur as a consequence of direct contact between the source and 

dust particles that replace the boundary layer. In such a scenario, the influence of 

vapour pressure on the efficiency of transfer is negligible.  
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Unfortunately, our experiments could not provide insights into which of these 

mechanisms govern the PFR transfer from the fabric to dust, owing to the very 

different concentrations of the 3 target PFRs in the fabric. Experiments to generate 

evidence to better understand the mechanisms of source-dust transfer of PFRs and 

related compounds are thus a research priority.  

 

Table VI-6 Results of one-way ANOVA analysis of variance test with post hoc Tukey 
test comparing concentrations of TCEP, TCIPP and TDCIPP in dust samples 
resulting from different fabric: dust contact times 

 

Compounds D1 D2 D4 D7 D10 

TCEP D1 
D2 
D4 
D7 

.671 .047 
.493 

.010 

.182 

.963 

.000 

.000 

.000 

.000 

TCIPP D1 
D2 
D4 
D7 

.061 .000 
.218 

.000 

.000 

.005 

.000 

.000 

.000 

.001 

TDCIPP D1 
D2 
D4 
D7 

.407 .028 
.623 

.001 

.056 

.591 

.000 

.000 

.000 

.003 
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CHAPTER VII. SUMMARY AND CONCLUSIONS 
 

Organophosphate flame retardants are compounds used in a wide range of 

consumer products such as textiles, fabrics and polyurethane foams, car interiors, 

carpets and construction material (EFRA 2010 a, b). The extensive application and 

use of these compounds has led to growing scientific interest into their potential 

effects on the environment and humans. Many studies reveal that PFRs undergo 

release from products to the indoor environment (air, dust) and outdoor environment 

as evidenced by their presence in e.g. soil, water, and snow. As a result, PFRs have 

been reported in fish, birds, and marine mammals in addition to humans (Brommer et 

al., 2012, Abdallah et al., 2014, Luongo et al., 2015; He et al., 2015). The concerns 

associated with these FRs are potential health effects such as endocrine disruption, 

neurotoxic effects, reproductive problems, immunotoxicity and carcinogenicity (WHO 

1998, Andersen et al., 2004, Meerker et al., 2010). Such concerns have led to 

regulations on their use and applications (Nightwear Safety legislation revised in 

1985, The Furniture and Furnishings (Fire Safety) Regulations 1988).  

Given the above, the main aim of this work was to investigate the pathways and 

magnitude of human exposure of seven widely used PFRs (TnBP, TCEP, TCIPP, 

TDCIPP, EHDPP, TPhP and TCP) via indoor environments. Within this, we examined 

variations between different countries, as well as evaluating within-room and within-

house spatial and temporal variability in dust contamination, and the relative 

significance of air inhalation and dust ingestion as pathways of exposure to PFRs, 

and how this is influenced by the physicochemical properties of the contaminant. 
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In an additional strand of research, experiments were conducted to develop 

understanding of the extent to which PFRs transfer from fabrics into dust via direct 

fabric: dust contact. 

The principal findings of this project were as follows: 

• Concentrations of PFRs in dust from living room floors from seven 

countries were compared to test the hypothesis that PFR contamination of 

indoor dust will be influenced by international differences in flame retardant 

use. Concentrations in North America were highest (US>Mexico), 

exceeding significantly those in the other (mainly European) countries 

studied.  

• Within-room and within-home spatial and temporal variability in 

concentrations of seven PFRs in floor and elevated surface dust from a 

number of homes in Birmingham, UK was evaluated. This tested the 

hypothesis that such variability can exert an appreciable influence on 

human exposure assessments. Within-room differences were observed 

principally in living rooms and kitchens, while within-home differences were 

observed depending on between-room differences in the content of 

putative sources like furniture and electronic equipment. To illustrate, 

house 3 had no sofa, no TV or other electronic equipment and thus 

reported the lowest PFR concentrations. Temporal variability was influence 

by the movement of the house contents as well as the introduction of new 

products; the seasonal variability reported the highest concentrations in 

warmer months, likely due to enhanced volatilization of PFRs from 

sources. 
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• Concentrations of seven PFRs were measured in both indoor air and 

dust from offices and homes in Birmingham, UK. These data were used 

inter alia to test the hypothesis that the relative significance of inhalation 

and dust ingestion as pathways of human exposure will vary according to 

the physicochemical properties of the PFR. Our data show that inhalation 

represents a more important pathway of exposure than dust ingestion. 

 

• Test chamber experiments designed to test the hypothesis that direct 

fabric-dust contact is an important pathway via which TCEP, TCIPP and 

TDCIPP may transfer from a treated fabric to dust were conducted. These 

experiments revealed the hypothesis to be valid.  

7.1 Research gaps and future perspectives 

Given the widespread use of PFRs and the evidence for their potential harmful 

effects, future research is required to: 

• Measure concentrations of PFRs in both indoor air and dust from other 

environments such as nursery and school classrooms, or furniture stores. 

• Conduct further test chamber experiments to quantify direct source-dust 

transfer of PFRs from a variety of treated fabrics and hard polymers such 

as housing for electrical articles. 

• Evaluate within-room and within-home spatial and temporal variability in 

concentrations of PFRs in floor and elevated surface dust from other 

microenvironments. 

• Use ‘personal’ air samplers to evaluate inhalation exposure versus dust 

ingestion for PFRs. 
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• Conduct further chamber experiments to investigate other pathways of 

PFR migration from sources into indoor dust – such as volatilisation and 

abrasion. 

• Investigate the influence of other factors on PFR concentrations in dust 

such as human and pet activities, as well as cleaning frequency.  
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