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ABSTRACT 

 

 

Bone is a tissue that continuously adapts to changes in mechanical load. This process 

can also result in maladaptive ectopic bone in response to injury and extreme 

mechanical insult, in a group of conditions known as heterotopic ossification.  

Despite recent advancements, pathological differences at the molecular and structural 

levels are poorly understood. A number of in vivo models exist but can often be 

unreliable or too complex to allow isolation of factors which may stimulate progression 

of ossification.  

This thesis presents the development of a biologically self-structuring model of mature 

bone formation using a fibrin gel which self-organises between two calcium phosphate 

ceramic anchors when seeded with cells. These bioinspired early wound analogues are 

seeded with primary femoral periosteal cells - key players in bone repair and a range of 

pathologies- and develop longitudinally over significant culture periods, allowing to 

study the temporal evolution of bone mineral and microstructure in excess of a year. 

This work demonstrates the production of a mature, bone-like morphology and 

chemistry, with differentiation of mature, mineral phase osteocytes. 

Raman spectroscopy and XRD revealed that the mineral was non-stoichiometric and 

poorly crystalline hydroxyapatite and associated with collagen. Second harmonic 

imaging demonstrated that collagen was organized similarly to mature mouse femora. 

The initial stem cell population differentiated to the terminal osteocytic phase, was 

integrated into longitudinal networks similar to the canaliculi in mature bone (as 

demonstrated with nanoCT) and remained viable over the full year of culture. Using this 
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model, this work demonstrated that pharmacological compounds can prevent the 

progress of ossification, displaying promise for applications in drug screening. Pilot 

work also showed that it is possible to initiate angiogenesis in these constructs, with 

endothelial tubes also aligned with the mechanical axis, a step closer to mimicking in 

vivo bone. 
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SIGNIFICANCE STATEMENT 

 

The work performed here is unique since it allows the growth of tissue that not only 

shares the biochemical composition of bone, but also exhibits a similar structure. The 

tissues that were produced contain populations of mature cells, osteocytes, which are 

linked by canalicular networks as encountered in vivo. The system developed here 

allows the maintenance of the osteocytic phenotype for one year in culture, a major 

advance on the current state of the art, which allows the culture of these cells for less 

than one month.  The biological relevance and utility of this system was demonstrated 

by blocking bone formation with a retinoic acid receptor (RAR) inhibitor that prevents 

ossification at the early chondrogenic stage.  This model will be an excellent tool for 

studying both aberrant and normal processes of bone formation. 
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Figure 1.1 | Evolution of the skeletal system to bipedal walking. a, Common chimpanzee (Pan troglodytes, Cameroon, West Africa). 

This specimen is a male showing very strong arms and wrists for knuckle walking. Several other features including the straight 

spine, small hip size, weak knee joints and flat feet with expansive toes show that this primate is not normally bipedal but uses the 

arms for balance. b, Australopithecus sediba, hominin skeleton. This species of primate, originating from South Africa (1.95 million 

years old) shows an upright posture which indicates its hominin nature.  Compared to the specimen in a, this primate shows a 

smaller body and skull and longer lower limbs. c, Homo sapiens, female skeleton (France, 150 years old).  The only extant human 

species, which developed skeletal adaptations for upright walking, including several curvatures on the spine for balance and 

absorbing the mechanical shocks, arched feet, and similarly to the specimen in b, inward directed femurs used to transfer the weight 

of the trunk to the knees and lower bones. Note: image scales are not related, and have been enlarged to allow visualisation of skeletal 

parts. Original images. The author would like to thank the Natural History Museum, South Kensington, London. 

……………………………………………………………………………………………………………………………………………………………………………………………….4 

 

 

 

Figure 1.2 | Skeletal systems and limb bones from different orders and classes of animals have evolved to meet the mechanical 

demands of their environments. a, Fish; b, Monotremes; c, Primates; d, Amphibians; e, Birds. The common bones used to translate 

the mechanical forces from the trunk to the lower parts of the limbs for locomotion are shown in black boxes. Original images. 

Author would like to thank the Lapworth Museum of Geology, University of Birmingham. 

……………………………………………………………………………………………………………………………………………………………………………………………….6 

 

 

 

Figure 1.3 | The adaptation of bird skulls to different niches and environments, showing dramatic differences in the osseous 

structures of the beaks. a, Cross-section through the skull of a Rhinoceros Hornbill (Buceros rhinoceros), showing hollow air-filled 

pockets in its skeletal structure, a feature evolved to meet energetic costs during flying. b, Skull of a Silvery-Cheeked Hornbill, a bird 

related to the specimen in a but showing a distinct anatomical beak structure, a feature which is under tight genetic regulation. c-g, 

The adaptation of the osseous structures of the beaks according to different living environments and thus food sources.  c, 

Magellanic penguin – fish diet; d, Hyacinth macaw – diet of nuts from palm trees; e, Common toucan – fruit diet; f, Roseate spoonbill 

– diet of insects; g, Scarlet ibis -diet of shrimps and other crustaceans; This dietary specialisation was one of the observations which 

led to the development of Darwin’s theory of natural selection.  Original images. Author would like to thank the Lapworth Museum of 

Geology, University of Birmingham and the Natural History Museum, South Kensington, London. 

……………………………………………………………………………………………………………………………………………………………………………………………….10 

 

 

 

Figure 1.4 | The anatomical adaptation of the skeletons of flying vertebrates. a, Skeleton of a pigeon used by Charles Darwin as part 

of his research and development of the theory of evolutionary adaptation, later described in the Origin of Species. Specimens 

demonstrates a large wing bone size compared to the body size, a skeletal adaptation to powered flight. This feature can also be 

seen in other species which have evolved from a different lineage, such as the common pipistrelle bat skeleton (Pipistrellus 

pipistrellus) (b); and in the avian ancestors such as Pteranodon, a flying reptile from late Cretaceous (approx. 86-83 million years 

old) (c). Original images. Author would like to thank the Natural History Museum, South Kensington, London. 

……………………………………………………………………………………………………………………………………………………………………………………………….11 
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Figure 1.5 | Functions of bones. Bones perform numerous functions including supporting the body during movement, providing 

levers for moving the limbs (a); protecting the fragile internal organs (ribcage) (b) and the spine (b-c); as well as supporting the 

weight of the trunk during walking (c). Original images acquired from a skeletal specimen at the Natural History Museum, South 

Kensington, London.  

……………………………………………………………………………………………………………………………………………………………………………………………….14 

 

 

Figure 1.6 | Bone textures: spongy and compact bone in the femur. Long bones are composed of two texturally different types of 

tissue, compact bone and spongy bone, adapted for providing support during different types of mechanical load. The outer cortical 

layer is lined externally by the periosteum and internally by the endosteum. The internal cavities of bones contain the red and 

yellow marrow. Original image. Image of the femoral section acquired from a skeletal specimen at the Natural History Museum, South 

Kensington, London.  

……………………………………………………………………………………………………………………………………………………………………………………………….18 

 

 

Figure 1.7 | Structure of an osteon. Individual lamellae are arranged concentrically and are composed of mineralised collagenous 

fibres arranged in different directions in each lamellar unit to provide maximal resistance to stress. Centrally, osteons act as 

passageways for blood vessels (arteries and veins) and nerve fibres and are lined internally by the endosteum.  

……………………………………………………………………………………………………………………………………………………………………………………………….21 

 

 

Figure 1.8 | Horizontal section through an osteon. Osteocytes, the mature bone cells, are arranged concentrically at the junctions 

between lamellae. They are embedded in lacunae and linked by canaliculi, which allow cell-to-cell communication and connect to 

the endosteum.  

……………………………………………………………………………………………………………………………………………………………………………………………….22 

 

 

Figure 1.9 | Apatite mineral. Apatite is a calcium phosphate mineral that is produced and used by many biological environmental 

systems. Hydroxyapatite, one of principal types of apatite, is the main inorganic component of bone and dentin. Original image. 

Author would like to thank the Lapworth Museum of Geology, University of Birmingham. 

……………………………………………………………………………………………………………………………………………………………………………………………….26 

 

 

Figure 1.10 | Simplified schematic of the organic-inorganic hierarchical structure in bone tissue. This model was first proposed by 

(Petruska and Hodge 1964). Collagen molecules (normally triple-helical, simplified here) are arranged end-to-end and parallel to 

each other. These structures contain spaces of approximately 36 nm between them, which facilitate nucleation by apatitic crystals. 

The mineral develops in this space in the fibrils. Diagram inspired from (Fang and Holl 2013) and (Alexander, Daulton et al. 2012). 

……………………………………………………………………………………………………………………………………………………………………………………………….29 

 

 

Figure 1.11 | Biomineralization is a process encountered in many orders and in the invertebrate forms of life, such as the 

exoskeletons of many arthropods, including extinct organisms such trilobites from the Palaeozoic Era (a-Ogyginus Cordensis trilobite 

and b- Ceratarges Armatus trilobite); shells of crustaceans including the Corystidae family (including crabs); the marine shells of 

gastropods (d-e) and coral skeletons (f). Original images. Author would like to thank the Lapworth Museum of Geology, University of 

Birmingham. 

……………………………………………………………………………………………………………………………………………………………………………………………….32 
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Figure 1.12 | Bending stress in femoral bones is distributed according to anatomical design. The weight of the upper body is 

transmitted to the femoral head, articulated to the hip. These compression (bending) forces act primarily along the dotted line, 

creating tensile (stretching) forces on one side (blue arrows) and compression on the other side (red arrows). These forces cancel 

each other internally, with very little stress being experienced in this region (white dot).  Schematic inspired from (Marieb and 

Hoehn 2010). Original image. Image of the femoral section acquired from a skeletal specimen at the Natural History Museum, South 

Kensington, London. 

……………………………………………………………………………………………………………………………………………………………………………………………….47 

 

 

 

Figure 1.13 | Adaptation of dominant hand to increased loading forces. Cross-sectional differences in the arms of tennis players 

following prolonged periods of intense exercise. Bones of the racquet arm increase in strength and rigidity and the effect is more 

pronounced in players who started this type of exercise early in life. Diagram is based on CT/MRI cross-sectional appearance of arm 

bones and inspired by (Marieb and Hoehn 2010). 

……………………………………………………………………………………………………………………………………………………………………………………………….49 

 

 

 

Figure 1.14 | Schematic of the tissue morphogenesis during fracture repair. a, The outside layer of long bones (periosteum) is a 

well-vascularised tissue. b, Trauma during fracture disrupts the blood supply at the site, which leads to the formation of a blood clot, 

also known as hematoma (c). Periosteal cells located inside the deeper, cambium layer, migrate to the site of injury (d) where they 

differentiate into osteoblasts and give rise to intramembranous bone close to the bony ends, where blood supply is still active. The 

central portion of the hematoma is replaced with endochondral bone, which allows central cells, furthest to the blood supply, to 

survive the hypoxic conditions. Cartilage formation continues (e) and blood vessels invade this structure until the initial hematoma 

is completely replaced (f). Following maturation, the cartilage template becomes progressively replaced with intramembranous 

bone (g-h), which is ultimately conversed under the action of osteoblasts and osteoclasts into lamellar bone and the initial geometric 

shape and function of the fractured bone is restored. 
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Figure 1.15 | Spinal fusion in Scoliosis. a, A spinal section from a patient with this condition, containing 2 cervical and 10 dorsal 

vertebrae. The bodies of the 3rd, 4th and 5th vertebra fused as a result of vertebral disk ossification and formed a bone mass, which 

created a typical S-shaped deformation in the upper dorsal region. At this stage of the disease, there appears to be no alteration in 

the vertebra located below and above. b, A more advanced case of scoliosis where the curvature and deformation caused a 

significant rotation of the vertebral bodies, which affected the thoracic greatly by reducing its size on the right side. The 4th-11th 

dorsal vertebra are ankylosed and fused together by a bony mass. c, An advanced case of scoliosis, showing multiple curvatures. The 

first one is caused by the fusion of the upper vertebra, causing a convex curvature to the right, and a fusion of the lower dorsal and 

lumbar vertebra, which causes a convex curvature to the left. These ectopic bone formations caused the vertebral bodies in the 

thoracic region to rotate significantly, causing a rib movement towards the back at the junction with vertebral bodies and got 

carried forward at the other end. As a result, the ribs became crowded together and their shafts became ossified and fused. Original 

images. Author would like to thank King’s College London.  
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Figure 1.16 | Ossification of the spine and the sacro-iliac joint in Ankylosing Spondylitis. a, A section of the spine of a patient with 

this condition, showing significant ankylosing of 6 cervical and the first dorsal vertebrae, which are firmly united on the anterior 

side due to ossification of the anterior common ligament; b, A specimen containing 4 dorsal vertebrae, which show an advanced 

degree ossification and ankylosis. The ligaments surrounding the vertebrae have become converted into compact bone, causing the 

joint cavities to become narrow and fixing them in place, causing immobility. The inter-spinous ligaments are also ossified, and 

fused to the transverse processes of the vertebra; c, This specimen from the lower part of the spine shows osteo-arthritis of the 

lumbar spine by spondylitis. The 3 lumbar vertebra show prominent osteophytic outgrowths emerging from the margins of the cell 

bodies, restricting movement, but they do not show signs of ankylosis. The intervertebral space has become narrower due to a 

partial collapse of the vertebral bodies; d, In contrast, this specimen, containing the last 3 lumbar vertebra as well as portions of the 

sacrum and ilia shows ankylosis caused by ossification of the ligaments connecting the vertebra of the lumbar and sacrum regions. 

In addition, the sacro-iliac joints are also partially ossified and ankylosed, showing a high degree of osteophytosis and disk space 

damage; e, A spine from a patient with advanced ankylosis. The specimen has been cut longitudinally, showing a striking, complete 

replacement of all intervertebral disks by trabecular bone, making it very difficult to distinguish between the original bone structure 

and the newly formed bone, which appear to be continuous with each other. Laterally, the vertebra and disk spaces are surrounded 

by compact bone, which has formed in the outer part surrounding the trabecular bone and highlights the complexity of the 

pathological bone formation. Original images. 
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Figure 1.17 | Ectopic bone formation following spinal fractures and osteosarcoma. a, Portion of a spine that underwent trauma 

causing dislocation of the dorso-lumbar region. A mass of new bone emerges from and connects the last 2 dorsal and first 3 lumbar 

vertebra. b-c, A similar bone formation takes place in secondary sarcoma, in this specimen from the lumbar region showing a mass 

of imperfectly ossified growth which has been deposited on the surface of the vertebral body under the periosteum. Original images. 

……………………………………………………………………………………………………………………………………………………………………………………………….68 

 

 

 

Figure 1.18 | Ectopic ossification of the hip joints in osteoarthritis. Femoral bone heads and hip joints show ossification as a result 

of osteoarthritis. The femoral heads show thick, osteophytic collars and further ossification can be seen at the point of attachment, 

where the ligamentum teres is located. The acetabulum appeared re-modelled by osteophytic bony outgrowths, causing abnormal 

grooves in which the abnormal femoral heads fit. Original images. 
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Figure 1.19 | Osteosarcomas of the upper and lower limbs. a-b, Osteomas of the humeral bones. a, Presents a lobulated growth of 

very dense, cortical bone attached to a large part of the upper shaft. b, Longitudinal section through the upper part of a humerus, 

which has been invaded by a large tumour, composed of dense connective tissue. The original structure of the shaft is completely 

lost in the newly forming bone; c, Parosteal osteosarcoma of the tibia, situated between the metaphysis and upper diaphysis. The 

underlying tibial shaft is preserved. This type of osteosarcoma produces large quantities of mature bone without affecting the 

medullary cavity; d, Osteosarcoma of the lower part of the femur, extending from the articular surface upwards, causing significant 

destruction of the bone tissue. The cavity left behind shows a growth of spongy bone. Original images. 
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Figure 1.20 | Osteomyelitis of the upper and lower limbs. a, Chronic osteomyelitis of the humerus where the whole shaft has 

undergone necrosis as a result of acute osteomyelitis and has been replaced by a hollow cylinder of new bone, which is significantly 

deformed and communicates with the exterior using several openings, or grooves; b, Acute osteomyelitis of the right humerus, 

showing necrosis of a significant part of its shaft, and forms a sequestrum which lies within an involucrum composed of dense bone 

growing from the periosteum. c, Chronic osteomyelitis of the femur, showing great amounts of new bone (involucrum), perforated 

by 3 large openings. At the top end, a sequestrum can be observed; d, Chronic osteomyelitis of the femur which has been divided 

sagitally. The shaft is greatly thickened, and the marrow cavity has been replaced with dense white bone. Original images. 
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Figure 1.21 | Fracture non-union and ectopic bone deposition in fracture malunion. a, Example of a transversal fracture of the 

humerus, just above the condyle, resulting in non-union; b, An oblique fracture which damaged the upper shaft of a femoral bone, 

leading to a significant and firm bony mal-union between the two parts, which causes significant deformity. The lower part rotated 

inwards and at the same time moved upwards, resulting in a disarrangement where the broken end is located at a higher level than 

the femoral head; c, Fracture of the middle third of a femur, where the upper fragment lies in front of the lower one.  Despite this 

arrangement, a firm bony mal-union took place, formed of dense, mature bone; d, Coronal section of an oblique fracture through the 

shafts of both the tibia and fibula. Because of the outward displacement of fractured ends, the upper fragment of the fibula has come 

into contact with the lower part of the tibia and has become fused to it through a firm, dense mass of bone. Original images. 
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Figure 1.22 | Other conditions of abnormal bone deposition. a, Rickets. Longitudinal section through a tibia of an individual with the 

condition showing a significant deformation and a thickening of the cortical bone on the concave surface. b, Paget’s disease (Osteitis 

deformans). Longitudinal sections through the tibia and femoral bone. The femoral bone (right) shows a marked convexity and 

enlargement and is composed of porous bone, which has been deposited in patches. Compact bone is increased in thickness. Both 

tibia (left) and fibula show a similar appearance externally and internally to the femur. Original images. 
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Figure 2.1 | Schematic representation of the development of a construct over time. Contraction and alignment of the matrix occur 

maximally within the first 7 days. Within the following 2-3 days, the mineralization process becomes apparent, through the creation 

of nucleation points which aid in the formation of mineralized nodules, most prominently around the two anchors. These nodules 

increase in size over the first month in culture and ultimately fuse into a fully mineralized matrix. Following 1 month in culture, 

significant amounts of collagen can be detected around the anchor areas. The mineralized matrix advances from the anchor regions 

towards the centre of the construct until the previous template is completely substituted with the new, bone-like matrix containing 

hydroxyapatite-like mineral. Cells differentiate into osteocyte-like cells after 2 months of full osteogenic supplementation and 

maintain their phenotype over the extended months in culture.  
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Figure 2.2 | Cell morphologies observed in 2D prior to embedding in fibrin hydrogels.  a, Femoral periosteal cells cultured in 2D for 

ten days displayed typical osteoblastic morphology (a-b), with some developing long projections (c). A few cells appeared 

hypertrophic, with typical senescent morphology (d). 
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 xx 

Figure 3.1 | Early construct development. a, Fibrin scaffold is reorganized around the retention points over the first week in culture. 

Control constructs, developed without cells showed a small degree of contraction over 7 days, but remained as flat gels and did not 

assemble into 3D structures. b, Tensile forces between the two anchor points cause cell alignment before day 6 (left). Mineralization 

nodules are observed throughout the structure after 10 days (middle). c, Mineral deposits are not noticeable following 7 days but 

individual mineralization points can be observed 4 days later in the close proximity of the calcium phosphate source. Scale bars b = 

50 µm (Day 6, 10), 200 µm (Day 11). d, Changes in the fibrin template are visually noticeable at 14 days, with a distinct matrix 

forming from the anchor regions towards the centre, until the constructs appear to be fully covered with the new matrix at 3 

months. 
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Figure 3.2 | The effect of CaP anchors on matrix contraction and alignment. Previous work has demonstrated that in the 

absence of anchors (illustrated in the diagram series in the top row), cells contract the fibrin scaffolds over three weeks into 

spherical structures (a), whereas the provision of the 2 retention points (bottom row) allows the formation of a cylindrical structure 

in-between the two calcium phosphate structures (b). Scale bars = 10 mm.  
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Figure 3.3 | Anchors are required for cellular alignment in constructs. Previous work has demonstrated using 

immunofluorescence staining that the formation of tensile forces during contraction causes alignment at a cellular level, with the 

cytoskeleton and nuclei arranged along the direction of force. Confocal microscopy images of (a) disordered cells in unanchored 

constructs at day 0 and (b) elongated, highly aligned cells in anchored constructs at day 18.  
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Figure 4.1 | Inelastic scattering in Raman spectroscopy. This technique uses monochromatic light (laser) to excite photons to virtual 

energy states. When photos are scattered from a molecule most of them are elastically scattered (Rayleigh scattering), having the 

same energy (frequency and wavelength) as the incident photons. A very small proportion of these photons (1 in 10 million) are 

scattered inelastically (Raman scattering), which involves the loss (Stokes) or gain (anti-Stokes) of energy due to the interaction of 

light with vibrations associated with bonds within the sample.  
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Figure 4.2 | The optical effect of Second Harmonic Generation. Collagen has a molecular structure (triple helix) which is non-centro-

symmetrical. The incident monochromatic light emitted by a laser interacts with collagen and creates an oscillating field at twice the 

frequency and half the wavelength. 
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Figure 4.3 | Applications of non-destructive XRF. a, XRF follows a series of processes including a photoelectron ejection from the 

atomic shell exposed to high-energy primary X-Ray radiation and the subsequent ‘jump’ of an outer electron from the near shells in 

order to fill this vacancy. The process is associated with the emission of X-Ray Fluorescence, with different characteristics for each 

chemical element. When the jump takes place from the L to the K layer, it is known as the Kα emission line. When an electron from 

the M layer jumps to fill the place, the emission line is known as Kβ.  b-e, Due to its non-destructive properties and highly accurate 

detection levels, this technique has been recently applied to some of the most valuable historical artefacts and paintings, including 

Mona Lisa (b), St. John the Baptist (c), Bacchus (d) and the Gayer-Anderson cat (e).  Original images. Author would like to thank the 

Louvre Museum, Paris and the British Museum, London. 
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Figure 4.4 | Development of mineralization and matrix over time. a-n, Reconstructed µCT images of early constructs (days 12-15, a-

c/h-j) and mature constructs (3 months – 1 year, d-g/k-n), illustrating the development of ossification over time. a-e, Mineralization 

starts at the anchors (a) and progresses over time throughout the entire length of the constructs (b-c) until the mineral covers the 

entire structure of constructs (d-e). Bottom panel presents colour-coded versions of the constructs above, illustrating the 

development of the new matrix over time. The fibrin template (green), which predominates after 15 days (j), is progressively 

replaced over time with new matrix (blue) (h-j) until it becomes completely substituted after 3 months with the new, denser matrix, 

which also contains discrete deposits of high-density mineral (red) (k-l). Following a year in culture, the constructs contain 

considerable amounts of the high-density mineral (m-n). Cropped section illustrates the high-density material comprising the outer 

layer of constructs after a year in culture. Scale bars = 2.5 mm. 
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Figure 4.5 | Chemical characteristics of the newly forming matrix. a, Comparison of a microCT reconstruction and a high-resolution 

Raman map, developed based on the CH2 peak (1447 cm-1) showing a similar distribution of the denser, newly forming matrix in 

constructs which are 2 weeks old. b, As early as day 7 (yellow), peaks corresponding to collagen can be detected, including amide I, 

III, CH2, but also hydroxyproline (Hp) and phenylalanine (Pa). 5 days later (day 12, brown), small phosphate peaks corresponding to 

OCP start to emerge in the central and interface regions. Spectra from mature (3-month constructs, pink) are provided for 

comparison. c, Spectra from spatially distinct regions from a mature construct (3 months) showing in all cases a strong 

hydroxyapatite content co-localised with all the components associated with collagen. Spectra contain all peaks detectable in bone 

using this technique. 
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Figure 4.6 | Raman Spectra of the anchors of early constructs. Raman spectra acquired from distinct points on the anchor surface at 

3 time points within the first two weeks of development revealed spectral characteristic for the brushite-TCP component, and 

different in all cases from the new mineral phases forming within the soft tissues. 
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Figure 4.7 | Development of the collagenous matrix in constructs. a, Images of 7-day constructs stained with Sirius Red for collagen. 

Left image illustrates high amounts of collagen in the marginal region adjacent to the brushite anchor; right image demonstrates 

collagen emerging from cell-like structures next to the anchor. Scale bars = 200 μm. b, Micro-XRF mapping of live constructs over 21 

days, based on Ca and P, the inorganic components of bone and S, as an indicator of the organic matrix. Maps show the progression 

and co-localisation of Ca and P from the anchor towards the centre during this period of development up to one month. Scale bar = 

4mm.  c, Two-photon microscopy 3D reconstruction of cells (TPEF) and collagen (SHG), simultaneously visualised in live constructs. 

Collagen is present in ‘pocket’-like deposits. Scale bars = 100 µm. d, SHG visualisation of collagen in distinct regions at different time 

points. e, Collagen is abundant around the anchor areas in early stages, but not detected in the central region at 1 month. Over the 

subsequent 2 months, the collagenous matrix extends into the tissue at the mm level, displaying a level of organisation similar to 

murine femora.  
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Figure 4.8 | Collagen and cells, observed using SHG/TPEF. Emission spectra of early and mature constructs in different regions, 

illustrating the second harmonic linear effect generated by collagen at half the wavelength of the incoming laser (860 nm), 

generated in the purple-blue area of the spectrum; and with Calcein AM green-stained cells appearing in the 481-577 nm region of 

the spectrum, corresponding to light blue-green region. 
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Figure 4.9 | Evolution of the inorganic component over a year in culture, as detected through micro-XRF. Calcium and Phosphorus, 

main components of the inorganic component of bone, increase with extended culture times until they reach a level similar to that of 

murine femurs. 
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Figure 5.1 | Excitation-Emission Spectra of fluorophores chosen for Immuno-Histochemistry. The Alexa Fluor 488 fluorophore was 

conjugated to antibodies raised against the molecular markers of interest, Alexa Fluor 555 was conjugated to Phalloidin for 

detection of cytoskeletal actin and DAPI was applied to detect the presence of DNA/nuclei. Spectra were produced using the 

Fluorescence SpectraViewer online resource (Thermo Fisher Scientific, MA, USA). 
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Figure 5.2 | Equipment design for sample scanning using synchrotron-radiation computed tomography. a, Stage containing sample 

is fixed in place. b, 5 mm samples were cut from dried constructs and were placed in the centre of the stage used for high-resolution 

scanning. 
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Figure 5.3 | Cellular morphological changes over a year in culture and final differentiation to osteocytes. a, Following a month in 

culture, morphology of cells in constructs is mainly elongated and resembling osteoblastic cells (left). With additional osteogenic 

supplementation and over the following 2 months, cells develop typical osteocytic characteristics, including numerous 

interconnected osteocytic networks (middle) and canaliculi-like structures containing long cell projections (right). b, The most 

mature cells (1 year) show a marked re-structuration of the cytoskeleton, displaying osteocytic phenotypes strikingly similar to 

those encountered in vivo (left).  The long projections are very well preserved (right top and bottom). 
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Figure 5.4 | Detection and localisation of bone markers in mature constructs. a, Immunohistochemistry of constructs, showing 

expression of osteocytic marker sclerostin on the surface of cells and in neighbouring network-like structures at 5 months (middle). 

The matrix of 1-year-old constructs contains long networks, where podoplanin could be detected (right). Scale bars = 100 µm. b, 

mRNA for sclerostin and podoplanin was detected at these time points as well. Results are presented compared to a rat 

osteosarcoma cell line as positive control. UMR-106 produces sclerostin and podoplanin continuously. Please note cycle threshold 

(Ct) is inversely proportional to the amount of target nucleic acid in the sample. npdpn= 4 (umr,5 m), 2 (1 yr). nsost= 4 (umr), 2 (5m,1 

yr). ngapdh= 4 (umr,5 m), 2 (1 yr). c, The inorganic component of constructs following a year in culture equals approximately 70% of 

the total content. 
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Figure 5.5 | Secondary antibodies are highly specific and do not bind at random locations on constructs during 

immunohistochemistry. Goat anti-rabbit IgG conjugated to Alexa Fluor 488 (green) were applied to all samples in the same 

conditions, without the addition of a primary antibody in order to detect non-specific binding. These results that these antibodies 

were highly specific, showing minimal or non-existent binding to the construct slices, thus reducing the possibility of false positive 

results.   
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Figure 5.6 | Typical X-Ray Diffraction pattern obtained from mature constructs. The pattern confirms the presence of 

hydroxyapatite, the mature bone mineral in 1-year samples. Traces of whitlockite, a second type of mineral abundant in bone (Jang, 

Jin et al. 2014, Jang, Lee et al. 2015), can also be detected.  
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Figure 5.7 | Development of bone cells in constructs. a, SEM images of cells in constructs after 12 months of culture, showing cells 

embedded in the significantly mineralized matrix. The main cellular structure in a has been false-coloured to allow a better 

visualization. There are many podocytes embedded in the heavily mineralized matrix. Cells communicate through extensive 

projections. b, Synchrotron radiation computed tomography illustrating a typical osteocyte lacuna (L) with emerging canaliculi (C) 

that branch into the tissue. c, XRF maps based on S, Ca, P showing network-like structures throughout the matrix and connecting 

adjacent lacunar-like structures (arrows). Scale bars = 200 μm. 
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Figure 5.8 | Development of osteocytic features, H&E stain of tissue sections. Canalicular-like structures emerging from lacunar 

spaces were observed as early as 3 months (a, arrows), with some branching into the tissue (b, arrows) and connecting adjacent 

similar structures, which contained cell DNA and remnants of the cytoplasm (a, b). Networks of DNA containing lacunae (c, arrows), 

could be observed arranged along the length of constructs. Scale bars a, b = 10 μm; c = 100 μm. 
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Figure 5.9 | Formation of a ‘periosteal’ structure in constructs. a, Micro-CT tomographies indicated a density difference between the 

outer layer of constructs and the central portion in the oldest constructs. b, Raman maps of the central area revealed that the outer 

structure contained collagen type I associated with hydroxyapatite, whereas the central region contained a combination of HA and 

OCP. c, Immunohistochemistry on tissue sections indicated that this region was rich in sclerostin (green) and cellular DNA (blue). 

The latter was also observed using H&E staining, where DNA was localised to the outer region (blue). 
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Figure 5.10 | Mechanical characterisation of 3D constructs. Several cellular features can be observed, particularly projections 

characteristic to osteocytes (Area 1). Pods appear more adhesive compared to the surrounding matrix, suggesting the presence of 

biological material entrapped within a less adhesive, inorganic component. Areas 2 and 3 appear noisier due to sample movement. 

These maps appear to show a mixture of structures with different mechanical properties, including round, adhesive structures with 

a low slope, indicating biological material, and structures which are harder (higher slope) and have less adhesion, indicating 

inorganic material. 
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Figure 5.11 | Nano-characterisation of osteocytic features. The cellular projections observed using AFM were also detected using 

synchrotron radiation tomography, where they appeared as canaliculi (C), connecting lacunar structures (L). 
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Figure 5.12 | Mechanical characterisation of individual osteocytes in tissue sections. Tissue sectioning allows the detection of 

clearer osteocytic structures, including cell body and projections. These cells and surrounding matrix showed mixed mechanical 

properties. The adhesion channel (right) shows a pattern of alternative soft and hard structures.  
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Figure 6.1 | Development of the Immuno-isolation method. Monoclonal IgG antibodies (a) were incubated with the magnetic beads 

for 15 minutes at room temperature with gentle rotation (b). During this incubation period, the antibodies bound via their Fc region 

to protein G, which is covalently coupled to the surface of the beads (c). The resulting bead contained multiple antibodies attached 

to it, which were capable of binding the antigen of interest (TNAP) via their Fab regions.  
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Figure 6.2 | Immuno-isolation of matrix vesicles. a, As mineralisation progresses in constructs with maturation, culture medium is 

collected from culture dishes (b) and subjected to nanoparticle analysis. c, Dynamic Light Scattering analysis of samples from 

control (serum supplemented, cell-free), 14 days and 1 year-old medium samples. Compared to controls, media from both young 

and mature constructs contained nanoparticles in the size range of 50-300 nm. d, Immuno-isolation of matrix vesicles from this 

population was performed by incubating 1000 μl of culture medium with the Ab-MB complex for 15 minutes at room temperature, 

in PBS-Tween 20. Monoclonal antibodies bound to the vesicles via their Fab regions by binding to TNAP on the outer membrane of 

matrix vesicles (e). Purification of the Ab-MB-MV complex was performed via magnetic separation (f).  
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Figure 6.3 | Characterisation of immuno-selected vesicles. a, Nanoparticles, visualised in real-time exclusively using NTA. Controls 

(sterile PBS) do not contain any nano-particles. The growth medium of constructs contains an abundance of nano-particles, whereas 

the buffer containing the isolated vesicles contains a very small population of particles. Positive controls (200 nm polystyrene 

beads) are provided for comparison. b, The small population of purified vesicles contains particles of sizes in a much more narrow 

range than total exosomes in construct medium. Vesicles ranging between 100-200 nm are particularly abundant. c, When 

denatured using SDS-PAGE, the Ab-MV complexes separate into several fractions, which include the TNAP protein dimer (80-110 

kDa), the IgG antibody (170 kDa) and several unidentified protein fractions belonging to matrix vesicles (110-160 kDa).  
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Figure 6.4 | Isolated MVs contain ATP. a, Mineralisation is an ATP-mediated process. ATP is transformed by membrane-bound 

TNAP on the surface of vesicles into Pi. ATP on vesicles was labelled using quinacrine dihydrochloride and visualised indirectly 

using confocal microscopy, where it was detected as blue fluorescence from the beads. b, Purified MVs and controls were stained 

directly on the magnetic beads using quinacrine dihydrochloride. Controls contained the bound antibody but were treated with 

dH2O as opposed to culture medium. All images were acquired under the same conditions and settings. Some degree of background 

staining can be observed in control beads. The vesicle-bound beads show a higher amount of fluorescence, indicating the presence 

of ATP associated with the MVs. 
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Figure 6.5 | Isolated matrix vesicles show a high degree of osteocompetency. The TNAP-bound vesicles have the ability to bind 

collagen type I (top row), whereas TNAP antibodies alone (post-elution, centre) show a small degree of non-specific binding. The 

binding of vesicles and controls to collagen I was detected using secondary antibodies conjugated to Alexa Fluor 488. These 

secondary antibodies showed a small amount of non-specific binding to the collagen I matrix in the absence of sample/control. 

Images were acquired using the same settings and conditions. Scale bar = 100 μm. 
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Figure 7.1 | Application of two ossification-inhibiting compounds to constructs. Two novel drugs were selected based on recent 

advancements. The first compound, CD1530 is a retinoic-acid-γ receptor agonist that has been recently tested with multiple types of 

heterotopic ossification; while LDN 193189 is an inhibitor of the BMP mineralisation pathway, acting as a selective inhibitor of the 

BMP type I activin receptor like kinase ALK2 and ALK3.  

……………………………………………………………………………………………………………………………………………………………………………………………….188 

 

 

Figure 7.2 | Tomographic analysis of the progression of ossification in constructs. Administration of two inhibiting compounds in a 

pilot study lasting 21 days appeared to reduce the progression of ossification in treated constructs compared to controls. CD1530 (1 

μM) significantly reduced mineralized matrix formation following 21 days of culture compared to equivalent controls. LDN193189 

(25 nM) also appeared to be effective.   
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Figure 7.3 | Ossification – inhibiting compounds decrease matrix and mineral formation in constructs. Comparison of the 

mineral volume located in the central portion of constructs following 21 days of culture, quantified by morphometric CT analysis. 

Constructs treated with CD1530 showed an average of 99% less mineral in this region compared to controls, which was statistically 

significant, whereas the group treated with LDN193189 showed 70% less mineral, although not significant. Data is presented as 

means ± SD. *p < 0.05, n=3. 

……………………………………………………………………………………………………………………………………………………………………………………………….194 

 

 

Figure 8.1 | Development of other connective tissues. a, 6-months old construct developed using chick tendon fibroblasts, showing 

a tendon-like 3D structure. b, Example of a construct developed with human chondrocytes and human-derived matrix components, 

and which has been fixed with Bouin’s fluid (yellow, not visible) and stained with Alcian Blue for cartilage detection. c, Examples of 

constructs which have undergone pro-chondrogenic treatment (left) vs. control (right). Constructs supplemented with ITS and TGF-

β3 develop more matrix (blue) compared to control (green-blue), are more still and more resilient to histochemical processing 

compared to controls, which undergo shrinking. 
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Figure 8.2 | Endothelial tubes resembling microvasculature align with the mechanical axis in constructs. Large image (left) has been 

reconstructed from multiple brightfield images and shows endothelial tubes branching along the axis of constructs. When observed 

in a 2D plane (middle right), these cells established complex networks which connect to larger tubes, with diameters ranging 

between 50-200 μm, as seen through a cross section using TPEF (bottom right). Scale bar = 200 μm. 
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Figure 8.3 | Osteoblastic and vascular cell morphology in individual and mixed-cell constructs. 2T3 cells (left) attached to the matrix 

and showed a typical osteoblastic morphology, while HUVECS (centre) were able to assemble into tubular structures of 50-200 μm 

in dimeter. Constructs containing co-cultures of these cell populations showed both types of cell morphology, with endothelial tubes 

forming adjacent to osteoblastic cells. 
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Figure 8.4 | A tissue-engineered model of pathological bone formation in spinal soft tissue where calcium phosphate “vertebrae” 

are connected with fibrin gels encapsulating a population of stem cells. a, Fibrin gels encapsulating stem cells are formed around 

phosphate vertebra. Over time, these gels attach strongly to the anchoring material and contract, giving rise to a disk-like structure 

after approximately 14 days. b, The individual ‘vertebra’ with soft tissue attached to them are assembled together into the spinal 

structure and gels are allowed to connect to the adjacent vetrebra over the subsequent 3-4 weeks until the structure can support its 

own weight.  Over time, the fibrin is replaced with mineralised collagen and the resulting structures mimic the complex cellular 

organisation of real bone. These culture systems can be used to study pathological bone formation or to trial new therapies. 
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Figure 10.1 | An account of cell types compatible with the present model. Several types of cells, including primary, expanded from 

tissue and cell lines were encapsulated in constructs. Their characteristics in terms of ability to fully contract the initial fibrin 

scaffold and their ability to mineralise the tissue were amongst the criteria used for evaluation in developing the final system. 

Periosteal cells of rat origin were selected due to their enhanced ability to contract the matrix and mineralise it. Cell lines tend to 

over-contract and detach the constructs from the anchors. 
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CHAPTER I 
INTRODUCTION TO BONE FORMATION 

 

 

 

1.1 BIOMECHANICAL EVOLUTION OF THE SKELETON 

Bones have evolved in an environment where gravity represented a factor of physical 

restriction, which led to the generation of skeletal adaptations in all aquatic, 

amphibious, terrestrial and volant organisms. The continuously changing mechanical 

conditions experienced by the ancestors of all living creatures led to molecular and 

structural adaptations designed to manage this force of gravity. In humans, the skeletal 

system evolved to counteract the gravitational force during walking and standing on 

two legs, with the line of gravity passing through the base of the spine so that the body 

is well balanced when upright, whilst the centre of gravity is located front of the ankles 

to prevent falling (Buckey 2006, Le Huec, Saddiki et al. 2011). The development of such 

superior biomechanics was allowed by a continuously changing anatomical design, seen 

in modifications of long-bones, the verticalization and broadening of the pelvis and the 

lordotic curvature of the spine in the lumbar and cervical regions and the kyphosis in 

the thoracic and sacral regions, features that did not develop in primates (Figure 1.1), 
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which use their upper limbs to reduce the anterior imbalance caused by propulsive 

forces from the lower limbs (Berge 1998, Le Huec, Saddiki et al. 2011).   

Secondly, these traits were allowed by the concomitant evolution of a well-orchestrated 

biochemical signalling system, which could constantly feedback on the quality and 

functionality of bones. These events include the processes of bone tissue formation and 

remodelling and will be discussed in detail in the following sections.  

It is therefore not surprising that when alterations in environmental forces take place, 

such as decreased loading experienced in microgravity during space exploration 

(Barratt and Pool 2008), extended buoyancy (Gray, Kainec et al. 2007) or 

immobilisation due to injury (Houde, Schulz et al. 1995, del Puente, Pappone et al. 1996, 

Demirbag, Ozdemir et al. 2005), dramatic losses in bone content and macrostructure 

can be observed immediately. These alterations increase the susceptibility of bone to 

breakage and compromise the ability to perform intense physical tasks.  

At the opposite end of the spectrum, increased mechanical forces due to limb exposure 

to overpressure, CNS or SC injury, or mechanical trauma due to surgical procedures of 

the knee, hips or spine lead to enhanced bone formation in the tissues surrounding the 

affected areas (Ahrengart 1991, Pape, Lehmann et al. 2001, Board, Karva et al. 2007, 

Potter, Burns et al. 2007, Potter, Forsberg et al. 2010, Alfieri, Forsberg et al. 2012, 

Sullivan, Torres et al. 2013). These ectopic bone formations are very debilitating, 

especially when forming adjacent to major arteries, veins or nerves (Spencer and 

Missen 1989, Board, Karva et al. 2007, Baird and Kang 2009, Cullen and Perera 2009, 

Isaacson, Stinstra et al. 2010). 
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At the molecular level, bone formation and breakdown are finely controlled by the 

muscular, endocrine and nervous systems.  Dysregulations in these systems or their 

interactions also have a profound effect on bone composition and architecture.   

The following sections of this chapter will expand on these aspects. This review, which 

continues with the results chapters, is not written as an exhaustive account of 

information on bone, but as a selection of our current understanding of the 

biomechanical, physiological and pathological processes which trigger bone tissue 

formation, that allowed the production of the focused conclusions presented at the end 

of this thesis.  The following sections will focus on the effectors of the skeletal system, 

the bone cells and the physiological and pathological events underlying normal and 

abnormal bone formation which lead to the translation of the biomechanical forces into 

organised, structured bone. Finally, this chapter will discuss the gaps in our 

understanding of the bone formation process, the current models available in research 

to study ossification in normal and abnormal states and also the advantages and flaws 

of these models.  
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1.1.1 EARLY BONES 

The evolution of a skeleton containing a vertebral spine was one of the major 

transformations which separated the animal kingdom.  The skeletal system was one of 

the most dramatically changing physiological systems across the millions of years of 

evolution. Life is thought to have originated in water around 3.5 billion years ago and so 

the abundance of features that evolved over this substantial period, in bacteria, 

invertebrates and ultimately vertebrates was for a significant time specialised to the 

aquatic environment. Therefore, the skeletal systems of marine vertebrates became 

compositionally and structurally adapted to life under buoyancy conditions (Gray, 

Kainec et al. 2007), something that will be discussed in detail in the next section.  

As the transition from water to land started to take place around 380 million years ago 

in mid-Devonian, and continued for millions of years, the first terrestrial-suited bones 

appeared in elpistostegalians, which were tetrapods evolved from fish predecessors 

(Shubin, Daeschler et al. 2014) that developed physiological features adapted to both 

life on water and at the surface.  The dramatic change in the mechanics of the 

environment required the development of bone structures with anatomical features 

suitable for terrestrial walking, a transition which was poorly understood until recently. 

This aspect was clarified recently (2004) with the extraordinary discovery of the fossil 

of Tiktaalik roseae, a late Devonian tetrapod, in Ellesmere Island in the Canadian Arctic, 

which provided the missing link in the evolutionary history of modern land vertebrates 

(Daeschler, Shubin et al. 2006). Tiktaalik contained many musculo-skeletal structures 

providing support for posture and locomotion on land, including endochondral bones, 

pelvic girdle and appendices and an articulated skeleton from head to toe similarly to 

modern tetrapods (Daeschler, Shubin et al. 2006, Shubin, Daeschler et al. 2006).  
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1.1.2 ADAPTATION OF BONES TO DIFFERENT ENVIRONMENTS   

The diversification of the skeletons within the vertebrate subphylum over millions of 

years of evolution was achieved by changes in cartilaginous and osseous tissue, which 

developed to provide locomotion based on the environmental constraints present. 

Figure 1.2 illustrates a selection of skeletons of species from mechanically-distinct 

ecosystems, highlighting the differences in bones used in locomotion.  

 

 

 

 

Figure 1.2 | Skeletal systems and limb bones from different orders and classes of animals have evolved to meet the 

mechanical demands of their environments. a, Fish; b, Monotremes; c, Primates; d, Amphibians; e, Birds. The common bones 

used to translate the mechanical forces from the trunk to the lower parts of the limbs for locomotion are shown in black boxes. 

Original images. Author would like to thank the Lapworth Museum of Geology, University of Birmingham. 
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As expected, there are evolutionarily-driven skeletal differences across different 

species. Some of the most striking adaptations include the skeletal pneumatisation of 

bones in birds (hollow air-filled bones), which have a high density and stiffness but a 

low mass and volume, an adaptation intended to reduce the metabolic costs of powered 

flight (see Figure 1.3a) (Dumont 2010, Gutzwiller, Su et al. 2013). Additionally, other 

adaptations in anatomical design have evolved, which include fusions of many skeletal 

structures and a relatively small body skeleton compared to wing size (Figure 1.4a), a 

common feature of flying vertebrates, including bats (Figure 1.4b), which has been 

preserved since their avian pterosaurian predecessors (c) (Swartz, Bennett et al. 1992, 

Maina 2000, Dumont 2010).  

In fish and other aquatic and semi-aquatic animals, the weight is mainly supported by 

buoyancy and as such, skeletal micro-structure and bone density has adapted to 

support alternations between powered locomotion and gliding motion to minimise the 

energetic costs (Sato, Aoki et al. 2013), a feature also present in gliding animals during 

horizontal flight (Rayner, Viscardi et al. 2001).  

At the other end of the spectrum, in land tetrapods which have secondarily invaded 

aquatic niches, such as sloths, several osteological modifications took place as a result of 

the increased mechanical constraints caused by locomotion in water, including 

densification of bones and an increase in volume (Gray, Kainec et al. 2007, Amson, de 

Muizon et al. 2014). Interestingly, this complex adaptive plasticity of the skeletal bones 

in response to their environment was also demonstrated by the historical transition of 

many other species such as archaeocetes (ancient aquatic mammals, ancestors of 

modern whales and dolphins, 55-20 million years ago) from terrestrial animals. The 

skeletal microstructure of these animals initially adapted to shallow or semi-aquatic 
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environments by increasing in density to provide static buoyancy control and stability 

and was then followed by a process of osteoporosis, meant to provide a dynamic 

buoyancy control as the animals adapted to a fully oceanic and deep-water life (Taylor 

2000, Gray, Kainec et al. 2007).   

The processes of increased cortical bone density and volume are known as 

osteopetrosis and pachyosteosclerosis and in the context of mechanical adaptation, they 

are recognised as a variable strategy for adapting to buoyancy (Taylor 2000).  However, 

the process of osteopetrosis is also encountered in pathological conditions in humans, 

where excessive bone mass is caused by genetic mutations in genes responsible for 

osteoclast formation and function (bone cells involved in resorption) and will be 

discussed later in this chapter (see Section 1.6.3 Formation of Osteoclasts) (Sobacchi, 

Schulz et al. 2013).   

The evolution of other mineralised tissues such as teeth and beaks allowed the 

development of defence mechanisms, hunting and eating. Indeed, the remarkable 

diversity in bird beak morphology, specifically adapted to very narrow niches (and 

illustrated in Figure 1.3), was one of the most significant biological evidences on the 

basis of which Charles Darwin postulated the theory of evolution of natural selection 

following his voyage to the Galapagos (Figure 1.4 a-b), the work which was later 

published as ‘On the Origin of Species by Means of Natural Selection’. These skeletal 

adaptations, based on the nature and accessibility of the food sources (Figure 1.3c-g) 

allowed to demonstrate important aspects of the evolutionary theory, such as the 

concepts of speciation, natural selection and niche partitioning (Abzhanov 2010). This 

diversification process is under the direct control of several bone signalling pathways, 

some which will be discussed in further detail in section 1.4 Cellular Composition of 
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Bone. Specifically, the formation of the pre-nasal cartilage forms under the control of 

BMP-4 and Calmodulin signalling pathways, whereas the premaxillary bone forms 

under the action of TGF-βIIr, β-catenin and Dkk3 signalling pathways, as well as the 

Indian Hedgehog (Ihh) pathway (Mallarino, Campàs et al. 2012). These distinct 

signalling pathways can exclusively or in combination, generate beak shapes of similar 

or different morphology in various species of birds (Figure 1.3b) (Grant and Grant 1997, 

Mallarino, Campàs et al. 2012).  
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Figure 1.3 | The adaptation of bird skulls to different niches and environments, showing dramatic differences in the 

osseous structures of the beaks. a, Cross-section through the skull of a Rhinoceros Hornbill (Buceros rhinoceros), showing hollow 

air-filled pockets in its skeletal structure, a feature evolved to meet energetic costs during flying. b, Skull of a Silvery-Cheeked 

Hornbill, a bird related to the specimen in a but showing a distinct anatomical beak structure, a feature which is under tight genetic 

regulation. c-g, The adaptation of the osseous structures of the beaks according to different living environments and thus food 

sources. c, Magellanic penguin – fish diet; d, Hyacinth macaw – diet of nuts from palm trees; e, Common toucan – fruit diet; f, 

Roseate spoonbill – diet of insects; g, Scarlet ibis -diet of shrimps and other crustaceans; This dietary specialisation was one of the 

observations which led to the development of Darwin’s theory of natural selection.  Original images. Author would like to thank the 

Lapworth Museum of Geology, University of Birmingham and the Natural History Museum, South Kensington, London. 
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Figure 1.4 | The anatomical adaptation of the skeletons of flying vertebrates. a, Skeleton of a pigeon used by Charles Darwin as 

part of his research and development of the theory of evolutionary adaptation, later described in the Origin of Species. Specimens 

demonstrates a large wing bone size compared to the body size, a skeletal adaptation to powered flight. This feature can also be 

seen in other species which have evolved from a different lineage, such as the common pipistrelle bat skeleton (Pipistrellus 

pipistrellus) (b); and in the avian ancestors such as Pteranodon, a flying reptile from late Cretaceous (approx. 86-83 million years 

old) (c). Original images. Author would like to thank the Natural History Museum, South Kensington, London. 
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In humans, identical physiological and pathological adaptations take place in bone mass 

and density as a result of age, immobilisation, unloading, vigorous exercise and trauma 

and these will be discussed in detail in the following sections.  

From an evolutionary perspective, the development of longer leg bones in humans, 

starting with more recent hominin species such as in Homo heidelbergensis compared to 

the first bipedal humans such as Homo erectus was due to an adaptation to tropical 

conditions, as they could provide a larger surface for cooling the body. This skeletal 

adaptation did not take place in  other species such as Homo neanderthalensis, which 

lived in colder climates, and as such had shorter limb legs and a lower body size (Elton 

2008). CT analysis of trabecular bone density from these different hominid species 

revealed that high trabecular bone density was a feature of earlier hominin species 

compared to more recent ones including Homo sapiens (Chirchir, Kivell et al. 2015), 

which was probably due to the intense physical activity undertaken by these species 

during hunting of large animals, which placed considerable stress on the bones and 

hence resulted in a higher bone density. 
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1.2 FUNCTIONS OF BONE 

Despite their inert appearance, bones are responsible for more than shaping the human 

skeleton, and fulfil a whole range of vital functions (Figure 1.5).  

 

1.2.1 MECHANICAL SUPPORT 

As discussed in the previous sections of this chapter, bones provide a framework for 

mechanical support. The lower limbs provide support to the trunk during standing and 

walking, while other structures, such as the rib cage, support the thorax. In addition, 

bones provide suspension of the soft, internal organs of the abdomen and cavities for 

sensory organs of the head (Marieb and Hoehn 2010) (Figure 1.5a-c). 

 

1.2.2 PROTECTIVE FUNCTION 

Several bones offer protection to the vital organs, including the fused cranio-facial 

bones, which enclose and protect the brain, the ribcage which protects the heart and 

lungs; and the vertebra of the spine which protect the spinal cord (Marieb and Hoehn 

2010) (Figure 1.5a-c). 

 

1.2.3 LOCOMOTION 

Bones provide a source of attachment to all muscles, tendons and ligaments, acting as 

levers during body movement. This has implications for many vital functions, especially 

breathing. Moreover, the biomechanical design of bone joints directly influences 
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different types of movement, including flexion, extension, gliding, retraction and 

protraction, elevation and depression (Marieb and Hoehn 2010) (Figure 1.5a,c).   

 

 

 

 

Figure 1.5 | Functions of bones. Bones perform numerous functions including supporting the body during movement, providing 

levers for moving the limbs (a); protecting the fragile internal organs (ribcage) (b) and the spine (b-c); as well as supporting the 

weight of the trunk during walking (c). Original images acquired from a skeletal specimen at the Natural History Museum, South 

Kensington, London.  
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1.2.4 STORAGE OF MINERALS 

In addition to their mechanical functions, bones provide a source of calcium and 

phosphate to the rest of the body (Boden and Kaplan 1990). The maintenance of 

constant levels of these minerals in the bloodstream is essential not only for the skeletal 

system, but also for the function of other body systems, including the nervous system 

(Braet, Cabooter et al. 2004), where Ca2+ signalling is essential for the operation and 

integration of chemical and electrical signals by neurons and glial cells at the synapse;  

and muscular system (Szent-Györgyi 1975) where the same element directly regulates 

muscle contraction through binding to regulatory proteins such as troponin. As such, 

Calcium and Phosphorus are continuously deposited and released into the bloodstream 

under the action of regulatory hormones including PTH, which also aid in maintaining 

Ca and P homeostasis by acting on other organs as well, including the kidneys and the 

intestines.  

The simultaneous physiological processes undertaken by bones make it very difficult to 

maintain their health and restore their normal composition. This is because both 

mechanical loading and the hormone-controlled release of ions to the body 

continuously require these elements. Therefore, the ionic balance can be quickly 

disrupted, as seen in numerous pathological states (Boden and Kaplan 1990, del Puente, 

Pappone et al. 1996, Lau and Guo 2011). The chemical properties of the calcium and 

phosphate content of bone will be discussed in detail in section 1.4 Chemical 

Composition of Bone.    

Bone matrix also provides a supply of growth factors, including insulin-like growth 

factors (Kawai and Rosen 2012, Mohan and Kesavan 2012), transforming growth 
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factors (Baylink, Finkelman et al. 1993)and bone morphogenic proteins (BMPs) (Shore, 

Xu et al. 2006, Katagiri, Osawa et al. 2015) essential for cellular communication.   

 

1.2.5 SOURCE OF BLOOD CELLS 

The inner cavities of bones contain the red bone marrow, which is the body’s source of 

hematopoietic and stem cells (Taichman 2005), essential for differentiating into all the 

different types of blood cells, including erythrocytes and lymphocytes. Hematopoietic 

tissue (red marrow) is found between the trabeculae of spongy bone, whereas in flat 

bones such as the sternum or skull is found in the spongy tissue known as diploë.  The 

red marrow of flat bones and in some irregular bones (such as the hip) have a higher 

level of haematopoiesis and for this reason, are regularly used clinically for sampling 

marrow tissue. Despite a high hematopoietic activity at birth, red marrow in the 

medullary cavities of long bones become gradually converted with age into a less 

metabolically-active, yellow (fatty) bone marrow, a process which concludes in 

adulthood (25-30 years). However, yellow bone marrow can dynamically revert to red 

marrow in certain pathologic conditions (e.g. anaemia, obesity) that require an 

enhanced red blood cell supply and a higher tissue oxygenation (Bigelow and Tavassoli 

1984, Guillerman 2013). 
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1.2.6 STORAGE OF TRIGLYCERIDES 

Bones also contain triglycerides as a source of stored energy (Mularchuk and Boskey 

1990). Although lipids only constitute less than 2% of the dry weight of bone tissue, 

they appear to have an influential role in the development of mechanical functionality of 

bones (Goldberg and Boskey 1996), as phospholipase D is involved in the initial stages 

of ossification during embryogenesis, and it has been found to be expressed in the 

extracellular matrix of the developing mouse skeleton (Gregory, Kraemer et al. 2005). 

 

1.2.7 STORAGE OF TOXIC COMPOUNDS 

In addition to storing essential minerals ions, bone tissue can temporarily house 

dangerous compounds in the systemic circulation, including radioactive compounds, 

lead (Pounds, Long et al. 1991), aluminium (Ballanti, Wedard et al. 1996) and 

tetracyclines from diet, including oxytetracycline (OTC) and chlortetracycline (CTC) 

(Honikel, Schmidt et al. 1978).  
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1.3 STRUCTURE OF BONE 

Bones are composed of two structurally distinct textures, compact bone on the exterior 

and spongy bone, also known as trabecular or cancellous bone, internally (Figure 1.6). 

 

 

 

 

Figure 1.6 | Bone textures: spongy and compact bone in the femur. Long bones are composed of two texturally different types of 

tissue, compact bone and spongy bone, adapted for providing support during different types of mechanical load. The outer cortical 

layer is lined externally by the periosteum and internally by the endosteum. The internal cavities of bones contain the red and 

yellow marrow. Original image. Image of the femoral section acquired from a skeletal specimen at the Natural History Museum, South 

Kensington, London.  
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1.3.1 COMPACT BONE 

Compact bone is composed of highly organised units named osteons, which are long, 

cylindrical structures arranged parallel to the long axis of the bone. These structures 

provide canals through which blood and lymphatic vessels and nerves can supply the 

surrounding bone tissue. Each osteon is composed of concentric, hollow tubes 

(lamellae), which are made of mineralised collagenous matrix. Each lamella contains 

collagen fibres running in the same direction but in a different direction from fibres in 

other lamellae, a reinforced design meant to withstand torsion forces (Figure 1.7).  This 

arrangement of lamellar collagen directly affects the mechanical properties of individual 

lamella. Mechanical studies by Pidaparti and colleagues (Pidaparti and Burr 1992) and 

later by Ascenzi and colleagues (Ascenzi, Baschieri et al. 1994) showed that in combined 

loading situations (torsion and bending), collagen fibres with a geometrical orientation 

ranging between 15°-30° of the long axis are the best suited for maximizing the overall 

mechanical properties of bone tissue.  

The central portion of osteons contains the Haversian canals, which contain the small 

blood vessels and nerves that supply the cells inside osteons. These central canals 

communicate with the blood supply and innervation of the periosteum using 

Volkmann’s canals, which run perpendicular to the long axis of the bones. The interior 

lining of these canals consists of the endosteum.  

There are additional lamellae in compact bone which are not part of osteons. These are 

interstitial lamellae which fill the spaces between osteons. Additionally, there are 

circumferential lamellae just underneath the periosteum and above the endosteum 

which play a  role in mechanical resistance against stress. A study by Liu and colleagues 

(2000) comparing the mechanical properties of circumferential and osteonal lamellar 
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bone in a primate model showed that the mechanical behaviour of the two types of 

lamellar bone under bending tests were similar for the same orientations relative to the 

bone axis, suggesting that the complex arrangement of mineralised collagen fibrils itself 

is reposible for stress resiliance. However, the authors found that osteonal and 

circumferential lamellar bones exhibit different behaviours during induced fractures, 

with osteonal lamellar bones tending to remain connected after the main fracture event, 

whereas circumferential lamellar bones separated following fracture. This implied that 

osteonal fractures have higher chances of repair and the chances of fracture non-unions 

are lower compared to circumferential fractures (Liu, Wagner et al. 2000). 
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Figure 1.7 | Structure of an osteon. Individual lamellae are arranged concentrically and are composed of mineralised collagenous 

fibres arranged in different directions in each lamellar unit to provide maximal resistance to stress. Centrally, osteons act as 

passageways for blood vessels (arteries and veins) and nerve fibres and are lined internally by the endosteum.  
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The mature bone cells, osteocytes, are located concentrically at the lamellar junctions 

(Figure 1.8). These cells are embedded in lacunar spaces and contain numerous 

projections which are contained within canalicular structures. These canaliculi allow 

inter-cellular communication, the flux of waste and nutrients, as well as connecting 

osteocytes to the endosteum (Dallas and Bonewald 2010, Bonewald 2011). The 

formation of osteocytes  and their complex function is described in further detail in 

section 1.5 Cellular Composition of bone. 

 

 

 

Figure 1.8 | Horizontal section through an osteon. Osteocytes, the mature bone cells, are arranged concentrically at the junctions 

between lamellae. They are embedded in lacunae and linked by canaliculi, which allow cell-to-cell communication and connect to 

the endosteum.  
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1.3.2 TRABECULAR BONE  

Unlike compact bone, spongy bone appears to consist of disorganised bone tissue. 

However, the trabeculae are actually aligned in a fashion which allows the bones to 

withstand maximal amounts of stress, and are located at anatomical points where 

significant amounts of stress are transmitted to the rest of the skeleton (e.g. femoral 

head – Figure 1.6)(Ryan and Ketcham 2005). The trabeculae contain irregularly 

arranged lamellae and osteocytes, which communicate with each other through 

canaliculi, and receive nutrients from capillaries passing these canaliculi emerging from 

the endosteum surrounding the trabeculae (Lafage-Proust, Roche et al. 2015, Prideaux, 

Schutz et al. 2016).  

 

1.3.3 THE PERIOSTEAL MEMBRANE 

As discussed above, bones also contain an external membrane, the periosteum, which 

covers the entire surface with the exception of the joint. The periosteum is composed of 

two thin layers – externally by an outer fibrous layer, composed of dense irregular 

connective tissue, whereas the internal layer, the cambium, is highly osteogenic, 

consisting of bone-forming osteoblasts and bone-resorbing osteoclasts as well as a large 

population of stem cells which can differentiate into osteoblasts (Zhang, Naik A Fau - Xie 

et al. 2005, Marsell and Einhorn 2011, Chang and Knothe Tate 2012). The periosteum 

contains a rich supply of nerve fibres, blood vessels and lymphatic vessels, which enter 

the bone through the nutrient foramina openings. This layer is firmly anchored to the 

underlying bone tissue through collagen fibres (Sharpey’s) fibres. The periosteum 

serves an additional purpose, which is to provide anchorage to the ligaments and 
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tendons. These regions are very rich in Sharpey’s fibres (Marieb and Hoehn 2010, Chang 

and Knothe Tate 2012).  

 

1.3.4 THE ENDOSTEUM 

Internally, bone is covered by the endosteum, a fragile connective tissue structure 

which covers the trabeculae of spongy bone and lines the canals in lamellar bone. This 

layer is similar to the periosteum in terms of cellular composition, containing both 

osteoblasts and osteoclasts. 
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1.4 CHEMICAL COMPOSITION OF BONE  

 

1.4.1 THE INORGANIC COMPONENT 

The nature of the inorganic component of bone was elucidated many decades ago using 

X-Ray diffraction. Studies by de Jong in 1926 (de Jong 1926) and later by Roseberry 

(1931) (Roseberry, Hastings et al. 1931) were the first to show using X-Ray Diffraction 

that bone samples contained small particles with diffractograms very similar to the 

crystals of naturally-occurring hydroxyapatite (HA) Ca5(PO4)3(OH) (Figure 1.9), a 

calcium phosphate mineral with a Ca:P ratio of 1.67. This composition, which was 

mainly deducted from cortical bone samples due to the ease of preparation for 

examination, was initially generalised to a variety of calcified tissues. However, over 

time, it became clear that there were differences in the mineral phases in different 

tissues, and in the same mineral phase across different phyla and species. The molar 

ratios of Ca and P can vary considerably in osseous tissues due to variations in 

vacancies and substitutions (Palmer, Newcomb et al. 2008), which take place due to the 

ongoing process of homeostasis, where calcium, magnesium and phosphorus ions are 

continuously removed from the bone reserves in order to supply the rest of the tissues 

(Boden and Kaplan 1990, Favus and Goltzman 2013).  

In both the bones and teeth of mammalian vertebrates, the mineral is mainly 

carbonated apatite, Ca10(PO4,CO3)(OH)2 (Favus and Goltzman 2013), although other 

minerals have been identified in small proportions, such as whitlockite (Jang, Jin et al. 

2014, Jang, Lee et al. 2015) and more recently, intermediate phases such as octacalcium 

phosphate (OCP) (Ban, Jinde et al. 1992, Crane, Popescu et al. 2006). 
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Figure 1.9 | Apatite mineral. Apatite is a calcium phosphate mineral that is produced and used by many biological environmental 

systems. Hydroxyapatite, one of principal types of apatite, is the main inorganic component of bone and dentin. Original image. 

Author would like to thank the Lapworth Museum of Geology, University of Birmingham. 
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1.4.2 THE ORGANIC COMPONENT 

The organic component of bone is composed of cells (osteogenic cells, osteoblasts, 

osteoclasts and osteocytes) and osteoid. Osteoid comprises approximately 35% of the 

weight of the matrix and is composed of the ground substance (which includes 

proteoglycans and glycoproteins) and collagenous tissue, both which are the product of 

osteoblasts.   As discussed in the previous sections, collagen contributes not only to the 

structure of the matrix, but also to the resistance of bone to tensile and bending forces.  

The organic component of bone matrix is composed in a proportion of 90% of collagen 

type I, with the remaining 10% composed of non-fibrous proteins.  Type I collagen is 

found in both osseous tissue and non-calcifying mesenchymal tissues and is composed 

of fibrils of approximately 78 nm diameter, showing a very characteristic periodic 

banding appearance when viewed under the electron microscope (Olsen 1964).  Two 

bands can be identified, which have different densities, of 0.4 D and 0.6 D (Bonucci 

2007). Their appearance of these periodic bands depends on the arrangement of the 

molecules and their amino acid sequence (von der Mark, Wendt et al. 1970). Collagen 

molecules are 280-300 nm long and are composed of three polypeptide chains which 

assemble into a left-handed triple helical configuration (Ramachandran 1956, Hulmes 

2002, Orgel, Irving et al. 2006). The polypeptide chains are composed of approximately 

33% glycine, found in every third position in the conformation gly-x-y, and 

approximately 22% is composed of proline and hydroxyproline (Martin, Piez et al. 1963, 

Bonucci 2007). Molecules of collagen type I consist of three chains, out of which two are 

identical and termed αI(I) and a different, third chain, αI(II) (Bonucci 2007). 

The inorganic component, hydroxyapatite, which accounts for approximately 65% of 

the weight of the bone is associated with collagenous fibres, which offers the bone 
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tissue great strength and resistance to compression. Although the role of collagen in 

nucleation of hydroxyapatite crystals has been a subject of great debate, fundamental 

studies performed since the 1950s on the mineral distribution in avian calcifying 

tendons suggested that two types of collagen mineralisation take place in vertebrates: 

intrafibrillar (Jackson 1957, Weiner and Traub 1986, Landis, Moradian-Oldak et al. 

1991, McEwen, Song et al. 1991) and interfibrillar (Landis, Hodgens et al. 1996).  In the 

intrafibrillar model of mineralisation, it was proposed that crystals penetrate through 

the fibrils, suggesting this as a mechanism through which apatitic crystals become 

orientated parallel to the collagen fibre axis (Jackson 1957). Later studies by Weiner 

and colleagues (1986) reported that crystals are located within the fibrils at the level of 

‘grooves’ created by adjacent gaps (Weiner and Traub 1986) (Figure 1.10).  

Work by McEwen and colleagues showed that 64% of the crystals were located in the 

collagen gap areas and only 36% in the collagen overlap areas (McEwen, Song et al. 

1991). Later work (Landis, Hodgens et al. 1996) demonstrated the presence of mineral 

crystals on the surface of collagen fibrils (inter-fibrillar mineralisation) along intra-

fibrillar mineralisation.  

Recent evidence from Wang and colleagues (2012) revealed that collagen type I itself 

can initiate and orientate the growth of apatite crystals in vitro in the absence of any 

other biochemical components involved in vertebrate skeletal development (Wang, 

Azaïs et al. 2012). Moreover, the authors showed that collagen type I can control the 3D 

distribution of the inorganic component from the atomic to the macroscopic scales. 

Recently (2017), the work of Niu and colleagues demonstrated using a polyanion and 

polycation-directed mineralisation that that the process of interfibrillar mineralisation 

is mediated by a balance between osmotic equilibrium and electroneutrality, as the 
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outward movement of ions and intrafibrillar water through the collagen surface 

occurred irrespective of the charges of the electrolytes  (Niu, Jee et al. 2017). 

 

 

 

 

 

 

Figure 1.10 | Simplified schematic of the organic-inorganic hierarchical structure in bone tissue. This model was first 

proposed by (Petruska and Hodge 1964). Collagen molecules (normally triple-helical, simplified here) are arranged end-to-end and 

parallel to each other. These structures contain spaces of approximately 36 nm between them, which facilitate nucleation by apatitic 

crystals. The mineral develops in this space in the fibrils. Diagram inspired from (Fang and Holl 2013) and (Alexander, Daulton et al. 

2012). 
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The organic component of bone is sometimes referred to as being completely separate 

from the inorganic component, a definition that not necessarily correct, as the two 

components are highly inter-related and defects in cell processes can lead to abnormal 

matrix production, which in turn gives rise to abnormal mineral deposition (e.g. 

osteogenesis imperfecta, a number of dysplasias and tumours) (Marie 2015). These will 

be reviewed in detail in Section 1.11 Pathological Bone Formation.  
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1.5 TYPES OF BIOMINERALISATION 

The process of deposition of mineral salts in the organic matrix of biological tissues has 

been referred to using multiple terms such as calcification, biomineralization and 

ossification. Whilst sometimes they are considered to be synonymous, in many contexts 

their meanings change. In this thesis, the process of calcification is referred to as the 

precipitation of calcium phosphate salts on the surface of tissues, whereas the term 

‘ossification’ is used to describe a hierarchical and organised deposition of mineral on 

collagen and other proteins belonging to the organic matrix of bone. However, it has to 

be stressed that it is not always possible to distinguish between the two processes, and 

therefore, in this thesis, the term ‘biomineralization’ is sometimes used to refer to the 

process of cell-mediated formation of a stable, crystalline phase of inorganic material. 

Irrespective of the pathway of mineralisation, this process is indispensable to many 

organisms, from prokaryotic forms of life to invertebrates and vertebrates.   

 

1.5.1 BIOMINERALISATION IN INVERTEBRATES  

Biomineralization in animals of the invertebrate subphylum is a process that is found in 

many morphologically-distinct structures. These can range from intracellular mineral 

particles, calcifying bacteria, calcified exoskeletons of arthropods (Figure 1.11a-c), 

which include extinct marine arachnomorphs as far as the Cambrian period (approx. 

500 million years ago) such as trilobites (a) and (b) and the exoskeletons of crustaceans 

(c); shells of molluscs and gastropods (d-e) and coral skeletons (e). These structures 

have a very high mineral component composed of calcium phosphates and carbonates, 

and a very low organic component (e.g. in molluscs, the organic matrix constitutes less 
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than 5% of the total weight). The mineral in these species can range from calcium 

carbonate (CaCO3) in mollusc shells (Weiner and Hood 1975) to crystalline fluorapatite 

in most crustacean mandibular teeth (Bentov, Aflalo et al. 2016). 

 

 

 

 

 

 

Figure 1.11 | Biomineralization is a process encountered in many orders and in the invertebrate forms of life, such as the 

exoskeletons of many arthropods, including extinct organisms such trilobites from the Palaeozoic Era (a- Ogyginus Cordensis 

trilobite and b- Ceratarges Armatus trilobite); shells of crustaceans including the Corystidae family (including crabs); the marine 

shells of gastropods (d-e) and coral skeletons (f). Original images. Author would like to thank the Lapworth Museum of Geology, 

University of Birmingham. 
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1.5.2 BIOMINERALISATION IN VERTEBRATES 

In terrestrial vertebrates, different parts of the skeletal system form through complex 

ossification pathways, known as endochondral and intramembranous ossification.  

 

1.5.2.1 INTRAMENBRANOUS OSSIFFICATION 

In the first type of ossification, known as intramembranous ossification, 

osteoprogenitor cells directly differentiate into osteoblasts, the bone building cells, to 

form mature bone. This is the major pathway of ossification in the bones of the skull and 

one of the main repair pathways during callus-mediated fracture repair, which takes 

place at the broken ends of a bone, compared to the central portion, which forms 

through a cartilage intermediate (Gerstenfeld, Cullinane et al. 2003, Claes, Recknagel et 

al. 2012). 

 

1.5.2.2 ENDCHONDRAL OSSIFFICATION 

The second type, known as endochondral ossification, represents the formation of bone 

through a cartilage intermediate or template. In this type of ossification, osteochondral 

progenitors differentiate into separate lineages of chondrocytes and osteoblasts to give 

rise to a cartilage template on top of which the future mature bone will eventually form.  

This is the major process by which long bones of the limbs form and, as mentioned 

above, is also involved in bone repair (Einhorn and Gerstenfeld 2015). 

The processes of intramembranous and endochondral ossification will be described in 

more detail in Section 1.8 – Bone Fracture Repair. An introduction to the essential 

cellular events in bone formation is presented in the next section. 



 
 
 
 

 34 

1.6 CELLULAR AND CYTOPATHOLOGICAL EVENTS IN BONE FORMATION  

The skeletal system in vertebrates is composed of cartilaginous and osseous tissue, 

which forms during embryogenesis through the action of mesenchymal osteochondral 

progenitor cells, which differentiate into either chondrocytes or osteoblasts.   

 

1.6.1 FORMATION OF CHONDROCYTES 

Chondrocytes form during endochondral ossification, the first step which is the 

formation of a cartilage template. Chondrocytic cells differentiate from osteochondral 

precursors and undertake a series of tightly controlled events of proliferation, which 

take place along the longitudinal axis of the cartilage template (interstitial growth) and 

continue with appositional growth, where the structure becomes thicker with 

subsequent matrix deposition. A peripheral cartilage formation takes place as the 

structure grows in thickness (the perichondrium). This template is subsequently 

invaded by a mixed population of cells which give rise to a primary ossification centre 

(located centrally in the diaphysis). The perichondrium becomes the periosteum, 

containing osteoprogenitor cells which will give rise to osteoblasts and produce bone 

appositionally (Mackie, Ahmed et al. 2008). Chondrocytes which are located furthest 

from the ossification centre are actively proliferating and become flattened as they pack 

into column-like structures. Chondrocytes which are closest or inside the ossification 

centre become hypertrophic, secreting collagenous matrix (type II and X) which 

becomes mineralised (Rosen, Bouillon et al. 2013).  Secondary ossification centres 

develop in the epiphyses, in a similar manner, and continue to grow until the cartilage 

remaining between the two ossification centres forms an epiphyseal plate. 
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Chondrocytes in this structure continue to produce cartilage which is replaced by bone, 

which is essential for the longitudinal growth of bones. The bone-resorbing cells, 

osteoclasts, aid in removing excess cartilage matrix. The transition of chondrocytes is a 

process controlled by multiple signalling and genetic mechanisms and different stages 

of endochondral ossification show different gene expression patterns. Chondrocytes in 

immature stages express the transcription factors Sox 5, Sox 6, Sox 9 (Hardingham, 

Oldershaw et al. 2006, Leung, Gao et al. 2011). The pre-hypertrophic stage is 

characterised by parathyroid hormone I receptor (PTH1r) and Indian hedgehog 

expression, which form a negative feedback loop that controls the chondrocyte’s 

decision to carry on proliferating or become hypertrophic (Yang 2013). Ihh-/- rodents 

show a lack of endochondral bone due to a 50% reduction in proliferation and increase 

in hypertrophic progression (St-Jacques, Hammerschmidt et al. 1999, Long, Zhang et al. 

2001). Early hypertrophic chondrocytes decrease the expression of Sox 5,6 and 9 and 

collagen type II and increase the production of collagen type X (Kielty, Kwan et al. 

1985). Hypertrophic chondrocytes develop with the expression of vascular endothelial 

growth factor A (VEGFA)(Zelzer, Mamluk et al. 2004), matrix metalloproteinase 13 

(MMP-13) and osteopontin (Gerstenfeld and Shapiro 1996, Pullig, Weseloh et al. 2000), 

indicating the subsequent invasion of osteoblasts, osteoclasts and endothelial cells 

which are going to replace the cartilage template with bone (Li and Dong 2016).  

It is important to note that cartilage is an avascular tissue which develops under 

hypoxic conditions, as some of the centrally-located chondrocytes do not have access to 

vasculature-provided oxygen. As a result, the transcription factor hypoxia-inducible 

factor 1α (HIF- 1α) is essential, as seen in other hypoxic conditions, in mediating the 
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hypoxic response in cartilage. Removal of HIF- 1α results in the death of chondrocytes 

inside the growth plate (Schipani, Ryan et al. 2001).  

 

1.6.2 FORMATION OF OSTEOBLASTS  

The osteoblastic differentiation can be classified according to four stages, including 

division, extracellular matrix deposition, matrix maturation and mineralisation (Stein 

and Lian 1993).  There are several key enzymes and proteins essential in these 

processes, including alkaline phosphatase (ALP), type I collagen (Col I), bone 

sialoprotein (BSP), osteopontin (OPN) and osteocalcin (OC). These are also used as 

differentiation markers which can be detected at different stages in osteogenesis, for  

which ALP is known to be an early osteoblastic marker, whereas OC is used as a late 

marker for osteoblast differentiation (de Gorter and ten Dijke 2013).  Several signalling 

pathways control these processes, including RUNX2, BMP, TGF-β, WNT, HEDGEHOG, 

PTH, IGF-1, FGF and NOTCH (de Gorter and ten Dijke 2013). The pathways which are 

important for understanding some of the results in this thesis are described in detail 

below. 

 

1.6.2.1 RUNX2 PATHWAY 

This pathway is a critical event in osteoblastic differentiation. The activation of 

transcription factor RUNX2 is indispensable for the mineralisation step and formation 

of a skeleton. Homozygous mutants for RUNX2 (also known as Cbfa1) are not able to 

survive at birth due to respiratory failure and show a lack of osteoblasts and of both 

intramembranous and endochondral bone (Otto, Thornell et al. 1997). Heterozygous 
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mutants develop skeletal abnormalities which appear to be similar to pathological 

conditions such as cleidocranial dysplasia (CCD), a condition characterised by abnormal 

development of the cranial bones and marked absences in parts of the collar bone 

(Mundlos 1999). RUNX2 is able to interact with gene promoters to increase or 

downregulate the expression of Col I, ALP, OPN, OC and ON and osterix (Osx)(Harada, 

Tagashira et al. 1999, Kern, Shen et al. 2001).   

 

1.6.2.2 BMP PATHWAY 

Experiments conducted by Urist in 1965 originally identified bone morphogenic 

proteins (BMPs) as active components in bone extracts which are able to promote 

ossification when implanted subcutaneously, giving rise to ectopic bone (Urist 1965). 

Since then, the role of BMPs in bone formation has become well known. They are 

present in skeletal tissue and are involved in bone homeostasis and fracture repair 

(Gazzerro and Canalis 2006) and as such, several types such as BMP-2 and 7 have 

recently been applied in clinical practice to accelerate bone healing and treat fracture 

non-unions  (Gautschi, Frey et al. 2007, Schmidmaier and Wildemann 2009). Their 

abnormal activity caused by genetic mutations which trigger overactivation in 

conditions such as Fibrodysplasia ossificans progressiva leads to large amounts of 

ectopic bone formation and will be discussed later in this chapter.  

BMPs are part of the TGF-β superfamily of proteins and bind to type I and II 

serine/threonine receptor kinases, forming an oligomeric complex (de Gorter and ten 

Dijke 2013), which leads to the phosphorylation and hence activation of type I receptors 

by the constitutively active type II receptors. This in turn, activates intracellular 
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signalling mediators Smad 1, 5 and 8, which then associate with co-Smad 4, and 

together they translocate to the nucleus, where they act as transcription factors, 

stimulating alkaline phosphatase activity and ultimately bone formation (Feng and 

Derynck 2005, Massague, Seoane et al. 2005, de Gorter and ten Dijke 2013). 

 

1.6.2.3 TGF-β PATHWAY 

TGF-β signalling is involved in the proliferation and differentiation of numerous cell 

types, including chondrocytes and osteoblasts. The signalling mechanism is similar to 

BMPs, but is mediated by Smad 2 and 3 factors (Feng and Derynck 2005, Massague, 

Seoane et al. 2005). Smad3 is able to greatly increase ALP activity in osteoblastic cells 

(MC3T3) in vitro, as well as type I procollagen and OPN (Sowa, Kaji et al. 2002).  

 

1.6.2.4 WNT PATHWAY 

The WNT pathway regulates bone mass and influences osteoblast differentiation (Wang, 

Li et al. 2014).  WNTs are glycoproteins which signal via membrane receptors to β-

catenin. In normal conditions, β-catenin forms a complex with adenomatous polyposis 

coli (APC), axin, glycogen synthase kinase 3 (GSK3) and casein kinase 1 (CK1). The 

presence of WNT causes dissociation of this complex, which releases β-catenin into the 

cytoplasm and translocates to the nucleus, where it affects expression of proteins such 

as ALP. This pathway is essential for the transition of mesenchymal cells to an 

osteoblastic phenotype and thus, bone formation (de Gorter and ten Dijke 2013). 

Disruption of WNT signalling is linked to osteoporosis (Canalis 2013) and deletion of β-

catenin causes osteochondral progenitors to differentiate into a chondrocytic lineage as 
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opposed to osteoblastic (Day, Guo et al. 2005). Moreover, ectopic WNT signalling 

enhances osteoblastic differentiation and suppresses chondrocyte formation (Day, Guo 

et al. 2005). Importantly, the WNT signalling pathway plays an essential role in 

osteocytes (Bonewald and Johnson 2008), where it is believed to allow osteocytes to 

signal information on mechanical loading to the cells on the bone surface. Osteocyte-

deficient β-catenin deficient mice show progressive bone loss in the appendicular and 

axial skeleton (Kramer, Halleux et al. 2010) and mutations in SOST, the gene encoding 

sclerostin, which is produced by osteocytes and acts as an antagonist of WNT, lead to 

the rare Van Buchem disease and sclerosteosis (Semenov, Tamai et al. 2005, ten Dijke, 

Krause et al. 2008), which are characterised by abnormally high bone mass.  

 

1.6.2.5 PTH PATHWAY 

The parathyroid hormone (PTH) can have both anabolic and catabolic effects on bone 

formation and appear to vary with the mode of administration. For example, 

intermittent parathyroid hormone therapy leads to increased bone mass by conversion 

of the quiescent lining cells to active osteoblasts (Kim, Pajevic et al. 2012), and by 

reducing sclerostin levels, thereby allowing WNT-driven bone formation (Keller and 

Kneissel 2005); whereas continuous PTH administration leads to greater bone 

resorption (Tam, Heersche et al. 1982, Neer, Arnaud et al. 2001). Homozygous 

inactivating mutations in the PTH or PTH related peptide receptor lead to the lethal 

genetic disorder known as Blomstrand chondrodysplasia (Zhang, Jobert et al. 1998). 
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1.7 FORMATION OF OSTEOCLASTS 

Osteoclasts are exclusively bone-resorptive cells, which derive from bone macrophage 

lineages (Suda, Takahashi et al. 1999). Osteoclastogenesis take place under the action of 

two important cytokines, the receptor activator of nuclear factor kB ligand (RANKL), a 

member of the tumour necrosis factor (TNF) superfamily, which is crucial for osteoclast 

formation (Boyle, Simonet et al. 2003); and the macrophage-colony stimulating factor 

(M-CSF/CSF-1), which influences proliferation and differentiation (Pixley and Stanley 

2004). These cytokines exist as membrane bound, secreted by T cells, and soluble 

forms, secreted by bone marrow stromal cells and osteoblasts and therefore, the 

initiation of osteoclastogenesis requires the presence and activity of bone residing cells 

(Ross 2013). However, it has been recently shown that the mature bone cells, 

osteocytes are the major producers of RANKL in vivo, as mice with osteocytes deficient 

for RANKL show an osteopetrotic phenotype (Nakashima, Hayashi et al. 2011) (see 1.1.2 

Adaptation of Bones to Different Environments and 1.65 Osteocyte control of bone 

remodelling). 

Mutations in the genes responsible for proper osteoclast formation (genes TNFSF11 and 

TNFRSF11A) and proper resorptive function of these cells (defects in the chloride 

channels that modulate osteoclast acid secretion) (TCIRG1, CLCN7, OSTM1, SNX10, 

PLEKHM1) (Sobacchi, Schulz et al. 2013) have also been linked to osteopetrosis.  At the 

opposite end of the spectrum, RANKL overactivation leads to osteolytic bone disease 

(Wittrant, Théoleyre et al. 2004) and RANKL production by osteocytes and B 

lymphocytes is required for bone loss caused by estrogen decline at menopause 

(Fujiwara, Piemontese et al. 2016). 
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1.7.1 OSTEOCYTES 

Aside from the osteoblasts which constitute around 4-6% of the cells in bone, and the 

osteoclasts, which represent 1-2% of the total cell population, 90-95% of the cells in 

bone are actually osteocytes, the mature bone cells, which are terminally differentiated 

osteoblasts that play an essential role in mechano-sensing and orchestrating the bone 

remodelling process.  They are also the longest-living bone cells, with a life span of 

around 25 years (Franz-Odendaal, Hall et al. 2006), where they live entrapped within 

15-20 μm lacunae, in a highly mineralised matrix. For a long time, due to their 

localisation and the inability to isolate them, they were considered passive cells and 

their functions were poorly defined. Over the recent years, we have become more aware 

of the essential role they play in many physiological processes (Bonewald 2011).  

As mentioned above, evidence has recently emerged which shows that osteocytes are 

essential in regulating phosphate homeostasis, by secreting into the circulation the 

fibroblast growth factor 23 (FGF23), acting as mini ‘endocrine glands’ (Dallas, Prideaux 

et al. 2013).  Therefore, abnormalities in these cells may contribute towards several 

bone diseases, including bone fragility induced by corticoids and osteoporosis 

(Bonewald 2011, Bonewald 2013).  

They also perform a mechanical sensing function, which is permitted by their strategic, 

regular arrangement in the lacuno-canalicular system (see Figure 8), containing 

dendritic processes which extend to the bone surface and to the marrow. These events 

are still not fully characterised, and this section will summarise the current state of 

knowledge.  

Osteocytes form from the terminal differentiation of osteoblastic cells derived from a 

bone marrow lineage. Following ossification, osteoblasts can become embedded in their 
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own osteoid, becoming osteocytes, they can become quiescent bone lining cells or can 

undergo apoptosis (Jilka, Weinstein et al. 1998). The genetic mechanisms controlling 

the fate of these cells is still unknown. Several recent studies in osteocyte-like cell lines 

(IDG-SW3 and MLO-Y4) indicated changes in gene expression involving the hedgehog 

signalling pathway and a desensitisation to the vitamin D3 hormone (St John, Bishop et 

al. 2014) and a role in vitamin K in promoting differentiation (Atkins, Welldon et al. 

2009). 

The mechanism by which osteocytes become entrapped in the matrix is also unknown, 

although several authors (Franz-Odendaal, Hall et al. 2006) suggested a progressive 

embedding mechanism in which a population of osteoblasts on the surface of bone slow 

down the production of matrix relative to adjacent cells, which become buried in the 

matrix (Dallas and Bonewald 2010).  Although some authors consider this event a 

passive matrix embedding process (Nefussi, Sautier et al. 1991), other researchers 

believe this is an active and invasive process that requires matrix degradation and 

cleavage of collagen under the action of MT1-MMP for the formation of lacunar and 

canalicular structures and maintenance of an osteocytic phenotype, as mice deficient for 

this metalloproteinase develop osteocytes without processes and which are unable to 

degrade collagen (Holmbeck, Bianco et al. 2005). Moreover, mice resistant to collagen I 

degradation show osteocytic and osteoblastic death and an increase in bone mass in a 

similar way caused by PTH in wild type mice (Zhao, Byrne et al. 2000).  

Osteoid osteocytes actively produce and calcify their matrix (Bonewald 2013) and 

shrink in size by 30% from the osteoblastic phase during the formation of projections 

and by 70% when they have become fully mature (Bonewald 2013).  
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Their characteristic genetic markers have been identified rather recently, with low 

alkaline phosphatase (ALP) expression, high CD44 linked to E11 (Hughes, Salter et al. 

1994), E11/GP38/Podoplanin involved in early embedding and dendrite formation and 

increases with mechanical load (Zhang, Barragan-Adjemian et al. 2006); dentin matrix 

protein 1 (DMP 1) (Toyosawa, Shintani et al. 2001) and phosphate-regulating neutral 

endopeptidase on chromosome X (PHEX) (Westbroek, De Rooij et al. 2002, Plotkin and 

Bellido 2016), expressed in both early and late osteocytes, and support phosphate 

metabolism and mineralisation; elevated FGF23 in early and mature osteocytes induces 

hypophosphatemia (Bonewald and Wacker 2013); and sclerostin (SOST) and ORP150, 

expressed in mature osteocytes inhibit bone formation and protect from hypoxia, 

respectively (Poole, van Bezooijen et al. 2005, Guo, Keightley et al. 2010). 

 

1.7.2 OSTEOCYTE CONTROL OF BONE REMODELLING  

The mature skeleton of mammals, although appearing mechanically inert, is 

continuously maintained through the well-synchronised activity of osteoblasts and 

osteoclasts, termed remodelling units and with the input of the mature bone cells, 

osteocytes. These processes are temporally and spatially coupled and so when 

dysregulation in these functions take place, abnormal changes in bone mass take place. 

In the adult skeleton, bone remodelling takes place at the surface of both the periosteum 

and endosteum (the thin connective tissue lining of the internal part of bones). The 

mass of forming bone is maintained constant, an indication that the rates of bone 

production and removal are approximately equal. However, there are regional 

differences, for example in the femur, where the distal part is remodelled every 5-6 

months, whereas the shaft is processed much less frequently (Marieb and Hoehn 2010). 
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Evidence has accumulated over the past years which indicated that osteocytes play a 

major role in bone deposition and resorption. Growth medium from the osteocytic line 

MLO-Y4 can promote proliferation of MSCs and increase the expression of ALP and OC 

(Heino, Hentunen et al. 2004) as well as inhibiting resorption by osteoclasts (Heino, 

Hentunen et al. 2002). Moreover, these cells are able to support osteoclast formation in 

the absence of any exogenous osteotropic factors and express RANKL on their surface 

(Zhao, Zhang et al. 2002). The viability of osteocytes is necessary to prevent the loss of 

bone mass, as shown in a study in mice where osteocyte necrosis was induced by 

DMP1-directed diphtheria infection, causing osteoclast activation, osteoporosis-like 

effects and a decrease in mechanotransduction, indicating that the osteocyte control of 

osteoblasts and osteoclasts is mechanically-induced (Tatsumi, Ishii et al. 2007), 

something that will be discussed in section 1.7.3 - Mechanotransduction.   
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1.8 TRANSLATION OF MECHANICAL FORCES 

 

1.8.1 THE LOWER LIMBS: THE FEMURS 

The lower limbs of most species, highlighted in Figure 1.2, are subjected to exceptional 

forces during locomotion. In humans, they support the weight of the erect body and as 

such, are much thicker and stronger compared to upper limb bones.  

Femoral bones are the single bones comprising the upper parts of the leg in most 

species of vertebrates. In humans, femurs are the largest, strongest and longest bones in 

the skeletal system. They are able to resist significant loading stress during intense 

exercise, reaching up to 280 kg/cm2. Lengthwise, they average approximately 25% of a 

person’s height (Marieb and Hoehn 2010). 

From an anatomical perspective, femurs articulate with the hip bones proximally and 

continue medially towards the knee. As mentioned at the start of this chapter, this 

design allows the knee joints to be closer to the body’s centre of gravity and as such, the 

body is better balanced during upright positions. Gender differences exist in the medial 

course of the femoral bones, this geometry being more pronounced in females due to 

their wider pelvic area (arch is approximately 30 degrees broader), and this is believed 

to contribute to a greater incidence in knee problems, particularly in female athletes 

(Boling, Padua et al. 2010). 

As discussed in previous chapters, the force of gravity and muscle pull on the bones 

represent two stressors which influence bone formation. According to Wolff’s law, 

which was developed by German anatomist and surgeon Julius Wolff in the 19th century,  

 the response of bones to mechanical stress is proportional to the load placed on them 

and as such, the anatomy of bones directly influences local changes (Wolff, Maquet et al. 
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1986). This is particularly obvious with the femoral bones, as body weight transmitted 

to the femoral head bends the bone on one side, causing great compression. The 

internal trabecular structure functions as an arch, which transfers the compressive load 

to the femoral shaft (Rudman, Aspden et al. 2006). For this reason, bones are thickest 

centrally (mid-diaphysis), where compression and tension stresses are the greatest.  

Compression and tensile forces cancel each other out towards the centre of the bone 

(Figure 1.12) and hence the stress is minimal internally. Because less bone material is 

needed, the central portion of bones is hollow and filled with spongy bone to minimise 

mass (Marieb and Hoehn 2010).  

 

 

 

 

 

 

 

 



 
 
 
 

 47 

 

 

 

 

Figure 1.12 | Bending stress in femoral bones is distributed according to anatomical design. The weight of the upper body is 

transmitted to the femoral head, articulated to the hip. These compression (bending) forces act primarily along the dotted line, 

creating tensile (stretching) forces on one side (blue arrows) and compression on the other side (red arrows). These forces cancel 

each other internally, with very little stress being experienced in this region (white dot).  Schematic inspired from (Marieb and 

Hoehn 2010). Original image. Image of the femoral section acquired from a skeletal specimen at the Natural History Museum, South 

Kensington, London. 
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1.8.2 THE UPPER LIMBS 

The set of observations described by Wolff centuries ago are particularly noticeable in 

handedness (strong right or left-handed individuals) and in sport players who 

undertake vigorous exercise (Ireland, Degens et al. 2015), who show differences in bone 

thickness in the dominant arm. For example, in tennis players, the serving arm bones 

become thicker and show a higher bone mineral content (BMC) (Figure 1.13) (Bass, 

Saxon et al. 2002, Ireland, Maden-Wilkinson et al. 2013, Ireland, Maden-Wilkinson et al. 

2014). Humeral bone cross sectional areas (CSA) have been reported to expand up to 23 

± 12 % (Ireland, Maden-Wilkinson et al. 2014) and this enlargement appears to be a 

cortical one as opposed to a medullary one (Kontulainen, Sievänen et al. 2003), with 

cortical areas reported to expand as much as 7-11% (Bass, Saxon et al. 2002) 

particularly in the distal portions compered to central areas. Multiple tomographic and 

MRI studies indicated that these differences persist in long-term and take place in a 

similar fashion  irrespective of gender (Bass, Saxon et al. 2002), age (Ireland, Maden-

Wilkinson et al. 2014) or starting age (Ireland, Maden-Wilkinson et al. 2014). 

As described in sections 1.1.2 and 1.6.3, this type of increase in bone density and 

volume takes place in other species as well during re-adaptation to a higher-loading 

regime, but can also happen pathologically, in autosomal dominant and recessive 

conditions known as osteosclerosis and osteopetrosis, also known as ‘marble bone 

disease’ (Huang and Ogawa 2010). 
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Figure 1.13 | Adaptation of dominant hand to increased loading forces. Cross-sectional differences in the arms of tennis players 

following prolonged periods of intense exercise. Bones of the racquet arm increase in strength and rigidity and the effect is more 

pronounced in players who started this type of exercise early in life. Diagram is based on CT/MRI cross-sectional appearance of arm 

bones and inspired by (Marieb and Hoehn 2010). 
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1.8.3 MECHANOTRANSDUCTION 

Mechanical strain is required for the formation of post-natal bone, but not the pre-natal 

skeleton. Bone mass depends on peak applied strain (Rubin 1984) and studies in rats 

showed that the rate of new bone formation is related to the frequency of loading 

(Robling, Hinant et al. 2002). However, a loading regime containing rest intervals is 

more beneficial for increasing bone formation and strength is maximised if the applied 

loading forces are shorter and more frequent (Robling, Hinant et al. 2002).  

The mechanism by which these mechanical signals are received and interpreted by cells 

are still a subject of great debate, although it is widely accepted that a process of 

sensory transduction is involved, which converts mechanical signals into electro-

chemical information and directs remodelling. Moreover, the amplitude of electrical 

potentials as a result of stress is related to the frequency and scale of bony deformation, 

while polarity is determined by the direction of bending (Bassett and Becker 1962). In 

the 1960s, Bassett and colleagues performed a series of experiments on excised and in 

vivo bones and determined that the areas which underwent compression developed 

negative potentials with respect to other regions. As a result of different charges 

observed in tensed areas, it is believed that these electrical impulses control the process 

of remodelling (Marieb and Hoehn 2010) and this is the basis for many electromagnetic 

therapies designed to accelerate bone repair and fracture healing, representing a 500 

million $ market in the US (Mollon, da Silva et al. 2008). 

The same group proposed that collagenous matrix-inorganic crystal piezoelectricity was 

a mechanism through which osteocytic and osteoblastic cells perceive loading forces 

and areas of greater stress (Bassett and Becker 1962, Ahn and Grodzinsky 2009) and 

was based on the principle that applied mechanical deformation on femoral bones (and 
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the apatite-collagen junctions) creates local gradients in electric potential. They 

proposed that these electrical signals propagate along the collagen fibres and thus 

provide an osteogenic stimulus locally by affecting differential cellular responses and 

changing the orientation of the newly forming collagen, ultimately allowing the bone to 

withstand the greater forces experienced. Interestingly, these effects were absent when 

the inorganic component of bones was removed (Bassett and Becker 1962, Bassett, 

Pawluk et al. 1964).  

This theory was later substituted by other theories, such as streaming potential and 

fluid-generated shear stress (Bonewald 2006, Wittkowske, Reilly et al. 2016).  

Theoretical and in vitro models show that the flow of bone fluid is dependent upon 

extravascular pressure and applied cyclic loading of osteocytes (Weinbaum, Cowin et al. 

1994). The forces that bones are subjected to during walking or standing cause fluid 

flow via canaliculi connecting osteocytes, which create waves of shear stress and 

deform the cell membranes and cilia (flagellar-like structures extending from the body 

to the ECM) (Malone, Anderson et al. 2007, Temiyasathit and Jacobs 2010). These 

stresses on in vivo membranes have been estimated to be range from 8-30 dynes/cm3 

(Weinbaum, Cowin et al. 1994) and in vitro they have been estimated to be around 5 Pa  

(Price, Zhou et al. 2011, Bonewald 2013). Indeed, more recent evidence has confirmed 

the link between osteocyte response to compressive mechanical forces and control of 

both osteoclasts and bone surface cells (osteoblasts and bone lining cells), to which they 

are connected through processes containing gap junctions, most importantly Cx43. They 

are able to communicate with these cells either directly, through these channels, or by 

releasing short-distance metabolites such as prostaglandin PGE2, ATP and nitric oxide 
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into the extracellular fluid (Palazzini, Palumbo et al. 1998, Kamioka, Ishihara et al. 2007, 

Schaffler, Cheung et al. 2014, Takano-Yamamoto 2014).  
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1.9 BONE FRACTURE REPAIR 

The process of skeletal regeneration is essential to maintain the quality and 

functionality of bones. There has been a great amount of research involved in 

understanding bone repair following injury, in both human subjects and animal models, 

in order to develop more efficient measures to accelerate healing, prevent fracture non-

union and many other bone complications.  

The final purpose of all developmental events is the formation of a tissue which can 

provide an adequate morphological structure that can allow it to carry out the 

physiological function it is designed for. In the case of fracture healing, the regeneration 

process initiated following injury requires a complex set of processes meant to re-

establish not only the initial geometry but also the biomechanical capabilities of the 

damaged structure (Gerstenfeld, Cullinane et al. 2003). 

 

1.9.1 CELLULAR EVENTS 

The bone healing process involves different cell types, including inflammatory cells, 

osteoprogenitor, chondrocytes and pre-chondrocytes, osteoblasts and osteoclasts. 

The healing process is common across different vertebrate groups, but takes place more 

rapidly in small rodents such as mice and rats (Zuscik 2013). In all cases, the process 

involves a combination of intramembranous and endochondral ossification (Figure 

1.14) (Gerstenfeld, Cullinane et al. 2003, Marsell and Einhorn 2011, Einhorn and 

Gerstenfeld 2015). 

The initial mechanical trauma results in bleeding and the formation of a haematoma, 

which surrounds the fracture site. Several cytokines are involved in the process, 
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including tumour necrosis factor-α (TNF-α) and interleukins (IL) IL1, IL6, IL11 and IL18 

which control the initiation and modulation of the immune response (Gerstenfeld, 

Cullinane et al. 2003). 

These cytokines are believed to be involved in the generation of secondary responses 

involving recruitment of mesenchymal stromal cells, which may derive from the 

marrow space adjacent to the damaged cortical bone (Matsumoto, Mifune et al. 2008, 

Ueno, Uchida et al. 2011), the surrounding muscular tissue (Glass, Chan et al. 2011, 

Henrotin 2011), the periosteum (Zhang, Naik A Fau - Xie et al. 2005, Ushiku, Adams et 

al. 2010) and the systemic circulation (Granero-Moltó, Weis et al. 2009).  

 

1.9.2 THE ROLE OF PERIOSTEAL CELLS IN FRACTURE REPAIR 

The primary source of cells that enters the callus is the periosteal population of cells 

from the cambium layer, which has the ability to differentiate into both chondrocytes 

and osteoblasts (Fang and Hall 1996, Li, Amizuka et al. 2004). Intramembranous bone 

formation always takes place close to the bone fracture ends (Figure 1.14d), where 

vasculature is preserved, whereas the site furthest away from the fracture, where 

oxygen tension is the lowest due to disrupted blood supply, takes place via an 

endochondral route, consistent with what is seen during bone formation (Mackie, 

Ahmed et al. 2008, Zuscik 2013). Cells closest to the fracture site differentiate into 

osteoblasts, which secrete collagenous matrix and lay down mineral without a cartilage 

intermediate. The most central cells give rise to cartilage and recapitulate several stages 

of chondrocyte maturation in the growth plate (Claes, Recknagel et al. 2012).  The 

forming calcified cartilage turns into a template for the new bone formation and 

terminally differentiated chondrocytes contribute to the mineralisation of the tissue 
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(Gerstenfeld, Cullinane et al. 2003). Ultimately, they undergo apoptosis and a process of 

osteoclast-mediated resorption takes place under the action of M-CSF, RANKL and 

osteoprotegerin (OPG) (Kon, Cho et al. 2001). 

The mechanical properties of the forming bone depend on the stability of the fracture, 

with stabilised fractures showing little evidence for cartilage, whereas non-stabilised 

fractures produce high amounts of cartilage (Thompson, Miclau et al. 2002).  
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Figure 1.14 | Schematic of the tissue morphogenesis during fracture repair. a, The outside layer of long bones (periosteum) is a 

well-vascularised tissue. b, Trauma during fracture disrupts the blood supply at the site, which leads to the formation of a blood clot, 

also known as hematoma (c). Periosteal cells located inside the deeper, cambium layer, migrate to the site of injury (d) where they 

differentiate into osteoblasts and give rise to intramembranous bone close to the bony ends, where blood supply is still active. The 

central portion of the hematoma is replaced with endochondral bone, which allows central cells, furthest to the blood supply, to 

survive the hypoxic conditions. Cartilage formation continues (e) and blood vessels invade this structure until the initial hematoma 

is completely replaced (f). Following maturation, the cartilage template becomes progressively replaced with intramembranous 

bone (g-h), which is ultimately conversed under the action of osteoblasts and osteoclasts into lamellar bone and the initial 

geometric shape and function of the fractured bone is restored.  
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1.10 THE EFFECT OF UNLOADING ON BONES  

The microgravity environment in Space is an excellent model to study the effect of the 

absence of gravitational forces and muscle pull on the bones. Space exploration during 

the past 50 years has provided valuable clues into the pathological effects of prolonged 

periods of unloading on the skeletal system. These consequences are profound and are 

characterised by a marked bone loss and increased bone resorption, similar to clinical 

conditions such as osteoporosis, and are accompanied by hypercalcemia and 

hypercalciuria (Lau and Guo 2011).  

These physiological changes, aimed to adapt the skeletal system to the new loading 

regime, constitute a major barrier for potential interplanetary travel. This is because the 

major motivation behind sending human crews in planetary explorations compared to 

robotic probes is their potential to perform complex physical tasks and choose research 

spots, as well as to handle complex research tools. However, the environment on 

planets such as Mars is far more challenging than on Earth, requiring a good skeletal 

health. Whilst the gravity of Mars is approximately one third of that of Earth’s, thus 

providing some degree of loading, the landscape contains geographical structures such 

as canyons and mountains which are far wider and higher. This would require a 

potential crew to be of superior physical fitness in order to perform such strenuous 

exercise (Buckey 2006, Barratt and Pool 2008).   

Whilst the technology to return to the Moon and for a journey to Mars has been 

available for some time, the level of bone loss during such long, strategic missions is still 

being investigated, as it is directly proportional to the time spent in microgravity. 

Although the journey to Mars would only last approximately 6 months, to allow for the 

return journey, astronauts would have to wait for another period of planetary 
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alignment that would allow for a low-energy transfer between the two planets. This 

would imply a further 1-1.5 years spent on the planetary surface, and therefore a total 

journey time of approximately 3 years (Buckey 2006, Clément 2007). The severe bone 

loss during that period could lead to increased susceptibility to contraction damage and 

therefore potentially compromise the success of the mission. It could also make the 

bones too weak to withstand the intense re-entry forces and re-exposure to the Earth 

gravity, which could potentially have fatal consequences.  

 

1.10.1 THE ‘ACCELERATED AGING’ EFFECT OF BONE UNLOADING  

In space, very little muscular force is required to initiate movement, which is 

accomplished mainly with the help of the upper part of the body and limbs and for this 

reason, the muscles and bones of the upper part are less affected than the ones in the 

hip and legs, which do not receive the powerful muscle contractions that are usually 

required on Earth during walking or standing and these are mainly used for stability 

(Clément 2007). Similar effects can be observed on Earth in the elderly and in 

conditions such as primary and secondary osteoporosis (Lau and Guo 2011), as well as 

in paraplegic patients following injury of the CNS or peripheral nerves, in disuse 

osteoporosis (Houde, Schulz et al. 1995, del Puente, Pappone et al. 1996, Demirbag, 

Ozdemir et al. 2005). 

Studies have reported that on average, astronauts lose between 1-1.6% of bone mass 

per month (Surhone, Timpledon et al. 2010). The most affected bones are those of the 

vertebra, pelvis and the femoral neck and trochanter, which are essential in 

counteracting and distributing the force of gravity. 
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The monthly losses in proximal femur per month are very similar to the yearly bone 

loss in post-menopausal osteoporotic women (Cavanagh, Licata et al. 2005, Lane 2006).  

Initial studies on the MIR space station showed that the rate of bone loss following 6 

month missions can reach 4.5% in trabecular bone and 2.94% in cortical bone in the 

tibia, whereas slight increases in the bones of the arm (radius) were recorded, with a 

0.2% increase in trabecular bone and 0.51% increase in cancellous bone (Collet, 

Uebelhart et al. 1997). Studies by Lang and colleagues (Lang, LeBlanc et al. 2004) 

showed that the spinal volumetric bone mineral density (vBMD) was reduced at an 

average rate of 0.9% and 0.7% in trabecular and cortical bone, respectively, during 4-6 

months of spaceflight, whereas the hip integral, cortical and trabecular bone density 

was lost at a rate of 1.2-1.5%/month, 0.4-0.5%/month and 2.2-2.7%/month 

respectively.  

In all studies, bigger losses appear to happen in cancellous bone as opposed to cortical 

bone, which is a feature also seen in type I (postmenopausal) osteoporosis (Iwamoto, 

Takeda et al. 2005, Finkelstein, Brockwell et al. 2008).  

Calcium supplementation does not affect bone homeostasis, but decreases the 

abnormally high serum levels (Iwamoto, Takeda et al. 2005). As such, a regime of 

exercise and frequent loading is performed in microgravity in order to slow down the 

rate of bone loss (Cavanagh, Licata et al. 2005).  

When prolonged bed-rest studies (33 weeks) were performed on healthy individuals, a 

decrease in bone mineral content ranging between 25% and 44.5% were reported 

(Donaldson, Hulley et al. 1970). 

In simulated microgravity using ground-based rodent models, where hind-limb 

unloading using tail suspension was used, a preferential decrease in periosteal bone 
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mineral mass following 90 days of unloading was reported (LeBlanc, Marsh et al. 1985, 

Sessions, Halloran et al. 1989).  

 

1.10.2 THE EFFECT OF UNLOADING ON BONE CELLS 

The weightlessness experienced by bones in space leads to structural and molecular 

changes meant to stabilise the body to the reduced loading introduced by the micro-G 

environment. Observations from both spaceflight studies and ground-based analogues 

have provided significant amounts of evidence on the cellular processes underlying the 

significant bone loss.  

In C5BL/6J mice which were flown for 15 days on the International Space Station, 

dramatic losses in pelvic bone mass were observed. These changes have been found to 

occur due to an increase in osteoclast-mediated bone resorption, but also due to a 

process of osteocytic osteolysis, as well as a cell cycle arrest in osteoblasts. (Vico, 

Hinsenkamp et al. 2001, Tamma, Colaianni et al. 2009, Blaber, Dvorochkin et al. 2013). 

The decrease in bone forming capacity as well as the increased bone breakdown and 

decrease in osteocytic ability to modulate these processes, resulted in major imbalances 

in bone tissue formation during unloading.  

Recent work from Nabavi and colleagues (Nabavi, Khandani et al. 2011) showed a 

decrease in cellular integrity in space flown osteoblasts, with fragmented or condensed 

nuclei, shorter and wavier microtubules, fewer focal adhesions, thinner cortical actin 

and a high number of stress fibres. These effects on the nucleus and cytoskeleton had 

been previously observed in space-flown MC3T3-E1 osteoblasts, but a reduced growth 

activation and glucose consumption were also observed (Hughes-Fulford and Lewis 

1996). 
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1.11 PATHOLOGICAL BONE FORMATION 

As described in the sections above, bone is a tissue that has evolved to counteract the 

changing mechanical and environmental conditions. Different pathways controlled by 

an accurately synchronised control system allow the deposition and resorption of 

mineralised tissue to meet the physiological demands. However, maladaptive ectopic 

ossification can occur in bone and other types of tissues in response to altered genetic 

expression, injury or extreme mechanical insult. This process is known as heterotopic 

ossification (HO) and is best defined as an ectopic bone formation in bone and extra-

skeletal soft tissues that would not calcify under normal physiological circumstances 

(Isaacson, Brown et al. , Isaacson, Stinstra et al. 2010). The underlying manifestations 

vary greatly in every condition and as such the underlying causes are still a subject of 

debate. Section 1.6 Cellular and Cytopathological events in bone formation provided an 

introduction to the cellular mechanisms underlying the major pathways in bone 

formation and the clinical consequences that take place following dysregulation of these 

mechanisms. This section aims to demonstrate the complexity of heterotopic bone 

formation by providing representative examples of the clinical appearance of these 

ossifications.  
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1.11.1 ABNORMAL BONE CONDITIONS 

Pathological ossification is a rather frequently encountered condition, which can occur 

at specific and/or multiple sites in the body, including the subcutaneous tissue, tendons 

and ligaments, skeletal muscle and the periarticular regions or can extend from bones 

into the surrounding tissues (Isaacson, Stinstra et al. 2010).  

Heterotopic bone can develop in various clinical contexts, most noticeably in genetic, 

post-traumatic and post-surgical circumstances. Interestingly, it is frequently 

encountered in individuals who have experienced traumatic brain injury (TBI) or spinal 

cord injury (SCI) (Cipriano, Pill et al. 2009, Sullivan, Torres et al. 2013). These forms of 

neurologic injury are typically followed by bone formation in multiple sites, highlighting 

a strong neurogenic component of the disease (McCarthy and Sundaram 2005, Vanden 

Bossche and Vanderstraeten 2005). When heterotopic ossification is triggered by 

neurogenic causes, the most common sites for bone formation are the periarticular 

sites, mostly affecting the joints of the hip, shoulder and elbow. It appears that 

ankylosing of the knee area rarely occurs following head injury, but it is the second 

most common place for HO formation following trauma to the spinal cord (Pape, 

Lehmann et al. 2001). 

The most common site for post-surgical HO formation is the pelvic bone following open-

reduction internal fixation surgery for fractures of the acetabulum. The hip is the second 

most affected area following total hip arthroplasty (THA) (Ahrengart 1991). Figure 1.18 

provides a similar example of ectopic bone formation in the acetabulum and 

surrounding area, as a result of osteoarthritis.  

Orthopaedic procedures of the knee, shoulders and elbows can also sometimes result in 

ectopic bone formation in the surrounding areas (Baird and Kang 2009).  
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The incidence of HO following surgical interventions like hip arthroplasty ranges 

between 16-53%, although it is reported that only a rather small number of patients (3-

7%) develop clinically significant manifestations. In contrast, the incidence of HO 

following neurologic trauma has been reported to be as high as 10-30% (Baird and 

Kang 2009).  

The ossification of soft tissues can also be encountered in degenerative conditions such 

as atherosclerosis, forming along vascular smooth muscle cells, as a secondary effect to 

other conditions such as diabetes and chronic kidney disease (CKD) (Hayden, Tyagi et 

al. 2005).  It also occurs in other conditions known as chondrocalcinosis (Caswell, 

Guilland-Cumming et al. 1983) forming in hyaline and/or fibrocartilage; in scoliosis 

(Mullaji, Upadhyay et al. 1994, Murphy and Mooney 2016) (Figure 1.15), and ankylosing 

spondylitis (McVeigh and Cairns 2006) (Figure 1.16) where it forms in intervertebral 

disks and in the sacroiliac joint, in diffuse idiopathic skeletal hyperostosis, (Atzeni, Sarzi-

Puttini et al. , Nascimento, Gatto et al. 2014) forming along the anterior longitudinal 

ligament of the spine; in as well as in osteogenic osteosarcomas of the femurs and tibias 

(Kumar, Barwar et al. 2014, Pan, Chan et al. 2014) (Figure 1.19).  

The ossification of soft tissues is a severely debilitating process. The damage associated 

with its formation in regions such as joints, major arteries and muscles can cause 

considerable loss of function, with additional manifestations including pain, stiffness 

and immobility and in some cases premature death (Balboni, Gobezie et al. 2006).  

The following sections will provide examples of the clinical manifestations in some of 

the most severe conditions.  
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1.11.2 OSSIFICATION OF THE SPINE 

Ossification of the spine can occur in various conditions, including scoliosis, ankylosing 

spondylitis and due to trauma associated with vertebral fracture; and the underlying 

causes are still poorly understood. Figures 1.15-1.17 present examples of clinical 

manifestations of these conditions.   

Both scoliosis and ankylosing spondylitis (AS) are characterised by a significant 

transformation of the vertebral disks and in the case of AS, the surrounding ligaments as 

well into mature bone (Figures 1.15 and 1.16, respectively). In both cases these ectopic 

ossifications cause severe disability due to deformations of the spine and the attached 

structures, such as ribs, diminishing the thoracic capacity and causing immobilisation 

(Figure 1.15 a-c). Interestingly, longitudinal sections through an ankylosed spine 

(presented in Figure 1.16e) reveal that the new formation of bone connecting the 

vertebral bodies is mainly composed of trabecular bone, with compact bone 

surrounding the outer edges of the vertebral discs, as encountered in long bones.  

The underlying causes of both AS and scoliosis are still unknown. It is believed that a 

combination of genetic and environmental factors are involved. Exome sequencing has 

recently identified a missense variant in the HSPG2 gene in scoliosis, coding for the 

heparan sulphate proteoglycan 2 (perlecan), a ubiquitous multifunctional ECM protein 

(Baschal, Wethey et al. 2014). Buchan and colleagues have recently demonstrated using 

the same technique that variations in the fibrillin-1 and 2 genes (FBN1 and FBN2) are 

most commonly associated with adolescent scoliosis (Buchan, Alvarado et al. 2014). In 

ankylosing spondylitis, several abnormal gene variants have been recently found, 

including ERAP1, HLA-B27, RUNX3 and ILI213 (Evans, Spencer et al. 2011).  
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Figure 1.17 presents an example of heterotopic bone forming as a result of fracture and 

vertebral dislocation in the lumbar area (a), with a major bone growth extending across 

the vertebra. Similarly, in secondary osteosarcoma of the spine (b-c), a mass of 

imperfectly ossified bone can be observed on the surface of the vertebral bodies and 

under the periosteum, again supporting the role of this structure in heterotopic bone 

formations.  The mechanisms of ectopic bone formation following trauma will be 

discussed later in this chapter. 
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1.11.3 CONDITIONS WITH ABNORMAL BONE MASS DEPOSITION 

Several metabolic and cancerous disorders lead to abnormal ossification, characterised 

by a diminished or enhanced bone deposition. These include conditions such as Rickets, 

Paget’s disease, osteoarthritis, osteosarcomas, osteomyelitis and malunions of fractures. 

Figures 1.18-1.22 demonstrate the clinical manifestations of these conditions. 

Figure 1.18 presents an example of the hip and proximal femurs where ectopic bone has 

arisen around the femoral heads and inside the acetabulum as a result of osteoarthritis, 

massively impairing the hip joints. The underlying causes of this condition are still 

unknown (Koczy, Stoltny et al. 2009). As that junction is biomechanically essential for 

transferring the upper body weight to the lower limbs, movement is significantly 

impaired.  

 

 

 

 

Figure 1.18 | Ectopic ossification of the hip joints in osteoarthritis. Femoral bone heads and hip joints show ossification as a 

result of osteoarthritis. The femoral heads show thick, osteophytic collars and further ossification can be seen at the point of 

attachment, where the ligamentum teres is located. The acetabulum appeared re-modelled by osteophytic bony outgrowths, causing 

abnormal grooves in which the abnormal femoral heads fit. Original images. 
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Osteosarcomas of the upper and lower limb bones are the most common primary 

osseous malignancies (Kundu 2014) characterised by a significant deposition of mature 

bone, which emerges from the bone shafts and extends into the surrounding tissues 

(Figure 1.19). These bone masses can manifest as compact, dense bone (a), a mixture of 

trabecular and compact (b-c) or trabecular bone (d).  

Although the causes of these malignancies are still unknown, it is thought that point 

mutations affecting tumour suppressor genes such as p53 or retinoblastoma 

susceptibility gene (Rb) play a major role in the formation of the osteosarcomas (Miller, 

Aslo et al. 1996, Kong and Hansen 2009, Martin, Squire et al. 2012). 

 

 

 

 

Figure 1.19 | Osteosarcomas of the upper and lower limbs. a-b, Osteomas of the humeral bones. a, Presents a lobulated growth 

of very dense, cortical bone attached to a large part of the upper shaft. b, Longitudinal section through the upper part of a humerus, 

which has been invaded by a large tumour, composed of dense connective tissue. The original structure of the shaft is completely 

lost in the newly forming bone. c, Parosteal osteosarcoma of the tibia, situated between the metaphysis and upper diaphysis. The 

underlying tibial shaft is preserved. This type of osteosarcoma produces large quantities of mature bone without affecting the 

medullary cavity. d, Osteosarcoma of the lower part of the femur, extending from the articular surface upwards, causing significant 

destruction of the bone tissue. The cavity left behind shows a growth of spongy bone. Original images. 
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In conditions such as osteomyelitis, considerable bone infections are caused most 

frequently by Staphylococcus aureus (Calhoun, Manring et al. 2009). They affect mainly 

the long bones of the upper and lower limbs, where significant bone ‘collars’ grow from 

the periosteum of the original shaft, causing necrosis or entrapping the original bone 

(Figure 1.20). Interestingly, these structures always show cavities that are used to 

communicate with other tissues on the exterior. The condition is thought to arise 

following the significant bone necrosis and the formation of new bone from surviving 

fragments of the periosteum (Calhoun, Manring et al. 2009). Some researchers believe 

that this formation mimics the process of bone tumour formation (Huang, Wu et al. 

2013, Anagnostakos, Schmitt et al. 2014). 

 

 

Figure 1.20 | Osteomyelitis of the upper and lower limbs. a, Chronic osteomyelitis of the humerus where the whole shaft has undergone necrosis as 

a result of acute osteomyelitis and has been replaced by a hollow cylinder of new bone, which is significantly deformed and communicates with the 

exterior using several openings, or grooves. b, Acute osteomyelitis of the right humerus, showing necrosis of a significant part of its shaft, and forms a 

sequestrum which lies within an involucrum composed of dense bone growing from the periosteum. c, Chronic osteomyelitis of the femur, showing 

great amounts of new bone (involucrum), perforated by 3 large openings. At the top end, a sequestrum can be observed. d, Chronic osteomyelitis of the 

femur which has been divided sagitally. The shaft is greatly thickened, and the marrow cavity has been replaced with dense white bone. Original 

images. 
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Whilst in many long bone fractures the repair process is slow and may result in non-

union based on the severity and location of the injury as well as the degree of 

immobilisation (De Buren 1962)(Figure 1.21a presents an example of a fracture non-

union), in some cases mal-unions form around the broken bone ends to try and 

reconnect the original bone parts, irrespective of their spatial arrangement following 

injury. This can occur when considerable rotation or movement of these parts has taken 

place and no surgical intervention has been performed (Hillen and Eygendaal 2007). 

These bone masses can be considerable and are composed of both trabecular and 

cortical bone (Figure 1.21 b-d).  

Other conditions in which significant bone deformation takes place due to abnormal 

ossification are Rickets (Figure 1.22a) and Paget’s disease (Osteitis deformans) (b), 

where bones of the femur and tibia and fibula become significantly bent. Both 

conditions are characterised by abnormal mineralisation, which although triggered by 

different factors (impairment of Ca, P and Vitamin D metabolism in Rickets compared to 

excessive bone formation and breakdown and disorganised bone remodelling in Paget’s 

disease)(Roodman and Windle 2005, Holick 2006), the cortical bone tissue at the site of 

maximal bending becomes thicker in size in both conditions, highlighting the amazing 

plasticity of this tissue. 
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Figure 1.22 | Other conditions of abnormal bone deposition. a, Rickets. Longitudinal section through a tibia of an individual with 

the condition showing a significant deformation and a thickening of the cortical bone on the concave surface. b, Paget’s disease 

(Osteitis deformans). Longitudinal sections through the tibia and femoral bone. The femoral bone (right) shows a marked convexity 

and enlargement and is composed of porous bone, which has been deposited in patches. Compact bone is increased in thickness. 

Both tibia (left) and fibula show a similar appearance externally and internally to the femur. Original images. 
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1.11.4 CONGENITAL HETEROTOPIC OSSIFICATION  

Some of the most severe manifestations of HO are those caused by hereditary disorders 

such as Fibrodysplasia ossificans progressiva (FOP) and Progressive osseous heteroplasia 

(POH), where impaired regulation of bone morphogenic proteins (BMPs) leads to a 

severely debilitating and progressive post-natal ossification of muscles, tendons, 

ligaments, cutaneous and sub-cutaneous tissues (Kaplan, Craver et al. 1994, Glaser, 

Rocke et al. 1998, Vanden Bossche and Vanderstraeten 2005, Kaplan, Le Merrer et al. 

2008). Unlike FOP, which has been identified for more than a century ago, POH has only 

been recognized since 1994, when a new pattern of ossification was observed in a group 

of patients, which was characterized by ossification of primarily the cutaneous and 

subcutaneous tissue (Kaplan, Craver et al. 1994).  In genetic types of HO, bone formation 

can occur spontaneously but it is exacerbated by environmental factors such as minor 

traumas of the soft tissues (Cohen, Hahn et al. 1993).  

 

1.11.5 HO FOLLOWING MILITARY OPERATIONS 

Heterotopic ossification is also a condition which has recently emerged as a 

consequence of exposure to modern wartime combat devices, such as improvised 

explosive devices (IEDs). Over the recent years, extremity injuries caused by exposure 

to IEDs have led to very complex and challenging bone formations in the soft tissues 

surrounding the affected areas (Isaacson, Stinstra et al. 2010).  The complications 

associated with these ectopic bone formations have led towards considerable patient 

morbidity and loss of function, as well as significantly obstructing the use of prostheses 

following amputation (Potter, Burns et al. 2007, Potter, Forsberg et al. 2010, Alfieri, 

Forsberg et al. 2012). Unlike other acquired forms of HO or the rare genetic forms, the 
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prevalence of HO in combat-related injuries has been reported to be as high as 64%, 

thus making it one of the most devastating medical complications in the war-wounded 

population (Potter, Burns et al. 2007, Brown, Dharm-Datta et al. 2010, Potter, Forsberg 

et al. 2010, Alfieri, Forsberg et al. 2012). 

Whilst significant progress has been made recently in understanding the genetic 

mechanisms underlying the inherited forms of the disease, the aetiology of trauma and 

blast-induced heterotopic ossification remains largely unknown. These mechanisms will 

be described later in this chapter.  

 

1.11.6 MANAGEMENT AND PROPHYLAXIS OF HO 

Considerable effort has been directed towards understanding the fundamental 

mechanisms leading to heterotopic bone formation and the most effective ways of 

managing and preventing the recurrence of the condition. However, the lack of 

knowledge regarding early events in particular makes treatment and the development 

of effective compounds very difficult.  

Following the development of ectopic bone structures, surgical excision is the most 

effective intervention that allows the removal of the unwanted formations. However, 

surgical intervention is not possible in the prophylaxis of the hereditary forms, as the 

tissue trauma associated with surgery can cause further ossification at the site of 

operation (Connor and Evans 1982). 

Additional systemic therapy with pharmacological compounds such as NSAIDS 

(naproxen, indomethacin) is used to attenuate the inflammatory response that is 

thought to play a role in ossification and thus indirectly prevent further tissue 

mineralization in a wide range of pathologies including ankylosing spondylitis. 
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Localized radiation (Gy XRT) is used to prevent recurrence following surgery and it 

believed to interfere with the differentiation of pluripotent mesenchymal stem cells into 

bone precursor cells (Vanden Bossche and Vanderstraeten 2005, Cullen and Perera 

2009, Shore and Kaplan 2010). There are, however, major drawbacks with both drug 

and radiation therapies. Whilst continuous NSAID therapy causes side effects in the 

form of gastrointestinal bleeding, XRT radiation cannot be applied effectively in early 

stages as it requires the physician to predict the area which will undergo ossification 

(Popovic, Agarwal et al. 2014, Mourad, Packianathan et al. 2015). Radiation 

administration is also impeded by the open-wound nature of injuries, delaying wound 

healing and also presenting the risk of post-radiation cancer. These effects limit the 

group of treatable patients to either those individuals who do not exhibit visible 

traumatic wounds or an apparent soft tissue compromise, and those who have easily 

detectable ectopic bone zones.   

 

1.11.7 PHARMACOLOGICAL TARGETING OF HO  

Several pharmacological agents are used to manage HO, including bisphosphonates. 

These are enzyme-resistant analogues of pyrophosphates which are given orally and 

intravenously in a range of malignancies. Bisphosphonates are however poorly 

absorbed and they also chemically interact with compounds present in some types of 

foods, such as dairy products, having a reduced potential. It is thought that 

approximately 50% of the drugs accumulate at the site of interest, with the remaining 

free compounds being excreted unchanged by the kidneys. Etidronate is an example of a 

first-generation bisphosphonate which has been used in the prevention and 

management of HO (Banovac, Gonzalez et al. 1993, Banovac, Gonzalez et al. 1997, 
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Banovac 2000). Etidronate has been reported to act by inhibiting calcium phosphate 

precipitation, thus delaying hydroxyapatite crystal aggregation. It is still debated 

whether the inhibitory effects of bisphosphonates on HO are limited to the 

crystallization process or if they have an effect on the matrix formation as well (Vanden 

Bossche and Vanderstraeten 2005). Other bisphosphonates including pamidronate, 

neridronate and zoledronate are used to treat conditions such as Paget’s disease, 

osteogenesis imperfecta and ankylosing spondylitis (Filipponi, Cristallini et al. 1998, 

Merlotti, Gennari et al. 2007, Toussirot and Wendling 2007, Viapiana, Gatti et al. 2014). 

Novel compounds have recently emerged and have successfully been used to stop the 

progression of genetic and acquired HO in animal models by interacting with the 

cartilage formation pathway that precedes bone deposition, thus removing the template 

base on which mineral can be deposited and built on. These compounds are known as 

retinoic acid receptor gamma agonists (RAR-γ) (Kaplan and Shore 2011, Shimono, Tung 

et al. 2011) and will be discussed further at a later stage in this thesis, in Chapter IX, 

Administration of ossification-inhibiting compounds. 

In conclusion, the choices of treatment of HO are of limited efficacy and this is a result of 

the gap in understanding the fundamental processes occurring in the initial stages of the 

disease. The development of advanced prophylactic treatments for HO will require a 

more complete understanding of the cellular mechanisms that contribute to this 

disease. 
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1.11.8 MICRO-STRUCTURAL FEATURES OF ECTOPIC BONE 

The morphology of HO appears to be rather heterogeneous, as the amount of bone 

forming in soft tissues has been described to vary from small osteophytes to 

widespread osseous attachment to the skeleton; and that HO manifests as cancellous 

bone, cortical bone or woven bone (Isaacson, Stinstra et al. 2010).  

Unlike dystrophic calcification, associated with conditions such as renal failure and 

hyperparathyroidism, heterotopic ossification can be differentiated morphologically 

and histologically, due to the presence of trabecular features, typically encountered in 

bone (Balboni, Gobezie et al. 2006, Tannous, Stall et al. 2013). 

This is an aspect which was noticed as early as 1980s, when Spencer and Missen noticed 

areas of progressive maturation in excised ectopic tissue from the femoral area from a 

patient with myositis ossificans, which included a cortical bone shell and an inner core of 

young, cancellous or woven bone (Spencer and Missen 1989). Isaacson and colleagues 

(Isaacson, Brown et al.) also found that heterotopic bone forming in wounds from burns 

and trauma due to accidents, showed only signs of endochondral ossification, with a 

high proportion of adipose tissue and bone marrow present in the tissue samples 

obtained from these patients.  

It is important to note that the sample size was very limited in many of these studies, 

which makes it extremely difficult to answer some of the basic questions regarding the 

processes taking place or any of the further implications. However, in vivo models 

where rabbits and other rodents were used confirmed an endochondral bone formation 

pathway (Tannous, Stall et al. 2013). Intramembranous ossification was reported to 

occur in one of the hereditary forms of HO, POH, where both intramembranous and 
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endochondral ossification were thought to occur when examining samples from 

children with this condition (Kaplan, Craver et al. 1994). 

 

1.11.9 CELLULAR PATHOPHYSIOLOGY OF HO 

Some of the current views suggest that ectopic bone originates from distant, migrating 

or local mesenchymal stem cells residing in soft tissues such as muscle in a dormant 

state (van Kuijk, Geurts et al. 2002, Anthonissen, Ossendorf et al. 2016). Mesenchymal 

stem cells are pluripotent progenitor cells with the ability to divide as uncommitted 

cells and to then differentiate to lineages of different tissues, including cartilage, fat, 

tendon, ligament, bone and muscle (Caplan 1991).  It is thought that during the process 

of ectopic bone formation, these cells can differentiate to osteogenic cells under the 

right micro-environmental stimuli (Williams, Southerland et al. 1999, van Kuijk, Geurts 

et al. 2002). This is a generally accepted view, which has been hypothesised as early as 

the 1970s, which states that that the induction of bone formation following trauma or 

injury requires three major components (Chalmers, Gray et al. 1975):  

1. An inducing biomechanical agent (trauma applied to the tissue);  

2. A population of progenitor or mesenchymal cells that are able to undergo 

osteogenic differentiation in response to this event;  

3. A microenvironment that is favourable for osteogenesis.  

However, this model is likely to be more complex, as newly emerging data supports the 

idea of a multi-systemic involvement in this disorder. For instance, in subjects who have 

experienced TBI and SCI, neurogenic factors could create the favourable conditions for 

the release of systemic factors which subsequently interact with local factors to 
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stimulate MSCs to differentiate into osteoblasts and thus give rise to heterotopic 

ossification (Williams, Southerland et al. 1999, Pape, Lehmann et al. 2001, Sullivan, 

Torres et al. 2013). 

Tissue hypoxia is thought to play a major role in the formation of endochondral bone. A 

study by Agarwal and colleagues has recently shown that inhibition of HIF- 1α in mice 

can prevent both the acquired and congenital forms of HO (Agarwal, Loder et al. 2016). 

In addition, Wang and colleagues have recently demonstrated that early human FOP and 

murine model lesions are highly hypoxic, and that HIF- 1α increases BMP signalling via 

the ACVR1 receptor (Wang, Lindborg et al. 2016).  

Other authors have demonstrated that tissue hypoxia is also driven by the accumulation 

of adipocytes in the lesioned areas, which lower the oxygen tension in the tissue, thus 

favouring the formation of cartilage (Olmsted-Davis, Gannon et al. 2007). Recently, it 

has been demonstrated using a murine model that excised ectopic tissues, but not 

normal tissues, express a high level of uncoupling protein 1 (UCP1), a marker for brown 

adipocytes, which, as thought previously, play a critical role in regulating heterotopic 

ossification (Salisbury, Dickerson et al. 2017). 

In addition, circulating osteoprogenitor cells of hematopoietic origin are thought to 

migrate from close bone marrow sources. A study by Suda and colleagues (Suda, Billings 

et al. 2009) showed that a population of type I collagen+/CD45+, mononuclear adherent 

cells are present in the early, pre-osseous, fibroproliferative lesions of FOP patients and 

have been shown to nucleate HO in a murine implantation assay. In addition, these 

authors demonstrated that patients with an active form of FOP have a higher number of 

these cells in their bloodstream compared to patients with a stable stage of FOP or 

unaffected individuals. 
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A separate, underlying mechanism was demonstrated by Medici and colleagues (Medici, 

Shore et al. 2010, Medici and Olsen 2012), who showed that in both human FOP and 

mouse lesions, endothelial cells transdifferentiate into mesenchymal stem cells through 

a mechanism known as endothelial-to-mesenchymal transition (EndMT). This process 

was shown to be mediated in an ALK2 signalling manner and ultimately contributed to 

HO formation. Interestingly, the process was inhibited by application of short 

interfering RNA (siRNA). 
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1.12 IN-VIVO MODELS OF ECTOPIC OSSIFFICATION 

As described in the previous sections, bone tissue forms in various physiological 

circumstances, ranging from normal bone development and callus-mediated fracture 

repair (Einhorn and Gerstenfeld 2015), to pathological heterotopic bone formation in 

extra-skeletal tissues, as seen following muscle trauma (Potter, Burns et al. 2007, Potter, 

Forsberg et al. 2010, Shore and Kaplan 2010, Edwards and Clasper 2014), traumatic 

brain and spinal cord injury (Wittenberg, Peschke et al. 1992, Sullivan, Torres et al. 

2013), surgical procedures of the hip and knee (Thilak, Panakkal et al. , Board, Karva et 

al. 2007); and in genetic conditions such as Fibrodysplasia ossificans progressiva (FOP) 

(Thilak, Panakkal et al. , Shore and Kaplan 2010). These contexts, normal or otherwise, 

share fundamental characteristics at many levels, including molecular (overexpression 

of bone morphogenic proteins, BMPs) (Ramirez, Ramirez et al. 2014, Katagiri, Osawa et 

al. 2015), cellular (a set of progenitor cells that commits to an osteoblastic lineage) 

(Kan, Liu et al. 2009, Shore and Kaplan 2010, Ramirez, Ramirez et al. 2014) and 

biomechanical (translation of the mechanical forces into structured and organized 

bone) (Isaacson, Brown et al. , McCarthy and Sundaram 2005, Lin, Shen et al. 2010). 

However, there are still significant gaps in our understanding of these events.  

There are several modalities to recreate pathological ossifications in animal models, 

including the overexpression or inhibition of molecular osteoinductive factors (Liu, 

Kang et al. 2014), trauma induction (Liu, Kang et al. 2014) and heterotopic implantation 

(Ueno, Kagawa et al. 2003, Lounev, Ramachandran et al. 2009).  
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1.12.1 ANIMAL MODELS OF INHERITED HO AND GENETIC MANIPULATION 

Currently, there are representative animal models for the inherited form of HO, such as 

FOP, since the genetic mutations underlying this disease have been identified. The 

genetic fault lies in a mutation consisting of a heterozygous single nucleotide 

substitution in the gene encoding ACVR1/ALK2, a BMP type I receptor, which causes a 

dysregulation in the BMP pathway and leads to an over-activation of the signalling 

process even in the absence of a BMP ligand (Shore, Xu et al. 2006). This process is 

further enhanced when BMP ligands are present (Shore, Xu et al. 2006).  As a result, 

there are some successful, genetic knock-in murine models which are able to recreate 

the hereditary form of HO (Chakkalakal, Zhang et al. 2012). Gene targeting in these 

animals allowed the development of models showing progressive endochondral bone 

formation. Moreover, it was shown that both wild-type and mutated osteoprogenitor 

cells exist within the ectopic bone formations, suggesting that whilst the mutations 

were necessary to induce bone formation, it was not required for the contribution of 

progenitor cells to cartilage and bone formation (Chakkalakal, Zhang et al. 2012). 

In general terms, the effects of abnormal BMP function can be studied in several ways 

(Kaplan, Shore et al. 2005, Kan and Kessler 2011, Liu, Kang et al. 2014) specifically by:  

1. Introducing a hyperactive BMP receptor (Le and Wharton 2012);  

2. Knocking-out BMP inhibitors (Zhao 2003);  

3. Implanting BMP-releasing Matrigels (Glaser, Economides et al. 2003);  

4. Overexpressing specific BMP target genes (Wang, Green et al. 2014);  

5. Modifying BMP signalling indirectly by interfering with other molecular factors 

that play a role in the BMP pathway (e.g. TGF-β, Smads)(Yamazaki, Fukushima et 

al. 2009). 
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Genetic manipulation, whilst straightforward and inexpensive, presents numerous 

disadvantages (Tong, Huang et al. 2011). In the case of target gene overexpression 

models, constitutive overexpression often leads to non-relevant levels of protein 

expression, being misleading with regards to the role of the gene and as such, animals 

with dominant negative variants have to be simultaneously produced. Secondly, 

overexpression of genes which play a major role in bone formation can lead to lethality, 

making it hard to establish consistent transgenic lines for investigation (M. Lyons 2013).  

With respect to gene targeting, loss of function is very useful in understanding the role 

of the ablated gene product. There are several issues with this technique, however, 

which is that knock-outs are not necessarily limited to a particular tissue or system and 

the deletion of these genes may prevent an adequate analysis of their role in skeletal 

processes. In addition, many knockout strains do not exhibit obvious phenotypes and as 

such, multiple-knockouts have to be performed (M. Lyons 2013).  

Finally, there are major environmentally-driven differences in phenotype between 

different populations of rats despite being genetically-identical, making results less 

reproducible (Nagy, Krzywanski et al. 2002, Champy, Selloum et al. 2004). 

In conclusion, care must be taken when extrapolating the results from animal studies to 

humans, especially as they have different mechanical loading and metabolic activity. 
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1.12.2 ANIMAL MODELS OF ACQUIRED HO 

There are also several models available for simulating the acquired form of HO (for a 

review see (Kan and Kessler 2011)) and they include: 

1.  The hip arthroplasty model  

(Tannous, Stall et al. 2013, Amar, Sharfman et al. 2015); 

2. Immobilisation-manipulation of knee joints (Michelsson model)  

(Michelsson, Granroth et al. 1980);  

3. Achilles tenotomy  

(Lin, Shen et al. 2010, Zimmermann, Schwitter et al. 2016);  

4. Trauma-induction (limbs and brain) 

(Elder, Dorr et al. 2012, Liu, Kang et al. 2014, Liu, Zhang et al. 2015);  

5. Injection of osteogenic agents (BMP-2) into the muscles  

(Olmsted-Davis, Gannon et al. 2007, Liu, Kang et al. 2014);  

However, some of these models are not fully representative of the pathological states, 

requiring the use of a large number of animals (Kan and Kessler 2011). Some results 

cannot be generalised to other tissues or are too complex to allow the isolation of 

individual molecular components in early-phase bone formation, which makes it 

difficult to answer some essential questions on biological ossification objectively. As so, 

it is hard to develop a single hypothesis that can unify all the clinical and experimental 

findings into one model.  

This lack of knowledge of early pathogenesis has, for a long time, hindered the 

validation of these animal models or their improvement. The inconsistencies generally 

noticed with these models and the fairly low reproducibility mean that a high number of 
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animals is required for consistent results. In addition, some of these models require the 

application of significant amounts of trauma to animals, which means that some of these 

animals have to endure suffering during their lifespan.  
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1.13 IN-VITRO MODELS OF BONE FORMATION 

For many years, in vitro cell cultures have been used for first-stage analysis of the 

behaviour of bone cells. These cells can originate either from primary bone sources, 

being isolated through matrix digestion, or expanded from ex-vivo bone fragments, or 

used from highly-proliferative engineered populations (e.g. MC3T3-E1, 2T3). They are 

then cultured and sub-cultured in monolayer (2D) on rigid, flat surfaces, where they can 

produce osteoid and mineralisation nodules (Bellows, Aubin et al. 1986, Buttery, 

Bourne et al. 2001, Wang, Liu et al. 2006). 

2D cell culture is a valuable tool which is excellent for reproducibility and 

standardisation. However, it cannot simulate the tissue architecture and cellular 

interactions found in vivo in bone as these cells are organised within the extracellular 

matrix in a 3D fashion. 

Therefore, it is necessary to engineer new biological models that can shed light on both 

the processes of bone formation and of heterotopic ossification. Intermediate models, 

more complex than monolayer 2D populations but less complex than in vivo rodent 

models could provide further information regarding the cellular pathophysiology of the 

condition and the involvement of different molecular factors.  

Many biomaterials and methods have been developed over the past years for producing 

mineralised bone-like cultures in 3D, with closer structural similarities to in vivo bone 

tissue (Edmondson, Broglie et al. 2014, Bouet, Cruel et al. 2015), which will be discussed 

in the next section. 
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1.14 3D MINERALISED CULTURES USING BIOMATERIALS 

This method for producing bone-like tissue involves applying cells to a variety of 

biomaterials to create artificial tissues in vitro. The materials used for scaffolds are 

natural or synthetic polymers such as hydrogels or elastomers (Liu, Zeng et al. 2017). 

Other materials include bioactive ceramics such as calcium phosphates (Wang, Zhao et 

al. 2014) and bioactive glasses (Rahaman, Day et al. 2011).  

Composite systems containing both ceramics and polymers have been used to increase 

the mechanical properties of the scaffolds and to simulate the biochemical composition 

of bone (Wahl and Czernuszka 2006, Chesnutt, Viano et al. 2009, Moreau, Weir et al. 

2009, Šupová 2009, Maas, Guo et al. 2011, Thein-Han, Liu et al. 2012, Wang, Bongio et al. 

2014). 

Since the 1990s, a variety of hydrogels have become available for bone and cartilage 

tissue engineering, due to their structural similarity to the extracellular matrix and their 

porosity, which enables cell proliferation and exchange of nutrients. Hydrogels are 

three-dimensional cross-linked networks formed by homopolymers, copolymers and 

macromeres (Liu, Zeng et al. 2017) which provide cells with an environment similar to 

the ECM, thus facilitating cell adhesion, proliferation and differentiation of 

osteoprogenitor cells towards an osteoblastic lineage. 

These biomaterials include gelatin, chitosan, alginate, hyaluronic acid, polyethylene 

glycol, collagen I and fibrin, each with significant advantages and disadvantages (Lee 

and Mooney 2001, Perka, Stern et al. 2003, Chesnutt, Viano et al. 2009, Wang, Bongio et 

al. 2014). 

For bone tissue engineering, collagen type I gels are the most popular choice due to its 

chemical and structural similarity to the osteoid of bone (Kikuchi, Itoh et al. 2001, Wahl 
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and Czernuszka 2006, Moreau, Weir et al. 2009, Matthews, Naot et al. 2014). However, 

these gels show a low mechanical flexibility and it is hard to separate the new collagen 

produced by embedded cells from the scaffold collagen. In addition, the presence of a 

non-cell-derived matrix will most likely have an influence on the differentiation of the 

embedded cells.  

Alternative hydrogels such as fibrin are widely used in tissue engineering and have been 

used in clinical practice and surgery for many years as a haemostatic agent (Eyrich, 

Göpferich et al. 2007). In addition, their biodegradability can be controlled using the 

addition of inhibitions of proteinases, such as aprotinin (Ye, Zund et al. 2000). Whilst 

they have a more limited mechanical strength (Lee and Mooney 2001), their 

biodegradability means that as seen during wound healing, they can be replaced over 

time with endogenous cell-secreted collagenous matrix which can more closely mimic 

the geometry and composition of in vivo bone tissue (Eyrich, Brandl et al. 2007, Eyrich, 

Göpferich et al. 2007). Fibrin gels can be easily assembled by polymerisation of 

fibrinogen in the presence of thrombin and can be produced from the patient’s own 

blood components (Lee, Kwan et al. 2008, Ahmed, Ringuette et al. 2015), making them 

ideal for implantation and minimising the risk for rejection.   

Although these cell-scaffold constructs can simulate the biochemical composition of 

bone tissue, to date, there are no in vitro/3D cell culture systems that are able to 

continuously produce loading forces similar to what is seen in vivo (Weinbaum, Cowin 

et al. 1994, Boukhechba, Balaguer et al. 2009, Vazquez, Evans et al. 2014). For this 

reason, animal models have remained the gold standard for evaluating whole tissue 

response and mechanical function. 
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CHAPTER II 
ENGINEERING A SELF-STRUCTURING BONE SYSTEM 

 

 

 

 

 

 

 

2.1 CONTEXT OF THE PRESENT WORK 

Developing novel ways to produce ossified tissue is essential for several scientific 

reasons. From a biological perspective, new models will help to develop a deeper 

understanding of the fundamental processes underlying both early bone development 

and the pathological ossification events following trauma or injury (Potter, Burns et al. 

2007, Potter, Forsberg et al. 2010). New approaches to develop bone-like materials are 

also required for the augmentation of bone defects and ultimately the replacement and 

surgical transplantation of tissue grafts (Matassi, Nistri et al. 2011, Claes, Recknagel et 

al. 2012, Einhorn and Gerstenfeld 2015).  In this context, the present work focused on 

developing a new, biological model of bone tissue formation, which would allow for the 

investigation of individual osteogenic factors in a less complex environment than in vivo 

conditions, and may ultimately be used for skeletal regeneration. 
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Biological hydrogels provide a 3D microenvironment that is analogous in structure and 

composition to the extracellular matrix (ECM) of innate tissues, and therefore when 

used for cell encapsulation, they enable the embedded cells to exhibit phenotypes more 

representative to those in vivo than cells grown in monolayer culture (Abbott 2003). As 

discussed previously, these materials have been shown to promote cell survival and 

proliferation both in vitro and when implanted in vivo (Wahl and Czernuszka 2006). 

The first scaffold encountered by many types of cells during wound healing, tissue 

trauma and repair is a fibrin clot (Janmey, Winer et al. 2009).  The clot is a fibrin 

network which forms when soluble fibrin is cleaved by thrombin into strands which are 

then cross-linked under the action of factor XIII into a blood clot (Eyrich, Brandl et al. 

2007, Eyrich, Göpferich et al. 2007). Fibrin gels exhibit a high bioactivity and specifically 

their ability to bind cells, growth factors, nutrients and metabolites makes them good 

substrates for stem cell differentiation and tissue engineering research (Lee and 

Mooney 2001, Drury and Mooney 2003, Eyrich, Brandl et al. 2007, Eyrich, Göpferich et 

al. 2007). 

The biomechanical behaviour of these matrices can be clinically relevant and their 

degradability over time means that cells embedded in such a culture system can replace 

the scaffold over time with endogenous matrix, giving rise to more complex tissues than 

pre-formed analogous scaffolds (Eyrich, Brandl et al. 2007). 

Starting from these principles, the work in this thesis focused on engineering a 

biological bone system which is seeded with primary cells and monitored longitudinally 

over significant periods of time, allowing to study the temporal evolution of bone 

mineral and microstructure.  
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2.2 AIMS OF THIS THESIS 

The aim was to develop a system that could be easily manipulated biochemically and 

biomechanically to simulate the ossification microenvironment encountered in both 

normal and pathological environments and that could ultimately be applied to 

investigate both biological and physical research questions. To develop this system, 

populations of osteoprogenitor cells that were extracted from the periosteum of rat 

femoral bones were selected for investigation.  As described in Chapter 1, periosteal 

cells are the main determinants in the reparative phase of bone fracture healing, when 

they interact with the temporary fracture callus, which serves as a scaffold for the 

formation of new bone (Einhorn and Gerstenfeld 2015). Furthermore, they have been 

shown to have the ability to give rise to endochondral bone when implanted in muscle 

(Ueno, Kagawa et al. 2003), and therefore may be central to traumatic heterotopic 

ossification. Moreover, their ability to give rise to endochondral bone has been 

discussed by several groups as being an underlying cause in degenerative conditions 

such as Ankylosing Spondylitis (see Chapter 1).  

Following isolation, periosteal cells were seeded into hydrogels formed from fibrin, 

analogous structurally and biochemically to the microenvironment of the callus formed 

early in fracture healing or the early-wound microenvironment in HO.  

As matrix organization is essential for bone development, the environment of the 

fracture callus was further emulated by introducing two calcium phosphate anchors 

composed of a mixture of brushite and β-TCP at the extremities of the culture dish. 

These anchors exhibit a mineral composition similar to that of the inorganic component 

of bone and mainly served to enhance retention of the forming matrix and to provide a 

source of calcium and phosphate ions to aid in triggering the ossification process. 
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Remarkably, over time, constructs self-structure from a homogenous polymer, in the 

form of fibrin, into complex, heterogeneous structures (for an overview, see Figure 2.1). 

Samples were characterized over a period of 1 year in culture in terms of matrix 

organization, cell behaviour and mineralization using a combination of optical, 

spectroscopic and chemical techniques.  

 

 

 

 

 

 

Figure 2.1 | Schematic representation of the development of a construct over time. Contraction and alignment of the matrix 

occur maximally within the first 7 days. Within the following 2-3 days, the mineralization process becomes apparent, through the 

creation of nucleation points which aid in the formation of mineralized nodules, most prominently around the two anchors. These 

nodules increase in size over the first month in culture and ultimately fuse into a fully mineralized matrix. Following 1 month in 

culture, significant amounts of collagen can be detected around the anchor areas. The mineralized matrix advances from the anchor 

regions towards the centre of the construct until the previous template is completely substituted with the new, bone-like matrix 

containing hydroxyapatite-like mineral. Cells differentiate into osteocyte-like cells after 2 months of full osteogenic supplementation 

and maintain their phenotype over the extended months in culture.  
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2.3 GENERAL METHODS 

 

2.3.1 ASEPTIC TECHNIQUE AND CONTAMINATION PREVENTION 

Cell work was conducted in sterile conditions inside laminar flow cabinets (BSB, Gelaire 

Laminar Flow, Victoria, Australia). Cabinets were sterilised using UV light, followed by 

disinfection using Distel High-Level Medical Surface Disinfectant (Tristel, Snailwell, 

United Kingdom) and in some cases using 70% EtOH. Distel was used to provide 

enhanced protection against bacteria, fungi and viruses as well as having a 

tuberculocidal action and providing protection against blood diseases including 

Hepatitis B. It was also used in some molecular procedures in addition to other reagents 

such as RNAseZAP (Sigma-Aldrich-Merck, Germany) to destroy DNAse and RNAse 

enzymes which could interfere with the results. Dissection tools, pipettes and other 

metallic tools were sterilised using immersion in 70% EtOH. Pipette tips, 1.5 ml tubes 

and ultra-high-recovery centrifugation tubes (Starlab, Milton Keynes, United Kingdom) 

were DNAse and RNAse certified, as well as 15 ml and 50 ml tubes (Corning, New York, 

USA) and culture-treated flasks (Greiner Bio-One, Kremsmünster, Austria). Ethanol of 

molecular grade certification was chosen (Fisher Scientific, New Hampshire, United 

States) and was diluted to the required concentrations using sterile water. Where 

molecular work such as purification was undertaken, molecular grade water was used 

(Fisher Scientific, New Hampshire, United States) and a PCR Mini-UV-cabinet (Geneflow, 

Lichfield, United Kingdom) equipped with four 15 Watt UV lights was used to remove 

potential DNA and RNA contaminants from equipment. A sample sterilisation time of 30 

minutes was used. 
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2.3.2 ISOLATION AND CULTURE OF PRIMARY FEMORAL CELLS 

Femurs from left and right limbs of euthanised female Wistar rats (3 weeks old, 50-70 

grams weight) were excised and surrounding muscular and connective tissue was 

removed. Femurs were stored in phosphate buffered saline solution (pH = 7.4; Gibco®, 

Life Technologies, Thermo Fisher Scientific, UK) until use. Osteoprogenitor cells were 

extracted from the periosteum via enzymatic digestion using a cocktail containing 2.5 

mg/ml collagenase I, 0.7 mg/ml collagenase II and 0.5 units/ml dispase I, in PBS 

(Gibco®, Life Technologies, Thermo Fisher Scientific, UK). Bones were incubated with 

this solution at 37oC for 1 hour in a 5% CO2 atmosphere. Following incubation, tubes 

containing bones and solution were shaken rigorously for 30 seconds to detach the 

remaining cells. Solutions were then pooled and filtered using 70μm filters (Falcon, 

Becton Dickinson, UK). Cells were recovered using centrifugation at 21oC, 1400 rpm for 

6 min. The supernatant was discarded and the resulting pellet was resuspended in 10 

ml D20 growth medium (DMEM containing 20% serum) to encourage attachment. 

Approximately 1 million PO cells extracted from each bone were cultured to a level of 

70% confluence in D20 medium (Figure 2.2) at 37oC, in a 5% CO2, humidity-controlled 

incubator containing copper sulphate water (1 g/L) to prevent fungal contamination 

(Fisher Scientific, USA). The medium was replaced every 2-3 days. 

Where human primary osteoblasts were used, they were derived from tissue obtained 

from the Oxford Musculoskeletal BioBank and were collected with informed donor 

consent in full compliance with national and institutional ethical requirements, the 

United Kingdom Human Tissue Act, and the Declaration of Helsinki. 
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Figure 2.2 | Cell morphologies observed in 2D prior to embedding in fibrin hydrogels.  a, Femoral periosteal cells cultured 

in 2D for ten days displayed typical osteoblastic morphology (a-b), with some developing long projections (c). A few cells 

appeared hypertrophic, with typical senescent morphology (d). 

 

 

2.3.3 CULTURE OF IMMORTALISED CELL LINES 

Cells originating from cell lines MC3T3-E1/2T3 were obtained from the European 

Collection of Authenticated Cell Cultures (ECACC). MC3T3-E1 cells were C57BL2/6 

murine derived calvarial osteoblasts and originated from the Riken Cell Bank in Japan. 

Cells were cultured according to standard procedures in Minimal Essential Medium 

Eagle (MEM) Alpha Modification (10% FBS, 1% P/S, 2.4% L-glutamine) (Sigma-Aldrich, 

Germany).   
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2.3.4 CRYOPRESERVATION OF CELLS FROM CELL LINES 

For long-term storage, cells were frozen at -196oC by immersion in liquid nitrogen 

inside a vacuum insulated, alarm-connected storage vessel (Thermo Fisher Scientific, 

USA). The freezing medium was a solution consisting of 60% culture medium, 30% FBS 

and 10% DMSO (Sigma-Aldrich, Germany) to protect cells from mechanical injury 

induced by ice crystal formation. Cells were frozen at a density of 1 million cells/ml in 

1.5 ml cryovials. The cryopreservation process was performed rapidly, as DMSO is toxic 

at this concentration in metabolically-active cells, but does not affect frozen cells.  

 

2.3.5 THAWING OF CRYOPRESERVED CELLS 

Vials containing cells were quickly removed from liquid nitrogen and tubes were 

immersed into a 37oC water bath for 30 seconds to partially defrost the contents. The 

tubes were gently swirled and transferred to a laminar flow cabinet. The tubes were 

quickly wiped with tissues soaked in 70% EtOH and their contents, whilst still 

containing small amounts of ice, were dispersed into 50 ml of supplemented medium to 

dilute the DMSO and reduce immediate toxicity to cells. Cells were pelleted by 

centrifugation at 1000 RPM for 3 minutes and the supernatant containing residual 

DMSO was discarded. Cells were then re-suspended in supplemented medium and 

cultured in T75 or T175 flasks. The success of thawing was assessed based on the level 

of cellular adherence to culture flasks, the adopted morphology and the rate of 

population doublings. 
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2.3.6 CULTURING OF PASSAGED CELLS  

Primary femoral periosteal cells were cultured immediately following isolation and 

were not frozen for long-term storage. Cells originating from cell lines were only 

passaged for a maximum of 4 times in order to maintain their osteoblastic phenotype.  

 

2.3.7 ISOLATION OF CELLS FROM CULTURE FLASKS  

Adherent cells or cell lines were isolated from T75/T175 culture flasks (Greiner Bio-

One, Kremsmünster, Austria) upon reaching 70% confluency using a TrypLE Select 

enzyme (pH 7.0-7.4, 1X), which did not contain phenol red (Gibco, Thermo Fisher 

Scientific, USA). This enzyme is a non-animal derived, recombinant enzyme which 

cleaves peptide bonds on the C-terminal of lysine and arginine. This product was chosen 

instead of traditional dissociation agents such as Trypsin due to its increased purity and 

hence specificity for cellular bonds, making it less likely to produce cellular damage due 

to additional enzymes present in these products. In addition to the rProtease, the 

product also contained 200 mg/L KCl, 200 mg/L KH2PO4, 8000 mg/L NaCl, 2160 mg/L 

Na2HPO4-7H2O and 457.6 mg/L EDTA. Before addition of the enzyme to the cells, the 

growth medium was removed from the flasks and cells were gently washed with 5 ml of 

sterile PBS for a few seconds to remove cell debris and remaining medium. The PBS was 

then discarded and the enzyme was applied at a ratio of 1 ml per 25 cm2 of growth area 

(i.e. 1 ml for a T25 culture flask, 3 ml for T75 and 7 ml for a T175 flask). The flasks were 

placed in an 37oC incubator for 3 minutes to allow activation of the enzyme and cell 

detachment.  Following the short incubation time, an equal amount of growth medium 

containing 10% FCS was added to the flasks in order to inactivate the enzyme. The 

liquid containing detached cells was then recovered from the flasks and added to a 50 
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cm sterile tube (Corning, New York, USA) which was centrifuged at 1000 RPM for 3 

minutes to pellet the cells. Following centrifugation, the supernatant was discarded and 

cells were re-suspended in 10 ml of fresh growth medium. 

 

2.3.8 DETERMINATION OF CELL NUMBERS 

Isolated cells were counted using the Trypan-Blue dye exclusion test, which selectively 

differentiates viable and dead cells based on the concept that viable cells are not able to 

take up this impermeable dye, whereas dead cells, which have become permeable, are 

able to take up this dye. 10 μl of cell suspension was mixed with an equal part of 0.4% 

Trypan Blue and 10 μl of the mix were inserted into a counting chamber slide (Thermo 

Fisher Scientific, USA), which was introduced into a Countess automated cell counter 

(Thermo Fisher Scientific, USA), which automatically generated the total cell count, 

viable cell count and a distribution of the cell size. Measurements were taken in 

duplicate and an average cell number was calculated. The viability of cells following 

isolation always ranged between 85% - 97% and 85% was set as the lower limit for 

selecting a healthy cell population for embedding into fibrin hydrogels. 

 

2.3.9 PRODUCTION OF THE MINERAL ‘BACKBONE’ 

2.5 g of β-TCP powder (<125 m particle size) were added per 1 ml of Orthophosphoric 

Acid (3.5 M) to generate a paste, composed of a mixture of brushite and β-TCP. The 

liquid mixture was poured into individual, pre-shaped wells of moulds, placed on top of 

a shaking platform, to encourage uniform setting inside the shapes. 1.4 cm stainless 

steel insect pins (Austerlitz minutiens, Fine Science Tools, USA), with a diameter of 0.20 
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mm were inserted into the individual wells on the moulds before the mixtures advanced 

into a solid state.  The mixtures containing the pins were allowed to fully harden for 3-4 

hours and were sterilized overnight using UV light exposure, as well as with 70% EtOH 

for 30 minutes on the day of use. The final anchors had a trapezoidal shape and 

measured approximately 3 mm x4 mm x 4mm in height.  

 

2.3.10 COATING OF CULTURE PLATES  

Culture wells were coated with 1.5 ml of a silicone elastomer base (Sylgard184, Dow 

Corning, USA). This was a colourless polydimethylsiloxane elastomer, which was 

formed by mixing the Sylgard base to a curing agent at a 10:1 ratio. Plates were placed 

on a flat surface and allowed to dry at room temperature for 7 days to allow 

polymerization.  

Two anchors per 35 mm culture well were attached to the silicone base using the pins, 

and were placed at a distance of 1.5 cm from each other. Plates were sterilised using UV 

radiation overnight before the commencement of the experiment and were sprayed 

with 70% EtOH on the date of use with 5 hours before use. 

 

2.3.11 CELL EMBEDDING IN FIRBIN HYDROGELS 

Constructs were developed by seeding fibrin hydrogels with an osteoprogenitor cell 

population, either periosteal cells from mice femurs, or from cell lines such as MC3T3-

E1 or 2T3. The fibrin scaffolds were produced through the interaction of the normal 

plasma components thrombin and fibrinogen and were developed on the mineral 

backbone structure. Bovine-derived thrombin powder (Calbiochem, EDM Chemicals; 
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1KU) was reconstituted using 0.1% w/v BSA and 5 ml F12K Nutrient Mixture (1X) with 

Kaighn’s Modification (Gibco Life Technologies) to make a final concentration of 200 

U/ml. Powdered bovine fibrinogen (Sigma Life Sciences) was reconstituted in F12K 

Nutrient Mixture (1X) with Kaighn’s Modification (Gibco Life Technologies) at a ratio of 

20 mg/ml. Thrombin was added to a solution containing the cell culture medium (either 

DMEM or αMEM) at a ratio of 50 μl/ml solution. The anti-fibrinolytic agents 

aminohexanoic acid (200 mM) and aprotinin (10 mg/ml) were added to the thrombin 

solution at a ratio of 2 μl/ml in order to reduce the degradation rate of the fibrin gel, in 

order for it to match the rate of new matrix formation so that the mechanical integrity of 

the tissue can be maintained over longer periods of time. Hydrogels were generated by 

mixing 500 μl thrombin solution with 200 μl fibrinogen. Thrombin cleaves small 

peptides from the fibrinogen chain, producing soluble fibrin monomers, which then 

cross-link into an insoluble, polymerized fibrin clot. Gels were allowed to polymerize for 

30-40 minutes. Cells were seeded into the fibrin constructs immediately following gel 

polymerization; at a density of 100K/2ml of cell culture medium. 

 

2.3.12 FULL OSTEOGENIC SUPPLEMENTATION OF CONSTRUCTS 

Constructs developed with periosteum cells were supplemented following 1 month of 

culture with full osteogenic DMEM culture medium containing β- glycerophosphate (10 

mM), ascorbic acid (0.1 mM) and dexamethasone (10 nM) (Sigma Aldrich, Germany), to 

encourage new matrix deposition along the entire length of the constructs. 
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2.3.13 PRO-COLLAGEN SUPPLEMENTATION OF OTHER CONSTRUCTS 

Following 7 days of development, the MC3T3-E1 constructs were supplemented with 

ascorbic acid (250 μM final concentration) and proline (50 μM final concentration) 

every 2 days, to stimulate collagen deposition (Sigma Life Sciences, Germany). 
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CHAPTER III 
EARLY EVENTS AND INITIATION OF OSSIFICATION 

 

 

 

3.1 INTRODUCTION 

Following cellular embedding into the scaffolds, early developmental events were 

monitored to determine whether the population of osteoprogenitor cells encapsulated 

was able to adhere to the new 3D environment and to observe how successful the cells 

were in proliferating and re-modelling the surrounding hematoma-like matrix. 

Constructs were visually observed in order to determine the extent of contraction, the 

initiation of mineralisation and the localisation of mineral in constructs. 

 

3.2 AIMS AND OBJECTIVES 

The aim of this work was to characterize the early events as well as the development of 

mineralisation microscopically and macroscopically using a combination of optical and 

histological techniques. 
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3.3 CHARACTERISATION METHODS 

 

3.3.1 WHOLE MOUNT STAINING OF MINERAL DEPOSITS  

An Alizarin Red dye was used to chemically detect the presence of mineralization in 

constructs. Alizarin Red S powder (Sigma-Aldrich, Germany) was dissolved in distilled 

H2O to a concentration of 40 mM. The pH was adjusted to 4.2 with 10% (v/v) 

ammonium hydroxide (Fisher Scientific, USA). Constructs were fixed with 10% PFA for 

30 minutes at room temperature. Following fixation, the constructs were rinsed in 

phosphate buffered saline solution (Sigma-Aldrich, Germany) to remove the excess PFA, 

and were inserted into 2 ml of Alizarin Red solution for 30 minutes at room 

temperature. Constructs were rinsed 3 times with PBS to remove unbound dye. 

 

3.3.2 OPTICAL VISUALISATION OF MINERAL DEPOSITS 

Constructs were imaged using a CETI Inverso TC100 brightfield microscope (Medline 

Scientific, Oxon, United Kingdom) and Alizarin Red-stained constructs were visualised 

using a Zeiss Axio Lab A1 microscope (Carl Zeiss, Jena, Germany). 

 

3.3.3 PHOTOGRAPHS OF CONSTRUCTS 

Constructs were photographed at various time points to illustrate the degree of 

contraction during the first week in culture. Photographs were acquired using a Canon 

EOS 1100D camera (Canon, Tokyo, Japan).  To illustrate the visually noticeable 

compositional change in constructs over the first three months of culture, photographs 

were taken using the Bruker M4 Tornado μXRF built-in camera, equipped with strong 
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lighting source (Bruker Instruments, Germany). Pictures were taken before chemical 

mapping of whole constructs, which will be discussed in Chapter V, Characteristics of the 

Newly-Formed Matrix. 
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3.4 RESULTS AND DISCUSSION 

Early developmental events commence with remodelling of the callus-like matrix 

following cell attachment to the scaffolds. The presence of the two calcium phosphate 

anchors causes the cells to contract the matrix around the two holding points (Figure 

3.1a). Cell-seeded constructs which are not provided with the anchorage points 

assemble into spherical structures (Figure 3.2a), as demonstrated in previous work 

(Wudebwe, Bannerman et al. 2015). Over time, this retention results in the formation of 

tensile forces in the soft tissue between the two anchors, which causes alignment at the 

cellular and molecular level along the direction of the force (Figure 3.1b and Figure 

3.3b). Unanchored constructs do not show this complex organisation (Figure 3.3a). 

Early mineralization started adjacent to the bone-like anchors between days 7-10, and 

progressed over the subsequent days as mineral nodules formed throughout the 

structure (Figure 3.1b-c).  The initial fibrin scaffolds became visibly transformed during 

the first 3 weeks from the anchors towards the centre, until the structures became 

completely opaque at 3 months (Figure 3.1d).   

The use of cells extracted from the periosteum of rats was advantageous for this system 

as these animals contain a much higher proportion of cortical bone (72%) compared to 

humans (12.5%) that is evenly distributed across many regions, compared to humans 

bones, which can show mm-thick differences between different anatomical portions 

(Bagi, Wilkie et al. 1997). This feature made the isolation procedure more constant and 

reproducible. In terms of cell activity, because biomineralization and metabolic 

processes take place much quicker in rodent cells compared to human ones (bone 

turnover in rats is several times higher)(Takakura, Takao-Kawabata et al. 2016), they 

are able to quickly adapt cortical and periosteal thickness via modelling-mediated 
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periosteal apposition in order to increase inertia and meet mechanical demands (Bagi, 

Wilkie et al. 1997). As such, the tension-induced biomineralization in this system should 

be observed more rapidly using rat cells compared to human cells. Indeed, the 

compatibility of primary, human-derived cells has been tested in this system and these 

observations are mentioned in Chapter 10 – Further work. Results from these quick 

experiments suggest that human osteoblastic cells can attach to and remodel the matrix 

in a similar way to rodent cells, however, the rate of contraction is less consistent across 

construct populations and develops over much longer time scales. Unlike rat cell 

constructs, human constructs require approximately 3 weeks for full contraction. 
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Figure 3.1 | Early construct development. a, Fibrin scaffold is reorganized around the retention points over the first week in 

culture. Control constructs, developed without cells showed a small degree of contraction over 7 days, but remained as flat gels and 

did not assemble into 3D structures. b, Tensile forces between the two anchor points cause cell alignment before day 6 (left). 

Mineralization nodules are observed throughout the structure after 10 days (middle). c, Mineral deposits are not noticeable 

following 7 days but individual mineralization points can be observed 4 days later in the close proximity of the calcium phosphate 

source. Scale bars b = 50 µm (Day 6, 10), 200 µm (Day 11). d, Changes in the fibrin template are visually noticeable at 14 days, with a 

distinct matrix forming from the anchor regions towards the centre, until the constructs appear to be fully covered with the new 

matrix at 3 months. 
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                                              (Wudebwe, Bannerman et al. 2015) 

 

Figure 3.2 | The effect of CaP anchors on matrix contraction and alignment. Previous work has demonstrated that in the 

absence of anchors (illustrated in the diagram series in the top row), cells contract the fibrin scaffolds over three weeks into 

spherical structures (a), whereas the provision of the 2 retention points (bottom row) allows the formation of a cylindrical structure 

in-between the two calcium phosphate structures (b). Scale bars = 10 mm.  Images a and b are taken from (Wudebwe, Bannerman et 

al. 2015). 
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        (Iordachescu, Amin et al.) 

 

Figure 3.3 | Anchors are required for cellular alignment in constructs. Previous work has demonstrated using 

immunofluorescence staining that the formation of tensile forces during contraction causes alignment at a cellular level, with the 

cytoskeleton and nuclei arranged along the direction of force. Confocal microscopy images of (a) disordered cells in unanchored 

constructs at day 0 and (b) elongated, highly aligned cells in anchored constructs at day 18.  

 

Images a and b are taken from Iordachescu A., Amin D.H., Rankin S.M., Williams R.L., Yapp C., Bannerman A., Pacureanu A., Addison 

O., Hulley P.A., Grover L.M. An in-vitro model for the development of mature bone containing an osteocyte network. Advanced 

Biosystems (2017). 
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CHAPTER IV 
LONG-TERM STRUCTURAL AND CHEMICAL EVALUATION 

 

  

 

4.1 INTRODUCTION 

Early results indicated marked changes in the matrix of constructs during the first 

culture month. To determine whether this visually distinct matrix was composed solely 

of inorganic components or whether organic matrix was being produced at the same 

time, the density of the matrix was probed by applying non-destructive X-ray imaging to 

create 3D density-based reconstructions of whole constructs, at a scale of high 

resolution, and without interfering with the construct chemical composition, thus 

keeping constructs intact. Additional non-destructive imaging and spectroscopic 

techniques were employed to characterise the formation of bone in 3D, in intact 

constructs. These include micro-X-Ray Fluorescence, Two-Photon Microscopy, but also 

physico-chemical technologies which have only recently been employed to study 

disease processes, such as Raman spectroscopy.  
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4.1.1 MICRO-COMPUTED TOMOGRAPHY 

The underlying principle of tomographic analysis (CT) is that the X-rays applied to the 

sample are attenuated at different rates depending on the density of the tissue they are 

passing through. As the object is rotated during scanning, thousands of images are 

acquired from numerous angular views, creating stacks of virtual cross-sections which 

are then integrated to give the final volume. Thus, internal structure can be analysed 

and fine scale details are significantly more visible compared to conventional 

microscopy (Campbell and Sophocleous 2014, Peyrin, Dong et al. 2014), without the 

need to interfere with the sample during processing. Moreover, morphometric 

parameters can be quantitatively analysed following reconstruction, something that will 

be discussed in more detail in Chapter IX – Administration of ossification-inhibiting 

compounds. 

 

4.1.2 RAMAN SPECTROSCOPY 

Raman spectroscopy is a technique which can detect specific chemical groups 

associated with mineral formation and the deposition of matrix components by 

detecting the vibrational bands associated with bonds between molecules (Morris and 

Mandair 2011). It has also been recently employed in understanding the molecular 

mechanisms of heterotopic ossification in wound injuries caused by blast overpressure 

and bone formation in general (Crane, Popescu et al. 2006, Crane, Polfer et al. 2013).  

The technique is based on using monochromatic light (in the case of this work, a near-

infrared laser) to exploit the effect of inelastic scattering (Butler, Ashton et al. 2016), 

which concerns the excitation of photons to virtual energy states. The laser light 

interacts with the vibration associated with chemical bonds between molecules in the 
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sample, which causes the energy of the laser photons to fluctuate higher or lower 

(Figure 4.1). This shift in energy can reveal biochemical information based on the 

vibrational models of the polarisable molecules (Butler, Ashton et al. 2016).   

Because this technique has a high molecular specificity and because different biological 

materials have a characteristic Raman spectrum, this technique is exceptional for both 

qualitative and quantitative analysis of biological materials which are different at the 

molecular scale. Biological samples tend to occupy the 400 – 2000 cm-1 region of the 

Raman spectrum, with proteins appearing between 1500-1700 cm-1, carbohydrates 

between 470-1200 cm-1, and phosphate groups associated with mineralisation between 

950-970 cm-1 (Morris and Mandair 2011, Butler, Ashton et al. 2016). 
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Figure 4.1 | Inelastic scattering in Raman spectroscopy. This technique uses monochromatic light (laser) to excite photons to 

virtual energy states. When photos are scattered from a molecule most of them are elastically scattered (Rayleigh scattering), having 

the same energy (frequency and wavelength) as the incident photons. A very small proportion of these photons (1 in 10 million) are 

scattered inelastically (Raman scattering), which involves the loss (Stokes) or gain (anti-Stokes) of energy due to the interaction of 

light with vibrations associated with bonds within the sample.  
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4.1.3 SECOND HARMONIC IMAGING AND TWO-PHOTON EXCITATION FLUORESCENCE 

 

Multi-photon microscopy was employed to image collagen in 3D in live constructs by 

making use of the non-linear optical effect known as second-harmonic generation (SHG) 

generated exclusively by collagen when exposed to a laser of an infrared/near-infrared 

wavelength (Chen, Nadiarynkh et al. 2012). This optical phenomenon in microscopy 

was first described in 1978 (Gannaway and Sheppard 1978). Generation of a second 

harmonic takes place when the incident light used has an electrical field of sufficient 

power to cause molecular deformations (Cox and Kable 2006). If the molecule is not 

symmetrical (i.e. non-centro-symmetrical), the resulting anisotropy creates an 

oscillating field at twice the frequency and half the wavelength, the second harmonic 

(Cox and Kable 2006). Individual non-centro-symmetric molecules of collagen, arranged 

in a triple helix, are able to generate very strong SHG signals (Figure 4.2).   

Where structural information was necessary, such as the spatial dynamics between 

osteoblasts and their secreted matrix protein, second harmonic imaging was used in 

combination with an additional high-resolution optical technique, two-photon excited 

fluorescence (TPEF) (Denk, Strickler et al. 1990, Gauderon, Lukins et al. 2001), which 

allowed the simultaneous visualization of collagen and viable cells, stained with a cell-

permeant fluorescent dye (Calcein AM), at a cellular resolution but over the tissue 

length scale. 
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Figure 4.2 | The optical effect of Second Harmonic Generation. Collagen has a molecular structure (triple helix) which is non-

centro-symmetrical. The incident monochromatic light emitted by a laser interacts with collagen and creates an oscillating field at 

twice the frequency and half the wavelength. 
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4.1.4 MICRO X-RAY FLUORESCENCE MAPPING 

Novel techniques such as micro-X-Ray Fluorescence (μ-XRF) spectroscopy have been 

traditionally used in archaeology for resolving the chemical composition of valuable 

artefacts (Shackley 2014), and recently for quantitating elements in Leonardo da Vinci’s 

most famous paintings, using specifically designed algorithms (de Viguerie, Sole et al. 

2009, de Viguerie, Walter et al. 2010) (Figure 4.3b-d). This is due to the high accuracy of 

the technique, the ability to work on irregularly-shaped samples and the non-

destructive properties. Although this technique can only provide information in the 

form on individual elements, it is extremely valuable for monitoring the temporal 

evolution of these elements, thus providing information on compositional changes.  This 

technology was employed in this work to chemically map the inorganic composition of 

developing constructs over significant periods of time in a non-destructive manner 

based on the emission lines of calcium (Ca) and Phosphorus (P), the main constituents 

of calcium phosphates and bone mineral. The increased or decreased presence of these 

elements can give valuable structural information regarding the local formation of 

ossified matrix. The principle by which X-Ray fluorescence works is based on the 

response of atom excitation by high energetic radiation (Figure 4.3a), which generates a 

vacancy in the affected shell as a photoelectron is ejected. This vacancy is filled by 

electrons from outer shells, a process that is accompanied by the emission of a 

characteristic X-Ray photon, otherwise known as X-Ray Fluorescence. This fluorescence 

is different for each element and the yield depends on the atomic number, that is, a high 

atomic number generates high fluorescence and low atomic number elements generate 

low levels of fluorescence. When the transition of an electron takes place from the outer 

L layer to the K layer, the emission line is known as the Kα emission line, whereas when 
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electrons from the outer M shell jump to occupy the vacant position the emission line is 

known as Kβ. 
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Figure 4.3 | Applications of non-destructive XRF. a, XRF follows a series of processes including a photoelectron ejection from the 

atomic shell exposed to high-energy primary X-Ray radiation and the subsequent ‘jump’ of an outer electron from the near shells in 

order to fill this vacancy. The process is associated with the emission of X-Ray Fluorescence, with different characteristics for each 

chemical element. When the jump takes place from the L to the K layer, it is known as the Kα emission line. When an electron from 

the M layer jumps to fill the place, the emission line is known as Kβ.  b-e, Due to its non-destructive properties and highly accurate 

detection levels, this technique has been recently applied to some of the most valuable historical artefacts and paintings, including 

Mona Lisa (b), St. John the Baptist (c), Bacchus (d) and the Gayer-Anderson cat (e).  Original images. Author would like to thank the 

Louvre Museum, Paris and the British Museum, London. 
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4.2 AIMS AND OBJECTIVES 

The aim of this work was to observe the structural evolution of the cell-seeded fibrin 

matrix over extended periods of time (1 year) and to monitor the concomitant evolution 

of the newly forming matrix longitudinally. Micro-computed tomography (μCT) was one 

of the many techniques used in this work for assessing maturation the cell-produced 

matrix. Density-based inspections and comparison with the inorganic component 

(anchors) were used to estimate the temporal maturation of the ossified component. 

The subsequent goals were to identify the composition, organisation and pattern of 

deposition of the new matrix in early and mature stages. Preliminary work was 

conducted in all cases to optimize the system for use with different analytical and 

imaging techniques, on aspects including sample preparation, determination of suitable 

sample holders and positioning of sample. 
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4.3 CHARACTERISATION METHODS 

 

4.3.1 MICRO-TOMOGRAPHIC ANALYSIS  

A micro-Computed Tomography (μCT) system (SkyScan 1172, Bruker Instruments, 

Germany), was used to evaluate mineralization and matrix development in constructs 

over time. Constructs were removed from the culture medium and were placed 

vertically inside plastic tubes, on a rotating stage located at 260.650 mm distance from 

the X-ray source and 347.109 mm from the detector. High-resolution scans were 

performed at ambient pressure using the cone-beam imaging system, composed of a 

Hamamatsu X-Ray source with a voltage of 80 kV and a tube current of 100 μA. The X-

Ray detector consisted of an 11 Mp X-Ray camera of a 9.01 μm pixel size, generating 

images of 6.76 μm pixel size. 2D cross-section slices of the constructs were acquired at a 

rotation step of 0.2 degrees, with 2 frames averaging per step and an exposure time of 

1050 ms. Acquired images were 3D reconstructed using the Bruker micro-CT NRecon 

Software (v. 1.6.10.2). For removal of scanning artefacts, several reconstruction 

parameters were adjusted during reconstruction. The beam hardening parameter was 

set to a value of 30 to correct for the surface-to-depth density gradient caused by 

increased X-Ray attenuation at the surface of the constructs. A ring artefact correction 

was set to a level of 9. The smoothing parameter was adjusted to a value of 4. These 

optimized, construct-specific settings were used for all time points investigated.  
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4.3.2 RAMAN SPECTROSCOPY 

Confocal Raman spectroscopy was used to detect and spatially resolve specific chemical 

groups associated with mineralized collagen deposition through the constructs. Maps 

and spectra were acquired using a confocal Raman microscope (Alpha 300R, WITec, 

Ulm, Germany), equipped with an Acton SP2300 Imaging Monochromator/ 

Spectrograph (Princeton Instruments, MA, USA), fitted with a 300g/mm with 750nm 

blazing grating, and a 785nm 250mW diode laser (XTRA II, Toptica photonics, Munich, 

Germany). Spectra were acquired from various points on the constructs, including the 

anchor; the interface between the anchor and the soft tissue and the central portion, via 

a 20X (NA = 0.45) objective lens and using an integration time of 3s and 20 

accumulations. Data was accumulated and exported using the WITec Control software 

version 1.6 (WITec, Ulm, Germany). 

Raman maps of whole constructs (Large scale image scans) were acquired by rastering 

the beam over the samples via the 20X (NA = 0.45) objective lens with a 20µm step size 

and accumulating 3 spectra with in integration time of 0.5 seconds at each point. The 

laser power was measured at 60mW (standard deviation 0.06mW) at the back aperture 

of the objective lens. The data was accumulated using the WITec control version 1.6 

software (WITec, Ulm, Germany). To prevent sample movement during the long scan 

times, the slides the samples were mounted on were clamped to the stage with Blu-

Tack. In all cases, map data acquisition involved between 3 and 4 days of continuous, 

uninterrupted scanning. Spectral data cubes were pre-processed to remove cosmic rays 

using the instrument associated software (Witec Project v2.10., Witec, Ulm, Germany).  
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4.3.3 SECOND HARMONIC IMAGING AND TWO-PHOTON EXCITATION FLUORESCENCE  

A multi-photon microscopy system was used to observe collagenous matrix formation 

in constructs using the optical effect of second harmonic generation (SHG). To 

concomitantly visualize collagen and cells, constructs were stained with the fluorescent 

dye Calcein AM (Sigma-Aldrich, Germany) at a ratio of 2 μl/ml of Opti-MEM culture 

medium (Gibco, Thermo Fisher Scientific, USA) to assess viability and distribution of 

cells.  The microscopy system consisted of a Zeiss LSM710 NLO (Zeiss Gmbh, Germany) 

coupled to a Ti:Sapphire mode-locked Coherent Chameleon Vision II laser. Collagen and 

fluorescent cells were imaged using second harmonic generation (SHG) and two photon 

excitation fluorescence (TPEF) between 385-475 nm and 480-655 nm 

respectively. Photons were collected through a 10x Plan Apo 0.45 N.A. and the two-

photon laser was tuned at 860 nm. The presence of collagen was confirmed by spectral 

imaging and collecting the second harmonic signal at 430 nm via a 10x Plan Apo 0.45 

N.A. or 40x Plan-Apo 0.95 N.A. objective. Where z-stacks were acquired, a slice interval 

of 6 μm was used. Images were visualised in ZEN 2009. Cell viability measurements 

were taken at different time points using Calcein AM, as described above and imaging 

was performed using either the Zeiss LSM710 NLO or a Leica DM2500/TCS SPE 

Confocal (Leica Microsystems, Wetzlar, Germany). Where z-stacks were acquired, a step 

size of 0.50 μm was used and excitation was performed using a 488 nm laser.  
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4.3.4 ELEMENTAL CHARACTERIZATION USING MICRO X-RAY FLUORESCENCE  

A micro X-ray fluorescence (μ-XRF) system (M4 Tornado, Bruker Nano Gmbh, Berlin, 

Germany) was used to generate spatially-resolved elemental maps of constructs and to 

investigate mineral and organic matrix distribution using the localization of Ca, P and S 

in constructs. 

The machine contains a Rhodium μ-focus X-Ray tube and a polycapillary lens, used to 

focus the X-Rays to a spot size of 25 μm. Recordings were taken without sample 

processing, at room temperature and ambient pressure. The X-Ray tube voltage used 

was 50 kV and tube current was 400 μA. μXRF spectra and maps from constructs of 

different ages were acquired using a 50 μm spot distance, 25 μm spot size and 50 

ms/pixel exposure time.  

Elemental maps were formed in real time by integrating the photon counts around the 

emission lines of: Calcium (Kα1 3.692 keV), Phosphorus (Kα1 2.010 keV), Sulphur (Kα1 

2.309 keV), generating an image where pixel intensity was proportional to the number 

of X-Ray counts/second per electronvolt (eV) from each measured point on the 

construct. Thus, pixel intensity increased with X-Ray counts, with maximum pixel 

intensity normalized to the highest count rate per eV for each element of interest, across 

the entire construct.  
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4.3.5 HISTOLOGICAL DETECTION OF COLLAGEN  

Sirius Red dye was used to detect collagen synthesis in constructs. Sirius Red dye 

(Direct Red 80, Sigma- Aldrich, Germany) was dissolved in saturated aqueous picric acid 

at a concentration of 100 mg/100 ml. Constructs were rinsed with PBS and fixed with 2 

ml standard Bouin’s fluid for 1 hour at room temperature. The fixation fluid was 

aspirated and constructs were washed with dH2O for 15 minutes. 2 ml of dye was added 

per construct and the recipients were placed on a plate shaker for 1 hour (100 RPM). 

The excess liquid was removed and the unbound dye was removed by rinsing with 2 ml 

0.01 N hydrochloric acid. Collagen deposits were visualized under the microscope.  
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4.4 RESULTS AND DISCUSSION 

The evolution of mineral and matrix in constructs over time is presented in Figure 4.4, 

which contains microtomographic 3D reconstructions of early (12-15 days) and mature 

constructs (3 months-1 year) developed with periosteal cells. These high-resolution 

microtomographies, acquired at sequential time points, also showed, similarly to whole-

mount histology, that mineralized matrix started forming in early stages (12-15 days) at 

the calcium-phosphate extremities in the absence of further osteogenic 

supplementation (Figure 4.4a-c). This matrix advanced with further osteogenic 

supplementation throughout the entire length of the constructs, until the structures 

became fully ossified after approximately 3 months (d-e). The initial fibrin structure 

became gradually replaced with greater-density matrix (h-j), which after 3 months 

contained deposits of high density mineral independent of the main bone-like structure 

(k-l).  Thus, a combination of clinically-relevant types of ossification were noticed in this 

system: the first type - starting from the bone-like ends- resembling fracture repair; as 

well as an isolated form, distant from the main bone-like structure, resembling mineral 

deposition in soft tissues as seen in ectopic ossification (Potter, Burns et al. 2007, Potter, 

Forsberg et al. 2010, Einhorn and Gerstenfeld 2015). During the subsequent culture 

period up to one year, this new matrix becomes very dense and compact (f-g/m-n), 

containing a high-proportion of mineral, particularly on the outside surface (g).  
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As indicated by tomographic analysis, constructs became mineralized through a process 

that was more complex than a simple calcification, i.e. the precipitation of calcium 

phosphate compounds on the fibrin matrix. Microtomographies indicated significant 

amounts of new, greater-density matrix co-localized with mineral deposits, which 

formed gradually throughout the culture period, indicating that a process of ossification 

was taking place. The nature and characteristics of these matrix components were 

analysed through a combination of molecular, spectroscopic and optical methods, which 

revealed an abundance of structural proteins associated with the extracellular matrix of 

connective tissues. 

Figure 4.5a illustrates a comparison between the novel matrix observed in early stages 

(15 days) using µCT, and a high-resolution compositional Raman map developed based 

on the signal corresponding to one of the organic components identified in abundance, 

CH2 (1447 cm-1), indicative of collagen. The latter analysis revealed that a higher 

amount of this compound was distributed in a similar pattern observed with CT, at this 

equivalent time point. In bone, collagen is produced by osteoblastic cells during the 

assembly of the extracellular matrix (ECM) and accounts for approximately 90% of the 

organic component (Boskey 2013). As such, its simultaneous deposition with the early 

mineral can be used as an indication of early ossification. Spectral analysis of constructs 

which had just completed undergoing the contraction phase (7 days), revealed that the 

CH2 band was accompanied by other bands such as amides I and III (1646 cm-1 and 

1316 cm-1 respectively), proline and hydroxyproline (861 cm-1 and 872 cm-1, 

respectively), major components of collagen, and later, at day 12, by phosphate 

compounds in the central and interface regions, indicative of mineral formation and co-

localised with the organic components (Figure 4.5b). All the mineral detected using 
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Raman spectroscopy at these early time points was different from the anchor material 

(Figure 4.6), the majority being octacalcium phosphate (OCP, 954 cm-1). OCP, 

Ca8H2(PO4)6.5H2O is a calcium phosphate with a Ca:P molar ratio of 1.33 and has been 

suggested a few decades ago to be to be an intermediate crystalline phase in 

hydroxyapatite formation in bones, enamel and dentin (Johnsson and Nancollas 1992). 

Fundamental studies by Eanes and colleagues in the 1960s-1970s (Eanes, Gillessen et al. 

1965, Eanes and Meyer 1977) did suggest that in aqueous suspensions at physiological 

pH, the first crystals which form from amorphous calcium phosphate are strikingly 

different from apatitic crystals, in terms of morphology structure and solubility and 

molar ratio (1.4). These crystals then undergo a process of maturation to HA by 

becoming thicker, but smaller laterally and less soluble. The authors suggested OCP as 

an intermediate phase which subsequently hydrolyses to HA. However, the presence of 

OCP as an intermediate  phase in the formation of bone and dentin mineral has been a 

subject of great debate over the subsequent decades and it has more recently been 

confirmed and described as taking place during in vivo mineralized tissue formation 

(Ban, Jinde et al. 1992), and in pathological dental and renal calcifications (Kani, Kani et 

al. 1983). It has also been identified using similar Raman spectroscopy analysis in 

cultured calvarial bone tissue explants (Crane, Popescu et al. 2006).  

The presence of a novel phosphate phase in our system support a cell-mediated 

mineralisation, but also indicates an advantage of our system in terms of the ability to 

simulate the temporal evolution of bone mineral.  

At the end of an initial month in culture, a regime of full osteogenic supplementation 

was commenced, containing additional ascorbate, β-glycerophosphate and 

dexamethasone. The purpose of this additional supplementation was to encourage 
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ossification to progress more rapidly towards the centre, at a point when the matrix 

was robust enough to maintain integrity during the rapid dissolution of the remaining 

fibrin caused by the new matrix replacement. Raman spectroscopic analysis performed 

following 2 months of supplementation revealed the presence of the complete set of 

peaks that have been reported to be present in mature bone, and in all regions 

investigated, including the centre (Morris and Mandair 2011, Crane, Polfer et al. 2013) 

(Figure 4.5c).  Interestingly, the mineral detected at this time point was the complex 

bone hydroxyapatite (957-962 cm-1), suggesting a maturation process from the 

intermediate phases, and was in all cases associated with collagen.  
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Figure 4.6 | Raman Spectra of the anchors of early constructs. Raman spectra acquired from distinct points on the anchor 

surface at 3 time points within the first two weeks of development revealed spectral characteristic for the brushite-TCP component, 

and different in all cases from the new mineral phases forming within the soft tissues. 
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In terms of localisation and organisation of collagen in constructs, as early as day 7, 

collagen was detected using whole-mount picrosirius red staining, abundantly around 

the edges in the vicinity of the two anchors (Figure 4.7a) and adjacent to the anchors, 

where it appeared to emerge from cell-like structures (Figure 4.7b).  As mineral 

deposits composed of calcium phosphate advance towards the centre during the first 

month of culture (Figure 4.7c), the organic matrix progresses as well.  

Three-dimensional second harmonic imaging of collagen and excitation fluorescence 

analysis of cells in constructs which were cultured for approximately one month, 

showed significant deposits of collagen arranged in pocket-like structures in the 

interface regions, surrounded by cells (Figure 4.7d illustrates an example). Further 

analysis using second harmonics (Figure 4.7e) revealed that the central region of 

constructs did not contain detectable deposits of collagen at this time point, indicating 

that the ossification had not progressed as far up to that time point, but also that the 

collagen species secreted by cells centrally had not reached the sufficient maturity (i.e. 

the non-centro-symmetrical, triple-helical structure) required to reflect half the 

wavelength of the incoming laser and thus to be detected using this technique (Denk, 

Strickler et al. 1990, Chen, Nadiarynkh et al. 2012).  

Throughout the additional osteogenic regime, over the following months, ossification 

progressed at the mm scale until the two sides met centrally, showing the same pattern 

of organisation of collagen pockets as observed in murine femoral bones (Figure 4.7e). 

Together, these results suggest a progressive deposition and maturation of mineralised 

collagen as seen in bone formation and fracture repair (Phillips 2005).   
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The visualisation of collagen exclusively in the emission channel corresponding to the 

432 nm wavelength (half of that of the incoming laser) for all samples investigated is 

presented in Figure 4.8 for validation.  

Interestingly, over the following culture months up to one year the inorganic 

component proportion (calcium phosphate) increases to a level similar to that of 

mature murine femurs (Figure 4.9). This process will be discussed further in the 

following chapter, Cellular development in constructs. 
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Figure 4.7 | Development of the collagenous matrix in constructs. a, Images of 7 day constructs stained with Sirius Red for collagen. Left image 

illustrates high amounts of collagen in the marginal region adjacent to the brushite anchor; right image demonstrates collagen emerging from cell-like 

structures next to the anchor. Scale bars = 200 μm. b, Micro-XRF mapping of live constructs over 21 days, based on Ca and P, the inorganic components 

of bone and S, as an indicator of the organic matrix. Maps show the progression and co-localisation of Ca and P from the anchor towards the centre 

during this period of development up to one month. Scale bar = 4mm.  c, Two-photon microscopy 3D reconstruction of cells (TPEF) and collagen (SHG), 

simultaneously visualised in live constructs. Collagen is present in ‘pocket’-like deposits. Scale bars = 100 µm. d, SHG visualisation of collagen in 

distinct regions at different time points. e, Collagen is abundant around the anchor areas in early stages, but not detected in the central region at 1 

month. Over the subsequent 2 months, the collagenous matrix extends into the tissue at the mm level, displaying a level of organisation similar to 

murine femora.  
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Figure 4.9 | Evolution of the inorganic component over a year in culture, as detected through micro-XRF. Calcium and 

Phosphorus, main components of the inorganic component of bone, increase with extended culture times until they reach a level 

similar to that of murine femurs. 
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CHAPTER V 
CELLULAR DEVELOPMENT IN CONSTRUCTS 

 

 

 

 

 

5.1 INTRODUCTION 

During the culture period, the combination of biomechanical and chemical factors (i.e. 

presence of tensile forces, continuous source of calcium phosphates and osteogenic 

supplementation) ultimately had an influence on the specialization of the stem cells 

embedded in the constructs towards an osteoblastic lineage and subsequently 

recapitulated successive phases of ossification, including cell attachment to scaffold, clot 

remodelling and matrix production (Franz-Odendaal, Hall et al. 2006, Dallas and 

Bonewald 2010).  

 

5.2 AIMS AND OBJECTIVES 

The aim of this work was to monitor the evolution of the stem cells embedded in the 

constructs as the matrix changed locally and chemically. Of particular interest was to 

determine whether embedded cells can terminally differentiate to mature bone cells, 

osteocytes. The goal was to use a combination of molecular and imaging techniques to 
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analyse and visualise the maturation of the structures. Lastly, preliminary work was 

carried out to determine the best type of sample processing for mechanically 

characterising these 3D, matrix embedded mammalian osteocytes and their 

environment using atomic force microscopy (AFM) mapping. 
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5.3 CHARACTERISATION METHODS 

 

5.3.1 REAL-TIME PCR (qPCR) 

 5 months (n=4) and 12 months (n=2) constructs were removed from culture media and 

the calcium phosphate anchors were cut out of the tissue and discarded. Tissues were 

snap frozen by submersion in liquid nitrogen for 1 minute, then rapidly pulverized 

using a multi-sample biopulverizer (BioSpec Products Inc., OK, USA). mRNA extraction 

was performed using a Dynabeads® mRNA DirectTM detection kit. The powdered 

tissue extract was added to 1 ml of a lysis/binding buffer containing 100 mM Tris-HCl, 

pH 7.5; 500 mM LiCl; 10 mM EDTA, pH 8; 1% LiDS; and 5 mM dithiothreitol (DTT) and 

was gently vortexed for 2-3 minutes until complete lysis was obtained.  The viscosity of 

the solution was reduced by a DNA-shear step by passing the lysate 3 times through a 

21-gauge syringe needle. The fragments of tissue that were not lysed were pelleted by 

10 seconds centrifugation and the supernatant was separated.  

mRNA isolation was performed by mixing the lysate with 1 mg superparamagnetic 

beads (Dynabeads®, approx. 2.8 μm diameter) which were covalently coupled to Oligo 

(dT)25 residues, having a capacity of binding a maximum of 2 μg mRNA. Beads were 

previously removed from the PBS storage suspension (pH 7.4) using a Dynabeads MPC-

S magnetic particle concentrator (Dynal AS Oslo, Norway), washed with the 

lysis/binding buffer and then re-suspended in the crude lysate. Each lysate was 

incubated with the beads at room temperature for approximately 5 minutes, by 

continuously mixing on a rotating platform to allow the polyA tail at the 3’ end of the 

mRNA to hybridize to the Oligo (dT)25 residues on the beads. The supernatant was then 
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removed by concentrating the mRNA bound beads at the magnet site and the beads 

were then washed one time with 500 μl of a buffer solution containing 10 mM Tris-HCl, 

pH 7.5; 0.15 M LiCl; 1 mM EDTA; 0.1% LiDS; and twice with 500 μl of a buffer solution 

containing 10 mM Tris-HCl, pH 7.5; 0.15 M LiCl; and 1 mM EDTA. RNA-bound beads 

were isolated using the magnet, washed in an enzyme-free RT buffer and then re-

suspended in a solution containing a reverse transcriptase (RT) polymerase in order to 

proceed with cDNA synthesis. cDNA synthesis was performed directly on the bead 

bound mRNA  using a SuperScript Reverse Transcriptase kit (Invitrogen, Thermo Fisher 

Scientific, CA, USA), using 1 μl 10 mM dNTP mix (dATP, dGTP, dCTP, dTTP), 12 μl dH2O, 

4 μl 5X first strand buffer (250 mM Tris-HCl, 375 mM KCl, 15 mM MgCl2), 1 μl 0.1 M 

DTT, 1 μl RNAse out (40 U/ μl) and 1 μl of the SuperScript RT enzyme (200 U/ μl). 

cDNA was synthesized by incubating the 20 μl reaction volume using a Veriti thermal 

cycler (Applied Biosystems, CA, USA), at 50°C for 5 minutes, 55°C for 20 minutes and 

75° for 15 minutes. Amplification of cDNA was performed using a ViiA 7 real-time PCR 

instrument (Applied Biosystems, CA, USA). The PCR reaction consisted of 2 μl cDNA 

template, 6 μl dH2O, 10 μl fast SYBR green master mix (containing a mixture of the SYBR 

Green I dye, AmpliTaq fast DNA polymerase, Uracil –DNA glycosylase, Rox dye and 

dNTPs) (Applied Biosystems, CA, USA) and 2 μl rat primer (GAPDH (QT00199633) 

/SOST (QT00418558) /PDP (QT00174706) (Qiagen, Manchester, UK) and beta-actin 

(QT00193473) previously reconstituted in Tris –EDTA (TE) buffer, pH 8.1 (Alfa Aesar, 

MA, USA). 

As positive control, cells from an osteosarcoma cell line positive for SOST and PDPN, 

UMR-106, were used and mRNA was extracted and processed in an identical manner.  
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These cells were obtained from the American type culture collection (ATCC) and were 

cloned derivatives of a transplantable rat osteogenic sarcoma. 

Data was recorded and analysed using the QuantStudio real-time PCR software, version 

1.2 2015 (Applied Biosystems, CA, USA). In addition to no template controls, products 

were validated using melt point analysis to show a single high temperature melt point. 

 

5.3.2 HISTOLOGICAL PROCESSING 

For histology and immunohistochemistry, constructs were fixed in 10% neutral 

buffered formalin for 3 days, and were then embedded in paraffin wax blocks for 

sectioning. 4 μm thick paraffin tissue slices were produced using a Leica microtome 

(Leica Microsystems, Wetzlar, Germany).  

Glass slides containing tissue sections were deparaffinised and rehydrated through 

subsequent washes with Neo-Clear (xylene substitute, Merck Millipore, Massachusetts, 

USA), twice for 5 minutes, 100% EtOH, 96% EtOH and 70% EtOH twice for 30 seconds 

each time, followed by a 1 minute wash with dH2O. Following the application of dyes, 

slides were prepared for long-term storage by washing with dH2O followed by 

dehydration in ascending concentrations of EtOH, as follows: 70%, 96% and 100% 

EtOH twice for 1 minute, followed by a final wash with Neo-Clear, twice for 5 minutes. 

Slides were mounted using a water-free agent, Neo-Mount (Merck Millipore, 

Massachusetts, USA) for long-term storage. Tissue sections were imaged using a Leica 

DM500 microscope (Leica Microsystems, Wetzlar, Germany).  
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5.3.3 H&E STAINING  

A Haematoxylin and Eosin (H&E) stain was used in order to stain cell nuclei, cytoplasm 

and the matrix of constructs. Haematoxylin staining solution was applied for 3 minutes 

and slides were washed under running tap water for 3 minutes. Eosin Y solution 0.5% 

was applied for 3 minutes. Samples were rinsed under running tap water for 30 

seconds. 

 

5.3.4 IMMUNO-HISTOLOGICAL ANALYSIS 

Slides containing tissue sections were deparaffinised and rehydrated through 

subsequent washes with Neo-Clear (xylene substitute, Merck Millipore, Massachusetts, 

USA ) and 100% EtOH  twice for 3 minutes; followed by washes in 95% EtOH, 70% 

EtOH and 50% EtOH for 3 minutes each time, followed by a wash with dH2O. Antigen 

retrieval was performed using the water-bath immersion method, where the slides 

containing tissue sections were immersed in citrate buffer (10 mM sodium citrate in 

dH2O, pH 6, Abcam, Cambridge, United Kingdom) for 8 hours at 37°C. Slides were 

washed twice for 5 min in TBS which contained 0.025% Triton X-100 (Thermo Fisher 

Scientific, Massachusetts, USA). Tissue sections were blocked in medium containing 1% 

BSA and 10% normal serum in TBS from either donkey or goat, depending on the 

species of the secondary antibodies, for 2 hours at room temperature. Primary rabbit 

antibodies against rat sclerostin (Abcam, Cambridge, United Kingdom), podoplanin 

(Abcam, Cambridge, United Kingdom) and collagen type I (Thermo Fisher Scientific, 

Massachusetts, USA) were diluted to a concentration of 10 μg/mL in TBS with 1% BSA. 

Antibodies were applied to the slides and incubation was performed overnight at 4°C. 

Samples were rinsed twice with TBS containing 0.025% Triton X-100, with gentle 
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agitation. Secondary antibodies (donkey anti-rabbit or goat anti-rabbit) conjugated to 

Alexa Fluor 488 (Figure 5.1) fluorophores, were diluted to 10 μg/mL (donkey) or 5 

μg/mL (goat) in 1% BSA in TBS and were incubated with the slides for 1 hour at room 

temperature. Following incubation, tissue sections were washed three times with TBS 

for 5 minutes. In order to check for non-specific antibody binding, the steps listed above 

were performed on additional slides, without the addition of the primary antibodies. 

Slides were washed with TBS containing 0.1% Triton X-100 for 5 minutes. Phalloidin 

(Thermo Fisher Scientific, Massachusetts, USA) conjugated to Alexa Flor 594 or 555 

(Figure 5.1) was used for cytoskeletal labelling. The lyophilized phallotoxin powder was 

diluted to a concentration of 200 U/mL using methanol (6.6 μM) and 3U were applied in 

TBS to each tissue-containing slide. Samples were washed with PBS twice. DAPI (Figure 

5.1) was used for nuclear/DNA staining dissolved in mounting agent. Tissue sections 

were mounted with Pro-Long Diamond anti-fade permanent mountant (Thermo Fisher 

Scientific, Massachusetts, USA) for fluorescence preservation. Fluorescence images were 

acquired using an Olympus Fluoview FV1000 confocal laser scanning microscope 

(Olympus, Tokyo, Japan) equipped with a multi-line argon laser FV5-LAMAR/LAMAR-2 

and a Helium-Neon Green Laser FV5-LAHEG-2/FV5-LAHEG. Images acquired from 

excitation at 405, 488 and 543 nm wavelengths were collected in individual channels 

and combined using the Fluoview FV10-ASW software, version 4.2 (Olympus, Tokyo, 

Japan). 
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Figure 5.1 | Excitation-Emission Spectra of fluorophores chosen for Immuno-Histochemistry. The Alexa Fluor 488 

fluorophore was conjugated to antibodies raised against the molecular markers of interest, Alexa Fluor 555 was conjugated to 

Phalloidin for detection of cytoskeletal actin and DAPI was applied to detect the presence of DNA/nuclei. Spectra were produced 

using the Fluorescence SpectraViewer online resource (Thermo Fisher Scientific, MA, USA). 
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5.3.5 SCANNING ELECTRON MICROSCOPY 

12 months-old constructs were fixed with 2.5% glutaraldehyde in phosphate buffered 

saline and dehydrated over several steps including immersion in ethanol of increasing 

concentrations and critical point drying using CO2. Samples were coated with platinum 

and Scanning Electron Microscope (SEM) images were acquired under vacuum using a 

Philips xl30 FEG ESEM at a resolution of 3 nm at 15 kV. Various cellular structures were 

coloured using Adobe Photoshop CC 2015 (Adobe Systems Incorporated, CA, USA) to 

allow a better visualization. 

 

5.3.6 SYNCHROTRON RADIATION COMPUTED-TOMOGRAPHY  

Nano-computed tomography (nanoCT/srCT) represents imaging at resolutions below 1 

micron using synchrotron radiation. Synchrotron radiation uses a high-photon flux 

monochromatic X-Ray beam that is extracted from a synchrotron source, as opposed to 

microCT, which uses a polychromatic X-Ray source. This prevents beam-hardening 

artefacts (described in Chapter 4), which allows high-resolution, accurate measurements 

(Martín-Badosa, Amblard et al. 2003). srCT analysis was conducted on the nano-

imaging beam line ID16 at the European Synchrotron Radiation Facility (ESRF) in 

Grenoble, France. Constructs were fixed with 4% formaldehyde and dried for 30 

minutes at 50oC. 5 mm samples of constructs were excised and placed on the rotating 

stage (Figure 5.2). Images were acquired at a resolution of 50 nm or 100 nm and a 

number of slices of 65-200 was acquired and used for 3D reconstruction.  
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Figure 5.2 | Equipment design for sample scanning using synchrotron-radiation computed tomography. a, Stage containing 

sample is fixed in place. b, 5 mm samples were cut from dried constructs and were placed in the centre of the stage used for high-

resolution scanning. 

 

 

5.3.7 THERMAL ISOLATION OF MINERAL 

Constructs were removed from culture and their calcium phosphate anchors were 

excised. Remaining tissues were dried at room temperature overnight and weighed 

using an Ohaus Pioneer Plus analytical balance (Ohaus, NJ, USA). Tissues were then 

introduced into a 900°C hot oven for 13 hours to remove organic matter (Carbolite 

CWF1300, Carbolite Gero, Hope Valley, United Kingdom). Following this period, the 

inorganic matter isolated was weighed and the percentage mineral content was 

calculated. 
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5.3.8 X-RAY DIFFRACTION  

X-ray diffraction (XRD) was used to determine the crystalline composition of the 

samples. The crystals produced from the samples following 13 hours of heating in a 

furnace were ground into fine powders with a marble mortar and pestle and carefully 

formed into a 10mm wide thin circular layer on sticky tape. X-Ray diffraction patterns of 

the mounted powders were then collected using with a Bruker D5000 X-ray 

diffractometer (Bruker ASX, Karlsruhe, Germany) using the Cu Ka1 1.5406Å line, with a 

2θ range of 24.6º to 48º, a 0.02º step-size and a step time of 0.05 s/ º leading to a total 

scan time of approximately 1 hour. Detected peaks were compared to JCPDS reference 

patterns to identify the crystalline phases in each sample. PDF 00-009-0432 and 00-

012-0404 were used as reference patterns for hydroxyapatite and Whitlockite, 

respectively. 

 

5.3.9 MICRO X-RAY FLUORESCENCE  

High-resolution elemental mapping of the lacunar structures and matrix of 1-year 

constructs was performed on flat, 4 μm thick slices (see Histoprocessing) using a spot 

size of 25 μm, distance of 5 μm, with 10 ms/pixel exposure time and 100 frame counts. 

Measurements were recorded under vacuum, at approximately 800 mbar. 
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5.3.10 RAMAN MAPPING OF WHOLE CONSTRUCTS 

Large-scale image scans were acquired from fresh constructs using the methodology 

described in section 5.3.1. Spectral data cubes were pre-processed to remove cosmic 

rays using the instrument associated software (Witec Project v2.10., Witec, Ulm, 

Germany). For some experiments (see Formation of a Periosteal Structure in 1-year-old 

constructs) files were exported in .SPC format and imported into MATLAB (MATLAB 

2016b. Mathworks, Natick, Massachusetts, USA), baseline corrected using an adaptive 

iteratively reweighted penalized least squares method and vector normalised. Least 

squares regression was used for fitting of individual Gaussians to each peak. 

Octacalcium phosphate was represented by the P−O stretching mode (v1) of the PO4 

group between 953-956cm-1. Hydroxyapatite was represented by the symmetric 

stretching mode (v1) of the PO4 group (P−O bond) between 958-961cm-1. Collagen was 

represented across all maps by the amide I peak spanning 1620-1650 cm-1. To best 

visualise the relative amounts, distribution of, and association between, mineral and 

collagen throughout the samples RGB image maps were produced by integrating over 

the sum of peaks of interest. Red represented OCP, Green represented hydroxyapatite 

and Blue represented collagen. MATLAB was employed in all cases in order to visually 

represent the co-localisation of the signals for the inorganic-organic components and to 

be able extract further information regarding the dynamics of ossification. As such, the 

overlap of different components generated the following colours: yellow when HA 

(green) and OCP (red) were co-localised, grey when HA (green) and collagen I (blue) 

were co-localised, and violet/purple when OCP (red) and collagen I (blue) were co-

localised.  
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5.3.11 ATOMIC FORCE MICROSCOPY 

  

5.3.11.1 FRESH SAMPLE PREPARATION FOR AFM 

Fort the initial tests, constructs were removed from culture medium following a year in 

culture and rinsed with PBS for a few seconds. A 1 cm2 section was cut from the central 

portion of constructs and positioned flat on a 35 mm x 10 mm polystyrene dish 

(Corning, New York, USA), which was immersed in 1 ml PBS (Sigma-Aldrich, Germany), 

a quantity sufficient to maintain the hydration of the tissue section, whilst preventing its 

movement during testing.  

 

5.3.11.2 FIXED SAMPLE PREPARATION FOR AFM 

An alternative type of sample was used to optimise the force measurements, using glass 

mounted tissue sections of 1 year constructs.  These sections were 4 μm thick paraffin 

and were produced by formalin fixation, followed by paraffin embedding and sectioning 

using a Leica microtome (Leica Microsystems, Wetzlar, Germany), using the procedures 

listed previously for histological processing, in Chapter 5.  

The glass slides containing tissue sections were deparaffinised and rehydrated through 

subsequent washes with Neo-Clear (xylene substitute, Merck Millipore, Massachusetts, 

USA), twice for 5 minutes, 100% EtOH, 96% EtOH and 70% EtOH twice for 30 seconds 

each time, followed by a 1 minute wash with dH2O. Samples were kept hydrated with 

PBS prior to and during measurements.  
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5.3.11.3 MECHANICAL TESTING  

Samples were mechanically mapped using a NanoWizard II atomic force microscope 

(JPK Instruments AG, Berlin, Germany). The NanoWizard II setup consisted of a Carl 

Zeiss Axiovert 200 microscope, with a joystick controlled motorised stage and 

ForceWheel device, which allowed navigation across the sample surface; a NanoWizard 

II head, a manual and automated, and alloy base plate stage providing a travel range of 

20 x 20 mm2 within the field of a 100x objective. The instrument was located inside a 

closed, acoustic isolated chamber paced on a vibration-isolated table to reduce noise 

and artefacts.  

High-resolution maps were acquired using pyramidal cantilever tips by intermittent 

contact mode across an X-Y range of 50 x 50 μm, and 100 x 100 μm (512x512 pixels), 

and across a z range of 15 μm. The acquisition time was approximately one hour for 

each area scanned. Data was acquired using JPK NanoWizard Control software and 

measurements for height, slope and adhesion were analyzed and exported using JPK 

Data Processing software version 4.1.8 (JPK Instruments AG, Berlin, Germany). 
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5.4 RESULTS AND DISCUSSION 

 

5.4.1 FORMATION OF OSTEOCYTES AND A LACUNO-CANALICULAR SYSTEM 

Optical analysis of the cellular morphological features during the months of culture 

revealed a pronounced restructuring of the cytoskeleton (Figure 5.3), showing the 

formation of extensive projections characteristic of osteocytes and of long micro-canals 

as early as 3 months (a). Following 1 year in culture, most of the cells observed 

displayed an osteocytic morphology (b).  

At the molecular level, cells present after a period of 5 months expressed osteocytic 

marker sclerostin, a negative regulator of bone formation and an inhibitor of 

osteoblastic activity (Poole, van Bezooijen et al. 2005, Bonewald 2011, Kalajzic, 

Matthews et al. 2013), on their outer membranes and in their surroundings, which 

resembled cell networks (Figure 5.4a and 5.5). Further networks rich in sclerostin but 

also podoplanin, a marker for the embedding osteoid osteocyte (Bonewald 2011), and 

which is involved in reorganization of the cytoskeleton (Zhang, Barragan-Adjemian et al. 

2006), could also be detected following the very extended culture time of 1 year (Figure 

5.4a illustrates an example). Sclerostin and podoplanin mRNAs were also detected at 

these late (5 months) and very late time points (1 year) (Figure 5.4b), suggesting an 

active role of the cells in building and remodelling the bony matrix.  

Interestingly, the mineral to matrix ratio of these constructs at the latter time point 

reached a value similar to that of bone, with mineral occupying approximately 70% of 

the total content (Boskey 2013) (Figure 5.4c). Moreover, the mineral was confirmed to 

be the mature bone hydroxyapatite using X-Ray Diffraction analysis (Bonar, Roufosse et 

al. 1983) (Figure 5.6). 
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Figure 5.3 | Cellular morphological changes over a year in culture and final differentiation to osteocytes. a, Following a 

month in culture, morphology of cells in constructs is mainly elongated and resembling osteoblastic cells (left). With additional 

osteogenic supplementation and over the following 2 months, cells develop typical osteocytic characteristics, including numerous 

interconnected osteocytic networks (middle) and canaliculi-like structures containing long cell projections (right). b, The most 

mature cells (1 year) show a marked re-structuration of the cytoskeleton, displaying osteocytic phenotypes strikingly similar to 

those encountered in vivo (left).  The long projections are very well preserved (right top and bottom). 
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Figure 5.4 | Detection and localisation of bone markers in mature constructs. a, Immunohistochemistry of constructs, showing 

expression of osteocytic marker sclerostin on the surface of cells and in neighbouring network-like structures at 5 months (middle). 

The matrix of 1 year-old constructs contains long networks, where podoplanin could be detected (right). Scale bars = 100 µm. b, 

mRNA for sclerostin and podoplanin was detected at these time points as well. Results are presented compared to a rat 

osteosarcoma cell line as positive control. UMR-106 produces sclerostin and podoplanin continuously. Please note cycle threshold 

(Ct) is inversely proportional to the amount of target nucleic acid in the sample. npdpn= 4 (umr,5 m), 2 (1 yr). nsost= 4 (umr), 2 (5m,1 

yr). ngapdh= 4 (umr,5 m), 2 (1 yr). c, The inorganic component of constructs following a year in culture equals approximately 70% of 

the total content. n=3.  
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Figure 5.5 | Secondary antibodies are highly specific and do not bind at random locations on constructs during 

immunohistochemistry. Goat anti-rabbit IgG conjugated to Alexa Fluor 488 (green) were applied to all samples in the same 

conditions, without the addition of a primary antibody in order to detect non-specific binding. These results that these antibodies 

were highly specific, showing minimal or non-existent binding to the construct slices, thus reducing the possibility of false positive 

results.   
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Figure 5.6 | Typical X-Ray Diffraction pattern obtained from mature constructs. The pattern confirms the presence of 

hydroxyapatite, the mature bone mineral in 1 year samples. Traces of whitlockite, a second type of mineral abundant in bone (Jang, 

Jin et al. 2014, Jang, Lee et al. 2015), can also be detected.  
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Sclerostin, visualised in a section of a 5 months-old construct using immunohistochemistry.  

Blue - Nuclei (DAPI)  Red - Actin (Phalloidin conjugated to Alexa Fluor 555), Green - Sclerostin (Goat anti-Rabbit IgG conjugated to Alexa Fluor 488) 
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High-resolution optical analysis of the cells in the most mature constructs (1 year) 

demonstrated further osteocytic morphological features. Cells at the surface of 

constructs, imaged using scanning electron microscopy (Figure 5.7a), appeared 

embedded in the heavily mineralized matrix. These cells contained a high number of 

large projections emerging from the cell bodies and reaching adjacent cells, as seen in 

bone (Gorustovich 2010, Schneider, Meier et al. 2010). Synchrotron radiation computed 

tomography (srCT), which enabled resolution down to the nanoscale (Langer, 

Pacureanu et al. 2012, Peyrin, Dong et al. 2014), was used to visualise cells located 

below the surface, inside the constructs. Figure 5.7b illustrates an example. The 

tomographic reconstruction further confirmed the presence of a complex canalicular 

network that linked the embedded cells, the first time that such elaborate structures 

have been attained using an in vitro culture. These channels were visualised using 

micro-XRF to provide a chemical map of the tissue structures (Figure 5.7c).  Lacunae, 

which were shown to house cells expressing osteocytic markers, were surrounded by a 

matrix rich in calcium and phosphate salts.  The presence of a canalicular network was 

further supported by this analysis, which showed a sulphur rich network (indicative of 

the presence of protein) which permeated through and between the lacunar structures 

(Figure 5.7c). Similar osteocytic structures, containing cellular DNA, were observed at 

earlier time points as well using histological analysis (Figure 5.8). These lacunar 

structures were aligned with the mechanical axis of construct and in some cases were 

connected by microchannels (Figure 5.8c).   
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Figure 5.7 | Development of bone cells in constructs. a, SEM images of cells in constructs after 12 months of culture, showing 

cells embedded in the significantly mineralized matrix. The main cellular structure in a has been false-coloured to allow a better 

visualization. There are many podocytes embedded in the heavily mineralized matrix. Cells communicate through extensive 

projections. b, Synchrotron radiation computed tomography illustrating a typical osteocyte lacuna (L) with emerging canaliculi (C) 

that branch into the tissue. c, XRF maps based on S, Ca, P showing network-like structures throughout the matrix and connecting 

adjacent lacunar-like structures (arrows). Scale bars = 200 μm. 
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     Osteocyte lacunae and canaliculi inside a 1 year-old construct, as seen through synchrotron radiation computed tomography (srCT) 
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Figure 5.8 | Development of osteocytic features, H&E stain of tissue sections. Canalicular-like structures emerging from lacunar 

spaces were observed as early as 3 months (a, arrows), with some branching into the tissue (b, arrows) and connecting adjacent 

similar structures, which contained cell DNA and remnants of the cytoplasm (a, b). Networks of DNA containing lacunae (c, arrows), 

could be observed arranged along the length of constructs. Scale bars a, b = 10 μm; c = 100 μm. 

 

 

Taken together, these results suggest that the microenvironment inside constructs, 

which developed into mature, mineralized collagen, reached a level of ossification 

similar to in vivo bone following long-term culture, which allowed the differentiation 

and survival of osteocytic cells over an extended, clinically-useful period of time.  

Osteocytes are extremely difficult to differentiate in-vitro (Kalajzic, Matthews et al. 

2013), as these mature cells form under complex conditions in their environment. They 

are also very difficult to investigate in vivo due to their localization, embedded in 

lacuno-canalicular networks in hard bone, and their final stage differentiation into 

mitotically inactive cells (Kalajzic, Matthews et al. 2013). Following isolation, culturing 

these cells require complex supplementation regimes to prevent a quick de-

differentiation into osteoblastic phenotypes. Although standard immortalized osteocyte 

cell lines (e.g. MLO-Y4) are available, (Kato, Windle et al. 1997) they are not entirely 
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representative due to reduced marker expression, particularly sclerostin. As a 

consequence, to this date there are few models available for ex-vivo or in-vitro study of 

osteocytes and certainly none that allow for the long-term growth of these cells.  

This work demonstrates that it is possible to fine-tune a primary osteoprogenitor cell 

population towards an osteocytic phenotype in a physiologically-relevant system that 

develops into bone tissue at most levels, including cellularly (osteoblast and osteocyte 

development), compositionally and structurally (organised collagenous matrix 

production and mineralization). Although primary osteoblast to osteocyte cell 

transition has recently been reported in 3D by a few research groups (Kalajzic, 

Matthews et al. 2013); this model differs in the close recapitulation of complex in-vivo 

conditions (Boukhechba, Balaguer et al. 2009), and in the self-structuring process as 

opposed to a pre-formed organic-inorganic matrix template (e.g. collagen scaffold with 

embedded HA particles) (Sun, Gu et al. 2015). As such, constructs survive over much 

greater periods of time (i.e. 12 months compared to a few weeks); as well as developing 

over a real tissue length-scale. 

 

5.4.2 FORMATION OF A ‘PERIOSTEAL’ STRUCTURE IN 1-YEAR-OLD CONSTRUCTS 

Several techniques indicated the formation of a gradient of ossification, not only from 

the anchors towards the center but also from the midpoint of the constructs towards 

the edges.  These were observed as outer structures which were denser than the 

remaining construct (Figure 5.9). This process could have been triggered by individual 

or a combination of factors including the design of the system, mechanical pattern of 

self-organisation, or local chemical and biological cues. Irrespective of the nature of the 

underlying mechanisms, the process itself was both fascinating and valuable to this 
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model, as it brought this system closer to simulating bone by recreating an outer 

‘periosteal’ structure. Figure 5.9 presents the analysis of  this aspect. Firstly, the dense 

outer matrix layer observed with micro-CT (a), when mapped using Raman 

spectroscopy, it showed an abundance of HA-associated collagen composition, whereas 

the central portion of constructs contained a mix of mature HA and intermediate phase 

OCP (b). Interestingly, the abundant collagen content detected at earlier time points 

using this technique as well as with SHG, was loaded during extended culture periods 

with further mineral deposits, confirming the high mineral content (70%) detected 

using other techniques.  It cannot be determined soley based on this data whether the 

formation of this outer structure and the assembly of this highly-mineralised matrix 

was due to the absence of a marrow-like cavity. Further work involving vascularisation 

of constructs would be able to shed light on this matter.  Sections of these mature 

tissues were subjected to immunohistological and histological analysis, which revealed 

some further interesting aspects. The outer, dense layer contained proportonally-high 

levels of sclerostin, the negative regulator of bone formation, compared to the central 

portion, where it was encountered in network-like structures (c, left). These outer 

structures also contained considerable amounts of cellular DNA, suggesting a 

localisation of the osteocytic cells in this part of the constructs. The presence of cellular 

DNA was also identified in this region using haematoxylin staining (c, right). It is hard to 

speculate whether the localisation of cells particularly on the outside layers was a 

preferential choice due to the heating gradient provided by the well-plate system, but 

several fine tests could be run in further work to investigate this matter by modifying 

the culture system, as well as the chemical composition and design of the multi-well 

plates in order to uniformize the microclimate they provide to the cells. 
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Figure 5.9 | Formation of a ‘periosteal’ structure in constructs. a, Micro-CT tomographies indicated a density difference between 

the outer layer of constructs and the central portion in the oldest constructs. b, Raman maps of the central area revealed that the 

outer structure contained collagen type I associated with hydroxyapatite, whereas the central region contained a combination of HA 

and OCP. c, Immunohistochemistry on tissue sections indicated that this region was rich in sclerostin (green) and cellular DNA 

(blue). The latter was also observed using H&E staining, where DNA was localised to the outer region (blue). 
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5.4.3 MECHANICAL CHARACTERISATION OF OSTEOCYTES 

The ability to differentiate osteoprogenitor cells towards an osteocytic path in this 

system provides an opportunity to study these cells in a more native environment than 

previous in vitro models.  As discussed in Chapter 1, the hierarchical embedding of 

osteocytes into the bony matrix is essential for their role as mature, mechano-sensing 

cells. Therefore, preliminary work was performed to determine a suitable method for 

characterising these cells from a mechanical perspective in order to understand their 

immediate micro-environment. Atomic force microscopy (AFM) was employed to 

mechanically map the properties of constructs at high-resolution. Atomic force 

microscopy is a technique that has been increasingly used in cell biology in the past 

years for analysing cell features at the nanometre resolution (Lehenkari, Charras et al. 

2000, Graham, Hodson et al. 2010) and has been applied for the study of individual 

osteocytes (Nguyen and Gu 2014).  

Whole constructs (1-year-old) were initially subjected to mapping by AFM (Figure 

5.10). Maps of 100 μm2 allowed the identification of cell features, including cellular 

projections and bodies (top row). Identical features were also observed at a resolution 

of similar scale using synchrotron radiation computed tomography, where these cell 

pods appeared to connect to lacunar structures (Figure 5.11). The cell projections 

showed a high adhesion, indicating the presence of biological material, whilst the matrix 

surrounding them showed little to no adhesion, suggesting an inorganic, less adhesive 

component.  Smaller areas were then selected (80 and 30 μm2) to observe further 

details, however, the procedure generated noisy maps, potentially due to sample 

movement during investigation (Figure 5.10 Areas 2 and 3).  



 
 
 
 

 167 

 

 

 

Figure 5.10 | Mechanical characterisation of 3D constructs. Several cellular features can be observed, particularly projections 

characteristic to osteocytes (Area 1). Pods appear more adhesive compared to the surrounding matrix, suggesting the presence of 

biological material entrapped within a less adhesive, inorganic component. Areas 2 and 3 appear noisier due to sample movement. 

These maps appear to show a mixture of structures with different mechanical properties, including round, adhesive structures with 

a low slope, indicating biological material, and structures which are harder (higher slope) and have less adhesion, indicating 

inorganic material. 
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Figure 5.11 | Nano-characterisation of osteocytic features. The cellular projections observed using AFM were also detected 

using synchrotron radiation tomography, where they appeared as canaliculi (C), connecting lacunar structures (L). 

 

 

As such, a new type of sample was prepared to remove the issue of movement during 

measurement, which involved using deparaffinised, re-hydrated 4 μm thick tissue 

sections fixed onto glass slides. The combination of tissue sectioning and atomic force 

microscopy has been previously reported as successful for resolving intracellular and 

extracellular structures in connective tissues (Graham, Hodson et al. 2010).   

This method was successful in preventing the sample noise issue and trial 50 μm2 maps 

were able to identify osteocytic bodies and projections, with mixed mechanical 

properties, potentially composed of both organic and inorganic materials (Figure 5.12). 

Interestingly, the matrix surrounding the osteocytic structures (Figure 5.12 right) 

showed some degree of consistency, with organic structures alternating inorganic ones.  
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Although AFM has been increasingly used in biology recently to obtain information at 

the nanometre resolution scale, many biological features are too unstable or out of the 

probe’s reach (Lehenkari, Charras et al. 2000). In live cells, this is further complicated 

by the fact that many biological processes take place within seconds as opposed to 

minutes – hours, which are required for AFM scanning.  Further optimisation work in 

this area is needed to confirm and expand on these results. 

 

 

 

 

 

 

Figure 5.12 | Mechanical characterisation of individual osteocytes in tissue sections. Tissue sectioning allows the detection of 

clearer osteocytic structures, including cell body and projections. These cells and surrounding matrix showed mixed mechanical 

properties. The adhesion channel (right) shows a pattern of alternative soft and hard structures.  
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CHAPTER VI 
MATRIX MINERALISATION BY MATRIX VESICLES 

 

 

 

6.1 INTRODUCTION 

The process of ossification takes places through a cell-mediated route, where 

cartilaginous and collagenous matrix built by chondrocytic and osteoblastic cells 

becomes subsequently mineralised in an organised manner, giving rise to the mature 

bone tissue (Mackie, Ahmed et al. 2008).  

It is generally accepted that the process of calcium and phosphate deposition in 

cartilage, bone and dentin is mediated through exosome/vesicle-like nano-structures, 

generally referred to as matrix vesicles (MVs) (Anderson 1969, Anderson 2003, 

Anderson, Sipe et al. 2004). These nanovesicles are thought to bud-off from the plasma 

membrane of hypertrophic chondrocytes and osteoblasts (Cui, Houston et al. 2016) and 

contain the optimal conditions for the assembly of Ca and P into Hydroxyapatite, which 

ultimately becomes precipitated on the surface of collagen fibrils (Anderson 2003, 

Golub 2009), forming nucleation points (Felix, Herrmann et al. 1978).  

The presence of matrix vesicles in the environment of cells embedded in constructs is 

an indication of the active role played by cells in the ossification process. This has been 

an area of intense research in the past years and numerous methods have become 
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available for selecting these nanostructures for further characterisation, each 

presenting various advantages and disadvantages (Li, Kaslan et al. 2017).  

Traditional protocols for selecting these small vesicles involve ultracentrifugation (UC) 

(Hutcheson, Goettsch et al. 2014), which allows the separation of matrix vesicles on the 

basis that larger particles sediment faster, while the smaller particles remaining in the 

supernatant and which can be recovered using further centrifugation steps. In the case 

of matrix vesicles, it is thought that the mineral phase contained by the vesicles 

increases their density such that they pellet at a faster rate (Hutcheson, Goettsch et al. 

2014). Whilst this method can produce a high yield of nanovesicles, the selection of 

nanostructures solely on this basis presents significant disadvantages such the inability 

to remove similar exosomes of equal weight (Safdar, Saleem et al. 2016); deformations 

and damage associated with the centrifugation process, such as exosomal aggregation 

(Chiou and Ansel 2016), which can potentially impact proteomic and RNA content 

analysis (Lamparski, Metha-Damani et al. 2002, Lobb, Becker et al. 2015) as well as 

inconsistencies related to using the same protocol with different rotors (Livshits, 

Khomyakova et al. 2015). Moreover, subsequent characterisation techniques used to 

confirm the nature of exosomes isolated through differential ultracentrifugation, such 

as optical visualisation using TEM, which has been traditionally used to observe these 

structures at high resolution, is not always able to confirm the nature of vesicles due to 

artefacts associated with the sample preparation process for TEM, which causes 

extreme dehydration and collapse to extracellular vesicles (Lobb, Becker et al. 2015, Li, 

Kaslan et al. 2017); and the presence of matrix vesicles lacking a mineral phase (Landis, 

Paine et al. 1977, Landis and Glimcher 1982, Cui, Houston et al. 2016).  
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Therefore, methods which can select nanovesicles based on previously characterised 

markers are more reassuring and appropriate to confirm their presence in the 

mineralising matrix. Markers involved in ossification, abundantly present on the surface 

of these matrix vesicles, such as tissue non-specific alkaline phosphatase 

(TNAP)(Hessle, Johnson et al. 2002, Anderson, Sipe et al. 2004, Ciancaglini, Simao et al. 

2006, Millán and Whyte 2016) can be targeted and used for immuno-isolation using 

standard immunoprecipitation protocols (Wittrup, Zhang et al. 2010, Hussain and 

Davanger 2015). Although a much smaller population can be selected using this 

procedure, it can provide a confirmation of the presence and involvement of these 

vesicles in the biomineralization process.  

Immuno-isolation of matrix vesicles is a straightforward process in-vitro, given the high 

number of osteoblastic cells that can be cultured in 2D. Extracting these vesicles from 

more complex structures, such as 3D-engineered bone, can be more challenging due to 

the smaller number of cells inserted and hence secretome produced. The growth 

medium of engineered bone tissue such as the one described in this thesis is a useful 

source of vesicles which can be collected for analysis.  

 

6.2 AIMS AND OBJECTIVES 

The goal of this work was to further support the role of embedded cells in constructs in 

the mineralisation process by attempting to isolate a small sub-population of matrix 

vesicles from the secretome of cells. The work was based on immunoselection, 

combined with a panel of characterisation techniques that were used to determine the 

role of these nanostructures in biological processes taking place in constructs. This 

chapter presents the results from this work. 
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6.3 CHARACTERISATION METHODS 

 

6.3.1 IMMUNO-ISOLATION OF VESICLES INVOLVED IN MATRIX MINERALISATION 

 
Matrix vesicles were isolated from the culture medium of constructs by 

immunoprecipitation using 2.8 μm superparamagnetic Dynabeads (Invitrogen, Thermo 

Fisher Scientific, CA, USA), covalently coupled to Protein G on their surface (approx. 17 

kDa). Rabbit monoclonal antibodies against Rat Alkaline Phosphatase, Tissue Non-

Specific (TNAP) were used to isolate the vesicles (Abcam, Cambridge, United Kingdom). 

Antibodies were attached to the magnetic beads through their Fc region during a 15 

minutes incubation with rotation at room temperature, at a ratio of 5 μg of Ab/ 200 μl 

PBS containing 0.01% Tween-20 and 0.09% sodium azide, in which 1.5 mg magnetic 

beads were resuspended (Invitrogen, Thermo Fisher Scientific, CA, USA). The complex 

formed was washed by resuspending in 200 μl buffer and 1000 μl of culture medium 

containing the matrix vesicles was added to the formed Dynabeads-Ab complex. 

Samples and complex were incubated for 15 minutes at room temperature, with 

rotation. Following vesicle binding to the antibody, the beads-Ab-vesicle complex 

formed was washed four times using PBS washing Buffer (Invitrogen, Thermo Fisher 

Scientific, CA, USA). The Ab-Vesicle complex was eluted from the beads though the 

addition of 20 μl elution buffer (Invitrogen, Thermo Fisher Scientific, CA, USA). For gel 

electrophoresis, vesicles were resuspended in a loading mixture containing 2.5 μl 

NuPAGE LDS Sample buffer (4X), 1 μl NuPAGE Reducing Agent (10X) (all from Thermo 

Fisher Scientific, CA, USA) and 6.5 μl dH2O and were incubated for 10 minutes at 70°C. 

Samples were loaded onto NuPAGE Novex 4-12% Bis-Tris Protein gels (1 mm thick) and 
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were run at 160 V for 60 minutes using MOPS buffer. 500 μl NuPage Antioxidant 

(Thermo Fisher Scientific, CA, USA) was added to the buffer to maintain the reduced 

state of proteins during protein gel electrophoresis.  A Novex Sharp Pre-stained protein 

standard was used for reference (Thermo Fisher Scientific, CA, USA). For controls, PBS 

was used instead of culture medium and samples were subjected to the same isolation 

procedure and steps.  

 

6.3.2 NANOPARTICLE ANALYSIS USING DYNAMIC LIGHT SCATTERING  

Dynamic light scattering (DLS) using a Zetasizer Nano ZS Instrument (Malvern 

Instruments Ltd, Malvern, United Kingdom) was used to characterize the culture 

medium of young and old constructs at the nano-scale in order to detect the presence of 

extracellular vesicles. 2.5 ml of supplemented medium for cell culture and culture 

medium from young and mature constructs were diluted 1:10 in PBS, inserted into 12 

mm polystyrene cuvettes (Malvern Instruments Ltd, Malvern, United Kingdom) and size 

measurements were taken at a 173 degrees scattering angle, using a RI parameter of 

1.33, at 22°C. A 4mW, 633 laser was passed through the samples. 3 readings were taken 

per sample and averaged to obtain the size distribution of nanoparticles based on 

scattered light intensity.  

 

6.3.3 NANOPARTICLE TRACKYING ANALYSIS  

Nanoparticle tracking analysis (NTA) was performed using a NanoSight LM10 

instrument (Malvern Instruments Ltd, Malvern, United Kingdom), in order to measure 

matrix vesicle size and concentration within the culture medium of constructs. 
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Calibration of the machine was performed using 200 nm polystyrene latex 

microspheres. Culture medium samples from young (14 days) and old constructs (1 

year) were collected and stored at -80°C.  Matrix vesicles were isolated using 

immunoprecipitation and used immediately for NTA.  

Approximately 300 μl of nanovesicles suspended in buffer were injected into the 

NanoSight sample chamber. Control medium samples were diluted 1:10 in PBS prior to 

injection. In-between recordings, loading chamber was washed with 0.2 μm-filtered PBS 

and dH2O for three times. 

Particle detection threshold was set to 8 and camera gain was set to a value of 1. For 

each sample, two NTA videos of 60 seconds duration, containing recordings of the 

nanovesicles moving under Brownian motion, were collected using the NTA 2.2 

software.  Nanovesicles were tracked individually by the software based on scattered 

light when exposed to a 50 μm wide laser. The long-distance scattered light from the 

vesicles was detected by a 20X magnification microscope, connected to the recording 

camera. The matrix vesicles hydrodynamic diameters were calculated using the Stokes-

Einstein equation and concentration was calculated based on volume. Data generated 

by the software concerning size and concentration was averaged to produce the final 

distribution for each sample.  

 

6.3.4 ATP CONTENT  

Mineralisation is an ATP-dependent process and staining for ATP was performed 

directly on the beads to detect its presence using quinacrine dihydrochloride (Orriss, 

Knight et al. 2009, Akopova, Tatur et al. 2012).  Quinacrine dihydrochloride ≥90%, 

produced by Bayer (Sigma – Aldrich, Germany), was reconstituted using deionised H2O 
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(dH2O ) and was used at a concentration of 10 μM, based on previous research (Loncar, 

Zotz et al. 2007). Following isolation, 750 μl of the bead-antibody-vesicle complexes and 

controls (beads-antibody complexes, dH2O was used instead of culture medium) were 

incubated with the dye for 30 minutes at room temperature. Following incubation, the 

beads were washed 4 times with dH2O and samples were imaged using an Olympus 

Fluoview FV1000 confocal laser scanning microscope (Olympus, Tokyo, Japan) 

equipped with a multi-line argon laser FV5-LAMAR/LAMAR-2 and a Helium-Neon 

Green Laser FV5-LAHEG-2/FV5-LAHEG. Images acquired from excitation at a 

wavelength of 405 nm were collected using the Fluoview FV10-ASW software, version 

4.2 (Olympus, Tokyo, Japan) with an exposure time of 20 μs/pixel,  

 

6.3.5 OSTEOCOMPETENCY 

An experiment was conducted to determine the ability of these vesicles to interact with 

a bone-like extracellular matrix composed of collagen I.  Matrix vesicles bound to the 

monoclonal antibody against TNAP were eluted from the beads using the procedures 

described above using 20 μl elution buffer (Thermo Fisher Scientific, USA) and were 

added to 300 μl TBS buffer. 100 μl of the re-suspended vesicles were applied in 

triplicate to 1.9 cm2 wells in 24 well plates coated with collagen I (Gibco, Life 

Technologies, Thermo Fisher Scientific, USA) to determine whether the vesicles would 

be able to bind to collagen type I.  Antibody-vesicle complexes were incubated in the 

plates for 30 minutes at room temperature, followed by a further incubation step at 

37oC for 30 minutes to partially simulate the physiological context. To be able to detect 

the amount of binding, a secondary antibody against the rabbit monoclonal primary 

antibody was used. Following incubation, wells were washed three times with TBS to 
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remove the unbound vesicles. Secondary donkey anti-rabbit antibodies conjugated to 

Alexa Fluor 488 fluorophores, were diluted to 10 μg/mL in TBS containing 1% BSA and 

100 μl were applied in triplicate to the bottom of the wells and left to incubate for 1 

hour at room temperature. Following incubation, tissue sections were washed three 

times with TBS for 1 minute. In order to check for non-specific antibody binding, the 

steps listed above were performed on additional wells, in triplicate without the addition 

of the primary antibodies. Samples were imaged using the confocal system described 

above, using a 10x objective lens. Images acquired from excitation at a wavelength of 

488 nm in triplicate for the samples, controls and antibody controls. Data was collected 

using the Fluoview FV10-ASW software, version 4.2 (Olympus, Tokyo, Japan). 
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6.4 RESULTS AND DISCUSSION 

MV outer membranes have been demonstrated to be rich in tissue non-specific alkaline 

phosphatase (TNAP), a form of ALP involved in skeletal mineralization and ectopic 

calcifications (Hessle, Johnson et al. 2002, Ciancaglini, Simao et al. 2006, Golub 2009, 

Golub 2011, Cui, Houston et al. 2016). Deactivating defects in the TNAP gene have been 

shown to cause hypophosphatasia (Mornet 2000, Hessle, Johnson et al. 2002, Millán and 

Whyte 2016), leading to rickets, osteomalacia, spontaneous fractures (described in 

Chapter 1). At a molecular lever, these mutations cause elevated levels of  extracellular 

inorganic pyrophosphate (PPi), a natural substrate of TNAP which is a potent inhibitor 

of mineral formation (Millán and Whyte 2016). TNAP is present in abundance on the 

membrane of matrix vesicles (Golub 2011) and as such was targeted for 

immunoisolation. 

Figure 6.1 presents a schematic of the immuno-isolation system used to purify a 

population of nanostructures with similar characteristics to matrix vesicles. The method 

involved building an isolation complex by coupling TNAP monoclonal IgG antibodies 

(Ab) to recombinant protein G (17 kDa) which was covalently bound to the surface of 

2.8 μm superparamagnetic beads (MBs). During a 15 minutes incubation at room 

temperature in PBS-Tween 20, the antibodies became bound via their Fc regions to the 

beads, leaving the Fab regions on the antibodies available to bind TNAP on the outer 

surface of vesicles.  

As the constructs underwent ossification (Figure 6.2a), secretome analysis was 

performed on culture medium collected from early (14 days), mature constructs (1 

year) and controls to compare the normal distribution of nanoparticles. The medium 

was subjected to dynamic light scattering analysis (DLS) to obtain an account of the size 
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distribution of nanoparticles in the growth medium, and compared to cell-free 

supplemented culture medium (Figure 6.2b-c). Interestingly, both the early and mature 

culture medium contained nanoparticles in the size range of 50 nm to 300 nm 

compared to controls (serum supplemented but cell-free medium), which corresponds 

to the range in which previously described matrix mineralization vesicles were detected 

(Anderson 1969, Bonucci 2007, Golub 2009). These nanoparticles were particularly 

abundant in older constructs (1 year). This may be evidence for a sustained population 

of mineralising osteoblasts during the lengthy culture period, as osteocytes have 

differentiated away from a primary secretory phenotype and have a more limited ability 

to mineralise compare to osteoblasts. 

To determine whether this set of cell-secreted exosomes contained a sub-population of 

matrix vesicles involved in skeletal mineralization, the immuno-isolation procedure was 

used to separate this subset of vesicles from the rest of the exosomes. The isolation 

procedure involved incubating 1000 μl of culture medium with the Ab-MB complex 

(Figure 6.2d) for 15 minutes at room temperature, in PBS-Tween-20. During this 

incubation, the Ab-MB complexes attached to the surface of vesicles via Fab-TNAP 

binding (e). The remaining debris and unbound vesicles were removed by magnetic 

separation (f). The Ab-MV complex was subsequently eluted from the beads and used 

with different analytical techniques. 
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Nanoparticle tracking analysis (NTA) performed on isolated matrix vesicles and non-

purified construct medium samples (Figure 6.3a-b), indicated that it was possible to 

isolate a small population of TNAP-containing nanostructures with sizes in a much 

narrower range than the ones present in the growth medium. The highest 

concentrations were those of particles which ranged in size from 100-200 nm (Figure 

6.3b). This corresponds to the range in which previously described matrix 

mineralization vesicles were detected by previous authors (Anderson 1969, Golub 

2009, Golub 2011, Cui, Houston et al. 2016).  

When denatured under SDS-gel electrophoresis, MV-IgG complexes eluted from the 

beads separated into several fractions (Figure 6.3c). The TNAP band can be observed as 

a dimer between 80-110 kDa (Ishida, Komaru et al. 2011, Satou, Al-Shawafi et al. 2012), 

further supporting these results. IgG bands appeared at around 170 kDa, as confirmed 

by controls, and fractions of other, unidentified proteins belonging to matrix vesicles 

appeared between 110-160 kDa. 

 

 

 



 
 
 
 

 183 

 

 

 

Figure 6.3 | Characterisation of immuno-selected vesicles. a, Nanoparticles, visualised in real-time exclusively using NTA. Controls (sterile PBS) do 

not contain any nano-particles. The growth medium of constructs contains an abundance of nano-particles, whereas the buffer containing the isolated 

vesicles contains a very small population of particles. Positive controls (200 nm polystyrene beads) are provided for comparison. b, The small 

population of purified vesicles contains particles of sizes in a much more narrow range than total exosomes in construct medium. Vesicles ranging 

between 100-200 nm are particularly abundant. c, When denatured using SDS-PAGE, the Ab-MV complexes separate into several fractions, which 

include the TNAP protein dimer (80-110 kDa), the IgG antibody (170 kDa) and several unidentified protein fractions belonging to matrix vesicles (110-

160 kDa).  
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TNAP is the major phosphatase of MVs which regulates the generation of extracellular 

Pi from ATP (Hessle, Johnson et al. 2002, Cui, Houston et al. 2016).  These vesicles can 

maximally initiate the deposition of calcium in the presence of ATP (Hsu and Anderson 

1978). Therefore, the potential existence of ATP with the vesicles could be indicative of 

an active role of these structures in the mineralisation process of constructs. Its 

presence in matrix vesicles was tested using quinacrine dihydrochloride staining and 

was imaged indirectly using confocal microscopy of beads (Figure 6.4a).  The beads 

which contained the selected matrix vesicles showed a higher amount of fluorescence 

compared to controls (beads bound to the antibody-only) (Figure 6.4b).  

The role of these vesicles was probed further by assessing their osteogenic potential, or 

their ability to bind a bone-like extracellular matrix. This was tested by incubating the 

eluted vesicle-antibody complexes from the beads to collagen I-coated surfaces. Matrix 

vesicles have been shown to bind to collagen type I, II and X (Wu, Genge et al. 1991) and 

collagen I has been shown to induce the vesicle-mediated mineralisation of articular 

cartilage embedded in agarose-collagen hydrogels (Jubeck, Gohr et al. 2008). 

 The amount of binding of matrix vesicles to collagen was detected by applying a 

fluorescently-labelled secondary antibody against the primary antibodies.  Results are 

presented in Figure 6.5b and show a striking difference between the MVs-incubated 

collagen surfaces and controls. The purified vesicles showed a high degree of binding to 

the collagen matrix, which can be distinguished due to its typical morphology. Eluted 

antibodies targeted with secondary antibodies and secondary antibodies alone showed 

a very small degree of non-specific binding. 
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Figure 6.4 | Isolated MVs contain ATP. a, Mineralisation is an ATP-mediated process. ATP is transformed by membrane-bound 

TNAP on the surface of vesicles into Pi. ATP on vesicles was labelled using quinacrine dihydrochloride and visualised indirectly 

using confocal microscopy, where it was detected as blue fluorescence from the beads. b, Purified MVs and controls were stained 

directly on the magnetic beads using quinacrine dihydrochloride. Controls contained the bound antibody but were treated with 

dH2O as opposed to culture medium. All images were acquired under the same conditions and settings. Some degree of background 

staining can be observed in control beads. The vesicle-bound beads show a higher amount of fluorescence, indicating the presence 

of ATP associated with the MVs. 



 
 
 
 

 186 

 

 

 

 

Figure 6.5 | Isolated matrix vesicles show a high degree of osteocompetency. The TNAP-bound vesicles have the ability to bind 

collagen type I (top row), whereas TNAP antibodies alone (post-elution, centre) show a small degree of non-specific binding. The 

binding of vesicles and controls to collagen I was detected using secondary antibodies conjugated to Alexa Fluor 488. These 

secondary antibodies showed a small amount of non-specific binding to the collagen I matrix in the absence of sample/control 

(bottom). Images were acquired using the same settings and conditions. Scale bar = 100 μm. 
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CHAPTER VII 
ADMINISTRATION OF OSSIFFICATION-INHIBITING COMPOUNDS 
 

 

 

7.1 INTRODUCTION 

As discussed in previous chapters, the ability to simulate mature bone at multiple levels, 

including chemical composition, architecture and mature bone cell differentiation, 

provides the opportunity to apply this system to different research areas where in vivo 

research is in early stages or too complex. Such areas include toxicology and 

pharmacology and therefore, application of various chemical compounds to this system 

could provide meaningful results. The interaction between these chemicals and the 

mature bone tissues was of interest because if successful, this system could provide a 

screening or testing platform for novel compounds. 

Chapter 1, section 1.11.4 describes the current agents used to manage and prevent 

heterotopic bone formation, as well as their advantages and limitations. 

A pilot study over 3 weeks in culture was conducted in order to test novel compounds 

that can inhibit the ossification process, obtaining promising results. Two promising 

compounds were selected, CD1530, a nuclear retinoic acid receptor gamma agonist 

(RAR-γ) that has been increasingly used recently in treating both the acquired and 
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congenital forms of heterotopic ossification (Kaplan and Shore 2011, Shimono, Tung et 

al. 2011), and LDN193189, which is a selective inhibitor of the BMP type I activin 

receptor-like kinase ALK2, ALK3 (Figure 7.1), and a weak inhibitor of ALK 4 and ALK7 

and which has been successfully used to reduce heterotopic ossification in transgenic 

murine models of Fibrodysplasia ossificans progressiva (Yu, Deng et al. 2008). RAR-γ 

agonists like CD1530 are thought to inhibit the formation of ossification in early stages, 

at the pre-chondrogenic and chondrogenic stages. They also act by blocking BMP-2 

signaling, reducing the skeletogenic potential of osteoprogenitor cells and reduce 

phosphorylation of signaling effectors SMAD 1, SMAD 5 and SMAD 8, thus preventing 

the subsequent mineralization steps. Similarly, LDN193189 also reduces activation of 

the BMP signaling effectors, in particular SMAD1, SMAD5 and SMAD8 (Yu, Deng et al. 

2008). 

 

 

 

Figure 7.1 | Application of two ossification-inhibiting compounds to constructs. Two novel drugs were selected based on recent advancements. 

The first compound, CD1530 is a retinoic-acid-γ receptor agonist that has been recently tested with multiple types of heterotopic ossification; while 

LDN 193189 is an inhibitor of the BMP mineralisation pathway, acting as a selective inhibitor of the BMP type I activin receptor like kinase ALK2 and 

ALK3.  
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7.2 AIMS AND OBJECTIVES 

The goal of this work was to determine whether heterotopic ossification drugs can 

prevent the advancement of ossification in constructs. This was performed to 

demonstrate the system’s potential as a drug screening platform and to offer further 

evidence on the central role of cells in the ossification process.  
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7.3  CHARACTERISATION METHODS 

 

7.3.1 CONSTRUCT DEVELOPMENT 

Constructs were developed using the procedures described in Chapter 2, using newly-

extracted femoral periosteal cells which were derived from euthanised 3 weeks-old 

Wistar rats and cultured until confluency. Cells were applied to constructs using the 

procedures described in Chapter 2 and allowed to contract for 7 days before 

supplementation. 

 

7.3.2 CD1530 AND LDN193189 SUPPLEMENTATION 

RAR-γ agonist CD15030 and ALK2/3 inhibitor LDN193189 were administered in the 

culture medium of constructs at a concentration of 1 μM and 25 nM, respectively. 

Starting with day 7 of culture, constructs received one dose every two days (6 doses 

total) of either CD1530 or LDN193189. Controls received an equivalent amount of 

DMSO, which was used in drug dissolution. 3 constructs were collected for analysis at 

each time point from each group (Control, CD1530 and LDN193189). The experiment 

was terminated at day 22. 

 

7.3.3 VOLUMETRIC ANALYSIS USING MICRO-COMPUTED TOMOGRAPHY  

As these constructs were younger (7-21 days) compared to our most mature constructs 

(3 months-1 year) and hence less ossified and dense, acquisition settings were adjusted 

for this study to an X-Ray voltage of 50 kV and a tube current of 100 μA; an image pixel 
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size of 13 μm, with an exposure time of 510 ms, a rotation step of 0.4 degrees and a 

frame averaging value of 2. Flat field correction was performed for image clarity and no 

ring artefact correction was applied.  

Transfer functions were created in the CTVox software that allowed segmentation of the 

high-density matrix components, as well as for creating colour-coded versions of the 

components in the constructs. The same transfer function was used for all constructs in 

the same group of investigation.  

Volumetric quantification of the mineral component was performed using 

morphometric analysis in the CTAn software (v. 1.13). 200 slices from equivalent 

regions in the central portions of control and drug treated constructs were isolated and 

a threshold of 220-255 was applied to segment the high-density mineral component. 3D 

analysis of the segmented volume was performed and data was averaged to obtain the 

final volume in mm3. 

 

7.3.4 STATISTICAL ANALYSIS 

Measurements were acquired in triplicate and/or from a sample number of 3 

constructs, unless otherwise indicated in the text. Raw data was not pre-processed 

(normalised/transformed) unless indicated otherwise. All data is presented as mean ± 

SD. Statistical analysis was performed using a one-tailed distribution t-test, with a 

heteroscedastic variance assumed. A p value lower than 0.05 was chosen for 

determining significance (MS Excel, Washington, USA). Percentage difference was 

calculated using the formula X = (A-B)/A*100. 
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7.4 RESULTS AND DISCUSSION 

Volumetric analysis performed using morphometric CT analysis revealed that treatment 

with compound CD1530 prevented the advancement of ossification towards the center 

by 99% compared to controls in the 21 days study (Figures 7.2-7.3). Similarly, the 

second compound tested, LDN193189, was effective in reducing the mineralized matrix 

volume centrally by 70% compared to controls, confirming the results seen when RARs 

were administered (Figures 7.2-7.3).  

The fact that CD1530 caused a bigger reduction in the progression of ossification is very 

interesting, as this drug is thought to prevent bone formation at the chondrogenic stage 

(Baird and Kang 2009, Shimono, Tung et al. 2011).  

The marked reduction in matrix volume following administration of these compounds 

was further confirmation that mineralization takes place through a cell-mediated route, 

as encountered during normal long bone formation, fracture repair, and heterotopic 

ossification (Kaplan and Shore 2011). It also demonstrates the system’s potential as a 

drug screening tool, meaning that it could act as an intermediate between in vitro and in 

vivo research and that it could potentially reduce the number of animals used for 

skeletal research. 

In vitro testing is currently used as a first-stage method for assessing the toxicity and 

compatibility of drugs and implants with different physiological systems, and can avoid 

the unnecessary use of animals in the testing of cytotoxic or incompatible materials. 

Whilst this method is the most suitable for standardization and quantification, giving 

more reproducible results in some cases compared to in vivo testing,, there are 

numerous problems with in vitro testing of pharmacological and other compounds 

(Pearce, Richards et al. 2007). 
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Figure 7.3 | Ossification – inhibiting compounds decrease matrix and mineral formation in constructs. Comparison of the 

mineral volume located in the central portion of constructs following 21 days of culture, quantified by morphometric CT analysis. 

Constructs treated with CD1530 showed an average of 99% less mineral in this region compared to controls, which was statistically 

significant, whereas the group treated with LDN193189 showed 70% less mineral, although not significant. Data is presented as 

means ± SD. *p < 0.05, n=3. 
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First of all, the cell-response extracted from the results of in vitro testing, often referred 

to as ‘biocompatibility’ is most of the time incorrect, as this type of cell culture is 

focused on the behavior of individual cells, which are not organized into complex 

tissues, and as such, these tests cannot demonstrate whole-tissue response to drugs, 

biomaterials and implants. In these situations, ‘cytotoxic’ and ‘genotoxic’ effects are 

more suitable terms (Hanks, Wataha et al. 1996, Pearce, Richards et al. 2007, Li, Zhou et 

al. 2015). 

Secondly, the response of isolated cells to drugs and toxic compounds can be much 

greater than in vivo, meaning that the effect of these compounds can be overestimated. 

This, together with the short lifespan of cells means that the investigations are limited 

to the acute, short-term effects of these compounds (Hanks, Wataha et al. 1996). 

Thirdly, there can be a great variability between cells of different passages and between 

cells of the same type of cell line, meaning that some cells within an experiment can be 

less responsive to some compounds, as noted with metal ions from dental materials 

(Wataha, Hanks et al. 1994).   

Lastly, it is difficult to control the behavior of cells in vitro and to simulate the 

organization and cellular interactions found in vivo. For this reason, animal models have 

remained essential for evaluating biocompatibility, whole-tissue and systemic response 

and mechanical function under chemical and mechanical stress. 

The model developed in this thesis provides the advantage of an in vitro system in terms 

of reproducibility and flexibility as well as adaptability, but with a biological complexity 

more similar to in vivo testing. These features are, to the best of my knowledge, unique 

to date. The system offers a number of additional advantages, such as the ease of 
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implementation in general cell laboratories and therefore could potentially reduce the 

unnecessary use of animals for preliminary pharmacological and toxicological research.  
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CHAPTER VIII 
FURTHER APPLICATIONS OF THE SYSTEM AND 

VASCULARISATION OF CONTRUCTS 
 

 

 

8.1 INTRODUCTION 

One of the principal advantages of this system compared to previous models is its 

flexibility and compatibility with cells of different origins, both primary and 

immortalised lines, derived from different species. Unlike pre-made connective tissue 

scaffolds which provide temporary structural support to cells when implanted into the 

affected tissues, this system provides a temporary scaffold which allows cells to 

produce their endogenous matrices. The versatility of this system makes it possible to 

develop constructs resembling other tissues of the musculo-skeletal system, including 

tendons, ligaments and cartilage.  Moreover, it would be possible to generate 

personalised tissues using the patient’s own cells and with human-derived components 

(Meijer, de Bruijn et al. 2007), created using either commercially available fibrinogen 

and thrombin or extracted from the patient’s plasma. The results presented in this 

chapter represent exploratory work performed to demonstrate these aspects in order 
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to further support the biological relevance of this model, its potential impact in 

regenerative medicine and its applicability for the study of different connective tissues.   

 

8.2 AIMS AND OBJECTIVES 

Experimental work was undertaken to determine the viability and compatibility of cells 

from different musculo-skeletal origins with the fibrin constructs. Their development 

was observed and recorded, including advantages and disadvantages for each system. 

The second goal was to develop a ‘vascularised bone’ model by attempting to form 

endothelial tubes in constructs and to optimise a culture system for a mixed 

osteoblastic-vessel construct model. 

The final aim of this thesis was to perform a preliminary scoping exercise to create 

other analogous skeletal structures, such as the vertebral column.  
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8.3 CHARACTERISATION METHODS 

 

8.3.1 TENDON CONSTRUCTS 

Tendon-like constructs were developed using a cell line of avian-derived tendon 

fibroblasts (CTFs) using the standard methodology described in Chapter 2. Cells had 

been previously isolated from the flexor tendons of 13 days-old chick embryos using 

collagenase type-II digestion and recovery using 100 mm cell strainers (BD Biosciences, 

United Kingdom). They were frozen and thawed using the procedures listed in Chapter 

2 and were then cultured in standard DMEM containing 10% FBS and 1% P/S (Thermo 

Fisher Scientific, USA).  

 

8.3.2 CARTILAGE CONSTRUCTS 

Cartilage constructs were developed using the standard procedures described in 

Chapter 2.  

 

8.3.2.1 CHONDROCYTIC CELLS 

Human primary chondrocytes were derived from tissue obtained from the Oxford 

Musculoskeletal BioBank and was collected with informed donor consent in full 

compliance with national and institutional ethical requirements, the United Kingdom 

Human Tissue Act, and the Declaration of Helsinki. 

 2-5 cm cartilage tissue sections were excised following surgery, minced with a blade 

prior to overnight digestion in collagenase, followed by plating in sterile, 90 mm 
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diameter polystyrene petri dishes containing 25 ml DMEM - F12 growth medium, 

supplemented with 10% FBS and 1% P/S (all from Lonza, Basel, Switzerland).  

 

8.3.2.2 HUMAN FIBRIN SCAFFOLDS 

Unlike previous constructs, the fibrin scaffolds developed for use with human-derived 

chondrocytes were built using human-derived fibrinogen and thrombin (Sigma-Aldrich, 

Germany).  

Following isolation from Petri dishes, cells were seeded into these scaffolds and 

contraction was monitored over three weeks of culture. At the end of the three weeks, a 

regime of chondrogenic supplementation was administered to half of the constructs, 

whereas the remaining half continued to receive the normal DMEM-F12 

supplementation.  

 

8.3.2.3 PRO-CHONDROGENIC SUPPLEMENTATION 

The supplementation regime consisted of a combination of pro-chondrocytic factors, 

which were part of a hMSC Chondrogenic SingleQuots Poietics kit (Lonza, Basel, 

Switzerland). The final supplementation medium consisted of 10% FBS, 0.1% 

gentamicin sulphate - amphotericin-B, 2.16% L-glutamine, 1.08% proline, 1.08% 

ascorbate, 1.08% sodium pyruvate, 1.08% insulin-transferrin-selenium 

supplementation and 0.54% dexamethasone. In addition to these components, TGF-β3 

(Lonza, Basel, Switzerland), was added with each feed. TGF-β3 was prepared by 

resuspending the lyophilized powder in sterile 4mM HCl supplemented with 1 mg/ml 
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BSA to a concentration of 20 μg/ml. TGF-β3 was added at a ratio of 0.5 μl per ml of 

chondrogenic feeding medium. 

Supplementation was administered for one month, which was the point when visual 

differences were observed between the groups.  

 

8.3.2.4 WHOLE MOUNT HISTOLOGICAL STAINING FOR CARTILAGE 

Whole-mount histological staining for cartilage using Alcian Blue was performed to 

detect the presence of sulphated proteoglycan-rich matrix in the supplemented and the 

non-supplemented groups. 

Constructs were removed from culture, rinsed with 2 ml PBS twice for 5 seconds and 

fixed with 2 ml standard Bouin’s fluid for 5 hours at room temperature. The fixation 

fluid was then aspirated and constructs were washed with dH2O for 15 minutes. 

Constructs were then stained with Alcian Blue (1%, pH 2.5 in acetic acid) for 1 hour at 

room temperature. Constructs were gently washed with 70% EtOH to remove excess 

dye and photographs were taken of constructs in each group. 

 

8.3.3 ANGIOGENESIS IN CONSTRUCTS 

Endothelial tubes were formed in constructs using a population of commercial Human 

Umbilical Vein-derived Endothelial Cells (Cell Applications Inc, San Diego, CA, USA). 

Cells were cultured using the procedures described in Chapter 2, in Endothelial Basal 

Medium (EBM-2, Lonza, Basel, Switzerland) containing 10% FBS and 1% P/S. 

Constructs were developed using the standard procedures described in Chapter 2.  
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Constructs were allowed to contract for 7 days. A regime of angiogenic supplementation 

was commenced following contraction in order to initiate blood vessel formation. 

Supplementation components were part of a Clonetics EGM-2 SingleQuots kit (Lonza, 

Basel, Switzerland). The final supplementation medium consisted of 2% FBS, 0.1% 

Gentamicin Sulfate Amphotericin-B, 0.1% ascorbate, 0.4% pro-angiogenic factor 

Recombinant Human Fibroblast Growth Factor – B (rhFGF-B), 0.1% pro-angiogenic 

factors Vascular Endothelial Growth Factor (VEFG), Human Recombinant Epidermal 

Growth Factor (hrEGF) in buffered BSA saline solution, heparin and recombinant long r 

insulin- like growth factor-1 (R3-IGF-1) and 0.04% hydrocortisone.   

Images of forming tubes in whole constructs were acquired using a CETI Inverso TC100 

brightfield microscope (Medline Scientific, Oxon, United Kingdom). 

 

8.3.4 MIXED ENDOTHELIAL-BONE SYSTEMS 

Co-cultures of HUVECS and 2T3 cells were developed using the methodology described 

previously by encapsulating equal numbers (50.000 cells from each population) in 

constructs. The culture medium used consisted of equal parts of MEM α and angiogenic 

EBM-2.  Images of viable endothelial tubes were acquired using Two-Photon Excitation 

Fluorescence using the procedures described in Chapter 5. 

 

8.3.5 VERTEBRAL DISK CONSTRUCTS  

To prove this concept, spinal ‘discs’ were developed by dispersing mouse mesenchymal 

stem cells in fibrin gels using the procedures described previously. 3D models of 

human-size vertebra (approximately 65 mm3) were acquired online and down-scaled to 
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approximately 15 mm3 to fit the size requirements for culture into standard 35 mm2 

dishes.  For this initial study, the vertebras were 3D printed using standard plastic 

material from the shape of the ninth thoracic vertebra. Custom moulds were taken of 

this vertebra and were filled with a liquid brushite-TCP mixture, as described in Chapter 

2. 

Anchors were placed in the centre of sterilised, Sylgard-coated 6-well dishes and fibrin 

gels were formed in the dishes using the standard procedures. Stem cells were 

dispersed into the scaffold and allowed to contract the matrix for a duration of 2 weeks 

(stem cells contract the matrix slower). During the contraction time, the vertebral 

‘anchors’ served as single retention points around which the cells organised a ‘disk-like’ 

structure. Following a month and 5 days of culture, the individual vertebra containing 

their attached soft tissues were assembled together to form a spinal-like structure. The 

gels were allowed to fuse with the neighbouring vertebra for a period of approximately 

one month, during which the matrix also became progressively replaced with 

mineralised collagen, thus mimicking the ossified spine, or ‘bamboo’ spine encountered 

in degenerative conditions such as Ankylosing Spondylitis.  
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8.4 RESULTS AND DISCUSSION 

 

8.4.1 TENDON CONSTRUCTS 

Constructs developed with fibroblastic cells contract very quickly compared to 

osteoblastic cell constructs and assemble into tendon-like 3D structures as early as 7 

days. Figure 8.1a provides an example of a 6 months old, mature construct. Different 

versions of these constructs have been developed in this research group over the past 

years, containing modifications such as stainless-steel pin-anchors, titanium anchors 

and spring reinforcements and chemically adjusted brushite anchors. These constructs 

were very well characterized biomechanically and biochemically and several papers 

describe extensive research conducted in this group in this area (Paxton, Donnelly et al. 

2010, Paxton, Wudebwe et al. 2012, Lebled, Grover et al. 2014, Wang, Williams et al. 

2016).   

 

8.4.2 CARTILAGE CONSTRUCTS 

Figure 8.1b-c illustrates examples of constructs developed with chondrocytic cells, 

which have been stained with Alcian Blue to detect the presence of cartilage. Firstly, this 

work demonstrates a successful model composed of human-only components. Secondly, 

the work demonstrates the successful maintenance of the chondrocytic phenotype in 

constructs after 2 months of culture and following a regime of pro-chondrogenic 

supplementation. Figure 8.1c illustrates a representative example of a construct which 

has undergone TGF-β3 and ITS supplementation (left) compared to a control (right). 

The amount of cartilage produced in the system is higher in the supplemented 
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construct. In addition, supplemented constructs appeared to be much stiffer, supporting 

their own weight and survived the histological processing very well compared to the 

untreated group, which underwent shrinking. As seen in bone constructs, higher 

amounts of matrix form around the edges, forming a similar ‘periosteal collar’ (Mackie, 

Ahmed et al. 2008).   
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Figure 8.1 | Development of other connective tissues. a, 6-months old construct developed using chick tendon fibroblasts, 

showing a tendon-like 3D structure. b, Example of a construct developed with human chondrocytes and human-derived matrix 

components, and which has been fixed with Bouin’s fluid (yellow, not visible) and stained with Alcian Blue for cartilage detection. c, 

examples of constructs which have undergone pro-chondrogenic treatment (left) vs. control (right). Constructs supplemented with 

ITS and TGF-β3  develop more matrix (blue) compared to control (green-blue), are more still and more resilient to histochemical 

processing compared to controls, which undergo shrinking. 



 
 
 
 

 207 

8.4.3 ANGIOGENESIS IN CONSTRUCTS 

Endothelial tubes were successfully demonstrated to grow in constructs aligned with 

the mechanical axis. Figure 8.2 (left) contains an image of a 3 month-old construct, 

reconstructed from multiple images acquired using a brightfield microscope. Constructs 

were supplemented with rhFGF-B, VEFG, hrEGF and R3-IGF-1 for 2 months following 

contraction to maintain the cellular phenotype and encourage the formation of micro-

vessels. The endothelial tube networks were well developed on the surface of 

constructs (Figure 8.2 middle right) and were part of larger vessel-like structures with 

diameters ranging from 50 -200 μm (bottom right).  

The ability to initiate aligned vascularization in constructs brings the model closer to 

producing a mature bone system with further similarities to in vivo bone (Marenzana 

and Arnett 2013) and could provide a valuable tool for assessing the role of 

angiogenesis in traumatic heterotopic ossification (Cocks, Mohan et al. 2017).  
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Figure 8.2 | Endothelial tubes resembling microvasculature align with the mechanical axis in constructs. Large image (left) 

has been reconstructed from multiple brightfield images and shows endothelial tubes branching along the axis of constructs. When 

observed in a 2D plane (middle right), these cells established complex networks which connect to larger tubes, with diameters 

ranging between 50-200 μm, as seen through a cross section using TPEF (bottom right). Scale bar = 200 μm. 
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8.4.4 MIXED ENDOTHELIAL-BONE CONSTRUCTS 

A mixed cell system was developed containing co-cultures of osteoblastic cells and 

endothelial cells to determine whether a vascularised bone model could be produced. 

Figure 8.3 presents examples a comparison of cellular morphologies in groups of 

constructs developed with either 2T3 osteoblastic cells, HUVECS or a combination of the 

two. 2T3 cells in constructs showed an osteoblastic morphology while HUVEC cells, as 

described above, were able to assemble into micro-vessels as described previously in 

vitro (Naik, Mousa et al. 2003, Chen, Htay et al. 2009).  Constructs developed with both 

types of cells showed tubular structures co-localised with osteoblastic looking cells. 

 

 

 

 

 

Figure 8.3 | Osteoblastic and vascular cell morphology in individual and mixed-cell constructs. 2T3 cells (left) attached to the 

matrix and showed a typical osteoblastic morphology, while HUVECS (centre) were able to assemble into tubular structures of 50-

200 μm in dimeter. Constructs containing co-cultures of these cell populations showed both types of cell morphology, with 

endothelial tubes forming adjacent to osteoblastic cells. 
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8.4.5 VERTEBRAL DISKS CONSTRUCTS 

Figure 8.4 shows an example of the assembly process of spinal constructs. Phosphate 

vertebra are individually placed at the bottom of Sylgard-coated 35 mm2 wells (Figure 

4a). Fibrin gels containing a population of MSCs are formed around the vertebra and 

allowed to contract fully for 14 days – 1 month. They are assembled together into the 

spinal structure and discs are allowed to fuse with the neighbouring vertebra over an 

additional month, until the structure can support its own weight (Figure 8.4b). Over 

time, the matrix changes in a similar way as observed with regular bone constructs.  

This work demonstrated that it is possible to simulate a vertebral-column-like structure 

and further optimisation work should be carried out to enhance the fusion process and 

the design.  

The spinal model could be further developed by encapsulating a population of 

intervertebral disk cells (Johnson and Roberts 2003, Erwin and Hood 2014), which are 

commercially available from a few scientific suppliers, or developing an isolation 

protocol for extraction from murine spinal discs. Composite hydrogels which can 

further simulate the biochemical nature (fibrocartilaginous composition) and structure 

(annulus fibrosus and nucleus pulposus) of vertebral disks (Mizuno, Roy et al. 2004) 

could be used instead of fibrin, such as mixed type I-II collagen gels/fibrin (Yang, Seol et 

al. 2007).  

Similar analysis can be undertaken to characterise the ossification process in ‘spinal’ 

soft tissue, including micro-CT, and histology-immunohistochemistry of individual discs. 
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Figure 8.4 | A tissue-engineered model of pathological bone formation in spinal soft tissue where calcium phosphate 

“vertebrae” are connected with fibrin gels encapsulating a population of stem cells. a, Fibrin gels encapsulating stem cells are 

formed around phosphate vertebra. Over time, these gels attach strongly to the anchoring material and contract, giving rise to a 

disk-like structure after approximately 14 days. b, The individual ‘vertebra’ with soft tissue attached to them are assembled 

together into the spinal structure and gels are allowed to connect to the adjacent vetrebra over the subsequent 3-4 weeks until the 

structure can support its own weight.  Over time, the fibrin is replaced with mineralised collagen and the resulting structures mimic 

the complex cellular organisation of real bone. These culture systems can be used to study pathological bone formation or to trial 

new therapies. 
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 A tissue-engineered model of pathological bone formation in spinal soft tissue where calcium phosphate “vertebrae” are connected with fibrin gels    

 encapsulating a population of stem cells. 
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CHAPTER IX 
FINAL CONCLUSIONS 

 

 

 

 

 

This work demonstrates how simple homogeneous materials (fibrin) may be structured 

and modified by populations of cells to create complex tissues by making relatively 

simple geometrical and chemical modifications to the culture system.  The composition 

of the tissues was probed using a suite of chemical analysis techniques that allowed the 

identification of the distribution and local organisation of matrix components.  

After even short periods of culture, the tissues were shown to be heterogeneous in 

composition and structure, with collagen and mineral distributed in spatially distinct 

regions.  Importantly, the Raman spectral data suggested that the mineral deposited 

within the tissue was associated with collagen as opposed to precipitated on the surface 

of the tissue. The mechanism of tissue formation recapitulated several stages of 

development of a fracture callus and the distribution of collagen and mineral within the 

tissue was similar to that found in mouse femoral bones. 
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This model allowed for the production of a complex bone-like tissue in vitro, which 

exhibits features typical of native bone, including a canalicular network populated with 

mature osteocytes. From longitudinal analysis, it was demonstrated that the tissues 

form through the differentiation of periosteally-derived stem cells into a heterogeneous 

population of cells that ultimately lay down a mineralised collagenous matrix with 

composition similar to native bone. This work is of considerable significance since it 

was possible to produce mature bone-like tissue and to maintain cultures of osteocytes 

within it for periods of up to 1 year. This is remarkable since the osteocytic phenotype is 

extremely hard to maintain in culture for longer than one month. This work 

demonstrates that by providing cells with the right microenvironment, they can build a 

complex matrix more representative to the endogenous tissues and as such they can be 

cultured for significant amounts of time. This work further demonstrated the 

physiological relevance of this model by blocking the bone formation process using a 

RAR inhibitor that is known to inhibit bone formation in vivo by preventing 

chondrogenesis as opposed to directly inhibiting mineralisation. 

This model will help to fill the gaps between basic research and human applications and 

will provide insights into bone formation and pathological conditions which may have 

an influence beyond this field of research. This system can serve as template for further 

explorations, which could pave the way to organogenesis in vitro, reducing the number 

of animals used in research and screening of drugs prior to in-vivo or human studies. 
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CHAPTER X 
FURTHER WORK 

 

 

10.1 CHOICE OF HYDROGELS 

Additional experiments could be performed for comparison by substituting the fibrin 

matrix with a pre-made collagen scaffold in order to observe the dynamics of collagen 

remodelling. The first motivation is that collagen matrices have different mechanical 

properties (Rhee and Grinnell 2007, Grinnell and Petroll 2010, Provenzano, Eliceiri et al. 

2010, Song, Olsen et al. 2010) compared to fibrin and that will have an influence on the 

differentiation and activity of embedded cells. It would be expected that the degree of 

contraction and modelling seen in this system would be low or absent when using 

collagen matrices, as they are not as flexible as fibrin (Ngo, Ramalingam et al. 2006). 

There are additional reasonings for conducting this type of work, including the distinct 

biochemical characteristics of collagen, which will be discussed in later chapters.    

Although less clinically relevant, the use of collagen with cells originating from 

immortalised cell lines could be attempted. This is because the biodegradability of fibrin 

can also be disadvantageous (Yang, Seol et al. 2007) when using engineered osteoblastic 

cell lines such as MC3T3 or 2T3s, which unlike primary cells, were observed to dissolve 

the fibrin matrix, which then fails to maintain integrity following 14 days of culture. This 
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is because immortalised cell lines like MC3T3-E1 continuously produce matrix 

metalloproteinases capable of degrading the extracellular matrix, such as MMP-2 and 

MMP-13, the later which is up-regulated in the presence of ascorbic acid along with 

MT1-MMP (Mizutani, Sugiyama et al. 2001). Ascorbic acid is already present in high 

quantities in the growth medium required for proliferation of these cells (MEM medium 

containing the alpha modification, approx. 50 mg/L or 0.28 mM) and further ascorbic 

acid supplementation is added from day 7 in order to induce differentiation (0.25 mM). 

From that point, the fibrin matrix can only maintain integrity for a maximum of 7 

further days. Composite models containing both types of scaffold could be attempted, as 

described by Yang and colleagues (2007) and could be used for fundamental studies 

where the requirement for primary cells is not obligatory. 

 

10.2 EARLY EVENTS 

In addition, it would be interesting to compare the early events and contraction to a 

group of constructs treated with pharmacological compounds which inhibit the 

contractile ability of the cells, such as statins. For this purpose, drugs which can arrest 

the actin dynamics in living cells could provide further information on the early 

organisation and matrix re-modelling. Compounds such as Latrunculin (Kopecka, 

Yamaguchi et al. 2015), which cause G-actin sequestration and prevent F-actin assembly 

in biological cells, and drugs which can interfere with the rearrangement of the actin 

network (Blebbistatin) and cytoskeletal structure (Atorvastatin, Simvastatin) and 

alternatives could be used (Watanabe, Yumoto et al. 2010, Peng, Wilson et al. 2011, 

Dick, Jonak et al. 2013). Moreover, statins such as Atorvastatin, Simvastatin and 

Fluvastatin have been shown to inhibit the production of MMPs in certain types of 
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fibroblasts embedded in 3D collagen cultures, including MMP-1, MMP-3 and MMP-9 

(Kamio, Liu et al. 2010), highlighting the important role of these enzymes in the initial 

matrix building process.  

 

10.3 MONITORING MINERALISATION 

The dynamics of mineral deposition could also be temporally and spatially monitored 

using chromogenic/fluorescently-labelled bisphosphonates (Bae, Sun et al. 2014). 

Bisphosphonates have been used for many years as the first line therapy for numerous 

bone myelomas, metastases, Paget’s disease, fractures and osteoporosis (McDonald, 

Schindeler et al. 2007, Drake, Clarke et al. 2008). They have the ability to bind to bone 

and to remain attached for many years, acting through several mechanisms, including 

by inhibiting osteoclastic activity (Maraka and Kennel 2015). The wide availability and 

the numerous types of bisphosphonates available would allow the design of a multi-

chromogenic labelling method for spatial localisation of the newly forming bone, which 

could complement the tomographic data and could provide another method to quantify 

the newly forming mineral. The same or different type of drug, labelled distinctly, could 

be applied to forming constructs with every feed, which would be of particular 

importance especially in the early ossification stages, when different mineral phases are 

laid down rapidly. 

 

10.4 COLLAGEN ORGANISATION      

It would be interesting to analyse constructs using transmission electron microscopy 

(TEM) at various points during the maturation process, as it would give information on 
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the organisation and mineralisation of collagen at the nano-scale (Everts, Niehof et al. 

2012).  

High-resolution Raman maps could be performed for constructs of different ages based 

on peaks corresponding to different matrix proteins and minerals (amides, phosphate 

groups, hydroxyproline). These maps can be superimposed and could offer detailed 

information on regional chemistry and the dynamics of matrix production and 

ossiffication. These maps can be further supported by histology for collagen using 

picrosirius red or van Gieson (Segnani, Ippolito et al. 2015)  and immunohistochemistry 

for collagen I.  

The presence of other matrix proteins in the newly forming matrix, such as sulfated 

glycoaminoglycans (GAGs) like chondroitin sulfate, chondroitin 6-sulfate and 

keratosulfate (Catini and Gheri 1990, Ling, Murali et al. 2006), also involved in 

ossiffication and bone function, could be evaluated using chemical colorimetric assays. 

This is particularly important as some types of GAGs have been found in high amounts 

around osteocytes (Catini and Gheri 1990), the development of which is discussed in the 

next chapter.  

 

10.5  MECHANICS OF CONTRACTION 

The ideal formation of a ‘periosteal’ structure in constructs could have also occurred 

due to a preferential migration of cells towards the edges of the culture well walls (and 

hence fibrin gels) and therefore, a higher number of cells could have given rise to 

additional bone tissue in this region. This could have been initiated by an ‘edge effect’ 

(Lundholt, Scudder et al. 2003), caused by a lack of uniform temperature transfer in the 
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culture wells (as a result of differences in plastic thickness) in the initial period of 

incubation.  

Viability and morphology analysis on different areas of constructs during the initial 7 

days of culture would be able to provide insight into this matter.  

To prevent this effect, several commercially available culture plates have been recently 

designed by many scientific suppliers (e.g. Thermo Fisher, USA; StarLab, UK), which 

provide a modified design in order to minimise this effect and provide a uniform layer 

of cells during culture and hydrogel embedding. One example (StarLab) is the chimney 

well design with 360° open channels around each well, which can be filled with cell 

growth medium during incubation to prevent the aggregation of cells at the edges. 

This type of culture system might also show differences in contraction or matrix 

production, which would be worth investigating for comparison.  

 

10.6 MECHANICAL PROPERTIES OF CONSTRUCTS  

It would be interesting to extend the AFM mechanical characterisation work towards 

constructing mechanical maps of whole constructs, but at a cellular resolution. High-

resolution maps on sections of early, intermediate and mature constructs could be 

generated using Nano-Indentation mapping (Chen, Lin et al. 2008, Chen, Schirer et al. 

2011). Mechanical properties including hardness and reduced modulus could be then 

compared to cellular distribution in order to obtain further information on the matrix 

properties around the osteo-canalicular networks. Additional information from this 

method could support the results seen in micro-tomographies, for example, the regional 

variation in mechanical properties due to the fracture union-like progress of ossification 
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and the density gradient from the central portion of constructs to the outer ‘periosteal’ 

like structure. 

 

10.7 MOLECULAR MARKERS 

Further molecular work should be carried out to detect the presence of other molecular 

markers involved in the transition of osteoblasts to osteocytes, including PHEX, DMP1, 

and FGF-23 (Dallas and Bonewald 2010) as well as the starting point of this transition 

(e.g. low ALPL). 

 

10.8 ENDOCRINE ROLE 

Immunocytological and histochemical work should be carried out to test whether the 

osteocytic cells express features indicating responsiveness to endocrine signalling 

(Dallas, Prideaux et al. 2013), such as expression of FGF-23 (which acts on the kidneys) 

or CX-43 gap junctions (Ishihara, Kamioka et al. 2008, Plotkin 2014) which  if positive, 

could make them a potential target for a range of drug investigations.  

 

10.9 VESICLE-MEDIATED MINERALISATION 

Additional work should be completed in order to further characterise the matrix 

vesicles detected in the medium of constructs. Chemical characterisation of protein 

content should be performed using mass spectrometry, to detect the presence of 

annexins (5,2,6,11) and peptidases (aminotripeptidase, alanyl beta-naphthylamidase) 

commonly described as being part of matrix vesicles (Hirschman, Deutsch et al. 1983, 
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Xiao, Camalier et al. 2007, Xiao, Conrads et al. 2008). Fluorescence imaging using super 

high-resolution microscopy (SIM, STED, PALM, STORM) (Huang, Bates et al. 2009, 

Wegel, Göhler et al. 2016) and TEM (Anderson 2003, Anderson, Sipe et al. 2004) would 

allow visualisation of these nanostructures.  

Demonstration of their role in cartilage mineralisation could be attempted using 

collagen type II – X surfaces (Wu, Genge et al. 1991).  

Numerous molecular techniques (qPCR, microarrays, ELISA, Western Blots) that would 

allow detection and isolation of MMPs, integrins, transport proteins and miRNA species 

could be used to characterise the role of these structures further (Jiang, Cui et al. 2013, 

Chaturvedi, Chen et al. 2015, Lin, Rodriguez et al. 2016).  

Further analysis of the cellular phenotype at different time points would be useful to 

reveal the peak of activity and type of cells which secrete the largest amount of vesicles 

(i.e. osteoblasts vs osteocytes). 

 

10.10 DRUG SCREENING AND ENDOCHONDRAL OSSIFICATION 

Further work should be carried out to determine whether the efficacy of CD1530 was 

due to an inhibition of cartilage formation in constructs. This would be able to confirm 

whether ossification in this system takes places through a cartilage intermediate as well 

as through an intramembranous route. This could be accompanied by histological 

staining with Alcian Blue and Sox-9 and Collagen II Immunohistochemistry. The 

formation of a cartilage template in some regions is very likely, as the population of 

stem cells isolated from the periosteum of long bones has a strong chondrogenic 

potential (see Chapter 1).  
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Investigations using CD1530 should be further expanded to detect the upper and lower 

limits of efficacy as well as efficiency over longer periods.  

The dose-response curves produced for all pharmacological agents investigated will be 

able to indicate the drug potential and biocompatibility. 

 

10.11 CHONDROCYTE CONSTRUCTS 

Chondrocyte constructs could be further exploited to simulate additional steps of the 

endochondral ossification pathway. With adequate optimization, constructs could be 

either partially decellularized to remove the chondrocytic cells, and the template could 

be used as a scaffold for newly-introduced osteoblasts (Thakkar, Fernandes et al. 2015). 

Alternatively, the population of osteoprogenitor cells could be co-cultured with the 

chondrocytes from an experimentally-determined time point. Moreover, as 

demonstrated here, vascularization of these structures can be attempted, creating an 

alternative route for in vitro bone formation and could recreate some additional stages 

of endochondral ossification, fracture repair and heterotopic ossification. Figure 5 

presents a list of all the cell types that have been tested with this system, together with 

their advantages and disadvantages.  
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Species Tissue Cell Type Contraction Mineral 

Avian Tendon Fibroblasts +++ - 

Human Cartilage Chondrocytes ++ - 

Human Blood Vessels Umbilical Vein Endothelial Cells + - 

Human Bone Osteoblasts + + 

Human Skin Dermal Fibroblasts ++ - 

Mouse Bone Osteoblasts (MC3T3) +++ +++ 

Mouse Bone Osteoblasts (2T3) +++ +++ 

Mouse Bone Marrow Stromal Cells + + 

Rat Bone Marrow Stromal Cells + ++ 

Rat Bone Periosteal cells ++ +++ 

Mixed Bone + Vessels 
Osteoblasts + 

 Umbilical Vein Endothelial Cells 
++ ++ 

     

 

Figure 10.1 | An account of cell types compatible with the present model. Several types of cells, including primary, expanded 

from tissue and cell lines were encapsulated in constructs. Their characteristics in terms of ability to fully contract the initial fibrin 

scaffold and their ability to mineralise the tissue were amongst the criteria used for evaluation in developing the final system. 

Periosteal cells of rat origin were selected due to their enhanced ability to contract the matrix and mineralise it. Cell lines tend to 

over-contract and detach the constructs from the anchors. 
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