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ABSTRACT 

NAD(P)H is a critical cofactor (biological source of hydrogen) that participates in 

many enzymatic hydrogenations for energy conversion and storage with resultant 

oxidation to NAD(P)+. Due to its high cost, the regeneration of NAD(P)H is a critical 

and feasible way to ensure the sustainability of these enzymatic hydrogenations. 

Intrigued by the photoreaction process in thylakoid membrane, we explored a 

two-dimensional (2D) isotype heterojunction photocatalyst, termed as quantum 

dots@flake graphitic carbon nitride (QDs@Flake g-C3N4), for visible-light-driven 

NAD(P)H regeneration. The catalyst was synthesized by one-step calcination using 

cyanamide-treated cyanuric acid-melamine (CM) complex as starting material, where 

cyanamide plays dual roles: a) assisting the transformation of CM from bulky to 

stacked structure and further to flakes after calcination, and b) acting as raw material 

for the generation of QDs on the flakes. To replicate both the functional and structural 

properties of the natural photoreaction system, QDs@Flake g-C3N4 exploited the two 

types of g-C3N4 (i.e., QDs and flake) and a heterojunction interface to, respectively, 

mimic the functional components of light-harvesting systems (LHSs, i.e., PS I and PS 

II) and electron transport chains (ETCs), and utilized the flake structure as the 

analogue of 2D thylakoid membrane. Therefore, QDs@Flake g-C3N4 showed 

remarkably improved capability in visible light harvesting and charge separation, and 

exhibited elevated performance in photocatalytic NADH regeneration with a 

regeneration yield of up to 40%. The NADH regeneration approach was then coupled 

with alcohol dehydrogenase-catalyzed hydrogenation of formaldehyde, achieving 
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continuous methanol production. 
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4
 and thus the effective NAD(P)H regeneration strategies are eagerly expected. 

5-7
 

Solar energy, as a kind of green and sustainable energy sources, has received lots of 

interests. In nature, green plants, algae and cyanobacteria are experts to convert and 

store solar energy in the form of chemicals, such as NAD(P)H, through photoreaction 

process. Such a process basically relies on several key functional components 

(chlorophyll, phycobilisome, plastoquinone, cytochrome b6f, plastocyanin, etc.) and 

unique structure (two-dimensional (2D) thylakoid membrane). 8-10 The key functional 

components comprise light-harvesting systems (LHSs) and electron transfer chains 

(ETCs), which are critical in the natural photoreaction system. Specifically, LHSs that 

include photosystem I (PS I) and photosystem II (PS II) are composed of some 

 

1. INTRODUCTION

Enzymatic hydrogenation refers to the catalyzed reduction of molecules with 

higher-valence carbon (carbon dioxide (CO2), formate, formaldehyde, etc.) by 

oxidoreductases that are a kind of enzyme accounting for 30% of commercial 

enzymes. Enzymatic hydrogenation has been extensively applied and displayed high 

performance for energy conversion and storage, such as CO2 fixation and alcohol 

synthesis, due to the mild reaction conditions, exceptional activity and 

regio-/stereo-selectivity, 1, 2 etc. Such hydrogenation processes rely on the sustainable 

supply of hydrides in the form of NAD(P)H as nearly 90% of known oxidoreductases 

require NAD(P)H as a cofactor. The stoichiometric addition of high-cost NAD(P)H 

(>$100 per gram) is too expensive for industrialization of enzymatic hydrogenation, 3, 
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photo-excited electrons transferred in an oriented manner. 11 Inspired by the 

photoreaction process in thylakoid membrane, constructing 2D artificial 

photocatalytic systems with visible-light harvesting and oriented electron transfer 

capabilities would be an efficient method for NADH regeneration. It should be noted 

that, although several research groups have developed a series of photocatalytic 

systems for NADH regeneration, no reports is related to 2D structured photocatalysts. 

12-16

Recently, isotype heterojunction semiconductors have drawn broad interests in 

various disciplines owing to their unique electronic band structure. It is well 

recognized that isotype heterojunctions could promote the dissociation of 

electron-hole pairs through co-initiating the two moieties of the heterojunction by 

light, facilitate the collection and transfer of charge at the heterojunction interface, 

and finally minimize the charge recombination. 17-21 In this regards, isotype 

heterojunction semiconductors have some similarities to LHSs and ETCs in the 

natural photoreaction system. Given the visible-light harvesting capability and the 

 

light-harvesting antenna (e.g., chlorophyll, phycobilisome). The co-initiation of PS I 

and PS II by visible light ensures the high efficiencies in the utilization of visible light 

and photo-excitation of electrons. ETCs that comprise plastoquinone, cytochrome b6f 

and plastocyanin could facilitate the transfer of the photo-excited electrons to 

ferredoxins for further NAD(P)H regeneration. Interestingly, LHSs and ETCs are both 

located within/on the 2D thylakoid membrane, which ensures the photo-excitation and 

electron transfer processes to occur in a confined space and, particularly, enables 
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et al. 
23 and Zhang et al. 

24 synthesized ultrathin g-C3N4 sheets by the liquid 

exfoliation route from bulky g-C3N4, which could promote the charge migration and 

separation efficiency by two more times in comparison to bulky g-C3N4. Therefore, 

CN-based 2D isotype heterojunctions would integrate the merits of 2D sheets/flakes 

structure and CN-based heterojunctions, which would benefit to elevating the 

photocatalytic efficiency during the NADH regeneration. 

In this study, for the first time, a 2D isotype heterojunction photocatalyst, termed as 

quantum dots@flake g-C3N4 (QDs@Flake g-C3N4), was reported for 

visible-light-driven NADH regeneration. The construction of QDs@Flake g-C3N4 

 

designable property of electronic band structure, carbon nitride (CN) exhibits 

versatility and superiority in constructing isotype heterojunctions. 
22

 Typically, Wang 

and co-workers 20 prepared bulky CN/CNS isotype heterojunctions through two-step 

calcination by using dicyandiamide and trithiocyanuric acid as CN and 

sulfur(S)-containing CN precursors, respectively. Such bulky CN/CNS isotype 

heterojunctions exhibited higher charge separation efficiency, and enhanced 

photocatalytic activity of 11 times higher than that of bulky CN for hydrogen 

evolution. Since then, several kinds of CN-based bulky isotype heterojunctions were 

designed and synthesized using similar procedure. 17-19 Albeit some achievements, the 

structures of CN-based isotype heterojunctions were mostly in bulky type, which were 

rarely engineered into 2D sheets/flakes such like 2D thylakoid membrane. Recent 

reports indicated that 2D graphitic carbon nitrite (g-C3N4) sheets/flakes showed much 

higher efficiency of photo-excited charge transfer and separation. For instance, Tong 
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aims to replicate both the functional and structural properties of the natural 

photoreaction system. The two types of g-C3N4 (i.e., QDs and flake) and a 

heterojunction interface were, respectively, employed to mimic the functional 

components of LHSs (i.e., PS I and PS II) and ETCs, whereas the flake structure was 

designed as the analogue of 2D thylakoid membrane. Compared to bulky g-C3N4, the 

resultant QDs@Flake g-C3N4 showed relatively large specific surface area and high 

separation/migration rate of photo-generated electrons-hole pairs, thus leading to 

enhanced NADH regeneration efficiency. Furthermore, the photocatalytic NADH 

regeneration was coupled with enzymatic hydrogenation of formaldehyde to methanol 

catalyzed by yeast alcohol dehydrogenase (YADH), which could continuously offer 

hydrides for formaldehyde, demonstrating the potential of our photocatalysts in 

energy conversion and storage. 

2. EXPERIMENTAL

2.1 Materials: 

Melamine (99%) and cyanuric acid (98%) were purchased from Guangfu Chemical 

Reagent Tianjin Co., Ltd. (Tianjin, China). Cyanamide (50 w/w%), triethanolamine 

(TEOA) was obtained from Aladdin Industrial Corporation (Shanghai, China). 

Rhodium (III) chloride hydrate, 2, 2’-bipyridyl, 1, 2, 3, 4, 

5-pentamethylcyclopentadiene, β-nicotinamide adenine dinucleotide phosphate

sodium salt hydrate (β-NAD+), disodium hydrogen phosphate and sodium dihydrogen 

phosphate were received from Sigma-Aldrich (St. Louis, USA). All other chemicals 
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were of analytical grade and used without further treatment. 

2.2 Preparation of quantum dots (QDs)@Flake g-C3N4 isotype heterojunctions: 

In a typical procedure, 70 mL equal molar ratio of cyanuric acid and melamine 

(0.024 M) were mixed under magnetic stirring at 42 oC. 25 Then, the obtained white 

precipitates were collected by centrifugation at a speed of 6000 rpm for 1 minute 

(denoted as CM), which were then mixed with 50 w/w% cyanamide followed by 

oscillation for 30 minutes and vacuum drying at 40 
o
C. The complex was placed in a 

porcelain crucible with a cover and heated at 4.5 oC min-1 up to 550 oC in air for 4 h. 

The resultant sample was labeled as QDs@Flake g-C3N4. 

2.3 Preparation of g-C3N4-CM: 

Briefly, 70 mL equal molar ratios of cyanuric acid and melamine were mixed under 

magnetic stirring at 42 
o
C. Then, the obtained white supramolecular CM was collected 

by centrifugation at the rate of 6000 rpm for 1 min. After removal of surplus water 

under vacuum drying at 40 oC, the white solid (CM) was placed in a porcelain 

crucible with a cover and heated at 4.5 oC min-1 up to 550 oC for 4 h in air. The 

resultant yellow powder was denoted as g-C3N4-CM. 

2.4 Preparation of g-C3N4-Cya: 

Bulky g-C3N4 was directly synthesized by thermal polycondensation of crystal 

cyanamide from room temperature to 550 oC in air with a ramp rate of 4.5 oC min-1 

and held for 4 h, then cooled to room temperature. The resultant product was denoted 

as g-C3N4-Cya. 
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2.5 Preparation of [Cp*Rh(bpy)H2O]
2+

:

RhCl3·H2O was refluxed in methanol with one equivalent of 1, 2, 3, 4, 

5-pentamethylcyclopentadiene for 24 h. The resultant red precipitate was filtrated and

suspended in methanol. After the addition of two equivalents of 2, 2-bipyridine, the 

suspension was cleared up and a yellowish solution was acquired. [Cp*Rh(bpy)Cl]Cl 

was precipitated through adding diethyl ether into the yellowish solution. A stock 

solution (100 mM) of [Cp*Rh(bpy)Cl]Cl was prepared in water and stored at room 

temperature without direct light exposure. Note that [Cp*Rh(bpy)Cl]Cl could readily 

hydrolyze to [Cp*Rh(bpy)(H2O)]2+ in aqueous solution. 26

2.6 Photocatalytic regeneration of NADH: 

In a typical regeneration procedure, the reaction system was composed of β-NAD+, 

TEOA (10.0 w/v%), phosphate buffer (100 mM, pH = 9.0) and photocatalyst (1 mg 

mL-1) at 25 oC. The suspension (20 mL) was placed into a quartz reactor equipped 

with a stirring bar and illuminated with a 500 W Xe lamp (Beijing AuLight 

Technology Co.) with a cutoff filter (λ ≥ 420 nm). The distance between 500 W Xe 

lamp and the reactor was fixed at 10 cm. Before illumination, the reaction solution 

was placed in dark for 1 h to accomplish the adsorption–desorption equilibrium. 

During the illumination, the NADH concentration was calculated by measuring the 

absorbance of the solution at 340 nm with a UV-vis spectrophotometer (U-3010, 

Hitachi). 

2.7 Enzymatic hydrogenation of formaldehyde with in situ NADH regeneration: 



 

The reaction medium for coupling NADH regeneration with enzymatic (yeast 

alcohol dehydrogenase, YADH) hydrogenation includes β-NAD
+
 or NADH (20 mM), 

formaldehyde (30 mM), YADH (1.0 mg mL-1 stock solution: 10 mg YADH was 

dissolved in 10 mL phosphate buffer (100 mM, pH = 9.0)), TEOA (10.0 w/v%), 

different photocatalysts (1 mg mL-1) and 100 mM phosphate buffer at pH = 9.0 at 25 

o

C. The volume of the reaction solution was 20 mL. Before the illumination, the 

reaction solution was placed in a dark environment for 60 minutes to accomplish the 

adsorption–desorption equilibrium. During the illumination, the methanol conversion 

yield was recorded for given time intervals by gas chromatography (Agilent GC 

7820B). 

2.8 Characterizations: 

Scanning electron microscope (SEM) was carried out on an FEI Nova XL430 and 

Hitachi Limited instrument. TEM images were taken on FEI Tecnai G2 F20 

equipment. Powder X-ray diffraction (XRD) measurements were performed on a 

Rigaku D/max 2500V/PC X-ray diffractometer (Cu Kα, λ = 0.154 nm, 40 kV, 200 

mA), and the data was acquired in the range of 560 o (2θ) at a rate of 4 o min-1. 

Fourier transform infrared spectroscopy (FT-IR) was measured on a Nicolet-560 

spectrometer, where 32 scans were accumulated with a resolution of 4 cm-1 for each 

spectrum. The X-ray photoelectron spectroscopy (XPS) was performed on a 

Perkin- lmer PHI 1600 ESCA X-ray photoelectron spectroscope with monochromatic 

Mg Kα radiation (1253.6 eV). Nitrogen adsorption-desorption isotherms were done 

with a TRISTAR-3000 surface area analyzer at 77 K. The UV-vis absorption spectra 

10 
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Scheme 1. Preparation procedure of QDs@Flake g-C3N4: a) the formation of 

hydrogen-bonded CM, b) the treatment of CM with cyanamide, and c) the thermal 

polycondensation of cyanamide-treated CM through calcination at 550
 o

C. 

Scheme 1 shows the preparation procedure of QDs@Flake g-C3N4, which includes 

a) the formation of hydrogen-bonded CM, b) the treatment of CM with cyanamide,

and c) the thermal polycondensation of cyanamide-treated CM through calcination. 

Specifically, the rapid precipitation of CM was implemented through mixing equal 

amount of cyanuric acid and melamine in deionized water. The resultant CM was 

crystallized into a rod-like hexagonal prism primarily based on hydrogen bonding 

between cyanuric acid and melamine (Figure S1a). 25, 27 After treated by cyanamide, 

CM showed morphological changes from rods to irregular lamellar-reduced stacking 

 

were recorded by a UV-vis spectrophotometer (U-3010, Hitachi) equipped with an 

integrating sphere for the diffuse-reflectance spectroscopy (DRS), using BaSO4 as 

reference. Photoluminescence spectra were recorded on Jobin Yvon Fluorolog 3-21 

fluorescence spectrometer at room temperature with excitation at 375 nm. 

3. RESULTS AND DISCUSSION
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1 µm

c)b)a)

d) e) f) g)

Figure 1 SEM images of a) g-C3N4-CM, b) g-C3N4-Cya and c) QDs@Flake g-C3N4. 

 

structure (Figure S1b). The crystal structures of CM before and after cyanamide 

treatment were quite similar as indicated in the X-ray diffraction (XRD) patterns 

(Figure S1c). However, these two samples of CM and cyanamide-treated CM showed 

significant difference in crystal structure compared to sole cyanuric acid or melamine, 

where some new XRD peaks appeared at 10.52o, 21.32o and 27.82o (Figure S1c). 

These peaks indicated strong evidence of the crystal structure changes caused by the 

complexion of cyanuric acid and melamine. Then, the chemical composition of 

cyanuric acid, melamine, CM and cyanamide-treated CM was examined by using of 

Fourier transform infrared (FTIR) spectroscope (Figure S1d). Compared to cyanuric 

acid and melamine, CM and cyanamide-treated CM showed more complicated curves 

with several new absorption bands. 28 By contrast, CM and cyanamide-treated CM 

possessed much similar FTIR absorption bands, which further suggested the minor 

influence of adding cyanamide on the changes of chemical composition of CM. 
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High-resolution TEM images of d, e) g-C3N4-CM and f, g) QDs@Flake g-C3N4. 

After the calcination of CM, cyanamide and cyanamide-treated CM, g-C3N4 with 

different morphologies were obtained and then characterized by scanning electron 

microscope (SEM, Figure 1a-c). In detail, g-C3N4 derived from CM showed tubular 

structures with a broken shell, which is in line with previous literature. 29 After 

treatment with cyanamide, the supramolecular CM was transformed into flake-shape 

g-C3N4 as evidenced by SEM and transmission electron microscopy (TEM) images 

(Figure S2a). The flake-shape g-C3N4 also exhibited a remarkable difference in 

morphologies compared to cyanamide-derived g-C3N4 (termed as g-C3N4-Cya, bulky 

in shape (Figure S3)). The surface microstructure of the flake-shape g-C3N4 was then 

examined by high-resolution TEM (Figure 1f, g), which showed numerous quantum 

dots (QDs, ~3 nm in average as shown in Figure S4) g-C3N4 dispersed on the flake 

(HRTEM, Figure 1d, e), indicating the formation of QDs@Flake g-C3N4. This unique 

two-dimensional (2D) flake structure rendered a relatively higher specific surface area 

for light harvesting, and 2D structures for the oriented transfer of charges. Meanwhile, 

the two moieties of g-C3N4, i.e., QDs and flake, showed great potentials in generating 

isotype heterojunctions. 
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Figure 2 a) XRD patterns and b) N2 adsorption isotherms of g-C3N4-CM, g-C3N4-Cya 

and QDs@Flake g-C3N4. c) FTIR spectra, d) X-ray photoelectron spectroscopy (XPS), 

and the corresponding e) N1s and f) C1s spectra of g-C3N4-CM, g-C3N4-Cya and 

QDs@Flake g-C3N4. 

The textural and chemical structures of g-C3N4-CM, g-C3N4-Cya and QDs@Flake 

g-C3N4 were further characterized by XRD, nitrogen adsorption-desorption isotherms,

FTIR and XPS (Figure 2). 30 The XRD patterns (Figure 2a) indicated that all three 



 

g-C3N4 featured two peaks: the low-angle reflection peak at around 13o stemmed from 

the interplanar structural packing, and the strong peak at around 27
o
 represented the 

characteristic stacking structure of g-C3N4 layers. 31 The interplanar crystal spacing of 

g-C3N4-CM and QDs@Flake g-C3N4 was calculated as 0.321 nm (27.74o) 32 and 

0.326 (27.30o). This indicated that QDs slightly widened the interplanar crystal 

spacing between the neighbored layers of QDs@Flake g-C3N4. As shown in Figure 

2b, both g-C3N4-CM and QDs@Flake g-C3N4 showed higher N2 adsorption capacities 

all through the applied pressure when compared to g-C3N4-Cya. In detail, the surface 

areas of g-C3N4-CM and QDs@Flake g-C3N4 were, respectively, 113.2 m2 g-1 and 

84.92 m2 g-1, which were over 7 times higher than that of g-C3N4-Cya (12.72 m2 g-1) 

due to their tubular or flake structure. The FTIR absorption bands in Figure 2c 

indicated that QDs@Flake g-C3N4 had similar chemical compositions as g-C3N4-CM 

and g-C3N4-Cya. The bands between 3500 and 3100 cm-1 were assigned to the 

stretching vibration of -NH2 or H2O groups. The broad peaks between 1600 and 1200 

cm-1 were ascribed to the stretching vibration of melon such as trigonal C-N=C or 

bridging C-NH-C unit. The sharp peak at ~810 cm-1 belonged to the breathing mode 

of tri-s-triazine rings. 
30

 Moreover, XPS results showed the similarity in surface 

elemental composition among g-C3N4-CM, g-C3N4-Cya and QDs@Flake g-C3N4 

(Figure 2d). Weak O1s peaks were probably caused by the adsorbed H2O on the 

sample surface, also proved by FTIR spectra and thermo gravimetric (TG) analysis 

(Figure S6). High-resolution N1s spectra implied the existence of sp2-hybridized 

nitrogen (398.68 eV), tertiary nitrogen (N-(C)3) (399.68 eV) and amino groups 

15 
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Figure 3 a) UV-Vis diffuse reflectance spectra, b) the corresponding plots of (αhυ)1/2 

versus photos energy, c) valence band XPS spectra, and d) PL spectra at the excitation 

wavelength of 375 nm of g-C3N4-CM, g-C3N4-Cya and QDs@Flak g-C3N4. 

 

(401.18 eV) in all three samples (Figure 2e). An additional peak with rather weak 

intensity at 404.38 eV was also observed, which was ascribed to the π-excitation. 

Additionally, Figure 2f showed the high-resolution C1s spectra, which could be split 

into three characteristic peaks: 288.0 eV for N-C=N, 286.1 eV for C-N and 284.4 eV 

for C=C bands (Figure 2f). 33 In general, all samples were only composed of two 

abundant elements: carbon and nitrogen, which well matched with the energy 

dispersive X-ray (EDX) spectrum and elemental mapping analysis (Figure S5). The 

C/N atomic ratio for QDs@Flake g-C3N4 was ~0.68, a bit lower than the theoretical 

value of 0.75, which might be due to the existence of uncondensed –NH2 groups. 
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The electronic properties of g-C3N4 were commonly reflected in their 

photophysical property, which could be measured by the changes in the intensity or 

shape of UV-vis diffuse reflectance spectra. The UV-vis spectra suggested that the 

photo-absorption band edge of QDs@Flake g-C3N4 was situated between the 

photo-absorption band edge of g-C3N4-CM and g-C3N4-Cya. This phenomenon was 

mainly caused by the existence of two types of g-C3N4 (QDs and flake, Figure 3a). 

Moreover, the remarkably enhanced light-harvesting ability was observed for 

QDs@Flake g-C3N4 across the visible-light optical spectrum compared to g-C3N4-CM 

and g-C3N4-Cya. The shift arose from the variation of surface states was associated 

with their morphologies and band gap energy. As shown in Figure 3b and c, the band 

gap energy (Eg) estimated from the intercept of the tangents to the plots of (αhυ)1/2 

versus photon energy was 2.45, 2.50 and 2.51 eV for g-C3N4-CM, g-C3N4-Cya and 

QDs@Flake g-C3N4, respectively. Meanwhile, the valence band XPS spectra of the 

three samples were performed to determine the relative position of valence band edge 

of the samples, as presented in Figure 3c. Combined with the band gap energy 

obtained from UV-Vis diffuse reflectance spectra and the valence bands derived from 

XPS results, the conduction bands of g-C3N4-CM, g-C3N4-Cya and QDs@Flake 

g-C3N4 were, respectively, -0.80, -0.72 and -0.79 eV. The optical properties suggested 

that the textural structure of QDs@Flake g-C3N4 would be beneficial to improve 

visible-light harvesting ability, and have a positive influence on minimizing the 

recombination of photo-generated electrons-holes pairs. To verify this hypothesis, the 
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photoluminescence (PL) emission spectra of g-C3N4-CM, g-C3N4-Cya and 

QDs@Flake g-C3N4 were conducted and shown in Figure 3d. No apparent 

fluorescence emission peaks of QDs@Flake g-C3N4 were observed. By contrast, both 

of g-C3N4-CM and g-C3N4-Cya exhibited a much stronger peak, suggesting the 

superiority of 2D structured QDs@Flake isotype heterojuctions in facilitating the 

transfer and separation of photo-excited charge carriers. 
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Figure 4 NADH regeneration yields enabled by g-C3N4-CM, g-C3N4-Cya and 

QDs@Flake g-C3N4 in the a) absence and b) presence of 0.25 mM mediator (λ ≥ 420 

nm, 0.1 M PBS pH = 9.0, TEOA 10.0 w/v%). NADH regeneration yields as a 

function of illumination time for QDs@Flake g-C3N4 with different β-NAD+
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concentrations in the c) absence and d) presence of 0.25 mM mediator (λ ≥ 420 nm, 

0.1 M PBS pH = 9.0, TEOA 10.0 w/v%, QDs@Flake g-C3N4 1.0 mg mL
-1

).

Scheme 2. a) Structural illustration of natural photoreaction system as well as the 

photoreaction process. b-d) Structural illustration of QDs@Flake g-C3N4 as well as 

the photocatalytic regeneration of NADH in the absence and presence of a mediator: 

c) QDs- and flake-moieties in QDs@Flake g-C3N4 are the mimics of PSI and PSII in

LHSs, whereas the heterojunction interface is the mimic of ETCs; d) the 2D 

topological structure of QDs@Flake g-C3N4 is the mimic of 2D thylakoid membrane. 

The photocatalytic performance of QDs@Flake g-C3N4, g-C3N4-CM and 

g-C3N4-Cya were demonstrated by the evolution of NADH under visible-light

illumination at a wavelength λ ≥ 420 nm in the absence and presence of a mediator 

([Cp*Rh(bpy)(H2O)]2+). 6, 26 Herein, it should be noted that, since the regeneration

mechanism of NADH was quite different under the conditions of having a mediator or 

not. Therefore, we then would like to choose these two reaction modes to demonstrate 



 

the superiority of QDs@Flake g-C3N4. In brief, in the absence of a mediator, β-NAD+ 

would adsorb on the g-C3N4 through π–π stacking between the adenine subunit of 

β-NAD+ and the tri-s-triazine units of g-C3N4. The π–π stacking results in the hydride 

transfer from g-C3N4 to β-NAD+ and the subsequent NADH regeneration. 6, 26 In the 

presence of a mediator, photo-excited electrons could be firstly shuttled the mediator. 

The mediator is homogeneously dispersed in the solution and much easier to transfer 

electrons to β-NAD
+
, facilitating the regeneration of NADH and commonly resulting 

in higher NADH regeneration yield compared to the reaction without a mediator. 

Accordingly, well matched the above-mentioned mechanisms and previous literatures, 

6, 33

 an enhanced NADH regeneration yield was observed for g-C3N4 with a mediator 

rather than without a mediator (Figure 4a and b). More importantly, for both reaction 

modes, QDs@Flake g-C3N4 exhibited the highest NADH regeneration yield by 

contrast with g-C3N4-Cya and g-C3N4-CM during illumination as indicated in Figure 

4a and b. Specifically, under certain conditions (i.e., 0.6 mM β-NAD+, no mediator, 4 

h illumination) without a mediator, the NADH regeneration yield of QDs@Flake 

g-C3N4 could reach 22.5%, while g-C3N4-CM and g-C3N4-Cya only showed the 

NADH regeneration yields of 17.8% and 11.2%, respectively. With a mediator and 

under a shorter illustration time (2.5 h) with even a lower β-NAD+ concentration (0.2 

mM), QDs@Flake g-C3N4 could reach a much higher NADH regeneration yield of 

~40.0% that was nearly two and five times higher than that of g-C3N4-CM and 

g-C3N4-Cya, respectively. Based on the above physiochemical characterizations and 

photocatalytic reaction, the enhancement of NADH regeneration yield upon 

20 
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The influence of β-NAD+ concentration on the NADH regeneration yield of 

QDs@Flake g-C3N4 was further examined under successive illumination (Figure 4c 

 

QDs@Flake g-C3N4 in each reaction mode should be ascribed to the following three 

aspects (Scheme 2), showing similarity to the natural photoreaction system: i) QDs- 

and flake-moieties in QDs@Flake g-C3N4 are the mimics of PSI and PSII in LHSs, 

respectively (Scheme 2a and c). The photo-generation of electron-hole pairs occurred 

in both QDs- and flake-moieties of QDs@Flake g-C3N4 through co-initiation under 

visible light, which could offer more amount of electrons around the conducting band 

of QDs-moiety than g-C3N4-Cya and g-C3N4-CM. ii) The heterojunction interface is 

the mimic of ETCs (Scheme 2a and c). Based on the heterojunction interface and 

band structure of QDs- and flake-moieties, the photo-generated electrons from the 

flake-moiety favor to transfer to the QDs-moiety, whereas the photo-generated holes 

from the QDs-moiety favor to transfer to the flake-moiety. Such kind of transfer 

behavior would result in an accumulation of electrons around the conducting band of 

QDs-moiety. iii) As the mimic of 2D thylakoid membrane, the 2D topological 

structure of QDs@Flake g-C3N4 (Scheme 2a and d) also contributes some to the 

accumulation of electrons in the conducting band of QDs-moiety as the 

photo-generated electrons in the flake-moiety favor to transfer along 2D direction, 

which was beneficial for rapid transfer of electrons to the QDs-moiety. 
13, 34

 The 

accumulated electrons caused by both aspects as mentioned above then supplied 

sufficient electrons to the mediator reduction, and finally led to the enhanced NADH 

regeneration compared to g-C3N4-Cya and g-C3N4-CM. 17
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and d). No matter in what reaction mode (with or without a mediator), QDs@Flake 

g-C3N4 showed an illumination time-dominated photocatalytic activity. Longer

illumination time commonly led to enhanced NADH regeneration yield because of 

accumulation of regenerated NADH in solution. However, for both reaction modes, 

much higher β-NAD+
 concentration resulted in the decrease of NADH regeneration 

yield. 6 Nonetheless, the average reaction rates for these two reaction modes showed 

an increasing trend, indicating higher β-NAD
+
 concentration would be better for 

maintaining a higher reaction rate and better catalytic performance (Figure S7). 
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Figure 5 Photocatalytic NADH regeneration coupled with enzymatic hydrogenation 

of formaldehyde for methanol production. a) Temporal methanol concentration under 

illumination or dark over YADH (0.01 mg mL-1) + NADH (20 mM) + QDs@Flake 

g-C3N4 (1.0 mg mL-1). b) Temporal methanol yield over YADH (0.01 mg mL-1) +

mediator (0.25 mM) + QDs@Flake g-C3N4 (1.0 mg mL-1) with β-NAD+ (20 or 0 mM)

under illumination or with β-NAD
+
 (20 mM) under dark.

In situ regeneration of NADH is highly required for the sustainable synthesis of 
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chemicals and fuels through enzymatic hydrogenation. 35, 36 In this regards, 

photocatalytic regeneration of NADH was coupled with enzymatic hydrogenation of 

formaldehyde to methanol by yeast alcohol dehydrogenase (YADH) as shown in 

Figure 5. Methanol yield as a function of reaction time was assayed to examine the 

effectiveness of the regenerated NADH. In the absence of a mediator, the methanol 

yield was significantly influenced by the reaction conditions. More specifically, the 

reaction that carried out under illumination conditions exhibited a methanol yield of 

three times as high as that under dark conditions (Figure 5a), manifesting the 

feasibility of converting formaldehyde into methanol by coupling the regenerated 

NADH with YADH. However, with the prolongation of the reaction time for 60 min, 

the methanol yield was slightly reduced, which might be due to the partial 

volatilization of formaldehyde and methanol. Besides, β-NAD
+
 as the initial substrate 

was then added to the coupled system to clarify the influence of NADH regeneration 

process on the catalytic performance of enzymatic hydrogenation. As shown in 

Figure 5b, methanol could not be generated either in the absence of β-NAD+ or under 

dark. By contrast, the content of methanol increased progressively for the coupled 

system in the presence of β-NAD
+
 under illumination. The methanol yield after 

reaction for 120 minutes was calculated to be ~8.3%, which is much better than our 

previous results using Pt/Al2O3 and H2 for NADH regeneration (~2.7%). 7 It should

be noted that 20 mM of NAD+ used in Figure 5 was higher than that of NAD+ (0.2~1 

mM) in Figure 4, which was to ensure a high concentration of methanol converted 

from formaldehyde for the accuracy of testing methanol content. More importantly, 
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the results again proved that the photocatalytic cofactor regeneration enabled by 

QDs@Flake g-C3N4 was successful, and also verified that the coupling of NADH 

regeneration with enzymatic hydrogenation was a feasible way to produce chemical 

and fuels. 

4. CONCLUSIONS

In summary, QDs@Flake g-C3N4, a 2D isotype heterojunction photocatalyst, was 

prepared through one-step calcination of cyanamide-treated cyanuric acid-melamine 

complex for visible-light-driven NADH regeneration. The two types of g-C3N4, 

heterojunction interface and flake structure were, respectively, designed to mimic 

LHSs, ETCs and 2D thylakoid membrane in natural photoreaction system, conferring 

QDs@Flake g-C3N4 with enhanced visible-light harvesting ability and oriented 

transfer of electrons from flake to QDs. QDs@Flake g-C3N4 exhibited a much better 

performance in the photocatalytic regeneration of NADH either with or without a 

mediator in comparison to two other counterparts bearing no heterojunctions, i.e., 

g-C3N4-CM and g-C3N4-Cya. The NADH regeneration system was then successfully 

coupled with enzymatic hydrogenation of formaldehyde for continuously producing 

methanol. This regeneration system could also be coupled with other 

NADH-dependent enzymatic hydrogenation processes. 
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