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Modelling, Evaluating and Quantifying Different Situational Assessment in Real Time

Operation, Using an Analytical Approach for Measuring the Ranking Capability of

SWA System
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In a dynamically monitored environment the analyst team need timely and accurate

information to conduct proactive action over complex situations. Typically, there are

thousands of reported activities in a real time operation, therefore steps are taken

to direct the analyst’s attention to the most important activity. The data fusion

community have introduced the information fusion model, with multiple situational

assessments. Each process lends itself to ranking the most important activities into a

predetermined order.

Unfortunately, the capability of a real time system can be hindered by the knowledge

limitation problem, particularly when the underlying system is processing multiple

sensor information. Consequently, the situational awareness domains may not rank

the identified situation as perfect, as desired by the decision-making resources. This
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thesis presents advanced research carried out to evaluate the ranking capability of

information from the situational awareness domains: perception, comprehension and

projection. The Ranking Capability Score (RCS) has been designed for evaluating

the prioritisation process. The enhanced (RCS) has been designed for addressing

the knowledge representation problem in the user system relation under a situational

assessment where the proposed number of tracking activities are dynamically shifted.

Finally, the Scheduling Capability Score was designed for evaluating the scheduling

capability of the situational awareness system.

The proposed performance metrics have been successful in fulfilling their objectives.

Furthermore, they have been validated and evaluated using an analytical approach,

through conducting a rigorous analysis of the prioritisation and scheduling processes,

despite any constraints related to a domain-specific configuration.
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Chapter 1

Introduction

1.1 Overviews

There are five different domains where the analyst’s team must keep up to date with

a dynamically monitored environment. These domains are classified as sea, land,

space, air and cyberspaces. To meet the needs of these domains, the data fusion

community have introduced the information fusion reference model[84], [10],[26], [27]

[11],[14],[7], [8],[12], [13], [33],[34] for multi-disciplinary areas, which describes the

theoretical concept of a real-time system with multiple levels of situational assessment.

Each level performs a contextual task during a real time operation. In return, the

proposed output of these simultaneous processes are either prioritised in a list of events

(namely the tracking activity), or represented by visual means, supporting timely

responses during a real time operation.

The first three levels of assessment are regarded as the core processes of a situational

awareness (SWA) system. The first level of assessment (perception stage) is an

automated process based on a predefined configuration. The purpose of this level

is to assess and organise multiple sensor information into high abstract views for

any emerging situation. Simultaneously, the next two levels of assessment, level 2

1



Introduction

(comprehension stage) and level 3 (projection stage), are also automated processes which

rank identified tracking activities, based either on their current state or anticipated

developments from the perceived situations. This is achieved through consulting

different pieces of information concerning the dynamically monitored environment.

Unfortunately, the capability of a SWA system can be hindered by the knowledge

limitation problem, specifically when the underlying system is processing multiple

sensor information during a real time operation. Consequently the system may not rank

the identified list of tracking activities as perfect, as desired by the decision-making

resources. With this in mind, researchers have defined two further advanced levels for

the real time system; the first level is the process refinement (level 4) for evaluating

the performance of the real time system and the second is the user refinement (level 5)

for addressing knowledge representation issues, concerning the user system relation.

This section has discussed the theoretical concept of a real time system and the

multiple levels of situational assessments. The next section discusses the motivation of

this thesis.

1.2 Motivations

The process refinement(level 4) of the Joint Directors of Laboratories (JDL) is a meta-

process used to assess and improve the data fusion task for supporting decision-making

resources during a real time operation. During the assessment stage, the underlying

process is expected to assess the performance of a real time system. Furthermore,

the verification techniques contain two forms of evaluation; the first method is the

qualitative approach and the second method is quantitative.

Hence, during the qualitative stage, researchers [19][20] [50] [7] [11][7] [77] have

developed a number of methods to investigate the capability of a real time system.

However, it requires predefined knowledge in order to serve only a domain specific

2



1.3 Aims and Objectives

configuration. On the other hand, during the quantitative assessment, [15] [4] [90][76]

[77], the evaluation method is capable of assessing different domains with minimum or

no predefined knowledge about that specific domain; such a method can serve wider

views in comparison to the qualitative evaluation method. Therefore, this thesis intends

to develop advanced quantitative methods for evaluating the performance of a SWA

system.

Furthermore, Salerno[74] has proposed a scoring scheme to evaluate the capability

of SWA systems, in terms of ranking important events into a contextual order. Tadda

[89] explained that the activities of interest (AoI) are far from the top of the lists, thus

analysts take longer in assessing such situations. The scoring techniques provide an

indication of how close the analysts are to the most important activity. Unfortunately,

the AOI scores are limited to contextual situational assessment. Blasch [15] advocated

for an extension to have wider views for the AoI scores.

According to our best knowledge, less attention has been given to the performance

evaluation with regards to the ranking capability of a real time system. Originally,

existing performance metrics [15], [37] [76],[37], [74], [77] [89] [90] had not been designed

for measuring the ranking capability of the SWA system. Specifically, corner cases

of different situational assessment needs and configurations have not been considered.

This thesis presents advanced research work implemented to evaluate the ranking

capability of an SWA system for a number of different scenarios.

1.3 Aims and Objectives

The aim of this project is to propose a quantitative assessment method for evaluating

the ranking capability of a real time system to serve a wide number of domains as well

as different situational assessment needs and configurations.

The aim can be achieved through the following objectives:
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1-Deriving a mechanisms for evaluating the prioritisation and scheduling processes of

a real time system to quantify the information perception, comprehension and projection

processes. The proposed performance metric intends to evaluate the capability of a

real time system using quantitative assessment to serve a wider number of domains

during the real time operation.

2-Implementing a quality based evaluation techniques for verifying the proposed

performance metrics against its intended purpose. The underpinning evaluation will

encompass three phases. The first phase will use an analytical approach to compute

the number of ranking instances for any given scenarios concerning the prioritisation

process or scheduling process of a real time system. The second phase will use Matlab

to simulate all the ranking instances computed during the analytical stage. The third

phase intends to examine the potential of the proposed scoring scheme in terms of

providing a unique score for all possible ranking instances proposed by the simulation

phase.

3-Developing a reliability based evaluation for verifying the proposed performance

metric against the decision-making perception. This is to address the knowledge

representation problem concerning system-user perceptions when the real time system

is experiencing ranking capability issues in a dynamically monitored environment.

4-Defining two modelling schemes for representing information perception, compre-

hension and projection in the form of listing tracking activities. The first modelling

scheme will be designed to evaluate the prioritisation process of a real time system

and the second modelling scheme will be designed to evaluate the scheduling process

of a multi level situation assessment.

5-The proposed performance metrics will be designed and evaluated using an

analytical approach. Such methods will allow the evaluation process to conduct a
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rigorous analysis of the prioritisation and scheduling processes, despite any constraints

related to a domain-specific configuration.

6-Driving a mechanism to analyse the computational complexity issues for two

different operations involved in evaluating the prioritisation and scheduling processes

for a real time system. The first operation will occur during the assessment stage

where the underlying performance metric is required to compute only essential values

for assessing the capability of a real time system. The second operation will occur

when the potential performance metric is required to compute more values to assess

the optimisation technique concerning the ranking capability of the SWA system.

1.4 Thesis Organisation

In Chapter 2, the thesis discusses the theoretical concept of a real time system by

reviewing a relevant reference model which has been designed to support a real time

operation. The next section will discuss literature reviews and highlight four different

research problems concerned with the capability of the SWA system. The first research

problem concerns knowledge based issues, the second concerns ranking capability issues,

the third concerns the process refinement stage for assessing the performance of real

time systems and the fourth concerns knowledge representation issues regarding user

perception. Furthermore, as this thesis is focused on evaluating the ranking capability

of real time systems, the last section will further discuss the theoretical concept of

ranking, prioritisation and scheduling processes from the information fusion perspective.

This is to explain how each process is likely to occur during multi level situational

assessments.

Chapter 3 presents two contributions. The first develops a modelling scheme for

representing the outputs of a SWA system in the form of a list of prioritised events.

The second contribution introduces the "Ranking Capability Score" (RCS) as well as
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a guidance case study for evaluating the ranking capability of a SWA system. This

will, primarily, deal with the prioritisation process of a real time system, under a

contextual scenario where the SWA system has identified only a number of tracking

activities regarded as important, but each with a different degree of importance,

namely the Activity of Interest (AoI). The chapter is divided as follows: the first

section presents the AoI Score to highlight the limitations of the existing performance

metric. The second section introduces the Ranking Capability Score (RCS). The

third section demonstrates a case study for evaluating the ranking capability of the

SWA system whilst the fourth section conducts a quality based evaluation to examine

the proposed performance metric against its intended purpose. Finally, this is followed

by a comparative evaluation between the (RCS) and AoIScore over three separate

scenarios.

Chapter 4 will introduce a new level of assessment. This is to examine the knowledge

representation issues for the proposed performance metric. The first section will examine

the " Ranking Capability Score" (RCS) versus the three qualitative states which are

likely to occur during a real time operation; the first is the Good State where the

SWA system is ranking the identified activities as perfect as the ground truth. The

second is the Degraded State where the SWA system is ranking the identified situation

as not perfect as the ground truth, and the third is the Bad state where the SWA

system is ranking the identified events as opposed to the ground truth. The second

section introduces an enhanced method for the proposed metrics, called the Ranking

Capability Score′ (RCS′). The third section will conduct a reliability based evaluation,

with the help of a case study based scenario, to evaluate the proposed enhanced scoring

scheme against the operator perception. The fourth section will present a comparative

evaluation and, finally, we will discuss our findings and future work.
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The first contribution of this Chapter 5 is in introducing the scheduling capability

score (SCS) for evaluating the ranking capability of a SWA system. Furthermore,

this work conducts a comparative evaluation with existing performance metrics; the

evaluation methodology encompasses two levels of assessments, with the first level being

a case study based evaluation. The second level is a quality-based evaluation used to

examine the underlying metrics against their intended purpose. The second contribution

of this work is to deliver a method to analyse the computational complexities involved

in evaluating the prioritisation and scheduling processes for two distinct operations.

The first operation is during the assessment stage, where the evaluation process required

computes only the necessary values to assess the ranking capability of the real time

system. The second operation is during the optimisation stage, where the evaluation

process is required to compute more values to assess all ranking instances for any given

scenario.

Chapter 6 Concludes the thesis and indicates possible research directions that this

work can take.
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Chapter 2

Background and Literature Review

2.1 Introduction

The analyst team is required to keep up to date with all five different domains in

a dynamically monitored environment, these being classified as sea, land, space, air

and cyberspace. To meet the needs of these domains, the data fusion community

have introduced the information fusion reference model[27] [26], [35], [55], [66] [72]for

multi-disciplinary areas, describing the theoretical concept of a real time system with

multiple levels of situational assessment. Each level performs a contextual task during

a real time operation. In return, the proposed output of these simultaneous processes

is either prioritised in a list of events (namely the tracking activity) or it is represented

by visual means, supporting timely responses during real time operation.

This chapter discusses the theoretical concept of a real time system by reviewing a

relevant reference model. The next section discusses the literature reviews, highlighting

four research problems regarding the capability of the SWA system. The first research

problem concerns knowledge based issues, the second concerns ranking capability issues,

the third concerns the process refinement stage for assessing the performance of real

time systems and the fourth concerns the knowledge representation issue regarding
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user perception. As this thesis is focused on evaluating the ranking capability of real

time systems, the last section will further discuss the theoretical concept of ranking,

prioritisation and scheduling processes from the information fusion perspective. This

is to explain how each process is likely to occur in multilevel situational assessments.

2.2 Real Time System

This section discusses four different reference models which have been designed for

supporting decision-making resources during a real time operation. Generally, these

theoretical models describe the fundamental concept of the construction of real time

systems with multiple functions and processes.

The underpinning concept for the SWA system originated from Endsly’s SWA

reference model. Simultaneously, the joint director of laboratories (JDL) designed

a more constructive model for assessing multi disciplinary areas during real time

operation, known as the data fusion JDL reference model.

Hence, the data fusion community linked a number of theoretical concepts or

standards to create a guidance model with multiple processes for describing the real

time system. This section discusses the underpinning concept for these reference

models, explaining the essential background of a real time system.

This section is divided as follows. The first section discusses the theoretical concept

of the Endsly SWA model, the second section explains the data fusion reference model,

the third section describes the SWA reference model, and, finally, the last section

describes the decision-making cycle for time sensitive operations.
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2.2 Real Time System

Fig. 2.1 The Endsley (1995) Situation Awareness Model Taken from [27]

2.2.1 Endsly SWA Model

The Endsley’s SWA model [27] [26] clearly stands as the reference for real time

systems and it is constructed with a three-level mental representation: perception,

comprehension, and projection. Endsley has created the core concept of real time

systems, stating that the SWA system has the ability to identify, comprehend, and

project critical elements of information for multi-disciplinary areas; this is shown in

Figure 2.1. Each process performs a contextual task during a real time operation as

follows:

• Level 1: Perception of critical element of information.

• Level 2: Comprehend its meaning.

• Level 3: Projects its Future Status.

During the perception stage the real time system is conducting classification, aggre-

gations and correlation techniques to perceive high abstract views for any emerging

situation during the real time operation. The comprehension stage further assesses the

perceived situation to comprehend its meaning, concerned with the dynamically moni-

tored environment. Finally, the projection stage proceeds beyond the comprehended
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situation to anticipate its future developments, hoping to meet the goals of the SWA

system it has originally been created for.

This section has discussed the core concept of Endsley SWA system; the next section

explains the relationship between the SWA and data fusion information domain.

2.2.2 Joint Director of Laboratories (JDL) Model

Fig. 2.2 The Joint Directors of Laboratories (JDL) Model Data Fusion (1992 version)
Adapted From [55]

The data fusion community [84], [53],[54], [73],[75] [82] [83] [98] [99] [88] has intro-

duced multiple procedures of SWA as shown in Figure 2.2. This is to facilitate an

active model for assessing multidisciplinary areas during real time operations. Hence,

the researchers over time have combined the core concept of Endsley SWA and the

information fusion domain as shown in Figure 2.3.

The first two levels of the data fusion domain are related to the perception stage

of the SWA reference model, where the system is receiving the data from multiple

sensors to prompt the highest abstract views of the emerging situation. Level 2 and
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Fig. 2.3 Situation Awareness And The Information Fusion Domain [14]

level 3 are related to the comprehension and projection stages, respectively, and level

four is related to the resource management or, in other words, is related to the process

refinement stage, where the underlying process is intended to assess the performance

of previous levels of the SWA system, that is to assess or improve the data fusion task

during a real time operation. Level 5 is concerned with user refinement to address

knowledge representation and reasoning for the decision-making resources.

This section has discussed the relationship of Endsley’s SWA model and the

information fusion domain. The next section discusses the SWA reference model.

2.2.3 Situational Awareness Model

Researchers from the data fusion community have developed a refined concept for the

combined version of the Endsely SWA reference model and the data fusion information

domain. The enhanced version of the SWA system is shown in Figure 2.4.

The underlying reference model describes the functionality of a real time system,

specifically when the SWA system is configured to process multiple sensor information
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Fig. 2.4 Situation Awareness Reference Model Adapted from [90]

during a real time operation. The perception stage encompasses two levels from

the data fusion domains; Level 0, where the underlying process represents the raw

sensor information from multiple sources, and level 1, representing the recognition

and tracking process. Hence, the perception stage is expected to process multiple

raw sensors information for generating a list of tracking activities concerning the

identified situations. Level two is expected to comprehend the perceived tracking

activities by consulting different pieces of information concerning the dynamically

monitored environment. The next level (projection stage) is expected to further process

the identified tracking activities by consulting more information to rank them into a

contextual order. The fourth level of a real time system is expected to revise all previous

stages for supporting the decision-making resources during a real time operation.

This section has discussed the SWA reference model, specifically during the time

when the real time system is configured to report different tracking activities during a

real time operation, in order to support the decision-making resources. The next section

discusses the relationship between the underlying model and the decision-making cycle.
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2.2.4 Decision Making Cycle and Time Sensitive Operation

The decision-making cycle of observe, orient, decide and act, has been inspired by a

military strategist, as shown in Figure 2.5. The Boyd’s [18], [17] decision cycle, or

OODA loop, allows the decision-making resources to make appropriate decisions more

quickly than one’s opponent.

Fig. 2.5 Obsearve, Orient,Decide and Act: The Decison Making Cycle Adapted From[17]

The SWA system is designed to support decision-making resources, for promoting

fast responses over a complex situation. With this in mind, research has combined the

OODA loop decision cycle with the SWA system, as shown in Figure 2.6.

Fig. 2.6 The Decison Making Cycle And Situational Awareness Adapted From[7]
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Due to the fact that the SWA system is dealing with a time sensitive operation,

the time window for responding is very small, as shown in Figure 2.7.

Fig. 2.7 Operator and Adversary OODA Loops With The Associated Time Window
To Act[9]

Furthermore, Blach [9] has classified the timely responses paradigm into three main

categories: reactive, proactive, and preventive, as shown in Figure 2.8.

Fig. 2.8 Decsion Making Paradigams In Relation To A Time Sensitive Operation [9]
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The reactive response is related to the perception stage, where the contemporary

situation has already occurred; in such a case we are detecting. The comprehension

stage is related to the current state for the identified situation; in such a case we are

responding. Finally, the projection stage is related to the future state, where we are

preventing a thing that may or may not happen.

This section has discussed the theoretical concept of a real time system and explained

the functionally of each level. In addition to this, it has explained the number of

decision-making paradigms concerning the time sensitive operations occurring during

a real time operation. The next section explains the related research issues concerning

a real time system.

2.3 Capability of Situational Awareness Systems

The previous section described the theoretical concept of a real time system. Further-

more, it showed how the SWA system has been constructed and designed from multiple

levels of situational assessments with each level lending itself to assess the next one.

With this in mind, there are five different domains using the underlying system; each

domain has a different configuration for assessing real time operations. Even within a

particular domain, such as the cyberspace area, each SWA system has different needs

and configurations in order to assess a contextual situational assessment during real

time operation successfully.

Unfortunately, as most of these systems rely on predefined knowledge, they inherit

a knowledge based problem and, therefore, their capability in terms of processing new

and unexpected information becomes limited.

Hence, the capability issue of an SWA system can lead to other research problems.

These include, but are not limited to, the following. The first issue is the reliability

of the proposed assessment outputs of the real time system, and the second research
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problem is the method of refinement as it may be required for evaluating the capability

of the SWA system. The third research problem is the knowledge representation issue

for the decision-making resources.

This section discusses four different research problems concerning the capability

of real time systems. This section is divided as follows: the first section reviews

related work concerning the knowledge based issue of a SWA system. The second

section discusses the ranking capability issues concerning the reliability of the proposed

assessment output of a real time system. The third section explains the concept of the

process refinement stage concerning different assessment methods for evaluating the

capability of a real time system. Finally, the fourth section discusses the knowledge

representation problem concerning user perception.

2.3.1 Situational Awareness System and Knowledge Based

Problem

The knowledge based problem can impact the real time system capability, in terms

of processing or assessing a new emerging situation during a real time operation.

This is from the lowest level, such as the perception stage, up to the highest level,

such as the projection stage. This section reviews an existing SWA system from the

cyberspace domain literature [48] [64] [70] [71] , [63], [52] to explain how the predefined

configuration of the real time system can impact its capability, specifically when the

situational assessment model is assessing a new emerging situation.

This section is divided as follows. The first section discusses the different SWA

systems concerned with perception stage configuration. The second section reviews

different systems concerning the comprehension stage implementation and, finally, the

third section reviews different approaches concerning the projection stage of the SWA

system.
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Perception Stage

The perception stage processes emerging information from multiple sensors to recognise

the high abstract views of any emerging situation during real, or near real, time

operations. It does this through applying contextual aggregation and classification

techniques to process the multiple data sources from the multiple sensors, as small as

atomic levels. Then, it interprets this into a contextual form based on a predefined

configuration. Hence, the predefined knowledge can be problematic when dealing with

new unexpected information.

This section reviews cyberspace domain literature[29] [56] [96] [22], regarding how

the knowledge based issue can impact the capability of the perception stage. Moreover,

researchers from the cyberspace domain community are using different components,

tools or approaches for assessing real time operations. This section reviews three

different and well known approaches currently used for implementing the perception

stage. This section is divided as follows. The first part discusses the attack graph and

vulnerability approach, the second part discusses the alert correlation approach and,

finally, the third part discusses the attack modelling approach.

Attack Graph and Vulnerability

Generally, the attack graph technique and vulnerability scanner is a well known

approach in the cyberspace research community. It is mainly used to asses atomic

information from multiple sensors, such as Intrusion Detection System, Firewall and

Vulnerability Scanners. During the perception stage, the information is interpreted

into a contextual attack scenario based on predefined attack templates created for

assessing any emerging threat against the dynamically monitored environment. The

following examples explain the perception capability problem further.
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The author in this work [48] has used attack graph techniques to process the atomic

level information from the vulnerability network scanner and then interpreted to a

contextual multi stage attack scenario. In other words, the high abstract views of the

emerging situation were presented in the form of an attack graph. Interestingly, the

knowledge in an attack graph was combined with the network topology information to

recognise a possible attack path. Furthermore, the author [64] combined the attack

path information with critical asset information to filter out the most important event.

These efforts combined multiple elements within the cyberspace using an attack

path, vulnerability scanner information and other elements to perceive any emerging

situation during a real time operation. However, the context of data analysis is based

on a limited assumption, such as if multiple alerts lay at a predefined attack path,

the system will treat those alerts as urgent. Unfortunately, this assumption can be

misleading, especially if multiple false alarms are laid on the predefined attack path.

The SWA system treats those alerts as urgent while the actual attack itself could take

a different path.

Ultimately, predefined knowledge can easily limit the capability of the perception

stage during a real time operation. The next section reviews another approach used to

support the perception stage for assessing multiple sensors information during a real

time operation.

Attack Modelling

The attack modelling approach has been used by the cyberspace research community

to facilitate the perception stage in processing multiple sourced information into high

abstract views in the form of a contextual attack scenario. It also allows the perception

stage to track the intrusion activity from one point to another inside the protected

environment. The following examples highlight how such an approach is being impacted
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by the knowledge based problem due to the reliance on a predefined knowledge of

known attack scenarios.

The author here has implemented the attack modelling approaches to allow the

perception stage to track different intrusion activities, thus exploiting different network

vulnerabilities. These efforts [47] [52] [70] [71] , [63], [52] have a good vision on

predicting the next step of the attacker.

The reference model of tracking the intrusion activity during a real time operation

can be misleading to the ground truth of actual attacker behaviour. Advance and

complex attack techniques utilise different paths to leverage traditional defence systems.

Hence, the attack modelling approach is capable of assessing only known and predefined

attack behaviours.

The next section reviews how knowledge based issues can also affect the alert

correlation approach when the real time system is processing multiple sensor information

to support the perception of the cyberspace situational assessment.

Alert Correlations

Usually when the real time system is receiving atomic level information from multiple

sensors, these alerts have no common semantic relationship in order to track the high

abstract views of any intrusion activity occurring during a real time operation; most of

these alerts are false due to wrong detection.

Researchers [29] [56] [96] [22] have built additional systems to manage IDS alerts

based on predefined knowledge of well documented attacks. Other efforts [56][22] have

utilised the knowledge of network and topology information to recognise attacks and

reduce the number of alerts.

The author [29] proposes alert correlation systems to address the high volume of

IDS alerts. The proposed method relies on an unsupervised system (Autonomy). The
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system consisted of four components. The first is the normalisation step, to convert

heterogeneous alerts into a unified form. Secondly, the date undergoes pre-processing to

remove redundant alerts. Thirdly, the attack scenario extraction algorithm is applied to

combine knowledge base and its statistical relationship. Finally, the fourth component,

the Hidden Markov Model (HMM), does not take into consideration the information

from the cyberspace environment, such as network topology, network vulnerability and

system configuration.

The prediction paradigms of these efforts [94][24][60] relies on predefined patterns

of attack behaviour. Such approaches treat ongoing events in isolation to the enterprise

mission, therefore, the data analysis is limited to known attacker behaviour.

The author [22] proposes a threat prediction framework based on alert correlation.

The system takes three elements into consideration. First, it uses attack profiles

to generate network attack specifics. Secondly, attack plans are used to generate a

cover-ability tree. Thirdly, it contains the primitive attack (PA), which is a hierarchical

attack class. The first two elements are represented by Coloured Petri nets (CPNs) to

assess the security situation assessment and attack scenarios prediction.

The author [96] proposed a prediction framework based on a Dynamic Bayesian

Network (DBN) to identify attacker intention and predict future attacks. The proposed

framework takes advantage of the Bayesian nature to dispose sequences of data. The

system observes the developmental action and varying behaviour at an hourly basis.

The author [56] proposed an alert aggregation system based on the theoretical

concepts of an artificial immune system and dangerous theory. During specified time

windows, the system opens 6 temporary groups: three groups are for network based

IDS alerts and the remaining groups are for host based IDS. If one of the groups reaches

the capability to raise the dangers alarm, based on predefined rules, the system only

reports those alerts.
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Existing efforts [22][96][56] developed correlation engines based on a single source of

data analysis (IDS alerts). Such approaches are limited to the performance of network

intrusion detection systems. The proposed alert correlations system verifies whether

predefined attacks are taking place or not. These systems rely on predefined rules. We

found that these rules are either generic or very specific. An intermediate approach is

required to avoid short cut heuristic decision making.

The next section reviews different SWA systems to further explain the knowledge

based problem concerning the comprehension stage of a real time system.

Comprehension

The comprehension stage is the second level of assessment after the perception stage.

During this stage more information resources are consulted to further assess any

emerging situations. Furthermore, it applies a contextual perceptive measure to

prioritise the identified tracking activities into a predetermined order. This level of

assessment comprehends the current state for any emerging situation during real time

operations.

Researchers from the cyberspace domain have separated current damages and their

anticipated threats [73][74] based on their time of occurrence.

Furthermore, researchers have developed a number of perspective measures to rank

the identified tracking activities based on their current state. These include, but are

not limited to, the following perspective measures: most serious [58], most important

events [87], depth of attacks, breadth [88] and reliability. [86].

The most serious scenario[58] ranks different attack scenarios. The scenario which

received the highest number of alerts is classified as most serious. In most important

events [87], the attack scenario with less random states received higher scores than

others. Depth of attacks [86] involved measuring how close the adversary was to its
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possible targets based on the number of hops; the attack scenario with the least number

of hops received high scores.

Breadth [88] is used to measure how much of the entire attack scope has taken place

in predefined attack templates; attack scenarios with greater scope received higher

scores. Reliability [86] is used to measure how sure it is that the attack will take place

by taking into account the number of alerts and weight from the past adversary course

of action.

ECCARS [58] is a SWA framework used to rank most serious scenarios from the

indication of live alert streams. The hierarchical tree of a single attack scenario

dynamically ranks attack templates between the value of [0,1]. The attack scenario

which received the highest credibility is ranked as most important.

INFERED [86] refine the ranking mechanisms through [58] applying relative entropy

(a measure of randomness) to the evolving situation of attack scenarios. Each attack

scenario has a universal state with multiple, equally likely, constant states of attacker

steps. When one or more of the live alerts matches a predefined attack step, the

credibility of the attacker step will increase, thus making the randomness of relevance

attack scenario decrease; attack scenarios with less random states received higher

ranking.

INFEREDv2 [58] (BN and HMM) Model the stepping stones of attacks in ARENA

simulation and dynamically group multiple attackers to single attack templates, called

the attack template guide. The author applied relative entropy to rank how likely

different attack tracks were to continuously occur on the environment.

The next section discusses the third level of assessment, where the projection stage

has been designed to anticipate the future state for any identified tracking activities

during a real time operation.
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Projection

During the projection stage, the real time system further assesses the emerging situation

by applying a contextual perceptive measure to prioritise the identified tracking

activities into a predetermined order. This level of assessment anticipates the future

state of any emerging situation during real time operations.

Researchers from the cyberspace domain have developed a number of perspective

measures based on the future state. This includes the following perspective measures;

most likely [41] [30] [31] [25], most plausible

The most likely perspective measure [41] [30] [31] [25] is used to measure the attack’s

intentions; attack scenarios with greater opportunity and capability to privilege inside

the protected network will receive higher intention scores.

In the most plausible measure [42][75], the attack scenario with great opportunity

and capability is compared to the intention of attacker scores. The attacker intention

is used as a reliable score to solve a conflict when capabilities and opportunities are

combined; attack scenarios with high plausibility would receive higher scores.

Most threatening [98] [97] is a measure used to fuse the state of the attacker with

the state of the network, to rank different attack scenarios. Most vulnerable [21] is

a measure used to project potential exploited vulnerabilities by the attacker; attack

scenarios with greater opportunities to exploit the underlying vulnerability will receive

higher scores.

TANDI [41] is a threat assessment framework used to inform analysts of possible

proactive and preventive action. Capabilities and opportunities are fused to determine

the intent of the attacker. TANDI predicts malicious activities one step ahead of the

attacker, before the attacker can reach its ultimate goal.

FuSIA [42] is a threat assessment framework in which the capabilities and opportu-

nities are fused to determine the severity of the attacker’s next actions. The impact
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assessment is combined with the impact estimation, providing information on potential

threats. Yang [98] has integrated INFERED (the states of attacker) with TANDI (the

state of network) to inform analysts about potential threats.

Salerno et.al[75] have integrated FuSIA with INFERED to refine the ranking of

plausible scores. In return, the integrated approach would report future actions two

steps ahead of the attacker, before the attacker can achieve its ultimate goal. The

plausible scores are based on the assigned manual weight for multiple features such as

the capability, opportunity and intent.

F-VLMM [25] is an enhanced approach regarding the attack projection algorithms

of the VLMM model.The author has combined the VLMM model with Sugeno Fuzzy

logic. The refined approach independently characterises multiple features, such as

capabilities and opportunities, which are used by FuSIA [42] to resolve conflicts raised

when they are used individually. The result shows good ranking of future attacker

progression inside the networks.

Bayer and Yang [21] have extended the VLMM projection algorithm in [30]. The

extended approach has implemented training and projection algorithms simultaneously,

for an arbitrary number of alerts. In response, the system was able to project potential

exploited vulnerability by the attacker.

Unfortunately, we found the existing work to be limited to two views. The first

view is when the researcher anticipated future threats based on predefined attacker

step and manually assigned weights for ranking the identified tracking activities into a

predefined order.

In the second view, the researcher is predicting future intrusion activity based on

an analytical solution; this is to allow a wider view to anticipate a greater number

of situational assessments by generalising the underlying projection techniques. A
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combined approach of the two methods would provide better outcomes for the projection

stage.

However, the capability of the real time system is still in question, especially when

the SWA system is dealing with new emerging situations or unexpected new information

during a real time operation.

This section has reviewed the different approaches and configurations for the three

levels of assessment in a real time system; the perception stage, the comprehension

stage and finally the projection stage. Furthermore, we have found that the knowledge

based issue, or the predefined configuration, can impact the capability of a SWA

system. The next section further explains the capability of a real time system in terms

of ranking different tracking activities during a real time operation.

2.3.2 Ranking Capability

This section discusses the ranking capability of a real time system with three perspective

views; the first view is the linguistic means, second view is the analytic representation

and the third view is the operational or practical occurrence during a real time

operation.

The scientific concept of ranking, prioritisation, and scheduling demonstrates how

these terms occur often in information fusion.

According to the Oxford dictionary[1] the scientific concepts of ranking1, priori-

tisation2, and scheduling3 have distinct meanings. However, these terms describe

overlapping processes and have not yet been appropriately explained for the data fusion

community. Figure 2.9 demonstrates how each term occurs in a real time operation.

1Position of somebody/something on a scale that shows how good or important they are in relation
to other

2Prioritize (something) to put tasks, problems, etc. in order of importance, so that you can deal
with the most important first

3A plan that lists all the work that you have to do and when you must do each thing
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Fig. 2.9 A Reference Model Concerning The Ranking, Prioritisation and Scheduling
Processes in a Real Time System
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Endsley [27] has defined three abstract views for the SWA system. These levels are

shown in Figure 2.9. The first level is the perception of the environment, where the

underlying process is prioritising the emerging event based on the initial configuration,

classification, and aggregation techniques of the real time system. Simultaneously, the

next level is seeking to comprehend the perceived situation; here the system is applying

a contextual perspective measure to prioritise the perceived tracking activity based on

its current state. Finally, the projection stage seeks to prioritise the comprehended

situations based on their future threats.

It is important to mention that when the system is prioritising the emerging

situation, the advanced stages are likely to contain the priority list of the previous

one. Consequently, the proposed assessment output of a real time system may report

more than one priority list during real time operations. Hence, each of these categories

should be scheduled based on the available decision-making paradigms.

In a scenario where the analyst team have chosen to conduct a proactive response

over the emerging situation, the priority list of the current state should arguably be

observed first, before the priority list of the initial stage. Similarly, the priority list

for the projection stages should arguably be observed ahead of the comprehension

stage. However, there are no definitive answers for which list should be viewed first;

the answers depend on many facts, such as the available decision-making paradigms or

the interest of the analyst team.

Considering this, researchers [8], [9] from the data fusion community classified the

Colonel John Boyd decision-making cycle [18], [17] and the timely sensitive operation

into three broad categories: reactive, proactive, and preventive responses. However,

during a real time operation, the analyst team may have no option (sometimes) over a

complex situation, where the contemporary event has already occurred. In such a case,
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we are detecting;the interest of decision making is to perform a reactive response to

the detected situation.

Instantly, the comprehension stage is assessing the developments of the identified

situation, and while the system is proposing the priority list for the current state,

the decision making might be interested in conducting a proactive response over the

emerging situation. Simultaneously, the projection stage is processing the emerging

situation to predict the future state; in such a case, decision making is important in

order to avoid things that will or might happen in the future.

Figure 2.9 shows the occurrence of prioritisation and scheduling processes in a real

time system. Ideally, the SWA system is reporting a different priority list concerning a

multilevel situational assessment. On the other hand, their desired order to be observed

depends on the decision-making paradigms; furthermore, the real-time system may not

rank the identified situation appropriately. Section 2.3 discusses a guidance case study

during a situation when a real time system is experiencing a ranking capability issue

due to a configuration problem in the aggregation process.

Hence, researchers have introduced different performance metrics; this is to assess

and improve the ranking capability during a real time operation, as shown in Figure

2.9. Likewise, the assessment process verifies the proposed assessment outputs of the

real time system in comparison to the ground truth of the identified situation.

The next section discusses a case study based scenario from existing literature, where

a real time system is experiencing a ranking capability issue with the prioritisation

and scheduling processes, respectively.

A Case Study

This section illustrates a guidance case study in which the real time system is experi-

encing ranking capability issues during a multilevel situational assessment. The first
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section discusses a case study from the cyberspace domain [74]. The second section

demonstrates how the real time system is reporting the identified situation; specifically,

when the inline assessment model is reporting fragmented events due to a configuration

problem in the aggregation or classification process.

Cyberspace Domains

According to the underlying scenario adapted from [74], the real time system has been

configured to represent the emerging situation in the form of a prioritised list of events.

However, during the aggregation process of multiple information, the SWA system has

identified two classes of events.

Activity of Interest (AoI)That is a complex event which has high impact against

the protected environment.

Activity That is a complex event which is regarded as a normal activity, which has

minimal or no impact against the dynamical environment.

Considering this, the real time system has performed two levels of assessment

against the identified situation. However, the system is reporting undesirable events

due to a configuration problem in the aggregation process. Therefore, the perception

and comprehension stages have not ranked the identified events as perfect as the

ground truth. The next section demonstrates how the real time system is reporting

the identified situation when the system is experiencing a ranking capability issue.

Ranking Capability Issues

Following the contextual scenario in the previous section, the perception stage has

reported the identified activities at the time of their occurrence and without any

contextual order; the proposed assessment for the perception stage is demonstrated in
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Table 2.1. The real time system has conducted a further assessment of the perceived

situation. The comprehension stage has ranked the AoI into a contextual order, as

demonstrated in Table 2.2.

Proposed Assessment Activity Priority
PA0 Activity 4
PA1 Activity 3
PA2 Activity (AoI) 2
PA3 Fragmented Activity -
PA4 Activity 5
PA5 Activity (AoI) 1
PA6 Activity not part of G.T -
PA7 Activity 6
G.T Ground Truth

Table 2.1 Proposed Assessment At The Perception Stage Adapted From[74]

It is argued that the ranking instance at the comprehension stage is better than

the perception stage, concerning the scheduling process in shifting the AoI over the

normal events. Nevertheless, the proposed ranking paradigms are not as perfect as the

ground truth, as shown in Table 2.3.

Proposed Assessment Activity Priority
PA0 Activity 4
PA1 Activity (AoI) 1
PA2 Activity (AoI) 2
PA3 Activity 3
PA4 Fragmented Activity -
PA5 Activity 5
PA6 Activity not part of G.T -
PA7 Activity 6
G.T Ground Truth

Table 2.2 Proposed Assessment at the Comprehension Stage Adapted from[74]

This means that the analyst team will view up to three of the detected activities

before looking at the desired class of activity, namely the AoI. However, the decision-
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making resources are much closer to the AoI at comprehension stage in comparison to

the perception stage.

Ground Truth Activity Priority
GT0 Activity (AoI) 1
GT1 Activity (AoI) 2
GT2 Activity 3
GT3 Activity 4
GT4 Activity 5
GT5 Activity 6
GT6 Activity 7

Table 2.3 Ground truth for the Identified Situation Adapted from[74]

According to the ground truth (shown in Table 2.3) for the identified situation,

the two levels of assessment have not proposed appropriate ranking paradigms for the

emerging situation. This, of course, can impact the timely responses during a real time

operation. However, going back to the scientific definitions of ranking, prioritising and

scheduling terms in section 2.3, we can easily understand each process with the help of

the underlying scenario. To begin with, the real time system has identified two classes

of complex events, where each of them encompassed prioritised list events. Hence, the

ground truth for the identified situation contained two priority lists: the first one is for

the AoI, and the second one is for the normal activity; this is shown in Table 2.3.

Taking this into consideration, the action of prioritising different events into an

order of importance is scientifically referred to by the prioritisation process, so that the

decision-making resources can deal with the most important event first. However, the

process of shifting one class of event over another, considering all the lists of events

within the desired classes and regardless of their respective degree of importance, is

referred to as the scheduling process.

It is important to distinguish between the two terms of scheduling and prioritisation

due to the fact they resemble different tasks during a real time operation. When the
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multilevel situational assessment does not represent the emerging situation appropri-

ately, the verification process is required to conduct two separate operations to evaluate

each process mathematically.

Generally speaking, to evaluate the prioritisation and scheduling capability of

the real-time system, the process refinement stage will require comparison of the

proposed assessment of each task with the absolute truth of the situation. The action

of questioning the capability of a real time system on a scale that shows how good they

are in relation to the ground truth is scientifically referred to as the linguistic definition

of ranking, and that is provided in section 2.3. Hence, the ranking capability of the

real time system is either referred to as the scheduling process or the prioritisation

task in information fusion.

This section has explained the three terms of ranking, prioritising and scheduling

processes of a real time system. The next section discusses the process refinement

stage, which is level 4 of a SWA system.

2.3.3 Process Refinement

The process refinement of the Joint Directors of Laboratories (JDL) is a meta-process

used to assess and improve the data fusion task for supporting the decision making

resources during a real time operation. In this section, we discuss different approaches

designed to assess the performance of a real time system. The assessment process

during the process refinement stage (level 4) has been designed to verify the capability

of previous data fusion levels. Hence, the verification technique can take two forms of

evaluation; qualitative and quantitative assessment.

During the qualitative stage, researchers[19][20] [50][7][11][7][77] have developed a

number of methods to investigate the capability of a real time system.
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Llinas [54] has linked three types of threatening situations with the analysts

responses. The first situation is the reactive one to alert users to immediate threats;

the analysts select the appropriate response in a second. The second situation is the

proactive situation to detect anomalous behaviour and alert the user to anticipated

threats; the analysts select the appropriate response from a few seconds to a minute. The

third situation is preventive to prevent potential threats before they reach deployment;

the response can take from a few minutes to an hour.

Rebovich [68] explained that operators are often under extreme pressure to make

decisions as quickly as possible where there is much uncertainty; this may lead to

adopt short cuts heuristic approach. Therefore, the system should support the decision

maker paradigms and operators projection needs, in order to facilitate operator goals.

FAIR [19] prioritise the selection of decision maker goals based on the time available

for different situational assessments; 1) no time limits correspond to passive action

with unlimited goals, 2) tactical situation with several goals of action 3) opportunistic

situations with two goals of actions 4) scrambled situation with only one goal available

to analyse.

Bayers [21] and Tadda [90] advised that SWA systems should take into consideration

the time elapsed before a decision could be made or for action to be taken. For example,

in the cyberspace domain, the time window of an attackers next step and its relation

to analysts should be investigated.

Blasch [9] evaluates the reliability of a fusion system to deliver a set of information

over an appropriate time window. He utilized the queuing theory to evaluate the input

of a fusion system until the decision maker becomes available; the aim of the system is

to hold the excess data.

C-OODA [20][13] addressed the time for analysts against the level of certainty in a

situation; if the level of certainty is high with no time available, then the process of
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reasoning over such a situation will be terminated, otherwise, it will keep processing

the information in order to reduce the level of certainty.

Blasch [7] used control theory to simulate the iteration of user’s effort to reduce

uncertainty versus the time available to respond.

Recognition Primed Decision (RPD) model [50] utilised past experience against

recognised situations from information fusion. The decision maker goal cues to infor-

mation system. This results in systems providing reduced time for decision making

and promote accuracy.

OODA-RR [36] discussed the interaction between the adversarial course of action

and analysts response. Grant presented a list of attacker stages against the corre-

sponding responses of analysts including passive, reactive, proactive and preventive

actions.

During the quantitative stage, researchers [15][4][90][76][77] have developed a num-

ber of methods to investigate the capability of a real time system.

Salerno[74] proposed a scoring scheme to evalute the capability of SWA systems, in

terms of ranking important events into a contextual order. Tadda [89] explained that

the further the AoI is from the top of the list, the more time the analysts will need to

assess such situations. The scoring techniques provide an indication of how close the

analysts are to the most important activity. Unfortunately, the AOIScores are limited

to contextual attack scenarios, Blasch [15] suggested for an extension to have wider

views for the AoI scores.

Less attention has been given to performance evaluation in regards to the ranking

capability of a real time system. Originally, existing performance metrics had not

been designed for measuring the ranking capability of the SWA system. Specifically,

corner cases of different situational assessments needs and configurations have not been
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considered. This thesis presents advanced research work carried out to evaluate the

ranking capability of an SWA system for a number of different scenarios.

This section has explained the researched issues concerning the process refinement

stage (level 4). The next section explains the difference between the ranking capability

concerning prioritisation and scheduling processes of a real time system, where each

process uses different mathematical operations to obtain the number of ranking instances

for any given scenario.

2.4 Analytical Analysis: Prioritisation and Schedul-

ing

Returning to the case study demonstrated in section 2.3, the ground truth has identified

two priority lists, each one encompassing some prioritised events. It is desirable for the

event classed first to be observed by the decision making resources before the second

one.

To assess the ranking capability of the demonstrated case study, the evaluation

process seeks to perform two distinct operations to quantify the ranking capability of

the real time system. The first level of assessment is to measure how the system ranks

each priority list compared to the ground truth. The second level measures how the

proposed assessment output shifts the desired class of event over the other normal one.

This section is divided as follows. The first section discusses the preliminary steps

of quality-based evaluation concerning prioritisation/scheduling processes, and the

second section introduces two different scoring schemes intended to evaluate the ranking

capability of the real time system. The third section conducts a comparison evaluation

to examine two distinct performance metrics against their intended purpose.
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2.4.1 Number of Ranking Instances

Generally speaking, the notion of different ranking instances concerning the prioriti-

sation process are related to the act of rearranging, or permuting, all the identified

events into a sequence or order.

The number of permutations for each priority list can be defined using the operation

of factorial (N !), where N represents the number of events for each priority list, and

factorial ! provides the number of possible ranking instances for those activities. The

factorial, usually written as n!, denotes the product of all positive integers less than

or equal to n. This allows us to define the number of ranking instances concerning

the priority list for each class of event. Furthermore, to compute the total number of

ranking instances concerning the priority list of the AoI, we can apply the factorial

operation (2!) = two ranking instances. Moreover, to compute the total number of

ranking instances concerning the priority list of a normal Activity, we can also apply

the same operation(4!) = 24 ranking instances.

However, according to the demonstrated scenario, the perception stage shown in

Table 2.1 has reported undesirable events (fragmented activities). Consequently, the

total number of events is greater than the two priority lists found in the ground truth

shown in Table 2.3. Hence, to compute the number of ranking instances for each

priority list we must consider other events being proposed by the real time system.

The evaluation process requires us to perform the permutation operation nPk = n!
(n−k)! ,

where n is the total number of distinct events being identified by the real time system,

and the k is the number of events on the priority list for each type of activity.

Likewise, to compute the total number of ranking instances concerning the priority

list of the AoI, we can apply the permutation operation (8P2 = 8!
(8−2)!). Moreover, to

compute the total number of ranking instances concerning the priority list of a normal

Activity, we can apply the same operation (8P4 = 8!
(8−4)!).
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In fact, the number of the ranking instances using the factorial operation is different

than the permutation one; this is because the permutation formula is the product of

factorial (k!) and the combination operation nCk = n!
k!(n−k)! . It is here that the research

becomes more interesting. This is because we can recall the relevant ranking instances

concerning the prioritisation process or the scheduling process separately. With this in

mind, there are three likely situations: in the first scenario, when the decision-making

resources are not interested in the order of each priority list, we can only use the

combination operation; that is to obtain all the ranking instances concerning the

scheduling process.

In the second scenario, when the analysts team is interested in the order of each

priority list and their position/time to be observed over other classes of event, we can

use the nPk = n!
(n−k)! operation. That will give us a greater ranking of instances in

comparison to the previous scenarios. In the third scenario, when the prioritisation

process is interested only in the order of each priority list, mathematically we can

obtain the relevant ranking instance using the factorial operation (N !).

This section has explained the difference between the prioritisation and schedul-

ing processes in terms of the analytical means, where each process used different

mathematical operations to obtain the number of ranking instances for any given

scenario.

2.5 Chapter Summary

This chapter has discussed different reference models to explain the essential background

concerning the theoretical concept of a real time system.

The second section has explained three different research problems concerning the

capability of a SWA system. The first research problem was the knowledge based issues
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and the second was the ranking capability issues. The third issue was the process

refinement stage for assessing the performance of a real time system.

Furthermore, as this thesis is focused on evaluating the ranking capability of a

real time system, we explained the theoretical concept of ranking, prioritising and

scheduling processes in a real time system. It has also explained how each term may

occur during a real time operation. Moreover, this work has conducted an analytical

analysis to describe further how the prioritisation and scheduling tasks are different,

not only by the linguistic mean, but they are also practically distinct in the way that

each term can be evaluated mathematically.
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Chapter 3

Ranking Capability Score (RCS)

3.1 Introduction

In a dynamical monitored environment, a team of analysts need timely and accurate

information in order to respond proactively to complex situations. Typically, there

are thousands of reported activities in real time operations. To direct the analyst’s

attention to the most important activity researchers [22] [44] [43] [49] have performed

multiple processes of situational awareness (SWA) to rank the most important activity

into a predetermined order. Eventually, the output of the SWA system[4] [61] should

be able to facilitate the decision-maker in responding to complex situations efficiently.

According to the SWA reference model there are multiple levels of situational

assessments. Each level lends itself to assess the next level simultaneously. The first

level is the perception of the emerging situation where the SWA system is processing

the detected data from heterogeneous sensors using classification, aggregation and cor-

relation techniques. The proceeding levels further assess the underlying situation, using

prioritisation techniques in order to rank the emerging threats into a predetermined

order.
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Unfortunately, various factors can impact the situational assessment capabilities.

One factor is the up to date knowledge about the protected environment due to the

dynamical changes of topology information, node connectivity, enterprise mission,

network services, critical asset, context of risk assessments model and new waves of

contemporary attacks. In real time operations the SWA system often has limited

information about the dynamical environment, therefore, the missing information

renders the situational assessment incomplete. Consequently, the team of analysts are

periodically in the loop of reviewing, updating and optimising the SWA system.

To combat this, researchers have introduced different performance metrics to

verify the capability of the SWA system. However, less attention has been given to

performance evaluation regarding the prioritisation process. Specifically, the existing

performance metric, "The Activity of Interest Scores"[74] [15], has not considered

corner cases for different situational assessment needs and configurations. Originally, it

had not been designed for evaluating the capability of the SWA system in relation to

the prioritisation process.

This chapter presents a new performance metric for evaluating the ranking capability

of the SWA system, presenting two contributions. The first develops a modelling scheme

for representing the outputs of a SWA system in the form of a list of prioritised events.

The second contribution introduces the "Ranking Capability Score" (RCS) as well

as a guidance case study for evaluating the ranking capability of an SWA system.

This will primarily deal with the prioritisation process of a real time system, under a

contextual scenario where the SWA system has identified only a number of tracking

activities regarded as important, but each with different degree of importance, namely

the Activity of Interest (AoI).

The chapter is divided as follows: the first section presents the AoI Score to

highlight the limitations of the existing performance metric. The second section
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introduces the Ranking Capability Score (RCS). The third section demonstrates a

case study for evaluating the ranking capability of the SWA system whilst the fourth

section conducts a quality based evaluation to examine the proposed performance metric

against its intended purpose. Finally, this is followed by a comparative evaluation

between the (RCS) and AoIScore over three separate scenarios.

3.2 The Activity of Interest Score AoIScore

This section introduces the activity of interest score, beginning with an overview of the

intended purpose of the AoIScore, as well as the contextual scenario it was designed

for. Alongside this, an illustrative case study will be demonstrated to explain the

evaluation process for the prioritisation technique. Next, corner cases of the original

scenario will be demonstrated before quantifying the ranking capability using the

AoIScore. Finally, a comparative discussion focused on the results between the two

scenarios highlights the limitations of the underlying metric.

3.2.1 Overviews

The SWA system at the detection stage (Level 0) receives heterogeneous information

from multiple sources; however, not all detected events are relevant to the current

situation. The job of the perception stage (level 1) is to differentiate between the

activities of interest and irrelevant activities.

The problem here is that the system might report activities of interest as they

appear without giving any contextual order. Therefore, the task of the comprehension

stage (level 2) is to perform further assessment of the identified situation. Additionally,

after conducting a contextual risk assessment through consulting different pieces of
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information within the dynamical environments, the SWA system ranks the AoIs into

a predetermined order.

Arguably, each level provides better understanding for the emerging situations,

maximising the benefit for the decision-maker. The AoIscores have recently been used

to quantify the ranking capabilities for each level of an SWA system. In particular, it

measures how well different levels are ranking the activities of interest over the least

important ones.

Researchers [66], [67], [74], [15] have adapted a systematic method to quantify

the ranking capabilities of an SWA system. The first step is to quantify the ranking

capabilities for the perception stage and then for the comprehension stage. The obtained

scores are intended to quantify the amended assessments for each stage respectively

to provide another dimensional support for the decision-maker. It provides an insight

into how the systems perform in ranking important activities into a predetermined

order for each level of the SWA system.

The performance metric, namely the AoIs scores, requires two components in order

to function. These are the absolute truth for the emerging situation, called ground

truth, and the proposed ranking paradigms of SWA system in real time operation,

called proposed assessment.

The next section introduces a case study for which the underlying performance

metric was originally designed.

3.2.2 Case Study 1: SWA System has Identified Mixed of

Cyber Activities

In this section we demonstrate the original scenario which has been adapted by [74].

The underpinning situational assessment has the following properties:

1. The situational assessment has been adapted from the cyberspace domain.
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2. The underlying SWA system has identified two types of Cyber activities at the

perception stage (level 1);

(a) The first is a complex event which has high impact against the protected

environment, namely The Activity of Interest.

(b) The second is a complex event which is regarded as a normal activity, which

has minimal or no impact against the dynamical environment.

3. After conducting further assessment at the comprehension stage (level 2), the

underlying SWA system did not rank the activity of interest as perfect as the

ground truth.

4. The AoI Scors was used to measure how well each level ranked the AoIs over

normal activities.

The next section demonstrates an illustrative example for measuring the capability

of the underlying scenario.

3.2.3 Measuring the Ranking Capability of an SWA System

Following the contextual scenario in the previous section, the perception stage reported

the identified activities as they appeared and without any contextual order. The

proposed assessment is shown in Table 3.1. The comprehension stage ranked the

activities of interest into a contextual order; the results are seen in Table 3.2.

Apparently, the ranking instance at the comprehension stage is better than at the

perception stage, in terms of shifting the AoIs over the normal events. Nevertheless,

the underlying ranking paradigms are not as perfect as the ground truth, as shown in

Table 3.3.
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After introducing the components for the underlying situational assessments, the

next step evaluates the ranking capability for each level of an SWA system, using the

AoI Score [74]. This is defined in equation 3.1:

AoI Score = NAoI∗NA−∑NAIR
i=1 pi

NAoI∗NA−∑NAoI
i=1 i

(3.1)

where

NAoI = Number of AoIs in Ground Truth

NAoIR = Number of AoIs in Results

NA = Number of Activities in Ground truth

Pi = Position of the ith Activity of interest

The AoI Score is intended to quantify the performance of an SWA system through

the ranking of the activity of interest. It has been used a number of times [66] [67] [15]

within the data fusion community.

Table 3.1 Proposed assessment at the perception stage adapted from[74]

Proposed Assessment Activity Priority
PA0 Activity 4
PA1 Activity 3
PA2 Activity (AoI) 2
PA3 Fragmented Activity -
PA4 Activity 5
PA5 Activity (AoI) 1
PA6 Activity not part of G.T -
PA7 Activity 6
G.T Ground Truth
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After applying the AoI Score (defined in 3.1) to the proposed assessment for the

perception stage, the SWA scores (0.33). This means the administrator will view two

thirds (2/3) of the detected activities before looking to the important one.

Table 3.2 Proposed assessment at the comprehension stage adapted from[74]

Proposed Assessment Activity Priority
PA0 Activity 4
PA1 Activity (AoI) 2
PA2 Activity (AoI) 1
PA3 Activity 3
PA4 Fragmented Activity -
PA5 Activity 5
PA6 Activity not part of G.T -
PA7 Activity 6
G.T Ground Truth

Then again, after applying AoI Score (defined in 3.1) to the proposed assessment

at the comprehension stage, the SWA system scores (0.78).

Table 3.3 Identified activity at the ground truth adapted from[74]

Ground Truth Activity Priority
GT0 Activity (AoI) 1
GT1 Activity (AoI) 2
GT2 Activity 3
GT3 Activity 4
GT4 Activity 5
GT5 Activity 6
GT6 Activity 7

This means the administrator is much closer to the activities of interest. Thus, the

SWA system at comprehension stage is much closer to the ground truth (shown in

Table 3.3), in comparison to the perception stage.

The underlying performance metrics have successfully quantified the extended

scenario, as shown in Figure (3.1), specifically, under a scenario where the situational
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Fig. 3.1 Case Study 1: Quantifying The Ranking Capability of SWA System Using
The AoIScore

assessment has proposed two classes of activities. Furthermore, the perception and

comprehension stages scored 0.33 and 0.78, respectively; this can be seen in Tables

3.1 and 3.2. Evidently, the ranking of the comprehension stage is better than the

perception stage.

The following section examines the underlying performance metric under an ex-

tended scenario, where the SWA system has been configured to report only the AoIs

but with different severity paradigms.

3.2.4 Case Study 2: SWA System has Identified Only Impor-

tant Activities

This section does not change the original situational assessment (demonstrated in

previous section). However, this section is considering corner cases from the original

scenario where the SWA system in real time operation may identify only the AoIs, but

with different severity paradigms. Furthermore, we consider an emerging situation

where the SWA systems might be instructed to report only the AoIs.
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Consequently, the proposed assessment at the perception stage will contain only

the AoIs. Typically, the underlying process for the identification stage reports the AoIs

as they appear and without contextual order. The task of the comprehension stage is

to conduct further assessment in order to prioritise the most important activities into

a predetermined order. Ultimately, the analysts under this scenario will view the most

important activity first, followed by the least important ones respectively. Hence, this

chapter examines how well the AoI Score will quantify different ranking instances for

the underlying situational assessment.

To facilitate us in performing the evaluation operation using AoI Score, we have

randomly proposed two different ranking instances to a set of three AoIs. The first

ranking instance will represent the proposed assessment at the perception stages (shown

in Table 3.1), while the second ranking instances will represent the proposed assessment

at the comprehension stage (shown in Table 3.2) and, finally, the absolute truth for

the extended scenario will be represented (shown in Table 3.3).

3.2.5 Measuring the Capability of Situational Assessment

This section will evaluate the capability of the AoI Score in evaluating corner cases of

different situational assessments.

We will apply the AoI Score algorithm to evaluate the proposed assessment for

the perception stage (level 1) and the comprehension stage (level 2). Finally, we will

compare the two scores to quantify the amended assessment for each level of the SWA

system.

The evaluation process begins by quantifying the ranking capability for the percep-

tion stage. First, it will extract relevant values from the proposed assessment as shown

in Table 3.5. Secondly, it will substitute relevant values for the ground truth, as shown
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Table 3.4 Pre-determined order for identified Activity at Ground Truth

Ground Truth Activity Priority
GT0 Activity (AoI) 1
GT1 Activity (AoI) 2
GT2 Activity (AoI 3

in Table 3.4. In order to satisfy the parameters of "AoI Score" defined in 3.1, we will

substitute the first two values from the ground truth NAoI = 3 and NA = 3.

Table 3.5 Proposed assessment at the perception stage(Level 1)

Proposed Assessment Activity Priority
PA0 Activity (AoI) 3
PA1 Activity (AoI) 2
PA2 Activity (AoI) 1

Next we obtained two remaining values from the proposed assessment; these are

the position of the itt activity of interest Pi = 6 and the geometric sum of AoI i = 6.

Finally, we quantify the capability of the situational assessment for the perception

stage using the AoI score as follows: AoIscores = (NAoI∗NA)−P i
(NAoI∗NA)−i = (3∗3)−6

(3∗3)−6 = 3
3 or 1.

After computing the ranking capability for the perception stage we quantify the

ranking capability for the comprehension stage. Likewise, the evaluation process will

extract four values from the ground truth, (shown in Table 3.4) and the proposed

assessment for the comprehension stage (shown in Table 3.6).

Table 3.6 Proposed Assessment at the comprehension stage(Level 2)

Proposed Assessment Activity Priority
PA0 Activity (AoI) 2
PA1 Activity (AoI) 1
PA2 Activity (AoI) 3
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Because the ground truth remains the same for the underlying situation, we extract

only relevant values from the proposed assessment for the comprehension stage. The

first value is ith position of the AoIs which is Pi = 6. The second value is the geometric

sum of AoIs, i = 6. Finally, we compute the capability of situational assessment against

the comprehension stage as follows: AoIscores = (NAoI∗NA)−P i
(NAoI∗NA)−i = (3∗3)−6

(3∗3)−6 = 3
3 or (1).
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Fig. 3.2 Case study 2: Quantifying The Ranking Capability of SWA using the AoIScore

After we have applied AoI Score to the ranking instances for the perception

stage,(provided in Table 3.5) we get the underlying metrics scores 1. Furthermore, we

applied it again to the output at the comprehension stage (as shown in Table 3.6); the

algorithm also scored 1.

Although the ranking instances at the perception and comprehension stages are

different, the AoI Score provides similar scores for both stages, indicating that both

levels of the SWA have ranked the activity of interest as perfect as the ground truth

(as shown in Table 3.4).

Unfortunately, the underlying metrics do not quantify the amended assessment

for different levels of the SWA system. Furthermore, our initial evaluation for the

51



Ranking Capability Score (RCS)

AoI Score poses some threat to common belief, in which the underlying metrics have

provided inappropriate scoring schemes for multiple levels of situational assessments

(shown in Figure 3.2).

The next section presents a comparative result based on the case study based

evaluation for the AoIScore.

3.2.6 Comparative Results
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(a) Case Study 1:The SWA System has
identified mixed of activities
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(b) Case Study 2:The SWA system has
identified only important activities

Fig. 3.3 Evaluating the Activity of Interest Score under an extended scenario

We examined the performance metric, namely the AoIScore, under an extended

scenario where the SWA system identified only important activities but with different

severity paradigms. Unfortunately, the results showed that the underlying performance

metric does not quantify the ranking capability for different levels of the SWA system.

Rather, it treats all the identified threats only as important activities, regardless

of their respective severity paradigms. This is because the underlying metric was

originally designed to evaluate a contextual situational assessment. The SWA system
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has identified two classes of a threatening situation. The first is the AoI, with significant

impact against us, while the second is normal activities with minimal or no impact

against the dynamical environment.

In Figure 3.3 (Case Study 1) part (A) the AoIScore has quantified the proposed

assessment at the perception stage (provided in Table 3.1) with the value of (0.33). This

is indicating the SWA system has ranked the identified threats as not perfect as the

ground truth (shown in Table 3.3). Moreover, it has quantified the proposed assessment

for the comprehension stage (shown in Table 3.2)with value of (0.79), indicating that

the SWA system has not ranked the identified threats as perfect as the ground truth

(shown in Table 3.3). Apparently the ranking instances at the comprehension stage

are better than the perception stage. Hence, the underlying metric has successfully

quantified the underlying situational assessment.

However, in Figure 3.3 (Case Study 2) part (B) the underlying metric has quantified

the proposed assessment at the perception stage (provided in Table 3.5) with value of

(1), indicating that the SWA system has ranked the activity of interest as perfect as the

ground truth (given in Table 3.4). Similarly, it has quantified the proposed assessment

at the comprehension stage (provided in Table 3.6) with value of (1) indicating that the

SWA system has ranked the identified threats as perfect as the ground truth (given in

Table 3.4). The result in Figure 3.3 part (B) showed that the AoI score is not able to

quantify the amended assessment for each level of SWA system, specifically under an

extended scenario where the SWA system has identified only important activities but

with different severity paradigms. In regards to this, the underlying performance metric

has treated all the identified threats only as important activities, regardless of their

respective severity paradigms. Hence, it does not quantify the amended assessment

performed at multiple levels of an SWA system.
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In summary, the AoI Scores is not designed for situational assessment where the

SWA system is instructed to report only the AoI, or in a situation where the underlying

system has identified only an important activity but with different severity paradigms.

Due to these circumstances, the next section introduces The Ranking Capability

Score. The underlying metric is intended to evaluate the ranking capability of an SWA

system, specifically under a scenario where the SWA system has identified only the

AoIs but with different degrees of importance.

3.3 Ranking Capabilities of SWA System

In this section we provide an overview for the prioritisation process of the SWA

system. First, we explain the intended purpose of the performance metrics, namely

“The Ranking Capability Score”, as well as the contextual scenario it was originally

designed for. The second part introduces the modelling scheme for the extended

scenario. Finally, the third part will discuss the development phase of the underlying

performance metrics.

3.3.1 Overviews

The SWA system has different layers of complexities. Therefore, an advanced SWA

system is one which encompasses different levels of situational assessments. Each

level lends itself to rank the most important activities into a predetermined order to

maximise the benefit for the decision-makers. The first level of an SWA system is

the perception stage. At this stage the system is reporting the identified activities

of interest at the time of their occurrence and without contextual order. The next

level, which is the comprehension stage, introduces ranking into a predetermined order.
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Originally, the system seeks to rank the activity of interest based on their severity

paradigms.

However, there are different factors which can impact the ranking capabilities of the

SWA system. For that reason, we have developed performance metrics to evaluate the

ranking capability of different SWA systems. This, in particular, is for a scenario where

the SWA system is configured to report only the AoIs, or for a situational assessment

where the SWA system has identified a finite number of activities but with different

severity paradigms.

In general there are five different domains [93] [95] [9] [51] where people are required

to keep up-to-date with dynamically changing environments such as Air, Sea, Land,

Space and Cyberspace. It might be reasonable to assume that distinct domains might

have different responses to deal with threat situations. However, all these domains

share a similar aim, which is to maximise the benefits for the decision-makers.

Despite that, even within one specific domain, such as cyberspace, researchers [28],

[86], [31], [42], [62] have different designs, configurations and purposes for their systems.

Furthermore, each system may also have different perceptions about what is an AoI.

With this in mind, we have decided to generalise the modelling of the situational

assessment, in the hope that researchers, [6], [38] from various disciplines can adapt

the proposed performance metrics to their individual needs regardless of variation of

different system configurations, or, views on what are deemed important activities.

Therefore, the next section will model the situational assessment scenario, in which

the SWA system has identified only a finite number of AoIs, but each with different

degrees of importance.
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3.3.2 Modelling the Situational Assessment

Generally speaking, the situational assessment encompasses two main components.

The first is the absolute truth about the situational assessment, namely the ground

truth and the second is the proposed assessment by the underlying system.

In this section we model the situational assessment components concerned with the

prioritisation process of the SWA system. Specifically, we represent mathematically

the outputs of the SWA system under a scenario where the underlying system has

identified a finite number of events but with different severity paradigms. First of

all, we define the relevant objects for the ground truth, and then we discuss how the

proposed assessment might represent those elements.

From the data fusion perspective, usually, the team of analysts have a number of

complex events, each one representing the highly abstract views of an element within

the monitoring environment. Different events are likely to have distinct priorities.

With this in mind, the absolute truth about the situational assessment is defined in

equation 3.2:

GroundTruth = {AoIi} (3.2)

where 1 ≤ i ≤ N

TheAoIi have significant impacts, initially, it had a different priority and this is

defined in equation 3.3:

AoIi ∈ {1,2.....N} (3.3)

where 1 ≤ i ≤ N

The AoIs represent a set of complex events while the ith represents the respective

priority of each one. Therefore, the first activity AoI1 found on the ground truth is
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prioritised with the value of (1), then the next immediate activity is prioritised with the

value of (2) and the least important activities found on the ground truth is prioritised

with the value of (N), wherein, N = total number of events being proposed by the

situational assessment.

As we are modelling a situational assessment concerned with the prioritisation

process, the ranking of the AoIs with regard to their severity paradigms is crucial to

the underlying scenario. For that reason, we introduce the number of hops, NoHi.

Each complex event will have a predetermined order and this is defined in equation 3.4:

NoHi = N − i (3.4)

where, the total number of hop ToH = N −1 and i = 1, ...,N

The NoHi indicates how many hops away from the bottom of the list each i′th

activity is. Conversely, it will show the predetermined order for each AoI with respect

to their initial priority. For example, when considering a number of complex events

which may occur in the ground truth list, the least important activity should remain on

the bottom of the list with 0 number of hops. The next immediate important activity

should have a number of hops equal to 1. Hence, the number of hops is incrementing

by one up until the most important activities. The most important activity of all

should have the maximum number of hops, which we call the ToH, and this is defined

above in equation 3.4 as ToH = N −1.

Ideally, during the situational assessment in real time operation, the most important

activity which is found on the ground truth should have the highest score in terms of

importance, hence the score of importance is related to the severity of cyber events.
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Therefore, we have introduced the score of importance SoIj for each complex event as

found on the ground truth and it is defined in equation 3.5:

SoIj = {N −NoHi} ,SoI1 > SoI2 > .... > SoIN (3.5)

where, 1 ≤ j ≤ N , 1 ≤ i ≤ N

According to the underlying situational assessments we have defined three objects

for the ground truth. The first object is the AoIi, containing a finite number of distinct

complex events, each one of which represents the high abstract views of a particular

element within the protected environment. The second object, NoHi, represents the

predetermined order for each complex event, and the third objective, SoIj , represents

the score of importance which is relevant to the severity paradigms of the complex

event. Therefore, the absolute truth of the situational assessment for the underlying

scenario is defined below as:

GroundTruth = {AoIi ⊆ SoIj ,NoHi} (3.6)

where 1 ≤ i ≤ N AoIi → SoIi

After we have defined the absolute truth for the situational assessment, next, we

need to define how different SWA systems might propose the identified activities during

situational assessment. As previously explained, we do not know how different systems

will rank the AoIs but there are three likely situations: the proposed assessment might

rank the AoIs as perfect as the ground truth, or, it might rank them as not perfect

as the ground truth, or, in the worst scenario, the system might rank the AoIs as
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opposed to the ground truth. Therefore, due to the presence of uncertainty, we define

the ranking for AoIs as a random set. This is defined below as:

AoIr = {AoI1,AoI2.....AoIN } (3.7)

where the set r ∈ AoIi r|1 ≤ r ≤ N

In fact, if the SWA system has proposed different rankings for the AoIs, in com-

parison to the ground truth, then the related score of importance will also change

accordingly. In regards to this, we have defined the SoIj as a set and it is defined

below as:

SoIr ∈ {SoI1,SoI2......SoIN } (3.8)

Where the set r ∈ SoIj r|1 ≤ r ≤ N

It is equally important to mention that the AoIr ∋ SoIr. Hence, whilst the SWA

system is experiencing issues with ranking capabilities, the underlying system may not

rank the AoIr as perfect as the ground truth. Therefore, if the ranking paradigms for

the AoIs have been changed, then the SoIr will also change accordingly.

Finally, the last object previously defined is the NoHi, and it is likely to remain as

the same as the ground truth, as long as the number of important activities remains

the same. Therefore, the ProposedAssessment PA for the underlying situation is

defined below as:

ProposedAssessment = {AoIr ⊆ SoIr,NoHi} (3.9)

where 1 ≤ r ≤ N , AoIr ∋ SoIr, 1 ≤ i ≤ N , the set r ∈ AoIi, r ∈ SoIj
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We have introduced a new modeling scheme as a way of encouraging researchers

from various disciplines to develop mathematically and to share various contextual

situational assessment models to address different needs. The underlying concept

behind the modeling scheme is to overcome a number of challenges [83] [10] in the data

fusion literature as follows:

Challenges at the researcher level [87], [42], [88]; different researchers neither share

their risk assessment model information nor provide their real situational assessment

outcome. However, they may provide some generic information about their progress in

assessing different situations.

Challenges at the open source level[45]; SWA systems existing commercially are

not configured by default to perform a multilevel assessment from the data fusion

perspective. Furthermore, some open source SWA systems [92] [91] [69], [16], claimed

to have the ability to identify threat situations at the perception level, and some of

these systems [2, 3] may also claim to perform some features at the comprehension

level. However, to enable these systems to actually perform multilevel situational

assessments requires the development of necessary features for both the perception

stage (level 1) and comprehension stage (level 2).

Unfortunately, such implementation encompasses the development of classification,

aggregation and correlation techniques for the perception stage. In addition to that,

they require the development of a contextual risk assessment model for a dynamic

environment, as well as a contextual perspective measure at the comprehension stage.

Regrettably, after all these developments, these systems still do not provide the

necessary components for the proposed performance metric, such as the ground truth

and proposed assessment outcomes.

Challenges at enterprise level [59]; most enterprises are not willing to share their

own risk assessment model information or their situational assessment outcomes. For
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that reason, the proposed modelling scheme was the solution aimed at overcoming

these barriers and encouraging researchers [37] to develop an abstract view for different

situational assessments concerned with a high level of data fusion.

We are aware that some sectors[23] are offering some SWA system services on a small

scale, such as at the enterprise level, or on a big scale, such as at national level. Usually,

these sectors rely on the process refinement stage; mathematical representations of

the dynamic environment. Our modelling approach will help these sectors to apply

the proposed performance metrics during the process refinement stage for evaluating

different SWA systems at any scale.

After introducing the modelling scheme for the extended situational assessment,

with regard to the prioritisation process, the next section presents the development

phase for "The Ranking Capability Score". Two unsuccessful attempts during the

development process are also presented.

3.3.3 Performance Metric

This section defines the relevant parameters for the performance metric "The Ranking

Capability Score", as well as another two unsuccessful attempts during the development

process.

According to situational assessment for the underlying scenarios, each AoI has

a predetermined order based on their severity paradigms. Though, to measure the

ranking capabilities for the SWA system, first we need to determine the actual number

of hops AoHi from the proposed assessment outputs, and this is defined below as:

AoHi = {ToH −NoHi} ,AoH1 > AoH2 > .... > AoHN (3.10)

where, 1 ≤ i ≤ N 1 ≤ h ≤ N
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The above equation will obtain the actual number of hops for each ith activity

being proposed by the SWA system. Next we obtain the current number of hops CoHi

for each complex event as it was proposed by the SWA system; this is defined below as:

CoHi = N −AoIr (3.11)

The set r ∈ Aoii And r|1 ≤ r ≤ N

Once we have obtained the CoHi and AoHi, we will subtract the values of AoHi

from CoHi. In return, we will get the difference in number of hops for each ith activity,

which we call DoHj . This is defined below as:

DoHj =
j∑

i=1
(AoHi)−

j∑
i=1

(CoHi) (3.12)

where, 1 ≤ i ≤ N 1 ≤ j ≤ N

Interestingly, the DoHj will give us the current ranking state based on the pre-

determined order of each ith activity as it was proposed by the SWA system. Yet,

to compute the ranking capabilities for the underlying situation, we need to obtain

the reference number of hops, RoHi, for each activity as it was proposed by the SWA

system. This is defined below as:

RoHi = SoIj ∗DoHj (3.13)

where, 1 ≤ i ≤ N 1 ≤ j ≤ N
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The next step is to determine the overall reference number of hops for the identified

list of activities. We call it the Ranking Capability Score RCS. It is defined below

as:

RCS =
N∑

j=1

 j∑
i=1

(SoIi)DoHi

 (3.14)

where, 1 ≤ i ≤ N 1 ≤ j ≤ N

This part has introduced the development phase for the underlying performance

metric RCS. The next section examines the proposed performance metrics against its

intended purpose, with the help of case study 2 demonstrated in section (3.2). The

case study is under an extended scenario where the SWA has identified only important

activities in a real time operation but with different severity paradigms.

3.4 Measuring the Capability of Situational Assess-

ments

According to the extended scenario in section(3.2), the situational assessment has

identified only the AoI on the ground truth, as shown in Table 3.4.

Initially, we substitute relevant values for the ground truth before determining

relevant values for the proposed assessment for both the perception and comprehension

stage. We quantify the ranking of the SWA system at the perception stage, where the

AoI appear and without contextual order (shown in Table 3.5) and at the comprehension

stage where the AoI are ranked into a contextual order (shown in Table 3.6.) Finally,

we compare results between the two levels.
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Ground Truth

We extract the ground truth objects as shown in equation number 3.6. The first object

is the AoIi and it is defined in equation 3.3, while the second object is SoIj as shown

in equation 3.5, and the third object is NoHi and is defined in equation 3.4.

We have substituted relevant values from the ground truth output as shown in

Table 3.4. The first object is the activity of interest AoIi = {AoI1(1),AoI2(2),AoI3(3)}.

Where N = 3. The second object is the score of importance SoIj = {soi1(3), soi2(2), soi3(1)}

and the third object is the predetermined order of each complex event NoHi =

{noh1(2),noh2(1),noh3(0)} , where ToH = 2.

Proposed Assessment

We extract the proposed assessment objects shown in equation number 3.9. The first

object is the proposed ranking for the activity of interest AoIr and it is defined in

equation 3.7. The second object is the score of importance SoIr and it is defined in

equation 3.8 and the third object is NoHi as defined in equation 3.4.

Perception Stage Level 1

We have substituted relevant values from the proposed assessment at the perception

stage as shown in Table 3.5. The first object is the activity of interest AoIr =

{AoIr(3),AoIr(2),AoIr(1)}, where N = 3. The second object is the score of importance

SoIr = {soi1(1), soi2(2), soi3(3)}, and the third object is the predetermined order of

each complex event NoHi = {noh1(2),noh2(1),noh3(0)} , where ToH = 2.

Comprehension Stage Level 2

We have substituted relevant values from the proposed assessment at the comprehension

stage as shown in Table 3.6. The first object is AoIr = {AoI1(2),AoI2(1),AoI3(3)}. The
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second object is the score of importance SoIr = {soi1(2), soi2(3), soi3(1)}. The third ob-

ject is the number of hops, as shown in equation 3.4 NoHh = {noh1(2),noh2(1),noh3(0)}.

Because the AoIr ∋ SoIr, then, when the AoIr have different ranking instances in

comparison to the ground truth, the relevant score of importance SoIr also moves

accordingly. After we have defined the necessary components, such as the ground

truth, and proposed assessment for both the perception stage and the comprehension

stage, we can move to the next step, where we quantify the ranking capability for each

level respectively.

Quantifying the Ranking Capability for the Perception Stage

and the Comprehension Stage

Now, we measure the capability of the situational assessment at the perception stage.

To do this, we compute the current number of hops as shown in equation 3.11 CoHi =

{coh1(3−3 = 0), coh2(3−2 = 1), coh3(3−1 = 2)}.

Secondly, we compute the actual number of hops, as shown in equation 3.10

AoHi = {aoh1(2−0 = 2),aoh2(2−1 = 1),aoh3(2−2 = 0)}.

Thirdly, we compute the difference in number of hops, as shown in equation 3.12,

DoHj = {doh1(2),doh2(2),doh3(0)}.

Fourthly, we compute the reference number of hops for each AoI, as shown in

equation 3.13 RoHi = {roh1(3∗2 = 6), roh2(2∗2 = 4), roh3(1∗0 = 0)}.

Finally, we compute Ranking Capability Score at the perception stage as follows:

(6)+(10)+(10) = 26, and the Ranking Capability Score at the comprehension stage

as follows: (3)+(3)+(3) = 9

Based on the above scenario, the proposed assessment at the comprehension stage

scores better than at the perception stage; the SWA awareness at the perception stage

scores (26). This means the underlying situational assessment at this level has ranked
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Fig. 3.4 Case Study 2: Quantifying The Ranking Capability of SWA System using the
RCS

the AoI as opposed to the ground truth. This is because the underlying process at the

perception stage is reporting the AoIs based on their time of occurrence.

While this is the case, the proposed assessment at the comprehension stage scores

(9). This means the SWA has ranked the AoIs as not as perfect as the ground truth.

Perhaps, this is due to capability issues with the system ranking algorithm, configuration

or poor risk assessment. Hence, the ranking paradigm at the comprehension stage was

better than at the perception stage. Arguably, the underlying metrics has quantified

the amended assessment at each level of the SWA system appropriately.

The next section will examine the underlying performance metrics "RCS" against its

intended purpose. Likewise the evaluation process conduct a quality based evaluation

for validating the proposed performance metrics over three separates scenarios. The

underpinning evaluation will encompass three phases. The first phase will use an

analytical approach to compute the number of ranking instances for any given scenarios

concerning the prioritisation process of a real time system. The second phase will use

Matlab to simulate all the ranking instances computed during the analytical stage.
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The third phase intends to examine the potential of the proposed scoring scheme in

terms of providing a unique score for all possible ranking instances proposed by the

simulation phase.

3.5 Quality Based Evaluations

This section discusses the quality based evaluations. To begin with, we discuss some

fundamental factors to the underlying process.

The first section discusses the characteristics of the SWA system’s outputs. In

addition to that, it will demonstrate how the number of states are likely to occur for

different scenarios that can be obtained.

From the data fusion perspective, the second section reviews different SWA system

configurations for the purpose of finding a determination point for the underpinning

evaluation.

The third section presents a comparative evaluation for the Ranking Capability

Score (RCS) and the Activity of Interest Score (AoIScore). over three separate

scenarios.

3.5.1 Number of Ranking Instances Versus the Number of

AoIs

There are different means and ways for maximising the benefits to the decision-maker.

For instance, different SWA systems [85] may produce different forms of outputs.

Generally, there are two forms of outputs, the first one being the visualisations

techniques [24], [32], [48], where the underlying system produces a number of images,

pictures, signals or other visual means to draw the attention of the decision-maker.
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The other type of output is traditional, where the system reports lists of activities

[15], to draw the analyst’s attention to threatening situations. Our performance metric

has been designed carefully to evaluate any SWA system and has been configured

to report a list of activities for the decision-maker, specifically for the purpose of

measuring the prioritisation process capability of different SWA systems.

The notion of different ranking instances is related to the act of rearranging, or

permuting, all the AoIs into some sequence or order. For example, if the SWA system

has detected three AoIs, there are six permutations for the three distinct activities,

which are as follows: AoI1(A),AoI2(B),AoI3(C), namely: 1-(A,B,C); 2-(A,C,B); 3-

(B,A,C);4-(B,C,A);5-(C,A,B) and 6-(C,B,A).

Hence, the number of permutations of the AoIs is n factorial (usually written as n!),

which means the product of all positive integers is less than or equal to n. This allows

us to define the number of ranking instances per single scenario using the operation of

factorial (N !), where N represents the number of AoIs, and the factorial ! provides the

number of all possible ranking instances for those activities.

In return, we can obtain the number of all possible states likely to occur for a single

scenario. For example, if the SWA system has AoI = 2, the total number of state is

obtained by (2!) = 2 then we will have two ranking instances. Likewise, if there are

AoI = 3, then the number of ranking instances can be obtained by factorial (3!) = 6

ranking instances.

It is apparent when the AoI increases, the number of relevant states increases

accordingly. It can be concluded that the potential performance metric should be

examined against all ranking instances for a number of scenarios. In the next section we

will discuss the dimensional views for the AoI in the hope of defining a determination

point for underpinning evaluations.
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3.5.2 Determination Point for the Maximum Number of AoIs

In order to set a determination point for the scalability of the proposed performance

metrics we must define the contextual concept of AoIs.

Complementary to that, we review different SWA systems with the objective of

establishing a good understanding of different configurations, thus enabling us to define

the maximum number of AoIs per scenario.

We investigated the AoI from both quantitative and qualitative perspectives; quali-

tative being the contextual concept of AoI and the quantitative being the number of

important activities for each qualitative view.

In data fusion literature [10] [33] [54] [82] there is no standard definition for an

AoI. However, the underpinning concept for the AoIs is an important activity of great

significance. With this in mind, we have found three dimensional views for the AoIs.

The first view is referred to as a situation. Some researchers [50], [19], [13], [36]

have classified heterogeneous information from multiple sensors into different classes of

situations where each one is directly linked to the decision-maker’s response, timeliness

and retrospective situation.

Furthermore, each single situation can form a significant risk against us. One single

situation is equivalent to a single activity of interest. Quantitatively, existing efforts

have defined approximately 1 - 4 different threatening situations, therefore there is a

maximum of four AoIs which are likely to occur for this dimensional view.

The second view is an attack scenario. From the data fusion perspective, researchers

[25], [87], [98], [97], [75], [41] have modelled the attacker’s course of actions into a

multi-stage attack. Each attack scenario can form a significant impact, therefore a

single attack scenario is regarded as one AoI, hence, the number of AoIs are dependent

on the number of attack scenarios which occur during the situational assessments.

69



Ranking Capability Score (RCS)

Alternatively, again based on the existing literature, researchers [58], [57] have only

designed 2-4 attack scenarios for confronting an emerging situation.

The third view is referred to as attacker steps [46],[5] [40]. During the situational

assessment for multi-stage attacks, researchers have designed different SWA systems to

process heterogeneous information from multiple sources, so as to predict the highest

abstract views of attacker steps. In other words, the underlying system will decode

different attacker steps into an attacker track.

We have found approximately 8 steps for each track; however, during the situational

assessment of an emerging situation, researchers found only 3 to 4 steps which might

pose significant risk on the targeted environments. Therefore, the maximum number

of AoIs at this dimensional level are 2-4 AoIs.

After reviewing the above literature, we found a determination point where the

performance metric should successfully scale multiple scenarios with a maximum

number of four tracking activities during real time operation. In other wording the

proposed performance metric should be able to evaluate the ranking capability for

different size of priority lists, specifically where the situational awareness SWA system

is reporting a priority list with at least four tracking activity during real-time operation.

The next section presents a comparative evaluation for the Ranking Capability

Score (RCS) and the Activity of Interest Score (AoIScore). Originally, both per-

formance metrics designed to serve different situational assessments configured to

report 2 classes of activities and only important activities, respectively. The evaluation

process examines both performance metrics under the second situational assessment in

which the SWA system is configured to report only the AoI but with different severity

paradigms.
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3.5.3 Comparative Evaluation

This section presents a comparative evaluation for the (AoIScore) and (RCS). Origi-

nally, researchers used the (AoIScore) to evaluate the ranking capability of the SWA

system, particularly under a scenario where the SWA system has identified two classes

of events. The first class contains tracking activity with high impact on the dynamical

environment, whereas the second class contains normal activities with low or minimum

impact against the protected environment. With this in mind, this section conducts
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Fig. 3.5 Quality based evaluation for RCS versus AoIScore. (2!) = 2 Ranking
Instances

a quality based evaluation for the AoIScore under an extended scenario, where the

SWA is reporting only the tracking activity of highest interest for the analysts team

but with different severity paradigms.

We examine the scoring scheme against three different scenarios where the SWA

system reports 2 (Figure 3.5), 3 (Figure 3.6)and 4 (Figure3.7) tracking activity, respec-

tively.
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The AoIScore in Figures 3.5, 3.6 and 3.7 parts (b) (d), score (1) for all the ranking

instances in all three scenarios. In the first scenario 3.5 the AoIScore scores [1] for

two different ranking instances, indicating that ranking instances (1) and (2) have

ranked the identified activities as perfect as the ground truth. Apparently, the first

ranking instances are different than the last. In the second scenario 3.6 the AoIScore

is [1] for six different ranking instances indicating the emerging threats are ranked

as perfect as the ground truth. While, in the third scenario 3.7) the AoIScore is [1]

for 24 different ranking instances showing that the underlying performance metric

doesn’t provide appropriate scoring for the the underlying scenario. This is because it

was not designed to measure the underlying situational assessment in which the SWA

system has identified only important activities but with different severity paradigms.

Regrettably, the AoIScore treats all the AoIs as only important activities regardless

of their respective priority paradigms. Hence, the AoIScore does not quantify the

underlying situational assessments adequately.
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Fig. 3.6 Quality Based Evaluation for the RCS versus AoIScore. (3!) = 6 Ranking
Instances
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On the other hand, the RCS provides unique scores for all the ranking instances in

three different scenarios as it is shown in Figures 3.5, 3.6, 3.7 parts (a) (c). Similarly,

in the first scenario, the first ranking instances score 0 indicating that the SWA system

has ranked the emerging situations as perfect as the ground truth. While the second

ranking instances scores (1) indicating that the SWA system has ranked the emerging

threats as opposed to the ground truth. While in the second and third scenario in

Figures 3.6, 3.7 the (RCS) provide unique scores for all the ranking instances over the

underlying situational assessment. This is because it has been designed to evaluate

ranking capability in relation to the prioritisation process, specifically under situational

assessment where the SWA system is reporting only distinct threaten situations but

with different severity paradigms.

The proposed performance metric can provide another dimensional support for the

decision making resources. Likewise, it can direct the analyst’s attention about any

ranking capability issues which may occur during real time operation.

3.6 Conclusion

This chapter has examined the performance metric, namely the Activity of Interest

Score AoIScore, under an extended scenario where the SWA system has identified only

important activities but with different severity paradigms. The results showed that the

AoIScore did not quantify the ranking capabilities for different levels of assessment

appropriately. Rather, it treated all the identified prioritised events only as important

activities, regardless of their respective degree of importance. In regards to this, section

3.3.3 introduced a new performance metric for evaluating the ranking capability for

the underlying scenario.

To evaluate the underlying performance metrics against their intended purpose,

we examined each scoring scheme with the help of a case study. The obtained results

73



Ranking Capability Score (RCS)

0

10

20

30

40

50

0

4

9

16 17
20

22

26

34

41

46 47
49 50

Ranking Instances(1−14)

S
co

ri
n

g
S

ch
em

e

(a) Ranking Capability Score

0

0.5

1

1.5

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Ranking Instances (1−14)
S

co
ri

n
g

S
ch

em
e

(b) Activity of Interest Score

60

70

80

90

55

62

70

74
76

79
80

87

92

96

Ranking Instances (15−24)

S
co

ri
n

g
S

ch
em

e

(c) Ranking Capability Score

0

0.5

1

1.5

1 1 1 1 1 1 1 1 1 1

Ranking Instances (15−24)

S
co

ri
n

g
S

ch
em

e

(d) Activity of Interest Score

Fig. 3.7 Quality based evaluation for RCS versus AoIScore. (4!) = 24 Ranking
Instances

showed an evidencing score for only two or three ranking instances. However, to

examine the proposed performance metrics against all the ranking instances, we

conducted a quality-based evaluation. The evaluation process examined the scalability
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of the proposed scoring schemes against all the ranking instances over three separates

scenarios; each encompassed a different number of prioritised events.

The outcome of the evaluation process was as follows: the AoIScore didn’t provide

an appropriate scoring scheme against the extended situational assessment. Further-

more, it scored (1) against all the ranking instances for three different scenarios. This

is because it was not designed to evaluate the ranking capability in relation to the

prioritisation process; rather it was intended to evaluate the scheduling process of a real

time system where the underlying system is reporting two different classes of tracking

activity. The first and second class are activities with significant impact and activities

with minimal impact on the dynamically monitored environment, respectively.

Alternatively, the Ranking Capability Score has provided an appropriate scoring

scheme against all the ranking instances over three separates scenarios. Indeed, from

the data fusion perspective, it successfully quantified the ranking capabilities in relation

to the prioritisation process. In particular, under situational assessment where the

SWA system identified (or configured to report) only important activities but with

different severity paradigms.

The proposed performance metric can provide another dimensional support for

the decision making resources. Specifically it provides an indications scoring scheme

about three qualitative states that are likely to occur in a real-time operation. These

are Good State, Degraded State and Bad state where the SWA system is ranking the

identified activities as perfect as the ground truth, as not as perfect as the ground

truth, and as opposed to the ground truth, respectively. Furthermore, it can direct the

analyst’s attention about any ranking capability issues that may occur during a real

time operation.

75



Ranking Capability Score (RCS)

76



Chapter 4

Enhanced Ranking Capability

Score′(RCS ′)

4.1 Introduction

The data fusion community [27], [10],[26], [11]has introduced multiple procedures of

situational assessments to facilitate timely responses for emerging situations. Process

Refinement (level 4) of the Joint Directors of Laboratories (JDL) [53], [54], [82] is

a meta-process used to assess and improve the data fusion task during real time

operations. The previous chapter introduced the Ranking Capability Score′ (RCS′)

for evaluating the prioritisation process of a real time system. However, the process of

user refinement (level 5) of the JDL is intended to address knowledge representation

[11], [7], [8],[11], [7], [8], for the decision-making resources.

We have proposed a performance metric [79] to evaluate the prioritisation process

of situational awareness domains. Furthermore, we examine the proposed performance

metrics with two levels of assessment. The first level is a case study based evaluation[79]

which is used to guide researchers from various disciplines on adapting the Ranking

Capability Score (RCS) into their domain specific solution. The second level is a quality
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based evaluation[80] used to examine the proposed performance metrics against their

intended purpose. In both cases, the RCS has successfully quantified the prioritisation

process of a real time system.

This chapter introduces a third level of assessment in order to examine the reliability

of the proposed scoring scheme against the cognitive states of user perception. The

evaluation process encompasses two phases. The first phase examines the RCS against

the three qualitative states that are likely to occur in a real time operation. These

are the Good State, Degraded State and Bad State where the SWA system ranks the

identified activities as perfect as the ground truth, respectively. The second phase

examines the scoring schemes further with the help of a case study based scenario to

illustrate the knowledge representation problem between the RCS and user perception.

We need to know what is the usefulness of the underlying metrics in directing

the analyst team towards any ranking capability issues during a real time operation,

concerning different domains such as air, sea, land, space and cyberspace. To answer

the underlying research question, this project has conducted the following objectives.

We reviewed existing research efforts [6][39] [65] [75] which provided ranking methods

based on various criteria. We selected a case study [75] where the author discussed

a number of a logarithm and techniques over the past 10 years, for enabling the

situational awareness domain (perception, comprehension and projection) as well as

filtering and ranking different tracking activities during a real time operation. Next,

we introduced a ranking capability problem for the selected scenario; this was to allow

the RCS [79] to evaluate different ranking instances concerning the three qualitative

states mentioned above. Finally, we observed the obtained scoring scheme versus the

user perception to illustrate the knowledge representation problem during a real time

operation.
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This chapter is divided as follows. The first section examines the " Ranking

Capability Score" (RCS) versus the three qualitative states mentioned previously;

Good State, Degraded State and Bad State. The second section introduces an

enhanced method for the proposed metrics, called the enhanced Ranking Capability

Score′ (RCS′). The third section conducts a reliability based evaluation with the help

of a case study based scenario, to evaluate the proposed enhanced scoring scheme

against the operator perception. The fourth section presents a comparative evaluation

and, finally, we discuss our findings and future work.

4.2 Knowledge Representation Problem for the Rank-

ing Capability Score

This section examines the " Ranking Capability Score" (RCS) versus the three following

qualitative states, Good State, Degraded State and Bad state where the SWA system

is ranking the identified activities as perfect as the ground truth, not perfect as the

ground truth, and opposed to the ground truth, respectively.

This section is divided as follows. The first part illustrates the knowledge repre-

sentation problem concerned with the RCS and the second part further explains the

knowledge representation problem with the help of a case study from the Cyberspace

domain. The third part presents an extended scenario from the demonstrated case

study focusing on when the system is experiencing ranking capability issues during

the multi level SWA. Furthermore, the reliability issues of the RCS are discussed in

terms of providing unreliable scores for the three qualitative states previously described,

specifically, when the proposed number of tracking activities are dynamically changing

in the multi level situational assessment.
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4.2.1 Number of Tracking Activity versus Qualitative States

In the light of the three qualitative states previously mentioned, this section investigates

the reliability of the ranking capability scoring scheme over three separate scenarios.

Each scenario encompasses a different number of prioritised events. The reliability

based evaluation investigates the knowledge representation issue of the RCS. It is

intended to answer the following research question; to what extent can the underlying

scoring scheme be helpful in directing the analyst’s attention to any ranking capability

issues during a real time operation, specifically, where the proposed number of tracking

activities are dynamically shifted in a multi projection environment.

The evaluation process for the first scenario observes the ranking capability scoring

scheme when the real time system is reporting at least two events.
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Fig. 4.1 Reliability Based Evaluation for the Ranking Capability Score (RCS) (2!) 2
Ranking Instances

The obtained result for the first scenario is shown in Figure 4.1; the proposed

number of emerging events are equal to two tracking activities of interest (AoIs),

(N = (2)). The scoring scheme for the three qualitative states is shown in Figure 4.1.
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According to the proposed number of tracking activities (2!), there are only two ranking

instances. The first and second ranking instances represent the Good State and Bad

State where RCS scores are (0) and (4), respectively.
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The second scenario observed the RCS when the real time system was reporting

at least three tracking activities; results are shown in Figure 4.2. The number of

emerging events is equal to three tracking activities of interest (AoIs), (N = (3)). The

scoring scheme for the three qualitative states is shown in Figure 4.2. According to the

number of prioritised events (3!), there are only (6) ranking instances for the underlying

scenario. The first ranking instances represent the Good State, where RCS score (0).

The last ranking instance represents the Bad State and it scores (26). The ranking

instances from ((2)to(5)) represent the Degraded State. The RCS scores ((2)to(24))

over all the ranking instances for the underlying state respectively.

The third scenario observed the RCS when the real time system was reporting at

least four tracking activities; results are shown in Figure 4.3. The number of emerging
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events are equal to four tracking activities of interest (AoIs), (N = (4)). Similarly, the

scoring scheme for the three qualitative states are shown in Figure 4.3. According

to the number of prioritised events (4!), there are only (24) ranking instances for the

underlying scenario. the first and last ranking instances represent the Good State and

Bad State, where the RCS score was (0) and (96), respectively. The ranking instances

from ((2)to(23)) represent the Degraded State where the RCS scored (2) to (92) for

all the ranking instances of the underlying qualitative state.

Regrettably, the underlying performance metric, RCS, for the three qualitative

state changes in relation to the proposed number of emerging activities, and did not

provide reliable scores for the three qualitative states.

The Bad State scored 4 for the first scenario (Figure 4.1), 26 for the second scenario

(Figure 4.2) and 96 for the last scenario (Figure 4.3). Moreover, the dimensions of the

degraded states also changed over the three scenarios. When the proposed number

of prioritised events are either increased or decreased, at any given instance the RCS
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for the three qualitative states also changed accordingly. Hence, the scoring scheme

inherited a knowledge representation problem, and it can easily degrade the cognitive

status of the user perception during a real time operation.

The next section further examines the underlying scoring scheme, RCS, with the

help of a case study, to guide the researchers from various areas, how to adopt the

proposed metrics to their domain specific needs, and to evaluate the proposed scoring

scheme against the operator perception, The evaluation process intends to validate the

scoring scheme against the decision-making perception.

4.2.2 Case Study: Multi Projection Environment

This section conducts a reliability based evaluation for the RCS, with the help of a

case study based scenario. We need to know to what extent the underlying metric can

be helpful in directing the analyst team to any ranking capability issues, during a real

time operation in different domains such as air, sea, land, space and cyberspace.

Fig. 4.4 Ranking Paradigams For The Identified Events Based on Two Levels of
Assessment(adapted from [75])
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In the light of existing literature, a case study has been demonstrated [75] [74]

where authors applied multiple perspective measures against the emerging situation. It

is important to note that the authors emphasised mathematical techniques rather than

representing whole system implementation. The first level of assessment identified five

intrusion activities, shown in Figure 4.4.

The second level of assessment applied a contextual perspective measure against the

identified situation. This is to rank the most important activity into a predetermined

order. As a result, the ranking paradigms for the comprehension stage differed to

the perception stage. The figure (4.4) presents two ranking paradigms against the

identified tracking activity.

The first ranking paradigm relates to the first level of assessment for the perception

stage. The system identified five intrusions activities. The first (A −→ B) scored (1)

while the second one (B −→ C) scored (2). The third one (C −→ F ) scored (3), the

fourth one (C −→ D) scored (4) and finally, the fifth one (D −→ E) scored 5).

The second ranking paradigm relates to the second level of assessment for the

comprehension stage where the underlying process ranked the identified activities based

on their current impact. The first intrusion activity (A −→ B) scored (0.68). While

the second one (B −→ C) scored (0.75). The third one (C −→ F ) scored (0.3). The

fourth one (C −→ D) scored (0.51) and finally the fifth one (D −→ E) scored (0.35).

Noticeably, the automation process of information perception, projection and

comprehension encompassed two simultaneous operations: filtering and prioritisation.

Hence, the number of tracking activities proposed by the situational awareness domain

can dynamically change. Furthermore, the higher level of data fusion (projection

stage) focusses on the threats which affect the outcome of things that “will” happen.

Therefore, the system at the third level of assessments has anticipated four intrusion

activities. In Figure 5.6 the underlying process has used different pieces of information
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Fig. 4.5 Filtering Out The Identified Events Based On Their Current Impacts and
Future Threats (adapted from [75])

about the protected domain and the emerging intrusion activity to estimate future

threats for each tracking activity. The ranking paradigms for these events are shown

in Figure 4.6

Fig. 4.6 Ranking Paradigms for the Third Level of Assessments (adapted from [75]

The first intrusion activity (F −→ X) scored (0.50) while the second (X −→ Y )

scored (0.85). The third (E −→ z) scored (0.87) and finally, the fourth (J −→ S)

scored (0.51).

Based on the demonstrated case study, we can conclude that the number of emerging

activities are dynamically changing during a real time operation. In light of the above

situational assessments, the perception (first level of assessment) and comprehension
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stages (second level of assessment) have a different number of threats in comparison to

the projection stage.

In regards to this, in the next section we propose an extended scenario from the

demonstrated case study to examine the RCS against the user perception.

4.2.3 Extended Scenario: Inline Situational Assessment

This section does not change the original situational assessment for the multi-projection

environment. Rather, it considers a corner case from the demonstrated case study.

We are interested in evaluating the ranking capability for a multi-projection envi-

ronment, specifically during a real time operation; it is expected at any point in time

to verify the ranking capability for each level of assessments.

In light of the case study demonstrated previously, the evaluation process will

quantify the prioritisation process for the first level of assessment. In particular, when

the perception stage has identified only two intrusion activities. The ground truth for

the perception stage is shown in Table 4.1.

Table 4.1 Pre-determined Order for Identified Threat at the Perception Stage

Ground Truth Activity of Interest Priority
GT0 (B→ C) 1
GT1 (A→ B) 2

The underpinning assumption for the proposed ranking paradigms, shown in Table

4.1, is based on the intrusion progress inside the protected environments. Likewise,

the intrusion events (B → C) are advancing inside the protected network deeper than

(A → B).

Furthermore, the intrusion activity (B → C) has a higher credibility score in

comparison to (A → B) and therefore, the (B → C) has the highest likelihood score
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with the priority value of (1), whereas stepping (A → B) has the least credibility with

a priority value of (2).

Additionally, the evaluation process is expected to evaluate the ranking capability

for the second level of assessment, specifically where the comprehension stage has

identified three intrusion activities. The absolute truth ranking paradigms are shown

in Table (4.2).

Table 4.2 Pre-determined Order for Identified Threat at the Comprehension Stage

Ground Truth Activity of Interest Priority
GT0 (B→ C) 1
GT1 (A→ B) 2
GT2 (C→ F ) 3

The credibility value for the proposed threats in Table 4.2 is inspired by the ranking

paradigms based on the case study demonstrated in section 4.2.2; this is shown in

Figure (4.4). The intrusion activities (B → C) have the highest credibility score with

a priority value of (1) while the attacker steps (A → B) have a lesser credibility score

with the priority value of (2). Moreover, the third intrusion activities (C → F ) had

the least credibility score with a priority value of (3).

Finally, the evaluation process evaluates the ranking capability for the projection

stage specifically where the SWA system has anticipated four threatening activities.

The ground truth for the projection stage is shown in Table 4.3.

Table 4.3 Pre-determined Order for Identified Threat at the Projection Stage

Ground Truth Activity of Interest Priority
GT0 (E→ Z) 1
GT1 (X→ Y ) 2
GT2 (F→ X) 3
GT3 (J→ S) 4
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The credibility value for the anticipated threats (shown in Table 4.3) are inspired

by the ranking paradigms based on the case study demonstrated in section 4.2.2. This

is shown in Figure (4.6).

The third level of assessment applied a contextual perspective measure against the

emerging situation. In return, the projection stage anticipated four intrusion activities

(shown in Figure 4.6); each one has different severity paradigms (shown in Table 4.3.

The (E → Z) had the highest credibility score with the priority value of 1 while

the second and third intrusion activities, (X → Y ) and (F → X) had fewer credibility

scores with priority values of 2 and 3, respectively. However, the (J → S) had the least

credibility score with a priority value of 4.

This section has introduced the absolute ranking paradigms for the extended

scenario. The next stage presents the proposed ranking instances for each level

respectively. In other words, the evaluation process will introduce a ranking capability

issue for each projection technique randomly.

The random assumption does not impact the underlying evaluation since the

assessment process is not interested in the capability of a particular system "yet".

Rather, it intended to examine the proposed performance metric against the cognitive

status of user perception, in particular during a real time operation, where the number

of emerging activities shifts in multi-level situational assessments.

Hence, the random assumption of the ranking paradigms for each projection

technique can serve the reliability based evaluation. In regard to this, we have assumed

three different levels of assessments. The proposed assessment is for the perception

stage (provided in Table 4.4). The ranking paradigms for the first projection stage is

inherited from the following assumption [77] where the perception stage is reporting

the emerging threats based on their time of occurrence.
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Table 4.4 Proposed Assessment at the Perception Stage (Level 1)

Proposed Assessment Activity of Interest Priority
PA0 (B→ C) 1
PA1 (A→ B) 2

Moreover, the proposed assessment for the comprehension stage (shown in Table

4.4) has ranked the activity as opposed to the ground truth.

Table 4.5 Proposed Assessment at the Comprehension Stage (Level 2)

Proposed Assessment Activity of Interest Priority
PA0 (C→ F ) 3
PA1 (A→ B) 2
PA2 (B→ C) 1

Furthermore, the proposed assessment for the projection stage (shown in Table 4.6)

has ranked the anticipated threats as not perfect as the ground truth.

Table 4.6 Proposed Assessment at the Projection Stage (Level 3)

Proposed Assessment Activity of Interest Priority
PA0 (E→ Z) 1
PA1 (J→ S) 4
PA2 (F→ X) 3
PA3 (X→ Y ) 2

The demonstrated case study helps us to examine the reliability of RCS scoring

scheme against the three qualitative states mentioned previously; the Good State, Bad

State, and Degraded State. The next section quantifies the ranking capability for the

underlying scenario, using the proposed performance metric, the Ranking Capability

Score (RCS).
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4.2.4 Measuring the Ranking Capability of a Real Time Sys-

tem

As previously explained, any situational assessment encompasses two components:

the proposed assessment outputs and its ground truth paradigms. We have defined

analytically six different objects, concerning the prioritisation process of a real time

system; three objects for the proposed assessment components and another three

objects for the ground truth components.

According to the in-line situational assessment, demonstrated in section 4.2.3, there

are three proposed assessment outputs concerning three different ranking instances

for the identified situation. Each level of assessment has a reference ranking paradigm

for the identified events. This is called the ground truth.

To assess the ranking capability for each assessment level, the evaluation process

will first substitute relevant values for the absolute truth ranking paradigms and the

proposed assessment outputs, concerning the multilevel situational assessments for

the demonstrated case study in section 4.2.2. The second phase is to quantify the

ranking paradigms for each level using the RCS, the quantitative assessment aimed at

verifying the proposed assessment ranking instances in comparison to their absolute

truth ranking paradigms.

This section is divided as follows. The first section illustrates the substitution

process for extracting relevant values for the ground truth objects and the second

section demonstrates the substitution process concerning the proposed assessments

outputs. Finally, the third section provides a guide for researchers on how to substitute

the situational assessment components in order to quantify the ranking capability of a

real time system.
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4.2.5 Ground Truth Paradigms

This section illustrates the substitution of three objects concerning the ground truth

component; they have been defined in equation 3.6 Therefore, the first object is the

AoIi (defined in equation 3.3), while the second object is SoIj (defined in equation

3.5), and the third object is NoHi (defined in equation 3.4).

This section is divided as follows: the first section illustrates the substitution

process concerning the reference ranking paradigms for the perception stage outputs

(shown in Table 4.1). The second section demonstrates the substitution process for the

comprehension stage (shown in Table 4.5), and, finally, the third section explains the

projection stage (shown in Table 4.3).

Perception Stage Level 1

This section substitutes relevant values from the ground truth output (shown in Table

4.1). The first object is the activity of interest AoIi = {aoi1(1),aoi2(2)}, where N = 2.

The second object is the score of importance SoIj = {soi1(2), soi2(1)} and the third

object is the predetermined order of each complex event NoHi = {noh1(1),noh2(0)},

where ToH = 1.

Comprehension Stage Level 2

This section substitutes relevant values from the ground truth output (shown in Table

4.5). The first object is the activity of interest AoIi = {aoi1(1),aoi2(2),aoi3(3)}, where

N = 3. The second object is the score of importance SoIj = {soi1(3), soi2(2), soi3(1)}

and the third object is the predetermined order of each complex event NoHi =

{noh1(2),noh2(1),noh3(0)}, where ToH = 2.
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Projection Stage Level 3

This section substitutes relevant values from the ground truth output (shown in Table

4.3). The first object is the activity of interest AoIi = {aoi1(1),aoi2(2),aoi3(3),aoi4(4)},

where N = 4. The second object is the score of importance SoIj = {soi1(4), soi2(3), soi3(2),

soi4(1) and the third object is the predetermined order of each complex event NoHi =

{noh1(3),noh2(2),noh3(1),noh4(0)}, where ToH = 3.

4.2.6 Proposed Assessment Outputs

This section illustrates the substitution of three objects concerning the proposed

assessment outputs; they have been defined in (equation number 3.9) first object is the

proposed ranking for the activity of interest AoIr (defined in equation 3.7) The second

object is the score of importance SoIr (defined in equation 3.8) and the third object is

the predetermined order based on the number of hops NoHi (defined in equation 3.4).

This section is divided as follows: the first section illustrates the substitution

process concerning the proposed ranking paradigms for the perception stage outputs

(shown in Table 4.4). The second section demonstrates the substitution process for the

comprehension stage (shown in Table 4.5) and, finally, the third section explains the

projection stage (shown in Table 4.6).

Perception Stage Level 1

This section substitutes relevant values from the proposed assessment outputs of the

perception stage (shown in Table 4.4). The first object is the activity of interest

AoIr = {aoir(1),aoir(2)}, where N = 2. The second object is the score of importance

SoIr = {soir(2), soir(1)}. The third object is the predetermined order of each complex

event NoHi = {noh1(1),noh2(0)}, where ToH = 1.
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Comprehension Stage Level 2

This section substitutes relevant values from the proposed assessment output of the com-

prehension stage (shown in Table 4.5). The first object is AoIr = {aoir(3),aoir(2),aoir(1)}.

The second object is the score of importance SoIr = {soir(1), soir(2), soir(3)}. The

third object is the number of hops, NoHh = {noh1(2),noh2(1),noh3(0)}.

Projection Stage Level 3

This section substitutes relevant values from the proposed assessment output of the

projection stage (shown in Table 4.6).

The first object is AoIr = {aoir(1),aoir(4),aoir(3),aoir(2)}.

The second object is the score of importance SoIr = {soir(4), soir(1), soir(2), soir(3)}.

The third object is the number of hops, NoHh = {noh1(3),noh2(2),noh3(1),noh4(0)}.

This section has substituted the situational assessment components for the multilevel

situational assessments. The next section illustrates the second phase for the evaluation

process.

4.2.7 Quantification Process

This section illustrates the evaluation process for quantifying the ranking capability

of a real time system. This section is divided as follows: the first section quantifies

the proposed assessment ranking paradigms of the perception stage (shown in Table

4.4). The second section quantifies the proposed assessment ranking instances for the

comprehension stage [shown in Table 4.5]. Finally, the third section illustrates the

method of quantifying the proposed ranking instances for the projection stage(shown

in Table 4.6).
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Perception stage

The evaluation process quantifies the ranking capability for the first level of assessment.

The first part quantifies the first projection techniques, where the perception stage

has identified two AoI. This is done by evaluating the proposed assessment ranking

instances (shown in Table 4.4) in comparison with the absolute truth ranking paradigms

of the situation (provided in Table 4.1).

Firstly, the evaluation process computes the current number of hops (defined in equa-

tion 3.10) CoHi = {coh1(2−1 = 1), coh2(2−2 = 0)}. Secondly, it computes the actual

number of hops, (defined in equation 3.11) AoHi = {aoh1(1−0 = 1),aoh2(1−1 = 0)}.

Thirdly, it computes the difference in the number of hops, (defined in equation 3.12,

DoHj = {doh1(0),doh2(0)}. Fourthly, it computes the reference number of hops for

each AoI (defined in equation 3.13 RoHi = {roh1(2∗0 = 0), roh2(1∗0 = 0)}. Finally,

it quantifies the ranking capabilities using the Ranking Capability Score for the

perception stage as follows: RCS =∑2
j=1 = roh1 (0)+ roh2 (0+0) = 0.

Comprehension Stage

The evaluation process quantifies the ranking capability for the second projection

technique. The second section quantifies the second projection technique, where the

comprehension stage has proposed three AoI. This is done by evaluating the proposed

assessment (shown in Table 4.5) in comparison to the absolute truth of the situation

(provided in Table 4.2).

Firstly, it computes the current number of hops, (defined in equation 3.10 CoHi =

{coh1(3−3 = 0), coh2(3−2 = 1).coh3(3−1 = 2)}. Secondly, it computes the actual

number of hops (defined in equation 3.11 AoHi = aoh1(2−0 = 2),

aoh2(2−1 = 1).aoh3(2− 2 = 0). Thirdly, it computes the difference in number of hops

(defined in equation 3.12, DoHj = {doh1(2),doh2(2).doh3(0)}. Fourthly, it computes
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the reference number of hops for each AoI,(defined in equation 3.13, RoHi =

{roh1(3∗2 = 6), roh2(2∗2 = 4), roh3(1∗0 = 0)}. Finally, it quantifies the ranking ca-

pabilities using the Ranking Capability Score for the comprehension stage as follows:

RCS =∑3
j=1 = roh1 (6)+ roh2 (6+4)+ roh3 (6+4+0) = 26.

Projection Stage

The evaluation process quantifies the ranking capability for the third projection tech-

nique. In the third section the RCS aimed to quantify the third projection technique,

where the projection stage has anticipated four AoI. This is done by verifying the

proposed assessment ranking instances (shown in Table 4.6) in comparison to its

absolute truth ranking paradigms (shown in Table 4.3).

Firstly, the underlying process computes the current number of hops,(defined in

equation 3.10 CoHi = {coh1(4−1 = 3), coh2(4−4 = 0), coh3(4−3 = 1),

coh4(4 − 2 = 2). Secondly, it computes the actual number of hops (defined in equa-

tion 3.11) AoHi = {aoh1(3−0 = 3),aoh2(3−1 = 2).aoh3(3−2 = 1),aoh3(3−3 = 0)}.

Thirdly, it computes the difference in number of hops (defined in equation 3.12),

DoHj =

{doh1(0),doh2(2).doh3(2),doh4(0)}. Fourthly, it computes the reference number of

hops for each AoI, (defined in equation 3.13, RoHi =

{roh1(4∗0 = 0), roh2(3∗2 = 6), roh3(2∗2 = 4), roh4(1∗0 = 0)}. Finally, it quantifies

the ranking capabilities for the projection stage, using the Ranking Capability Score

as follows: RCS =∑4
j=1 = roh1 (0)+ roh2 (0+6)+ roh3 (0+6+4)+

roh4 (0+6+4+0) = 26.
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4.2.8 Assessment Results

This section presents the obtained results from the reliability based evaluation. The

discussion will encompass two levels of assessments. At first glance, Figure 4.7-(a),(b)

and (c) presented the RCS against each level of assessment, in relation to the operator

cognitive status. However, at second glance, Figure 4.7 part (d) demonstrates the

returned scoring scheme, versus the three qualitative states.

The first level of evaluation has three points of comparison. The first is presented

in Figure 4.7-(a). The first level of assessment scores (0). This means, the perception

stage has ranked two intrusion activities (shown in Table 4.4) as perfect as the ground

truth (shown in Table 4.1). Hence, the dimension of the RCS ,in relation, to the

number of identified threats, are shown between (0) to (4). From these, (4) presented

the worst state for the underlying situational assessment.

The second point of comparison is shown in Figure 4.7-(b). The second level of

assessments has scored (26). This means, the comprehension stage has ranked three

intrusion activities (shown in Table 4.5) as opposed to the ground truth (shown in

Table 4.2). Hence, the dimension of the RCS, in relation to the number of prioritised

events, are shown between (0) and (26). From these, (0) presented the good state for

the underlying situational assessment while (26) represented the bad states.

The third point of comparison is shown in Figure 4.7-(c). The third level of

assessment scores (26). This means, the projection stage has ranked four anticipated

threats (shown in Table 4.6) as not perfect as the ground truth (shown in Table 4.3).

Hence, the dimension of the RCS , in relation to the number of anticipated threats,

is shown between (0) and (96). From these, (0) presented the good state, while (96)

represented the worst state for the underlying situational assessment.
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Fig. 4.7 Measuring the Ranking Capability for Multi Projection Environment Using
the Ranking Capability Score (RCS)

The RCS has quantified three different ranking instances appropriately. However,

from the cognitive status of user perception, the underlying performance metric has

provided unreliable scores for two distinct qualitative states.

Figure 4.7-(d) presented the RCS versus the three qualitative states. The Good

State scores (0) for the first projection technique, in which the perception stage has

ranked two intrusion activities as perfect as the ground truth. The Degraded State

scores (26) for the second level of assessments, in which the projection stage has ranked
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four anticipated threats as not perfect as the ground truth. While the BadState also

scores (26) for the third level of assessments, where the comprehension stage has ranked

three intrusion activities as opposed to the ground truth.

Apparently, the ranking paradigms for the two qualitative states are different(degraded

states and bad states). However, the (RCS) provides a similar scoring scheme for both

stages. This is because the underlying performance metric was originally designed for a

different situational assessment in which the number of prioritised events are fixed. In

other words, the scoring scheme evaluates the prioritisation process under a contextual

scenario, where the real time system is configured to perform only a prioritisation

process, against the emerging situation. Specifically, the number of emerging events

for the perception stage is the same as the comprehension and projection stages.

The next section presents the enhanced Ranking Capability Score′ (RCS′) to provide

reliable scoring scheme for the underlying situational assessment, where the real time

system is configured to perform filtering and prioritisation processes during real time

operation. Consequently the proposed number of tracking activity are dynamically

shifted in multi projection environment.

4.3 Enhanced Method of the Ranking Capability

Score

This section introduces the Ranking Capability Score (RCS′). This section is divided

as follows: the first section demonstrates the development phase for the underlying

performance metric. The second section presents the reliability based evaluation in

order to quantify the ranking capability for the demonstrated case study in section

4.2.3. Finally, the third section illustrates the obtained results.

98



4.3 Enhanced Method of the Ranking Capability Score

4.3.1 Ranking Capability Score′(RCS′)

This section discusses the development phase for Ranking Capability Score′ (RCS′).

This underlying metric enhances the scoring scheme of the "RCS" , in term of providing

a representative scores for the operator perception concerning the three qualitative

states mention above, and therefore should provide an appropriate scoring scheme for

the prioritisation process during real time operation, in particular, under a scenario

where the number of tracking activity are dynamically changed in real time operation.

In order to enhance the RCS, the underlying process aimed to normalise the scoring

scheme between (0) and (1). With this in mind, the development phase is divided into

two stages. The first stage introduces three elements that are preliminary for the the

normalization process.

The first element, is the reverse set of AoHi and it is defined in 4.1:

AoH ′
j = ToH −NoHi (4.1)

where

The total number of hop ToH = N −1, 1 ≤ i ≤ N , 1 ≤ j ≤ N

The second object is the worst state for the DoHj , it is defined in 4.2:

DoH ′
j =

j∑
i=1

(NoHi)−
j∑

i=1
(AoH ′

i) (4.2)

where

1 ≤ i ≤ N , 1 ≤ j ≤ N

The third object introduces the worst state for the RoHi and it is defined in 4.3:

RoH ′
i = SoIi ∗DoH ′

i (4.3)
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where

1 ≤ i ≤ N And 1 ≤ j ≤ N

The process is satisfactory after introducing all the complementary objects for the

first development process. Next, the underlying process demonstrates the normalization

phase for the RCS; it is defined in equation 4.4). We call it the Ranking Capability Score′.

RCS′ =
∑N

j=1
(∑j

i=1 (SoIi)DoHi

)
∑N

j=1
(∑j

i=1 (SoIi)DoH ′
i

) (4.4)

where, 1 ≤ i ≤ N 1 ≤ j ≤ N

This section introduced the development phase for the underlying performance

metric RCS′. The next section examines the proposed performance metrics against

their intended purpose, with the help of the case study demonstrated in 4.2.2.

4.3.2 Measuring the Ranking Capability of a Real Time Sys-

tem

According to the in-line situational assessment (demonstrated in 4.2.3) there are three

different ground truths for the multi projection environment. Each one represents the

absolute truth ranking paradigms, in relation to the perception, comprehension and

projection stages, respectively.

Moreover, there are three different levels of assessment against the emerging situa-

tion. The first level is the proposed assessment for the perception stage. The second

level is the proposed assessment for the comprehension stage and the third level is

the proposed assessment for the projection stage.

In order to evaluate the ranking capability for the in-line situational assessment

demonstrated in 4.2.3, the evaluation process is divided into two phases.
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The first phase substitutes relevant values for the situational assessment components

such as the Ground Truth and Proposed Assessment. Since we have already evaluated

the underlying situational assessment in section 4.2.4, the situational assessment

components for the multi projection environment are defined in sections 4.2.5 and 4.2.6.

Therefore, the evaluation process presents the second phase for underlying evaluation.

The second phase is to quantify the ranking capability for a multi projection envi-

ronment using the Ranking Capability Score′ (RCS′). The quantitative assessment

aims to evaluate the proposed assessment in comparison to the ground truth for each

projection technique.

Firstly, the (RCS′) quantifies the first projection technique, where the perception

stage has identified two AoI. This is done by evaluating the proposed assessment (shown

in Table 4.4)in comparison to the absolute truth of the situation (provided in Table

4.1).

Secondly, it quantifies the second projection technique, where the comprehension

stage has proposed three AoI. This is done by evaluating the proposed assessment

(shown in Table 4.5) in comparison to the absolute truth of the situation (provided in

Table 4.2).

Thirdly, the enhanced proposes metric quantifies the third projection technique,

where the projection stage has anticipated four AoI. This is done by evaluating the

proposed assessment (shown in Table 4.6), in comparison to the absolute truth of the

situation (provided in Table 4.3).

4.3.3 Quantification Process

This section evaluates the ranking capability for a multi projection environment, using

the the Ranking Capability Score′ (RCS′). It begins by quantifying the ranking
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instances for the perception and comprehension stage. Finally, the evaluation process

quantifies the ranking instances for the projection stage.

Information Perception

In the previous section 4.2.7 we substituted four values in relation to the perception

stage. The first one is the current number of hops CoHi (defined in equation (3.11).

Secondly, we substituted the actual number of hops AoHi (defined in equation (3.10)

followed by finding the difference in number of hops DoHj (in equation 3.12). Finally,

the reference number of hops RoHi (defined in equation 3.13) was determined.

Now, the underlying process substitutes three values for the Ranking Capability

Score’ (RCS′). The first is the reversed set for the actual number of hops AoH ′
j .

(defined in equation 4.1). It is substituted as follows: AoH ′
j = {AoH ′

1(0),AoH ′
2(1)}.

Secondly, it computes the worst state for the difference in number of hops DoH ′
j .

(defined in equation 4.2). It is substituted as follows: DoH ′
j = {DoH ′

1(1),DoH ′
2(0)}.

Thirdly, it computes the worst state for the reference in number of hops RoH ′
j (de-

fined in equation 4.3). It is substituted as follows: RoH ′
j = {RoH ′

1(2),RoH ′
2(0) right}

Finally, it computes the Ranking Capability Score (RCS′) for the information

perception, comprehension and projection, (defined in equation 4.4) as follows:

RCS′ =

(∑2
j=1=roh1(0)+roh2(0+0)

)
(∑2

j=1=roh1(2)+roh2(2+0)
) = 0

4 .

Information Comprehension

In the previous section 4.2.7 we substituted four parameters in relation to the com-

prehension stage. The first is the current number of hops CoHi (defined in equation

3.11) Secondly, we substituted the actual number of hops AoHi (defined in equation

3.10) followed by determining the difference in number of hops DoHj (defined in
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equation 3.12) Finally, the reference number of hops RoHi (defined in equation 3.13)

was determined.

Now, we substitute another three parameters for the Ranking Capability Score

(RCS′). The first is the reversed actual number of hops AoH ′
j , (defined in equation

4.1); it is substituted as follows: AoH ′
j = {AoH ′

1(0),AoH ′
2(1),AoH ′

3(2)}

Secondly, we compute the worst state for the difference in number of hops DoH ′
j

which is defined in equation 4.2.

It is substituted as follows: DoH ′
j = {DoH ′

1(2),DoH ′
2(2),DoH ′

3(0)}.

Thirdly, we compute the worst state for the reference in number of hops RoH ′
j

which is defined in equation 4.3. It is substituted as follows: RoH ′
j =

{RoH ′
1(6),RoH ′

2(4),RoH ′
3(0)}.

Finally, it computes the Ranking Capability Score′ (RCS′) for the comprehension

stage (defined in equation 4.4) as follows:

RCS′ =

(∑3
j=1=roh1(6)+roh2(6+4)+roh3(6+4+0)

)
(∑3

j=1=roh1(6)+roh2(6+4)+roh3(6+4+0)
) = 26

26 .

Information Projection

In the previous section 4.2.7 we substituted four parameters in relation to the projection

stage. The first was the current number of hops CoHi (defined in equation (3.11).

Secondly, we substituted the actual number of hops AoHii (defined in equation (3.10)

followed by the difference in number of hops DoHj (defined in equation 3.12). Finally,

the reference number of hops RoHi (defined in equation 3.13) was determined.

Now, we substitute another three parameters for Ranking Capability Score (RCS′).

The first is the reversed actual number of hops AoH ′
j , (defined in equation 4.1). It is

substituted as follows: AoH ′
j = {AoH1(0),AoH2(1),AoH3(2),AoH4(3)}.
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Secondly, we compute the worst state for the difference in number of hops DoH ′
j , (de-

fined in equation 4.2). It is substituted as follows: DoH ′
j = {DoH ′

1(3),DoH ′
2(4),DoH ′

3(3),

DoH ′
4(0).

Thirdly, we compute the worst state for the reference in number of hops RoH ′
j , (de-

fined in equation 4.3). It is substituted as follows: RoH ′
j = {RoH ′

1(12),RoH ′
2(12),RoH ′

3(6),

RoH ′
4(0) right}.

Finally, we compute the RankingCapabilityScore (RCS′) for the perception stage

(defined in equation 4.4) as follows:

RCS′ =

(∑4
j=1=roh1(0)+roh2(0+6)+roh3(0+6+4)+roh4(0+6+4+0)

)
(∑4

j=1=roh1(12)+roh2(12+12)+roh3(12+12+6)+roh4(12+12+6+0)
) = 26
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4.3.4 Assessment Results

This section presents comparative results for the RankingCapabilityScore (RCS′),

versus, the inline situational assessment demonstrated in 4.2.3. The discussion en-

compasses two levels of evaluations. At first glance, Figure 4.8 part (a), (b) and (c)

presented the Ranking Capability Score′ (RCS′), against the information perception,

comprehension and projection . However, at a second glance, Figure 4.8 part (d)

demonstrates a comparative between the RankingCapabilityScore (RCS′), versus

three qualitative states.

The first level has three points of comparisons against the multi projection environ-

ment. The first is shown in Figure 4.8-(a) where the first projection technique scores

(0). This means the perception stage has ranked the identified threats (shown in Table

4.4) as perfect as the ground truth (shown in Table 4.1). Hence, the scoring scheme for

the Ranking Capability Score′ (RCS′) in relation to the number of identified threats

is shown between (0) and (1). From these, (0) presented the good state, whilst (1)

represents the worst state for the underlying situational assessment.
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The second point of comparison is shown in Figure 4.8 part (b). The second

projection technique scores (1). This means, the comprehension stage has ranked the

proposed threats (shown in Table 4.5) as opposed to the ground truth (shown in Table

4.2). Hence, the scoring scheme for the RankingCapabilityScore (RCS′) in relation

to the number of proposed threats is shown between (0) and (1). From which, (0)

presented the good state, whilst, (1) represented the worst state for the underlying

situational assessment.

The third point of comparison is shown in Figure 4.8 part (c). The third projection

technique scores (0.27). This means, the projection stage has ranked the anticipated

threats (shown in Table 4.6) as opposed to the ground truth (shown in Table 4.3).

Hence, the scoring scheme of the RankingCapabilityScore (RCS′) ,in relation to

the number of anticipated threats, is shown between (0) and (1). From these, (0)

represented the good state, whilst (1) represented the worst state for the underlying

situational assessment.

Similarly, Figure 4.8, part (d) presents the ranking capability score versus the three

qualitative states. The Good State scores (0) for the first projection technique in which

the perception stage has ranked two intrusion activities as perfect as the ground truth.

The Degraded State scores (0.13) for the second projection technique in which, the

projection stage has ranked four anticipated threats as not perfect as the ground truth.

The Bad State scores (1) for the third projection technique where the comprehension

stage has ranked three intrusion activities as opposed to the ground truth.

In the light of the three qualitative states, the Degraded State for the projection

stage scores (0). The Bad State for the comprehension stage scores (1). The degraded

state for the projection stage scores (0.27). RankingCapabilityScore (RCS′) has

quantified each projection technique appropriately. It has provided a reliable scoring

scheme for three different ranking instances regardless of the dynamic changes for
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Fig. 4.8 Measuring the Ranking Capability for Multi Projection environment using the
Ranking Capability Score′ (RCS′)

the number of emerging threats in a multi projection environment. this means the

enhanced RCS has overcome the knowledge representation problem concerning with

the user system relation.

This section examined the Ranking Capability Score′ (RCS′) with the help of

a case study. However, the demonstrated situational assessment showed only the

capability of the proposed metric against two or three ranking instances. The next
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section conducts a comparative evaluation for the Ranking Capability (Score′) versus

the Ranking Capability Score (RCS) with two levels of assessments. The first level is

a quality based evaluation used to examine the scoring scheme against all the ranking

instances for three different scenarios. The first scenario, where the real time system

is reporting two tracking activity for the decision making resources, second scenario

versus three tracking activity, and the third scenario versus four tracking activity. The

second level is a reliability based evaluation used to examine the scoring scheme against

the three qualitative states defined previously; the good state, degraded state and bad

state.

4.4 Comparative Evaluation

This section presents a comparative evaluation for the Ranking Capability (Score′)

versus the enhanced Ranking Capability Score (RCS). The evaluation process encom-

passes three parts. The first part examines both scoring schemes, versus all the ranking

instances over three separates scenarios. The second part presents a comparative result

for both scoring schemes, versus the demonstrated case study in section 4.2.3. The

third part illustrates a comparative result based on the reliability of both scoring

schemes, versus the three qualitative states likely to occur during a real time operation.

4.4.1 Quality Based Evaluation

This section presents a comparative evaluation for the (RCS′) versus the (RCS). This

is to examine both scoring schemes against their intended purpose. Each performance

metric is expected to provide unique scores against all ranking instances over three

different scenarios. Each of these scenarios encompassed different numbers of prioritised

events. Furthermore, in the first scenario, we have assumed the proposed assessment
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output has identified two prioritised events. In the second scenario, the SWA system

has proposed three prioritised events. In the third scenario, the proposed assessments

outputs has anticipated four prioritised events.

1 2
0

20

40

60

80

100

0

100

Ranking Instances

S
co

ri
n

g
S

ch
em

e
∗

10
2

(a) Ranking Capability
Score′

1 2
0

1

2

3

4

0

4

Ranking Instances

S
co

ri
n

g
S

ch
em

e

(b) Ranking Capability
Score

Fig. 4.9 Quality Based Evaluation for RCS versus RCS′. (2!) = 2 Ranking Instances

Originally, the RCS′ and RCS have been designed to evaluate the ranking capability

in relation to the prioritisation process. This was under a scenario where the SWA

system was reporting only important activities, but with different severity paradigms.

This section examines both performance metrics against their intended purpose; each

metric is expected to provide a unique score for all ranking instances against the three

different scenarios. Initially, the underlying process examines both scoring schemes

against the first scenario, where the SWA system is reporting two threatening activities

(results are shown in Figure 4.9) and then against three threatening situations (results

are shown in Figure 4.10) and finally, against four anticipated threats (results are

shown in Figure 4.11).

The RCS′ provides unique scores for all ranking instances in three different scenarios,

as shown in Figures (4.9), (4.10) and (4.11). In the first scenario, the first ranking

instances score 0, indicating, that the SWA system has ranked the emerging situations
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Fig. 4.10 Quality Based Evaluation for RCS versus RCS′. (3!) = 6 Ranking Instances

as perfect as the ground truth, while the second ranking instances scores (1) indicating

that the SWA system has ranked the emerging threats as opposed to the ground truth.

The second and third scenarios are shown in 4.10 and 4.11. The RCS′ provide unique

scores against all the ranking instances over the underlying situational assessment.

This is because it has been designed to evaluate the underlying situational assessment,

specifically under a scenario where the SWA system is reporting only distinct threatening

situations but with different severity paradigms.
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Fig. 4.11 Quality Based Evaluation for RCS Versus RCS′. (4!) = 24 Ranking
Instances

The RCS′ provides unique scores for all ranking instances in three different scenarios,

as shown in Figures (4.9), (4.10), (4.11). In the first scenario, the first ranking instances

score 0, indicating that the SWA system has ranked the emerging situations as perfect as

the ground truth, while the second ranking instances scores (2), indicating that the SWA

system has ranked the emerging threats as opposed to the ground truth. The second

and third scenarios are shown in Figures 4.10 and 4.11. The RCS provides unique

scores for all the ranking instances over the underlying situational assessment. That
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is because it has been designed to evaluate the ranking capability for the underlying

scenario. Specifically, under situational assessment where the SWA system reports only

important activities but with different severity paradigms.

This section showed that both scoring schemes successfully quantified the prioriti-

sation process over three separate scenarios. The next section further examines both

scoring schemes concerning the knowledge representation problem for the demonstrated

case study in section 4.2.3.

4.4.2 Case Study Based Evaluation

This section presents a comparative evaluation for the RCS′ and the RCS. This is

to examine both scoring schemes against the multi projection environment. In other

words, each performance metric is expected to provide unique scores against all ranking

instances for the demonstrated case study 4.2.3, regardless of the dynamic changes for

the number of emerging threats.
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Fig. 4.12 Measuring the Ranking Capability for Multi Projection Environment
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According to the demonstrated case study in section (4.2.3), the first projection

technique (perception stage) has ranked the identified threats as perfect as the ground

truth, while the second projection technique (comprehension stage) has ranked the

proposed threats as opposed to the ground truth. However, the third projection

technique has ranked the anticipated threats as not perfect as the ground truth. In

regards to this, the evaluation process aimed to examine ranking capabilities for each

projection technique, respectively. In other words, each performance metric is expected

to generate unique scores for different ranking instances. Figure 4.12 presented the

capability score against the multi projection environments.

Initially, the RCS in Figure 4.12-(a) scores (0) for the perception stage and then

it scores 26 for the projection and comprehension stages. However, each projection

technique has different ranking paradigms for the identified situations. This means the

underlying performance metric has not provided a reliable score for different ranking

instances concerning the demonstrated case study.

Similarly, the RCS′ in Figure 4.12-(b) scores (0) for the perception stage in-

dicating that the first projection techniques ranked the emerging threats as per-

fect as the ground truth. It then scores 0.13 for the projection technique, indicat-

ing that the projection stage has ranked the anticipated threats as not perfect as

the ground truth. Finally, it scores (1) for the third projection technique. This

means, the comprehension stage has ranked the emerging situation as opposed to

the ground truth. Indeed, based on the obtained results, the ranking capability

score′hasquantifiedtherankingcapabilityfortheunderlyingscenarioappropriately.

Furthermore, the evaluation process has conducted further assessment for the RCS

in Figure (4.13) and for RCS′ in Figure (4.14) to find an answer for the underlying

results.
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Fig. 4.13 Ranking Capability Score (RCS) versus Number of Identified Threats

The RCS in Figure (4.13) scores (0) for the good state in relation to number of

identified threats(shown in part (a)). However, it scores 26 for the degraded state,

in relation to the number of emerging threats showing in part (d). Furthermore, it

also scores 26 for the bad state, in relation to the number of emerging threats (shown

in part (c)). Practically, from the quantitative assessment perspective, the RCS has

quantified each projection appropriately. However, from the qualitative perspective,
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Fig. 4.14 Ranking Capability Score RCS′ Versus Number of Identified Threats

the underlying metric does not provide a reliable scoring scheme for multi projection

environments, specifically under a situational assessment where the number of emerging

threats are dynamically changing.

The RCS′ in Figure (4.14) scores (0) for the good state in relation to number of

identified threats(shown in part (a)). However, it scores 0.13 for the degraded state,

in relation to the number of emerging threats showing in part (d). Furthermore, it
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scores 1 for the bad state ,in relation to number of emerging threats (shown in part (c).

Practically, from both quantitative and qualitative assessment perspectives, the RCS

has quantified each projection appropriately. Therefore, it provides a reliable scoring

scheme for multi projection environments regardless of the dynamic changes for the

number of emerging threats in real time operation.

The next section further examines both scoring schemes against the qualitative

states in three different scenarios.

4.4.3 Reliability Based Evaluation

This section presents a comparative evaluation for the RCS′ and the (RCS). This is

to examine both scoring schemes against three qualitative states. Each performance

metric is expected to provide appropriate scores against different states regardless of

the dynamic changes for the number of emerging threats.
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Fig. 4.15 Qualitative States versus Scoring Scheme. (2!) 2 Ranking Instances

The (RCS) in Figure (4.15- a) scores (0) for the Good State, and (4) for the Bad

State. However, when the number of emerging threats changes to three AoIs, as shown
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in Figure (4.16- a), the RCS scores (0) for the Good State and (26) for the Bad State.

Likewise, the Degraded State scores (2) − (24). Lastly, when the number of emerging

threats increased up to four emerging threats, as shown in Figure (4.17-a), it scores

(0) for the Good State and (96) for the Bad State. It scores between (4) − (96) for

Degraded State.
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Fig. 4.16 Qualitative States versus Scoring Scheme. (3!) 6 Ranking Instances

The RCS′ in Figure (4.15-b) scores (0) for the Good State, and (1) for the Bad

State. However, when the number of emerging threats changes to three AoI, as shown

in figure (4.16-b), the RCS′ scores (0) for the Good State. It scores between (0.1538) to

(0.8461) for the Degraded State and it scores (1) for the Bad State. Lastly, when the

number of emerging threats changes to four AoI, as shown in (4.17-b), it scores (0) for

the Good State and (1) for the Bad State while it scores between (0.0416)to(0.9583)

for the Degraded State,

The Ranking Capability Score RCS′ provides a reliable scoring scheme for the

three qualitative states, regardless of the number of emerging threats. It scores (0) for

the good states and (1) for the bad state, in addition to that, it provides an appropriate
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Fig. 4.17 Qualitative States versus Scoring Scheme. (4!) 24 Ranking

scoring scheme for the degraded state between [0− 1]. However, the RCS provides an

inappropriate scoring scheme for the three different states. The scoring scheme for the

bad and degraded state changed in relation to the number of emerging threats. This

can cause uncertainty in the decision making resource during a real time operation,

where the number of emerging threats are dynamically changing.

4.5 Conclusion

This chapter has examine the knowledge representation of the Ranking Capability

Score (RCS) against three distinct qualitative states (demonstrated in section 4.2.1).

The evaluation process examined the proposed scoring scheme, specifically under

a contextual scenario and when the real time system is conducting three levels of

assessments against the identified situation. However, each level is reporting different

numbers of tracking activities for the analysis team.
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The result obtained in Figures (4.1), (4.2), (4.3) showed that the RCS for the three

qualitative state changed when the proposed number of tracking activities changed

respectively. This means, the underlying performance metric does not provide reliable

scores for the decision making resources, specifically during the time when the real

time system has been configured to perform multi perspective measurements against

the emerging situation (as has been demonstrated in section 4.2.8).

In regards to this, we introduced an enhanced method for the RCS in section 4.3 to

provide a reliable score for addressing the knowledge representation problem concerning

the user refinement (level 5) of the JDL, especially as the real time system is configured

to assess any dynamically monitored environment with multilevel of assessments.

Furthermore, we conducted three levels of assessment to validate the enhanced

scoring scheme against its intended purpose. The first level of assessment was a case

study based evaluation (showed in section 4.2.2). The demonstrated evaluation showed

only the capability of the proposed performance metrics against two or three ranking

instances (as has been shown in Figure 4.8).

With this in mind, we conducted a quality based evaluation. The evaluation

process aimed to examine the scoring scheme against its intended purpose. The

proposed performance metric provided unique scores against different ranking instances

concerning the prioritisation process of a real time system. The obtained results showed

that the RCS′ provided appropriate scores against all the ranking instances over three

separate scenarios.

Moreover, section 4.4 conducted a comparative evaluation. The evaluation process

encompassed three levels of assessments to illustrate the differences between the RCS′

scoring scheme versus the RCS scoring scheme. The first level was a quality based

evaluation (demonstrated in 4.4.1). The second level was a case study based evaluation
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(demonstrated in 4.4.2). The third level was a reliability based evaluation (demonstrated

in 4.4.3).

The obtained results for the quality based evaluation showed that the initial method

of the RCS provided unique scores against all the ranking instance over three different

scenarios. Additionally, it provided an inappropriate scoring scheme for the case study

based evaluation (shown in Figure 4.12-(a)). Moreover, it has provided unreliable

scores for the three different qualitative states, as has been demonstrated in Figures

(4.15-(a)), (4.16-(a)) and (4.17-(a)).

The enhanced method of the RCS′ provided unique scores against all the ranking

instance over three different scenarios (showed in Figures (4.9-b),(4.10-(a),(c)) and (4.11-

(a),(c)). It also provided appropriate scores against the case study based evaluation

(shown in Figure 4.12-b). Finally, it provided a reliable scoring scheme for the analysts

team, as has been demonstrated in Figure (4.15-(b)), (4.16-(b)) and (4.17-(b)).

Indeed, the Ranking Capability Score′ has provided a better scoring scheme in

comparison to the previous metric, in term of providing a representative scores for the

user perception concerning the three qualitative states mention above, in particular

under an extended scenario where the number of prioritised events are dynamically

filtered during a real time operation.
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Chapter 5

Scheduling Capability Score (SCS)

5.1 Introduction

The data fusion community has proposed multiple levels of situational assessment[26]

to enable timely responses during real time operations[19]. During assessment the

situational awareness system can report different classes of tracking activities; each class

has a different degree of importance. Ideally, the decision-making team are interested

in viewing the most important class. However, the real time system does not always

schedule the identified classes in respect of their degree of importance. This can be

due either to a lack of knowledge about the dynamically monitored environment or to

a configuration problem in the aggregation, classification or correlation techniques of

the situational awareness system.

The first contribution of this chapter is introducing the Scheduling Capability Score

(SCS) for evaluating the ranking capability of a situational awareness (SWA) system.

The proposed performance metrics have been designed and evaluated using an analytic

approach. The modelling scheme represents the SWA system outputs mathematically,

in the form of a list of activities. Such methods allowed the evaluation process to
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conduct a rigorous analysis of the scheduling process, despite any constraint related to

a domain-specific configuration.

Furthermore, this work conducts a comparative evaluation with existing performance

metric[74]; the evaluation methodology encompassed two levels of assessments with

the first level being a case study based evaluation. The second level is a quality-based

evaluation to examine the underlying metrics against their intended purpose.

The second contribution of this work is to deliver a method to analyse the computa-

tional complexities involved in evaluating the prioritisation and scheduling processes for

two distinct operations. The first operation is during the assessment stage where the

evaluation process required computes only the necessary values to assess the ranking

capability of the real time system. The second operation is during the optimisation

stage; where the evaluation process is required to compute more values to assess all

the ranking instances for any given scenario.

The chapter is divided as follows: the first section illustrates a guidance case study

in which the ranking capability of a real-time system is affected due to a configuration

problem during the aggregation stage for the multiple sensor information fusion. The

second section introduces a modelling scheme for representing the ranking capability

problem of a real time system.

The third section presents the developmental phase for the proposed performance

metric. The fourth section demonstrates two levels of evaluation to examine the

proposed scoring schemes against their intended purpose.

The fifth section discusses the computational complexity issues for two different

operations involved in evaluating the prioritisation and scheduling processes for a real

time system. The first operation is during the assessment stage where the underlying

performance metric is required to compute only essential values. The second operation

occurs when the potential performance metric is required to compute more values to
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assess the optimisation technique concerning the ranking capability of the situational

awareness system. Finally, we will discuss our findings and future work.

5.2 Ranking Capability Issue in Real-Time System

This section presents a guidance case study, from the cyberspace domain [74], in

which the real time system is experiencing ranking capability issues during multilevel

situational assessments due to a lack of configuration. The second section demonstrates

how the real time system is reporting the identified situation.

5.2.1 Overviews

According to the underlying scenario adapted from [74], the inline situational assess-

ments model has been configured to represent the identified situation in a list of

prioritised events. However, during the aggregation process of multiple information,

the SWA system has identified two classes of events.

• The first is a complex event which has high impact against the protected envi-

ronment, namely The Activity of Interest.

• The second is a complex event regarded as a normal activity, which has minimal

or no impact against the dynamical environment.

The real-time system has performed two levels of assessments against the identified

situation but the system reported undesirable events due to a configuration problem in

the aggregation process. Therefore, the perception and comprehension stages have not

ranked the identified events as perfect as the ground truth.

The next section demonstrates how the real-time system reports the identified

situation, during the time when the system was experiencing ranking capability issues.
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5.2.2 Reporting Different Classes of Prioritised Events

Following the contextual scenario in the previous section, the perception stage has

reported the identified activities at the time of their occurrence without any contextual

order. The proposed assessment is shown in Table 5.1. However, after conducting

further assessments against the identified situation, the SWA system, at the compre-

hension stage, has ranked the activities of interest into a contextual order; this is shown

in Table 5.2.

Apparently, the ranking instance at the comprehension stage is better than the

perception stage, in terms of shifting the AOIs over the normal events. Nevertheless,

the underlying ranking paradigms are not as perfect as the ground truth. This is shown

in Table 5.3.

Table 5.1 Proposed assessment at the perception stage adapted from[74]

Proposed Assessment Activity Priority
PA0 Activity 4
PA1 Activity 3
PA2 Activity (AoI) 2
PA3 Fragmented Activity -
PA4 Activity 5
PA5 Activity (AoI) 1
PA6 Activity not part of G.T -
PA7 Activity 6
G.T Ground Truth

The next section introduces the modelling scheme for the underlying case study in

order to evaluate the scheduling process of the real time system.
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Table 5.2 Proposed assessment at the comprehension stage adapted from[74]

Proposed Assessment Activity Priority
PA0 Activity 4
PA1 Activity (AoI) 1
PA2 Activity (AoI) 2
PA3 Activity 3
PA4 Fragmented Activity -
PA5 Activity 5
PA6 Activity not part of G.T -
PA7 Activity 6
G.T Ground Truth

Table 5.3 Identified activity at the ground truth adapted from[74]

Ground Truth Activity Priority
GT0 Activity (AoI) 1
GT1 Activity (AoI) 2
GT2 Activity 3
GT3 Activity 4
GT4 Activity 5
GT5 Activity 6
GT6 Activity 7

5.3 Modelling Scheme

The first section presents the developmental phase of the situational assessments object.

The second section presents the ground truth object and finally, the third section

presents the proposed assessments outputs during real time operation.

5.3.1 Situational Assessments

According to the demonstrated case study, the situational assessment identified two

classes of activity. The first is a number of complex events, with different priorities,
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having significant impact against the monitored environment. This is defined in

equation 5.1;

AoIβ = {1,2, . . .η} (5.1)

where 1 ≤ β ≤ η, AoIβ = β And η = The total number of important activities

The AoIs represent a set of complex events classified as important activities with

high impact against the protected environment, while (β) represents the respective

priority of each one. Therefore, the first activity AoI1 found on the ground truth was

prioritised with the value of (1). The next immediate activity was prioritised with the

value of (2) and the last important activity found on the ground truth was prioritised

with the value of (η), wherein, η is the total number of important activities concerning

the emerging situation.

The second objects are complex events with minimal or no impact on the monitored

environment. However, they have different priorities; these are defined in equation 5.2;

Aδ = {η +1, . . .Ψ} (5.2)

where 1 ≤ δ ≤ ζ, Ψ = η + ζ And ζ = The total number of normal activities.

The Aδ represent a set of complex events classified as normal activities with minimal

impact on the protected environment. Therefore, the first activity A1 found on the

ground truth was prioritised with the value of A0Iη +1. The next immediate activity

was prioritised with the value of A1 +1 and the last important activity found on the

ground truth was prioritised with the value of (Aζ +1), wherein, ζ is the last normal

activity found in relation to the identified situational assessment.
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The third object of the situational assessment is called the Atomic Event (AE).

This is defined below as:

AEα = {AE1, . . .AEσ} (5.3)

where 1 ≤ α ≤ σ σ = The total number of atomic events AEα = α

The AEα represent a set of atomic events found unexpectedly among the proposed

complex events in a real time operation. Usually, this occurs due to capability issues

with the lower level of the SWA system, such as the correlation, aggregation and

classification techniques.

Therefore, this class of event is at the bottom of the proposed list with no priorities.

The activity of interest AoIβ has different degrees of importance; this is defined in

equation 5.4:

DAoIς = {SOIN +1−ς} ,DAoI1 > DAoI2 > .. . > DAoIς (5.4)

where 1 ≤ ς ≤ η N = total number of events being proposed by the situational

assessment

SoIj = {N −NoHi} ,SoI1 > SoI2 > .. . > SoIN (5.5)

where, 1 ≤ j ≤ N , 1 ≤ i ≤ N

NoHi = N − i (5.6)

where, i = 1, . . . ,N
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The NoHi indicates how many hops away from the bottom of the list each i′th

activity is. Conversely, it shows the predetermined order for each AoI with respect

to their initial priority. For example, when considering a number of complex events

occurring in the ground truth list, the least important activity should remain on the

bottom of the list with 0 number of hops, while the immediate next important activity

should have a number of hops equal to 1. Hence, the number of hops is incrementing

by 1 up until the most important activities. The most important activity of all should

have the maximum number of hops. This is called the total number of hopToH and is

defined above in equation 5.6 as ToH = N −1.

Ideally, during situational assessment in a real time operation, the most important

activity found on the ground truth should have the highest score in terms of importance.

Hence, the score of importance SoIj is related to the severity of all activity being

tracked by the SWA system; this is defined in equation 5.5.

DAoIς represents the score of importance for each activity in relation to their

severity paradigms. For instance, the first activity of interest (AoI1) ∋ severity scores

= DAoI1 with priority value of (1), while the second (AoI2) ∋ severity score = DAoI2

with priority value of (2) and the last AoIβ ∋ severity scores = DAoIς with priority

value of η.

Furthermore, the normal class of tracking activity (Aδ) also has different degrees of

importance regarding its severity paradigms; this is defined in equation 5.7 ;

DA∆ = {SOIN +1−∆} ,DA1 > DA2 > ... > DAς (5.7)

where 1 ≤ ∆ ≤ ζ and N = total number of events being proposed by the

situational assessment.

DA∆ represents the score of importance of each activity in relation to their severity

paradigms. For instance, the first normal activity A1) ∋ severity scores = DA1 with
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priority value of η +1, while the second (A2) ∋ severity scores = DA2 with priority

value of A1 +1 and the last Aβ ∋ severity scores = DA∆ with priority value of σ.

According to the underlying situational assessments, we have introduced different

objects. Likewise, the number of hops NoHi represents the predetermined order of all

events being proposed by the situational assessment, and the SoIj represents the score

of importance concerning the severity paradigms of all events being tracked by the

SWA system.

In the next step, the modelling scheme introduces the representations of the SWA

system outputs, specifically, during the time where the real time system is reporting

different classes of tracking activity in the real time operation. Therefore, the situational

assessment (SA) contained a number of objects; this is defined in equation 5.8:

S.Aγ =
{{

AoIβ ∋ DAoIς

}
≺ {Aδ ∋ DA∆} ≺ {AEα} ,{NoHi} ,{SoIj}

}
(5.8)

where 1 ≤ j ≤ N , 1 ≤ β ≤ η, 1 ≤ δ ≤ ζ, 1 ≤ α ≤ σ, 1 < γ < N | γ = η + ζ +σ

The next section introduces the ground truth component for the underlying situa-

tional assessment.

Ground Truth Outputs

The absolute truth about the situational assessment is defined in equation 5.9 as

follows:

G.Tι =
{{

AoIβ ∋ DAoIς

}
≺ {Aδ ∋ DA∆}

}
(5.9)

where 1 ≤ β ≤ η, 1 ≤ δ ≤ ζ, 1 ≤ ι ≤ Ψ | Ψ = η + ζ
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The next section introduces the proposed assessment component for the underlying

scenario.

Proposed Assessment Outputs

We need to define how a real-time system might propose the identified situation during

a real time operation; we do not know how different systems will rank the identified

prioritised events. There are three likely situations: the proposed assessment might

rank the identified situation as perfect as the ground truth, or it might rank it as not

perfect as the ground truth, or, in the worst scenario, the system might rank different

classes of activities as opposed to the ground truth.

Therefore, due to uncertainty, the modelling process will introduce an additional

five different objects for the underlying scenario. The first object is the activity of

interest and it is defined as a set in equation 5.10 as follows:

AoIϑ ∈ {aoi1,aoi2 . . .aoiη} (5.10)

where the set ϑ ∈ AoIβ, ϑ|1 ≤ ϑ ≤ η

The second object is the normal activity and it is defined in equation 5.11 as follows:

Aφ =
{
a1,a2 . . .aζ

}
(5.11)

where the set φ ∈ Aδ φ|1 ≤ φ ≤ ζ

If the SWA system is proposing different ranking paradigms for the identified

events in comparison to the ground truth, the permutation concerning their degree of

importance will also change accordingly. Thus, the underlying process will define the
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degree of importance for different classes of tracking activities as a set; this is shown in

equation 5.12 as follows:

DAoIϑ = {daoi1,daoi2 . . .daoiη} (5.12)

where the ϑ ∈ DAoIς ϑ|1 ≤ ϑ ≤ η

Moreover, due to capability issues with the SWA system, the proposed assessment

component defines the ranking paradigms for the degree of importance concerning the

normal activities as a set; this is defined in equation 5.13:

DAφ =
{
da1,da2 . . .daζ

}
(5.13)

Where the random of set φ ∈ DA∆ φ|1 ≤ φ ≤ ζ

In regards to this, the Proposed Assessment P.A for the underlying situation is

defined in equation 5.14 below as:

P.AΓ = {{AoIϑ ∋ DAoIϑ}∪{Aφ ∋ DAφ}∪{AEα}} (5.14)

where 1 ≤ ϑ ≤ η, 1 ≤ φ ≤ ζ, 1 ≤ α ≤ σ, 1 < Γ < N | Γ = η + ζ +σ

It is equally important to mention that AoIβ ∋ DAoIϑ and Aδ ∋ DA∆. Hence,

while the SWA system is experiencing ranking capabilities issues, the underlying system

may not rank the AoIβ and Aδ as perfect as the ground truth. Therefore, if the ranking

paradigms for different classes of events change, the permutation in relation to their

degree of importance also changes accordingly.

This section has introduced the modelling scheme for situational assessment where

the real time system is reporting different classes of tracking activities during a real

time operation. Furthermore, we have defined three different components to represent
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the SWA system output in the form of a list of tracking activities. The first component

is the Situational Assessment objects, the second is Ground Truth objects and the

third is Proposed Assessment objects.

The next section in the development phase is the Scheduling Capability Score

(SCS) for evaluating the ranking capability of the real time system.

5.4 Developing Phase for the Scheduling Capabil-

ity Score (SCS)

This section discusses the development phase of the " Scheduling Capability Score".

The underlying performance metrics are intended to evaluate the ranking capability of

the real time system in terms of shifting or scheduling important classes of tracking

activity over the normal activities. Furthermore, the development phase is divided into

three phases with the first phase computing the scheduling capability for the proposed

assessment output during the real time operation. The evaluation process will compute

the Current Capability Score CCS; this is defined in equation 5.15:

CCS =
η∑

ϑ=1

(
(PAΓ −1 7→ AoIϑ)+ηM AX

ηM AX

)
(5.15)

where, ϑ ∈ AoIβ | 1 ≤ ϑ ≤ η, η= total number of important activity, PAΓ = Γ,

1 ≤ Γ ≤ N | N= The total number of tracking activity being proposed by real

time system.

We have defined the CCS to compute the current scheduling state concerning the

desired class of tracking activities, specifically it is measuring how the situational

awareness system is shifting the activity of interest AoI among other identified events

being proposed by the real time system.
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However, during real time operation the proposed number of tracking activities

is expected to go through one or more filtering processes such as the information

perception, comprehension and projection, therefore the proposed size of different

tracking activities it may be changed, these changes can directly impact the accuracy

of the CCS scoring scheme. Therefore we have defined the Actual Capability Score;

this is defined in equation 5.16 and the Worst Capbility Score; this is defined in

equation 5.17 for each time the proposed number of tracking activity being filtered in

a dynamically monitored environment.

ACS =
η∑

β=1

((
GTι −1 7→ AoIβ

)
+ηM AX

ηM AX

)
(5.16)

where

1 ≤ β ≤ η, 1 ≤ ι ≤ Ψ, Ψ = η + ζ, | ζ= The total number of normal activity, and

η=The total number of tracking activity in which the SWA system is regarded

as an important event. And GTι = ι

WCS =
η∑

β=1

((
NoHi 7→ AoIβ

)
+ηM AX

ηM AX

)
(5.17)

where, 1 ≤ β ≤ η, 1 ≤ i ≤ N | N = The total number of tracking activities being

proposed by real time system. η = The total number of tracking activities in

which the SWA system is regarded as an important event.

The second phase introduces the Scheduling Capability Score SCS; this is defined

in equation 5.18:

SCS =

∑η
ϑ=1

(
(PAΓ −1 7→ AoIϑ)+ηM AX

ηM AX

)
∑η

β=1

((
NoHi 7→ AoIβ

)
+ηM AX

ηM AX

) (5.18)
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where,

The random set of ϑ ∈ AoIβ | 1 ≤ ϑ ≤ η and 1 ≤ β ≤ η | η = the total number of

tracking activities in which the SWA system is regarded as an important event.

PAΓ = Γ, 1 ≤ Γ ≤ N | N= The total number of tracking activity being proposed

by real time system. NoHi = N − i and 1 ≤ i ≤ N

We have defined the SCS in equation 5.18 to quantify the scheduling process

on information perception comprehension and projection regardless any changes to

proposed number of tracking activity being proposed by the situational awareness

system. It should provide a representative score for the user perception in comparison

to the CCS defined in equation 5.15.

The third phase will normalise the SCS scoring scheme between [0-1]; this is to

overcome the knowledge representation problem previously discussed in Chapter 4.

The phase is divided into two stages. The first stage introduces the Good Scheduling

State (GSS); this is defined in equation 5.19:

GSS =

∑η
ϑ=1

((
GTι −1 7→ AoIβ

)
+ηM AX

ηM AX

)
∑η

β=1

((
NoHi 7→ AoIβ

)
+ηM AX

ηM AX

) (5.19)

where,

The random set of ϑ ∈ AoIβ | 1 ≤ ϑ ≤ η and 1 ≤ β ≤ η | η = The total number

of tracking activities in which the SWA system is regarded as an important

event. 1 ≤ ι ≤ Ψ, Ψ = η + ζ, | ζ= The total number of normal activities, GTι = ι,

NoHi = N − i and 1 ≤ i ≤ N | N= The total number of tracking activities being

proposed by the real time system.

The second stage introduces the Scheduling Capability Score′ SCS′ defined in

equation 5.20:
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SCS′ =



if SCS ̸= GSS
∑η

ϑ=1

(
(PAΓ −1 7→ AoIϑ)+ηM AX

ηM AX

)
∑η

β=1

((
NoHi 7→ AoIβ

)
+ηM AX

ηM AX

)


if SCS = GSS
∑η

ϑ=1

((
GTι −1 7→ AoIβ

)
+ηM AX

ηM AX

)
∑η

β=1

((
NoHi 7→ AoIβ

)
+ηM AX

ηM AX

)
−


∑η

ϑ=1

(
(PAΓ −1 7→ AoIϑ)+ηM AX

ηM AX

)
∑η

β=1

((
NoHi 7→ AoIβ

)
+ηM AX

ηM AX

)


(5.20)

The next section examines the proposed performance metrics against its intended

purpose with two levels of assessments.

5.5 Evaluation Process

This section examines the proposed performance metric against its intended purpose

with two levels of assessments, to challenge the Scheduling Capability Score′ SCS′.

The first level is a case study based evaluation used to guide researchers from various

disciplines in how to adopt proposed metrics to their domain specific needs and

configuration.

The second level is a quality-based evaluation to examine the underlying metric

against its intended purpose. This level has been designed to verify the scalability of the

proposed performance metric over three separate scenarios. Each scenario encompasses

different numbers of tracking activities which are regarded as important events by the

real time system.
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5.5.1 Case Study Based Evaluation

This section demonstrates an example used as guidance for researchers from various

disciplines in adopting the proposed performance metric to their domain specific

configuration. This section is divided as follows: the first part substitutes the situational

assessment objects which have been defined in equation 5.8; the second part quantifies

the scheduling capability of the real time system using the Scheduling Capability

Score′ SCS′ defined in section 5.2.

Substitutes the Situational Assessment Objects

According to the case study in section(5.2), the real time system has identified different

classes of tracking activity, as shown in Table 5.3. Due to capability issues with the

lower level of the situational awareness system, the perception and comprehension

stage has not ranked or scheduled different classes of tracking activity in accordance to

their degree of importance.

Moreover, to evaluate the scheduling capability for the underlying situational

assessment, we have defined 7 different objects in section 5.3. This is to model the

ranking capability problem of a real time system and allows researchers from various

disciplines to use the proposed modelling scheme for their domain specific configuration.

Thus, this section substitutes the situational assessment objects concerning the case

study demonstrated in section 5.2.

The first object is the tracking activity in which the real time system is regarded

as an important event AoIβ; this is defined in equation 5.1:

AoIβ =aoi1(1),aoi2(2), where 1 ≤ β ≤ ζ| η=2

The second object is the tracking activity in which the real time system is regarded

as normal activity Aδ; this is defined in equation 5.2:

Aδ =a1(3),a2(4),a3(5),a4(6), where 1 ≤ δ ≤ ζ | ζ=2
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The third object is the undesired events AEα and is defined in equation 5.3:

AEα= ae1(1),ae2(2), where 1 ≤ α ≤ σ | σ=2

The fourth object is the priority score for the activity of interest DAoIς ; this is

defined in equation 5.4:

DAoIς = daoi1(2),daoi2(1)

The fifth object is the score of importance SoIj for all tracking activity proposed

by the real time system; this is defined in equation 5.5:

SoIj = soi1(8), soi1(7), soi1(6), soi1(5), soi1(4), soi1(3), soi1(2), soi1(1), where, 1 ≤

j ≤ N | N = 8.

The sixth object is the predetermined order NoHh for all the tracking activity

being proposed by real time system and is defined in equation 5.6:

NoHi = noh1(7),noh2(6),noh3(5),noh4(4),noh5(3),noh6(2),noh7(1),noh8(0), where,

1 ≤ h ≤ N | ToH = 8−1 = 7.

The final object is the priority score for the normal activity DA∆ and is defined in

equation 5.7:

DA∆ = da1(4),da2(3),da3(2),da4(1)

The next section quantifies the scheduling capability for the multilevel situational

assessment using the proposed performance metric.

Measuring the Scheduling Capability of Real Time System

This section demonstrates the evaluation methodology to quantify the scheduling

capability of the real time system. The evaluation process will be divided into two

phases with the first phase measuring the scheduling capability during the perception

stage, as shown in Table 5.1. The second phase computes the scheduling capability

during the comprehension stage as shown in Table 5.2.
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The next section evaluates the ranking capability during the perception stage using

the Scheduling Capability Score SCS.

Quantifying the Ranking Capability on Information Perception

and Comprehension

In order to measure the capability of the situational assessment at the perception stage,

we start by computing the current capability score as shown in equation 5.15:

CCS =∑η=2
ϑ=1(

(PAΓ −1 7→ AoI1) = 2+(ηM AX) = 4
(ηM AX) = 4

)
+
(

(PAΓ −1 7→ AoI2) = 4+(ηM AX) = 4
(ηM AX) = 4

)

=
(

6
4

)
+
(

8
4

)
= 85

The second step computes the actual capability score, as shown in equation 5.16

ACS:

ACS =∑η=2
β=1(

(GTι −1 7→ AoI1) = 0+(ηM AX) = 4
(ηM AX) = 4

)
+
(

(GTι −1 7→ AoI1) = 1+(ηM AX) = 4
(ηM AX) = 4

)
=(

4
4

)
+
(

5
4

)
= 6

The third step computes the worst capability score WCS =, as shown in equation

5.17:

WCS =∑η=2
β=1(

(NoH1 7→ AoI1) = 7+(ηM AX) = 4
(ηM AX) = 4

)
+
(

(NoH2 7→ AoI2) = 6+(ηM AX) = 4
(ηM AX) = 4

)

=
(

11
4

)
+
(

10
4

)
= 540.

The fourth step computes the scheduling capability score SCS as shown in equation

5.18:

SCS=

∑η
ϑ=1

(
(PAΓ −1 7→ AoIϑ)+ηM AX

ηM AX

)
∑η

β=1

((
NoHh 7→ AoIβ

)
+ηM AX

ηM AX

) =

(
6
4

)
+

(
8
4

)
(

11
4

)
+

(
10
4

)= 85
540

The fifth step computes the good scheduling state as shown in equation 5.19:
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GSS=

∑η
ϑ=1

((
GTι −1 7→ AoIβ

)
ηM AX

)
∑η

β=1

((
NoHh 7→ AoIβ

)
+ηM AX

ηM AX

) =

(
4
4

)
+

(
5
4

)
(

11
4

)
+

(
10
4

)= 6
540

Finally, we compute the Scheduling Capability Score′ SCS′ during the perception

stage as follows:

SCS′ =

(
6
4

)
+

(
8
4

)
(

11
4

)
+

(
10
4

)= 85
540 = 0.157

Then, during the comprehension stage as follows:

SCS′ =

(
5
4

)
+

(
6
4

)
(

11
4

)
+

(
10
4

)= 20
540 = 0.037
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Fig. 5.1 Case Study Based Evaluation: Quantifying the Ranking Capability of Real
Time System using the Scheduling Capability Score SCS

Based on the above scenario, the proposed assessment at the comprehension stage

scores better than at the perception stage; the SWA awareness at the perception stage

scores (0.157) meaning the perception stage has not ranked the important class of

tracking activity as perfect as the ground truth. The proposed assessment at the

comprehension stage scores (0.037). Similarly, the SWA has ranked the activity of
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interest as not perfect as the ground truth. However, the ranking paradigm at the

comprehension stage is better than at the perception stage. Resultantly, the underlying

metrics have quantified the scheduling capability for a multilevel situational assessment

appropriately.

Furthermore, the case study based evaluation does not examine the capability of

the proposed performance metric, in terms of providing an evidencing score for all the

ranking instances concerning the scheduling process of the real time system. Rather, it

has successfully quantified only two ranking instances for the underlying scenario. The

next section conducts a quality based evaluation to examine the Scheduling Capability

Score SCS against all ranking instances over three separates scenarios.

5.5.2 Quality Based Evaluation

This section examines the proposed metric against its intended purpose. The Scheduling

Capability Score is expected to provide unique scoring scheme for all the ranking

instances concerning with scheduling process of real time system. This is from the

good state to the worst state, respectively.

The evaluation process will validate the proposed metrics against its intended

purpose over three separate scenarios. In the first scenario the real time system has

regarded two tracking activities as important from all the events being proposed; this

has been demonstrated in section 5.2. The second scenario regards three tracking

activities as important and, finally, the third scenario regards four tracking activities

as important. It is important to mention that we have designed these scenarios based

on the two inputs for the combination operation n choose k. We have assumed the size

of n=8 for simplicity reason, and following the case study demonstrated in existing

literatures [74],[77]. Furthermore we have assumed different sizes for the k term based
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on the determination point we have discussed in chapter 3, section 3.5.2 Determination

Point for the Maximum Number of AoIs.

Furthermore, validation is required to simulate all the ranking instance concerning

the scheduling process over the three separates scenarios.

The real time system tracked 8 different activities during the first scenario with

two of them regarded as important. Additionally, the scheduling capability score is

expected to provide a unique scoring scheme for all the ranking instances. With this in

mind, we computed the number of ranking instances using the combination equation

before running a numerical simulation using Matlab to mimic all the ranking instances.

Next, we configured the Scheduling Capability Score SCS to measure all the ranking

instances for the first scenario; the obtained results are shown in Figures 5.1 and 5.2.

Fig. 5.2 Scenario 1 : Quality Based Evaluation For Validating The Scheduling
Capability Score In Term of Providing Unique Scoring Scheme for All The Ranking
Instances Obtained By The Combination Operation 8C2 = 8!

2!(8−2)! .

During the second scenario, we increased the number of important events up to

three tracking activities; the obtained results are shown in Figures 5.3 and 5.4.
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Fig. 5.3 Scenario 1 :Quality Based Evaluation For Validating The Scheduling
Capability Score′ In Term of Providing Unique Scoring Scheme For All The Ranking
Instances Obtained By The Combination Operation 8C2 = 8!

2!(8−2)! .

Fig. 5.4 Scenario 2 : Quality Based Evaluation For Validating The Scheduling
Capability Score In Term of Providing Unique Scoring Scheme For All The Ranking
Instances Obtained By The Combination Operation 8C3 = 8!

3!(8−3)! .
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Fig. 5.5 Scenario 2 : Quality Based Evaluation For Validating The Scheduling
Capability Score′ In Term of Providing Unique Scoring Scheme For All The Ranking
Instances Obtained By The Combination Operation 8C3 = 8!

3!(8−3)! .

Finally, during the third scenario we increased the number of important activities

to our determination point, where the real time system is expected to deal with a

maximum of four tracking activities during the real time operation. The obtained

results are shown in Figures 5.5 and 5.6.

This section examined the Scheduling Capability Score against its intended purpose

over three separate scenarios and it was found the proposed performance metric

successfully quantified the scheduling capability of the real time system. The proposed

scoring scheme can notify the decision making resource about any ranking capability

issue that may occur during a real time operation. The next section will provide a

comparative evaluation using existing performance metrics.
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Fig. 5.6 Scenario 3 : Quality Based Evaluation For Validating The Scheduling
Capability Score In Term of Providing Unique Scoring Scheme For All The Ranking
Instances Obtained By The Combination Operation 8C4 = 8!

4!(8−4)!

Fig. 5.7 Scenario 3 : Quality Based Evaluation For Validating The Scheduling
Capability Score′ In Term of Providing Unique Scoring Scheme For All The Ranking
Instances Obtained By The Combination Operation 8C4 = 8!

4!(8−4)! .
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5.6 Comparative Evaluation

This section conducts a quality based evaluation to examine the Activity of Interest

Score in terms of providing an appropriate scoring scheme for all the ranking instances

concerning the scheduling process. The obtained result is shown in Figure 5.8
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Fig. 5.8 Scenario 1 : Quality Based Evaluation for Validating Activity of Interest
Score

Unfortunately, the underlying performance metric did not successfully quantify

all the ranking instances concerning the scheduling process of the real time system.

This means it had not been designed for measuring the scheduling process of the

SWA domain. The next section discusses the computational complexity involved when

evaluating the ranking capability of the real time system.

5.7 Computational Complexity

The number of computational steps can sometimes become an issue during a real

time operation; this is caused by, but not limited to, the following problems: the
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limitation of hardware resources being used for assessing emerging situations; the

frequent occasions needed for quantifying different ranking instances in dynamically

monitored environments; the number of computational steps required to complete the

evaluation process.

The first two problems are either subjected to a domain specific scenario or to

contextual situational assessments, while the last computational problem is directly

related to the assessment methods for evaluating the ranking capability of the real time

system. It is important to mention that this work is not interested in the computational

complexity levels involved in response to the growth of inputs. Rather, it is intended

to analyse the computational process concerning the two distinct operations utilised

for the process refinement stage of the Joint Director of Laboratories (JDL); the first

and second stages are assessment and optimisation, reespectively.

This section discusses the computational complexity involved in evaluating either

the prioritisation process or scheduling tasks of the real time system.

5.7.1 Prioritisation Process

To understand the computational complexity concerning the number of steps, let us

assume that the situational awareness, SWA, system is reporting a priority list with a

number of distinct events, each of them with a different degree of importance. The

notion of different ranking instances concerning the number of prioritised events is

related to the act of rearranging, or permuting, all the identified events into some

sequence or order. Furthermore, the number of permutations for each priority list

can be determined by n factorial (usually written as n!); this is the product of all

positive integers less than or equal to n. This allows us to define the number of ranking

instances for each priority list using the operation of factorial (N!), where N represents

the number of identified events, and factorial ! provides the number of all possible
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Fig. 5.9 The number of values required to compute for completion of the assessment
stage, concerning the prioritisation process of the real time system

ranking instances for those activities. If the system has proposed a priority list with
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Fig. 5.10 The number of values required to compute for completion of the optimisation
process concerning the prioritisation process of the real time system.

two complex events, the total number of state is obtained by (2!) = 2 then we will have

two ranking instances. Likewise, if there are three distinct events, then the number

of ranking instances can be obtained by factorial (3!) = 6 ranking instances. It is
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apparent that when the number of prioritised events for each priority list increased,

the number of ranking instances also increased accordingly.
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Fig. 5.11 Comparative Evaluation; Number of values to compute concerning the
prioritisation process

The computational complexity involved in evaluating the ranking capability depends

on two underpinning concepts of the process refinement stage. The first concept is the

assessments stage, where the underlying method of evaluation is required to compute

relevant values only for the proposed ranking instances; this is to verify the capability

of the real time system. The second concept is the optimisation stage, where the

underlying method of evaluation is required to compute all the ranking instances in

relation to the proposed priority list. Hence, we assumed the worst scenario, where

the computation process computes all the values for any given scenario; this is to

enable the potential optimisation techniques to select the desired ranking paradigms

for improving the ranking capability of the real time system.

Intuitively, during the assessment stage, the employed performance metric is required

to compute a lesser number of values in comparison to the optimisation process.

Likewise, the evaluation process is required to compute only the necessary values

for assessing the prioritisation process of the real time system. However, during the
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optimisation operation, the potential performance metric is required (at least) to

compute the values for all ranking instances being obtained by N! operation.

For example, if the system is proposing a priority list with n number of events, the

assessment stage requires only to compute n number of values in order to quantify

the ranking capability. However, in the optimisation stage the underlying process is

required to compute the (n!) × n number values to complete the evaluation process

for any given scenario.

Initially, it seems the computation complicity between the two operations is very

noticeable: this is because the factorial operation in the O big notation O(N!) is much

more complex than the O(N) terms. In fact, because we are dealing only with high

abstract views of multidisciplinary areas, the number of prioritised events for each

priority list is relatively very small, in comparison to lower levels. Furthermore, in

previous works [79], [80] we have defined a determination point for the growth of N

inputs. This allowed the evaluation process to be limited to an input size of four

prioritised events for each priority list, concerning three dimensional views for what

is deemed an important event. We have discussed the growth of n input with more

details in chapter 3, section 3.5.2 Determination Point for the Maximum Number of

AoIs.

With this in mind, there are three likely scenarios that might occur during real time

operation. The situational awareness system might propose a priority list with various

length of 2, 3 or, 4 complex events; these are the potential inputs for the evaluation

operation. Therefore, having the knowledge of what to expect, in respect to the sizes

and limits for each priority list, we can easily analyse the computational complexity

problem without the fear of n term growth for the evaluation method.

The task of analysis become easier now, since we have already defined the O big

notation for the optimisation stage O((n!) × n) and assessments process O(N). It is
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important to mention that this work is not interested in the computational complexity

levels involved in response to the growth of inputs; rather it is intended to analyse

the computational process during two distinct operations: the assessment operation

and optimisation process. We have defined a method to analyse the computational

complexity in terms of number of values required for assessing the prioritisation process

as follows:

NAPP = N (5.21)

where

NAPP = Number of values required to be computed during the assessment stage,

concerning with prioritisation process

N = Number of events being proposed by real time system

Furthermore, we have defined a method to analyse the computational complexity

involved during the optimisation stage as follows:

NOPP = N!×N (5.22)

where

NOPP = Number of values required to be computed during the optimisation

stage, concerning with prioritisation process

N ! = Number of all the ranking instances concerning the prioritisation process

N = Number of events being proposed by real time system

Equations 5.21 and 5.22 are subjected to two different operations concerning the

prioritisation process. The first task is the assessment stage: here the evaluation
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method is required to compute only the n number of values. For example, consider a

scenario where the real-time system is reporting a priority list of two complex events;

each of them has a different degree of importance.

Initially, the evaluation method is required to compute only two values for assessing

the ranking paradigms of each complex event. With a priority list of three complex

events, the performance metric will compute at least three values for assessing the

situation. Therefore, the number of values for computing will increase with the increased

length of each priority list. Similarly, for the assessment stage, the evaluation methods

will compute the number of values related only to the perceived ranking instances and

this is shown in figure 5.9. However, in the optimisation stage, the performance metric

is required to compute n values for all the ranking instances which it can obtain by

(N !) operation and this is shown in figure 5.10.

With this in mind, we can substitute the first constant for the assessment stage

with n number of values and the size of n depends on the length of each priority list,

while in the optimisation stage we can substitute it with n × N !. This computes the

necessary values for all ranking instances concerning the perceived priority list. A

method has been developed to compare the computational complexity, to complete

the two different operations of evaluations. Therefore, we can use equation 5.21 for

computing the computational complexity for the assessment stage, and equation 5.22

for quantifying the computational complexity of the optimisation process.

The next section discusses the computational complexity involved in evaluating the

ranking capability concerning the scheduling process of the real time system.

5.7.2 Scheduling Process

To understand the computational complexity concerning the scheduling process, let us

assume that the situational awareness, SWA, system is reporting a priority list with

151



Scheduling Capability Score (SCS)

two different classes of events, each of them with a different degree of importance.

The notion of different ranking instances concerning the scheduling of relevant groups

or classes of events over another undesired one is related to the act of combinatorial.

This is to select or shift a k number of events over another undesired one in a list

of n prioritised events, which has been proposed by a real-time system. Therefore,
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Fig. 5.12 The number of values required to compute in order to complete the assessment
stage, concerning the scheduling process of real time system

the number of combinations for all elements concerning the desired class of event k

in a given list of priority n, can be determined by n choose k (usually written as
nCk), which means the combination of n things taken k at a time without repetition.

That allows us to define the number of ranking instances for each priority list using

the operation of combination (nCk), where N represents the number of identified

events for the proposed priority lists, and K represents the number of desired class of

events. If the system has proposed a priority list with n = 8 number of events, this

encompasses two different classes of K1, and k2. The total number of states is obtained

by the combination operation (8Ck1=3) = 56, which results in fifty-six different ranking

instances concerning the scheduling process, likewise, for the second class of events
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Fig. 5.13 The number of values required to compute for the completion of the optimi-
sation stage, concerning the scheduling process of real time system

k2 = 5, then the number of ranking instances can be obtained by the combination

operation (8Ck2=5) = 70 ranking instances. It is essential to mention that the number

of ranking instances is either decreased or increased in proportion to the changes of N

or K sizes.

In other words, when the system is reporting a priority list with a large number of

prioritised events, the number of ranking instances will increase. Consequently, in such

a case, the number of values required to be computed will also increase. Moreover,

the possible combination of ranking instances are also increased proportional to the

difference in numbers between n and K sizes. Likewise, when the difference in numbers

between n and k decreased, the number of ranking instance decreased proportionally

and vice versa.

Therefore, during the assessment stage, the evaluation method is required to

compute k number of values to verify the scheduling capability of the real time system.

In such a case, the size of k term can influence the computational complexity for

evaluating the scheduling process of the real time system, if and only if 2 ⩾ n ⩾ S
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where S ⩾ 2 and K ⩾ 1 | n > K. With this in mind, we have defined a method to

analyse the computational complexity required for assessing the scheduling process as

follows;

NASP = K (5.23)

where

NASP = Number of values required to be computed during the assessment stage,

concerning the scheduling process

K = Number of events concerning the desired classes of events

Similarly, during the optimisation process, we have assumed the worst case scenario,

where the evaluation methods are required to compute a k number of values for all

the ranking instance N CK , that is to enable the potential optimisation techniques to

select the desired state among all others. In such cases, the optimisation operation is

influenced by two terms; the number of all the events being proposed by the real time

system, in which is defined equation 5.24 as N and the number of events concerning

the desired classes of events K. Therefore, we have defined a method to analyse the

computational complexity involved during the optimisation stage as follows:

NOSP = N CK ×K (5.24)

where

NOSP = Number of values required to be computed during the optimisation

stage, concerning the scheduling process

N = Number of all events being proposed by real time system

K = Number of events concerning the desired classes of events

154



5.7 Computational Complexity

N CK = Number of all the ranking instances concerning the scheduling process

Moreover, the computational complexity involved in the optimisation process is also

influenced by the number of ranking instances concerned with the perceived priority

list. Analytically, there are two different factors where the scheduling process can

influence the number of ranking instances. The first is the k size for the desired class

of events and the second is the difference in number between N and K sizes.
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Fig. 5.14 Computational complexity for various sizes of priority lists, concerning the
scheduling process

In Figure 5.12 when i = 0 the nCk becomes n=2CK=1, where the optimisation

stage is required to compute only 2C1 × 1= (2) values for completing the evaluation

operation. Furthermore, when i = 1 and the nCk become n=3CK=2, the evaluation

method is required to compute (6) values for assessing the scheduling process during

the optimization stage. Similarly, when i=3, the number of values to be computed is

(12).

Noticeably, when the i values increase, the k and n sizes also increase. Consequently,

the computational complexity in terms of the number of values to be computed also
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increases respectively. In such cases, we have observed the computational complexity of

assessing the scheduling process during the optimisation stage, where the difference in

number between n and k equals to (1). The evaluation process is intended to analyse

how the d factor can influence the computational complexity concerning the scheduling

process.
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Fig. 5.15 Computational complexity for various sizes of priority lists, concerning the
scheduling process

Thus far, we have decided to observe further the computational complexity under

various sizes of the different priority list as shown in Figures 5.14 and 5.15 where the

difference in numbers between n and k are changing in increasing order. Specifically,

we have defined the following condition(n + i) − (k + i) = D | 2 ⩾ n ⩾ 5, and k = 1.

That is, to allow the evaluation process to systemically observe the computational

complexity over the increasing number of n and k over D.

Looking at Figure 5.14, when i=0 and D=1, the evaluation method is required to

compute a lesser number of values in comparison to D=2, D=3, or D=4. Similarly,

Figure 5.15 shows that regardless of size D, the increases in some prioritised events n

and k can still influence the computational process during the optimisation stage, as
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Fig. 5.16 Comparative Evaluation; Number of values to compute concerning the
scheduling process, (n > k)=1

shown in Figure 5.16. However, the increased number in d term has greater influence

than the I term.
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Fig. 5.17 Comparative Evaluation; Number of values to compute concerning the
scheduling process, (n > k)=2

We conducted further analysis of the evaluation process to observe the computational

complexity during the optimization stage in comparison to the assessment stage,

concerning the increased input of terms I and D as shown in Figures 5.17 5.18 and
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5.19. Furthermore, when d = 1 and i = 4, as shown in Figure 5.20, the evaluation

method was required to compute at least (30) values for assessing the scheduling

process during the optimisation stage and (5) values during the assessment stage.

Similarly, during the time when the d = 2 and the i = 4, as shown in Figure 5.17,
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Fig. 5.18 Comparison Evaluation; Number of values to compute concerning the schedul-
ing process, (n > k)=3

the evaluation method required to compute at least (105) during the optimisation

process and (5) values during the assessment operation. Moreover, when the D term

increased to d = 3, as shown in Figure5.18, and to d = 4, as shown in Figure 5.19,

the difference in the computation complexity between the two operations increased

noticeably, in comparison to the previous scenario where the D term is smaller d=2, as

shown in Figure 5.17, and d=1, as shown in Figure 5.18. The D term had a greater

influence on the computational complexity during the optimisation stage in comparison

to the assessments stage. Furthermore, regardless of changes in the D term during

the assessment stage, the computational complexity did not change over four separate

scenarios. On the other hand, the I term influenced the computation process during the

assessment stage. However, it is still relatively small in comparison to the optimisation.
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Fig. 5.19 Comparison Evaluation; Number of values to compute concerning the schedul-
ing process,(n > k)=4

The second phase observes the computational complexity in response to the num-

ber of ranking instances. More directly, we intended to analyse the computational

complexity in response to the increased number of k term, over four separate scenarios:

first scenario k=1, second k=2,third k=3 and fourth k=4, where k is representing the

number of desired events. Simultaneously, the real-time system is reporting an ith

number of undesired events for each scenario. Consequently, the size of the prioritised

number of events n becomes n ⩾ k. In such cases, the number of ranking instances will

increase systematically in response to the increased number of K and I inputs. Hence,

the evaluation process intended to observe the computational complexity during the

assessment stage and optimisation process, where the size of the priority list is n = k + i

for the underlying scenarios, as shown in Figure 5.20.

The computational complexity of the optimisation process has responded to the

input of both terms i and k, as shown in Figure 5.21 part (a). However, during the

assessment stage, the response was only to the k term as shown in Figure 5.21 part

(b). Likewise, the computational complexity during the assessment stage is relatively

very small in comparison to the optimisation process.
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Fig. 5.20 The number of values required to be computed for various sizes of priority
lists, concerning the scheduling process

We can conclude during the assessment stage, the employed method of evaluation

is required to compute a lesser number of values in comparison to the optimisation

process. Likewise, in the assessment process, the performance metric is required to

compute only the necessary values for assessing the scheduling process of the real-time

system, while the optimised operation is required to compute the values for all ranking

instances obtained by the combination (nCk) operation.

This section has explained the computational complexity concerning the scheduling

process of the real-time system; the next section discusses our conclusion.
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Fig. 5.21 The number of values it required to be computed for various sizes of priority
lists, concerning the scheduling process

5.8 Conclusion

This chapter has introduced the Scheduling Capability Score for evaluating the schedul-

ing process of the real time system.

The proposed performance metric has been validated with two levels of assessments.

The first level was a case study based evaluation; this was to guide researchers from

various disciplines on how to adopt the proposed performance metrics into their domain

specific configuration. The second validation stage involved conducting a quality based

evaluation; this was to examine the proposed performance against its intended purpose.

More directly, the evaluation process examined the proposed performance metric and

existing scoring scheme over three separate scenarios; the results obtained showed

that the Activity of Interest Score did not provide a unique scoring scheme for all

the ranking instances concerning the scheduling process of the real time system; the

proposed performance metric accomplished this from the good to the worst state

respectively and over three separate scenarios. Indeed, the proposed scoring scheme is
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Scheduling Capability Score (SCS)

capable of notifying the analyst team about any ranking capability issues which may

occur during a real time operation.

Finally, we have developed a method to analyse the computational complexity of

the prioritisation and scheduling processes respectively. More directly, the proposed

method of evaluation has discussed the computational complexity concerning the

number of values required for completion during two different operations. The first

operation was the assessment stage where the evaluation method was required to

compute only the necessary values for assessing the ranking capability of the real time

system. However, the second operation, during the optimisation process, required the

evaluation method to compute more values in order to assess all the ranking instances

for any given scenarios.
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Chapter 6

Conclusion

Sea, land, space, air and cyberspaces are the five classifications of domains. It is

essential that the analyst’s team keep up to date with these in a dynamically monitored

environment. To meet the needs of these domains, the data fusion community has

introduced the information fusion reference model for multi-disciplinary areas; this

describes the theoretical concept of a real time system with multiple levels of situational

assessment. Each level performs a contextual task during a real time operation. In

return, the proposed outputs of these simultaneous processes are either prioritised in a

list of events (namely the tracking activity) or represented by visual means, supporting

timely responses during a real time operation.

Usually, the capability of a SWA system, in terms of ranking the identified tracking

activity, is hindered by the knowledge limitation problem, specifically when the under-

lying system is processing multiple sensor information during the real time operation.

Consequently, the system may not rank the identified list of tracking activities as

perfect, as desired by the decision-making resources. With this in mind, the researchers

defined two further levels for assessing the real time system performance. The first

level is the process refinement (level 4) for evaluating the information perception,
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comprehension and projection process. The second level is the user refinement (level 5)

for addressing the knowledge representation issues concerning the user-system relation.

The process refinement(Level 4) of the Joint Directors of Laboratories (JDL) is

a meta-process used to assess and improve the data fusion task during a real time

operation. During the assessment stage, the underlying process is expected to verify

the SWA domains(perception, comprehension and projection) and it can take two

forms of evaluation; qualitative and quantitative. Furthermore, during the qualitative

stage, the evaluation process is required to have predefined knowledge in order to serve

only a domain specific configuration. However, during the quantitative assessment, the

evaluation method is capable of assessing different domains with minimum details or

no predefined knowledge about domain specific information. Such methods can easily

be applied to different domains and serve a wider number of systems in comparison to

the qualitative method.

This thesis has developed advanced methods for evaluating the ranking capability

of an SWA system, using an analytical approach for measuring the ranking capability

in real time operations. The proposed scoring scheme can provide another dimensional

support for the decision-making resources, specifically when the real time system is

experiencing ranking capability issues.

Furthermore, the thesis has developed four different performance metrics using

quantitative approaches for evaluating the ranking capability in a real time system.

The Ranking Capability Score RCS has been designed to evaluate the prioritisation

process for the SWA domains (perception, comprehension and projection). The

Scheduling Capability Score SCS is used for evaluating the scheduling process for

data fusion information again for the SWA domains. The Ranking Capability Score

RCS′ and the Scheduling Capability Score′ SCS′ were developed to address the

knowledge representation problem concerning the user-system relation.
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Additionally, this work has presented validating techniques to challenge the proposed

scoring scheme with three levels of assessments. The first level is a case study based

scenario. This is to guide researchers from different areas in adopting the proposed

metrics to their domain specific needs and configuration.

The second level is a reliability-based assessment used to validate the proposed scor-

ing scheme against the decision-making perception. The validation process attempted

to verify the knowledge representation problem between the proposed scoring scheme

and user perception in regards to the three following qualitative states. The best state

is when the tracking activities are prioritised and scheduled entirely as perfect as the

ground truth, the degraded state is when the proposed list of tracking activities are

ranked as not perfect as the ground truth and, finally, the worst state is when the

emerging events are ranked opposite to the ground truth.

The third level is a quality-based assessment for verifying the proposed performance

metrics against their intended purpose. The underpinning evaluation encompassed

three phases. The first phase used an analytical approach to compute the number

of ranking instances for any given scenario concerning the prioritisation process or

scheduling process of a real time system. The second phase used Matlab to simulate

all ranking instances being computed during the analytical stage. Finally, the third

phase examined the potential proposed scoring scheme in terms of providing a unique

score for all possible ranking instances being proposed by the simulation phase.

The proposed performance metrics were designed and evaluated using an analytical

approach. Such methods allowed the evaluation process to conduct a rigorous analysis

of the prioritisation and scheduling processes, despite any constraints related to a

domain-specific configuration.

Moreover, the work developed a method to analyse the computational complexity

for two different operations involved in evaluating the prioritisation and scheduling
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processes for a real time system. The first operation is during the assessment stage,

where the underlying performance metric is required to compute only essential values

for assessing the capability of a real time system. The second operation occurs when

the potential performance metric is required to compute more values to assess the

optimisation technique, concerning the ranking capability of the SWA system.

The proposed performance metrics have been designed for assessing the information

fusion on perception, comprehension and projection, using quantitative assessments

method to serve a wider number of domains. For future work, the proposed solution

can be extended as follows:

The first direction; the proposed performance metric can be used for a domain

specific scenario, not only for assessing the ranking capability but also to act as

an automated optimisation process for sensing the three following operations: the

prioritisation paradigms for any desired tracking activity, the scheduling paradigms

for different classes of tracking activities and sensing the different scheduling and

prioritisation paradigms for time sensitive operations.

The second direction; this project has developed two separate performance metrics

for assessing the prioritisation and scheduling processes during real time operations.

Future work can involve a combined approach of the two.
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