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Obstacle crossing during locomotion: Visual exproprioceptive information is used in an 

online mode to update foot placement before the obstacle but not swing trajectory over it  

 

Highlights 

 

► We determine when exproprioceptive information is typically utilised to control gait over 

obstacles. ► The lower visual field (lvf) was unpredictably occluded during the final 

approach and/or period of crossing. ► When available, online lvf exproprioceptive input 

was used to control/update final foot-placement. ► Lvf occlusion during just the period of 

crossing had no effect on toe-clearance. ► Thus increases in toe-clearance seen in obstacle 

negotiation are due to uncertainties regarding final foot placement.. 

 

Abstract 

Although gaze during adaptive gait involving obstacle crossing is typically directed two or 

more steps ahead, visual information of the swinging lower-limb and its relative position in 

the environment (termed visual exproprioception) is available in the lower visual field (lvf). 

This study determined exactly when lvf exproprioceptive information is utilised to 

control/update lead-limb swing trajectory during obstacle negotiation. 12 young 

participants negotiated an obstacle wearing smart-glass goggles which unpredictably 

occluded the lvf for certain periods during obstacle approach and crossing. Trials were also 

completed with lvf occluded for the entirety of the trial. When lvf was occluded throughout, 

foot-placement distance and toe-clearance became significantly increased; which is 

consistent with previous work that likewise used continuous lvf occlusion. Both variables 

were similarly affected by lvf occlusion from instant of penultimate-step contact, but both 

were unaffected when lvf was occluded from instant of final-step contact. These findings 

suggest that lvf (exproprioceptive) input is typically used in an online manner to 

control/update final foot-placement, and that without such control, uncertainty regarding 

foot placement causes toe-clearance to be increased. Also that lvf input is not normally 

exploited in an online manner to update toe-clearance during crossing: which is contrary to 

what previous research has suggested. 



Introduction 

Although gaze during obstacle negotiation is typically directed two or more steps ahead[1], 

visual information of the swinging lower-limb and its relative position in the environment 

(visual exproprioception) is available in the lower visual field (lvf). It has previously been 

suggested that lead-limb trajectory over an obstacle is updated using concurrent lvf 

information[2-4]. However, we recently demonstrated that this is not necessarily the case; 

at least not for adaptive gait involving descending a kerb[5]. By unpredictably occluding lvf 

during the approach to the kerb-edge, we showed that lvf information acquired prior to 

final-foot placement, rather than concurrent lvf input, was used to control/update foot-

clearance and key pre-landing kinematic parameters. In the studies that suggested 

concurrent lvf information is used to update toe-clearance during obstacle crossing, 

participants wore goggles that occluded the lvf for the entirety of the trial. Thus the differing 

findings between our recent study and previous studies, is likely attributable to the means 

of lvf occlusion; though this requires confirmation. Such confirmation was the purpose of 

the present study.  

 

Methods 

From either 4 or 5 walking-steps away twelve healthy adults (4/8 male/female, age 25±6.3 

years, height 169.3±9.2 cm and mass 69.1±28.1 kg) negotiated an obstacle (6 or 10 cm high) 

under various lvf occlusion conditions. Kinematic data were collected (100Hz) using a 6-

camera system (Vicon 460, Oxford) and the set-up/design we used previously[5]. The tenets 

of the Declaration of Helsinki were observed and the study met with bioethics-committee 

approval. Participant’s vision was assessed[6] to be within the limits of healthy eyes[6]. 



 Force sensitive resistors (FSR, Delysis, Boston) were attached to each shoe-sole, 1 cm 

lateral of heel midpoint, and another 1 cm anterior to this (right shoe-sole only). Signals 

from the FSRs switched smart-glass goggles (see[5]) from transparent to translucent 

(occluding the lvf) at either heel contact of penultimate (right) or final (left) step before the 

obstacle, and back to transparent at right foot contact following crossing (figure 1). Lvf 

occlusion trials were presented with a 1:4 ratio, which avoided participants planning for 

‘worst case scenario’[7] and increasing weighting of central visual cues/feedforward 

mechanisms[8]. Trials were repeated 3 times (each height) giving 12 perturbed and 48 

unperturbed. Trial order was completely randomised. Participants then completed 6 trials (3 

at each height) with the lvf occluded for the entirety of the trial.  

 

Head-flexion was assessed (see[5]) to check whether participants attempted to receive 

visual exproprioceptive information in their upper field when lvf was occluded. Head-flexion 

was unaffected by visual condition (p>0.05), indicating there were no significant differences 

in the amount of head-flexion across the visual conditions. The following variables were 

analysed; trail-foot placement distance, lead toe-clearance, and lead-foot placement 

distance after obstacle[2, 9 – see footnote table 1]. 

 

Data were analysed using repeated measures ANOVA, with vision condition (x4) and step 

height (x2), as repeated factors. Level of significance was p < 0.05, and Tukey’s HSD was 

used for post-hoc analyses. 

 

Results 



Obstacle height had no effect on any variable and there were no significant height-by-vision 

interactions (p>0.27). Trail-foot placement (p=0.013) and lead toe-clearance (p<0.001) were 

affected by vision condition. Trail foot placement distance was greater when lvf was 

occluded throughout compared to full-field vision (p=0.015) and final-step lvf occluded 

condition (p=0.03), but there were no differences between penultimate- or final- step lvf 

occluded conditions and full-field vision (p>0.47). Clearance was greater in penultimate-step 

lvf occluded (p=0.03) and lvf occluded throughout (p=0.0003) conditions compared to full-

field vision, and was greater when lvf was occluded throughout compared to final-step lvf 

occluded condition (p=0.03, figure 2). There was no difference in clearance between final-

step lvf occluded condition and full-field vision (p=0.26). Lead-foot placement after crossing 

was unaffected by vision condition (p>0.05). 

 

Discussion 

The foot-placement distances and toe-clearance values observed (across conditions) are 

comparable with those found previously[2-4, 10]. Both measures were unaffected by 

obstacle height, which is consistent with previous studies[3, 4, 10].  

When lvf was occluded throughout, trail foot-placement distance and toe-clearance 

were both significantly increased in comparison to that found under full-field vision. These 

increases indicate participants were uncertain about the exact location of the obstacle 

during crossing and increased safety margins accordingly. This finding is consistent with 

previous work that likewise used continuous lvf occlusion[2-4]. When lvf was occluded from 

instant of penultimate-step contact, a non-significant increase in foot-placement distance 

was observed (table 1) and toe-clearance became significantly increased. In contrast, when 

lvf was occluded from instant of final-step contact neither variable was affected. In both 



unpredictably occurring occluded conditions the lvf remained occluded during lead-limb 

crossing. The key difference between these conditions is that participants gained visual 

information regarding final foot-placement when lvf was occluded from instant of final-step 

contact (due to information gained prior to occlusion), but did not obtain such information 

when lvf was occluded from instant of penultimate-step contact. Thus the fact that toe-

clearance was increased following lvf occlusion from instant of penultimate-step contact but 

was unaffected when lvf was occluded from final-step contact, suggests that visual 

exproprioceptive information regarding final foot-placement is paramount in determining 

toe-clearance margins. 

Notably, trail foot-placement distance (and toe-clearance) when lvf was occluded 

from penultimate-step contact, was not statistically different to that observed when lvf was 

occluded throughout. This indicates that occlusion of lvf from instant of penultimate-step 

contact did cause a meaningful increase in foot-placement distance, despite the increases 

observed not being significantly greater than those under full-field vision. This suggests that 

lvf exproprioceptive input is used in an online manner to control/update final foot-

placement, and without such control, uncertainty regarding foot placement causes toe-

clearance to be increased, and/or is used to update obstacle position information during the 

penultimate step, and without such updating margins of safety (foot-placement and toe-

clearance) are increased. Furthermore, the finding that toe-clearance was unaffected by lvf 

occlusion from instant of final-step contact, highlights that concurrent lvf input is not 

normally exploited to update toe-clearance: which is contrary to what has previously been 

suggested[2-4].  

Findings are consistent with our recent study investigating how lvf information is 

used when descending a kerb[5]. These converging results suggest that adaptive gait 



typically utilises online lvf (exproprioceptive) input to control/update final-step placement 

(before obstacle/kerb-edge), but not swing trajectory during crossing. 
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Figure 1. Illustration of the different visual conditions i) full-field vision, ii) penultimate-step 
lvf occlusion, iii) final-step lvf occlusion, and v) lvf occlusion throughout - not shown in 
figure. Laboratory ambience illuminance (measured at eye level) was 531 lux. 
 
 
Figure 2. Group mean (±SE) lead toe-clearance for the different visual conditions. 
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Figure 2  

 



 

Table 1.Group mean (±SD) trail-foot placement before (a), lead toe-clearance over (b), and 

lead-foot placement after (c) obstacle (mm).  

 
1. Full-

field 
2. Penult  

lvf occ 
3. Final  
lvf occ 

4. Lvf occ 
throughout 

Trail foot placement before  206 (62) 4 217 (49) 213 (74) 4 235 (69) 1,3 
Lead toe clearance   157 (44) 2,4 173 (43) 1 168 (47) 4 184 (42) 1,3 
Lead-foot placement after  614 (62) 619 (69) 612 (55) 636 (97) 
Superscript indicates the condition(s) that were significantly different to condition presented (see 

text for p-values). NB. Foot placements and toe clearance were the horizontal and vertical distances 

between the end of 2nd toe and obstacle during ground contact and point of crossing respectively (2, 

9). 

 

 
 


