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Abstract—We propose a distributed solution for the
group mutual exclusion problem based on priorities, in
a network with no share memory whose members only
communicate by messages. The proposed algorithm is
composed by two players: groups and processes, groups
are passive players while processes are active players.
For the coordination access to the resource, each group
has assigned a quorum. The groups have associated a
base priority in each stage, meanwhile the processes
have the same level priority. An important feature is
that processes have associated a time to participate in
the group in each stage. The message complexity obtain,
in the best case, where the group does not yield the
permission, is3l+ 3(q − 1) messages, wherel denotes
the processes linked andq denotes the quorum size.
The maximum concurrency of the algorithm isn, which
implies that all processes have linked to the same group.

Keywords-Mutual Exclusion - Group Mutual Exclu-
sion - Concurrency - Distributed Systems

I. I NTRODUCTION

In distributed systems there are processes that
compete in using resources and others that cooperate
and share resources for solving a task. The main
problem to solve is to recognize it as a mutual exclu-
sion one. This problem arises in multiprogramming
environments because processes require exclusive
access for using resources, e.g. printers, database.
Different solutions have been proposed to solve
this problem, e.g. [1], [6]. When some processes
cooperate and others compete, a difference from the
original problem appears, known as group mutual
exclusion. The concept of group mutual exclusion
(GME) can be applied to a variety of areas, e.g.,
concurrent data structures, distributed data bases,
communication, video conferences, wireless systems.
In GME two properties are important: exclusion
among competing processes and concurrence among
cooperative processes. There are different approaches
for this problem using different paradigms and im-
plementations.

GME problem is first proposed by Joung [3],
in which an asynchronous algorithm for shared
memory parallel computer system is proposed. Wu-
Joung [13], proposed a solution to the group mutual
exclusion on ring network. Several quorum-based
algorithms [4] [12] [7] have been proposed for
asynchronous message passing. The Manabe-Park
[7] algorithm prevents the unnecessary blocking,
defined as the case that two processes are prevented
from entering a critical section simultaneously even
if they are capable of doing so. Kakugawa et al
[5] proposed a privileged token approach, with two
classes of tokens -main and subtoken-, and used
coteries for communication structure to reduce mes-
sage complexity. Singh-Su [9] proposed a solution to
the region synchronization problem (such as mutual
exclusion, group mutual exclusion, readers/writers)
using message and satisfying the property of absence
of unnecessary blocking. There are also solutions for
mobile ad hoc networks like [11], [8], [10].

In this paper, we propose a distributed solution to
the problem of group mutual exclusion coordination,
considering that the processes require a time to share
the resource in a group. We consider that every group
has an associated priority.

II. PRELIMINARIES

Let be a set ofn processes P0, P1, ..., Pn−1; a
set of m groups G0, G1, ..., Gm−1 and a unique,
non shareable, resource among them groups. The
processes may work alone or in cooperation with
others processes in a group. Any of then processes
is able to participate in a group. Only one group at
a time is allowed to use the resource.

Initially each process works alone. When the pro-
cess wants to work in a team, it selects a group. Each
process may select any of the different groups with
a finite time of work in the team. Figure 1 shows
an example of relation between the groups and the
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Fig. 1. Example of Relation between the players
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Fig. 2. Communication between the players

processes; where P1, P2 and P7 are linked to the
group G1, this is active and has the permission to
use the resource. That means that all the processes
are using the resource concurrently. Processes P0 and
P8 are linked to the group G0 that is competing to
gain the access to the resource.

The model of two players, posed in [2], proposed
a general solution to this problem using two players:
groups and processes. Figure 2 shows the com-
munication between the players. Theprocessesare
active players and thegroupsare passive players. The
relation between the players is temporary. When the
player group is activated, the competition to access
the resource begins.

The design of a solution for this problem requires
an algorithm that satisfies the followings require-
ments.

• Mutual Exclusion: if some process is in a group,
then no other process can be in a different group
simultaneously.

• Bounded Delay: a process attempting to partic-
ipate in a group will eventually succeed.

• Progress: when the resource is available (the
critical section is empty), and some groups are
waiting. At some later point one group gain the
access to the resource.

• Concurrent Entering: if some processes are in-
terested in a group and no process is interested
in a different group. Then the processes can
participate in the group concurrently.

A. Coteries

Definition 2.1: Coterie [1]. Let U ={G1, ..., Gm}
be a set. A set C of subsets of U is a coterie under
U if and only if the following three conditions are
satisfied.

1) Non-emptiness: for eachSi ∈ C, Si is not
empty andSi ⊆ U.

2) Intersection property: for anySi, Sj ∈ C, Si

∩ Sj is not empty.
3) Minimality: for any Si, Sj ∈ C, Si is not a

subset ofSj .
Coterie is a set of quorums, and a quorum is a

subset of processes. By the intersection condition, the
coterie can be used to develop algorithms for mutual
exclusion in a distributed system. To enter the critical
section, a node is required to receive permissions
from all the members of some quorum in the system.
Since any pair of quorums have at least one member
in common, mutual exclusion is then guaranteed.

III. A LGORITHM GBP (GROUPBASE PRIORITY)

This section presents a solution to the problem
of group mutual exclusion including time associated
with the players (groups and processes), using mes-
sages for the communication. Applying the model of
the two players [2] to this situation, we obtain the
following:

• When the player process wants to participate
in a group, first specifies his time and then
selects the group. Waits until the group allow
the access.

• At the moment the player group activates, its
assigns the time of the first process to use the
resource.
While the player group is waiting to access to
the resource (entry section):

When a request from a player process
arrives, adds the request to the active queue
and compares the duration of the process
with the group duration. If it is greater,
then sets the duration to the maximum
duration of the new player process.

While the player group is using the resource
(critical section):

When a request from a player process
arrives, compares if the duration of the
process in not greater than the remainder
(group duration - elapsed duration). Then
adds the request to the active queue and
accepts the request. Otherwise adds the
request to the waiting queue until the next
stage.

The time associated with each player does not
represent deadline time but represents its duration in
the critical section. In distributed environment, we
have to consider the communication time (time de-
lay). We assume a reliable network, with a estimated
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communication timetc, and a finite time of use of
the resource. The communication time is necessary
to adjust the remainder time, to accept or not a new
player process while the player group is in the critical
section. We define the following variables:

• tci,k: Delay estimation of the communication
between the group Gk and the process Pi

• tpoduri: Process time associated to the group
in a stage

• gtpok: Group time in a stage
When the player group receives a request from a

process and it is in the critical section, the acceptance
control for a new process is the following: tpoduri

< (remainder timek - tci,k), where remainder timek
= (gtpok - tpousek)

When the time group finishes, we consider the
following options:

1) Wait until all the associated processes release
the group.

2) Inform the associated processes in order to
finish their associations. We could consider
different possibilities.

a) Waiting for all of the process acknowl-
edgment. The delay time could be unpre-
dictable.

b) Release the critical section (release the
resource) and allow another group to ac-
cess. This option avoids the waiting time,
but the notification could be delayed to
a associated process and still continue
using the resource while a different group
gains the access to the critical section.
This situation does not guarrantee the
group mutual exclusion property.

In accordance with the constrains imposed for
allowing the active association in the group, we
assume that the group does not take into account
its own time. When each process finishes, the group
is inform. When the group is empty of participant
processes it releases the critical section. This option
simplifies the solution and it is acceptable because
the associated time is not critical.

Figure 3 shows the actions of the player process.
The process, in each stage, sends two messages to
the group and receives one message from the group.

• Req-Process (Gk, Pi, topduri): the process Pi
sends a request message to the group Gk to
participate in during a period topduri.

• Rep-Process (Gk, Pi): the process Pi receives
the reply of his request from Gk, that allows the
access to the resource.

• Rel-Process (Gk, Pi): the process Pi sends
a message to the group Gk to inform that
the period in the group has finihed and it is
unlinked.

The time that the process stays in the critical
section is tpoduri and then releases its association

process Pi

RemainderSection
...

EntrySection
Gk = chosen group
tpoduri = chosen the time to use the resource
send Req-Process (Gk, Pi, topduri)
receive Rep-Process (Gk, Pi)

CriticalSection
... duration tpoduri

ExitSection

send Rel-Process (Gk, Pi)

Fig. 3. Actions of Player Process Pi

Variables
state (INACTIVE, ACTIVE, CS, EXIT)
LP: keeps information of all the linked process.
LG: keeps information of all waiting requests of
lock.
gtpok: keeps the time to use the resource.
priori: keeps the base priority of the group in
the stage.

Fig. 4. Variables Group Gk

with the group.
Figure 4 shows the variables of the group Gk.

Figure 5 shows the actions of the player group
associated with the process and figure 6 shows the
actions with the other groups. The states of the
group are the followings: INACTIVE: is waiting for
participating processes, ACTIVE: is waiting to access
the resource, CS is using the resource and EXIT

is releasing the resource. Each linked process has
the same priority, and each group has an associated
priority. Two different groups could have the same
priority. The proposed protocol is based on priority
without prompt meanwhile the group with lower
priority is using the resource.

The group communicates with the associated pro-
cesses and with the other groups. The messages
received from the process are:

• Req-Process(Gk, Pi, tpoduri) this message
is received from a process, if the group is
INACTIVE then changes its state to ACTIVE,
adds the request to the list LP and sets the length
of time of the group (gtpok) with the length of
time of the process (tpoduri). If the group is
ACTIVE the request is added, and the length
time of the group is checked with the length of
time of the process. If it is lower then it sets
its current time length with the process time
length. If the group is in CS it adds the request
and checks the remaining time group with the
length of time process. If it is greater it accepts
the process request and allows to participate in
this stage. Otherwise the process has to wait for
the next stage.

• Rel-Process(Gk, Pi) this message comes from
a process to release his link with the group.
Removes the request from the list LP. If the
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group Gk

♦ Receive Req-Process(Gk, Pi, tpoduri)
case state of

“Inactive”: gtpok = tpoduri;
state = “Active”;
conj = ∅;
priori = chosen priority;
AddLp(LP, Pi);
AddLG(LG, Gk, priori);
send multicast Req-Grupo(Gk,
prior);

“Active”: if tpoduri > gtpok then
gtpok = tpoduri;
AddLp(LP, Pi);

“SC”: AddLp(LP, Pi);
if tpoduri ≤ (gtpok - tpousek - tci,k)
then
send Rep-Process(Gk, Pi);

“Exit”: AddLp(LP, Pi);

♦ Receive Rel-Process(Gk, Pi)
DeleLp(LP, Pi)
if activeempty(LP) then

state = “Exit”;
send multicast Lib-Group(Gk);
Gl = SelectGroup(LG);
send Rec-Group(Gl, Gk);
state =“Inactive”;
if not empty(LG) then

state = “Active”;
conj = ∅;
priori = chosen priority;
send multicast Req-Group(Gk,
priori)

Fig. 5. Actions of Player Group Gk with Player Process

list LP is empty of active process then releases
the resource. If waiting processes exists in the
list then the group begins a new stage.

The messages received from the others groups are:

• Req-Group(Gl, priori) this message comes
from group Gl that requires thelock. The group
Gk grants the lock if available. If the lock is not
available two different cases may occur: (a) The
priority of the received message is less than the
priority of the message given the lock then the
request is delayed. (b) If the priority is greater
then calls the lock to the appropriate group and
then grant it the highest priority.

• Rec-Group(Gl, Gk) this message comes from
group Gl, affirmative response to the message
Req-Groupof requirement lock. If the group Gk
have all the locks then change the state to CS
and tell all the processes that are linked to the
group.

• Rel-Group(Gl, Gk) this message comes grom
group Gl requiring the lock, this will be suc-
cessful if the group Gk is not in the critical
section.

• Rep-Rel-Group(Gl, Gk) this message comes
from group Gl releasing the lock that had given

♦ Receive Req-Group(Gl, priori)
if empty(LG) then

AddListGroup(LG, Gl, priori);
send Rec-Group(Gk, Gl)

else
if HigherPriori(LG, Gl, priori) then

Gs = findHigh(LG);
send Rel-Group(Gs, Gk);
AddListGroup(LG, Gl, priori);
upgrade(priori);

else
AddListGroup(LG, Gl, priori);

♦ Receive Rec-Group (Gl, Gk)
if Gl /∈ conj then

conj = conj ∪ {Gl}
if |conj| = |Sk| then

state = “CS”
For each process in LP do

send Rep-Process(Gk,Pi)

♦ Receive Rel-Group (Gl, Gk)
if state 6= “CS” then

conj = conj - {Gl};
send Rep-Rel-Group(Gk, Gl);

♦ Receive Rep-Rel-Group (Gl, Gk)
Gs = findHigher(LG);
send Rec-Group(Gk, Gs)

♦ Receive Lib-Group (Gl)
DeleListGroup(LG, Gl)
if not emptyListGroup(LG) then

Gs = findHigher(LG);
send Rec-Group(Gk, Gs)

Fig. 6. Actions of Player Group Gk

the group Gk. The lock is granted the highest
priority requirement.

• Lib-Group(Gl) this message comes from the
group Gl that releases the lock. If there are out-
standing requirements, then choose the highest
priority and gives the lock.

Figure 7 (a) shows the state of the group Gk

(ACTIVE) with their linked processes Pi, Pj and
Pm, the time of the group is equal to the time of
process Pm. Figure 7 (b) shows when arrives a new
request from process Ps to link the group with a
time (tpodurs > gtpok), since the group is in the
ACTIVE state, sets the value of its time with the
time of Ps, figure 7 (c) shows this modification.
Figure 7 (d) shows the state of the group Gk (CS)
with their linked processes Pi, Pj and Pm, and the
tpousek > 0. Figure 7 (e) shows when arrives a new
request from process Ps to link the group with a
time tpodurs. Since the time tpodurs is greater than
(gtpok - tpousek - tcs,k) and the group is in SC then
the process Ps has to wait for the next stage, figure
7 (e) shows this case.

The messages among the groups correspond to the
competition to gain the access of the resource. The
algorithm uses messages to obtain the permissions
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Fig. 7. Concurrency

from the other groups. Each group has associated
a quorum (set of groups) to request the permission
of access (Sk). To select the quorum, we use the
Maekawa method [6], the size of the quorum is

√
m,

wherem is the number of groups. When the group
obtains all the permissions the resource can be use
and this is informed to his associated processes.

IV. CORRECTNESS

In this section, we show the correctness of the
proposed algorithm. The algorithm satisfies the prop-
erties of mutual exclusion, progress and concurrent
entering.

Theorem 4.1:The proposed algorithm ensures
mutual exclusion.

Suppose processesPi andPj can access the critial
section at the same time, wherePi ∈ Gk, Pj ∈
Gl, Gk 6=Gl. Thus, two processes are in the critical
section linked with different groups. If this occurs,
then the groupGk receives all the locks from his
quorum Sk and the groupGl receives all the locks
from his quorum Sl. For the condition (2) of the
definition of coterie, Sk ∩ Sl 6= ∅, then occurs that
the member of the two quorums grants the lock to 2
requirements. This is a contradiction.

Theorem 4.2:The proposed algorithm ensures
bounded delay.

Suppose a processPi makes a request to the
group Gk and is waiting indefinitely. Each request
has associated a priority (Gk, ts, priori). This
priority eventually will be the higher and grants the
access to the critical section. Besides, we consider
that each group does not stay indefinitely in the
critical section for the arrival of new processes,
through the time of the process (topduri) and the
remainder time of the group (gtpok - tpousek - tci,k).

To reduce the waiting time, we consider:
• When a group with a lower priority is using the

resource, the other groups with higher priority
that wants to access must wait.

• When a group is using the resource (state =
“CS”) accepts new requests of processes only
if the time associated is less than his remain-
der time. With this consideration, none of the
groups stays indefinitely using the resource.

Theorem 4.3:The maximun concurrency of the
proposed algorithm isn.

When each process makes a request for the same
group simultaneously, all of the requests are added to
the active queue. When the group grants the locks of
his quorum can access concurrently then processes.

V. COMPLEXITY

The complexity of the algorithm can be measured
using different topics, like the number of access to
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shared memory, the delay time between entries in
the critical section and the number of exchanged
messages. The election of the measure depends on
the type of the algorithm.

The complexity of the algorithm is measured in
function of the number of the messages requires.

Let q = |Sk|, in the best case, each group requires
for gain the access and release3(q − 1) messages,
where (q − 1) for request the permission,(q − 1)
for grant the permission,(q − 1) for release the
permission. If it has associated: one process, in total
requires3 + 3(q − 1); l processes, in total requires
3l + 3(q − 1). If in average, each group has to
yield once so, the number of messages requires are
5(q − 1), where (q − 1) for yield the permission,
(q−1) for grant the permission, withl associated pro-
cesses in total requires3l+5(q−1). If each group has
to yield the permission at mostp times, then requires
with l associated processes3l+3(q−1)+2p(q−1)
messages. With the maximum concurrency,n request
for the same group simultaneously, in total requires
3n+ 3(q − 1) messages.

Although the number of messages for a request
that is unique in a group is larger than3q+1 in [4],
the proposed algorithm requires less messages forl

simultaneously requests to the same group.

VI. CONCLUSION

In this paper we proposed a distributed solution for
group mutual exclusion considering that processes
have an associated time to share the group. This
should be the duration they will cooperatively work
in the group in each stage. The algorithm is based
on priorities over the groups with no prompt. The
communication among the processes and groups uses
messages. The groups have assigned a quorum, that
is use in the competition to get the permissions to
access the resource.

The algorithm guarantees mutual exclusion,
progress, bounded delay and concurrency. In the best
case, where the group does not yield the permission,
with l processes linked, requieres3l+3(q−1) mes-
sages. The maximum concurrency of the algorithm

is n, which implies that all processes have linked to
the same group.
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