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ABSTRACT 

 

In this paper, a trajectory tracking control for a 
nonholonomic mobile robot subjected to uncertainties and 
disturbances in the kinematic model is proposed. An 
adaptive variable structure controller based on the sliding 
mode theory is used, and applied to compensate these 
uncertainties and disturbances. To minimize the problems 
found in practical implementation using classical variable 
structure controllers, and eliminate the chattering 
phenomenon as well as compensate disturbances a neural 
compensator is used, which is nonlinear and continuous, in 
lieu of the discontinuous portion of the control signals 
present in classical forms. The proposed neural 
compensator is designed by a modeling technique of 
Gaussian radial basis function neural networks and does 
not require the time-consuming training process. Stability 
analysis is guaranteed with basis on the Lyapunov method. 
Simulation results are provided to show the effectiveness 
of the proposed approach. 
 

Keywords: nonholonomic mobile robot, trajectory 
tracking, kinematic model, uncertainties and disturbances, 
adaptive variable structure controller, neural networks, 
Lyapunov method. 

1. INTRODUCTION 

 The wheeled mobile robot of the type (2,0) is usually 
studied as a typical example of the nonholonomic system 
[1]. Many approaches have been proposed to treat the 
motion control design of this type of mobile robot [2]. 
From a review of the literature, most of results on the 
tracking problem of this nonholonomic system are 
proposed based on the assumption that the parameters of 
the model were known exactly or by selecting a special 
control target, i.e. the linear and angular velocities of the 
mobile robot, to avoid this problem. However, considering 
practical applications of this nonholonomic system, the 
difficulty in modeling practical systems exactly, and the 
unavoidable disturbances in control, effective tracking 
control design of uncertain nonholonomic systems needs 
be studied. Thus, this paper describes the design of a 
kinematic controller for this mobile robot, which is based 
on the sliding mode theory, considering the presence of 
uncertainties and disturbances in the kinematic model. 

 Variable structure control design (VSC) utilizes a high 
speed switching control law to drive the nonlinear 
predefined states trajectories onto a specified surface 
(called the sliding or switching surface), to attain the 
conventional goals of control such as stabilization and 
tracking. 
 Due to robustness properties against uncertainties, 
modeling imprecision and disturbances, the VSC has 
become very popular and used in many application areas 
[3-5]. However, this control scheme has important 
drawbacks that limit its practical applicability, such as 
high frequency switching (chattering) and large authority 
control, which deteriorate the system performance [6]. The 
first drawback mentioned is due to control actions that are 
discontinuous on the sliding surfaces, which causes the 
high frequency switching in a boundary of the sliding 
surfaces. This high frequency switching might excite 
unmodeled dynamics and impose undue wear on the 
actuators, so that the control law would not be considered 
acceptable. The second drawback mentioned, is based on 
the requirement of a priori knowledge of the boundary of 
uncertainty in compensators. If boundary is unknown, a 
large value has to be applied to the gain of discontinuous 
part of control signal and this large control gain may 
intensify the high frequency switching on the sliding 
surfaces. 
 Researches have been developed using softcomputing 
methodologies, such as artificial neural networks, in order 
to improve the performance and alleviate the problem 
found in practical implementation of VSC’s as mentioned 
in [7].  
 In this paper, the radial basis function neural networks 
(RBFNNs) are applied to compensate the disturbances, 
since the structure of an RFBNN is simpler than a multi-
layer perceptron (MLP), the learning rate of a RBFNN is 
generally faster than a MLP, and a RBFNN is easily 
mathematically tractable [8]. 
 Unlike other works that consider the kinematics of 
mobile robots without uncertainties and/or disturbances, 
and using the sliding mode theory applied to mobile robots 
[9]-[15], the contributions of this paper are: 

• An adaptive variable structure controller (AVSC) in 
Cartesian coordinates to estimate the uncertainties and 
compensate disturbances in the kinematic model, based on 
the sliding mode theory; 
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• A neural compensator (NC) used to replace of the 
discontinuous portion of the classical VSC avoiding the 
chattering as well as suppressing the disturbances without 
the knowledge of its limits; 

• The implementation of the NC is based on the 
partitioning of the RBFNNs into several smaller subnets in 
order to obtain a more efficient computation; 

• The estimated parameters as well as the weights of 
the hidden layer of RBFNNs are updated in an online 
manner to ensure the stability of the overall system 
without having any prior knowledge of the uncertainties 
and disturbances in the kinematic model;  

• The stability analysis of the mobile robot control 
system, the adaptation and learning algorithms are proved 
using the Lyapunov theory. 

2. PROBLEM FORMULATION 

2.1. Kinematics of a Nonholonomic Mobile Robot 

 A typical example of a nonholonomic mobile robot is 
shown in Fig. 1. 
 

 
Fig. 1. Nonholonomic mobile robot and coordinate 

systems 
 

The mobile robot has two driving wheels mounted on the 
same axis and a free front wheel. The two driving wheels 
are independently driven by two actuators to achieve the 
motion and orientation. The position of the mobile robot in 
the Cartesian inertial frame { }, ,o oX O Y  can be described 

by a vector OC
����

, and the orientation θ  between the 

mobile robot base frame { }, ,c cX C Y  and the Cartesian 

inertial frame, where C  is the center of mass coordinates 
(guidance point), with P , d , r , and 2R  being the 
intersection of the axis of symmetry with the driven wheel 
axis, the distance from the point C  to the point P , the 
radius of the wheels, and the distance between the driven 
wheels, respectively. 

 The posture vector 3q ∈ℜ  of the mobile robot is 
described by three generalized coordinates as: 

 

[ ]T
c cq x y θ= ,     (1) 

 

where cx  and cy  are the coordinates of C . 

 Under the condition of pure rolling and non-slipping 
and considering 0d = , the kinematic model of the mobile 
robot can be expressed as: 

 

( ) ( )q S q v t=ɺ ,      (2) 
 

with: 
 

cos( ) 0

( ) sin( ) 0

0 1

S q

θ
θ

 
 =  
  

,    (3) 

 

and [ ]( )
T

l av t v ω=  representing the linear and angular 

velocities of the mobile robot, respectively. However such 
kinematic model, Eq. (3), does not take into account the 
measurement noise, modeling uncertainties and 
disturbances. As there are input disturbances in lv  and 

aω , a more realistic kinematic model of the mobile robot 

can addressed by: 
 

( )( ) ( ) ( )vq S q v t d t= +ɺ ,    (4) 
 

where ( )
T

v vl a
d t ωδ δ =    represents the disturbances in  

( )v t  only, which are assumed to be upper bounded by: 
 

v vl l
δ ε< ,  

a aω ωδ ε< ,   (5) 
 

with vl
ε  and 

aωε  being positive bounded constants. 

 Another form of representing of the kinematic model, 
Eq. (4), in the Cartesian coordinates system is selecting 
the angular velocity of the wheel as the kinematic control 
target. So, it is possible to describe the linear and angular 
velocities ( ( )v t ) of the mobile robot in function of the 

angular velocity ( [ ]( )
T

r ltϕ ϕ ϕ= ) of the wheels through 

the following relationship: 
 

( ) ( )( ) ( )

2 2

2 2

l v rl r

la la

t d tv t d tv

r r
v

r r

R R

ϕ

ϕω

ϕ ϕ

δ ϕ δ

ϕ δω δ

++

 
+ +    

=     
++        −  

����������

, (6) 

 

and conversely: 
 

1

1

l vr lr

l al a

R
vr r

R

r r

ϕ

ϕ ω

δϕ δ

ϕ δ ω δ

 
++     

=     
+ +       −  

,  (7) 

 

with ( )
T

r l
d tϕ ϕ ϕδ δ =    represents the disturbances in 

( )tϕ  only, which are assumed to be upper bounded by: 
 

r rϕ ϕδ ε< ,  
l lϕ ϕδ ε< ,   (8) 

 

where 
rϕε  and 

lϕε  are positive bounded constants. 

 Replacing Eq. (6) in Eq. (4) and multiplying by Eq. 
(3), results in the following kinematic model ( )dS q  in 

Cartesian coordinates system: 
 

( )( ) ( ) ( )dq S q t d tϕϕ= +ɺ ,     (9) 
 

cos( ) cos( )
2 2

( ) sin( ) sin( )
2 2

2 2

d

r r

r r
S q

r r

R R

θ θ

θ θ

 
 
 
 =  
 
 −
  

.    (10) 

2.2. Error Dynamics with Disturbances 

 In order to formulate the trajectory tracking control 
problem, a reference trajectory is generated by the 
following reference kinematic model: 
 

( )r r rq S q v=ɺ , 
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cos( )r l rr
x v θ=ɺ , sin( )r l rr

y v θ=ɺ , r ar
θ ω=ɺ , (11) 

 

where [ ] 3T
r r r rq x y θ= ∈ℜ  denotes the reference 

posture of the mobile robot, the structure of ( )rS q  is 

similarly defined as in Eq. (3), and 
T

r l ar r
v v ω =    

denotes the reference linear and angular velocities of the 
mobile robot, respectively. With regard to Eq. (11), it is 
assumed that the signal ( )rv t  is chosen to produce the 

desired motion and that ( )rv t , ( )rv tɺ , ( )rq t , and ( )rq tɺ  

are bounded for all time. 
 The trajectory tracking control problem of a mobile 

robot is solved designing a control input [ ]( )
T

l av t v ω=  

such that the system, Eq. (4), follows the reference, Eq.  
(11), despite of disturbances. In fact, the aim is to 
converge the tracking errors (x r ce x x= − , y r ce y y= − , 

reθ θ θ= − ) to zero, respecting the following constraints: 
 

maxl lv v≤ ,  
maxa aω ω≤ ,   (12) 

  

where 
maxlv  and 

maxaω  are positive bounded constants. 

 Converting the tracking errors in the inertial frame to 
the mobile robot frame, the posture error equation of the 
mobile robot can be denoted as: 
 

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

x

y

x e

z y e

eθ

θ θ
θ θ

θ

    
    = = −     
         

ɶ

ɶɶ

ɶ

.   (13) 

 

 The error dynamics can be obtained from the time 
derivative of Eq. (13) as: 
 

cos( ) 1

sin( ) 0

0 1

l vl lr

lr

a aar

vvx y

z y v x

ω

δθ

θ
ω δωθ

   + −      = = + −          − +        

ɶɺɶ ɶ

ɶɺɺ ɶ ɶɶ

ɺɶ

. (14) 

 

 Now, considering the wheel angular velocity 

( [ ]( )
T

r ltϕ ϕ ϕ= ) as the control input, and using Eq. (6), 

the error dynamics, Eq. (14), can also be expressed by: 
 

cos( )

sin( )

2 2 2 2

      
2 2

2 2

lr

lr

ar

r r

l l

v

z v

r r r r
y y

R R
r r

x x
R R
r r

R R

ϕ

ϕ

θ

θ

ω

ϕ δ

ϕ δ

 
 

=  
 
  

 − + − −  +  
  + −   
   +  −

  

ɶ

ɶɺɶ

ɶ ɶ

ɶ ɶ

,  (15) 

 

respecting the following constraints: 
 

maxr rϕ ϕ≤ ,  
maxl lϕ ϕ≤ ,   (16) 

 

where 
maxrϕ  and 

maxlϕ  are positive bounded constants. 

2.3. Error Dynamics with Parametric Uncertainties 
and Disturbances 

 From kinematics, Eq. (9) and Eq. (10), if the 
parameters, r  and R , are unknown, the kinematic control 

targets, angular velocity of the wheels, can not be obtained 
from the selected velocity input because of the 
relationship, Eq. (7), between rϕ , lϕ  and lv , aω . But it 

is possible to use the estimates of these parameters in Eq. 
(7) and design adaptation laws for an adaptive controller 
to estimate these parameters. Assume:  
 

1
1

r
α = ,    2

R

r
α = .    (17) 

 

 Then, Eq. (7) can be rewritten as the following: 
 

1 1 2 2

1 1 2 2( )

l vr lr

l al a

vϕ

ϕ ω

δϕ δ α α α α
α α α αϕ δ ω δ

++    − − 
=     − − −+ +       

ɶ ɶ

ɶ ɶ
, (18) 

 

where 1α̂  and 2α̂  are the estimates of 1α  and 2α ;  

1 1 1ˆα α α= −ɶ  and 2 2 2ˆα α α= −ɶ  are the parameter errors. 

 Replacing Eq. (17), and Eq. (18) in Eq. (15), the error 
dynamics becomes: 
 

1 2

1 2

2

2

2

2

cos( )

sin( )

1 1

           0     1

    0     1

lr

lr

ar

l vl

a a

v

z v

y

v

x

ω

θ

θ
ω

α α
α α

δ
α
α

ω δ
α
α

 
 

=  
 
  

    
− − −    
     +      + − −       +   

  
− −  
  

ɶ

ɶɺɶ

ɶ ɶ
ɶ

ɶ
ɶ

ɶ

.  (19)  

3. CONTROL DESIGN-TRAJECTORY TRACKING 

3.1. Choice of Sliding Surfaces 

 The VSC is a feedback control with high-speed 
switching, whose action takes place in two phases: the 
reaching phase and the sliding phase. In the reaching 
phase, the states trajectories of the system (linear or 
nonlinear) are lead to a place in the states space chosen by 
the designer. In general, this place is defined by linear 

surfaces of the control errors (
T

z x y θ =  
ɶɶ ɶɶ ), known as 

switching or sliding surfaces (σ ), which are described by: 
 

( , ) 0Tz t c zσ = =ɶ ɶ .     (20) 
 

 In the sliding phase, the states trajectories are forced to 
remain on the sliding surfaces. Therefore, during this 
phase, the errors tend exponentially to zero according to a 

standard determined by matrix of positive constants Tc
 
of 

Eq. (20), which is chosen by the designer. 
 Thus, from the error dynamics, Eq. (19), are selected 
the following sliding surfaces: 
 

1 11

2 3 2 32

0 0
( , )

0

x
k k x

z t y
k k k y k

σ
σ

θσ
θ

 
      = = =       +       

ɶ
ɶ

ɶɶ
ɶɶ

ɶ

, (21) 

 

where 1k , 2k , 3k  are positive constants. 

3.2. Generic Model for Nonlinear Systems 

 The derivation of the VSC and their properties are 
made directly for an important class of nonlinear systems, 
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whose model, in the form of state equations, is given by: 
 

( ) ( , , ) ( , , ) ( , ) ( )bz t A z t B z t v z t d tρ ρ= + +ɺɶ ɶ ɶ ɶ ,  (22) 
 

with 0( , , ) ( , ) ( , , )A z t A z t A z tρ ρ= + ∆ɶ ɶ ɶ  and 

0( , , ) ( , ) ( , , )B z t B z t B z tρ ρ= + ∆ɶ ɶ ɶ , where ( )z tɶ  is the vector 

of states; ( , , )A z tρɶ  is the vector of nonlinear functions; 

( , )v z tɶ  is the vector of control inputs; ( , )z tρ ɶ  is the vector 

of parametric uncertainties; ( , , )B z tρɶ  is the matrix of 

nonlinear functions; ( , , )A z tρ∆ ɶ  and ( , , )B z tρ∆ ɶ  are the 
vector and the matrix representing the disturbances in the 
system arising from the parametric uncertainties, 
respectively; ( )bd t  is the vector of external disturbances;  

and 0( , )A z tɶ , 0( , )B z tɶ  refers to the vector and the matrix 

of nominal parameters, respectively. 
 The aim of this study is the derivation of a VSC robust 
to the present disturbances in the kinematic model, Eq. (4). 
To ensure the robustness of the controller, the disturbances 
should be bounded, the matrix ( , , )B z tρɶ

 
should be 

nonsingular and the following conditions must be 
satisfied: 
 

0( , , ) ( , )A z t B z t aρ∆ = ɶɶ ɶ ,   0( , , ) ( , )B z t B z t bρ∆ = ɶɶ ɶ , 

0 0( ) ( , )bd t B z t d= ɶɶ ,     (23) 
 

which means that ( , , )A z tρ∆ ɶ , ( , , )B z tρ∆ ɶ , and ( )bd t  must 

belong to the image of 0( , )B z tɶ ; aɶ  and bɶ  are the vector 

and the matrix that incorporate the parametric 

uncertainties, respectively; 0dɶ  represents the external 

disturbances. 
 So, the error dynamics, Eq. (19), can be rewritten 
based in Eq. (22) and Eq. (23) as: 
 

( )( )0 0( , ) ( , ) ( ) ( )n vz A z t B z t I b v t d t= + + +ɶɺɶ ɶ ɶ , (24) 
 

since 0A∆ = , ( )0 n vd I b d= +ɶ ɶ , and nI   is identity matrix. 

Compared with Eq. (22), it is important to emphasize that 

appears an additional term 0( , ) ( )vB z t bd tɶɶ  in Eq. (24), 

because the dynamic behavior of the disturbances also 
suffers the influence of parametric uncertainties. 

3.3. Adaptive Variable Structure Controller (AVSC) 

 In order to have influences also on the process of 
reaching of the sliding surfaces, the control ( , )v z tɶ

 
will be 

chosen in such a way to impose ( , )z tσ ɶ
 

to have the 
dynamics given by the following first order differential 
equation: 
 

( , ) ( ) ( )pz t Gsign K hσ σ σ= − −ɺ ɶ ,  (25) 
 

where G  and pK  are positive definite diagonal matrices, 

( )h σ σ=   (could be another function, since that 

( ) 0T hσ σ > ), and ( )sign
σσ
σ

≥

 

is a discontinuous 

function. 
 Using the Eq. (20), Eq. (21), and Eq. (25), and taking 
into account the Eq. (24), results in: 
 

( )( )0 0

( , ) ( , )
( , )

           ( , ) ( , ) ( ) ( )v

z t z t
z t z

z t

A z t B z t v t d t
z

σ σσ

σ

∂ ∂= +
∂ ∂

∂= + +
∂

ɶ ɶɺɺ ɶ ɶ
ɶ

ɶ ɶ
ɶ

 

( )0   ( , ) ( ) ( )vB z t b v t d t
z

σ∂+ +
∂

ɶɶ
ɶ

 

( )0 0

0 0 0

( , ) ( , ) ( , ) ( )

             ( , ) ( ) ( , )

z t A z t B z t v t
z

B z t bv t B z t d
z z

σσ

σ σ

∂= +
∂

∂ ∂+ +
∂ ∂

ɺ ɶ ɶ ɶ
ɶ

ɶ ɶɶ ɶ
ɶ ɶ

, (26) 

 

with 
 

( , )
0

z t

t

σ∂ =
∂
ɶ

, 1

2 3

0 0( , )
0

T kz t
c

k kz

σ  ∂ = =  ∂  

ɶ

ɶ
,  (27) 

 
 

whence is derived the following control law: 
 

( )1
0 0 ( ) pv B A Gsign Kσ σ σ σ−= − + + ,  (28) 

 

in which 
 

1
0 0

2 3

cos( )

sin( )

lr

l ar r

k v
A A

z k v kσ

θσ
θ ω

 ∂
 = =

∂ +  

ɶ

ɶɶ
, (29) 

 

1 1
0 0

2 30

k k y
B B

k x kzσ
σ − ∂= =  − −∂  

ɶ

ɶɶ
,   (30) 

 

1 2 31
0

2 3

1

1
0

y

k k x k
B

k x k

σ
−

 − − +
 =
 

− + 

ɶ

ɶ

ɶ

,     (31) 

 

and 2 3k k γ= , 
1

0
1x

γ≤ ≤
+ɶ  

similar to [16]. 

 Defining 
 

( )* ( ) pv Gsign Kσ σ= − + ,    (32) 
 

and replacing Eq. (28) in Eq. (26), results in: 
 

( )1 *
0 0 0 0 0 0 0

0

( ) ( )

   ( ) ( )p

A B B A v B bv t B d t

Gsign K B bv t

σ σ σ σ σ σ

σ

σ

σ σ ψ

−= − − + +

= − − + +

ɶ ɶɺ

ɶ
, (33) 

 

where   
 

1

1

2

2

0

0

b

α
α

α
α

 − 
 =
 

− 
 

ɶ

ɶ
ɶ

,      (34) 

 

1
0 0 nB B Iσ σ

− = , and 0 0( )B d tσψ = ɶ  are the disturbances in 

the system.  

3.4. Stability Analysis 

 Choosing the Lyapunov function candidate in the 
form: 
 

2 2
1 2

1 1 2 2

1

2
TV

α ασ σ
β α β α

 
= + +  

 

ɶ ɶ
,  1 0β > , 2 0β > , (35) 

 

which is positive definite, the sliding surface will be 
attractive since that the control law, Eq. (28), ensures that 
Vɺ  is negative definite. Using the result described by Eq. 

(33), an expression for Vɺ  is immediately obtained, that is, 
 

1 2
1 2 1 2

1 1 2 2

ˆ ˆTV V V
α ασ σ α α

β α β α
= + = − −

ɶ ɶɺ ɺɺ ɺ ɺ ɺ ,  (36) 
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1 2
1 0 1 2

1 1 2 2

ˆ ˆ( )TV B bv tσ
α ασ α α

β α β α
= − −

ɶ ɶɺ ɺɶɺ ,   (37)
 
 

2 ( )T T T
pV Gsign Kσ σ σ σ σ ψ= − − +ɺ .   (38) 

 

 After the necessary mathematical manipulations in 1Vɺ  
of Eq. (37), the parameter adaptation laws are defined as: 
 

2
1 1 1ˆ lk xvα β=ɺ ɶ ,

 
( )( )( )2

2 2 1 2 3 2 3ˆ ak xy k y k k x kα β θ ω= − − + +ɺ ɶɶɶ ɶ ɶ .  (39) 
 

 In 2Vɺ  of Eq. (38), as 0T
pKσ σ ≥ , the condition 

2 0V ≤ɺ  can be expressed by: 
 

( )T TGsignσ σ σ ψ≥ ,     (40) 
 

which is satisfied if the diagonal elements of G  meet the 
following constraint: 
 

g ψ> ,      (41) 
 

with g  being the minimum singular value of G  and ψ  
representing the maximum effect of the uncertainties 
and/or disturbances. Thus, 2Vɺ  is negative definite. 

According to a standard Lyapunov theory, the signals 
( , )z tσ ɶ , 1αɶ  , and 2αɶ  are bounded.  

3.5. Neural Compensator (NC) 

 Due to delays, physical limitations of actuators and 
imperfections of switching, it is not possible to switch the 
control from a value to another instantaneously. Because 
of this, the states trajectory varies in a vicinity around the 
sliding surface, instead of sliding over it. This 
phenomenon, known as chattering [3-5], as well as 
disturbances, can be avoided or at least reduced using 
RBFNNs, which are nonlinear and continuous functions, 
to approximate sgn( )G σ  in Eq. (28) [17]. Then v  stays, 
 

( )1
0 0

ˆ ( ) pv B A Q Kσ σ σ σ−= − + + , 

{ } { }1
0 0

ˆ ( )
T

pv B A W Kσ σσ σ ξ σ σ−   = − + • +    
,  (42) 

 

where { }Ŵσ , { }( )σξ σ  are GL vectors of weights and 

Gaussian radial basis functions [18], and their respective 

elements are ˆ
k

Wσ , and ( )
kσξ σ ; with ˆ ( )Q σ  being an 

1n ×  output vector of the RBFNNs. The stability of the 
RBFNNs can be analyzed, using Ge-Lee (GL) matrix and 
vector [18], which are defined by {.}, and by its product 
operator ’•’. The ordinary matrix and vector are denoted 
by [.]. 
 Substituting Eq. (42) in Eq. (26), results in: 
 

{ } { } 0
ˆ ( ) ( )

T
pW K B bv tσ σ σσ ξ σ σ ψ = − • − + +  

ɶɺ . (43) 

 

 To analyze the stability, the Lyapunov function 
candidate, Eq. (35), is modified, that is, 
 

2 2
11 2

1 1 2 2 1

1

2

n
T T

k k k
k

V W Wσ σ σ
α ασ σ
β α β α

−

=

 
 = + + + Γ
 
 

∑
ɶ ɶ

ɶ ɶ ,  (44) 

 

where 
kσΓ  is dimensional compatible symmetric positive 

definite matrix,  and { } { } { }ˆ
k k k

W W Wσ σ σ= −ɶ  is vector of 

weight estimation errors. 
 Differentiating Eq. (44), and replacing (43), Vɺ  is 
obtained as: 
 

{ } { }

1
1

1

ˆ ( )

ˆ      

TT T
p

n
T T

k k k
k

V W K

W W V

σ σ

σ σ σ

σ ξ σ σ σ

σ ψ −

=

 = − • −  

+ − Γ +∑

ɺ

ɺɶ ɺ

,  (45) 

 

with 1Vɺ  defined as in Eq. (37). 

 Recall that: 
 

{ } { }
1

( ) ( )
n

TT T
kk k

k

W Wσ σ σ σσ ξ σ ξ σ σ
=

 • =   ∑ɶ ɶ ,    (46) 

 

and choosing the learning law of RBFNNs as: 
 

ˆ ( ) kk k k
Wσ σ σξ σ σ= Γɺ

,      (47) 
 

and substituting Eq. (46), and Eq.(47) into Eq. (45), Vɺ  
stays: 
 

{ } { }2
1min

( )
TT T

pV K W Vσ σσ σ ψ σ ξ σ ≤ − + − • +  
ɺ ɺ ,(48) 

 

where minpK  is the minimum singular value of pK , and 

the solution for 1Vɺ  is given by Eq. (39). 

 The Vɺ can be rewritten as: 
 

2
minpV K f Qσ σ≤ − + ∆ −ɺ ,    (49) 

 

with { } { }( )
T

Q Wσ σξ σ = •  
 being the optimal 

compensation for f ψ∆ = . According to the property of 
universal approximation of RBFNNs [19], there exists 

0µ >  satisfying f Q µ∆ − ≤ , where µ  is arbitrary and 

can be chosen as small as possible. Assuming that 
µ η σ≤  with 0 1η< < ,  one obtains that 

2 2f Q σ η σ ησ∆ − ≤ = ,  therefore, Vɺ  results in: 
 

( ) 2
minpV K η σ≤ − −ɺ .     (50) 

 

Because of minpK η> , Vɺ  is negative definite. According 

to a standard Lyapunov theory, the signals ( , )z tσ ɶ , 1αɶ  , 

2αɶ  , and { }k
Wσɶ  are bounded.  

4. SIMULATION RESULTS 

 In the simulation, the same kinematic model of the 
mobile robot described in [20] is used, where geometric 
parameters are 0.057r =  m and 0.18R =  m. A circular 
trajectory was used as reference trajectory and the results 
were obtained using MATLAB/Simulink. The parameters 
of the circular trajectory are: 0.5lr

v =  m/s, 0.5ar
ω =  

rad/s, and the initial coordinates are given by 

[ ],  ,  1,  2,  26.56
TT

r r rx y θ  =
 

	 . The initial position of 

the mobile robot is [ ],  ,  1,  1,  10
TT

c cx y θ  =
 

	 . 
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 For this case, the AVSC with NC, Eq. (18), Eq. (39), 
Eq. (42), and Eq. (47), is considered. 
 The control gains of simulation are: 1 1.0k = , 

2 1.0k = , 3 1.0k = , 11 1.5pK = , 22 3.0pK = , 0.2
kσΓ = , 

1 19.0β =  and 2 2.9β = .  

 Moreover, the number of hidden neurons used are 25. 
For simplicity, the centres of the localized Gaussian radial 
basis functions [18] are evenly distributed in order to span 
the input space of the neural network, and the variance 
value of the Gaussian radial basis functions is fixed at 

1.5 . The weights of the RBFNNs as well as the 

estimated parameters (( )1ˆ 0α  and ( )2ˆ 0α ) were initialized 

to zero, without to have any prior knowledge of the system 
uncertainties and disturbances. 
 A bounded periodic disturbance term for all time (Fig. 
2) is added to the velocity vector v  of the mobile robot, 
Eq. 4, (similar to [21]), which is given by: 
 

0.5 0.1sin(0.01 )

0.2 0.1cos(0.01 )

vl
v

a

t
d

tω

δ

δ
  + 

= =   +    
. 
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Fig. 2. Disturbances applied in the mobile robot 

 

 The Figs. 3-10 illustrate the simulation results. It is 
seem in Fig. 3 that the mobile robot naturally describes a 
smooth path tracking over the reference trajectory. The 
tracking errors tends to zero as shown in Fig. 4. 
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Fig. 3. Trajectory tracking 
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Fig. 4. Tracking errors 

 

 Observe that in Figs. 5-6 are demonstrated that there 
are not chattering in the linear and angular velocities as 
well as angular velocities of the wheels, which represents 
the control signals. Both sliding surfaces σ  (Fig. 7) and 

their derivatives σɺ  (Fig. 8) converge to zero as well as the 
chattering is eliminated. In the Fig. 9 is shown that the 
responses of 1α̂  and 2α̂  are bounded and tends to true 

parameters. The values of RBFNNs outputs Q̂  presents 
behaviors similar to the disturbances (magnitudes in 
absolute values, see Fig. 2) in the steady-state as shown in 
Fig. 10, thus demonstrating the efficiency of the NC, Eq. 
(42) and Eq. (47). 
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Fig. 5. Linear and angular velocities 
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Fig. 6. Angular velocities of the wheels 
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Fig. 7. Sliding surfaces 

5. CONCLUSIONS 

 An AVSC with NC considering uncertainties and 
disturbances in the kinematic model were proposed in this 
work, and used as an alternative solution to the trajectory 
tracking control problem applied to nonholonomic mobile 
robot.  The VSC was considered because the invariance 
principle is applicable to it, but this technique exhibits the 
chattering phenomenon, that is highly undesirable. To 
avoid such a phenomenon, RBFNNs were used in the 
replacement of the discontinuous portion of the classical 
VSC, without compromising robustness. Due to this 
replacement, the invariance principle was not more 
verified, however the smooth control signal is achieved. 
The simulation results of the proposed approach were 
satisfactory.  
 As future works, it is validation of the AVSC with NC 
in real-time applications of a nonholonomic mobile robot, 
as well as to realize the integration of torque controllers of 
the literature with these kinematic controllers proposed 
here. 
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Fig. 8. Derivative of the sliding surfaces 
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Fig. 9. Estimated parameters 
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Fig. 10. RBFNNs outputs 
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