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ABSTRACT

In this paper, a trajectory tracking control for a
nonholonomic mobile robot subjected to uncertaséad
disturbances in the kinematic model is proposed. An
adaptive variable structure controller based onstiting
mode theory is used, and applied to compensatee thes
uncertainties and disturbances. To minimize thdlpros
found in practical implementation using classicatiable
structure controllers, and eliminate the chattering
phenomenon as well as compensate disturbancesral neu
compensator is used, which is nonlinear and coatiapin

lieu of the discontinuous portion of the contropreils
present in classical forms. The proposed neural
compensator is designed by a modeling technique of
Gaussian radial basis function neural networks @oets

not require the time-consuming training procesabifity
analysis is guaranteed with basis on the Lyapunethad.
Simulation results are provided to show the effertess

of the proposed approach.

Keywords: nonholonomic mobile robot, trajectory
tracking, kinematic model, uncertainties and disamces,
adaptive variable structure controller, neural meks,
Lyapunov method.

1. INTRODUCTION

The wheeled mobile robot of the type (2,0) is ligua
studied as a typical example of the nonholonomgtesy
[1]. Many approaches have been proposed to treat th
motion control design of this type of mobile rodai.
From a review of the literature, most of results the
tracking problem of this nonholonomic system are
proposed based on the assumption that the paranadter
the model were known exactly or by selecting a ispec
control target, i.e. the linear and angular velesitof the
mobile robot, to avoid this problem. However, coesing
practical applications of this nonholonomic systeime
difficulty in modeling practical systems exactlyndathe
unavoidable disturbances in control, effective kiag
control design of uncertain nonholonomic systemsdee
be studied. Thus, this paper describes the desiga o
kinematic controller for this mobile robot, which based
on the sliding mode theory, considering the presesic
uncertainties and disturbances in the kinematicehod
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Variable structure control design (VSC) utilizekigh
speed switching control law to drive the nonlinear
predefined states trajectories onto a specifiedaser
(called the sliding or switching surface), to attahe
conventional goals of control such as stabilizatand
tracking.

Due to robustness properties against uncertajnties
modeling imprecision and disturbances, the VSC has
become very popular and used in many applicatieasar
[3-5]. However, this control scheme has important
drawbacks that limit its practical applicabilityuch as
high frequency switching (chattering) and largehatity
control, which deteriorate the system performaG¢eThe
first drawback mentioned is due to control actitivet are
discontinuous on the sliding surfaces, which caubkes
high frequency switching in a boundary of the slgli
surfaces. This high frequency switching might excit
unmodeled dynamics and impose undue wear on the
actuators, so that the control law would not besaered
acceptable. The second drawback mentioned, is based
the requirement of a priori knowledge of the bougda
uncertainty in compensators. If boundary is unknoan
large value has to be applied to the gain of disooous
part of control signal and this large control gairay
intensify the high frequency switching on the sigli
surfaces.

Researches have been developed using softcomputing
methodologies, such as artificial neural netwonkgrder
to improve the performance and alleviate the pmble
found in practical implementation of VSC’s as mené&d
in [7].

In this paper, the radial basis function neurdvoeks
(RBFNNSs) are applied to compensate the disturbances,
since the structure of an RFBNN is simpler than atimul
layer perceptron (MLP), the learning rate of a RBFNIN
generally faster than a MLP, and a RBFNN is easily
mathematically tractable [8].

Unlike other works that consider the kinematics of
mobile robots without uncertainties and/or distudes,
and using the sliding mode theory applied to motulzots
[9]-[15], the contributions of this paper are:

«An adaptive variable structure controller (AVSC) in
Cartesian coordinates to estimate the uncertairares
compensate disturbances in the kinematic modetdbas
the sliding mode theory;
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*A neural compensator (NC) used to replace of the
discontinuous portion of the classical VSC avoidthg
chattering as well as suppressing the disturbawitbsut
the knowledge of its limits;

*«The implementation of the NC is based on the
partitioning of the RBFNNs into several smaller subrie
order to obtain a more efficient computation;

*The estimated parameters as well as the weights of
the hidden layer of RBFNNs are updated in an online
manner to ensure the stability of the overall syste
without having any prior knowledge of the uncertigis
and disturbances in the kinematic model;

*The stability analysis of the mobile robot control
system, the adaptation and learning algorithmgpeseed
using the Lyapunov theory.

2. PROBLEM FORMULATION

2.1. Kinematics of a Nonholonomic M obile Robot

A typical example of a honholonomic mobile robst i
shown in Fig. 1.

Yo

Yo

A\ @"\ Driving

- \/:/Z\r Wheel
i
! >
o X, e )
Fig. 1. Nonholonomic mobile robot and coordinate
systems

The mobile robot has two driving wheels mountedtion
same axis and a free front wheel. The two drivifgels
are independently driven by two actuators to achithe
motion and orientation. The position of the mobdbot in

the Cartesian inertial framgX,,0,Y,} can be described

by a vector OC, and the orientationd between the
mobile robot base fram¢X.,C,Y,} and the Cartesian

inertial frame, whereC is the center of mass coordinates
(guidance point), withP, d, r, and 2R being the
intersection of the axis of symmetry with the driwgheel
axis, the distance from the poi@ to the pointP, the
radius of the wheels, and the distance betweewikien
wheels, respectively.

The posture vectorqIZIIZI3 of the mobile robot is
described by three generalized coordinates as:

q=[x% Y. 6", (1)

where x; and y,. are the coordinates @ .

Under the condition of pure rolling and non-slipgi
and consideringd =0, the kinematic model of the mobile
robot can be expressed as:

a=S(av(t) , @)
with:
cos¢g) O
S(q) =| sin@) O, ®3)
0 1
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and v(t) =[v wa]T representing the linear and angular

velocities of the mobile robot, respectively. Howesach
kinematic model, Eq. (3), does not take into actdha
measurement noise, modeling uncertainties

disturbances. As there are input disturbances;inand

and

w,, a more realistic kinematic model of the mobileab
can addressed by:

¢ =S(a) (v(t) +d, (1)), (4)

-
where d, (t) =[@,I J%J represents the disturbances in

v(t) only, which are assumed to be upper bounded by:

<& ©)

with &y and o being positive bounded constants.

‘5%‘“%’

Another form of representing of the kinematic nlpde
Eqg. (4), in the Cartesian coordinates system isctieh
the angular velocity of the wheel as the kinematintrol
target. So, it is possible to describe the lineat angular

velocities (v(t)) of the mobile robot in function of the

angular velocity ¢(t) =[4, ¢ ]T ) of the wheels through
the following relationship:

r

{wﬂ:; AR
Catp| |t Aoy |
e L2R RI50:5,0
and conversely:
1 R
|:¢f+5¢r}= ? ? liv|+dll :| @
h+dy | |1 _Rian+d,
r r

-
with d¢(t)=[5¢, 5¢|J represents the disturbances in

@(t) only, which are assumed to be upper bounded by:

‘6¢r <€¢r ’ ‘5¢I ‘<€¢I ' (8)
where £¢ and ‘9¢1 are positive bounded constants.
r

Replacing Eq. (6) in Eq. (4) and multiplying by .Eq
(3), results in the following kinematic mode&},(q) in
Cartesian coordinates system:

4=S4(0) (A1) +dy (), )
%cos(ﬁ?) chosd?
lr r .
Su(@) =| 5sin@) ~sin@)|. (10)
LA
2R 2R

2.2. Error Dynamicswith Disturbances

In order to formulate the trajectory tracking qoht
problem, a reference trajectory is generated by the
following reference kinematic model:

G =S(g )V,
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X :Vlr COS@ )s Ve =Vlr Siﬂ(@r), gf :war - (11)

where ¢, =[x Y, 6?r]TIZIIZI3 denotes the reference
posture of the mobile robot, the structure 8fq,) is

similarly defined as in Eq. (3), and, :[wr warJT

denotes the reference linear and angular veloaitiehe
mobile robot, respectively. With regard to Eq. (lit)is
assumed that the signaj (t) is chosen to produce the

desired motion and that, (t), v, (t), q,(t), and g, (t)

are bounded for all time.
The trajectory tracking control problem of a mebil

robot is solved designing a control inpu(t) =[v a)a]T

such that the system, Eq. (4), follows the refegerieqg.
(11), despite of disturbances. In fact, the aimtas
converge the tracking errorg(=x =X, e, =V, ~ ¥,

ey =6, —0) to zero, respecting the following constraints:

[ZNEZ N

wherev,  anda,  are positive bounded constants.

B (12)

Vi )
max

Converting the tracking errors in the inertialnfia to
the mobile robot frame, the posture error equatibthe
mobile robot can be denoted as:

X cos@) sin@) e
Z=|§|=|-sin@) cosf) ey | (13)
6 0 0 1l

The error dynamics can be obtained from the time
derivative of Eq. (13) as:

5] [, c0s0)] [-1 3] v+4,
2=y |=| v, sin@)|+| 0 -% (14)
é waf 0 -1 (/.)a+5wa
Now, considering the wheel angular velocity

(s)=[2: & ]T ) as the control input, and using Eq. (6),
the error dynamics, Eq. (14), can also be expresged

vi, cos@)
2=| v, sin@)
2%
ror ror
——t =Y -5V , (15)
2 R ¢ 2 R Y ¢+ 6¢r
+ _i % oK
_t r &+ 0y,
2R 2R
respecting the following constraints:
LAY . CARY . (16)

where ¢rmax and ¢|max are positive bounded constants.

2.3. Error Dynamics with Parametric Uncertainties
and Distur bances

From kinematics, Eq. (9) and Eqg. (10), if the
parametersy and R, are unknown, the kinematic control
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targets, angular velocity of the wheels, can noolained
from the selected velocity input because of the
relationship, Eq. (7), betweeg, , ¢ and v, wy. Butit

is possible to use the estimates of these parasnietétq.

(7) and design adaptation laws for an adaptiverotet

to estimate these parameters. Assume:

01:*, 02:*.

7)
r r

Then, Eq. (7) can be rewritten as the following:

& + 0y, :{al_ﬁl a,=a, } Vit Yy (18)
G+ | lo—a —(a-a) )|+, |
where & and @, are the estimates of; and a,;

&, =a,-a, and @, =a, - @, are the parameter errors.

Replacing Eq. (17), and Eq. (18) in Eq. (15), ¢heor
dynamics becomes:

vi, cos@)
2=| v, sin@)
wy,
IA-ANSE-AN
[l a'lj (1 az]y v +3, (19)
+ 0 —( 1—~2])*<
052 Wy + Oy
0 —(3”2]
L a2) |

3. CONTROL DESIGN-TRAJECTORY TRACKING

3.1. Choice of Sliding Surfaces

The VSC is a feedback control with high-speed
switching, whose action takes place in two phasies:
reaching phase and the sliding phase. In the negchi
phase, the states trajectories of the system (limea
nonlinear) are lead to a place in the states sglaasen by
the designer. In general, this place is definedlihgar

surfaces of the control errorg € [f( y 9]T ), known as
switching or sliding surfacesX), which are described by:

o(zt)=c'z=0. (20)

In the sliding phase, the states trajectoriesamed to
remain on the sliding surfaces. Therefore, durihg t
phase, the errors tend exponentially to zero agugrid a

standard determined by matrix of positive constantsof
Eq. (20), which is chosen by the designer.

Thus, from the error dynamics, Eq. (19), are setec
the following sliding surfaces:

~t_al_kloo)f_ kX ”
7@0= o 1Flo K ke ;'k2y+k3é' (1)

wherek, k,, ky are positive constants.

3.2. Generic Model for Nonlinear Systems

The derivation of the VSC and their properties are
made directly for an important class of nonlinegtems,
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whose model, in the form of state equations, iemiby: do _
+— Zto(v()+d,
5, B @B(v)+d, ()

2(t) = Az, p,t) + B(Z,pt Wz t)+dy ¢), (22)
s oo - 5
with AZ pt)= Ay(2t)+ DAEZ,0 1) and a(zt) :E(A‘)(Z’tH Bo(Zt)V(t))
B(z,p,t)=By(Z,t)+AB(Z,0.t), where Z(t) is the vector . do o1 By () aJB " . (26)
of states; A(z, p,t) is the vector of nonlinear functions; EBO 97 0 0
v(z,t) is the vector of control inputsp(z,t) is the vector with
of parametric uncertaintiesB(z,p,t) is the matrix of B ~ kK 00
nonlinear functions;AA(Z, p,t) and AB(z p,t) are the do(z1) =0, aa(~z,t) =T :{ 1 } 27)
vector and the matrix representing the disturbaircdéke ot 0z 0 ko ks
system arising from the parametric uncertainties, ) ) )
respectively; d, (t) is the vector of external disturbances; ~Whence is derived the following control law:
and Ay(z,t), By(Zt) refers to the vector and the matrix v= _56; (,A% +Gsign(o) + Kpg’) i (28)
of nominal parameters, respectively. ) ]
The aim of this study is the derivation of a V®ust in which
to the present disturbances in the kinematic mdgtgl,(4). K =
To ensure the robustness of the controller, thieidiances Ay = aj% - Wiy c~os@) (29)
should be bounded, the matriB(Z p,t) should be 9 0z koW, Sin(@)+ kawy,
nonsingular and the following conditions must be
satisfied: B, = 60’B _{—kl ki¥ } (30)
. =—-bo= 1|
DA(Zp1)=By(zt)a,  AB(zp.t)=By(z )b, M 0 ~koX—kg
dy(t) = By(2,t)dy, (23) 1y
which means thahA(Z, p,t), AB(Z,p,t), and dy(t) must Ba; | K k2X1+ ks , (31)
belong to the image oBy(zt); & and b are the vector - koX + kg
and the matrix that incorporate the parametric
uncertainties, respectivelyd, represents the external  gng ky=Kay, 0< y<— similar to [16].
disturbances. € +1
So, the error dynamics, Eq. (19), can be rewritten Defining
based in Eqg. (22) and Eq. (23) as: . _
L - - v = —(ngn(a) + KpO') , (32)
2= A2+ Bo(z (1 +B) (v +dy () . (24) _ _ _
and replacing Eq. (28) in Eq. (26), results in:
sinceAA=0, dy=(1,+b)d,, and 1, is identity matrix. . _ . ~ -
o (1n ).v. and y a_AOJ—BOUBO;(AOJ—v)+Bogbv(t)+5%do(t)
Compared with Eq. (22), it is important to empheghat _ 8 » (33)
appears an additional ternBy(zt)bd, (t) in Eqg. (24), ==Gsign(0) ~ Ko + By, bv(t) +¢
because the dynamic behavior of the disturbances al \where
suffers the influence of parametric uncertainties. ~
a.
3.3. Adaptive Variable Structure Controller (AVSC) ‘;l 0
< _ 1
In order to have influences also on the process of b= a, |’ (34)
reaching of the sliding surfaces, the contw(#,t) will be 0 “7
chosen in such a way to imposg(zt) to have the 2
dynamics given by the following first order diffextéal By 551 =1,, and ¢ =B, _dy(t) are the disturbances in
equation: g o g
the system.
o(z,t) =-Gsign(o) - Kh(o), (25)

3.4. Stability Analysis

Choosing the Lyapunov function candidate in the
h(o)=0 (could be another function, since that form:

where G and K, are positive definite diagonal matrices,

T . o . . . 5 2 5 2
o'h(o)>0), and sgn(a)z‘— is a discontinuous v :1[0_T0_+ &’ | a4 J £>0, B,>0, (39)
_ 2 By B
function.
Using the Eq. (20), Eq. (21), and Eqg. (25), ardnta which is positive definite, the sliding surface wbe
into account the Eq. (24), results in: attractive since that the control law, Eq. (28)swees that
. d0(zt) . do(z) V is negative definite.. Using the result describedHoy
o(zt)= a7 z+ ot (33), an expression fo¥ is immediately obtained, that is,
oo . . . Y i ol A
=E(A0 Qt)+BO &tIV()’FdV()) V:V1+V2:0—T0.—_ial_ az 0'2 (36)

Bar T Bay 7
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Vl U BO bV(t)_ al az

Bar B

V, = -0 Gsign(0) -0 Ko+ o'y

ay, 37)

(38)

After the necessary mathematical manipulationsjin
of Eq. (37), the parameter adaptation laws arenddfas:
ay = BERY

by =Pk - (ky +kB)(kx+k ). (39)

In V, of Eg. (38), aSJTKpJZO, the condition

V, <0 can be expressed by:
o'Gsign(o) =o'y, (40)

which is satisfied if the diagonal elements ®f meet the
following constraint:

9> (41)
with g being the minimum singular value & and ¢
representing the maximum effect of the uncertasntie
and/or disturbances. Thus\]2 is negative definite.
According to a standard Lyapunov theory, the signal
o(zt), & ,andd, are bounded.

3.5. Neural Compensator (NC)

Due to delays, physical limitations of actuatorsl a
imperfections of switching, it is not possible witsh the
control from a value to another instantaneously.aiBse
of this, the states trajectory varies in a viciratpund the
sliding surface, instead of sliding over it. This
phenomenon, known as chattering [3-5], as well as
disturbances, can be avoided or at least reduced us
RBFNNSs, which are nonlinear and continuous functions,

to approximateGsgng ) in Eq. (28) [17]. Therv stays,
v=-By} (A, +Q(@)+K0),
[ \/(/J 0{{(,(0)}} + Kpaj . (42

where{ } {&,(0)} are GL vectors of weights and
Gaussian radial basis functions [18], and theipeetve
elements areW , and {Jk (o) ; with Q(a) being an
nx1 output vector of the RBFNNs. The stability of the
RBFNNSs can be analyzed, using Ge-Lee (GL) matrtk an

vector [18], which are defined by {.}, and by itsopluct
operator '+’. The ordinary matrix and vector arendied

by[]. . .
Substituting Eq. (42) in Eq. (26), results in:
o= (o} (&0} |-Kpo +ur By B0 (42

To analyze the stability, the Lyapunov function
candidate, Eq. (35), is modified, that is,

1 1 a4’ &’ T
V==logo+—+ + ) W r (44)
2[ By A Z J

where Fak

is dimensional compatible symmetric positive
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definite matrix, anc{Vng} :{ng} —{ng} is vector of
weight estimation errors.

Differentiating Eq. (44), and replacing (43, is
obtained as:

V=-g' [{WJ}T . {fg(a)}} -0'K,o

n ' , (45)
+ UT‘/’ - ZWJkTrUk_]\NUk +vl
k=1
with V; defined as in Eq. (37).
Recall that:
n
o (W} (& @} |= D Wy e @i, (46)
k=1
and choosing the learning law of RBFNNSs as:
Wak = rok {Jk (0)oy, (47)

and substituting Eq. (46), and Eq.(47) into Eq.)(48
stays:

VS K [0 +070 =0T [(W} T +{&,(0)} | +Vi 48)

where K i is the minimum singular value of,, and
the solution forV; is given by Eq. (39).
TheV can be rewritten as:

V<K, |of +|af -Q

Pmin

(49)

with Q:[{WU}T-{{U(J)}} being the optimal

compensation forAf =¢ . According to the property of
universal approximation of RBFNNs [19], there exist
1 >0 satisfying |Af -Q| < 4, where u is arbitrary and
can be chosen as small as possible. Assuming that

us<nlo| with 0<np<i, one obtains that
|af —QHJ\S/)\J\Z =no?, thereforeV results in:
VS_(Kpmin _’7)02- (50)

Because ofk >pn, V is negative definite. According

pmin
to a standard Lyapunov theory, the signaig,t), &, ,

a, ,and{ ak} are bounded.

4. SSIMULATION RESULTS

In the simulation, the same kinematic model of the
mobile robot described in [20] is used, where gedme
parameters are =0.057 m and R=0.18 m. A circular
trajectory was used as reference trajectory anddbalts
were obtained using MATLAB/Simulink. The parameters
of the circular trajectory arey|, =0.5 m/s, Wy =0.5

rad/s, and the initial coordinates are given by

R Hr]T :[l, 2, 26.56?. The initial position of

the mobile robot ix,, e, 6]" :[1, 1, 1OT.
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For this case, the AVSC with NC, Eq. (18), Eq. (39),
Eq. (42), and Eq. (47), is considered.
The control gains of simulation arek =1.0,

k2:1.0, k3:1.0, Kpll:l'Sv KP22:3'0’ rgk:0.2,

B =19.0and S, =2.9.

Moreover, the number of hidden neurons used are 25
For simplicity, the centres of the localized Gaassiadial
basis functions [18] are evenly distributed in erttespan
the input space of the neural network, and theanag
value of the Gaussian radial basis functions igdiat

v1.5. The weights of the RBFNNs as well as the
estimated parametersi{(0) and d,(0)) were initialized

to zero, without to have any prior knowledge of slystem
uncertainties and disturbances.

A bounded periodic disturbance term for all tirfrég(
2) is added to the velocity vectar of the mobile robot,
Eq. 4, (similar to [21]), which is given by:

d, :VM } {0.5+ o.1sin(o.oa])

J, 0.2+ 0.1cos(0.a1 )’

Disturbances Profile - d
15 T T T

—3y

" Owa

15 L L L L L L
12 14 16 18 20

0 2 4 6 10
Time (s)
Fig. 2. Disturbances applied in the mobile robot
The Figs. 3-10 illustrate the simulation resultsis
seem in Fig. 3 that the mobile robot naturally diéss a

smooth path tracking over the reference trajectdiye
tracking errors tends to zero as shown in Fig. 4.

Trajectory Tracking
T

— Desired Traj
4 ----Realized Traj. |

Eog 1
N
A4 ]
15+ - -
i ]
08 05 0 05 I 1 2
X (m)
Fig. 3. Trajectory tracking
Tracking Errors
1 T T s
b1 -y
osf"-,' """" 04
= 0.6 4
>
= 041 4
E
> 0.2 i
E N
< O o
502 4
i
04 i
06 % B

.
0 2 4 6 8 10 12 14 16 18 20
Time (s)

Fig. 4. Tracking errors
Observe that in Figs. 5-6 are demonstrated thateth
are not chattering in the linear and angular vélegias
well as angular velocities of the wheels, whichrespnts
the control signals. Both sliding surfaces (Fig. 7) and
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their derivativeso (Fig. 8) converge to zero as well as the
chattering is eliminated. In the Fig. 9 is showattkthe
responses of¥; and &, are bounded and tends to true

parameters. The values of RBFNNs outp(ﬁspresents

behaviors similar to the disturbances (magnitudes i
absolute values, see Fig. 2) in the steady-stash@sn in
Fig. 10, thus demonstrating the efficiency of th€,NEq.
(42) and Eq. (47).

Linear and Angular Velocities
T T T

(m/s), w, (rad/s)

%

Fig. 5. Linear and angular velocities

Angular Velocities of the Wheels
60 T T T

@, (radss), @ (racs)

10
Time (s)
Fig. 6. Angular velocities of the wheels

Sliding Surfaces - @
T T T

—o,

-0,

10
Time (s)

Fig. 7. Sliding surfaces

5. CONCLUSIONS

An AVSC with NC considering uncertainties and
disturbances in the kinematic model were proposetis
work, and used as an alternative solution to thgdtory
tracking control problem applied to nonholonomichihe®
robot. The VSC was considered because the invaian
principle is applicable to it, but this techniquéibits the
chattering phenomenon, that is highly undesirafle.
avoid such a phenomenon, RBFNNs were used in the
replacement of the discontinuous portion of thessitzal
VSC, without compromising robustness. Due to this
replacement, the invariance principle was not more
verified, however the smooth control signal is agkd.
The simulation results of the proposed approachewer
satisfactory.

As future works, it is validation of the AVSC withC
in real-time applications of a nonholonomic mobibbot,
as well as to realize the integration of torquetialers of
the literature with these kinematic controllers gosed
here.
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Derivative of the Sliding Surfaces - @

) 2 4 6 8 10 12 14 16 18 20
Time (s)

Fig. 8. Derivative of the sliding surfaces

Estimated Parameters
T T T

T T
— Estimated a,

25 ---Estimated a;, |

Estimation of the Parameters  a,, @,

I I I 1 1 1 I 1
4 6 8 10 12 14 16 18 20
Time (s)

Fig. 9. Estimated parameters

RBFNNs Outputs

o
~l

Estimation of the Outputs Q  ,, Q,

—Estimated Q , |

----Estimated Q 2

B . . , , . . . . .
5 2 4 6 8 10 12 14 16 18 20

Time (s)

Fig. 10. RBFNNSs outputs
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