
Dynamic Generation of Test Cases with Metaheuristics

Laura Lanzarini, Juan Pablo La Battaglia
III-LIDI (Institute of Research in Computer Science LIDI)

Faculty of Computer Sciences. National University of La Plata
La Plata, Buenos Aires, Argentina

{laural, juanlb}@lidi.info.unlp.edu.ar

ABSTRACT
The resolution of optimization problems is of
great interest nowadays and has encouraged the
development of various information technology
methods to attempt solving them. There are
several problems related to Software
Engineering that can be solved by using this
approach. In this paper, a new alternative based
on the combination of population
metaheuristics with a Tabu List to solve the
problem of test cases generation when testing
software is presented. This problem is of great
importance for the development of software
with a high computational cost and which is
generally hard to solve.
The performance of the solution proposed has
been tested on a set of varying complexity
programs. The results obtained show that the
method proposed allows obtaining a reduced
test data set in a suitable timeframe and with a
greater coverage than conventional methods
such as Random Method or Tabu Search.
Keywords: Software Testing, Evolutionary
Testing, Particle Swarm Optimization,
Evolutionary Algorithms, Metaheuristics.

1. INTRODUCTION
The automatic generation of a test dataset that
allows measuring the performance of a given
program is a highly important task in software
development that requires a high computational
cost and is generally hard to solve.
The solution to this problem has been widely
studied for a long time now. The first paradigm
used was the so-called “random test data
generation”, which consisted in creating a test
dataset in a random manner until reaching the
termination condition or until a maximum
number of test datasets had been generated [2].
An alternative method to solve this problem is
the symbolic generation of test data [11]. It
consists in using symbolic values for the
variables, instead of real values, thus allowing a
symbolic execution. This execution generates
algebraic restrictions that determine test cases.

A third paradigm is the dynamic generation of
test data [9]. In this case, the program is
modified to provide information to the seed in
order to verify whether a given criterion was
reached. Thus, if the criterion was not reached,
new data can be built to be used as input to the
program. Under this paradigm, data generation
becomes an optimization process, since each
condition within the program can be analyzed
as a function to minimize.
In particular, various metaheuristics have been
used to dynamically generate the necessary test
cases. There are solutions based on genetic
algorithms [12], simulated annealing [16] and
immune systems [3]. Some recent solutions use
Tabu Search [5] and Scatter Search [13].
The purpose of this paper is to present a new
solution to the problem of finding a suitable test
dataset for testing the performance of a program
by using a PSO-based populational
metaheuristics combined with a Tabu list.
A white box testing procedure will be carried
out, that is, the test-case seed will use
information from the program structure to guide
the search for new input data. Usually, the
structural information is taken from the flow
control graph of the program. The input data
that are generated by the structural testing must
be subsequently assayed against the program to
check if they generate an incorrect behavior.
This article is organized as follows: Section II
describes the original PSO method, Section III
details the special considerations that should be
adapted to solving the problem of a multi-
objective, such as the generation of test cases
using this structure, Section IV shows the
obtained results. Finally, some conclusions are
presented.

2. PARTICLE SWARM
OPTIMIZATION

An algorithm based on particle swarms, also
called Particle Swarm Optimization (PSO), is a
populational metaheuristics where each
individual represents a possible solution to the
problem and adapts following three factors: its

JCS&T Vol. 10 No. 2 June 2010

91

knowledge of the environment (its fitness
value), its historical knowledge or previous
experiences (its memory), and the historical
knowledge or previous experiences of the
individuals in its neighborhood [4]. Its purpose
is to evolve in its behavior so as to resemble the
most successful individuals within its
environment. In this type of technique, each
individual is in continuous movement within
the search space and never dies. On the other
hand, the population can be seen as a multi-
agent system where each individual or particle
moves within the search space storing, and
ultimately communicating, the best solution
that it has found [10].
There are different versions of PSO; the most
widely known are gBest PSO, which uses the
entire population as neighborhood criterion, and
lBest PSO, which uses a small neighborhood
size [6, 14]. Neighborhood size affects
algorithm convergence speed as well as the
diversity of individuals in the population. As
neighborhood size increases, algorithm
convergence speed increases and individual
diversity decreases.
Each particle pi is made up by three vectors and
two fitness values:
− Vector xi = (xi1, xi2, …, xin) stores the

current position of the particle in the search
space.

− Vector pBesti = (pi1,pi2, …, pin) stores the
best position of the solution found by the
particle up to the moment.

− Speed vector vi = (vi1, vi2, …, vin) stores the
gradient (direction) according to which the
particle will move.

− The fitness value fitness xi stores the
current solution capacity value (vector xi).

− The fitness value fitness_pBesti stores the
capacity value of the best local solution
found up to the moment(vector pBesti).

The position of a particle is updated as follows

 xi(t+1) = xi(t) + vi(t+1) (1)

As previously explained, the speed vector is
modified taking into account its experience and
the environment’s. The expression is the
following:
vi(t+1) = w.vi(t) + ϕ1.rand1.(pBesti - xi(t)) +
 ϕ2.rand2.(gi - xi(t)) (2)

where w represents the inertia factor [15], ϕ1
and ϕ2 are acceleration constants, rand1 and
rand2 are random values belonging to the

interval (0,1), and gi represents the position of
the particle with the best fitness of the
environment of pi (lBest o localbest) or the
whole swarm (gBest o globalbest). Values of w,
ϕ1 and ϕ2 are essential to assure the algorithm’s
convergence. For more details on the selection
of these values, consult [4] and [17].
Figure 1 shows the basic PSO algorithm.

S ← InitializeSwarm()
while termination condition is not reached do
 for all i = 1 to size(S) do
 Assess particle xi of swarm S
 if fitness(xi) is better than fitness(pBesti)
 pBesti xi
 fitness(pBesti) ← fitness(xi)
 end if
 end for
 for all i = 1 to size(S) do

Choose gi based on the neighborhood
criterion used
vi(t+1) = w.vi(t) + ϕ1.rand1.(pBesti - xi(t)) +
 ϕ2.rand2.(gi - xi(t))

 end for
end while
Output : the best solution found

Fig.1. Basic PSO

3. DESCRIPTION OF THE
PROPOSED SOLUTION

The dynamic generation of test cases involves
knowing if the coverage criterion is achieved
during execution or not. To this end, the
original program is modified by inserting
instructions that allow the seed to gather the
required information. New input data are added
to the test dataset until the desired criterion is
reached. Thus, this software engineering
problem becomes an optimization problem,
since the purpose is minimizing a certain
distance to a preset coverage criterion. The
method used to achieve this minimization is
based on the particle swarm optimization
algorithm.

3.1. PROGRAM COVERAGE

The criterion used in this paper to determine if a
program is correctly covered or not is
condition-decision coverage. This means that
every condition in a decision takes all possible
outcomes at least once. There are other criteria,
such as the statement coverage, which require
the execution of all of the instructions of the

JCS&T Vol. 10 No. 2 June 2010

92

program or branch coverage wich requires the
execution of every branch of the program.
However, the criterion selected, by requiring
that all conditions reach both truth values,
ensures that all branches are covered, which
also means that all the instructions of the
program will be executed.
In order to carry out this task, each condition of
the program is analyzed independently. For
each of them, the strategy described in the
previous section is applied. Since the program
has to be run to verify the status of each
condition, it is possible to check more than one
condition in one execution.

3.2. MODIFICATIONS OF THE PSO
METHOD

The optimization method used is a modified
version of the basic PSO algorithm to take into
account the specific characteristics of the
problem at hand:
− It is a multi-purpose optimization process

that uses a different population for each
condition. Each population has a different
size [7].

− Since PSO is an optimization strategy, it
moves population individuals within the
solution space in search of the optimum.
This occasionally leads to oscillatory
movements [8] or results in a loss of
diversity [2]. In the case of test case
generation, the function to minimize for
each condition is an expression that allows
inverting the truth value. For this function
to work properly, the inertia of each particle
has to be conserved; that is, w is not used in
the usual way.

− Each population associated to a condition is
formed by individuals that allow assessing
it. They will all yield the same truth value.
The purpose of the proposed method is
using them to obtain the opposite truth
value. It should be noted that the execution
of the program using one of these
individuals in its new position as input may
not be enough to assess the desired
condition, which would prevent the
assignment of a fitness value. This would
be the same as using a non-continuous
solution space, where individuals leave the
interest space when they move. For this
reason, the PSO has been modified so as to
only allow movements within the solution

space; the rest of the individuals keep their
current position.

3.3. FITNESS FUNCTION

The proposed solution is only applicable to
numeric input variables. The fitness function
used in each case is indicated in Table 1. Its
goal is returning a positive value, which will
gradually approach zero as the individual that
represents the input data being used for the
execution of the program moves forward in the
correct direction to obtain the opposite truth
value.

Table 1. Fitness function used for each type of
condition
Condition FitnessFunction
x=y, x≠y abs(x-y)
x<y, x≤y y-x
x>y, x≥y x-y
x ^ y min(cost(x), cost(y))
x v y if (x=true and y=true) then

 min(cost(x),cost(y))
else Σcj FALSE cost(cj))

3.4. GENERATION METHOD

The selected method for test case generation is
of the white-box type; therefore, the values of
the variables involved in each condition at the
moment of execution must be known.
To this end, a method composed by two
modules was used:
− an execution wizard which, based on some

symbols introduced in the source code
(which do not affect execution), generates
information on the values of each variable,
and

− a process that, taking any given program as
input, adds the aforementioned symbols.

All this information is automatically assessed
by the test case generator.

Figure 2 summarizes the proposed method.

Conditions are ordered based on their
occurrence within the code. After the first
execution, at least one condition has been
tested.
For each iteration, the first condition that is
tested but is not covered is identified, and its
population used to generate new input datasets
with a modified version of PSO
(Apply_Modified_PSO procedure). When there

JCS&T Vol. 10 No. 2 June 2010

93

P ← CreateInitialStructure {all populations are
 empty}
TestData ← {Generate one random solution }
RunProgram(TestData)
The conditions that were reached have now one
individual in their population
AnswList = TestData
while termination condition is not reached do
 idNoC ← {identify the 1st.condition that was
 assessed but not covered}
 TestData ← Apply_Modified_PSO(P(idNoC))
 for all i = 1 to size(TestData)
 if TestData(i) was not tested then
 changes = RunProgram(TestData(i))
 if changes > 0 then
 Add TestData(i) to AnswList set;
 end if
 Add TestData(i) to the list of already
 tested data.
 end if
 end for
end while

Fig.2. Proposed method

is only one individual in the population, it is
used to generate a predefined number of
variations, half of them within the 10% of the
range allowed and the other half a bit further
away, within the 50% of this range.If the
population has more than one individual, a
variation of the global PSO is applied. The
value gBest is obtained by averaging the
position vectors of the two best individuals. All
the individuals of the population, with the
exception of the two best ones, calculate their
velocity vector as follows:

vi+1=0,75 rand1.vi + 0,75 rand2.(gBest - xi) (3)

whereas the two best individuals use less
pressure to remain in their place and change
their velocity vector update as follows:

vi+1=0,75 rand3.vi + 0,25 rand4.(gBest - xi) (4)

As already mentioned, the concept of inertia is
not used in the usual way, since the expected
effect is that the particle pass through the
optimum for the condition to invert its truth
value therefore, in (3) and (4), the value used as
inertia factor is a random number between 0
and 0,75. As in equation (2), rand1, rand2, rand3
and rand4 are random values belonging to the
interval (0,1).

The new input data to be considered will be the
positions of the individuals after their
corresponding velocity vectors are added.
The RunProgram process is in charge of
applying the input data and identifying which
conditions have changed their status, since with
every execution, new fulfilled or tested
conditions may appear. During this process, the
conditions that have been tested incorporate the
used input data to their populations, replacing
the original individual.
Unlike the conventional PSO algorithm, those
individuals that generated new input data when
moving but which did not allow testing the
condition when running the program, will not
be recorded in the population, leaving the
original individual in the same position.
Each input dataset used to run the program is
recorded on a list in order to reduce
computation time. All input data that modified
the status of any condition are incorporated to
the output test dataset, AnswList.

4. RESULTS

The solution was implemented in Ruby, an
interpreted, reflexive, object-oriented
programming language which is highly flexible
and allows not only the quick modification of
the solution, but also the implementation of the
execution wizard that informs the value of the
variables of each condition to the test case
generator.
The performance of the proposed method was
tested in the generation of test data for some
typical programs of the data testing field:
− Triangles: it receives the length of the three

sides of a triangle and indicates the type of
triangle.

− Calday: it receives a date and indicates the
corresponding day of the week.

− Select: it receives an array with a
disordered list and a k index and returns the
kth lower element.

− QuickSort: list sorting method.
− Bessel: algorithm that solves Bessel

functions Jn and Yn.

Table 2 shows the average of the results
obtained after 100 independent executions of
the proposed method considering a maximum
number of 150 iterations. The results obtained
with the Tabu Search method [5] and a

JCS&T Vol. 10 No. 2 June 2010

94

Table 2. Results obtained with the method proposed and how it compares to two existing solutions

 Modified PSO
 Tabu Search Random Proposed Method
Method Coverage Testing Coverage Testing Coverage Testing
Triangles 73.83 60.09 95.25 35.64 99 55.17
Calday 81.93 1440.23 98.45 202.56 99.11 504.06
Select 99.04 145.87 100 16.67 100 63.96
QhickSort 10096.16 5.78 100 1.63 100 2.05
Bessel 96.03 2235.96 96.16 294.13 100 620.32

completely Random generation under the same
conditions are also included.
As it can be seen, the final coverage reached by
the method herein proposed based on a
modification of the PSO is higher for the tested
programs. Based on the average number of tests
of each method, the application of search
strategies to solve problems requiring a small
number of iterations should be considered. It
can be seen that the Random method allows
determining a test dataset that is suitable for the
Select program and performs very few tests. In
this particular case, the solution is easy to find,
and the application of a search strategy only
limits the exploratory capacity of the method,
which does not occur with the random
generation method. Nonetheless, even though
the number of tests is higher, the fulfillment of
the proposed method is still suitable.
In order to check that the results were really
significant, they were subjected to a variance
comparison statistical analysis.
Each sample was assessed with the
Kolmogorov-Smirnov test to verify if they had
a normal distribution. If they were normal (this
only happened with the samples corresponding
to number of tests in the "triangles" program),
comparison was made by means of the Student
test. For the remaining cases (whose
distribution was not normal), the non-
parametric test of Kruskal-Wallis was applied.
The p-value obtained was below 0.05, which
allowed verifying that the differences are
statistically significant.

5. CONCLUSION

A new method for the generation of test cases
has been presented. This method is based on a
modified version of the PSO algorithm and uses
specific populations associated to each
condition of the program.

A testing and assisted execution system has
been implemented for programs written in
Ruby, which was used to measure the
performance of this proposal.
The results obtained for each of the programs
with the different methods indicate that the
proposed method is robust, increasing
fulfillment in all cases and slightly decreasing
the number of total executions, thus proving
that a significant contribution was made to the
field.

6. REFERENCES
[1] Bird S., Li X. Adaptively Choosing Niching
Parameters in a PSO. Proceeding of Genetic
and Evolutionary Computation Conference
2006 (GECCO'06), eds. M. Keijzer, et al., p.3 -
9, ACM Press. 2006.
[2] Bird D., Muñoz C. Automatic generation of
random self-checking test cases. IBM Systems
Journal, 22(3):229-245, 1983.
[3] Bouchachia A. An Immune Genetic
Algorithm for Software Test Data Generation.
Seventh International Conference on Hybrid
Intelligent Systems. 2007. pp.84-89
[4] Clerc M., Kennedy J. The particle swarm –
explosion, stability and convergence in a
multidimensional complex space. IEEE
Transactions on Evolutionary Computation. Vol
6,nro. 1, pp. 58-73. Feb.2002
[5] Díaz E., Tuya J., Blanco R. Automated
Software Testing using a Metaheuristic
Techmique based on Tabu Search. 18 th IEEE
International Conference on Automated
Software Engineering. pp.310- 313. ISBN: 0-
7695-2035-9. 2003
[6] Kenedy J. and Eberhart R. Particle Swarm
Optimization. Proceedings of IEEE
International Conference on Neural Networks.
Vol IV, pp.1942-1948. Australia 1995

JCS&T Vol. 10 No. 2 June 2010

95

[7] Lanzarini L., Leza V., De Giusti A. Particle
Swarm Optimization with Variable Population
Size. Lecture Notes in Computer Science. Vol
5097/2008. Artificial Intelligence and Soft
Computing – ICAISC 2008. ISBN 978-3-540-
69572-1. pp.438-449. June 2008
[8] Lopez J., Lanzarini L., De Giusti A. Particle
Swarm Optimization with Oscillation Control.
Genetic and Evolutionary Computation
Conference. ACM GEECCO Proceeding.
Montréal, Canada. July 2009.
[9] Michael C., McGraw G., and M. A. Schatz.
Generating software test data by evolution.
IEEE Transactions on Software Engineering,
27(12):1085-1110, 2001.
[10] Nieto J. Algorithms based on swarms of
particles for solving complex problems.
University Málaga. (In Spanish). 2006.
[11] Offutt J. An integrated automatic test data
generation system. Journal of Systems
Integration, 1(3):391-409, November 1991.
[12] Pargas R., Harrold M., Peck R. Test-Data
generation using Genetic Algorithms. Journal
of Software Testing, Verification and
Reliability. Vol 9. pp.263-282.1999

[13] Sagarna R., Lozano J. Scatter Search in
software testing, comparison and collaboration
with Estimation of Distribution Algorithms.
European Journal of Operational Research 169
(2006) 392–412
[14] Shi Y., Eberhart R. An empirical study of
particle swarm optimization. Proceeding on
IEEE Congress Evolutionary Computation.
pp.1945-1949. Washington DC, 1999.
[15] Shi Y., Eberhart R. Parameter Selection in
Particle Swarm Optimization. Proceedings of
the 7th International Conference on
Evolutionary Programming. pp. 591-600.
Springer Verlag 1998. ISBN 3-540-64891-7
[16] Tracey N., Clark J., Mander K. Automated
program flaw finding using simulated
annealing. International Symposium on
Software Testing and Analysis. 1998. pp. 73-
81. ACM/SIGSOFT
[17] Van den Bergh F. An analysis of particle
swarm optimizers. Ph.D. dissertation.
Department Computer Science. University
Pretoria. South Africa. 2002

JCS&T Vol. 10 No. 2 June 2010

96

