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Madrid, España

Email: gregorio@fi.upm.es

ABSTRACT

Globally optimal triangulations are difficult to be found
by deterministic methods as, for most type of criteria, no
polynomial algorithm is known. In this work, we consider
the Minimum Weight Triangulation (MWT) problem of a
given set of n points in the plane. Our aim is to show
how the Ant Colony Optimization (ACO) metaheuristic
can be used to search for globally optimal triangulations
of minimum weight. We present an experimental study
for a set of instances for MWT problem. We create
these instances since no reference to benchmarks for this
problem were found in the literature. We assess through
the experimental evaluation the applicability of the ACO
metaheuristic for MWT problem.

Keywords: Triangulation, Minimum Weight Triangula-
tion, Computational Geometry, ACO Metaheuristic.

I. INTRODUCTION

In Computational Geometry there are many problems that
either are NP-hard or no polynomial algorithms are known.
Therefore, we can find approximate solutions using meta-
heuristics. The optimization problems related to special
geometric configurations are interesting to research due
to their use in many fields of application. Triangulations
are planar partitions, which received considerable atten-
tion mainly due to their applications, e.g., visibility, ray-
shooting, kinetic collision detection, rigidity, guarding, etc.
Minimizing the total length has been one of the main
optimality criteria for triangulations. Indeed, the Minimum
Weight Triangulation (MWT) minimize the sum of the
edge lengths, providing a quality measure for determining
how good is a structure. The complexity of computing a
minimum weight triangulation has been one of the most
longstanding open problems in Computational Geometry,
introduced by Garey and Johnson [10] in their open
problems list, and various approximation algorithms were
proposed over time. Mulzer and Rote [23] recently showed
that MWT problem is NP-hard.
Given the inherent difficulty of the above mentioned
problem, the approximate algorithms arise as alternative
candidates for solving MWT problem. These algorithms
can obtain approximate solutions to the optimal solutions,

and they can be specific for a particular problem or they
can be part of a general applicable strategy in the resolution
of different problems. The metaheuristic methods satisfy
these properties.
A metaheuristic is an iterative generation process that
guides the search of solutions intelligently combining
different concepts of diverse fields as artificial intelligence
[24], biological evolution [2], swarm intelligence [13],
among others. These algorithms have a simple implemen-
tation and they can efficiently find good solutions for
NP-hard optimization problems [22]. For the experimental
study presented in this work we use the Ant Colony
Optimization (ACO) metaheuristic.
According to the current state-of-the-art with respect to
theoretical results about the problems considered in this
investigation, we adopted to solve them a metaheuristic
technique as the more appropriate approach to find nearly
optimal solutions. Previous works about approximations
on MWT problem using metaheuristic, were presented in
[6] and [7], where we described the design of the ACO
algorithms and gave the first steps in this research.
This paper is organized as follows. In the next Section,
we present the theoretical aspects of triangulations. In
Section III, we present the general overview of the ACO
metaheuristic and in Section IV, we present the proposed
ACO algorithm for solving the MWT problem. In Section
V, we describe the MWT instances used and the details
and results of the experimental study in which we analyze
the sensitivity of some important parameters on the per-
formance of the proposed ACO algorithm. Last section is
reserved for the conclusions and future vision.

II. MINIMUM WEIGHT TRIANGULATION

Let S be a set of points in the plane. A triangulation of S
is a partition of the convex hull of S into triangles whose
set of vertices is exactly S. The weight of a triangulation
T is the sum of the Euclidean lengths of all the edges of
T. The triangulation that minimizes this sum is named a
Minimum Weight Triangulation of S and it is denoted by
MWT(S).
Triangulation is one of the main topics in Computational
Geometry and it is commonly used in a large set of appli-
cations, such as computer graphics, scientific visualization,
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robotics, computer vision, and image synthesis, as well as
in mathematical and natural science.
MWT problem has a long and rich history, dating back
to the 1970s. As far as authors’ knowledge, the MWT
problem was first considered by Düppe and Gottschalk [8]
who proposed a greedy algorithm which always adds the
shortest edge to the triangulation. Later, Shamos and Hoey
[29] suggested using the Delaunay triangulation as a min-
imum weight triangulation. Lloyd [20] provided examples
which show that both proposed algorithms usually do not
compute the MWT. Similarly, Gilbert [11] and Klincsek
[16] independently showed how to compute a minimum
weight triangulation of a simple polygon in O(n3) time
by dynamic programming.
Approaching the problem from other direction, researchers
were looking for triangulations that approximate the MWT.
The Delaunay triangulation is not a good candidate, since
it may be longer by a factor of Ω(n) (see Figure 1) [14]
[21]. The greedy triangulation approximates the MWT by
a factor of Ω(n) (see Figure 2) [21] [18] [19]. Plaisted
and Hong [25] showed how to approximate the MWT
up to a factor of O(log n) in O(n2log n) time. Lev-
copoulos and Krznaric [19] introduced quasi-greedy trian-
gulations, which approximate the MWT within a constant
factor. Remy and Steger [27] discovered an approximation
scheme for MWT that runs in quasi-polynomial time: for
every fixed ε, it finds a (1 + ε)-approximation in nO(log8n)

time.

(a) Delaunay triangulation (b) Minimum weight trian-
gulation

Fig. 1. Two examples of possible triangulations for the same set
of points

(a) Greedy triangulation (b) Minimum weight trian-
gulation

Fig. 2. Two examples of possible triangulations for the same set
of points

From the point of view of metaheuristics, many papers
present solutions to problems at the field of Graphical
Computation. In 1992, Sen and Zheng [28] proposed an
algorithm to approximate the minimum weight triangula-
tion using Simulated Annealing but in many proofs they
obtain solutions ”near” to the ideal ones. The neighbor-
hood is obtained with a flip in a random edge of the
current triangulation. In 1993, Wu and Wainwright [32]
approximated the minimum weight triangulation using a

genetic algorithm where the recombination and mutation
operators are the same, such that both of them make a
flip to obtain the neighbors. Qin et al. [26] also use a
genetic algorithm and they proposed new operators for
recombination and mutation. Capp and Julstrom [3] present
a new weight codification of the triangulations to use it
in a genetic algorithm. In the previous mentioned works,
the experimental evaluation is rather poor and they do not
describe the quality of the obtained solutions. In 2001,
Kolingerova and Ferko [17] presented a genetic opti-
mization, which recombination operator is named DeWall
and the mutation operator makes a flip in the selected
individual. The principal weakness of this method is the
time demand.
The complexity of the computation was one of the more
interesting opened problems in Geometry Computacional
until Mulzer and Rote demonstrated in 2006 that MWT’s
construction is a NP-hard problem [23].

III. ANT COLONY OPTIMIZATION METAHEURISTIC

The Ant Colony Optimization metaheuristic involves a
family of algorithms in which a colony of artificial ants
cooperate in finding good solutions to difficult discrete
optimization problems 1. Cooperation is a key design
component of ACO algorithms: the choice is to allocate the
computational resources to a set of relatively simple agents
(artificial ants) that communicate indirectly by stigmergy.
Thus, good quality solutions are an emergent property of
the agents cooperative interaction.
An artificial ant in an ACO algorithm is a stochastic con-
structive procedure that incrementally builds a solution by
adding opportunely defined solution components to a par-
tial solution under construction. Therefore, the ACO meta-
heuristic can be applied to any combinatorial optimization
problem for which a constructive graph can be defined.
Each edge (i, j) in the graph represents a posible path
and it has associated two information sources that guide
the ant moves: pheromone trails and heuristic information.
The pheromone trail, denoted by τij , encodes a long-
term memory about the entire ant search process, and is
updated by the ants themselves. The heuristic information,
denoted by ηij , represents a priori information about the
problem instance or run-time information provided by a
source different from the ants. In many cases η is the cost,
or an estimate of the cost, of adding the component or
connection to the solution under construction.
These values are used by the ants to make probabilistic
decisions on how to move on the graph. The ants act
concurrently and independently and although each ant is
complex enough to find a solution to the problem, which is
probably poor, good-quality solutions can only emerge as
the result of the collective interaction among the ants. This
is obtained via indirect communication mediated by the
information that ants read or write in the variables storing
pheromone trail values. It is a distributed learning process
in which the single agents, the ants, are not adaptive

1ACO metaheuristic has also been successfully applied to
continuous problems, however, in this paper we only consider
and describe its application to discrete problems.
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themselves but, on the contrary, adaptively modify the way
the problem is represented and perceived by other ants [5].
There are two additional process for updating pheromone
and the daemon actions. The pheromone updating is the
process by which the pheromone trails are modified. The
trail values can either increase, as ants deposit pheromone
on the components or connections they use, or decrease,
due to pheromone evaporation. The daemon procedure is
used to implement centralized actions which cannot be
performed by single ants. Examples of daemon actions
are the activation of a local optimization procedure, or the
collection of global information that can be used to decide
whether it is useful or not to deposit additional pheromone
to bias the search process from a nonlocal perspective. The
daemon can observe the path found by each ant in the
colony and select one or a few ants, like those that built
the best solutions in the algorithm iteration that allowed
to deposit additional pheromone on the connections they
used.

A. The general ACO algorithm
In this section we present a general ACO algorithm (Algo-
rithm 1) and a description of its main components. After
that, the next two sections respectively describe in detail
the specific component of the general ACO algorithm
(function BuildSolutionk) that have to be adapted for each
of the problem studied here, i.e., MWT.

Algorithm 1 General-ACO
Initialize
for c ∈ {1, . . . , C} do

for k ∈ {1, . . . , K} do
BuildSolutionk
EvaluateSolution

end for
SaveBestSolutionSoFar
UpdateTrails

end for
ReturnBestSolution

Main components of Algorithm 1:
• Initialize: this process initializes the parameters

considered for the algorithm. The initial trail of
pheromone is associated to each edge, τ0; it is an
small positive value, in general, the same for all
edges. The quantity of ants of the colony, K. The
weights that define the proportion in which they will
affect the heuristic information and pheromone trails
in the probabilistic transition rule, named respectively
β y α. C is the maximum number of cycles.

• BuildSolutionk: this process begins with a partial
empty solution which is extended at each step by
adding a feasible solution component chosen from
the current solution neighbors; i.e., to find a route on
the construction graph guided by the mechanism that
defines the set of feasible neighbors with regard to
the partial solution. The choice of a feasible neighbor
is done in a probabilistic way in every step of the
construction, depending on the used ACO variant.
In this work, the selection rule for the solutions

construction is based on the following probabilistic
model:

Pij =





τα
ij .η

β
ij∑

h∈F (i)

τα
ih

.η
β
ih

, j ∈ F (i);

0, otherwise.

(1)

– F (i) is the set of feasible points for point i.
– τij is the pheromone value associated to edge

(i, j).
– ηij is the heuristic value associated to edge (i, j).
– α and β are positives parameters for determining

the relative importance of the pheromone with
respect to the heuristic information.

• EvaluateSolution: evaluates and saves the best solu-
tion found by ant k in the current cycle.

• SaveBestSolutionSoFar: saves the best solution found
for all cycles so far.

• UpdateTrails: increases the pheromone level in the
promising paths, and is decreased in other case. First,
all the pheromone values are decreased by means
of the process of evaporation. Then, the pheromone
level is increased when good solutions appear. The
following equation is used:

τij = (1− ρ)τij + ∆τij (2)

– ρ ∈ (0, 1] is the factor of persistence of the trail.

– ∆τij =
K∑

k=1

∆kτij is the accumulation of trail,

proportional to the quality of the solutions.

– ∆kτij =

{
Q/Lk, when ant k used edge (i, j);
0, in other case.

– Q is a constant depending of the problem; it
usually set to 1.

– Lk is the objective value of the solution k.
Pheromone evaporation avoids a fast convergence of
the algorithm. In addition, this way of forgetting
allows the exploration of new areas of the search
space. The update of the pheromone trail can be
done according to one of the following criterions:
elitist and not elitist. In the elitist case, the best found
solution is used to give an additional reinforcement to
the levels of pheromone. The not elitist one uses the
solutions found by all the ants to give an additional
reinforcement to the levels of pheromone.

IV. THE PROPOSED ACO ALGORITHM FOR MWT
(ACO-MWT)

Considering Algorithm 1 described in the previous section,
we present BuildSolutionk function for the MWT problem
described in Algorithm 2. The other functions in the
General-ACO (Algorithm 1) remain the same for ACO-
MWT.
BuildSolutionk process showed below is an improvement
of the algorithm described in [6]. The current version
is better than the previous one in the sense that the
intersection procedure is invoked fewer times. It must be
noticed that in the initial version of the algorithm, we
start with an empty solution, i.e., we just have the set of
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points S. In this improvement, we take the β-skeleton
idea. Let p and q be two distinct points in S with β > 1.
Following Kirkpatrick and Radke [15], the edge pq is
included in the β-skeleton β(S) of S if the two circles of
diameter β · |pq| and passing through both p and q do not
enclose any point in S. Interestingly, β(S) is a subgraph
of each MWT(S) provided that β is large enough. The
original bound β ≥ √

2 in Keil [12] was improved later
in Cheng and Xu [4] to β > 1.1768. So, we start with
a partial solution composed by the edges of the Relative
Neighborhood Graph (RNG) which is called 2-skeleton
because is easier to compute than the 1.1768-skeleton.
BuildSolutionk works as follows, each ant builds a triangu-
lation of a given set or instance S, starting from an initial
random point. At each step, the algorithm adds a new edge
(i, j) if there is no intersection between (i, j) and the edges
of the (partial) solution Sk. In this case, i is a feasible point
for j and vice versa. If the current point has no feasible
points, it selects the next reference point according to one
of the following criterions: i) random selection; ii) select
the point with the largest quantity of feasible points; or,
iii) select the point with the lowest quantity of feasible
points.

Algorithm 2 BuildSolutionk
Sk ← edges of RNG
i ← SelectInitialPoint(S)
while S is not triangulated do

Fi ← FeasiblePoints(i, Sk)
if Fi = ∅ then

i ← SelectPoint(S, Sk)
Fi ← FeasiblePoints(i, Sk)

end if
j ← SelectPointProb(Fi)
if not IntersectSolution(i, j, Sk) then

Sk ← Sk ∪ (i, j)
i ← j

end if
UpdateFeasiblePoints(i, j)

end while

In order to better understand the behavior of Algorithm
2, the respective main components are described in the
following:

• SelectInitialPoint(S): returns a point p ∈ S, randomly
selected.

• FeasiblePoints(i, Sk): returns a set of points p ∈ S,
such that the edge (i, p) could not intersect with the
edges of the solution Sk. Note that this function may
return points that are no feasible for p.

• SelectPoint(S, Sk): returns a point p ∈ S, such that
FeasiblePoints(p, Sk) has at least a point. p is
selected according yo one of the criteria mentioned
previously.

• SelectPointProb(Fi): returns a point j ∈ Fi chosen
according to Equation 1, where ηij is 1/dij , and dij

is the Euclidean distance between i and j.
• IntersectSolution(i, j, Sk): returns true if the edge

(i, j) intersects at least one edge of the solution Sk;
returns false, in other case.

• UpdateFeasiblePoints(i, j): updates the feasible
points of i and j, i.e., the points i and j are not
more feasible with respect to each other.

V. EXPERIMENTAL EVALUATION

In this work we present an ACO algorithm for the MWT
problem. The proposed ACO algorithm is represented by
an Ant System (AS), a particular instance of the class of
ACO algorithms. We show the experimental phase for sets
of instances of size 40, 80, 120, and 160 points. Through
the experimental evaluation, we assess the applicability of
the ACO metaheuristic for MWT problem.
To the best knowledge of the authors, there not exist
collections of instances in the literature for MWT problem.
According to that, we design an instances generator.
Therefore, we have generated respectively a collection
of 10 instances of size 40/80/120/160/200; i.e., a total
of 50 instances for the problem. Each instance is called
LDn-i where n denotes the size of the i-instance, with
1 ≤ i ≤ 10. The instance generator uses different
functions of CGAL Library [1]. The points are randomly
generated, uniformly distributed and for each point (x, y),
the coordinates x, y ∈ [0, 1000]. Especially for MWT
problem, these instances must be pre-processed to guar-
antee non collinear points which a sine qua non property
that has to be met to find suitable solutions for the problem.
Particulary, in this work, we present the experimental
research for four instances of size 40, 80, 120, and 160
respectively (LD40-1, LD40-2, LD40-3, LD40-4, LD80-1,
LD80-2, LD80-3 LD80-4, LD120-1, LD120-2, LD120-3,
LD120-4, LD160-1, LD160-2, LD160-3, and LD160-4).
The ACO-MWT algorithm was implemented in C and run
on BACO parallel cluster, composed by 60 PCs, with a 3.0
GHz Pentium-4 processor each one and 90 PCs with a 2.4
GHz Core 2 Quad processor each one, under CONDOR
batch queuing system.
In this evaluation phase, we used the following parameter
values: α = 1; β = 1 and 5; and ρ = 0.10, 0.25, and 0.50.
elit = 1 and 0, where 1 means that the trail is updated in
a elitist way; in other case, the updating is done in a not
elitist way. criterion = 1, 2, and 3, is used for selecting a
point in the SelectPoint(S, Sk) procedure in ACO-MWT
algorithm. For criterion = 1 the point is chosen randomly;
for criterion = 2, the chosen point has the largest quantity
of feasible points; and for criterion = 3, the chosen point
has the lowest quantity of feasible points. The number of
cycles, C, is 1000; the number of ants, K, is 50. For each
parameter setting, given below, 30 runs were performed
by using different random seeds. For each instance, the
experiment were done with the twelve parameter setting,
according to combinations of parameters before detailed.
We obtain average, median, best, and standard deviation
values, considering the objective function (weight). We
show the results according to the four best parameter
settings considering the smaller weights, i.e., the four
Best values. We only show the results for the best four
parameter settings since the results for the remaining ones
were in general of lower quality with respect to the best
found values.
Next, we show the experimental results, considering the
above presented settings. Each parameter setting is denoted
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TABLE I
MWT: RESULTS FOR FOUR INSTANCES OF 40 POINTS.

Par. Setting Average Median Best Std. Dev.
LD401-1-0.25-1 5497920 5499201 5493047 3093
LD401-1-0.50-1 5500288 5501497 5493047 4543
LD401-5-0.10-1 5501427 5502009 5493047 4890
LD401-5-0.25-1 5502441 5502009 5493047 4547
LD401-5-0.50-1 5500754 5501988 5493047 5518
LD402-1-0.25-1 4666083 4666261 4661242 2511
LD402-1-0.10-1 4665869 4665657 4660495 2830
LD402-5-0.50-1 4664708 4664817 4659553 2927
LD402-1-0.50-1 4666420 4666984 4659553 3191
LD402-5-0.25-1 4665475 4664817 4659553 3693
LD402-5-0.10-1 4665988 4665789 4659553 3812
LD403-5-0.25-1 5519150 5519777 5502567 6516
LD403-1-0.10-1 5520802 5521320 5503301 6966
LD403-5-0.10-1 5519544 5519625 5510241 5353
LD403-5-0.50-1 5517745 5519181 5510241 5657
LD404-1-0.25-1 5748259 5747745 5745772 2316
LD404-1-0.50-1 5748852 5748473 5745772 1946
LD404-5-0.50-1 5751695 5750729 5745772 4002
LD404-1-0.10-1 5749372 5748757 5747725 1950
LD404-5-0.10-1 5751877 5750729 5747725 3170
LD404-5-0.25-1 5751976 5750729 5747725 5157

TABLE II
MWT: RESULTS FOR FOUR INSTANCES OF 80 POINTS.

Par. Setting Average Median Best Std. Dev.
LD801-5-0.50-1 6271586 6273781 6242505 14337
LD801-5-0.25-1 6271507 6275369 6249124 13911
LD801-1-0.25-1 6287660 6289344 6256190 14223
LD801-5-0.25-0 6312084 6313977 6257491 15609
LD802-5-0.25-1 7640159 7643473 7605383 13945
LD802-5-0.50-1 7637904 7638408 7607462 15751
LD802-5-0.10-1 7640725 7642497 7610007 16196
LD802-1-0.10-1 7648258 7645077 7611405 22608
LD803-5-0.10-1 5863919 5865538 5836037 13482
LD803-5-0.50-1 5867149 5866309 5843634 14250
LD803-1-0.50-1 5880349 5884690 5845840 15361
LD803-1-0.25-1 5879002 5882230 5848638 16061
LD804-5-0.50-1 6277069 6283664 6217040 23328
LD804-1-0.50-1 6273397 6271736 6221908 23681
LD804-1-0.10-1 6274697 6275648 6225424 23752
LD804-1-0.25-1 6268067 6270581 6228084 17899

by (instance-β-ρ-elit). α and criterion are not shown
because they are the same for all the cases (α = 1 and
criterion = 1). The decimal numbers are not showed
because they are not significant.
We analyze the performance of the ACO-MWT algorithm
over four instances of 40, 80, 120, and 160 points. In
Tables I, II, III, and IV we show the results according
to the four best parameter settings with respect to the
smaller weights (Best values). The Table V is a summary
of the previous tables and shows that the best weights are
obtained using configurations with β = 5, elit = 1 and ρ
between 0.1 and 0.5, i.e., we obtained better results giving
more relevance to the heuristic information and updating
the trails in a elitist way.
We compare ACO-MWT algorithm among the Delau-
nay Triangulation (DT). The Table VI shows the smaller
weights found of each strategy. From the displayed results
it can seen that the ACO-MWT algorithm found the
smaller weights for all cases. ACO-MWT managed to
reduce the weights between 1% and 5% with regard to the
DT strategy, but for LD40-4 instance achieved a reduction
of 8%.
We carried out the boxplot method to visualize the distri-

TABLE III
MWT: RESULTS FOR FOUR INSTANCES OF 120 POINTS.

Par. Setting Average Median Best Std. Dev.
LD1201-5-0.25-1 9361401 9361368 9325984 18424
LD1201-5-0.50-1 9364442 9361221 9331139 22122
LD1201-5-0.10-1 9366316 9361576 9333488 20569
LD1201-1-0.50-1 9393130 9398060 9345181 22710
LD1202-5-0.10-1 6019316 6020394 5962099 23256
LD1202-5-0.25-1 6022598 6027282 5979832 20284
LD1202-5-0.50-1 6026150 6030549 5995484 21177
LD1202-1-0.10-1 6052288 6059251 5996347 25249
LD1203-5-0.10-1 8661456 8661549 8632306 16552
LD1203-5-0.25-1 8658617 8659753 8632574 11813
LD1203-5-0.50-1 8663020 8668620 8633526 17104
LD1203-1-0.10-1 8704510 8706670 8658672 21258
LD1204-5-0.50-1 7802093 7804348 7762612 18435
LD1204-5-0.10-1 7797742 7798414 7766328 14877
LD1204-1-0.10-1 7831163 7832325 7774480 23019
LD1204-5-0.25-1 7798003 7794526 7776160 13279

TABLE IV
MWT: RESULTS FOR FOUR INSTANCES OF 160 POINTS.

Par. Setting Average Median Best Std. Dev.
LD1601-5-0.10-1 7515805 7515852 7489134 16875
LD1601-5-0.50-1 7527522 7527589 7495482 17124
LD1601-5-0.25-1 7518991 7516890 7496947 15200
LD1601-1-0.50-1 7588850 7588794 7510242 24740
LD1602-5-0.50-1 7091344 7089629 7057185 18160
LD1602-5-0.25-0 7132276 7136565 7057845 18387
LD1602-5-0.25-1 7095758 7095337 7066699 17190
LD1602-5-0.10-1 7097824 7098349 7073680 13596
LD1603-5-0.50-1 8797618 8803769 8748156 19596
LD1603-5-0.10-1 8797039 8796674 8750828 21039
LD1603-5-0.25-1 8809061 8810073 8770606 17587
LD1603-1-0.10-1 8844513 8843003 8809559 24466
LD1604-5-0.50-1 6223382 6225358 6184695 19044
LD1604-5-0.10-1 6223522 6224625 6194364 15100
LD1604-5-0.25-1 6225932 6225323 6197952 16147
LD1604-1-0.25-1 6261122 6263084 6216992 20906

TABLE V
ACO-MWT: SUMMARY OF RESULTS FOR FOUR INSTANCES OF

40, 80, 120, AND 160 POINTS.

β ρ elit
1 (33.3%) 0.10 (33.3%) 0 (2.9%)
5 (66.7%) 0.25 (33.3%) 1 (97.1%)

0.50 (33.3%)

TABLE VI
ACO-MWT: COMPARING RESULTS BETWEEN ACO-MWT

AND DT.

Instance DT ACO-MWT
LD40-1 5666348 5493047
LD40-2 4722381 4661242
LD40-3 5663032 5502567
LD40-4 6289829 5745772
LD80-1 6462038 6242505
LD80-2 8081573 7605383
LD80-3 6143637 5836037
LD80-4 6460311 6217040
LD120-1 9581142 9325984
LD120-2 6149825 5962099
LD120-3 8948084 8632306
LD120-4 8111182 7762612
LD160-1 7837804 7489134
LD160-2 7144975 7057185
LD160-3 8891459 8748156
LD160-4 6315497 6184695
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Fig. 3. MWT: Boxplots for (a) LD40-1, (b) LD40-2, (c) LD40-3,
and (d) LD40-4

1 2 3 4 5 6 7 8 9 10 11 12

6.25

6.3

6.35

6.4

6.45

x 10
6

(a)
1 2 3 4 5 6 7 8 9 10 11 12

7.6

7.65

7.7

7.75

7.8

7.85

x 10
6

(b)

1 2 3 4 5 6 7 8 9 10 11 12

5.85

5.9

5.95

6

6.05

x 10
6

(c)
1 2 3 4 5 6 7 8 9 10 11 12

6.25

6.3

6.35

6.4

x 10
6

(d)

Fig. 4. MWT: Boxplots for (a) LD80-1, (b) LD80-2, (c) LD80-3,
and (d) LD80-4

bution of the weights for each environment. The Figures
3, 4, 5, and 6 show the boxplots of the weights obtained
for the 30 seeds for four instances for 40, 80, 120, and
160 points for the twelve configurations. The medians are
similar for ρ between 0.10, 0.25 and 0.50. The algorithm is
more robust when elit = 1 because the 50% of the values
(values between the first and third quartile) are very closed
around the median value. We obtained better results with
β = 5 and elit = 1 (see parameter settings 7 to 12).

VI. CONCLUSION

In this work, we present the design of approximation
algorithms for solving the Minimum Weight Triangulation
problem for sets of points in the plane. The proposed ACO
algorithm for the MWT is represented by an Ant System
(AS), a particular instance of the class of ACO algorithms.
We also detailed the generation of instances for the ex-
perimental evaluation, being this another contribution of
this paper, since there are not available instances with
special properties for building triangulations. Currently, we

are continuing the experimental evaluation over a large
collection of instances, where the obtained results could
be used as benchmarks.
From this initial experimental phase we obtained pre-
liminary results that will guide future experimentation.
Currently, we are in the phase of applying a more method-
ological approach (e.g., SPOT toolbox[30]) for the experi-
mental design following the directions of Bartz-Beielstein
[31] and Fang et al.[9]. This methodological approach for
parameter optimization will let us assess more accurately
the behavior of our proposed algorithms under different
parameter setting.
Future work will address the use different parameter setting
for the ACO algorithms and the experimentation with
the whole collection of instances generated. In addition,
we aim at comparing the proposed algorithms against
other strategies like greedy algorithms or alternative meta-
heuristics (e.g., evolutionary algorithm, particle swarm
optimization algorithms).
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Fig. 5. MWT: Boxplots for (a) LD120-1, (b) LD120-2, (c)
LD120-3, and (d) LD120-4
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Fig. 6. MWT: Boxplots for (a) LD160-1, (b) LD160-2, (c)
LD160-3, and (d) LD160-4
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