
Using Combination of Actions in Reinforcement Learning

Marcelo J. Karanik
marcelo@frre.utn.edu.ar

Sergio D. Gramajo
sergiogramajo@gmail.com

Artificial Intelligence Group

National Technological University

Resistencia (3500), Chaco - Argentina

ABSTRACT

 Software agents are programs that can observe their

environment and act in an attempt to reach their design

goals. In most cases the selection of particular agent

architecture determines the behaviour in response to the

different problem states

However, there are some problem domains in which it is

desirable that the agent learns a good action execution policy

by interacting with its environment. This kind of learning is

called Reinforcement Learning and it is useful in the process

control area. Given a problem state, the agent selects the

adequate action to do and receives an immediate reward,

then estimations about every action are updated and, after a

certain period of time, the agent learns which the best action

to be executed is. Most reinforcement learning algorithms

perform simple actions while two or more are capable of

being used. This work involves the use of RL algorithms to

find an optimal policy in a gridworld problem and proposes

a mechanism to combine actions of different types.

Keywords: Reinforcement Learning, SARSA, Optimal

Policy, Action Combination.

1. INTRODUCTION

By using Reinforcement Learning (RL) techniques, an agent

interacts with its environment to achieve a goal. Agent

attempts to reach the objective based on learning by trial-

and-error [7] [13], then what to do and how to do it to

optimally achieve its goal through mapping situations to

actions must be learnt[8]. To reach the optimal solution, it is

necessary to maximize a numerical reward signal. The agent

must discover by itself what action should be taken in order

to maximize the reward signal. It affects agent status and not

only does it have immediate reward but also has it through

subsequent actions [7], [13].

There are two RL basic characteristics; trial-and-error and

RL delayed reward. The agent must be able to learn from

delayed reinforcement in a long sequence of actions,

receiving insignificant reinforcement at the beginning of

interaction, and finally arrive at the state with high reward

[2], [13].

The goal of RL is to program agents that learn by reward

and punishment (negative reward), being how the task is

performed needless to specify [7].

This kind of learning performed by RL is unsupervised

because the agent learns by itself and it is not necessary to

include input-output pairs provided by an external expert,

such as Artificial Neural Network (ANN) methods [7]. In

unsupervised learning the agent is not told what action to

take to achieve the best rewards over time. Here, it is

necessary for the agent to acquire useful experience about

the possible system states, actions, transitions between states

and rewards to operate optimally and so achieve the goal. To

do this, the agent must exploit what is already known to

obtain a reward, but should also explore to make a better

selection of actions in the future [13]. The problems with

delayed reinforcement are well modeled with Markov

Decision Processes [13]. Formally, the model consists of:

 , a discrete set of environment states.

 , a discrete set of agent actions.

 A reward function or set of scalar

reinforcement signal or real numbers.

 A state transition function , where a

member of is a probability distribution over the

set . It maps states to probabilities, i.e. is a

probability of making a transition from the state to

applying an action .

The agent's job consists of finding a policy , mapping

states to actions to maximize the reward of long-term

reinforcement. In general, the environment is non

deterministic, that is, taking the same action in the same

state at two different times may result in a different next

state and/or different reinforcement values [7]. It is assumed

that the environment is stationary, that is, the probabilities of

making a transition state or receiving a specific

reinforcement signal do not change over time. There are also

non-stationary environments to build the theoretical system

of learning, but they are not focused on this paper. The

reinforcement learning paradigm described has been

successfully implemented for many well-defined problems

such as games theory [3], [8]; robotics [5], [9]; scheduling

[1], [6], [12], [17]; telecommunications [4], [14], elevators

controls [11], etc.

RL algorithms find an optimal policy to fulfill actions, and

sometimes, several of them can be fulfilled in a state. In this

paper an alternative to combine actions in a gridworld

problem is presented. RL SARSA algorithm and the actions

combination method are described in section 2. In section 3

the problem description is made. In section 4 simulations

and results are showed, and finally, in section 5, a discussion

about some topics and future work are presented.

2. ACTION COMBINATION METHOD

Given the model characteristics described in section 1, given

a state , the agent selects an action , receives a reward

 and finds itself in a new state . In this case the

agent has estimated values of every possible action to

perform for each state:

 (1)

where:

 is the environment state;

 is the selected action.

JCS&T Vol. 10 No. 1 April 2010

19

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15766857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The estimated values actualization is made by using:

 (2)

where:

 is the next state;

 is the selected action state ;

 is the obtained reward;

is the learning rate;

is the discount factor.

This updating is made by using SARSA algorithm, whose

behavior is showed in Algorithm 1 [13]. In line 1

matrix is initialized with five, which is called optimistic

initialization. This method makes the stabilization of the

system take longer but increases the probabilistic that the

actions performed are the best.

In line 3 the initialization of is made at random, then an

action is selected from using Softmax policy [13]. Next

action is selected using Gibbs distribution:

 (3)

where:

 is the number of basic actions;

 is the temperature parameter.

Thus, Softmax policy in the exploration is based on the

values of , favoring the actions with the highest

values of because it has more probability of being

selected. Softmax ensures the selection of the best actions

according to their value, and by varying the

temperature parameter, it is possible to obtain a good

balance between exploration and exploitation.

For every step of episode (lines 5-10), the selected action

is executed, the reward and next state are observed and

used to update the matrix.

Algorithm 1. SARSA Algorithm.

1. Initialize with five.

2. Repeat in each episode:

3. Initialize

4. Choose from using policy derived from

5. Repeat for each step of episode:

6. Take action , observe

7. Choose from using policy derived from

8.

9.

10. Until is terminal

By using SARSA algorithm, the agent selects just one action

in current state and, in many domains, this is sufficient to

find an adequate action execution policy. Nevertheless,

actions combination can help to find alternative solutions

provided by two or more actions at the same time. Normally,

action combination constantly occurs in real life, for

example when a person learns the relationship between

speed and direction driving a car. For action combination, a

simple method is proposed: start the learning process with

basic actions and, incrementally, create new ones using

actions which have better values of matrix. Then,

new actions are added to the basic actions and they are

available to be selected.

In Algorithm 2 it is shown that the action combination

method is performed after updating matrix and new

state assignation (lines 9, 10), with low probability . In line

11 two actions from basic set of actions are selected by

using Softmax algorithm.

Finally, in lines 12 and 13 a new action is created and added

to action set from basic actions. These new actions are not

basic, and they cannot be used to create new ones.

Algorithm 2. SARSA Algorithm with Actions Combination

Process.

1. Initialize with five.

2. Repeat in each episode:

3. Initialize

4. Choose from using derived from

5. Repeat for each step of episode:

6. Take action , observe

7. Choose from using derived from

8.

9.

10. Do action combination with probability:

11. Choose basic and using softmax policy

12. Create new action

13. Add to Action set

14. Until is terminal

3. PROBLEM DESCRIPTION

To test the action combination algorithm, a simplification of

Wumpus World problem [15] is used. It consists of an agent

inside a network of rooms connected to each other. In some

of these rooms is the Wumpus, a monster that devours all

that enters there. There are also gaps, where the agent can

fall. The agent's objective is to find a pile of gold, for which

it must overcome obstacles. An example of this environment

is showed in Figure 1. In addition, the agent can kill the

Wumpus using the only arrow it has.

The problem consists of a grid where

and . The agent must go from initial position set

by the user to goal across the grid without falling into the

gap or being killed by Wumpus.

Gold Agent

Wumpus Gap

Figure 1. Gridworld Environment.

The state set is specified through the following variables:

 (4)

where:

is the grid row subindex ();

 is the grid column subindex ();

 is the agent’s direction

 indicates if the agent has an arrow

 is the state of Wumpus (dead or alive)

JCS&T Vol. 10 No. 1 April 2010

20

The agent can use the following four actions:

 (5)

where:

 means the agent turns 45° to the left;

 means the agent turns 45° to the right;

means that the agent moves forward

 means the agent shoots the arrow.

The agent selects and executes an action (in time step) and

receives the immediate reward given to:

a) If agent dies then = -15;

b) If agent reaches the goal state, then = 25;

c) = -1 in other case (this negative reward is used

to find a fast solution);

d) If agent kills the Wumpus then = 22;

e) If agent shoots without arrow then = -12;

f) If agent shoots whith arrow but does not kill the

Wumpus then = -9;

Considering the agent position, its direction, if the agent has

an arrow and the status of the Wumpus, this problem can

have many distinct states; for which it is necessary to use an

efficient policy in order to select actions correctly.

4. SIMULATIONS AND RESULTS

In this section 3 environments of different sizes to obtain

simulations results are presented, each of these with 10

episodes (the simulations was made using VBasic dot

net™)1. These tests allow observing the benefits of SARSA

Algorithm using simple actions and combined actions.

To do it, parameters with their defined values listed below

were used:

 learning rate : 0.3;

 discount factor : 0.9;

 action combination probability : 0.005;

 temperature parameter : (* 400),

with η = 0.1 – 0.006 * Number_of_Episodes

if = 0 then =1;

 function valor: SOFTMAX;

 number of episodes: 10;

 initial fixed test position for three environments:

Environment of 5x5 and 10x10: 0,0,6,1,1.

Environment of 15x15: 14,14,2,1,1.

In table 1 the number of action required from initial states to

reach the goal can be observed.

It is seen that the agent can learn faster with the use of

simple actions, but the advantage of combined actions

method is that fewer steps are required to reach the goal.

This happens because when combined actions are

implemented, the relationship of states-actions to explore on

environment is four times greater than with simple actions.

In simulation a control break for each domain is performed,

which is useful to verify if agent is able to reach the goal

from the fixed test position. Thus, in Figure 2 learning

curves are showed, i.e. the relationship between the amount

of learning episodes and the number of states from which

they can achieve the goal.

1 Programmers: Diana V. Cabrera and Leandro A. Varone

(System Engineering undergraduate students)

Table 1. Results of simple actions and combined actions

Grid

Zize

Algorithm

Type

Actions Used to Reach

Goal

Number of Learning

Episodes

Min Max

5x5

Simple

Actions
16 5940 7560

Combined

Actions
4 14040 19620

10x10

Simple

Actions
20 24000 28800

Combined

Actions
7 67200 86400

15x15

Simple

Actions
26 62400 63000

Combined

Actions
11 210000 241500

When training begins learning is slow because the agent

explores the environment. Then there is an accelerated

growth in the number of times the agent reaches the goal or

ends state. And finally the agent knowledge is stabilized by

exploiting the knowledge acquired.

(a)

(b)

(c)

Figure 2. Learning simple actions and combined actions.

Domains depicted in Figure 3(a), 3(b) and 3(c) show the

number of states from where agent can reach the goal state,

which are 495, 1551 and 3568 respectively. Gaps, Goal and

Wumpus are not initial states and they reduce the numbers

above.

JCS&T Vol. 10 No. 1 April 2010

21

(a)

(b)

(c)

Figure 3. Optimal Paths to Reach Goal

This behavior is the same (for different sizes, configurations

and types of actions) save for a variation in the number of

episodes in which the system achieves a state of

stabilization

This number is proportionately related to the number of

environment states. Thus, at the end of training, the agent

has learned to reach goal state of optimal way, as shown in

Figure 3 with gridworld domains of 5x5, 10x10 and 15x15,

Figure 3(a), 3(b) and 3(c) respectively used.

In Figure 3(a) it can be observed that the agent combines the

stepForwrd action twice in order to avoid falling into the gap

(full line). This new combined action can be viewed as a

jump. Also, by using this new action, the agent keeps away

from Wumpus and does not need to kill it. The number of

necessary actions to reach the goal decreases considerably

using combination method.

The same behavior can be observed in Figures 3(b) and 3(c).

In Figure 3(b) for both paths the agent kills the Wumpus, but

by using combined actions it modifies the trajectory in order

to arrive at goal faster.

Figure 3(c) shows the same path using combined and simple

actions. The main difference is the number of actions used to

reach the goal. For example, in final steps, the agent

combines turnLeft-stepForward and stepForward-shoot in

order to kill Wumpus in just two actions. The suitability of

decisions is possible given the fact that the knowledge

acquired assigns best values to combined action.

5. CONCLUSIONS AND FUTURE WORK

The actions combination method presented in this work can

be implemented in RL algorithms, and it is an interesting

mechanism to find optimal solutions to control process

problems based on known algorithms (for example

SARSA).

Action combination mechanism tends to discover if it is

possible to use two o more actions in a particular state

instead of one. For the Wumpus world problem, using action

combination allows to observe that combining stepForward

action twice, the agent discovers a new action that can be

considered as a jump. This new action can be used to skip

pits and the agent selects it only for those occasions. This is

an important issue as it is not necessary to program all

possible combinations and restrictions on problem domain.

However, since the number of combinations can grow

exponentially, it is possible to implement an action

clustering process in order to reduce the combinations to

actions of different clusters.

The action combination method explores extra actions that

may not have been considered part of the solution. This is

very important for solving problems requiring the

application of several actions in one state because it is a

simple mechanism to program.

The actions combination mechanism can be improved by

using heuristics about particular domain or action-state

values. Clearly, that implies further complexity in the

implementation and, consequently, the computation time

grows.

The actions combination heuristics and their improvement

are focused on preceding actual work. Also, structural

abstractions [10], multiple objective problems [16] and [10]

are two topics under consideration with the intention of

improving the algorithms implementation.

Acknowledgements

This work has been supported by the EIINRE571project

(National Technological University, Argentina).

JCS&T Vol. 10 No. 1 April 2010

22

References

[1] A. McGovern, E. Moss and A. G. Barto, "Building a

Basic Block Instruction Scheduler with

Reinforcement Learning and Rollouts", Machine

Learning, vol 49, No 2, 2002, pp 141–160.

[2] C. J. C. H. Watkins and P. Dayan, "Q-Learning",

Machine Learning, vol 8 No. 4, 1992, pp. 279-292.

[3] I. Erev and A. Roth, "Predicting How People Play

Games: Reinforcement Learning in Experimental

Games with Unique Mixed Strategy Equilibria",

American Economic Review 8, 1998, pp. 848-881.

[4] J. A. Boyan and M. L. Littman, "Packet Routing in

Dynamically Changing Networks: A Reinforcement

Learning Approach", Advances In Neural

Information Processing Systems 6, Morgan

Kaufmann, San Mateo, CA, 1994, pp. 671-678.

[5] J. Peters, S. Vijayakumar and S. Schaal,

"Reinforcement Learning for Humanoid Robotics",

In Proceeding Humanoids2003, Third IEEE-RAS

International Conference on Humanoid Robots,

Karlsruhe, Germany, 2003, pp. 2002.

[6] L. J. Lin, "Self-Improving Reactive Agents Based

on Reinforcement Learning, Planning, and

Teaching", Machine Learning, vol 8, 1992, pp. 293-

321.

[7] L. P. Kaelbling, L. M. Littman and A. W. Moore,

"Reinforcement Learning: a Survey", Journal of

Artificial Intelligence Research, vol. 4, 1996, pp.

237–285.

[8] M. Bowling and M. Veloso, "An Analysis of

Stochastic Game Theory for Multiagent

Reinforcement Learning", Technical report CMU-

CS-00-165. Computer Science Department,

Carnegie Mellon University, 2000.

[9] P. A. Agre and D. Chapman, "What are plans for?",

Designing Autonomous Agents: Theory and

Practice from Biology to Engineering and Back.,

Cambridge MA: MIT Press., 1990, pp. 17-34.

[10] R. Fitch, B. Hengst, D. Suc, G. Calbert and J.

Scholz, "Structural Abstraction Experiments in

Reinforcement Learning", In Procceding Australian

joint conference on artificial intelligence No18,

Sydney, vol. 3809, 2005, pp. 164-175.

[11] R. H. Crites and A. G. Barto, "Improving Elevator

Performance Using Reinforcement Learning",

Advances in Neural Information Processing Systems

8, Conf., MIT Press, Cambridge, Mass., 1996,

pp.1017-1023.

[12] R. Kozierok and P. A. Maes, "Learning Interface

Agent for Scheduling Meetings", In Proceeding 1st

international conference on Intelligent user

interfaces, Orlando, Florida, United States, 1993,

pp.81-88.

[13] R. S. Sutton and A. G. Barto, Reinforcement

Learning: An Introduction, Cambridge.

Massachusetts: MIT Press, 1998.

[14] S. Peshkin and V. Savova, "Reinforcement Learning

for Adaptive Routing", In Proceedings of the

International Joint Conference on Neural Networks

(IJCNN), 2002, pp. 1825-1830.

[15] S. Russell and P. Norvig, Inteligencia Artificial: Un

enfoque moderno. Naucalpan de Juárez Edo.

Mexico: Prentice Hall, 1996.

[16] T. G. Dietterich, "The MAXQ Method for

Hierarchical Reinforcement Learning", In

Proceedings of the Fifteenth International

Conference on Machine Learning, 1998, pp. 118-

126.

[17] W. Zhang and T. G. Dietterich, "A Reinforcement

Learning Approach to Job-Shop Scheduling", In

Proceeding 1995 International Joint Conference on

Artificial Intelligence, AAAI/MIT Press,

Cambridge, MA, 1995, pp. 1114-1120.

JCS&T Vol. 10 No. 1 April 2010

23

	Text1: Received: Dec. 2009. Accepted: Feb. 2010

