
Abstract 
A valid Calderbank-Shor-Steane (CSS) error correction 
code requires two classical linear codes for the preparation 
of the initial state (codewords). This code allow to correct 
for certain errors caused by an unwanted interaction 
which produces a degraded quantum state. However, this 
initial seven qubits encoding can be obtained from a 
maximally entangled Bell state ��|�������� � �|��������	/√� through an operation Hint

whose explicit expression is derived in the present work. 
The price the CSS syndrome has to pay due to its classical 
grounds is that the operator Hint is not unitary. In other 
words, Hint is not a valid quantum gate i. e. this does not 
represent a logical operation. Consequently, the final state 
is not completely robust for the standard cryptography of 
Quantum Computation. 
Besides to be a non unitary operator, Hint, is not reversible 
introducing with this dissipative effects that destroy the 
coherence in the quantum computer. Additionally, this 
operator is not invariant under rotations of the protector 
qubits inducing then preferred directions of the 
propagation of the logical information. These are indeed 
the  reasons that prompt us for extending the semi classical 
CSS quantum error correction codes formalism to a pure 
quantum Hamming codes. 
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I. INTRODUCTION 

Quantum information processing (QIP) can be used to 
solve problems in physics simulation, crypto analysis, 
and secure communications for which there are no 
known efficient solutions based on classical information 
processing. There are several well-established physical 
models that, under ideal conditions, allow for exact 
realizations of quantum information and its 
manipulation [1]. However, real physics systems never 

behave exactly like the ideal models. One of the main 
problems is the environmental noise, which is due to 
incomplete isolation of the system of the rest of the 
world. Another problems are the control errors, which 
are caused by calibration errors and random fluctuations 
in control parameters. 

Soon after Peter Shor published the efficient quantum 
factoring algorithm with its applications to breaking 
commonly used public-key cryptosystems, Andrew 
Steane [2] and Shor [3] gave the first constructions of 
quantum error-correcting codes. These codes make it 
possible to store quantum information so that one can 
reverse the effects of the most likely errors. They 
showed that it is possible to protect against 
environmental noise when storing or transmitting 
information. Thus, immediately arose the question 
whether it is possible to quantum compute in a fault-
tolerant manner. The answer was given by the accuracy 
threshold theorems [4]-[14]. According to these 
theorems, if the effects of all errors are sufficiently small 
per qubit and computation step, then it is possible to 
process quantum information arbitrarily accurately with 
reasonable resources overheads. The requirement on 
errors is quantified by a maximum tolerable error rate 
called the threshold. All threshold theorems require that 
errors at different times and locations be independent 
and that the basic computational operations can be 
applied in parallel. The sense in which quantum 
information can be accurately stored in a noisy system 
needs to be defined without reference to an observer. 
There are two ways of accomplishing this task. The first 
is to define stored information to be the information that 
can, in principle, be extracted by a quantum decoding 
procedure. The second is to explicitly define subsystems 
(particle-like aspects of the quantum device) that contain 
the desired information. The quantum error correction 
codes theory deals with the first approach. 
       Among the most important quantum correction 
codes are the so called CSS codes which are built in 
terms of two classical correction codes. CSS codes are 
an important subclass of the more general class of 
stabilizer codes. Stabilizer codes are useful because they 
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make it easy to determine which Pauli product errors are 
detectable and because they can be interpreted as special 
types of classical, linear codes. In other words, the CSS 
codes are a method of converting certain classical error 
correcting codes into quantum ones.  
     In the past, there have been intuitive approaches for 
justifying the necessity of extending the CSS codes to a 
genuine quantum Hamming codes [15]. However, these 
attempts have failed due to the lack of a self consistent 
formalism.  The purpose of this letter is to make explicit 
that the CSS codes are plagued of inconsistencies. This 
is done in a natural fashion by employing a self 
consistent formalism. Thus, we prove that the CSS 
interaction 
��� is not unitary. This makes that  
���
becomes unsuitable for performing logical operations. 
Another deficiency is that this operator is not invariant 
under rotations of the logical qubits. Besides such 
interaction introduces unwelcome noise by heating the 
quantum computer, destroying with this its coherence 
necessary for the processing of the information. The 
way we proceed is as follows: in Section 2 it is given a 
brief account of the CSS codes. Meanwhile, the explicit 
calculation of the usual expression for the Steane seven 
qubits encoding is done in the Appendix. In Section 3 it 
is derived an expression for the operator Hint which to 
act over the maximally entangled Bell-like state ��|0000000� � �|1111111�	/√2, prepares the seven qubits 
code words. In the same section it is shown that Hint is 
not unitary. The paper is concluded by giving a 
discussion on the obtained results. 

II. CALDERBANK-SHOR-STEANE CODES 

The CSS quantum codes extend the classical linear 
codes and let us identify and correct large qubit errors, 
i.e., errors described by Pauli matrices. CSS quantum 
codes derive from classical linear codes. In order to 
construct a CSS code it is necessary to start from two 
classical linear codes, let say C1[n, k1] and C2[n, k2] such 
that C2 ⊂ C1. The sets C1 and C2 are defined as the set 
of possible code words generated by that code The 
resulting code is a quantum code called CSS(C1/C2) 
which encodes k1 − k2 logical qubits in n “physical 
qubits”, so this code is [n, k1 − k2] [16]. Observe that the 
codes C1 and C2 can be dual as long as C2 ⊂ C1. In this 
case C1 = C1[n, k] and C2 = C2[n, n − k] and the 
resulting code is CSS[n, 2k−n]. In general, for a CSS 
code encoding �� � ��  qubits, we map the first 2k1−k2

binary numbers (starting from 0) to code words in C1. 
The encoding is a vector space spanned by all states 
constructed by taking a codeword x ∈ C1 and then 
adding to it the whole of C2, that is 

             |x������� � ��|��| ∑ |x���y�,�!"��                       (1)                        

where �� is a mod2 sum and | C2 | is the number of 
elements in C2. In Figure 1 it is sketched the quantum 
circuit representing the whole CSS quantum error 
correction codes.  

Figure 1: A quantum circuit for measuring the error syndrome 
for the CSS code. The bottom 7 lines represent the 7-qubit 
register, which encodes a single logical qubit. The 6 lines 
represent the ancilla

     In order to derive the CSS wave function to be 
transmitted out we start with the C1[7, 4] classical 
Hamming linear code and its C2[7, 3] dual with which it 
is constructed the corresponding [7,1]CSS(C1/C2). The 
code words of C1[7, 4] are spanned by the columns of 
the generator matrix 

                                   G�
#
$$$
%

001
001

010
1001001010001100111&

'''
(

             (2)                             

The code words of C2[7, 3] are spanned by the rows of 
the check matrix (see the Glossary) 

                                   ) � *001
010

011
100

101
110

111+            (3)                     

To prove that C2 ⊂ C1 is straightforward if we observe 
that the rows of H are constructed by adding rows of ,-
. That is, 0001111 = 0011001 +2 0010110, 0110011 = 
0010110 +2 0100101, and 1010101 = 0010110 +2

1000011 where use has been made of the binary sums 0 
+2 0 = 0, 0 +2 1 = 1, and 1 +2 1 = 0. 
A good initialization protocol must assure that all of the 
superposed states in the initial state have the same 
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probability of occurrence. Thus, the Steane seven qubits 
encoding that must be transmitted is 

|�.�/00 � �√� �|�0�1 � |�1�1	 �
�2 34|�0000000� � |�1010101� � |�0110011� � |�0001111� �|�0111100� � |�1011010� � |�1100110� � |�1101001� 5 ��|�1111111� � |�0101010� � |�1001100� � |�1110000� �|�1000011� � |�0100101� � |�0011001� � |�0010110�	6.      
(4) 
        

In the Appendix an explicit derivation of the above |�0�1 and �|1�1 Steane states is given. We observe that this 
derivation is not done in the majority of works dealing 
with the CSS syndrome 

III. NON UNIVERSALITY OF THE SEVEN QUBITS 
CSS ENCODING 

In order to derive the generating interaction of |�.�/00 from 

Eq. (4) we first note that the x-Pauli matrix,89 � :0110;, is a 

spin flip operator e. g. 89|�0� � |�1� and 89|�1� � |�0�. Therefore, 
the seven qubits encoding |�.�/00 can be generated from the 
maximally entangled Bell-like state �|�0000000� � |�1111111�	/√2 through the quadrupolar 
interaction 

H=>? � �√@ A1 � 89�B	89��	89�2	89�C	 � 89��	89��	89�D	89�C	 �               89�F	89�2	89�D	89�C	 � 89��	89��	89�F	89�2	 �                89�B	89��	89�F	89�D	 � 89�B	89��	89�2	89�D	 �                89�B	89��	89�F	89�C	G.                                     (5)  

In other words, Eq. (4) can be rewritten as 

|�.�/00 � Hint�|�0000000� � |�1111111�	/√2.             (6)                    

Clearly the CSS’s seven qubits encoding given by the 
above equation is not universal. This can be easily seen 
by observing that the generating operator Hint is not 
unitary. In fact, 

                    H=>?H=>?K � H=>?� � √8H=>? M I,                 (7) 

where  H=>?K  is the hermitian operator given by Eq. (5). 
Furthermore,  

                               H=>?> � 8OPQ� H=>?.                        (8)         

Eqs. (7) and (8) reflect the fact that the syndrome 
corresponding to the CSS quantum correction codes is 
not reversible. This means that to encoding one logic 
qubit into seven physical qubits makes that these 

protectors qubits dissipate energy in form of heat. This 
energy, introduces noise that spoils the desired 
coherence of the quantum computer. Likewise, the non-
unitarity of H=>? is equivalent to say that to apply 
recurrently the Steane seven qubits encoding to the CSS 
state leads to an unphysical state that it is not 
normalizable. 

                   
���� |�.��RR � 8�/�|�.��RR.                           (9)

From Eqs. (7) and (9) one can see that the time 
evolution operator S�TUOV� is not unitary and it leads the 
state | �.��RR to an unrenormalized final state. On the 
other hand, as it is well known any unitary operator 
specifies a valid quantum gate [17] (see the Glossary). 
Amazingly, the unitary constraint is the only one which 
the quantum gates are subjected. Consequently, the 
Steane seven qubits encoding of Eq. (6) rely on a non-
valid quantum gate. This restricts severely the direction 
of the flow of logic information (the transmission of the 
data) for the CSS syndrome. Indeed, within the mean 
field theory approximation the effective magnetic field 
acting on the spin 89��	 is W��	 � � XTUOV

XYZ��	 � � :89�B	89�2	89�C	 � 89�B	89�B	89�B	 �
89�B	89�B	89�B	 � 89�B	89�B	89�B	G/√8. Consequently,  the 
effective  Poynting vector (see the Glossary) associated 
to the qubit two should be 

[��	 � \A]��	G�
^_ �

^_ :�`YZ�_	YZ�Q	YZ�a	YZ�b	`YZ�_	YZ�Q	YZ�c	YZ�d	`YZ�c	YZ�a	YZ�b	YZ�d	;
�\  . One can 

see from the above expression that only the spin of the 
qubit two keeps invariant under rotations. The operator [��	flips the spin of the resting qubits. To chek that [��	
is not unitary, results a simple task. By this reason, this 
operation is not a valid quantum gate i.e. this does not 
represent any logical operation. This means that the 
propagation of the information carried by the qubit two, 
which is given by the Poynting vector [��	   , is 
dissipative and dispersive. Therefore, this operator 
introduces unwelcome decoherence into the system. A 
similar analysis follows for the other six protector 
qubits. 

On the other hand, one must note that the CSS 
interaction as given by Eq. (5) is not  invariant under 
rotation (permutations) of the qubits. This makes that 
the CSS encoding has a preferring direction of both 
propagation and correction of the errors.   

CONCLUSIONS 

Due that the CSS quantum correction codes are based on 
two classical linear codes, they are not universal, as Eqs. 
(6) and (7) indicate. From Eq. (5) we conclude that the 
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CSS interaction is not invariant under permutation of the 
qubits which indicates a preferred direction of the 
propagation of the error. Another conclusion that we 
state is that in order to have ideal, non dissipative, and 
genuine quantum codes,  the CSS codes must be 
extended to encoding  invariant under rotations of the 
protector qubits independently of the number of them. 
The feasibility of this possibility relies on the Fault 
Tolerant Quantum Computing theories (reviewed in the 
book of Nielsen and Chuang) due that they provide a 
careful qualitative explanation of how quantum error 
correction is possible. 

APPENDIX  

By construction, the C1/C2 Steane states are such that 

           |�0�1 � ��|��| ∑ �|�0000000���|�e�	,e"f�                (A1) 

           |�1�1 � ��|��| ∑ �|�1111111���|�e�	,e"f�               (A2) 

where |��| � 8. In Eq. (A1) obviously, |�0000000�  must  
belong to C1. On the other hand, in Eq. (A2) the vector   |�1111111� does not belong to �� but to �� because it is 
obtained by adding the last two rows of ,- of Eq. (2) 
plus all of the rows of this new matrix together, that is  

1111111=0100101 �� 1000011 �� 0011001  

Let us find now the eight 7-qubit vectors |�e� which are 
spanned by the rows of the matrix H of Eq. (3). One has 
that 

                                   eB � 0000000  

                                   e� � 0001111
                                   e� � 0110011
                                   eF � 1010101
                                   e2 � 0111100
                        = 0001111 �� 0110011 
                                                                            (A3)                                    
                                   eD � 1011010
                       = 0001111 �� 1010101 

                                   eC � 1100110
                       = 0110011 �� 1010101 

                                  eg � 1101001
                       =e2  �� 1010101 

By substituting Eq. (A3) in Eqs. (A1) and (A2) the 
Steane seven qubit encoding of Eq. (4) follows. 

GLOSSARY 

Parity check matrix: In coding theory a parity checking 
matrix 
hi� of a linear block code C is a generator 
matrix of a dual code. As such, a codeword jk ��j�, j�, j�, … , j�	 is in C if and only if the matrix vector 
product HTc=0 [18]. For example, the parity check 
matrix 


 � m01011010n,
specifies that for each codeword, digits 1 and 2 should 
sum to zero and digits 3 and 4 should sum to zero.  

Poynting vector: In physics, the Poynting vector [o can 
be thought of as representing the energy flux (in W/m2) 
of an electromagnetic field [19]. This is defined as [o � pqo i Wqo where pqo is the electric field and Wqo is the 
auxiliary magnetic field [19]. 

Quantum gate: A quantum gate or quantum logic gate is 
a basic quantum circuit operating on a small number of 
qubits. They are the analogues for quantum computers 
to classical logic gates for conventional digital 
computers. Quantum logic gates are reversible, unlike 
many classical logic gates. Quantum logic gates are 
represented by unitary matrices. See Reference [20] for 
further details. 
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