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ABSTRACT

The performance of two selection mechanisms
used in the most popular variant of differential
evolution, known as DE/rand/1/bin, are com-
pared in the solution of constrained numerical op-
timization problems. Four performance measures
proposed in the specialized literature are used to
analyze the capabilities of each selection mech-
anism to reach the feasible region of the search
space, to find the vicinity of the feasible global op-
timum and the computational cost (measured by
the number of evaluations) required. Two para-
meters of the differential evolution algorithm are
varied to determine the most convenient values.
A set of problems with different features is cho-
sen to test both selection mechanisms and some
findings are extracted from the results obtained.

Keywords: Constrained Numerical Optimiza-
tion, Differential Evolution, Selection Mecha-
nisms.

1. INTRODUCTION

Besides the use of mathematical programming
methods [18, 17], evolutionary algorithms (EAs)
[13, 4] have gained popularity among practition-
ers and researchers interested on solving complex
search problems e.g. optimization problems. The
current paper focuses on the constrained nume-
rical optimization problem (CNOP), also known
as the general nonlinear programming problem,
defined as to find & which minimizes

f(@) (1)
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subject to

() <0, i=1,...,m (2)

hj(a'c’):O, jzl,...,p (3)

where Z € R" is the vector of solutions ¥ =
[1,22,...,7,])7 and each z;, i = 1,...n is
bounded by lower and upper limits L; < z; < U;
which define the search space S, Fcomprises the
set of all solutions which satisfy the constraints
of the problems and it is called the feasible re-
gion; m is the number of inequality constraints
and p is the number of equality constraints. Both,
the objective function and the constraints can
be linear or nonlinear. To handle equality cons-
traints they are usually transformed into inequal-
ities constraints as follows: |h;(Z)| —e < 0, where
¢ is the tolerance allowed (a very small value).
Based on the fact that EAs are search engines
able to work in unconstrained search spaces i.e.
EAs lack a mechanism to deal with the cons-
traints of the problem, the definition of an ade-
quate constraint-handling mechanism is required
to adapt them to solve CNOPs.

There is a considerable amount of research re-
ported in the specialized literature regarding the
design of competitive constraint-handling tech-
niques to be used in EAs [14, 2, 10]. The first
attempts aimed to incorporate methods from ma-
thematical programming algorithms within EAs
e.g. (mainly exterior) penalty functions [20].
However, alternative methods have been pro-
posed to improve the search of the feasible global
optimum solution [8, 19, 21].

Among the different EA’s commonly utilized to
solve CNOPs (evolutionary programming, evolu-
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tion strategies, genetic algorithms) [4], differen-
tial evolution (DE) [15] has excelled by its very
competitive performance to deal with constrained
search spaces [10].

Nonetheless, most of the research about DE has
been focused on solving CNOPs by using either
a sole DE variant [7], a combination of variants
[6] or DE combined with another search method
[21]. Unlike that tendency, this paper focuses on
analyzing one of DE’s features, the selection of
the base vector, and its relationship with two pa-
rameters, the scale factor F' and the population
size N P, when solving CNOPs. The research hy-
pothesis of this work is that the global selection
provides a better performance (better results and
less sensitivity to F' and NP parameters) with
respect to that obtained by the local selection in
constrained continuous search spaces.

The paper is organized as follows: Section 2
introduces the DE algorithm and explains the
global and local selection mechanisms. Section 3
enumerates different approaches to solve CNOPs
based on DE. The experimental design and the
results obtained in a small comparative study are
presented in Section 4. Finally, the overall con-
clusions and the future work are summarized in
Section 5.

2. DIFFERENTIAL EVOLUTION

DE was proposed by Storn & Price [15] and works
with a population of solutions to the optimization
problem called vectors: &, Vi, i = 1,..., NP,
where &; 4 is the vector ¢ at generation g and NP
is the number of vectors in the population. The
initial population of vectors is usually generated
at random and each vector is evaluated in the
objective function f(%;4) Vi, i =1,..., NP (see
Equation 1). After that, an iteration, called ge-
neration, takes place, wherein each vector gene-
rates one offspring. The vector at the moment of
reproduction is called target vector and the co-
rresponding offspring is called trial vector. The
process for each target vector &; ; to generate a
trial vector ; g+1 is as follows:

1. Three vectors (Zr, ., Try,g and &, 4) are ran-
domly chosen from the population: &, 4 is
called base vector while Z,, ;, and Z,, 4 are
called differential vectors.

2. Based on a user-defined parameter C'R, the
trial vector will inherit some of their varia-
ble values either from a linear combination of
Zrg,gs Try,g and &y, ¢ or from its target vector

ZL'Z'_’g.

After the reproduction phase, the trial vector is
evaluated in the objective function of the problem
f(t; g+1) and compared against its corresponding
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target vector f(Z;4). The best vector between
them will remain in the population for the next
generation. This process is repeated until a stop
condition (usually a fixed number of generations)
is satisfied. A detailed pseudocode is presented
in Figure 1.

Begin
g=0
Create a random initial population
TigVi,i=1,...,NP
Evaluate f(Z;4) Vi,i=1,...,NP
For g=1 to MAX_GEN Do
For i=1 to NP Do
Select randomly ro # r1 # 12 # 1
Jrand = randint[1, n]
For j=1 to n Do
If (rand;[0,1] < CR or j = jyqna) Then
Uji,g+1 = Tjrg,0 T F(@jr1,0 = Tjirg,g)
Else
Uj,i,g+1 = Tjig
End If
End For
If ((ifig+1) < f(7i4)) Then
Tig+1 = Ui g+1
Else
Tig+1 = Tiyg
End If
End For
g=g+1
End For
End

Figure 1: DE pseudocode. rand;[0, 1] returns a
real number between 0 and 1. randint[min,max]
returns an integer number between min and max.
NP, MAX GEN, CR and F' are DE’s parame-
ters. n is the number of variables of the problem.

The aforementioned DE algorithm is called
DE/rand/1/bin, which is the most popular va-
riant. However, there are other variants such
as DE/best/1/bin, DE/target-to-rand/1, among
others [15].

Generally, DE has two ways to select the base vec-
tor &, 4. The first one is that shown in Figure 1,
where %, 4 is a randomly chosen vector from the
current population. This selection is called global
selection. On the other hand, when the base vec-
tor is the same target vector i.e. @, 4 = &4 the
process is called local selection, as detailed in Fi-
gure 2.

3. DE TO SOLVE CNOPS

DE is preferred by researchers and practitioners
to solve CNOPs due to its highly competitive per-
formance with respect to others EAs.

Different constraint-handling mechanisms have
been added to DE, such as penalty-based approa-
ches e.g. Lagrange multipliers [9], adap-
tive penalty functions [22], and co-evolutionary
penalty functions [23]. The use of multiobjec-
tive optimization concepts is also popular on
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Select randomly r1 # ro # i
Jrand = randint[1, n]
For j=1 to n Do
If (rand;[0,1] < CR or j = jrqnd) Then
Ujig+1 = Tji,9 + F(Tj,r1,9 = Tjira.9)
Else
Uj,i,9+1 = Tji,g
End If
End For

Figure 2: Local selection pseudocode. rand;[0, 1]
returns a real number between 0 and 1.
randint[min,max] returns an integer number be-
tween min and max. n is the number of variables
of the problem.

DE-based approaches, such as Pareto dominance
in the constraints space [7], and e-dominance
[5]. One of the most popular constraint-handling
mechanisms in DE is the use of the three fea-
sibility rules proposed by Deb, originally used in
genetic algorithms [3]. These rules are parameter-
free and have been used in different proposals
[12, 24]. Other related works have studied pa-
rameter setting techniques in DE for constrai-
ned optimization, such as adaptive [1] and self-
adaptive [11] parameter control. Finally, DE has
been hybridized with different mathematical pro-
gramming methods like gradient-based mutation
[21] and Sequential Quadratic Programming [6].
From this brief literature review, it is clear that
the study of the selection mechanism on DE is
scarce e.g. there are studies but for the uncons-
trained case [16]. Furthermore, only one of the
aforementioned approaches have reported the use
(but not the analysis) of local selection in DE [9].
Based on the aforementioned, this paper analyzes
the behavior of global and local selection in DE
for constrained optimization. The experimental
design and the results obtained are presented in
the next Section.

4. EXPERIMENTS AND RESULTS

Two DE versions were implemented: DE with
global selection (DEGS) and DE with local se-
lection (DELS). As a constraint-handling mecha-
nism and to replace the comparison between vec-
tors based only in the objective function value,
the three feasibility rules proposed by Deb were
added to both algorithms. These rules are the
following [3]:

1. Between two feasible vectors, the one with
the best value of the objective function is
preferred.

2. If one vector is feasible and the other one is
infeasible, the feasible one is preferred.
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3. Between two infeasible vectors, the one with
the lowest normalized sum of constraint vio-
lation is preferred.

Four representative test problems taken from
a well-known set of benchmark functions were
solved by each algorithm. A summary of the fea-
tures of the four problems is presented in Table 1
and the details of each problems is presented in
an appendix at the end of this paper.

Equality constraints were transformed into ine-
quality constraints as explained in Section 1 by
using the following tolerance value: € = 1E-4.
Based on previous studies reported by Price &
Ronkkonen [16], two DE parameters are closely
related with its convergence speed: F' and NP.
Thus, in this work the values for these two pa-
rameters are varied in order to determine their
relationship with both, DEGS and DELS. In
contrast, the other two parameters C'R and
MAX_GEN remain fixed in all the experiments
and their analyses are considered as future work.
The parameter values used were the following:
CR = 1.0, F = 0.1,0.5,1.0, NP = 50,90, 130.
The MAX_GEN value was adapted, based on
the NP value, in order to let each algorithm to
perform 250,000 evaluations.

Four performance measures were used to deter-
mine different features in the behavior of both
algorithms. The last three are taken from [16],
while the first is proposed in this work. All the
measures are presented below:

1. FP: Feasibility probability is the number of
feasible runs * (f) divided by the total num-
ber of independent runs performed (t), see
Equation 4.

f

FP= n (4)
The value for F'P goes from 0 to 1, where 1
means that all independent runs were feasi-
ble. In this way, a higher value is preferred.

2. P: Probability of convergence is calculated
by the ratio of the number of successful
runs 2 (s) to the total number of indepen-
dent runs performed (t), see Equation 5.

S
P=- 5
: 5)

The value for P goes from 0 to 1, where 1

means that all independent runs were suc-

cessful. Therefore, a higher value is pre-
ferred.

LA feasible run is an independent run where at least
one feasible solution was found

2A successful run is an independent run where the best
feasible solution found f(Z) is in the vicinity of the best
known value or optimum solution with respect to a small
tolerance i.e. f(Z*) — f(Z) <4
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Prob. | n | Type of function | P | LI | NI | LE | NE | a
g03 10 polynomial 0.0000% | 0 0 0 1 1
g08 2 nonlinear 0.8560% | 0O 2 0 0 0
g10 8 linear 0.0010% | 3 3 0 0 6
gll 2 quadratic 0.0000% | 0O 0 0 1 1
Table 1: Details of the 4 test problems. “n” is the number of decision variables, p = |F|/|S] is the

estimated ratio between the feasible region and the search space, LI is the number of linear inequality
constraints, NI the number of nonlinear inequality constraints, LE is the number of linear equality
constraints and NE is the number of nonlinear equality constraints. a is the number of active constraints

at the optimum.

3. AFES: Average number of function evalua-
tions is calculated by averaging the number
of evaluations required on each successful run
to reach the vicinity of the best known value
or optimum solution, see Equation 6.

1 S
AFES = . Z EV AL, (6)

i=1

where EV AL; is the number of evaluations
required to reach the vicinity of the best
known value or optimum solution in the suc-
cessful run i. A lower value is preferred be-
cause it means that the average cost (mea-
sured by the number of evaluations) is lower
for an algorithm to reach the vicinity of the
feasible optimum solution.

4. SP: It is the combination of AFES and P.
SP measures the speed and reliability of a
variant through a successful performance, see
Equation 7.

AFES

A lower value is preferred because it means a
better combination between speed and con-
sistency of the algorithm.

SP

30 independent runs per each algorithm per each
combination of F and NP values per each test
problem were computed and the four performance
measures were calculated. The results are shown
in graphs, where the “a”-axis indicates the three
F values and the “y”-axis represents the value for
the performance measure. In most cases, three
lines are presented in each graph, where each line
represents the values for one of the three NP va-
lues.

Problem g03

For this test problem, both algorithms, DEGS
and DELS obtained only feasible runs and no suc-
cessful runs were found. Hence, only those graphs

related with the F'P measure are presented in Fi-
gure 3 for DEGS and DELS.
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Figure 3: Results obtained for the F'P measure
by DEGS and DELS in problem g03.

The results in Figure 3 suggest opposite beha-
viors. Regardless of the population size, DEGS
was able to almost consistently reach this very
small feasible region of a 10-dimensional test pro-
blem with high scale factor values ie. (F =
0.5,1.0). On the other hand, DELS required low
scale factor values to consistently find feasible so-
lutions (F' = 0.1).

Problem g08

The results obtained by DEGS and DELS for F P,
P, AFES and SP measures in problem g08 are
presented in Figures 4, 5, 6 and 7, respectively.
Based on Figure 4 it is clear that none of the al-
gorithms tested had problems to provide feasible
runs in problem g08.

Regarding the rate of successful runs (Figure 5),
DEGS was able to find the vicinity of the feasi-
ble global optimum for all three N P values when
using F' = 0.5,1.0 and its performance was af-
fected by a small population (NP = 50) com-
bined with a low scale factor value (F' = 0.1).
DELS reached the feasible global optimum so-
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Figure 4: Results obtained for the F'P measure
by DEGS and DELS in problem g08.

lution with medium to large population sizes
(NP = 90,130) combined with a large scale fac-
tor value (F' = 1.0). However, DELS provided
better P values with a low scale factor value
(F = 0.1) combined with a small population size
(NP = 50) with respect to DEGS.

The computational cost, measured by AFES in
Figure 6 indicates that, for DEGS, there is an
almost-linear increment of the average number of
evaluations required to provide a successful run
with respect to the increment of both, NP and
F values. It is very interesting that for DELS
the opposite was observed. Discarding the be-
havior with NP = 50 which provided low AFES
values with low (F' = 0.1) and high (F = 1.0) va-
lues, an almost linear-decreasing relationship was
found when the N P and F' values were decreased.
Nevertheless, it is worth noticing that the average
number of evaluations required in a successful run
by DELS was clearly higher with respect to that
used by DEGS (see the y-axis in both graphs in
Figure 6).

Finally, the values on the y-axis in the two graphs
in Figure 7 showed that DEGS provided a better
ratio between speed and reliability than DELS,
mostly with F' = 0.5 with NP = 50, 90.

Problem gl10

Figure 8 includes the results obtained by both DE
algorithms for the F'P measure in problem gl0.
The results for the P, AFES and SP measures
are reported only for the DEGS algorithm in Fi-
gures 9, 10 and 11, respectively, because DELS
was unable to generate successful runs. DELS,
regardless the population size, reached the feasi-
ble region of the search space in more than 40% of
the runs with a low scale factor value (F' = 0.1).
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Figure 5: Results obtained for the P measure by
DEGS and DELS in problem g08.
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Figure 6: Results obtained for the AFES mea-
sure by DEGS and DELS in problem g08.
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SP by DEGS in problem g08
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Figure 7: Results obtained for the SP measure
by DEGS and DELS in problem g08.

On the other hand, DEGS failed by using this
low value, but consistently found feasible solu-
tions with medium and high scale factor values
(F =0.5,1.0).

Almost 40% of the independent runs performed
by DEGS with a larger population size (NP =
130 and F = 0.5) were successful, as indicated
in Figure 9. The AFES value in Figure 10 indi-
cates an average of 140,000 evaluations required
to reach the feasible global optimum. The SP
value obtained by DEGS in Figure 11 could not
be compared because DELS failed to get success-
ful runs.

Problem gl1

The summary of results obtained by both algo-
rithms for the four measures in problem gl1 are
presented in Figure 12 for F'P, Figure 13 for P,
Figure 14 for AFES and in Figure 15 for SP.
All the independent runs performed by DEGS
were feasible runs, as indicated in Figure 12, while
DELS was inconsistent to reach the feasible re-
gion.

Regarding successful runs reported in Figure 13,
DEGS could only reach the neighborhood of the
feasible optimum with NP = 90,130 coupled
with ' = 1.0. On the other hand, DELS could
provide some successful runs with NP = 90 and
F = 0.5, but its overall performance in this mea-
sure was poor.

The behavior for the AFFES measure in Figure
14 was similar with respect to that observed in
problem g08 for both algorithms. There was an
almost-linear increasing AFES value as the NP
and F' values also increased for DEGS and a li-
near decreasing AFES value for DELS, but only
with NP = 90. The difference in the values for

48

October 2009

FP by DEGS in problem g10
09 Y —

038
07
06
-
Y04
03

e 7

v

—4—NP 50
NP 90
—&—NP 130

0.1 0.5 1

F
FP by DELS in problem g10

0.9 =

0.8

0.7

0.6 —4—NP50

05 NP0

04 ——NP130
03
02
01

0.1 0.5 1

Figure 8: Results obtained for the F'P measure
by DEGS and DELS in problem g10.
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Figure 9: Results obtained for the P measure by
DEGS in problem g10.
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Figure 10: Results obtained for the AFES mea-
sure by DEGS in problem g10.
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Figure 11: Results obtained for the SP measure
by DEGS in problem g10.
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Figure 12: Results obtained for the F'P measure
by DEGS and DELS in problem gl11.
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Figure 13: Results obtained for the P measure by
DEGS and DELS in problem g11.
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Figure 14: Results obtained for the AFES mea-
sure by DEGS and DELS in problem g11.

this measure was also similar to that found in
problem g08 i.e. DEGS required less evaluations
than DELS to generate successful runs.

Finally the values for the SP measure in Figure
15 indicate that the best values were obtained by
DEGS with NP = 50 and F' = 0.5,1.0. On the
other hand, the best values for this measure were
obtained by DELS with NP = 90 and F' = 1.0,
but these values compared with those of DEGS
are very poor.

Discussion of Results

Based on the results presented above, the fo-
llowing findings were observed:

e The combination of a high dimensionality
and one nonlinear equality constraint (pro-
blem g03) affected the ability of both algo-
rithms to reach the feasible global optimum
solution. However, DEGS was able to reach
feasible solutions with high scale factor va-
lues while DELS also did that but with low
scale factor values.

e The presence of a low dimensionality and
only two nonlinear inequality constraints
(problem g08) did not prevent both algo-
rithms to provide competitive results. How-
ever, DEGS required a lower computational
cost and was more robust to changes in the
parameter values with respect to DELS.

e The combination of a high dimensionality
and six active nonlinear inequality cons-
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Figure 15: Results obtained for the SP measure
by DEGS and DELS in problem gl11.

traints® (problem gl0) affected both algo-
rithms, but this negative effect was more re-
marked in DELS. DEGS was more compe-
titive with a medium value of the scale fac-
tor (F = 0.5) and a larger population size
(NP = 130).

e DEGS provided a competitive performance
in the problem with a low dimensionality and
one nonlinear equality constraint (g11). On
the other hand, DELS presented problems
to obtain successful runs and required more
evaluations with respect to DEGS.

e Both algorithms were more sensitive to
changes in the scale factor value with respect
to modifications in the population size.

e DELS was able to perform better with low
scale factor values in some test problems
(g03, g08 and gl0). On the other hand,
higher scale factor values provided a better
performance in DEGS.

5. CONCLUSIONS AND FUTURE
WORK

An empirical comparison of global (DEGS) and
local (DELS) selection mechanisms in differen-
tial evolution for constrained optimization was
presented in this paper. Four performance mea-
sures were used to analyze the capabilities of both
mechanisms to find feasible solutions and to reach
the vicinity of the feasible global optimum. The
average number of evaluations required to reach

3An active inequality constraint i has a value of zero
in the optimum e.g. g;(£) =0
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the feasible global optimum was also computed.
Finally, the best ratio between computational
cost and reliability was calculated. Four repre-
sentative test problems were solved by both algo-
rithms. The overall results suggested that DEGS
is most competitive and less sensitive to the F'
and NP values with respect to DELS. In fact,
DEGS required a lower average number of eval-
uations in successful runs with respect to DELS.
This behavior can be explained by the fact that,
unlike DELS, DEGS can generate more diverse
search directions by using different base vectors
and the distance between the target and its trial
vector could be larger. In this way, a more di-
verse population is promoted. The results also su-
ggested that both algorithms were more sensitive
to modifications on the scale factor value than
changing the population size. This study is far
from presenting conclusive evidence, but it pro-
vides some insights on the behavior of two DE se-
lection mechanisms in constrained search spaces.
Part of the future work comprises the analysis of
the other two parameters (CR and M AX_GEN)
and the comparison of different DE variants such
as DE/rand/1/bin, DE/best/1/bin, DE/target-
to-best/1, among others, in constrained numeri-
cal optimization.
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APPENDIX

Details of the four test functions used in the
paper:

g03

Minimize:

Subject to:

h(E) =Y a}-1=0
=1

wheren =10and 0 < xz; <1 (i =1,...,n). The
feasible global minimum is located at 7 = 1/\/n
(i=1,...,n) where f(z*) = -1.00050010001000.

g08
Minimize:
.. 3 .
. sin® (271 ) sin(27as)
= — 9
(@) s )
Subject to:
(¥ =at-ay+1 <0
gg(f) :175614*(%274)2 SO

where 0 < 1 < 10 and 0 < x9 < 10. The
feasible global optimum is located at: z* =
(1.22797135260752599, 4.24537336612274885)
with f(z*) = —0.0958250414180359.

gl0
Minimize:

f(f) =T + o + I3
Subject to:
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g1(@) = —1+ 0.0025 (x4 + 26) <0
gg(f) =—-1+ 0.0025($5 +x7 — .1'4) <0
g3(f) =—-1+ 0.01($g - $5) <0
g4(f) = —x12¢ + 833.33252x4 + 10021

—83333.333 <0
g5(Z) = —xowr + 1250x5 + woxy

—1250z4 <0
gg(f) = —x3xg + 1250000 + z375

= —2500x5 <0

where 100 < z; < 10000, 1000 < z; < 10000,
(it = 2,3), 10 < a; < 1000, (i = 4,...,8).
The feasible global optimum is located at z* =
(579.306685017979589, 1359.97067807935605,
5109.97065743133317, 182.01769963061534,
295.601173702746792, 217.982300369384632,
286.41652592786852, 395.601173702746735) with
f(z*) = 7049.24802052867. ¢1, g2 and g3 are
active constraints.

gll
Minimize:

f(@) =i + (22 - 1)
Subject to:

(11)

h(Z) =29 — 23 =0

where: —1 < z7 <1, —1 < x5 < 1. The feasible
global optimum is located at:z* = (£1/v/2,1/2)
with f(z*) = 0.7499.
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