
Analyzing and Improving Data Quality ∗

Agustina Buccella and Alejandra Cechich
GIISCO Research Group

Departamento de Ciencias de la Computación
Universidad Nacional del Comahue

Neuquen, Argentina
{abuccel,acechich}@uncoma.edu.ar

and
Gonzalo Domingo

Proyectos de Telesupervisión y Geociencias
D.S.I. Cuenta E&P - Argentina Sur

Repsol YPF
gonzalodomingo2@hotmail.com

Abstract

Data quality is a research area strongly investigated
during the 90’s. However, few companies in Argentina
apply data quality methodologies or tools during the
analysis, design or implementation phases of software
development process. Developers generally use tech-
niques to design systems such as UML without con-
sidering mechanisms for future data quality problems.
In this work we propose a methodology in which the
data quality is an essential part of the whole software
development process. Early design decisions on data
quality strongly impact on the system. Our method-
ology defines a set of practices to be applied on the
software life cycle. In addition these practices act as
a means to evaluate if systems already running fulfill
with minimal data quality requirements.

1 Introduction

Many definitions for the term Data Quality
have been proposed in the literature, each con-
sidering data from different perspectives. How-
ever all definitions converge on only one theory:
data quality is strongly related to the use of data
[3, 7, 9]. In this way, depending on the use of
data, quality can be considered enough for some
uses and not enough for others. Rules as garbage
in, garbage out, if inaccurate information is en-
tered, only inaccurate information will result, pay
now or pay more later are still true within the data
quality issues. In our work, we consider the defi-
nition of model quality of FUNDIBQ (Iberoamer-

∗ This work is partially supported by the UNComa
project 04/E072 (Identificación, Evaluación y Uso de Com-
posiciones Software).

ican Foundation of Quality) in which data quality
is defined as a set of essential characteristics of a
product, service, system, or process to meet needs
and expectations of interested parties. In conclu-
sion data quality represents a point of agreement
among parties.

An organization containing low data quality
generates dissatisfied clients when their invoices
or requests contain errors in their personal data,
dissatisfied employees when they make errors be-
cause of both incorrect and uncertain information,
dissatisfied managers when they have to take de-
cisions based on these data, etc. Therefore, con-
sidering data quality as an important characteris-
tic within an organization will avoid this type of
problems and will take new benefits. For instance,
improvements to support the decision making pro-
cess, decrease in time to obtain information, re-
placement of expensive activities for cheaper ones,
and a better concept of the organization’s image
are only some of the benefits that a good data
quality provides.

Several approaches for data quality have been
proposed in the literature [1, 4, 5, 6, 8, 10]. In
particular, works related to our proposal can be
found in [5, 6, 10]. The proposal of Wang et. al
[8, 10] defines a methodology, named Total Data
Quality Management (TDQM), aimed at gener-
ating high quality information products for con-
sumers of this information. The methodology an-
alyzes and conceptualizes information products in
order to build information manufacturing systems
(IMS). Thus, these IMS contain the set of func-
tionalities of a system together with the quality
controls that must be implemented. In this way,
the methodology can identify possible data quality

1

JCS&T Vol. 8 No. 2 July 2008

57

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15766818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

problems by analyzing the way data are produced.
In the proposal described in [5], the data qual-

ity concept is based on the use of data. The author
assumes that “the only way to truly improve data
quality is to increase the use of that data”. In
this way, his work defines six rules for data qual-
ity including unused data do not remain correct
for a long time, data quality is defined as how the
data is used instead of how they are obtained, data
quality will not be better than their more rigor-
ous use, etc. Based on these rules, four activities
are defined in order to evaluate and analyze data
quality: auditory, redesign, training, and measure.
The first rule consists of determining how good
are data today. Redesign activity refers to evalu-
ate critical data managed by current applications
analyzing carefully the use given for each of them.
Training activity aims to prepare users for under-
standing how important data quality is. Thus,
training and educational tasks are carried out. Fi-
nally, measure activity refers to constantly judge
data quality, that is, all previous activities must
be repeated generating an iterative process. In
comparison with our work, we propose a method-
ology defined as a practical guide that must be
applied to every system during early phases in the
software development process. A set of practices
or recommendations are proposed as rules to be
evaluated. These rules are not based on the use of
data but on the way they are influenced over a set
of dimensions of data quality. However, several of
these rules or practices included in our approach
are based on rules defined in [5].

Finally, in [6] data quality is measured through
multiple quality dimensions such as, accessibility,
completeness, reliability, consistency, etc. Con-
trol matrices are used to combine problems on
data quality with quality controls, and thus allow-
ing developers to evaluate information products.
Columns of the matrix enumerate the problems
in data quality that affect information products;
and rows represent quality controls applied on the
manufacturing information process to prevent, de-
tect, or correct data quality problems. In this way,
these controls tend to avoid errors within the in-
formation product. As in this proposal, our work
is based on the fact that data quality must be
an activity considered during the data life cycle.
In addition, we implement the evaluation of ap-
plications by using a matrix. Then, we classify
different quality practices, each one as part of one
phase of the life cycle of data, analyzing how pre-
established parameters are met.

This paper is organized as follows: the next sec-
tion briefly introduces data quality concepts used
in our approach. Section 3 presents our method-
ology describing a set of practices within the data
life cycle. Section 4 presents a real case study

Figure 1. The data life cycle

applying the methodology on a real application.
Future work and conclusions are discussed after-
wards.

2 Data Quality

In [7] the data life cycle is composed of four
main phases: data modeling, obtaining values,
storing data, and visualizing data. Figure 1 shows
these phases graphically.

The first phase refers to the process of modeling
a universe of discourse. The resultant abstraction
represents the reality described by user require-
ments. This abstraction defines a logic model rep-
resenting data and the flow of information between
different roles of users and applications. In the ob-
taining values phase, data is obtained from reality
through user interfaces of the system or through
interfaces with other systems. Here, aspects such
as masks, dates, validations, and/or rules imple-
mented on interfaces must be taken into account.
In the storing data phase, data obtained in the
last phase are stored on repositories. Finally, the
visualizing data phase refers to the way data are
presented to users. Aspects such as inconsisten-
cies, robustness, or identification of errors, must
be considered.

In order to analyze and evaluate data quality
within a software development process we consider
four main dimensions [2]:

• Accuracy : Do data represent exactly the re-
ality or verified sources?. It is related to the
source, that is, the level of correspondence
among data and the real word.

• Completeness: Are all needed data available?
Which data are absent?. It refers to data that
must be available within an information sys-
tem.

• Consistency : Were data consistently defined
and understood? It refers to the definition of
standards and protocols for data. All data
must be presented in a compatible format de-
fined as the best format for the task in devel-
opment.

2

JCS&T Vol. 8 No. 2 July 2008

58

• Timeliness: Are data available when re-
quired? Within this dimension the concept
of volatility is defined denoting the time data
remain valid.

These four dimensions are used in our work to
evaluate the data quality of an organization to-
gether with practices applied on each phase of the
data life cycle. Next section describes each of these
practices and how they are influenced by the di-
mensions.

3 A New Approach for Improving
Data Quality

In order to propose a new methodology, which
consists of a set of practices, every activity within
a software development process has been analyzed
with respect to data quality. The different phases
of data life cycle are crucial to classify and evaluate
each practice in accordance with the four dimen-
sions described in the last section.

As a result of our analysis, we define 64 prac-
tices where 27 are in the data modeling phase, 22
in the obtaining values phase, 4 in the storing data
phase and 11 in the visualizing data phase. For
brevity we only describe some of these practices
in this paper.

Data Life Cycle: Data Modeling

• When a user account is deactivated, the user
in charge of the flow must be notified in or-
der to take preventive actions: In this way,
actions deriving from this change maintain
the business flow updated. This practice af-
fects timeliness because the data will remain
valid during time. If the data change, users
in charge of these data will be notified al-
lowing them to early detect differences with
respect to the reality. Accuracy is also af-
fected, as this practice detects in an early
phase variances between stored data and re-
ality, minimizing the negative impact of re-
dundant data.

• Data must be retrieved from a data source:
Applications capturing data closer to their
generation are considered as data sources.
Then, an interface between a data source and
this application must be implemented when
the data are required by another application.
In this way, the uniqueness of the process is
guaranteed, improving the use and the imple-
mentation of new systems. This practice gen-
erates data that remain valid for more time
supporting the timeliness dimension. In ad-
dition, consistency is also supported because

changes can be early detected. The defini-
tion of data modeling does not changed when
these types of systems are related to each
other. This practice also benefits the com-
pleteness dimension because all elements of
each data can be obtained from another sys-
tem. In regards to accuracy, the better use
and implementation of data improves the re-
lation between the data and the reality. In ad-
dition, the practice tries to avoid redundant
data by reducing the probability of error.

• Avoiding redundant data among systems:
This practice guarantees not only uniqueness
but also improves the use and implementation
of systems. Data remain valid for more time
and changes can be early detected. Thus,
timeliness is supported. With respect to ac-
curacy, this practice intents to improve the
relation between data and reality avoiding
same information through different systems.
Again, as in the last practice, by avoiding re-
dundant data, the probability of error is re-
duced.

Data Life Cycle: Obtaining Values

• Before executing an insertion, use “like”
queries: This practice refers to verify if a da-
tum exists in a database before inserting it.
For instance, if we want to insert a street with
the name of “Rivadavia” we must first check
coincidences between this name and the street
name stored in the database. Then, if there
are two instances with the same name, the
user must choose which of them is the right
one in each case. In this way, consistency
is fully supported because typical problems
of data formats can be avoided. The prob-
ability of errors is reduced by ruling out the
possibility of typing errors.

• Evaluating the input of data more than once
when they are critical : Critical data must be
previously identified to avoid data insertion
becoming tedious. Accuracy is supported be-
cause typing errors within critical data are
minimized.

Data Life Cycle: Storing Data

• An inferred data must never be entered man-
ually : To avoid typing errors during data in-
puts applications must implement this prac-
tice. The four dimensions are supported.
Timeliness because inferred data from these
data also change when data sources change;
consistency because the data format will be
defined within the application; completeness

3

JCS&T Vol. 8 No. 2 July 2008

59

because these data are not entered manually
and the practice must check that data sources
are complete; and accuracy because the in-
ferred rules must be modeled correctly guar-
anteeing also the accuracy of data in which
they are based on.

• Business rules must be part of the applications
so generated data can be stored and filtered by
these rules: In this way, the rule can reject the
input whether input data are not what the
application is expecting. Timeliness is sup-
ported because the rule checks for unupdated
inputs; consistency is supported because rules
also consider the format of data; and accu-
racy is supported because typing errors are
intended to be reduced.

Data Life Cycle: Visualizing data

• The system must alert about expiration dates:
The system must inform the person who is in
charge of the data, that some data are loosing
validity in accordance with the logic of the
application. Timeliness is supported because
preventive actions can be implemented; and
accuracy because the reality is again verified
when data become inexact.

• The system must verify and inform about
changes on data tendency : In this way, a
change on data tendency can be identified.
A functional analysis will be required by the
owner of the data to determine whether the
change was in fact a variation on the tendency
of reality or just a mere error. Accuracy is im-
proved by this practice because it is possible
to early detect and localize errors in the data
registry.

• The supported business process must be
opened to other processes (sharing data):
This practice is more related to business than
to systems. However, it is important to iden-
tify when a process must interact with other
processes. In this way, the use of data is in-
tensified.

The set of practices that we defined in our ap-
proach are classified by two criteria depending on
the independence of the person performing the
analysis, Objective and Subjective. The first one
is performed by a quality committee in charge of
evaluating the practices. The second one depends
on the person performing the evaluation; it can
vary in accordance with the knowledge of the do-
main and his/her previous experience. A score
table determines an error value when a practice is
not fulfilled with respect to each criteria.

The Objective Classification is defined as fol-
lows:

• Standard practice (E): It is considered as a
standard in the industry and practices in this
classification must be implemented.

• Good practice (B): Practices here must be
implemented when possible. They are very
important for guaranteeing data quality over
each dimension they affect. However, they
are not mandatory as in the first classifica-
tion as sometimes they are difficult to apply.
When practices are not implemented the rea-
sons must be documented.

• Recommendation (R): These practices are
considered favorable. The project leader is
responsible for evaluating the cost/benefit of
the application for each practice.

The Subjective Classification contains the fol-
lowing values:

• No error : Practices are implemented and cor-
rectly applied on the application.

• No effect : The recommended practice is not
implemented. However it is not an error; this
decision is taken during design time and it
must be documented.

• Slight : Situations in which data quality is
slightly damaged. For instance, when the
application allows entering low data quality
without affecting either critical data or the
success of the task that the user is perform-
ing.

• Grave: Situations in which low data quality
can affect the success of the task. For instance
an incorrect data generating an erroneous re-
port.

• Fatal : Conceptual errors, incorrect applica-
tion of a model, or errors hindering the final-
ization of a task successfully. They are dan-
gerous errors because users never know when
and why they happen.

3.1 Improving the Software Develop-
ment Process

Our work was developed in a company in
Neuquén, Argentina, named it “El Petróleo SA”
(for confidentiality reasons). The company has
established a predefined methodology for the soft-
ware development process that must be followed
by every development. However, data quality was
not considered as a task during its early phases.

4

JCS&T Vol. 8 No. 2 July 2008

60

Figure 2. Part of the the new software de-
velopment process

During our exhaustive analysis about how to im-
prove data quality within the company, a set of set
of practices and recommendations were defined.
These practices changed the predefined methodol-
ogy including quality controls applied during the
whole process. Figure 2 shows part of the new
software development process with these controls.

The Figure shows how different stakeholders
interact with the development of an application.
The stakeholders are: Referent User, Functional
Analyst, Application Provider, and Functional
Support.

During the analysis and requirements specifi-
cation phase, the referent user delivers scripts de-
scribing functional requirement of the system to
be built. At the same time (but in a separate
process) the functional analyst determines qual-
ity guidelines. In order to define which prac-
tices will be applied, the functional analyst, to-
gether with the referent user, evaluate weights and
cost/benefit of each of the practices. As a result,
a document containing these quality guidelines is
created and delivered to the application provider.

Then, the project team analyzes if there is a
corporative solution to apply to the above needs
(this step is not shown in the figure due to lack of
space). If a solution exists, the project manager
must agree with it. However, if a predefined so-
lution is not available, a new document has to be
generated enumerating the needs of the business,
the goals of the solution and their scope.

The requirement specification and design are
the first phases to be performed when the devel-
opment is local. The scripts are delivered to the
programming team in order to estimate the time
that must be committed to each script. Then, the

Table 1. The score table for the objective
classification

Score
Standard practice 3
Good practice 2
Recommendation 1
No action 0

project team creates the schedule and the plan
to be delivered. New interviews with the referent
user define final priorities and delivered times. Fi-
nally, a document is written and signed by each
party, i.e. the referent user and the software man-
ager. This document is then received by the pro-
gramming team together with quality guidelines.
The document contains the 64 practices except for
the ones that have been deleted by a design deci-
sion.

After that, unit and integration tests are per-
formed by the programming team. In conformity
with the schedule, the source code of the applica-
tion and the installation manual is delivered. To
perform functional tests, the project team installs
the application in a test server. In addition, the
functional support uses these functional tests as
guides to perform data quality tests. To do so,
he/she applies the two criteria described before
to obtain error values, and the subsequent rec-
ommendation for accepting or rejecting the tests.
Finally, the functional support creates, based on
these results, a document with recommendations
in regards to data quality. In this document each
practice, together with each dimension, are eval-
uated describing whether they are being applied
or not. An explanation must be provided where a
practice is not applied.

The functional analyst and the referent user
have to decide then whether the recommendation
document of data quality satisfies a minimal set
of acceptable quality guidelines. The application
finishes its development when the referent user
approves the document. In the case of the doc-
ument being rejected, the application returns to
the programming team in order to perform all the
required changes.

3.2 Verifying Applications

In our approach each practice is scored with
respect to the objective classification (Table 1).

During the verification phase, the functional
support evaluates each practice and each dimen-
sion by using the score table for the subjective
classification (Table 2). After that, the error value
of each practice (Table 1) times the error value for
each dimension (Table 2) give us the final value for
each practice. Finally, all these final error values

5

JCS&T Vol. 8 No. 2 July 2008

61

Table 2. The score table for the subjec-
tive classification

Score
No error 0
No effect 0
Slight 5
Grave 15
Fatal 40

are added to determine the final result of the ver-
ification. If the final result is lower than 46 the
application passes the test; if it is between 46 and
119 the application is accepted with observations;
and if it is higher than 120 the application does
not pass the test.

These thresholds have been chosen to generate
a rejection (application does not pass the test) in
the case where a standard practice contains a fatal
error (equivalent to 40 x 3). Accordingly, any error
value greater than this will be rejected. A pass
will be granted with any error value lower than
46. Therefore in order to pass the test only one
grave error in a standard practice will be accepted.
Any combination of intermediate values will pass
the test with observations.

The results of the test will be validated with the
referent user. He/she can accept the application
in spite of a negative result of the test. However,
this must be a decision made by consensus be-
tween the referent user and the project manager.
They can assume that some data quality problems
will be fixed during next phases. The decision of
approving or rejecting the application, the reason
and even the test with the results must be docu-
mented in the recommendation document of data
quality previously described.

4 Case Study

Our approach has been applied to an applica-
tion managing the electricity of our company “El
Petróleo SA”. This application contains informa-
tion about the electricity the company generates,
buys and sells. In addition, it stores information
about the electricity generators. One of the goals
of this application is to generate reports for the
Argentinean Secretary of Energy.

Before beginning the development of this ap-
plication, a training activity was performed to ex-
plain the new software development process. In
this activity the programming team, the func-
tional analyst, and functional support learned
about their role in this new process in which data
quality is strongly involved. Thus, before pro-
gramming the code of the application, the team
received the 64 practices together with the classi-
fication of the four dimensions for each data life

cycle.
Once the programming team finished the unit

and integration tests, the functional support per-
formed the functional, usability and data quality
tests defined in our new development process. To
do so, he/she analyzed each practice verifying er-
rors. The final task was the writing and delivery
of the recommendation document of data quality.
Some observations written in this document are
described below.

Data Life Cycle: Data Modeling

• When a user account is deactivated, the user
in charge of the flow must be notified in or-
der to take preventive actions : The timeliness
dimension contains a “slight” value due to
the lack of controls related to this dimension.
However, as the number of users is low in this
phase a harder assessment was not necessary.
For the same reason, the accuracy dimension
contains a “no effect” value. An observation
explaining the reasons was documented.

• Data must be retrieved from a data source: In
the application there are data extracted from
source data of another application. For in-
stance, the market contracts in SAP. The ap-
plication defines an interface to extract these
data. Therefore, the practice contains a “no
error” value.

• Avoiding redundant data among systems:
The timeliness dimension contains a “slight”
value and the accuracy contains a “no effect”
value. As the data source extracted from SAP
cannot be accessed on-line, once a day data
are exported to the application. Thus, the
timeliness is affected because the application
can contain invalid data for at most 24 hours.
However, the accuracy is not affected because
imported data are slightly dynamics.

Data Life Cycle: Obtaining Values

• Before executing an insertion, use “like”
queries: The accuracy dimension contains
a “slight” value and the consistency and
completeness a “no effect” value because in
this case redundant data are verified by the
database.

• Evaluating the input of data more than once
when they are critical : The accuracy dimen-
sion contains a “no effect” value because there
are implemented mechanisms to manage crit-
ical data. For instance, a mail is triggered by
the application when an invoice is entered.
The mail is received by the people in charge
of verifying and approving the payment.

6

JCS&T Vol. 8 No. 2 July 2008

62

Data Life Cycle: Storing Data

• An inferred data must never be entered man-
ually : This practice contains a “no error”
value.

• Business rules must be part of the applications
so generated data can be stored and filtered
by these rules: This practice contains a “no
error” value.

Data Life Cycle: Visualizing data

• The system must alert about expiration dates:
This practice contains a “no error” value. For
instance, a defined rule is that once an invoice
is entered into the application there are only
5 days to pay it.

• The system must verified and inform about
changes on data tendency : The accuracy di-
mension contains a “slight” value because this
practice is not implemented yet. However, it
will be implemented during next phases in the
development process.

• The supported business process must be
opened to other processes (sharing data):
This practice contains a “no error” value.

The final result of the error values gave a score
of 90 points composed of: 15 points for a standard
practice with slight error, 10 points for a good
practice with slight error, 10 points for a good
practice with slight error, 5 points for a recommen-
dation with slight error, 15 points for a standard
practice with slight error, 10 points for a good
practice with slight error, 15 points for a standard
practice with an slight error, 10 points for a good
practice with slight error. With this final result
of 90 points, the data quality test generates an
assessment of “Approve with observations”.

Taking into account the above result, the ap-
plication continues with its development process.
Next phases should implement at least some of
the observations described in the recommendation
document of data quality.

5 Conclusions and Future Work

In our work we have assumed that the definition
of data quality depends on an agreement among
parties. That is, the set of features a final prod-
uct must meet to satisfy the expectations of the
parties. However, a poor data quality assessment
is likely to be obtained when there is a lack of
mechanisms to prevent and improve data quality.

In order to face the data quality problem we
have proposed changes within the software devel-
opment process including data quality as an activ-
ity in early phases. In addition, these activities are
performed through the implementation of a set of
practices to apply on both system to be developed
and system in production. We have defined also a
data quality test in which each practice and each
dimension is scored. Accordingly, applications can
be evaluated with respect to data quality on each
phase of the data life cycle.

Our approach should be an integral component
of an organization, of the development team, and
of the mentality of their components. In order
to achieve this, processes must be improved gen-
erating a change within the culture of the par-
ticipants. Business-persons have to understand
why time and money must be spent to check data
quality. Data quality must not be something ad-
ditional to the system, it must form part of the
beginning of the software development process.

As future work, we are extending our approach
through all systems of the company. As a result,
we will be able to perform more experimental val-
idation and to propose new practices according to
the complexity and the type of application.

References

[1] D. Ballou and H. Pazer. Modeling data and
process quality in multi-input, multi-output
information systems. Management Science,
31(2):150–162, 1985.

[2] G. Brackstone. Managing data quality in a statis-
tical agency. Survey Methodology, (25):139–179,
1999.

[3] E. M. Burns, O. MacDonald, and A. Cham-
paneri. Data quality assesment methodology: A
framework. In Joint Statistical Meetings - Section
on Government Statistics, pages 334–337, 2000.

[4] L.Pipino, Y. W. Lee, and R. Y. Wang. Data qual-
ity assessment. Communications of the ACM,
45(4):211–218, 2002.

[5] K. Orr. Data quality and systems theory. Com-
munications of the ACM, 41(2):66–71, February
1998.

[6] E. Pierce. Assesing data quality with control ma-
trices. Communications of the ACM, 47(2):82–
86, February 2004.

[7] T. Redman. Data Quality: The Field Guide. Dig-
ital Press, January 15 2001.

[8] G. Shankaranarayanan, R. Y. Wang, and
M. Ziad. Ip-map: Representing the manufacture
of an information product. MIT Conference on
Information Quality, 2000.

[9] G. Tayi and D. Ballou. Examining data qual-
ity. Communications of the ACM, 41(2):54–57,
February 1998.

[10] R. Y. Wang. A product perspective on total
data quality managment. Communications of the
ACM, 41(2):58–65, February 1998.

7

JCS&T Vol. 8 No. 2 July 2008

63

