
A proposal from the point of view of Information Visualization and Human

Computer Interaction for the visualization of distributed system load

Martín Leonardo Larrea

Departamento de Cs. e Ing.de la Computación, Universidad Nacional del Sur

Av. Alem 1253, B8000CPB Bahía Blanca, ARGENTINA

E-mail: mll@cs.uns.edu.ar

Sergio Ruben Martig

Departamento de Cs. e Ing.de la Computación, Universidad Nacional del Sur

Av. Alem 1253, B8000CPB Bahía Blanca, ARGENTINA

E-mail: srm@cs.uns.edu.ar

Silvia Mabel Castro

Departamento de Cs. e Ing.de la Computación, Universidad Nacional del Sur

Av. Alem 1253, B8000CPB Bahía Blanca, ARGENTINA

E-mail: smc@cs.uns.edu.ar

and

Javier Echaiz

Departamento de Cs. e Ing.de la Computación, Universidad Nacional del Sur

Av. Alem 1253, B8000CPB Bahía Blanca, ARGENTINA

E-mail: je@cs.uns.edu.ar

ABSTRACT

In this article we show how the design of interfaces for

the visualization of distributed system load can benefit

from the combination of concepts and techniques from

Information Visualization and Human Computer

Interaction (HCI). Every distributed systems

administrator must handle a high volume of

information and the exploration and analysis of this

data set has become increasingly difficult. We propose

how to visualize the parameters involved in the load of

a distributed system to obtain an effective visualization

tool in order to reduce the user cognitive workload and

help the user make the right decisions in a productive

way.

Keywords: Distributed Systems, Human-Computer

Interaction – Information Visualization – Focus +

Context Visualization – Fisheye View.

INTRODUCTION

A process is an operating system abstraction

representing an instance of a running computer

program. Process migration is the act of transferring a

process between two machines during its execution

that enables dynamic load distribution, fault resilience,

eased system administration, and data access locality.

Despite these goals and ongoing research efforts,

migration has not achieved widespread use. With the

increasing deployment of distributed system in

general, and distributed operating systems in

particular, process migration is again receiving more

attention in both research and product development.

Distributed system typically operates under

continuously changing conditions and load balancing

is critically important for efficient utilization of their

resources since it maximizes their performance, and

minimizes the process response time. The average

process response time is usually considered the most

important value for measuring the actual performance

of a multitasking system.

As high-performance facilities shift from

supercomputers to workstations networks, and the

World Wide Web role is ever-increasing, it is expected

that distributed systems and process migration will

play a more important role and eventually to be widely

adopted.

In many systems, the state of each node and process is

distributed among a number of tables in the system,

making it hard to extract the information about its

behavior and load. This forces the user to explore

large volume of information using unnatural

representations which may lead to misinterpretations

and to wrong decisions.

The problem of exploring large data sets has been

studied over the last decades within two major areas:

Information Visualization ([1], [2]) and Human

Computer Interaction ([3], [4]). Both areas have

presented solutions to similar problems in different

contexts. In this paper we show how the design of the

 JCS&T Vol. 5 No. 4 December 2005

327

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15766806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

interface for the visualization of distributed system

load can benefit from the combination of concepts and

techniques from Information Visualization and Human

Computer Interaction (HCI).

The visualization of the distributed system load will

help the user to make decisions and allow him/her a

better and quick comparison between the states of the

nodes involved in the distributed system.

This paper continues the work done by [5], presenting

a new visualization technique and adding the system

topology as a new visual parameter. This work was

developed at the Dpto. de Ciencias e Ingeniería de la

Computación, Universidad Nacional del Sur, Bahía

Blanca, as a interdisciplinary research between the

Laboratorio de Investigación en Visualización y

Computación Gráfica (VyGLab) and the Laboratorio

de Investigación en Sistemas Distribuidos (LISiDi).

This paper is organized as follows: in the next section

we present an introduction to the problem of

distributed system load balance and the limitations

considered for the visualization. Then we review the

distributed system parameters that will be considered

for the visual representation and afterwards the visual

elements are presented and described. We also present

an analysis of visualizations technique and their

application in this context. Finally, we apply this result

to create an effective visualization tool that reduces the

user cognitive workload and help the user decision

making process. In the last section we draw the

conclusions and outline the future work.

SCOPE OF THIS APPROACH

The goal of this paper is to present the visualization of

a distributed system load according to the parameters

that will be established in the next section. In what

follows we consider an heterogeneous distributed

systems with N interconnected nodes. Each node has

an identification string, a memory size, a CPU Usage

value and the size of the currently memory in use. On

each node we have M processes, M > 1, being

executed.

We assume that the visualization system will not make

nor propose decisions; the user will play that role

based on the information presented by the

visualization. The system will limit itself to offer all

the necessary visual aids to help the user.

VISUALIZATION PARAMETERS

The system parameters to be visualized can be divided

into three groups.

1. Node base parameters

a. Memory Size

b. CPU Clock speed

c. CPU Usage

d. Total memory in use

2. Processes base parameters

a. Memory size for each process

b. Number of files opens

c. Number of messages sent

d. Number of messages received

e. Volume of information sent

f. Volume of information received

3. Distributed system topology

In the next section, we develop all aspects present in

the visualizations in detail, analyzing the different

parameters and their visual representation. Finally, the

visual elements are integrated to allow a view of the

load state from the distributed system.

NODE BASE PARAMETERS

Memory Size

The graphical representation of the memory size will

be created using a square prism. The height of the

prism is fixed and the width of the base depends on the

memory size. In order to easily compare different

nodes, all widths are normalized according to the

maximum memory size present in the system. Figure 1

shows the visual representation for a node with 256

MB and another one with 128 MB. The user can see

that the left prism has approximately double memory

size compared to the right one.

Figure 1. The left prism shows a double memory size

that the one on the right.

CPU Clock Speed

The visual representation for the CPU clock speed will

be also created by using a square prism. In this case,

the height represents the clock speed. Like in memory

size representation case, all prisms are normalized

according to the maximum CPU clock speed present in

the system.

 JCS&T Vol. 5 No. 4 December 2005

328

Figure 2. The visual representation on the left shows a

CPU clock speed higher than the right one.

CPU Usage

Combining the visual representation of the CPU clock

speed with a new opaque square prism, will allow to

create a new visual indicator. The CPU clock speed

prism will have a high degree of transparency, and the

height of the new prism will depend on the CPU

percentage use.

Figure 3. The composition of the two prisms allows us to

represent two parameters, the CPU clock speed and CPU

usage.

When the opaque prism reaches the height of the

transparent one, it means that the CPU usage is 100%;

when the opaque prism is not visible the CPU usage is

around to 0%. Any intermediate height level of the

opaque prism will be according to the currently CPU

Usage percentage.

Figure 4. The CPU on the left has a CPU usage close

to 100% while the one on the right is close to 50%.

However the one on the right double the CPU clock

speed of the left one.

The combination of all three visual representations

will create the basic icon for a node in the distributed

system.

Figure 5. The visual representation of a node.

Total Memory in use

Finally, we show how to visualize the total memory in

use. In order to do this, we will use the base size of the

two prisms that conforms the CPU Clock Speed and

the CPU usage. The base of this two elements will

increase or decrease according to the memory in use.

The memory size indicator represents the total real

memory that a process can use.

Figure 6. Different states of the memory in use indicator.

However, when the total memory in use exceeds the

real memory size and the virtual memory is used, there

will be an occlusion on the memory size indicator.

Figure 7. When the memory in use became larger that

the real memory size, the two prism hide the total

memory size indicator.

To avoid this situation the icon that represents the

node will flip horizontally every time the total memory

in use became larger than the real memory size.

Figure 8. The visual representation for a node using

virtual memory.

PROCESS BASE PARAMETERS

All the visual elements described so far belong to node

base parameters. However, there exist other

parameters that the user may wish to visualize at some

point. These are the process base parameters. To show

 JCS&T Vol. 5 No. 4 December 2005

329

all the information relative to the nodes and to each

process, will create a high amount of information that

it will be impossible for the user not only to handle but

also to understand.

To solve this problem, a technique used by both

Information Visualization and HCI is semantic zoom.

Through semantic zoom, the scale representation of an

object is not just a graphical zoom but also a semantic

one. We define three levels of semantic zoom, each

one presenting more information than the previous one

to the user. On the first level, each visual

representation of a node presents the node

identification. When the user positions his mouse over

the node, the second level of semantic zoom is active;

in this level the node identification is followed by a set

of relevant data, previously defined by the user.

Finally, the third level of semantic zoom is reached

when the user clicks on a node. This level shows a list

of all running process on the node and the process

parameters values previously defined. This

information is located on the faces of the memory size

prism. To allow this, the height of the prism will grow

according to the number of processes.

Figure 9. The three level of the semantic zoom.

DISTRIBUTED SYSTEM TOPOLOGY

A system parameter that neither belongs to the node

nor to the process is the system topology. Our focus is

on visualizing not only the data associated with the

nodes but also the structure of the network itself, that

is, the system topology. In this case, the distributed

system topology can be easily viewed as undirected

graphs in a three dimensional space in a way that

mimics the real network topology. Hence the

navigation and exploration of the distributed system

can be thought as navigation and exploration of a

graph. With the increased use of large distributed

system the navigation and exploration of these

structures present a very important challenge.

This challenge has been studied over the last decades

within two major areas such as Information

Visualization and Human Computer Interaction. Both

areas have presented solutions to similar problems in

different contexts. In the next subsections we outline

an introduction to visualizations techniques and later

we detail the technique used for the visualization of a

distributed system load.

Figure 10. A distributed system compose of four

nodes

Visualization techniques

One of the important challenges in a visualization

system is how to present as much important

information as possible in a given finite display area.

When the structure of interest is too big to be viewed

in detail all at once, the most straightforward solution

is to allow the user to pan and zoom the visible area.

The disadvantage of simply providing these

interactions is that users often lose track of its current

position with respect to the global structure. However,

the addition of a smaller secondary window that shows

a global overview with the current viewport location

marked, can provide some guidance but forces the user

to continually switch his/her focus of attention from

one window to another, leading to disorientation.

A large class of visualization techniques has been

developed to address this problem by attempting to

smoothly integrate detailed views with as much

surrounding context as possible, so that users can see

all relevant information in a single view ([5], [6], [7],

[10], [11]).

Visual representations

In order to interactively browse and manipulate a

complex data structure, an efficient visual interface is

required. Such an interface combines a simple visual

representation of the data structure with a set of easy

to use operations. However, as the amount of

information and the complexity of a given data

structure increase, a traditional visual interface loses

its appeal.

 JCS&T Vol. 5 No. 4 December 2005

330

Advanced visualization interfaces attempt to overcome

the size limitation problems associated with

conventional interfaces by exploiting new

visualization techniques. A full review of a large group

of techniques can be found in [6] and [7].

An effective visualization must allow the user to know

intuitively what sector of the distributed system he/she

is looking at. Because of this, it is import to maintain

the context of the user location at all times. All

undistorted techniques present a lack of context which

makes them a poor selection for our objective. Among

distorted techniques, those ones with a non continuous

magnification fail to provide a smooth transition

between the focus areas and the context areas and

force the user to mentally create this transition,

increasing the cognitive overhead.

Figure 11.

Techniques with continuous magnification provide the

best framework (see fig. 3). In this paper we have

chosen to use a Fisheye View applied to a graph for

the distributed system model

Fisheye View of a graph

A Fisheye View of a graph ([8], [9], [10]) shows

things near the center of view in high magnification

and detail; at the same time, it shows the whole

structure with decreasing magnification and less detail

as we get further away from the center of the view.

Thus, a Fisheye View seems to have all the advantages

of the other approaches without suffering from any of

their drawbacks.

Let Figure 12b be the Fisheye version of the graph in

Figure 12a. In the Fisheye View, the vertex with thick

border is the focus, i.e. the current point of interest of

the viewer. The size and detail of a vertex in the

Fisheye View depend on the distance from the vertex

to the focus, a preassigned importance associated to

the vertex, and the values of some user-controlled

parameters.

Figure 12a.

Figure 12b.

The initial layout of the graph is called the normal

view of the graph, and its coordinates are called

normal coordinates. Each vertex has a position

specified by its normal coordinates, and a size. Each

vertex has also an assigned number to address its

relative importance in the global structure. This

number is called the a priori importance or the API of

the vertex.

The coordinates of the graph in the fisheye view are

called the Fisheye coordinates and the focus is a point

in the normal coordinates. Each vertex in the Fisheye

View is defined by its position, size, and the amount of

detail to display. Finally, a visual worth or VW is

assigned to each vertex in the Fisheye View, that is

computed taking into account its distance to the focus

in normal coordinates, and its a priori importance.

Generating a Fisheye View involves magnifying the

vertices of greatest interest and, correspondingly,

demagnifying the vertices of lowest interest. In

addition, the positions of all vertices must also be

recomputed in order to allocate more space for the

magnified portion so that the entire view still occupies

the same amount of screen space. The position of a

vertex in the Fisheye View depends on its position in

the normal view and its distance from the focus. The

size of a vertex in the Fisheye View depends on its

distance from the focus, its size in the normal view,

and its API. This concept is formalized in [11].

 JCS&T Vol. 5 No. 4 December 2005

331

The generation of Fisheye Views demands two tasks:

To apply a geometric transformation to the

normal view in order to reposition vertices and

magnify and demagnify areas close to and far

away from the focus, respectively.

To use the API corresponding to vertices to

obtain their final size, detail and visual worth.

By combining these tasks we obtain a new view that

priorizes the element in focus but does not lose the

context.

Fisheye View on the visualization of system load

On Figure 13 we can see a normal view of the

distributed system and on Figure 14 the user made

focus on node USS-LAB6. As we can see, the

distributed system is affected by the Fisheye distortion

and the USS-Lab6 node shows all processes and their

information.

Figure 13.

Figure 14.

CONCLUSIONS AND FUTURE WORK

It is possible to transfer the results from Information

Visualization and HCI on large data set exploration to

the visualization of distributed system load. By doing

this we applied techniques specially designed which

have proved to be successful for these purposes and

we obtained an intuitive view of the system load that

will assist the user.

We have developed some novel graphical icons for

displaying distributed system load data together with

focus+context techniques that can help extract

meaningful insights from the data currently available.

Now we are working on techniques that permit the

graphs to continue to reveal relationships in the

context of much more data and also on an extension of

the view to make the visualization a way to control the

system. In this context an important future goal is to

allow more than one focus element at a time.

We are also analyzing how the user will interact with

the visualization to migrate a process and finally we

are also evaluating the inclusion of SMTP, Symmetric

Multiprocessing.

REFERENCES

[1] Daniel A. Kleim, “Information Visualization and

Visual Data Mining”. IEEE Transactions on

Visualization and Computer Graphics, Vol. 7, No. 1,

January-March 2002.

[2] Kosara, R. and Hauser, H., “An Interaction View

On Information Visualization”, Proceedings of the

Eurographics 2004, pp. 133-140.

[3] Dix, A., Finlay, J., Abowd, G., Beale, R., Human-

Computer Interaction, Prentice Hall Europe, Second

Edition, 1998.

[4] Shneiderman, B., Designing the User Interface,

Addison-Wesley Publishing Company, 1998.

[5] Martig, S., Trutner, G., Vitturini, M., Alvez, C., Di

Luca, S., Castro, S., Echaiz, J. and Ardenghi, J. .

“Visualización del Balance de Carga en un Sistema

Distribuido”. Jornadas Chilenas de Computación.

2001.

[6] Gerstmann, D.. “Advanced visual interfaces for

hierarchical structures”. Human Computer Interaction.

CSS480, Research Paper, Human Computer

Interaction. March 8, 2001.

[7] Leung, K. Y. and Apperley, M. D., “A review and

taxonomy of distortion-oriented resentation

techniques”. ACM Transactions on Computer-Human

Interaction, Vol. 1, No. 2, June 1994, pp. 126-160

 JCS&T Vol. 5 No. 4 December 2005

332

[8] Noik, E., “Layout-independent FishEye view on

nested graphs”. Computer Systems Research Institute.

University of Toronto, Toronto, Canada.

[9] Sarkar, M. and Brown, M., “Graphical FishEye

views”. Proceedings of the SIGCHI conference on

Human factors in computing systems, pp. 83-91, 1992.

[10] Card, S., Mackinlay, J., Shneiderman, B.,

“Readings in Information Visualization – Using

Vision to Think”, Morgan Kaufmann, 1999.

[11] Sarkar, M. and Brown, M. “Graphical FishEye

views”. Comunication of the ACM. December

1994/Vol 37, No. 12.

[12] Robertson, G., Card, S., Mackinlay, J.,

“Information Visualization Using 3D Interactive

Animation”, Communications of the ACM, 36(4), pp.

56-71, 1993.

 JCS&T Vol. 5 No. 4 December 2005

333

