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ABSTRACT

In order to be able to perform multimedia searches (like
sounds, videos, images, etc.) we have to use data struc-
tures like the Spatial Approximation Tree (SAT). This
structure is a nice example of a tree structure in which
well-known tricks for tree parallelization simply do not
work. It is too sparse, unbalanced and its performance is
too dependent on the work-load generated by the queries
being solved by means of searching the tree. The com-
plexity measure is given by the number of distances com-
puted to retrieve those objects close enough to the query.
In this paper we examine some alternatives to parallelize
this structure through the MPI library and the BSPpub li-
brary.

Keywords: SAT, metric spaces, searches, MPI, BSP, dis-
tances evaluations.

1. INTRODUCTION

Data parallelism is one of the most successful efforts to
introduce explicit parallelism to high level programming
languages. The approach is taken because many useful
computation can be framed in terms of a set of indepen-
dent sub-computations, each strongly associated with an
element of a large data structure. Such computations are
inherently parallelizable. Data parallel programming is
particularly convenient for two reasons. The first, is its
easiness of programming. The second is that it can scale
easily to large problem sizes.
One of these problems is the search in metric spaces
by spatial approximation. A metric space is formed by
a collection of objects U and a distance function d de-
fined among them, which satisfies the triangle inequality.
The goal is given a set of objects and a query, retrieve
those objects close enough to the query [3]. The Spa-
tial Approximation Tree (SAT) is a data structure devised
to support efficient searching in high-dimensional metric
spaces [6, 7]. It has been compared successfully against
other data structures [2, 4] and update operations have
been included in the design of the SAT[1, 8].
Some applications for the SAT are non-traditional
databases (e.g. storing images, fingerprints or audio clips,
where the concept of exact search is not used and we
search instead for similar objects); text searching (to find
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words and phrases in a text database allowing a small
number of typographical or spelling errors); information
retrieval (to look for documents that are similar to a given
query or document); etc.
A typical query for this data structure is the range query
which consists on retrieving all objects within a certain
distance from a given query object. The distance in a di-
mensional space is expensive to compute and is usually
the relevant performance metric to optimize, even over
the secondary memory operation cost [1][3]. This pro-
blem is more significant in very large databases, making
it relevant to study efficient ways of parallelization.
In this paper we propose three parallel algorithms for
range query operations for the SAT data structure using
the MPI library [9] and the BSPpub [12].

2. SEQUENTIAL SAT

The SAT construction starts by selecting at random an
element a from the database S ⊆ U . This element is set
to be the root of the tree. Then a suitable set N(a) of
neighbours of a is defined to be the children of a. The
elements of N(a) are the ones that are closer to a than
any other neighbour. The construction of N(a) begins
with the initial node a and its bag holding all the rest of
S. We first sort the bag by distance to a. Then we start
adding nodes to N(a) (which is initially empty). Each
time we consider a new node b, we check whether it is
closer to some element of N(a) than to a itself. If that is
not the case, we add b to N(a). We now must decide in
which neighbours bag we put the rest of the nodes. We
put each node not in a∪N(a), but in the bag of its closest
element of N(a). The process continues recursively with
all elements in N(a).
The resulting structure is a tree that can be searched for
any q ∈ S by spatial approximation for nearest neighbour
queries. The mechanism consists in comparing q against
a ∪ N(a). If a is closest to q, then a is the answer, other-
wise we continue the search by the subtree of the closest
element to q in N(a). Some comparations are saved at
search time by storing at each node a its covering radius
R(a), i.e., the maximum distance between a and any ele-
ment in the subtree rooted by a.
It is little interest to search only for elements q ∈ S. The
tree we have described can, however, be used as a device
to solve range queries for any q ∈ U with radius r. The
key observation is that, even if q /∈ S, the answer to the
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Fig. 1: An example of the search process in a
SAT.

query are elements q ′ ∈ S. So we use the tree to pretend
that we are searching an element q ′ ∈ S. Range queries q
with radius r are processed as follows. We first determine
the closest neighbour c of q among {a} ∪N(a). We then
enter into all neighbours b ∈ N(a) such that d(q, b) ≤
d(q, c)+2r. This is because the virtual element q ′ sought
can differ from q by at most r at any distance evaluation,
so it could have been inserted inside any of those b nodes.
In the process we report all the nodes q ′ we found close
enough to q. Finally, the covering radius R(a) is used
to further prune the search, by not entering into subtrees
such that d(q, a) > R(a) + r, since they cannot contain
useful elements.
Besides, we can use another improvement to prune the
search. At any node b of the search we keep the track of
the minimum distance dmin to q seen up to now across
this path, including neighbours. We enter only neigh-
bours that are not farther than dmin + 2r from q.
Figure 1 illustrates the search process, starting from p11

(tree root). Only the element p9 is in the result, but all the
bold edges are traversed.
We depict below the algorithm to search an element
q ∈ U with radius r in a SAT. It is firstly invoked as
RangeSearch (a,q,r,d(a, q)), where a is the root of the
tree. It can be noticed that in the recursive invocations
d(a, q) is already computed.

1: procedure RANGESEARCH(Node a, Query q,
Radius r, Dist. dmin)

2: if (d(a,q) ≤ R(a)+r) then
3: if (d(a,q)≤ r) then
4: report a
5: end if
6: dmin ← min{d(c,q),c ∈ N(a)}∪ dmin

7: for (b ∈ N(a)) do
8: if (d(b,q)≤ dmin+2r) then
9: RangeSearch(b,q,r,dmin)

10: end if
11: end for
12: end if

13: end procedure

3. EXPERIMENTAL
ENVIRONMENT

The implementations of the proposed strategies were per-
formed using the MPI and the BSPpub libraries. The
database used in our experiments is a 69K-word En-
glish dictionary and queries are composed by words se-
lected uniformly at random. The distance is the edit dis-
tance, that is, the minimum number of character inser-
tions, deletions, and replacements to make two strings
equal. We assume a demanding case in which each query
has one word and the search is performed with four diffe-
rent radiuses (1,2,3 and 4).
For the parallelization of the SAT, we assume a server
operating upon a set of P machines, each containing
its own memory. Clients request service to a broker
machine, which in turn distributes those requests evenly
onto the P machines implementing the server. Requests
are queries that must be solved with the data stored on
the P machines. We assume that under a situation of
heavy traffic the server start the processing of a batch of
Q queries.

4. PARALLEL SEARCH ON SAT

Now we will be describe and we will analyze three strate-
gies that can be used for the parallelization of the SAT
data structure.
A first, but intuitive, approach to parallelization is sim-
ply assume that the processors have enough memory to
maintain each one a complete copy of the SAT data struc-
ture. In this case the queries are distributed evenly onto
the processors and their processing is straightforward as
we just apply the sequential algorithm locally. No inter-
processors communication is required and every query
can be solved in just one step.
Fig. 2 shows results for this strategy with a search radius
1,2,3 and 4, P = 4 processors and 10 batches of queries.
Here the SAT is initialized with the 90% of the dictionary
words and the remaining 10% are left as query objects
(randomly selected from the whole dictionary). As the
radius grows up also does the number of distances com-
putations, because we can compare the queries elements
with more objects of the SAT than with a small radius.
Then the Fig. 3 and the Fig. 4 shows the results
for a search with radius 1 and 2, the experiments per-
formed with radius 3 and 4 have the same behavior pre-
sented in these figures. Here as the percentage of the
database is increased, the query search cost is reduced
because the number of queries is smaller. But this stra-
tegy presents fluctuations where the maximum numbers
of distance computations are performed with the 50%
of the database. These graphs show how dependent is
this strategy on the query distribution. Beside the over-
consumption memory problem, this strategy is not con-
venient since it in fact is not able to achieve a good per-
formance.
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Fig. 2: The copy approach for 10 batches of queries
with radius 1,2,3 and 4.

Therefore, this strategy does not present a parallelism
overhead, but it neither can scale, because to build the
SAT tree it is necessary that each processor has the com-
plete database in its local memory, and as the database
grows up, the construction cost also does.
Finally, the workload of the processors will depend on
the queries that each one gets, since all they perform the
same operations. In the following we propose a different
approach to parallelize the SAT data structure.
A second approach to parallelize the SAT, would be to
divide the problem in parts and to distribute them among
the processors of the server. In this second strategy, a
type of well-known partition named domain decomposi-
tion is used, where the data associated to the problem are
divided and then each parallel task works on a portion of
these data. Here the database is divided and distributed
among the processors at random. Once each processor
gets its portion of the database, it can begin to build the
SAT structure using its local data.
All the queries go to the processors, because the objects
can be from different data types (sound, text, videos,
etc.), and we do not know which processor has informa-
tion for the query.
Next, the Fig. 5 shows the results obtained for the ex-
ecution of 10 batches with this strategy using up to 10
processors, with a radius between one and four. With
a small radius, as the number of processors is increased
the cost is reduced, but with a bigger radius this behavior
changes, due the processors has to explore a bigger space
to find the answers.
In this strategy, as in the previous one, it is not necessary
to send and to receive messages during the search process
over the tree, because each processor works using the tree
stored in its own memory locally. Communication only
exists at the beginning of the search operation, when the
queries are sent to the processors. But contrary to the
previous case, the communication is bigger, because the
queries are sent to the machines (broadcast). The goal of
using a random distribution of the database, is to mini-
mize the unbalance presented during the queries search,
since the number of distances computations in each pro-
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Fig. 3: Results obtained with the copy strategy with
radius 1 using different size of a textual database.

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

10 20 30 40 50 60 70 80 90

d
is

ta
n

ce
s 

C
o

m
p

u
ta

ti
o

n
s

Percentage of the DataBase

Copy − Radius 2

2 Procesadores
3 Procesadores
4 Procesadores

Fig. 4: Results obtained with the copy strategy with
radius 2 using different size of a textual database.
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Fig. 5: Results obtained with the random approach
using the 90% of the database with radius 1,2,3 and 4.

    JCS&T Vol. 5 No. 4                                                                                                                     December 2005

301



2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

10 20 30 40 50 60 70 80 90

D
is

ta
n
ce

s 
C

o
m

p
u
ta

ti
o
n
s

Percentage of the DataBase

Random − Radius 1

2 Procesadores
3 Procesadores
4 Procesadores
5 Procesadores
6 Procesadores
7 Procesadores
8 Procesadores
9 Procesadores

10 Procesadores

Fig. 6: Distances evaluations computed using the
random strategy with radius 1 for different number of
processors.

cessor will depend on the data that it has received to build
its SAT tree, and on the query that is being processed.
The Fig. 6 and Fig. 7 show the results for this second
strategy (Random). With a small radius we can see that as
the number of processors is bigger we have less distances
evaluations. Now with a bigger radius if we use more
than the 50% of the database this holds; but with less than
the 50% of the database the results are very dependent on
the queries.
Finally we present the last strategy for the SAT data struc-
ture, where not only the database and the queries are
distributed through a hash function. This kind of strate-
gies may be use to perform searches in a Web dictionary,
where the queries search are not exact. That is to say
when the system has to find similar words. So this stra-
tegy can be used when the database from where the ob-
jects of the metric space are obtained, is formed by text
(words).
The Fig. 8 shows the results for this strategy with the
90% of the database, and the Fig. 9 and Fig. 10 show the
results as the percentage of the database is increased.
In this case we have a more concentrated space, because
all the similar words from the dictionary go to the
same processor, and that implies a harder search metric
space due the triangle inequality permits discarding less
elements.

5. COMPARATION OF THE
STRATEGIES

The Fig. 11 and Fig. 12 show the distance evaluations
obtained by each strategy with P = 4 processors as the
database size is increased. In all the cases (working with
radius 1,2,3 and 4), the second strategy shows a better
performance than the others. The reason why the random
strategy presented allows to reduce the number of dis-
tance evaluations is because the elements of the database
are spread over the processors, and each one will have an
easy space where the elements are sparse, and in this case
the SAT structure performs better than in a hard space [6].
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Fig. 9: Distance evaluations computed with the hash
strategy with radius 1.
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Fig. 10: Distance evaluations computed with the
hash strategy with radius 2.

Lastly the Fig. 13 shows the results for the copy strategy
with four processors, the random with ten processors and
the hash with eight processors. Here you can see that
the random strategy outperform the other two, while the
hash strategy works well with a big database size, where
each processor can work with more different elements.

6. FINAL COMMENTS AND
FUTURE WORKS

In this paper we examine some alternatives to parallelize
the search on the SAT structure using both MPI[9] and
BSPpub[12] libraries. The differences presented between
both implementations are exclusive of the characteristics
that each library has, and how the programming model
adapts to the problem.
The BSP model [10] establishes a new style of para-
llel programming to write programs of general purpose,
whose main characteristic are its easiness and writing
simplicity, its independence of the underlying architec-
ture (portability). BSP achieves the previous properties
elevating the abstraction level with which the programs
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Fig. 11: Number of distance evaluations obtained by
the three strategies with P = 4 processors and radius
1, as the database size is increased.
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posed in this work, as the database size is increased
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are written.
With MPI, we do not need to synchronize the processors,
so when any machine finishes a batch, then it can con-
tinues with the next batch without wasting time. While
BSPpub works with supersteps and at the end of each one
there is a barrier synchronization, making that every pro-
cessor has to wait for the others to continue with the next
batch of queries. In a real system where the time is im-
portant it will be harmful.
All presented strategies do not exhibit data dependence,
since each processor has a copy of the SAT, or it builds
its own tree using a portion of the database. Consequently
none of these strategies require a synchronization barrier
at the moment to exchange data. Besides this, we use the
number of distances evaluations as the complexity mea-
sure, so the results obtained for each strategy are indepen-
dent of the library (MPI or BSPpub) that we used. How-
ever, we use the SAT BSPPub implementation to predict
the costs of the algorithms. So, to select the right imple-
mentation for our problem we should evaluate the func-
tional requirements and the execution environment of the
application to choose the API that has the wanted charac-
teristics.
As future work, we are going to use an approach in
which the tree data structure will be distributed across
the processors. Probably this strategy can carry out an
unbalanced workload of the processors and increase the
runtime communication. A point to emphasize is that
the SAT structure has nodes with a diverse number of
children, and each son can cause a distance comparison.
Therefore it is important to be able to balance the number
of distances comparison performed in each processor.
Then, it is desirable to map the nodes of the tree among
the processors considering the distance comparisons that
they can be potentially performed in each subtree.
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