
Verifying BON models with Alloy

Ramiro Adrian Demasi

Dpto. de Computación, Universidad Nacional de Ŕıo Cuarto

Ŕıo Cuarto, CP. 5800, Argentina

and

Pablo Daniel Ponzio

Dpto. de Computación, Universidad Nacional de Ŕıo Cuarto

Ŕıo Cuarto, CP. 5800, Argentina

and

Pablo Francisco Castro

Department of Computing and Software, McMaster University

Hamilton, CP. L8S 4K1, Canada

and

Gabriel Baum

LIFIA - Universidad Nacional de La Plata

La Plata, CP. 1900, Argentina

ABSTRACT

In this paper we describe a methodology to trans-
late BON (architectural) designs to Alloy specifi-
cations. The main virtue of this process is that it
can be implemented by means of software tools.
The utilization of this methodology during the
software development allows designers to validate
different kinds of properties over their BON mod-
els. Allowing, in this way, the finding of criti-
cal bugs in earlier steps of system construction.
Finally, we present a software which implements
this translation from BON to Alloy.

Keywords: BON, Alloy, Formal Methods, Soft-
ware Engineering, Object Oriented Languages,
Architectural Models.

1. INTRODUCTION

BON [?, ?] (Business Object Notation) is an
object-oriented design language, its principal
characteristics are: it has integrated a process
of development and it allows designers to de-
scribe restrictions by means of assertions, which
is particularly relevant to express the behavior of
classes.
The present work is based on the utilization of
assertions as a way to validate design properties.
With this goal in mind, we developed a methodol-
ogy, based on [?], which allows to translate BON
models to Alloy specifications [?, ?]. In this way,
the resulting formal model is used for checking
out different kinds of properties, for example: the
model consistency. We have to remark that this

task can be done using the Alloy Analyzer tool.
We have implemented the translation from BON
to ALLOY in a software program called Darwin
Tool, developed by the authors of this paper.
This article is structured as follows. In sections 2
and 3 we present a brief introduction to BON and
ALLOY, respectively. In section 4 we describe in
detail the translation between both languages. In
section 5 we show an example of application of
this work. Finally, we describe the conclusions
and further work.

2. THE BON NOTATION

BON is a language of modeling for specifying and
describing software systems. One of its most im-
portant characteristics is that it is not only a
graphical language to describe systems, addition-
ally it provides a process for developing software.
Another important feature of BON is that the
graphical language has a equivalent textual nota-
tion.
The Business Object Notation is simple compared
to other languages [?]: it has only two kind of di-
agrams, and it has not different views of a design,
which (sometimes) avoids the inconsistencies in-
troduced when different descriptions of a compo-
nent are allowed.
BON was designed to support three principal
techniques: Seamlessness, Reversibility and Soft-
ware Contracting.

• Seamlessness: It is the principle of using a
consistent set of concepts and notations dur-
ing the software development, starting in the

 JCS&T Vol. 5 No. 4 December 2005

292

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15766801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

analysis step and finishing in the implemen-
tation. In this way, the connection between
each step is straightforward.

• Reversibility: This means that the changes
done in a development step can be directly
introduced in early steps. For instance, a
change on a Eiffel class is directly reflected
in changes on the correspondent design class.

• Design by Contracts [?]: It is a methodology
to develop object-oriented software, which is
based on the concept of contract. A con-
tract is a specification of obligations and
requirements of a software component, ex-
pressed by means of pre/post-conditions in
the Hoare/Floyd style [?]. Which allows de-
signers to produce high quality systems.

In the same way that other object-oriented lan-
guages, one of the main mechanisms for building
models in BON is the notion of class. A BON
class introduces a new type and it is considered
a module. The BON classes are composed by: a
name, a set of features and a contract made of one
precondition, one postcondition and one class in-
variant. The class invariant is an assertion which
all the class instances have to satisfy. In fact, the
contract determines the class behavior, and it is
expressed using the BON assertion logic, which is
a first order logic with types.
The features in a class can be one of the following
kinds:

• Queries: These are the functions and at-
tributes of classical object-oriented program-
ming. It is important to remark that queries
does not introduce changes in the system
state.

• Commands: It is a name for the concept of
procedure, as usually, these change the sys-
tem state.

Each feature has associated a visibility restric-
tion, and it may have different implementations,
it could be abstract, concreted or redefined.
Note that BON only support two types of rela-
tions inside of a class diagram:

• Client-Supplier relationship: This relation-
ship points out that a class (the client) uses
some service provided by the supplier. there
are three types of relations Client-Supplier
in BON: association, aggregation and shared
association.

• Inheritance relationship: By means of this
relationship a class inherit behavior from an-
other class. The inheritance relationship is,
in fact, a refinement relation between the

contracts of both classes involved. Further-
more, in BON, a subclass is a subtype of its
superclass.

3. THE ALLOY SPECIFICATION
LANGUAGE

Alloy is a formal language, based on first or-
der relational logic. It allows us to specify, in
a mathematical way, software systems; specifying
the state space, the restrictions and properties
of these. An Alloy model is made of signatures,
facts, predicates, restrictions and assertions.
A signature introduces a set of atoms, and a type.
Additionally, in its declaration is possible to de-
fine relations between different signatures. For
example:

sig Person { ID: Int }

which define the type Person, and a binary re-
lation ID. which associates each person with his
identity number. Relations could have an arbi-
trary arity, and we can put restrictions on they
cardinality.

sig Person { ID: Int,

works_in: set Company }

sig Company { employees: set Person,

id: employees -> one Int }

where the relation works in: Company ×
Company related one person with the com-
pany where his works. On the other hand, id :
Company × Employees × Int is a ternary rela-
tion which assign an integer to each employee.
In Alloy, the sets associated with different signa-
tures are disjoint, excepting when a signature is
declared as an extension of the other signature.
This can be done as follows: we suppose that, in
the example given at the beginning, we want to
distinguish between persons who works in differ-
ent companies.

sig Person { ID: Int }

sig Employee extends Person {

works_in: set Company }

sig Company { employees: set Employee,

id: employees -> one Int }

In this scenario the signature Employee is a subset
of the set associated to Person and a new type.
In Alloy, a fact is a formulae used for restricting
the possible values taken by variables. For ex-
ample, if we want to express that two different
persons cannot have the same ID:

fact singleID {

all p1, p2: Person |

p1 != p2 => p1.ID != p2.ID

}

 JCS&T Vol. 5 No. 4 December 2005

293

Furthermore, we can add a restriction express-
ing that a person is related with a company by
means of works in if only if he belongs to the set
of company employees.

fact {

all emp: Employee | all e: Company |

e in emp.works_in <=>

emp in e.employees

}

In these formulas the (.) operator denotes the
relational composition, and the keyword in rep-
resents the set inclusion.
Additionally we can define functions and predi-
cates : functions are parametrized formulas which
return a value, which could be used in differ-
ent contexts, replacing their formal parameters
by the actual ones. Meanwhile, predicates are
classical logical formulas with parameters. For
example, the following is a predicate expressed in
Alloy:

pred Fire (e, e’: Company,

emp: e.employees,

emp’: Employee) {

e’.employees = e.employees - emp

e’.id = e.id - emp -> (emp.(e.id))

emp’.works_in = emp.works_in - e

emp’.ID = emp.ID }

which formalizes the action of firing a employee.
Here the primed variables e’ and emp’ point out
the state of Company after of executing the op-
eration.
Finally, in an Alloy model we can define asser-
tions. That is, claims about our model that we
hope to be valid, or implied by the model restric-
tions. For example, if we fire a employee then
should be true that he does not belong to the
company.

assert fired {

all e1,e2: Company |

all emp1:e.employees |

all emp2: Employee |

Fire(e1, e2, emp1, emp2) =>

(not (e2 in emp2.works_in) &&

not (emp2 in e2.employees))

}

Alloy has two kinds of commands which may be
executed on models:

• Check assert for n: It looks for an counterex-
ample for the assert, instancing each signa-
ture with at most n atoms.

• Run f for n: it looks for a model for the
function (or predicate) f, where n is a bound
for the model.

We can remark that there exist a software tool
for checking Alloy specifications: The Alloy An-
alyzer, this tool allows us to find models and to

run the commands described before, in this way
it is possible to verify several properties on our
models.
Note that if Alloy Analyzer does not found a
counterexample of an assertion this not implies
that this property is no valid, it only means that
in the bounded models there are not counterex-
amples. But in the practice it is useful for several
practical applications.

4. THE TRANSLATION FROM BON
TO ALLOY

In this section we show a translation from BON
designs to Alloy specifications. We use the fol-
lowing example to describe the translation:

PERSON

divorce
spouse /= Void

!

?

spouse:PERSON
!Current /= Result

spouse = Void and
 (old spouse).spouse = Void

cash:INTEGER

married:BOOLEAN
!spouse /= Void

marry -> other: PERSON
? other /= Current and

 spouse = Void and
 other.spouse = Void
 spouse = other and

 other.spouse = Current

!

Invariant
spouse /= Void implies

 Current = spouse.spouse

Figure 1: The Person class

4.1 Classes and states
Given a BON design, the first step in the trans-
lation is to express the types in the design to sig-
natures in an Alloy specification. To do this we
introduce a signature for each class in the design.
In the example given before, for the class PER-
SON we introduce:

sig Person { }

This signature does not have any structure, it
will be described in a more general signature
called State. Informally, State describes the sys-
tem state. That is, the signature State simulates
the concept of state in Alloy. For instance, if we
have the following classes: A, B and C. Then the
possible states are described as follows:

sig State {

as: set A,

bs: set B,

cs: set C

}

Informally, as, bs y cs are the potential instances
of A, B y C, respectively.

 JCS&T Vol. 5 No. 4 December 2005

294

4.2 Terms and formulas
The correspondence between the formulas in both
language is simple. Operators are translate as is
described by the following table:

BON Alloy

and &&

or ||

implies =>

iff <=>

not !

x : T x : T

x.r x.r

The terms like t.query, which denote a navigation,
are traduced with respect a particular state. In
this way, the term given before is traduced as:
t.(s.query) being s a variable of State.

4.3 Queries
For each not boolean query of any class a relation
in State must be added, which associates objects
of this class with the correspondent value in the
state. In the example given before the translation
is:

sig Person { }

sig State {

Persons: set Person,

Person_cash: Persons -> Int,

Person_spouse: Persons -> lone Persons

}

Note that each element of type Person must be
related with a Int which represents the money of
this person, but it not necessarily has a spouse.
It is since spouse is a reference and cash is not.
Additionally, for each not boolean query it is
added a predicate expressing its precondition, an-
other predicate expressing its postcondition and
a fact to restrict the possible values of the query.
Returning to the previous example, for the query
spouse is added:

pred Pre_Person_spouse(s: State,

self: s.Persons) {

}

pred Post_Person_spouse(s: State,

self: s.Persons,

result: s.Persons) {

self /= result

}

fact {

all s: State |

all self: s.Persons |

Pre_Person_spouse(s, self) &&

Post_Person_spouse(s, self,

self.(s.Person_spouse))

}

We have to distinguish when a query is of Boolean
type, since Alloy does not provides this type. We

can add this type, with the classical operations on
it. The problem is that increases the complexity
of the specifications, and therefore the validation
is more inefficient. Our solution is to translate
the boolean attributes as predicates, then we can
use the Alloy booleans operators. In this way we
can traduce the query married as follows:

pred Pre_Person_married(s: State,

self: s.Persons) {

}

pred Post_Person_married(s: State,

self: s.Persons) {

self.Person_spouse /= none

}

pred Person_married(s: State,

self: s.Persons) {

Pre_Person_married(s, self)

Post_Person_married(s, self)

}

4.4 Commands
A command is translated as a predicate, which
has two states as parameters: s and s’. Infor-
mally, s represents the system state before the
command execution, and s’ represents the new
state after the command execution. For example,
the translation for marry and divorce is:

pred Pre_Person_marry(s: State,

self: s.Persons,

other: s.Persons) {

self /= other &&

self.(s.Person_spouse) = none &&

other.(s.Person_spouse) = none

}

pred Post_Person_marry(s, s’: State,

self: s.Persons,

other: s.Persons) {

self.(s’.Person_spouse) = other &&

other.(s’.Person_spouse) = self

}

pred Person_marry(s, s’: State,

self: s.Persons,

other: s.Persons) {

Pre_Person_marry(s, self, other)

Post_Person_marry(s, s’, self, other)

self.(s’.Person_cash) =

self.(s.Person_cash) (1)

other.(s’.Person_cash) =

other.(s.Person_cash) (2)

Delta(s, s’, self + other) (3)

}

pred Pre_Person_divorce(s: State,

self: s.Persons) {

self.(s.Person_spouse) != none

}

 JCS&T Vol. 5 No. 4 December 2005

295

pred Post_Person_divorce(s, s’: State,

self: s.Persons) {

self.(s.Person_spouse) = none &&

(self.(s.Person_spouse).

(s’.Person_spouse)) = none

}

pred Person_divorce(s, s’: State,

self: s.Persons) {

Pre_Person_divorce(s, self)

Post_Person_divorce(s, s’, self)

self.(s’.Person_cash) =

self.(s.Person_cash)

self.(s.Person_spouse).

(s’.Person_cash) =

self.(s.Person_spouse).

(s.Person_cash)

Delta(s, s’, (self +

self.(s.Person_spouse)))

}

Where the lines (1) and (2) express that attribute
cash of objects other and self does not change
after executing the command marry.
The line (3) invokes the Delta predicate, which
expresses that the objects not referenced in the
postcondition are not changed by the command.
The definition of Delta is:

pred Delta(s, s’: State, p0: s.Persons) {

s’.Persons = s.Persons

all obj: s.Persons - p0 |

obj.(s’.Person_spouse) =

obj.(s.Person_spouse) &&

obj.(s’.Person_cash) =

obj.(s’.Person_cash)

}

these formulae must be included in the trans-
lation since a semantic incompatibility between
BON and Alloy. Meanwhile in the first if an at-
tribute is not referenced in the postcondition this
means that it is not changed by the command.
On the other hand, in Alloy the not referenced
attributes may take any value.

4.5 Invariants
One of the interesting features of the translation
from BON to Alloy is that it allows us to verify
if:

• Commands satisfies invariants.

• The class invariants are satisfiable, that is,
they are consistent.

To translate an invariant we use pred and assert
paragraphs, the first ones are used for expressing
the invariant as a logical formula. Meanwhile the
second ones are used for checking the correctness
of commands with respect to invariants. We have
to remark that the predicates used for expressing
the invariants have as parameters two states.
For example, the invariant of the example given
in this section is:

pred Person_Inv(s: State) {

all self: s.Persons |

self.(s.Person_spouse) =>

(self =

self.(s.Person_spouse).

(s.Person_spouse))

}

Where the quantifiers over s.Person are needed
since the invariant is about instances of PERSON.
Additionally, we can add an assert paragraph for
expressing that the invariant is validated by the
command. For example, the command divorce
can be translated as follows:

assert {

all s, s’: State |

all self: s.Persons |

Person_Inv(s) &&

Person_divorce(s, s’, self) =>

Person_Inv(s’)

}

If it is the case that the model has several invari-
ants, suppose:

Inv1,..., InvN

we must to verify that there exist a model which
satisfy all the invariants (i.e., the specification is
consistent), we can check it by means of a formu-
lae which combines all the invariants, that is:

pred Consistent(s:State) {

Inv1(s) && Inv2(s) && ... && InvN(s)

}

then we can verify automatically using the com-
mand: run Consistent, in the Alloy Analyzer.

4.6 Verifying Inheritance
Inheritance is one of the most useful tools of
object-oriented languages, and therefore it is sup-
ported by BON. Furthermore, the concept of in-
heritance plays an important role in BON:

• The superclass invariants must be satisfied
by the subclasses.

• The preconditions in methods could be only
weakened by subclasses.

• The postconditions in methods could be only
strengthened by the subclasses.

• The type must be preserved by subclasses.

Actually, inheritance is a relation of refinement
between contracts. To deal inheritance using au-
tomatic tools, BON adds in the subclass methods
- using disjunctions - the precondition defined in
the superclass. In the same way, postconditions
and invariants are added by means of conjunc-
tions. This methodology reflects the status of re-
finement of inheritance in BON. However, this
methodology could have some problems in the
practice:

 JCS&T Vol. 5 No. 4 December 2005

296

• The invariant in an subclass may contradict
the superclass invariant, and therefore the
subclass never will satisfy its invariant.

• The postcondition in a routine (in a subclass)
could be incompatible with the one of the
superclass, and then a exception is always
fired when this routine is invoked.

• The precondition in a routine could have the
same problem that we described before, do-
ing the precondition impossible to satisfy.

To detect the arising of these problems we can
use Alloy, with this purpose in mind we can add
the following proof obligations: (asserts) During
the translation:

• The conjunction between the precondition of
a inherited precondition and the former one
must be satisfiable.

• The conjunction between the invariants of
the superclass and subclass must be consis-
tent.

• The conjunction between the postcondition
(the new one and the old one) must be con-
sistent.

On the other hand, we can express the subtyping
relation between classes by means of the Alloy
keyword: extends. For instance:

NOBLEPERSON

!

spouse++:NOBLEPERSON

Inherits: PERSON

butler:PERSON

marry++ ->
 other: NOBLEPERSON

 butler /= Void and
 other.butler /= Void and

 butler = other.butler

Invariant
cash > 1000000

Figure 2: The NoblePerson class

The translation of the types in the model is:

sig NoblePerson extends Person {}

sig State {

Persons: set Person,

NoblePersons: set NoblePerson,

Person_cash: Persons -> Int,

Person_spouse: Persons ->

lone Persons,

NoblePersons_butler: NoblePersons ->

lone Persons

} { NoblePersons in Persons } (4)

fact {

all s: State | pn: s.NoblePersons |

pn.(s.Person_spouse) in

s.NoblePersons (5)

}

where; the line (4) guarantees that states preserve
the inclusion relation between the NoblePerson
objects and Person objects. Meanwhile in (5) is
expressed that spouse is redefined by NoblePer-
son.
The feature marry of Person is traduced in the
usual way. In the following example is showed the
translation of the marry command in the class
NoblePerson.

pred Pre_NoblePerson_marry(s: State,

self: s.NoblePersons,

other: s.NoblePersons) {

}

pred Post_NoblePerson_marry(s,

s’: State,

self: s.NoblePersons,

other: s.NoblePersons) {

self.(s’.NoblePerson_butler) !=

none &&

other.(s’.NoblePerson_butler) !=

none &&

self.(s’.NoblePerson_butler) =

other.(s’.NoblePerson_butler)

}

pred NoblePerson_marry(s,

s’: State,

self: s.NoblePersons,

other: s.PesonaNobles) {

(Pre_Person_marry(s,

self, other) ||

Pre_NoblePerson_marry(s,

self, other)) (6)

(Post_Person_marry(s, s’,

self, other) &&

Post_NoblePerson_marry(s,

s’, self, other)) (7)

self.(s’.Person_cash) =

self.(s.Person_cash)

other.(s’.Person_cash) =

other.(s.Person_cash)

Delta(s, s’, self + other)

}

Note that in line (6) the precondition of marry
is weakened, and in line (7) the postcondition is
strengthened. If we find a model that satisfies this
specification then we can ensure that the new pre-
conditions and postconditions are consistent with
respect to the superclass assertions. The point
is that we can check this using the Alloy Ana-
lyzer tool (by means of the command run No-
ble marry).
Finally, it is interesting to show in what manner
we can verify the consistency of the subclass in-
variant with respect to the one of the superclass.

 JCS&T Vol. 5 No. 4 December 2005

297

To do this we add, by means of a conjunction,
the invariant of the parent in the subclass. For
example:

pred NoblePerson_Inv(s: State) {

all self: s.NoblePersons |

self.(s.cash) > 1000000 &&

Person_Inv(s)

}

Now we can run the command run NoblePer-
son Inv using the Alloy Analyzer.
In the next section we describe the tool Bon2Alloy
which implements the translation presented in
this section.

5. DARWIN TOOL

Darwin Tool is a tool which allows us to edit BON
diagrams. Additionally, this software translates,
automatically, BON diagrams to Alloy specifi-
cations. At this moment, we have only imple-
mented a part of the translation, it includes:
classes, client-supplier relations, and the propo-
sitional logic of BON.

5.1 An example
We have tested the behavior of the tool with sev-
eral examples, in this paper we show only one of
them since space restrictions.
In figure ?? we showed an example of a BON de-
sign. The model was verified using Darwin Tool
and the Alloy Analyzer. We have obtained a logi-
cal model of the specification, which ensures that
it is consistent. The logical model found by Alloy
is the following:

Person3

Person1

3

State0

Persons

Person_spouse[Person0]

Persons

Person_spouse[Person2]

Person_cash[Person3]

Person_cash[Person1]

Person_cash[Person0]

Person_cash[Person2]

Person2

Person_spouse[Person1]

Persons

Person0

Person_spouse[Person3]

Persons

We do not show the Alloy specification since space
restrictions.

6. CONCLUSIONS AND FURTHER
WORK

In this article we have described a method to
translate BON design to Alloy specifications. The
principal virtue of this method is that it can be
done automatically by means of software tools.
This, and the feasibility of verifying Alloy spec-
ifications, implies that the final user can remove
bugs from the designs in an easy way.
On the other side, using this methodology in the
BON development process allows us to find er-
rors during the design of a software system, giving
more reliability to the other development phases.
However, we have a lot of work to do:

• To formalize the translation and to prove its
correction.

• To do the BON language more inclusive, in-
cluding relational operators.

• Support in the Darwin Tool all the BON fea-
tures.

7. REFERENCES

[1] Kim Waldn and Jean-Marc Nerson. “Seam-
less Object-Oriented Software Architecture”.
Addison-Wesley 1994.

[2] Richard F. Paige. “An Introduction to BON”.
August 1999.

[3] Castro Pablo, Baum Gabriel. “Integrando
BON con Alloy”. CACIC 2003.

[4] D. Jackson. “Micromodels of Software:
Lightweight Modeling and Analysis with Al-
loy”. February 2002.

[5] D. Jackson. “Alloy 3.0 Reference Manual”.
May 2004.

[6] Richard F. Paige and Jonathan S. Ostroff. “A
Comparison of Business Object Language and
the Unified Modeling Language”. May 1999.

[7] B. Meyer. “Object-oriented software con-
struction”. Prentice-Hall. New Jersey, 1988.

[8] C.A.R. Hoare. “An Axiomatic Basis for Com-
puter Programming,” Communications of the
ACM, Oct. 1969.

 JCS&T Vol. 5 No. 4 December 2005

298

