
The multi-agent system architecture in SEWASIE

Pablo R. Fillottrani
Faculty of Computer Science

Free University of Bozen/Bolzano
Piazza Domenicani 3, Bozen/Bolzano 39100, Italy

and
Departamento de Ciencias e Ingenieŕıa de la Computación

Universidad Nacional del Sur
Av. Alem 1253, Bah́ıa Blanca 8000, Argentina

ABSTRACT
We describe the design, implementation and

deployment of the multi-level agent-based sys-
tem architecture developed for the SEWASIE
project. The aim of the system is to help the user
in querying heterogeneous data sources which are
integrated by means of ontologies. The agent ar-
chitecture is based on a two level data integra-
tion scheme supported by mediators and brokers,
connected by a peer to peer mechanism. Imple-
mentation is done on top of the JADE system,
a modular and scalable platform that satisfies
FIPA standards.

Keywords: multi-agent systems, data integra-
tion, ontologies

1. INTRODUCTION

The SEWASIE (SEmantic Webs and AgentS in
Integrated Economies) project (IST-2001-34825)
is an European research project that aims at de-
signing and implementing an advanced search en-
gine enabling intelligent access to heterogeneous
data sources on the web, in a rich semantic (on-
tological) framework. Thus, it provides the basis
for precise and effective access to information,
and efficient web based communications. The
goal of the architecture is to support a flexible
set of actors enabling data providers, interme-
diaries, and data seekers to meet and exchange
both information and meta-information, the ul-
timate goal being the ability to support large
scale communities and economies. The project
started on May 2002, and took place for three
years. SEWASIE is a collaboration between
the Università degli Studi di Modena e Reggio
Emilia, the Università degli Studi di Roma ”La
Sapienza”, the Rheinisch Westfaelische Technis-
che Hochschule Aachen, and the Free University
of Bozen/Bolzano, with CNA SERVIZI Modena
s.c.a.r.l, Thinking Networks AG, IBM Italia SPA,
and Fraunhofer-Gesellschaft zur Förderung der
angewandten Forschung eingetragener Verein as
industrial partners.
In this paper we present the design and develop-

ment of the system architecture, describing the
agent technology that supports the main com-

ponents and their functionality. In section 2 we
introduce the architecture of the system, and in
section 3 we summarize the process of query an-
swering in terms of agent behaviors. In section 4
we introduce some characteristics of current sys-
tem deployment, and in section 5 we compare
SEWASIE with some related systems.

2. SEWASIE ARCHITECTURE

We can think to the SEWASIE architecture [1] as
composed by a logical topology and a semantic
network. The logical topology is realized through
the adoption of an agent framework. The seman-
tic network is realized by agents offering services
and interacting in semantically rich manners. It
is shown in figure 1.

Brokering agents (BAs) are the peers responsi-
ble for maintaining a view of the knowledge han-
dled by the network. This view is maintained
in ontology mappings, that are composed by the
information on the specific content of the SE-
WASIE Information Nodes (SINodes) which are
agents under the direct control of the BA, and
also by the information on the content of other
BAs. Thus, BAs must provide means to publish
the locally held information within the network.
There are different roles for BA which depend on
the business model of the company which deploys
the BA. A company may establish a BA to man-
age access to its sources which it makes available
via SEWASIE. A company specialized on infor-
mation brokering may establish a BA that com-
bines ontologies provided by several other BA.

Query agents (QAs) are the carriers of the user
query from the user interface to the SINodes,
and have the task of solving a query by inter-
acting with the BAs network. Once a BA is con-
tacted, it informs the QA a) which SINodes un-
der its control contain relevant information for
the query, and b) which other BAs may be fur-
ther contacted. Therefore, the QA translates the
query according to the ontology mappings of the
BA, and directly ask the SINodes for collection
of partial results. Also, it decides whether to
continue the search with the other BAs. Once
this process is finished, all partial results are in-

 JCS&T Vol. 5 No. 4 December 2005

225

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15766791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tegrated into a final answer for the user.

The life cycle of a QA is initiated by an invoca-
tion to its service for solving a query, and it is fi-
nalized when delivering the results. Therefore, a
single QA is attached to only one query process-
ing. In principle, it seems preferable that QAs re-
side in a single server node, sending remote mes-
sages to BA and SINodes on other server nodes,
so mobility is not an issue for QA. Anyway, it
might be possible for a query agent to decide that
the SEWASIE Server node in which it is residing
is overloaded, and therefore prefers to move to
other Server node in order to improve query an-
swering performance (load balance). These mo-
bility is supported and/or implemented by the
underlying agent platform.

The SINodes are mediator-based systems[2],
each including a global view of the overall in-
formation managed within. The managed in-
formation sources are heterogeneous collections
of structured, semi-structured or unstructured
data, e.g., relational databases, XML or HTML
documents. SINodes are accessed by QAs in or-
der to obtain data, and also by the managing
BAs for building the ontology mappings. In or-
der to create and maintain a global view of its
information sources, SINodes require an ontol-
ogy builder. This component performs in a semi-
automatic way the enrichment process to create
the SINode ontology. In turn, this SINode ontol-
ogy is also integrated with other similar compo-
nents into the BAs ontology mappings.

The user interface is a group of modules which
work together to offer an integrated, easy to the
user interaction with the SEWASIE system. It
includes a query tool that guides the user in com-
posing queries. In doing so, it requires the on-
tology of a starting brokering agent which helps
in the interface presentation and behavior. Each
instance of the query tool includes a Query Tool
Agent (QTA) that is responsible to carry out
communications with other agents in the SE-
WASIE system. In general, QTAs are needed to
obtain the initial ontology from a BA, and also to
create QAs that will solve the queries generated
by the user.

Two extra elements of the user interface are the
visualization and the communication tools. The
visualization tool is responsible for monitoring
information sources according to user interests
which are defined in monitoring profiles. To per-
form this task, the visualization tool generates
one Monitoring Agent (MA) for each topic of in-
terest. Each MA contains a fixed internal on-
tology (so-called domain model) which is linked
to higher level SEWASIE ontologies. Agents of
this type regularly set up QAs to query the SE-
WASIE network, filter the results, and fill mon-

Figure 1: The SEWASIE system agent architec-
ture.

itoring repositories with observed documents.

The communication tool supports negotiation
between the user and other parties. Any query
including contact information sets the context
to launch the communication tool. This tool
create several types of Communication Agents
(CAs) that help in finding and contacting po-
tential business partner, asking for initial offers,
and ranking them. The human negotiator can
then decide and choose the best offer to begin
negotiating, with support from the communica-
tion tool. In order to fulfill their tasks, some of
these agents periodically create QAs to search
for information in the SEWASIE network.

CAs belong to one of the following four types:

• Initiation agents: that maintain the pre-
negotiation phase for each search.

• Filtering and Ranking agents: that evaluate
offers and rank them according to given user
preferences.

• Resource Management agents: that check the
capacity of the negotiator and notify him by
over-commitment.

• Negotiation agents: that conducts the negotia-
tion when a well defined state is achieved, and
the user releases the control.

We presented in this section the different types
of agents that conform the SEWASIE architec-
ture. In next section we will describe in more
detail how they interact in order to solve a query.

3. QUERY ANSWERING PROCESS

We will start by describing our assumptions on
the query language, followed by the query build-
ing process. The whole system is supported by
formally defined reasoning services, as described

 JCS&T Vol. 5 No. 4 December 2005

226

below. Our aim is to be as less restrictive as pos-
sible on the requirements for the ontology lan-
guage. In this way, the same technology can be
adopted for different frameworks, while the user
is never exposed to the complexity (and pecu-
liarities) of a particular ontology language. For
a more detailed description the reader should re-
fer to [3, 4].

Query Language

In the SEWASIE context, an ontology is com-
posed by a set of predicates (unary, binary), to-
gether with a set of constraints restricting the set
of valid interpretations (i.e., databases) for the
predicates. The kind of constraints which can be
expressed defines the expressiveness of the ontol-
ogy language. Note that these assumptions are
general enough to take account of widely used
modelling formalisms, like UML for example.
The query tool is build around the concept of

classes and their properties, so we consider con-
junctive queries composed by unary (classes) and
binary (attribute and associations) terms. Query
expressions are compositional, and their logical
structure is not flat but tree shaped; i.e., a node
with an arbitrary number of branches connecting
to other nodes. This structure corresponds to the
natural linguistic concepts of noun phrases with
one or more propositional phrases. The latter
can contain nested noun phrases themselves.
A query is composed by a list of terms com-

ing from the ontology (classes); e.g., “Supplier”
and “Multinational”. Branches are constituted
by a property (attributes or associations) with its
value restriction, which is a query expression it-
self; e.g., “selling on Italian market”, where “sell-
ing on” is an association, and “Italian market”
is an ontology term.

Query Building

In the query tool, the body of a query can be con-
sidered as a graph in which variables (and con-
stants) are nodes, and binary terms are edges.
A query is connected (or acyclic) when for the
corresponding graph the same property holds.
Given the form of query expressions composed by
the interface above introduced, we restrict our-
selves to acyclic connect queries. This restriction
is dictated by the requirement that non expert
user must be comfortable with the language it-
self.1 Note that the query language restrictions
do not affect the ontology language, where the
terms are defined by a different (in our case more
expressive) language. The complexity of the on-
tology language is left completely hidden to the

1Our technique can deal with disjunction of con-
junctive queries, even with a limited form of negation
applied to single terms. See [5, 6] for the technical
details.

user, who doesn’t need to know its details. The
process of transforming a query expression in a
conjunctive query is described in [7].

Initially the user is presented with a choice of
different query scenarios which provide a mean-
ingful starting point for the query construction.
The interface guides the user in the construction
of a query by means of a diagrammatic interface,
which enables the generation of precise and un-
ambiguous query expressions.

The focus paradigm is central to the interface
user experience: manipulation of the query is al-
ways restricted to a well defined, and visually de-
limited, subpart of the whole query (the focus).
The compositional nature of the query language
induces a natural navigation mechanism for mov-
ing the focus across the query expression (nodes
of the corresponding tree). A constant feedback
of the focus is provided on the interface by means
of the kind of operations which are allowed. The
system suggests only the operations which are
“compatible” with the current query expression;
in the sense that do not cause the query to be
unsatisfiable. This is verified against the formal
model (the ontology) describing the data sources.

One of the main requirements for the interface is
that it must be accessed by any HTML browser,
even in presence of restrictive firewalls. This con-
straints its design. The interface is composed
by three functional elements. The first one (top
part) shows the tree structure of the query be-
ing composed, and the current focus. The sec-
ond one is the query manipulation pane (bottom
part) providing tools to specialize the query. Fi-
nally, a query result pane containing a table rep-
resenting the result structure. The first two com-
ponents are used to compose the query, while the
third one is used to specify the data which should
to be retrieved from the data sources.

Reasoning services w.r.t. the ontology are used
by the system to drive the query interface. In
particular, they are used to discover the terms
and properties (with their restrictions) which are
proposed to the user to manipulate the query.
In fact, the terms and the properties proposed
by the system depend on the overall query ex-
pression, not only on the focus. This means that
subparts of the query expression, taken in isola-
tion, would generate different suggestions w.r.t.
those in their actual context in the query.

We do not impose general restrictions on the
expressiveness of the ontology language; how-
ever, we require the availability of two decidable
reasoning services: satisfiability of a conjunctive
query, and containment test of two conjunctive
queries, both w.r.t. the constraints. Because of
space restrictions, the details of reasoning ser-
vices are not included, and more information can

 JCS&T Vol. 5 No. 4 December 2005

227

be found in [8].

Query Management

Query management in the SEWASIE framework
involves different tasks corresponding to the two-
level integration scheme between agents. These
can be summarized as follows:

global level Given a query expressed in terms
of an ontology provided by a brokering agent,

1. Single out the SINodes managed by the BA
that are relevant for computing the answer
to the query, and reformulate in terms of
queries to be posed to the SINodes.

2. Individuate alternative BAs (different from
the original one used for query formulation)
that may have links to SINodes containing
relevant information for computing the an-
swer. The query is then reformulated in or-
der to obtain single queries which should be
forwarded to the appropriate BAs.

3. Reconstruct the answer to the QTA on the
basis of the received partial answers.

Note that the second step above is recursive,
in the sense that answering a query posed to
other BAs is done through the very same pro-
cess we are describing. This means that the
overall strategy for query management must
deal with the problem of how to stop recur-
sion.

local level Given a query posed in terms of the
virtual global view associated to an SINode,
retrieve the answer to the query. This task is
carried out by the query manager of the SINn-
ode of interest, and is characterized as follows.
The first goal of this task is to derive a query
plan that is able to correctly access the data
sources under the control of that SINode. The
second goal of this task is to execute the query,
thus computing the corresponding answer.

Let us first consider the case in which there is
a single BA in the system (or no other BAs are
relevant for a given query). In this scenario the
key components involved in the query answering
process are the BA Ontology (used to compose
the query) and the mappings between this ontol-
ogy and the Global Virtual Views exported by
the known SINodes.
Query processing is based on two query refor-

mulation steps. The first step reformulates the
query in terms of the SINodes known by the Bro-
kering Agent, and the second step reformulates
each of the SINode query obtained in the first
step in terms of the data sources known by the
SINodes. The actual query processing phases are
the following:

1. Query expansion: the query posed in terms
of the brokering agent ontology is expanded
to take into account the explicit and implicit
constraints in the brokering agent ontology.

2. BA class materialization: the atoms in
the expanded query are materialized by tak-
ing into account the mapping from the classes
in the global schemas of the SINodes to the
classes of the Brokering agent ontology.

3. Evaluation of the expanded query: when
all the BA ontology classes that are relevant
for the query are materialized, the expanded
query is submitted to the Query Engine to ob-
tain the answer of the original query.

Contrary of the structure among BA and SIN-
odes, there is no hierarchical relation among dif-
ferent BAs. In fact, every brokering agent acts
(and cooperates) at the same level. To model
the data integration problem underlying the in-
teraction between BAs, one should come up with
a formal framework which is of different nature
with respect to the one adopted in the charac-
terization of SINodes. Whereas in a SINode,
data integration is based on the existence of the
global virtual view, such a notion does not show
up when trying to formalize the interconnection
between brokering agents. The formal frame-
work adopted within SEWASIE follows the Peer
to Peer (P2P) paradigm [9, 10, 11]. Roughly
speaking, each BA can be considered a peer, and
the interconnection between BAs can be seen as
mappings between peers.

4. SYSTEM IMPLEMENTATION
AND DEPLOYMENT

So far we have presented the functional architec-
ture of the system. We now want to shortly de-
scribe its deploying architecture. The SEWASIE
system is intended to operate in networked en-
vironments where heterogeneity and distribution
of information arise. Peers expose their ontolo-
gies on the network and software agents act as a
glue among the different peers. Peers are recog-
nized as being part of the SEWASIE system as
long as they register their ontologies by a broker-
ing agent. From a deployment view point, what
is distributed is the multi-agent system. As the
scope of the SEWASIE project is to focus on the
application of software agents and not in pro-
viding a general toolkit for building multi-agent
systems, the choice was to use existing tools and
practices. The key features we were looking for
were:

• a high-level language in order to focus on ap-
plication programming;

 JCS&T Vol. 5 No. 4 December 2005

228

• portability in order to allow for multiple plat-
forms to become part of the SEWASIE system
in a transparent way;

• FIPA compliant in order to be aligned with
the current standards in the agent technology;

• support and maintenance in order to meet de-
ployment needs.

Currently, there exist plenty of alternative
toolkits for development multi-agent systems, see
[12] for a comparison. Our choice felt on the
Java Agent DEvelopment (JADE) [13] developed
by TILab. JADE is currently one of the most
evolving toolkits and is an open source projects
where both professionals and researchers take
part. JADE is written in Java and exploits Java
RMI for managing software distribution in the
environment.
A JADE multi-agent system (or platform) is

a logical space that can be distributed over di-
verse physical hosts. Each host participating to
the platform has its own Java Virtual Machine
(JVM) running. Each JVM is an agent con-
tainer, i.e., a runtime environment that allows
agents to concurrently execute. In order to boot
the platform, a main container has to be cre-
ated. The main container hosts the services nec-
essary to support agent life cycle, migration and
communication. Technically, the main container
activates the RMI registry that JADE uses to
allow containers and agents to reside on multi-
ple hosts. Containers eventually residing on re-
mote hosts can be added to the platform at run-
time. No matter where containers are located,
the agent platform is seen as a uniform logical
space, where all containers can be reached sim-
ply knowing their name. Recently, JADE intro-
duced the support of security for multi-agent sys-
tems. Security for agents is seen as an extension
of the Java security model and in particular of
the JAAS interface. Besides the JADE security
extension we have exploited tuneling techniques
in order to address security issues related to net-
work configurations. This has been necessary to
deploy the system in firewalled environments.
JADE agents are implemented as a set of “be-

haviors”. A behavior represents a task that an
agent can carry out, and the platform provides
a set of general behaviors already implemented.
In order to make an agent execute the task im-
plemented by a behavior, it is sufficient to add
the behavior object to the agent’s behaviors list.
Behaviors can be added anytime, when the agent
starts, or within other behaviors. An agent can
execute several behaviors concurrently. However,
scheduling of concurrent behaviors is not pre-
emptive in Jade, but cooperative. This means

that when a behavior is scheduled for execution,
its action method is called and runs until it re-
turns. Therefore, it is the programmer who de-
fines when an agent switches from the execution
of one behavior to the execution of the next one.
In order to implement QAs and BAs based on

JADE behaviors, we must take into account that
these behaviors need in general to be dynami-
cally created and deleted. Therefore, we need
a “deliberative” behavior that does the control
reasoning, deciding when and how the creation
of other behaviors is done. These other behav-
iors will exhibit a typically ”reactive” implemen-
tation: they are activated when messages are re-
ceived (the only sensor information SEWASIE
agents have about their environment), and do
some processing actions. This control architec-
ture for agents is similar to some proposed hybrid
architectures for robots [14]. The deliberative
behavior aims at adding and removing reactive
behaviors in the agent, being activated at agent
creation and it never completes.
Our deployment architecture foresees therefore

that each host activates a web server. The web
server acts as a gate to the network environment.
Messages and objects to and from an agent con-
tainer belonging to the platform are HTTP re-
quests going through the web server. This is
made possible because Jade manages remote ob-
jects and remote calls using Java RMI. When
an RMI server is activated, a registry to keep
track of all (possibly remote) objects registered
is initiated which listen to incoming requests on
a given port number. An RMI client can call
this service in order to remotely connect and use
objects. The web server can make accessible the
RMI server in two ways either through a CGI
script or by means of a servlet activated in an
application server. While the CGI script requires
less infrastructural component, the servlet offers
higher performance. This represents a tradeoff.

5. RELATED WORK

Several agent-based information retrieval sys-
tems are known. In order to compare to simi-
lar systems, we now emphasize SEWASIE main
characteristics:

• two-level data integration scheme: strongly
tied local nodes are integrated into SINodes;
BAs provide globally integrated ontologies by
means of weaker mappings.

• query management: query building assisted by
a query tool, query rewriting in the two levels
of data integration following local ontologies
using sound and complete algorithms.

• additional tools: negotiation and monitoring

 JCS&T Vol. 5 No. 4 December 2005

229

tools integrated in the same agent architec-
ture.

Altogether these points make the SEWASIE sys-
tem unique among the agent-based information
retrieval systems.

Some systems are strong on data integration.
CARROT II [15] is an agent-based architecture
for distributed information retrieval and docu-
ment collection management. It consists of an
arbitrary number of agents providing search ser-
vices over local document collections or informa-
tion sources. They contain metadata describ-
ing their local document store which are sent to
other agents that act as brokers. Like in SE-
WASIE, these metadata have an unstructured
form, without a central control. But there are
anyway several differences with the SEWASIE
architecture. First, data integration is done in
only one level. In this sense, CARROT II agents
play the role of a brokering agent and an SIN-
ode at the same time. Second, there is no sup-
port for the user in creating the query. Meta-
data information is not reflected in the process
of query building. Finally, the most important
difference is that agents in this system only pro-
duce a routing of the query to relevant informa-
tion sources, no query rewriting is done in this
step. In SEWASIE the query is reformulated fol-
lowing brokering agent’s ontology before asking
SINodes, which contain the information sources.
Several other information retrieval systems are
known with routing agents, like HARVEST [16],
CORI [17] and InfoSleuth [18].

Other systems, like TSIMMIS [19], include
some rewriting rules against predefined query
patterns. There are several steps of query pro-
cessing also in the MISSION project [20]. In
these cases, data integration technology is not
present, or in TSIMMIS limited to automatic
generation of wrappers [21] and mediators [22]
from web pages. In SEWASIE, the data inte-
gration techniques [23] adopted by SINodes ap-
ply not only to unstructured, or semi-structured
data sources, but also to relational databases.

6. CONCLUSIONS

This paper presented the work done, within the
perspective of the agent technology, in the SE-
WASIE project. We showed how the agent-based
architecture has been tied up with an ontology
based approach to provide the users a transpar-
ent access to heterogeneous data sources.

The SEWASIE system provides an ease of ac-
cess to the data without requiring an in depth
knowledge of the sources. This is achieved by
leveraging both the agent based collaboration be-
tween the different components of the system,

and the heavy use of ontologies as a means of
abstraction.

With respect to the query tool, SEWASIE has
presented the first well-founded intelligent user
interface for query formulation support in the
context of ontology-based query processing. Our
work has been done in a rigorous way both at
the level of interface design and at the level of
ontology-based support with latest generation
logic-based ontology languages such as descrip-
tion logics, DAML+OIL and OWL. However,
there are open problems and refinements which
have still to be considered in our future work.

Another important aspect to be worked out is
the understanding of the effective methodologies
for query formulation in the framework of this
tool, a task that needs a strong cooperation of
the users in its validation. This is going in par-
allel with the interface user evaluation.

The other crucial aspect is the efficiency and the
scalability of the ontology reasoning for queries.
We are currently experimenting the tool with
various ontologies in order to identify possible
bottlenecks.

ACKNOWLEDGEMENTS

This work is supported in part by the 5th Frame-
work IST programme of the European Commu-
nity through project SEWASIE within the Se-
mantic Web Action Line. The SEWASIE con-
sortium comprises the Universities of Modena-
Reggio Emilia (Sonia Bergamaschi, the coordina-
tor of the project), Aachen RWTH (M. Jarke),
Roma La Sapienza (M. Lenzerini, T. Catarci),
Bolzano (E. Franconi), as well as IBM Italia (G.
Vetere), Thinking Networks AG (C. Engels) and
CNA (A. Tavernari) as user organization.

REFERENCES

[1] Bergamaschi, S., Fillottrani, P., Gelati,
G.: The SEWASIE multi-agent sys-
tem. In: Proc. of the 3rd. Intl. Work-
shop on Agents and Peer-to-Peer Comput-
ing (AP2PC 2004). (2004)

[2] Wiederhold, G.: Mediators in the architec-
ture of future information systems. IEEE
Computer 25 (1992) 38–49

[3] Lenzerini, M., Majkić, Z., Beneventano, D.,
Mandreoli, F.: Techniques for query refor-
mulation, query merging, and information
reconciliation part a. Technical report, SE-
WASIE consortium (2003)

[4] Calvanese, D., De Giacomo, G., Lembo, D.,
Lenzerini, M., Rosati, R.: Query reformula-
tion over ontology-based peers. In: Proc. of
the 12th Italian Conf. on Database Systems
(SEBD 2004). (2004)

 JCS&T Vol. 5 No. 4 December 2005

230

[5] Calvanese, D., De Giacomo, G., Lenzerini,
M.: On the decidability of query con-
tainment under constraints. In: Proc. of
the 17th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems
(PODS’98). (1998) 149–158

[6] Horrocks, I., Sattler, U., Tessaris, S., To-
bies, S.: How to decide query contain-
ment under constraints using a description
logic. In: Logic for Programming and Au-
tomated Reasoning (LPAR 2000). Volume
1955 of Lecture Notes in Computer Science.,
Springer (2000) 326–343

[7] Dongilli, P., Fillottrani, P.R., Franconi, E.,
Tessaris, S.: A multi-agent system for
querying heterogeneous data sources with
ontologies. In: Proc. of the 13th Ital-
ian Sym. on Advanced Database Systems
(SEBD 2005). (2005) 75–86

[8] Dongilli, P., Franconi, E., Tessaris, S.: Se-
mantics driven support for query formula-
tion. In: Proceedings of the 2004 Interna-
tional Workshop on Description Logics (DL-
04). Volume 104 of CEUR Workshop Pro-
ceedings. (2004)

[9] Bernstein, P., Giunchiglia, F., Kementsiet-
sidis, A., Mylopoulos, J., Serafini, L., Za-
ihrayeu, I.: Data management for peer-to-
peer computing: A vision. Workshop on the
Web and Databases, WebDB (2002)

[10] Halevy, A., Ives, Z., Suciu, D., Tatarinov,
I.: Schema mediation in peer data manage-
ment systems. In: Proceedings of the 19th
International Conference on Data Engineer-
ing (ICDE’03). (2003)

[11] Franconi, E., Kuper, G., Lopatenko, A.,
Serafini, L.: A robust logical and
computational characterisation of peer-to-
peer database systems. In: International
VLDB Workshop On Databases, Informa-
tion Systems and Peer-to-Peer Computing
(DBISP2P’03). (2003)

[12] Fillottrani, P.: SEWASIE architecture
agentization, SEWASIE deliverable 1.6. SE-
WASIE Deliverable D1.6 (2003)

[13] Bellifemine, F., Caire, G., Poggi, A.,
Rimassa, G.: JADE a white paper.
jade.cselt.it (2003)

[14] Murphy, R.: An Introduction to AI
Robotics (Intelligent Robotics and Au-
tonomous Agents). MIT Press (2000)

[15] Klusch, M., Ossowski, S., Shehory, O., eds.:
Integrating Distributed Information Sources
with CARROT II. In Klusch, M., Ossowski,
S., Shehory, O., eds.: Cooperative Informa-
tion Agents VI, 6th International Workshop,

CIA 2002, Madrid, Spain, September 18-
20, 2002, Proceedings. Volume 2446 of Lec-
ture Notes in Computer Science., Springer
(2002)

[16] Bowman, C.M., Danzig, P., Hardy, D.R.,
Manber, U., Schwartz, M.F.: The Har-
vest information discovery and access sys-
tem. Computer Networks and ISDN Sys-
tems 28 (1995) 119–125

[17] Callan, J.P., Lu, Z., Croft, W.B.: Searching
distributed collections with inference net-
works. In Fox, E.A., Ingwersen, P., Fidel,
R., eds.: SIGIR’95, Proceedings of the 18th
Annual International ACM SIGIR Confer-
ence on Research and Development in In-
formation Retrieval. Seattle, Washington,
USA, July 9-13, 1995 (Special Issue of the
SIGIR Forum), ACM Press (1995) 21–28

[18] Woelk, D., Tomlinson, C.: Infosleuth: Net-
worked exploitation of information using se-
mantic agents. In: COMPCON Conference.
(1995)

[19] Garcia-Molina, H., Papakonstantinou, Y.,
Quass, D., Rajaraman, A., Sagiv, Y., Ull-
man, J.D., Vassalos, V., Widom, J.: The
TSIMMIS approach to mediation: Data
models and languages. Journal of Intelli-
gent Information Systems 8 (1997) 117–132

[20] McClean, S.I., Karali, I., Scotney, B.W.,
Greer, K., Kapos, G.D., Hong, J., Bell,
D.A., Hatzopoulos, M.: Agents for query-
ing distributed statistical databases over the
internet. International Journal on Artificial
Intelligence Tools 11 (2002) 63–94

[21] Hammer, J., McHugh, J., Garcia-Molina,
H.: Semistructured data: The tsim-
mis experience. In: Proceedings of the
First East-European Symposium on Ad-
vances in Databases and Information Sys-
tems (ADBIS’97), St.-Petersburg, Septem-
ber 2-5, 1997. Volume 1: Regular Papers,
Nevsky Dialect (1997) 1–8

[22] Papakonstantinou, Y., Garcia-Molina, H.,
Widom, J.: Object exchange across het-
erogeneous information sources. In Yu,
P.S., Chen, A.L.P., eds.: Proceedings of the
Eleventh International Conference on Data
Engineering, March 6-10, 1995, Taipei, Tai-
wan, IEEE Computer Society (1995) 251–
260

[23] Bergamaschi, S., Castano, S., Beneventano,
D., Vincini, M.: Retrieving and integrating
data from multiple sources: the MOMIS ap-
proach. Data and Knowledge Engineering
36 (2001) 215–249

 JCS&T Vol. 5 No. 4 December 2005

231

