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Abstract 
 
The resource utilization level in open laboratories of 
several universities has been shown to be very low. Our 
aim is to take advantage of those idle resources for parallel 
computation without disturbing the local load. In order to 
provide a system that lets us execute parallel applications 
in such a non-dedicated cluster, we use an integral 
scheduling system that considers both Space and Time 
sharing concerns. For dealing with the Time Sharing (TS) 
aspect, we use a technique based on the communication-
driven coscheduling principle. This kind of TS system has 
some implications on the Space Sharing (SS) system, that 
force us to modify the way job scheduling is traditionally 
done. In this paper, we analyze the relation between the 
TS and the SS systems in a non-dedicated cluster. As a 
consequence of this analysis, we propose a new technique, 
termed 3DBackfilling. This proposal implements the well 
known SS technique of backfilling, but applied to an 
environment with a MultiProgramming Level (MPL) of 
the parallel applications that is greater than one. Besides, 
3DBackfilling considers the requirements of the local 
workload running on each node. 
Our proposal was evaluated in a PVM/MPI Linux cluster, 
and it was compared with several more traditional SS 
policies applied to non-dedicated environments. 
 
Keywords: Space-Sharing, Non-Dedicated clusters, 
Backfilling, Coscheduling, Load Balancing. 
 
1. Introduction 
 
Studies like [1], [2] indicate that the workstations in a 
NOW are under-loaded, and hence, some resources are 
wasted. Some past studies [3], [2] demonstrated that it is 
possible to use those idle resources for parallel 
computation, generating advantages for the parallel user 
but not disturbing the local tasks. Many alternatives had 
been proposed for dealing with such a non-dedicated 
environment, like remote execution, migration, load 
balancing, hibernable computers, etc. Our proposal is 
oriented toward the Job Scheduling [4] alternative.  
Parallel job scheduling in a non-dedicated cluster can be 
performed at two different levels, space and time sharing. 
Time Sharing scheduling deals with the problem of 
distributing the CPU time between the parallel and local 
tasks. TS is done in such a way that it reduces the parallel 
application execution time by reducing the communication 
waiting time. This goal is achieved by a technique known 
as coscheduling [5], [1], [6]. This schema can be done in 
several ways, however, there are two mayor alternatives. 
In the first approach, all the processes forming a job are 
scheduled and descheduled by means of a global context 
switch. This technique, termed explicit coscheduling, or 
more generally Gang Scheduling [7], [2], [8], is suitable 
for environments where the time quantum given to the 
jobs are large enough to justify the global context switch. 
The second alternative relies primarily on local 
communications events (arrival and/or waiting for a 
message), to determine when and which process to 
schedule. A technique based on this alternative is 
Cooperating CoScheduling [1] (CCS), developed by our 
group and extensively evaluated in the past [9], [3]. It is 

based on increasing the receiving task priority, even 
causing CPU preemption of the task being executed. This 
kind of technique is more suitable for smaller quantums, 
and hence, for environments with some interactive local 
load running. Therefore, this technique fits into the 
requirements of a non-dedicated cluster. In addition, CCS 
provides some load balancing characteristics and a job 
interaction mechanism. The load balancing schema tries to 
uniformize the resources given to each task of a parallel 
job. On the other hand, the job interaction mechanism lets 
the system control the level of intrusion into the local 
workload.  
The other aspect to consider for doing job scheduling is 
the Space Sharing (SS) concern. According to the TS 
system characteristics explained above, the traditional SS 
policies have to be modified in order to be applied in a 
non-dedicated environment. This leads us to divide the SS 
policies into three different classes, where each one solves 
one different scheduling problem. The first one faces the 
problem of selecting the best set of nodes for executing an 
application (Node Selection policies), considering a non-
dedicated cluster and its state. The second set of policies 
deals with the Job Selection process (i.e. Backfilling, Best 
Fit, Just First, etc) from a waiting queue, while the third 
set deals with the Job Ordering or prioritization process 
(i.e. First Come First Serve - FCFS, Shortest Job First - 
SJF, Largest Job First - LJF, etc).  
Regarding to the Node Selection problem, very little work 
(if any) has been done to study the effects of a 
communication-driven coscheduling system over the SS 
schema, and even less, if we consider non-dedicated 
clusters. In this work, we have defined some new 
approaches, termed Normal and Uniform, applicable to 
this kind of environment. Both policies consider two 
different variables for assuming scheduling decisions: the 
cluster state (intrusion level into the local workload, the 
parallel applications MPL and the memory and CPU 
usage) and the available nodes.  
On the other hand, the most successful approach described 
in the literature for dealing with this Job Selection and Job 
Ordering problem, is the combination of a simple FCFS 
queue with a Backfilling [10], [7] technique. With this 
kind of policy, a queued application not at the head could 
be executed, whenever this does not delay the start of the 
queued job at the head (EASY Backfilling [10]). Thus, 
backfilling requires the future state to be estimated in 
order to know when running jobs will finish and free up 
their processors. 
In this paper, we analyze the combination of our defined 
Node Selection policies with a FCFS-Backfilling schema. 
It means that the two variables stated by the node selection 
policies (cluster state and available nodes), are 
complemented with the future estimation carried out by 
the backfilling policy. This determines a three dimensional 
policy, termed by us 3DBackfilling.  
This policy was compared with a set of traditional SS 
scheduling policies. The evaluation was carried out using 
an integral job scheduling system developed by us, termed 
CISNE [6]. The analysis shows the good performance and 
applicability of our proposal for this kind of environment. 
The remainder of this paper is as follows: in section 2 we 
define our problems. In section 3 the proposals for solving 
the stated problems are described. The efficiency 
measurements of our policies are performed in section 4. 

* Supported by the MEyC under contract TIN 2004-
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Finally, the main conclusions and future work are 
explained in section 5. 
 
2. SS and TS Interaction Problems  
 
In the past, several efforts [4], were applied for scheduling 
parallel application in dedicated clusters. In such an 
environment, the whole load was controlled by a global 
scheduling system that considered both Time and Space 
sharing concerns.  
Considering the TS problem, Figure 1 shows a taxonomy 
used for classifying several coscheduling methods. It is 
important to note that most of the past efforts were 
focused on explicitly coscheduled clusters (i.e. Gang 
Scheduling - GS [5] in Figure 1), where the coscheduling 
is guaranteed by a global context switch. In such a system, 
the parallel machine could be seen as a set of n parallel 
virtual machines (VM), forming what is known as an 
Ousterhout matrix [11]. The matrix provides information 
about the parallel jobs and their forming tasks, as well as 
mapping onto the VMs. Every VM is synchronized to the 
others by means of a global context switch. Thus, there is 
no interaction among the VMs, which also means none 
between the parallel tasks running in the same node. Gang 
scheduling, is an efficient coscheduling algorithm, which 
has mainly been used in supercomputers (CM-5, SGI 
workstations and so on). The advantage of a gang 
scheduler is a faster completion time, because the 
processes of a job are scheduled together. Its disadvantage 
is the global synchronization overhead needed to 
coordinate a set of processes and the high overhead 
introduced to local tasks. A GS coscheduling system 
normally uses quantums that are too large for providing 
interaction.  
 

 
 

Figure 1 Time Sharing Taxonomy. 

A more suitable alternative was proposed for non-
dedicated clusters, where the quantum should be short 
enough for executing interactive local tasks. This kind of 
system, termed implicit, uses the communication 
behaviour of any parallel application for coscheduling. 
Among the proposed policies we can find the Demand 
based CoScheduling (DCS [12] in Figure 1) that modifies 
the parallel task priority on behalf of its communication 
behaviour, even causing CPU preemption of the current 
running task. Another alternative relies on Spinning [13] 
in the CPU after sending a message, waiting for a response 
to it. Finally, it is possible to find some hybrid 
approximations that combines characteristics from both 
implicit and explicit systems. One proposal, called 
Flexible CoScheduling (FCS [14] in Figure 1) applies GS 
to certain applications on behalf of its communication 
pattern (as an implicit method does).  
On the other hand, our TS system termed CCS [1] is based 
on a DCS system for managing the coscheduling, but 
enhanced with some explicit information exchange for 
balancing the resources given to the parallel tasks, while 
preserving the local task responsiveness. However, and 
due to CCS's particular characteristics, we came across 
some problems applying traditional SS techniques to a 
non-dedicated cluster managed by it. 
The main problem faced is related to the lack of an 
Ousterhout matrix, present in every explicit coscheduling 
schema. This is illustrated in Figure 2, that shows the 

cluster state for an explicit (a) and an implicit (b) TS 
system. In both cases, there is some load already running 
(present load), while a couple of jobs (  and ) are 
launched. 

jJ kJ
Figure 2.a shows how  and  run on their 

own VMs (i.e. matrix rows 3 and 2 respectively) with no 
interaction with the other present load in the system. This 
behaviour assures the same computational power for every 
task of any job, and a MultiProgramming Level (MPL) of 
at most one application running on each VM (MPL = 1). 
Besides, it is possible to apply any SS technique to each 
VM, and consider an MPL of at most one.  

iJ kJ

 
Figure 2 Difference between applying SS to an explicit 

and dynamic (implicit) TS environment. 

In implicit coscheduling in general, and in CCS in 
particular, there is no such a matrix. Thus, we have only 
one VM, the whole cluster state, to which apply our SS 
techniques apply. As a consequence, the dimensionality of 
the SS problem is incremented because we have more than 
one application running on our single VM in the same set 
of nodes. This means a dynamic MPL greater than one 
(MPL > 1) across the cluster. Moreover, due to a lack of a 
global context switch, the tasks running in the same node 
have to compete for the CPU. Therefore, the 
computational power given to each task of a parallel job 
depends on the load of each node. This computational 
power difference among a job's tasks, makes job 
distribution a really important problem, because the 
coscheduling performance could be affected by the job 
placement.  
Figure 2.b depicts how  and  interact with the other 
present load (which could be either parallel or local). An 
example of different computational power could be seen 
for the  case, where some of its tasks have to share its 
CPUs with some load while others should not.  

jJ kJ

kJ

 
3. 3DBackfilling Proposal 
 
In order to tackle the problems stated above, we first 
define a taxonomy that lets us fix our proposals among the 
existing SS policies, and how our approach deals with a 
non-dedicated environment. Based on this, we merge 
policies from different classes taken from the taxonomy, 
to propose a SS approach applied to TS systems based on 
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implicit coscheduling techniques and oriented to non-
dedicated clusters. 
 
Our Space Sharing Taxonomy 
Even considering that there are some idle resources usable 
for parallel computation, these are finite. In consequence, 
a job cannot be executed every time it arrives at the 
system. In those cases where a job could not be executed, 
it has to wait in a jobs waiting queue. Considering such 
condition we have to manage those available resources 
and tackle several SS problems. Such problems include 
selecting the best set of nodes for executing a given job for 
a given cluster state, or the definition of a process for 
selecting a job for execution from the waiting queue or the 
relative priorities (order) between those waiting jobs. To 
deal with these concerning, we define a taxonomy (Figure 
3) that let us face those problems separately, while it is 
possible to merge the solutions for each problem in a 
complete scheduling policy.  
 

 
 

Figure 3 Space Sharing Taxonomy. 

Assuming our taxonomy, we firstly focus on the class of 
policies termed Node Selection, which are oriented 
towards the selection of the best subset of nodes from the 
cluster to execute a given application. This process is done 
considering two main variables, the available nodes and its 
current state. For this reason, we have also called this kind 
of policy, 2D policies. It should be noticed that the defined 
Node Selection policies are mainly aimed at helping the 
coscheduling mechanism to perform better, and hence, to 
minimize the applications execution time.  
The first idea for enhancing coscheduling performance is 
oriented towards controlling the level of resources given to 
the parallel tasks throughout the cluster.  
This is done by not overloading a node with some local or 
parallel load already running. Following this principle, we 
propose a policy termed Normal that limits the resources 
used by the parallel applications across the cluster. The 
Normal policy launches an application on any set of nodes 
where the fact of executing it does not mean exceeding a 
system usage limit for some resource. This acceptable 
limit is established by the means of a social contract [15], 
and sets up the maximum parallel MPL or the percentage 
of memory or CPU that can be used by the parallel 
applications on each node. Besides, in order to select the 
best subset, this policy implements a mechanism that gives 
priority to the candidate nodes for executing an application. 
This prioritization mechanism is managed by parameters 
like the CPU or Memory usage in a node by the local and 
parallel load. It should be noticed, that in this prioritization 
process the most important parameter is the memory used 
in each node, followed by the MPL and CPU usage. This 
is justified because we want to avoid overloading the 
memory (i.e. avoiding paging), which is the worst problem 
that the TS has to face.  
Nevertheless, using the Normal policy we are still not 
considering the load interaction inside a node (Figure 2.b). 
Therefore, we add new characteristics to the scheduling 
decision process carried out by the Normal policy, 
defining a new policy, termed Uniform. This policy is 
characterized by the following: (a) it executes tasks from 

differently oriented applications (i.e. communication or 
computation bound) in the same node and (b) it runs 
applications one over another in an ordered manner, 
whenever possible. By ordering the applications we mean 
launching parallel applications in such a way that a couple 
of parallel applications run in the same set of nodes, trying 
to uniformize the load in every node given to a job. Figure 
4.a shows how the Uniform policy executes a CPU bound 
application ( ) in the same set of nodes as a 
communication bound application ( ). In contrast, in fig. 

3J

2J
Figure 4.b a Normal policy executes the  application 
regardless of the load and its orientation. In this case, the 
computational power assigned to  is not the same for 
all of its tasks. However, in both cases the established 
system limit for every selected parameter is preserved by 
the defined policies. 

3J

3J

 

 
Figure 4 Scheduling difference between the Normal 

and Uniform policies. 

It should be noticed that the Uniform policy could be used 
in two ways. The first possible usage imposes the (a) and 
(b) restrictions in a hard way, which means that if a set of 
nodes with the desired conditions is not found, the 
application has to wait in a queue. This usage is called 
Hard Uniform. On the other hand, it is possible to 
flexibilize the Uniform rules and launch an application in 
a Normal way if we do not found a Uniform set of nodes 
for a given application. In this case, we call the policy 
Light Uniform.  
The Node Selection problem described above only faced 
the job distribution problem. However some other aspects 
related to the Job policies (Figure 3) should be taken into 
account. Based on these, two main concerns have to be 
faced: the job order in the waiting queue and the job 
selection process for choosing one job from that queue. 
These kind of selection and ordering process is what we 
call more traditional space scheduling policies in 
dedicated environments [7].  
Among the traditional Job Selection policies (Figure 3) we 
have the Best Fit (BFit) approach, that always looks for 
the job that minimizes the resources left unused. Another 
strategy, defined by us, is the Just First (JFirst) policy, that 
being less restrictive than BFit, only tries to execute the 
first job in the queue. A separation should be made for the 
Backfilling [10], [7] policy, because it tries to execute 
applications by estimating the future resource usage. The 
most extensively analyzed backfilling strategy is the 
EASY [10] technique, and it states that any queued job 
can be executed given the fact that it will not delay the 
start of the job at the front of the queue. To guarantee this 
restriction, an estimation of the future cluster state has to 
be made. In principle, this estimation is based on 
information provided by the user about the execution time 
of the applications under certain conditions (i.e. number of 
needed processors and CPU or memory consumption, etc.). 
Figure 5.a shows how for a given queue, task 5 has to wait 
until task 3 finishes in order to start its execution. With a 
Backfilling approach (Figure 5.b), task 5 could be 
scheduled before task 1 finishes, given the fact that it is 
expected to finish by task 3 start time. 
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Figure 5  Example of a Backfilling policy. 

In addition, every time that a job arrives in the system, it 
has to be compared to the jobs waiting in the queue. This 
comparison process lets the system establish if the arrived 
job has enough priority to be executed at the current 
moment. Therefore, and to have a complete scheduling 
mechanism, it is necessary to choose a Job Order policy 
(Figure 3) that lets us determine the relative priorities (i.e. 
order) of the jobs in the queue. Among the traditional 
policies we found First-Come-First-Serve (FCFS), which 
orders the jobs according to their arrival time or SJF (LJF), 
that orders the applications in increasing (decreasing) 
execution time estimation. In order to minimize the 
number of different sets of merged policies to be evaluated, 
we fix this class of policy to FCFS for every evaluated 
schema. The FCFS choice is justified by the fact that most 
of the backfilling approaches use it as their job ordering 
policy. This is due to the simplicity, fairness and absence 
of starvation of FCFS. 
Finally, it should be noted that the Job Selection process is 
traditionally done by trying to maximize the resource 
usage, and hence, diminishing the job waiting time. By 
combining policies from the Node Selection and Job 
Selection classes, the turnaround time of the jobs is 
diminished in two different metrics, the execution and the 
waiting time. The turnaround minimization is important 
for us, due to the characteristics of our environment, 
where it is important to present some benefits for the 
parallel user using a non-dedicated cluster. Hence, doing 
this merging we not only have a complete scheduling 
proposal, but a scheduling policy that minimizes an 
important metric (for us) from different points of view. 
 
Merging Node Selection And Job Policies 
In order to have a complete scheduling policy that 
considers every concerning stated in the previous 
subsection, it is necessary to select a policy from each 
defined class (i.e. Node Selection, Job Selection and Job 
Ordering in Figure 3) and merge them into a complete 
policy. 
Considering that the Backfilling policy has been 
demonstrated to be one of the most effective job selection 
approaches, it is desirable for us to merge it into our 
complete scheduling proposal. However, some concerns 
have to be taken into account for combining a Backfilling 
technique with our 2D policies (i.e. Node Selection 
policies). The main problem comes from the need to 
estimate the future state of the environment. Such 
estimation should be applied to the whole cluster state, and 
not to a VM with an MPL of at most 1 (as in an explicit 
coscheduled system). Moreover, the estimation process 
has to consider the local load. Hence, to take a combined 
scheduling decision (i.e. Backfilling + 2D policy), we 
have to consider three variables: the available cluster 
nodes and their state (from 2D policies), and the future 
cluster state (from the Backfilling technique). The addition 
of this new concern (i.e. variable), raises our problem 
dimensionality from 2D to 3D. In Figure 6, it is possible to 
observe the variables to take into account for assuming a 
backfilling strategy in our environment. This figure also 
depicts a decision problem (assumes that a job J  arrives 
at the queue): which is the best thing to do, execute the J  

application right now in a Normal ( ) way or wait for a 
while, and execute it in a Uniform way ( )?. This is 
another problem that arises using a backfilling approach 
combined with our 2D policies that we have to deal with. 

iJ

kJ

Consequently, we define a pair of policies that include a 
backfilling mechanism and our 2D policies, termed 
3DBackfilling techniques. The first 3D policy, called 
3DBackfilling-Hard, is the combination of a backfilling 
schema with our 2D Uniform-Hard policy (  case in kJ
Figure 6). In the same way, we defined another policy, 
termed 3DBackfilling-Light, set up using a Uniform-Light 
policy (  case in iJ Figure 6). The merging of a Backfilling 
technique with the Normal 2D policy is not considered 
because it is already included in the Uniform-Light 
approach. 
 

 
 

Figure 6 A 3DBackfilling example. 

 
4. Experimentation 
 
In the present section, we aim to show the evaluation of 
our SS proposals for dynamically coscheduled, non-
dedicated clusters. To carry out the experimentation, we 
introduce the exercised workloads and metrics. Then, in 
the second subsection, we present a set of results that 
shows how our defined SS policies perform. 
 
Workloads and Metrics 
A necessary element for carrying out our evaluation is a 
way to represent a non-dedicated cluster. On one hand, we 
need several parallel applications that arrive at some 
intervals and, on the other hand, we need some local user 
activity. We also define some other policies to compare 
our proposal, giving a lower limit to compare with (e.g. 
considering an MPL = 1). Finally, we measure the system 
performance using system and user metrics from the 
parallel and local user point of view.  
The parallel workload was a list of 90 PVM/MPI NAS 
parallel applications with a size of 2, 4 or 8 tasks that 
reached the system following a Poisson distribution, 
described in [5]. The chosen NAS applications and their 
resource consumptions are depicted in Table 1. 

 Memory 
(min/max) 

CPU 
(min/max) 

Exec. Time 
(min/max) 

CG 55 / 120 MB 67 / 75 % 37 / 51 sec. 
IS 70 /260 MB 58 / 69 % 40 / 205 sec. 

MG 60 / 220 MB 82 / 89 % 26 / 240 sec. 
BT 7 / 60 MB 85 / 93 % 90 / 180 sec. 

Table 1 The NAS benchmarks used. 

The parallel applications were merged so that the entire 
workload had a near-balanced requirement of computation 
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and communication: each application comprised 
approximately 25% of the workload. It is important to note 
that the MPL reached for the workload depended on the 
system state at each moment, but in no case surpassed an 
MPL = 4. This was established in order to respect the 
social contract, which was set at 50% of the resources 
available for each kind of load (local/parallel) [3]. Besides, 
the system uses the whole node for the parallel 
applications if there is no local load.  
Moreover, to evaluate the influence of the relation 
between the application execution time and the application 
inter-arrival time, we define two type of workloads. The 
first one, termed SIT (Simple Inter-arrival Time), has an 
application inter-arrival time shorter than the average 
application execution time. The second, named DIT 
(Double Inter-arrival Time) makes the inter-arrival of the 
same order as the execution time. The case for an inter-
arrival time greater than the execution time is not treated 
because in this scenario, the SS policy is almost irrelevant 
considering that every time an application arrives it finds 
the cluster idle.  
On the other hand, the local workload was carried out by 
running a synthetic benchmark. This allowed the CPU 
load, memory requirements and network traffic used by 
the local user to be fixed. To assign realistically these 
values, we monitored the average resources used by real 
users. According to this monitoring, we defined two local 
user profiles. The first profile identifies 65% of the users 
with high inter-activeness needs (called XWindows user: 
15% CPU, 35% Mem., 0,5KB/sec LAN), while the other 
profile distinguishes 35% of the users with web navigation 
needs (called Internet user: 20% CPU, 60% Mem., 
3KB/sec. LAN). This benchmark alternates CPU activity 
with interactivity by running several system calls and 
different data transfers to memory. In order to measure the 
level of intrusion into the local load, our benchmark 
provide us with the system call latency. Besides, and 
according to the monitorized values, we loaded 25% of the 
nodes with local workload in our experiments.  
Both workloads were executed in a Linux cluster using 16 
P-IV (1,8GHz) nodes with 512MB of memory and a fast 
ethernet interconnection network. In addition, a job 
scheduling system developed by us, termed CISNE [6], 
[16], was used to apply our proposals. This system 
integrates our TS system, CCS, with a job scheduler that 
lets us implement our 2D and 3D proposals easily.  
 
 Node 

Selection 
Job 

Selection 
Job 

Order 
MPL 
≤  

Basic Normal JFirst FCFS 1 
Normal Normal JFirst FCFS 4 
Unifrm Light Uniform JFirst FCFS 4 
Unifrm Hard Uniform JFirst FCFS 4 
2DBackfill Normal Backfill FCFS 1 
3DBackfilling-
Light Uniform Backfill FCFS 4 
3DBackfilling-
Hard Uniform Backfill FCFS 4 

Table 2 The whole set of evaluated policies. 
To give a lower limit to compare our proposals (Normal, 
Uniform-Hard, Uniform-Light, 3DBackfilling-Hard and 
3DBackfilling-Light), we defined an extra pair of policies. 
The first one, named Basic, is a Normal policy where the 
maximum MPL is set to 1. This policy will give us an idea 
of the benefits obtained by multiprogramming the cluster, 
when compared with the other policies that use an MPL > 
1. In addition, we wanted to evaluate this 
multiprogramming profits, but from the Backfilling point 
of view. Hence, we defined another policy, termed 
2DBackfilling, that merges a Normal policy with a 
backfilling schema, but with an MPL = 1. In such a 
scenario, the MPL is not an important variable, and 
therefore, the dimensionality of our problem is diminished 

(i.e. 2D-Backfilling: available nodes and its future state), 
even though we are considering estimation of the future 
state of the cluster. 
Table 2 shows the whole set of evaluated policies 
composed of one policy from each of the classes defined 
in Figure 3, and the allowed MPL in each case. 
To evaluate our techniques, we first show some results 
comparing our proposed policies for a plain Linux 
scheduler and our CCS TS system. This allows us to 
analyze the influence of the SS policy on the coscheduling 
mechanism. The measures are done by means of the 
average execution time of the parallel applications for the 
SIT and DIT workloads. In a second step, we present 
results for our proposed SS policies considering the SIT 
and DIT workloads, but only for CCS. In this case we will 
show the average application waiting, execution and 
turnaround time, for each workload. To conclude the 
evaluation from the parallel point of view, we include 
some values representing the makespan (i.e. the 
turnaround of the whole workload). With this metric we 
evaluate how our SS policies perform from the system 
point of view. 
Finally, and to show that our integral scheduling system 
does not introduce an excessive load on each node, we use 
the local benchmark system call latency generated data. 
This way, it is possible to present results obtained for CCS 
compared with other coscheduling systems and the Linux 
plain scheduler.  
 
Results 
In the first part of the experimentation, we show how the 
proposed 2D and 3D policies could diminish the execution 
time of the parallel applications. Besides, we aim to depict 
the influence of CCS over the system performance.  
The first effect that it worth mentioning is related to the 
influence of the 2D policies (NORMAL, UNI-HARD, 
UNI-LIGHT) on the execution time considering the job 
inter-arrival time. In Figure 7.top, where the SIT workload 
imposes a greater pressure on the system, it is possible to 
observe that a Uniform-Hard policy (UNI-HARD) 
improves the performance of a Normal policy. On the 
other hand, when the pressure over the system is lower (i.e. 
DIT workload, Figure 7.bottom), the performance of either 
2D policy is almost the same. This confirms our 
assumptions about the importance of the job distribution 
considering the application execution performance, when 
the job arrival rate is elevated. Besides, combining a 
Uniform-Hard policy with a backfilling (3DBF-HARD) 
schema, it is possible to obtain some gains for both 
workloads, compared with a 3DBF-LIGHT approach. The 
Uniform-Hard gains are justified by an enhancement of 
the coscheduling system performance. This enhancement 
is obtained because it is easier for CCS to coschedule 
parallel applications when the tasks running in the same 
node have different CPU-I/O requirements. 
Figure 7 also shows the gains for the coscheduling system. 
It is important to remark that for the SIT workload, the 
load imposed on the system is greater due to the short 
inter-arrival time, which in turn increases the reachable 
MPL throughout the cluster. Therefore, the execution time 
for the SIT workload is, on average, higher than in the 
DIT case. Nevertheless, even considering a higher load, 
the performance of the CCS system compared to the plain 
Linux scheduler could reach 15% (3DFB-LIGHT policy) 
for the SIT workload. On the other hand, with a lower 
pressure over the waiting job queue (i.e. the DIT 
workload), and hence, a lower MPL across the cluster, the 
gains could reach 24% (NORMAL policy). In addition, for 
policies with an MPL = 1 (Basic and 2DBF), we also 
observe gains for the CCS system due to an enhancement 
when there is local user activity. 
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Figure 7 Application execution time for the SIT (top) 

and DIT (bottom) workloads. 

In the Figure 8 we can observe the wait, execution and 
turnaround time for the evaluated SS policies under CCS 
for the SIT and DIT workloads. Figure 8.a shows that due 
to a short job inter-arrival time, a policy that reduces the 
waiting time (backfilling) is preferable to another one that 
reduces the execution time, whenever we are scheduling 
with an MPL > 1. On the other hand, when the job 
execution time is similar to the job inter-arrival time 
(Figure 8.b), it is preferable to diminish the first, and 
hence, a backfilling (job selection) policy has almost no 
influence compared with the job allocation policy 
(Uniform Hard, Uniform Light and Normal policies). The 
inclusion of a backfilling policy is, nevertheless, harmless 
in this situation, so we can use it in both scenarios. 
Therefore, when the waiting time is the predominant 
factor, we want to schedule applications fast, with little 
care about the job distribution (Uniform Light or Normal 
policies). However, when the execution time is more 
important, we want to schedule well, which means trying 
to reduce the execution time by helping the coscheduling 
system with a more intelligent job distribution over the 
cluster (i.e. 3DBF-Hard).  
 

 
Figure 8 Wait, execution and turnaround time for the 

evaluated SS policies under CCS.  

 

Considering the influence of the MPL, it is clear that using 
an MPL greater than one is always preferable over more 
conservative policies such as Basic or 2DBF that use an 
MPL = 1. This is because the reduction in the waiting time 
is greater than the increment in the execution time due to 
the MPL > 1, which results in a minimization of the 
turnaround time. 
From the system point of view, Figure 9 presents the 
makespan for the SIT and DIT workloads. From the figure 
it is clear that a policy that schedules applications fast 
(Normal, Uni Light, 3DBF-Hard and 3DBF-Light) is 
better than another that is more restrictive (Uni Hard or 
2DBF). A policy such as Uniform Hard takes the same 
time for both workloads due to the restrictions imposed. 
However, if we are using resources that would otherwise 
be wasted, we believe that this kind of behaviour is 
tolerable if the user metrics are enhanced, which is the 
case for workloads like DIT. On the other hand, policies 
that merge backfilling are very suitable from the makespan 
point of view. This is true when the job inter-arrival time 
is short and the restrictions imposed by the node selection 
policy (Uni Light) are lighter. This scenario is depicted by 
the 3DBF-Light policy which gives us a really good 
performance (35% better than Basic) for the SIT workload. 
 

 
Figure 9 Workloads Makespan. 

Finally, we consider that it is fundamental to include some 
results concerning the system intrusion over the local tasks. 
Therefore, Figure 9 shows the performance of our CCS 
system in relation to the plain Linux scheduler and two 
well known communication-driven coscheduling 
strategies: Spinning and DCS coscheduling. In implicit 
coscheduling, a process waiting for messages spins for a 
determined time before blocking. In contrast, DCS 
coscheduling deals with all message arrivals (like CCS, 
but without resource balancing and local jobs 
preservation). It works by increasing the receiving task 
priority, even causing CPU preemption of the task being 
executed inside. Besides, they were evaluated by running 
the SIT parallel workload for several values of MPL (1 to 
4), and applying a 3DBackfilling-Light SS policy. The 
choice of this SS policy is due to the higher load that it 
imposes on the system, and hence, a worst situation for the 
TS system. 

 
Figure 10. System call latency under the evaluated 

policies. 
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In the figure it is possible to observe how the social 
contract implemented by CCS always maintains the 
response time (measured by mean of the local benchmark 
system call latency) under 400ms. This limit for the 
response time, established by [17], [18], is an acceptable 
threshold before the user can notice a lack of inter-
activeness. Hence, our system really protects the local 
users from an excessive intrusion of the parallel 
applications. 
 
5. Conclusions and Future Work 
 
This work presents a set of new SS policies oriented 
towards dynamically-coscheduled, non-dedicated clusters 
(2D and 3D policies). Using our policies and an integral 
scheduling system (Time and Space Sharing system), the 
paper analyzes how the performance of an implicit 
coscheduling system could be affected by the distribution 
policy over a non-dedicated cluster. With this aim, we 
evaluated our proposed policies, some of them 
complemented with a backfilling schema. From the 
combination of our proposals with a backfilling technique, 
a new backfilling approach for non-dedicated clusters 
arises. We have called this policy 3DBackfilling, and it is 
also evaluated in this work. The policies were evaluated 
using a Linux cluster and considering user and system 
metrics, from the parallel and local user points of view. 
We found that a Uniform policy (i.e. a set of applications 
running on the same set of nodes), can enhance the 
coscheduling performance compared with other 
approaches. Nevertheless, in systems with a higher load, it 
is preferable to reduce the waiting time by combining such 
policy with a backfilling schema (3DBackflling). In 
addition, the inclusion of such a backfilling technique was 
shown to be very profitable in some cases, while it is 
never harmful. To resume, when the load is high it is 
preferable to diminish the waiting time (i.e. 3DBF-
LIGHT), while with lower loads it is preferable to 
diminish the execution time (3DBF-HARD). Doing this 
we assure the minimization of the turnaround time, which 
is our main parallel user metric. 
Considering our future work we want to increase the 
system predictability, thus allowing us to establish the 
turnaround time within a certain range. In order to do this 
we will include a historical system that lets us estimate 
some parameters for the executing jobs. Besides, we will 
study the characterization of the parallel applications and 
the local user behaviour, and how this could be included 
into the estimating schema. 
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