
What To Consider For Applying Backfilling On Non-Dedicated Environments*

Mauricio Hanzich1, Francesc Giné2, Porfidio Hernández1, Francesc Solsona2, Emilio Luque1

Dept. Informática(1)

Universitat Autónoma de Barcelona, Spain
 {p.hernandez, e.luque}@cc.uab.es, mauricio@aomail.uab.es

Dept. Informática(2)
Universitat de Lleida, Spain
{sisco,francesc}@eps.udl.es

Abstract

The resource utilization level in open laboratories of
several universities has been shown to be very low. Our
aim is to take advantage of those idle resources for parallel
computation without disturbing the local load. In order to
provide a system that lets us execute parallel applications
in such a non-dedicated cluster, we use an integral
scheduling system that considers both Space and Time
sharing concerns. For dealing with the Time Sharing (TS)
aspect, we use a technique based on the communication-
driven coscheduling principle. This kind of TS system has
some implications on the Space Sharing (SS) system, that
force us to modify the way job scheduling is traditionally
done. In this paper, we analyze the relation between the
TS and the SS systems in a non-dedicated cluster. As a
consequence of this analysis, we propose a new technique,
termed 3DBackfilling. This proposal implements the well
known SS technique of backfilling, but applied to an
environment with a MultiProgramming Level (MPL) of
the parallel applications that is greater than one. Besides,
3DBackfilling considers the requirements of the local
workload running on each node.
Our proposal was evaluated in a PVM/MPI Linux cluster,
and it was compared with several more traditional SS
policies applied to non-dedicated environments.

Keywords: Space-Sharing, Non-Dedicated clusters,
Backfilling, Coscheduling, Load Balancing.

1. Introduction

Studies like [1], [2] indicate that the workstations in a
NOW are under-loaded, and hence, some resources are
wasted. Some past studies [3], [2] demonstrated that it is
possible to use those idle resources for parallel
computation, generating advantages for the parallel user
but not disturbing the local tasks. Many alternatives had
been proposed for dealing with such a non-dedicated
environment, like remote execution, migration, load
balancing, hibernable computers, etc. Our proposal is
oriented toward the Job Scheduling [4] alternative.
Parallel job scheduling in a non-dedicated cluster can be
performed at two different levels, space and time sharing.
Time Sharing scheduling deals with the problem of
distributing the CPU time between the parallel and local
tasks. TS is done in such a way that it reduces the parallel
application execution time by reducing the communication
waiting time. This goal is achieved by a technique known
as coscheduling [5], [1], [6]. This schema can be done in
several ways, however, there are two mayor alternatives.
In the first approach, all the processes forming a job are
scheduled and descheduled by means of a global context
switch. This technique, termed explicit coscheduling, or
more generally Gang Scheduling [7], [2], [8], is suitable
for environments where the time quantum given to the
jobs are large enough to justify the global context switch.
The second alternative relies primarily on local
communications events (arrival and/or waiting for a
message), to determine when and which process to
schedule. A technique based on this alternative is
Cooperating CoScheduling [1] (CCS), developed by our
group and extensively evaluated in the past [9], [3]. It is

based on increasing the receiving task priority, even
causing CPU preemption of the task being executed. This
kind of technique is more suitable for smaller quantums,
and hence, for environments with some interactive local
load running. Therefore, this technique fits into the
requirements of a non-dedicated cluster. In addition, CCS
provides some load balancing characteristics and a job
interaction mechanism. The load balancing schema tries to
uniformize the resources given to each task of a parallel
job. On the other hand, the job interaction mechanism lets
the system control the level of intrusion into the local
workload.
The other aspect to consider for doing job scheduling is
the Space Sharing (SS) concern. According to the TS
system characteristics explained above, the traditional SS
policies have to be modified in order to be applied in a
non-dedicated environment. This leads us to divide the SS
policies into three different classes, where each one solves
one different scheduling problem. The first one faces the
problem of selecting the best set of nodes for executing an
application (Node Selection policies), considering a non-
dedicated cluster and its state. The second set of policies
deals with the Job Selection process (i.e. Backfilling, Best
Fit, Just First, etc) from a waiting queue, while the third
set deals with the Job Ordering or prioritization process
(i.e. First Come First Serve - FCFS, Shortest Job First -
SJF, Largest Job First - LJF, etc).
Regarding to the Node Selection problem, very little work
(if any) has been done to study the effects of a
communication-driven coscheduling system over the SS
schema, and even less, if we consider non-dedicated
clusters. In this work, we have defined some new
approaches, termed Normal and Uniform, applicable to
this kind of environment. Both policies consider two
different variables for assuming scheduling decisions: the
cluster state (intrusion level into the local workload, the
parallel applications MPL and the memory and CPU
usage) and the available nodes.
On the other hand, the most successful approach described
in the literature for dealing with this Job Selection and Job
Ordering problem, is the combination of a simple FCFS
queue with a Backfilling [10], [7] technique. With this
kind of policy, a queued application not at the head could
be executed, whenever this does not delay the start of the
queued job at the head (EASY Backfilling [10]). Thus,
backfilling requires the future state to be estimated in
order to know when running jobs will finish and free up
their processors.
In this paper, we analyze the combination of our defined
Node Selection policies with a FCFS-Backfilling schema.
It means that the two variables stated by the node selection
policies (cluster state and available nodes), are
complemented with the future estimation carried out by
the backfilling policy. This determines a three dimensional
policy, termed by us 3DBackfilling.
This policy was compared with a set of traditional SS
scheduling policies. The evaluation was carried out using
an integral job scheduling system developed by us, termed
CISNE [6]. The analysis shows the good performance and
applicability of our proposal for this kind of environment.
The remainder of this paper is as follows: in section 2 we
define our problems. In section 3 the proposals for solving
the stated problems are described. The efficiency
measurements of our policies are performed in section 4.

* Supported by the MEyC under contract TIN 2004-
03388

 JCS&T Vol. 5 No. 4 December 2005

189

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15766786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Finally, the main conclusions and future work are
explained in section 5.

2. SS and TS Interaction Problems

In the past, several efforts [4], were applied for scheduling
parallel application in dedicated clusters. In such an
environment, the whole load was controlled by a global
scheduling system that considered both Time and Space
sharing concerns.
Considering the TS problem, Figure 1 shows a taxonomy
used for classifying several coscheduling methods. It is
important to note that most of the past efforts were
focused on explicitly coscheduled clusters (i.e. Gang
Scheduling - GS [5] in Figure 1), where the coscheduling
is guaranteed by a global context switch. In such a system,
the parallel machine could be seen as a set of n parallel
virtual machines (VM), forming what is known as an
Ousterhout matrix [11]. The matrix provides information
about the parallel jobs and their forming tasks, as well as
mapping onto the VMs. Every VM is synchronized to the
others by means of a global context switch. Thus, there is
no interaction among the VMs, which also means none
between the parallel tasks running in the same node. Gang
scheduling, is an efficient coscheduling algorithm, which
has mainly been used in supercomputers (CM-5, SGI
workstations and so on). The advantage of a gang
scheduler is a faster completion time, because the
processes of a job are scheduled together. Its disadvantage
is the global synchronization overhead needed to
coordinate a set of processes and the high overhead
introduced to local tasks. A GS coscheduling system
normally uses quantums that are too large for providing
interaction.

Figure 1 Time Sharing Taxonomy.

A more suitable alternative was proposed for non-
dedicated clusters, where the quantum should be short
enough for executing interactive local tasks. This kind of
system, termed implicit, uses the communication
behaviour of any parallel application for coscheduling.
Among the proposed policies we can find the Demand
based CoScheduling (DCS [12] in Figure 1) that modifies
the parallel task priority on behalf of its communication
behaviour, even causing CPU preemption of the current
running task. Another alternative relies on Spinning [13]
in the CPU after sending a message, waiting for a response
to it. Finally, it is possible to find some hybrid
approximations that combines characteristics from both
implicit and explicit systems. One proposal, called
Flexible CoScheduling (FCS [14] in Figure 1) applies GS
to certain applications on behalf of its communication
pattern (as an implicit method does).
On the other hand, our TS system termed CCS [1] is based
on a DCS system for managing the coscheduling, but
enhanced with some explicit information exchange for
balancing the resources given to the parallel tasks, while
preserving the local task responsiveness. However, and
due to CCS's particular characteristics, we came across
some problems applying traditional SS techniques to a
non-dedicated cluster managed by it.
The main problem faced is related to the lack of an
Ousterhout matrix, present in every explicit coscheduling
schema. This is illustrated in Figure 2, that shows the

cluster state for an explicit (a) and an implicit (b) TS
system. In both cases, there is some load already running
(present load), while a couple of jobs (and) are
launched.

jJ kJ
Figure 2.a shows how and run on their

own VMs (i.e. matrix rows 3 and 2 respectively) with no
interaction with the other present load in the system. This
behaviour assures the same computational power for every
task of any job, and a MultiProgramming Level (MPL) of
at most one application running on each VM (MPL = 1).
Besides, it is possible to apply any SS technique to each
VM, and consider an MPL of at most one.

iJ kJ

Figure 2 Difference between applying SS to an explicit

and dynamic (implicit) TS environment.

In implicit coscheduling in general, and in CCS in
particular, there is no such a matrix. Thus, we have only
one VM, the whole cluster state, to which apply our SS
techniques apply. As a consequence, the dimensionality of
the SS problem is incremented because we have more than
one application running on our single VM in the same set
of nodes. This means a dynamic MPL greater than one
(MPL > 1) across the cluster. Moreover, due to a lack of a
global context switch, the tasks running in the same node
have to compete for the CPU. Therefore, the
computational power given to each task of a parallel job
depends on the load of each node. This computational
power difference among a job's tasks, makes job
distribution a really important problem, because the
coscheduling performance could be affected by the job
placement.
Figure 2.b depicts how and interact with the other
present load (which could be either parallel or local). An
example of different computational power could be seen
for the case, where some of its tasks have to share its
CPUs with some load while others should not.

jJ kJ

kJ

3. 3DBackfilling Proposal

In order to tackle the problems stated above, we first
define a taxonomy that lets us fix our proposals among the
existing SS policies, and how our approach deals with a
non-dedicated environment. Based on this, we merge
policies from different classes taken from the taxonomy,
to propose a SS approach applied to TS systems based on

 JCS&T Vol. 5 No. 4 December 2005

190

implicit coscheduling techniques and oriented to non-
dedicated clusters.

Our Space Sharing Taxonomy
Even considering that there are some idle resources usable
for parallel computation, these are finite. In consequence,
a job cannot be executed every time it arrives at the
system. In those cases where a job could not be executed,
it has to wait in a jobs waiting queue. Considering such
condition we have to manage those available resources
and tackle several SS problems. Such problems include
selecting the best set of nodes for executing a given job for
a given cluster state, or the definition of a process for
selecting a job for execution from the waiting queue or the
relative priorities (order) between those waiting jobs. To
deal with these concerning, we define a taxonomy (Figure
3) that let us face those problems separately, while it is
possible to merge the solutions for each problem in a
complete scheduling policy.

Figure 3 Space Sharing Taxonomy.

Assuming our taxonomy, we firstly focus on the class of
policies termed Node Selection, which are oriented
towards the selection of the best subset of nodes from the
cluster to execute a given application. This process is done
considering two main variables, the available nodes and its
current state. For this reason, we have also called this kind
of policy, 2D policies. It should be noticed that the defined
Node Selection policies are mainly aimed at helping the
coscheduling mechanism to perform better, and hence, to
minimize the applications execution time.
The first idea for enhancing coscheduling performance is
oriented towards controlling the level of resources given to
the parallel tasks throughout the cluster.
This is done by not overloading a node with some local or
parallel load already running. Following this principle, we
propose a policy termed Normal that limits the resources
used by the parallel applications across the cluster. The
Normal policy launches an application on any set of nodes
where the fact of executing it does not mean exceeding a
system usage limit for some resource. This acceptable
limit is established by the means of a social contract [15],
and sets up the maximum parallel MPL or the percentage
of memory or CPU that can be used by the parallel
applications on each node. Besides, in order to select the
best subset, this policy implements a mechanism that gives
priority to the candidate nodes for executing an application.
This prioritization mechanism is managed by parameters
like the CPU or Memory usage in a node by the local and
parallel load. It should be noticed, that in this prioritization
process the most important parameter is the memory used
in each node, followed by the MPL and CPU usage. This
is justified because we want to avoid overloading the
memory (i.e. avoiding paging), which is the worst problem
that the TS has to face.
Nevertheless, using the Normal policy we are still not
considering the load interaction inside a node (Figure 2.b).
Therefore, we add new characteristics to the scheduling
decision process carried out by the Normal policy,
defining a new policy, termed Uniform. This policy is
characterized by the following: (a) it executes tasks from

differently oriented applications (i.e. communication or
computation bound) in the same node and (b) it runs
applications one over another in an ordered manner,
whenever possible. By ordering the applications we mean
launching parallel applications in such a way that a couple
of parallel applications run in the same set of nodes, trying
to uniformize the load in every node given to a job. Figure
4.a shows how the Uniform policy executes a CPU bound
application () in the same set of nodes as a
communication bound application (). In contrast, in fig.

3J

2J
Figure 4.b a Normal policy executes the application
regardless of the load and its orientation. In this case, the
computational power assigned to is not the same for
all of its tasks. However, in both cases the established
system limit for every selected parameter is preserved by
the defined policies.

3J

3J

Figure 4 Scheduling difference between the Normal

and Uniform policies.

It should be noticed that the Uniform policy could be used
in two ways. The first possible usage imposes the (a) and
(b) restrictions in a hard way, which means that if a set of
nodes with the desired conditions is not found, the
application has to wait in a queue. This usage is called
Hard Uniform. On the other hand, it is possible to
flexibilize the Uniform rules and launch an application in
a Normal way if we do not found a Uniform set of nodes
for a given application. In this case, we call the policy
Light Uniform.
The Node Selection problem described above only faced
the job distribution problem. However some other aspects
related to the Job policies (Figure 3) should be taken into
account. Based on these, two main concerns have to be
faced: the job order in the waiting queue and the job
selection process for choosing one job from that queue.
These kind of selection and ordering process is what we
call more traditional space scheduling policies in
dedicated environments [7].
Among the traditional Job Selection policies (Figure 3) we
have the Best Fit (BFit) approach, that always looks for
the job that minimizes the resources left unused. Another
strategy, defined by us, is the Just First (JFirst) policy, that
being less restrictive than BFit, only tries to execute the
first job in the queue. A separation should be made for the
Backfilling [10], [7] policy, because it tries to execute
applications by estimating the future resource usage. The
most extensively analyzed backfilling strategy is the
EASY [10] technique, and it states that any queued job
can be executed given the fact that it will not delay the
start of the job at the front of the queue. To guarantee this
restriction, an estimation of the future cluster state has to
be made. In principle, this estimation is based on
information provided by the user about the execution time
of the applications under certain conditions (i.e. number of
needed processors and CPU or memory consumption, etc.).
Figure 5.a shows how for a given queue, task 5 has to wait
until task 3 finishes in order to start its execution. With a
Backfilling approach (Figure 5.b), task 5 could be
scheduled before task 1 finishes, given the fact that it is
expected to finish by task 3 start time.

 JCS&T Vol. 5 No. 4 December 2005

191

Figure 5 Example of a Backfilling policy.

In addition, every time that a job arrives in the system, it
has to be compared to the jobs waiting in the queue. This
comparison process lets the system establish if the arrived
job has enough priority to be executed at the current
moment. Therefore, and to have a complete scheduling
mechanism, it is necessary to choose a Job Order policy
(Figure 3) that lets us determine the relative priorities (i.e.
order) of the jobs in the queue. Among the traditional
policies we found First-Come-First-Serve (FCFS), which
orders the jobs according to their arrival time or SJF (LJF),
that orders the applications in increasing (decreasing)
execution time estimation. In order to minimize the
number of different sets of merged policies to be evaluated,
we fix this class of policy to FCFS for every evaluated
schema. The FCFS choice is justified by the fact that most
of the backfilling approaches use it as their job ordering
policy. This is due to the simplicity, fairness and absence
of starvation of FCFS.
Finally, it should be noted that the Job Selection process is
traditionally done by trying to maximize the resource
usage, and hence, diminishing the job waiting time. By
combining policies from the Node Selection and Job
Selection classes, the turnaround time of the jobs is
diminished in two different metrics, the execution and the
waiting time. The turnaround minimization is important
for us, due to the characteristics of our environment,
where it is important to present some benefits for the
parallel user using a non-dedicated cluster. Hence, doing
this merging we not only have a complete scheduling
proposal, but a scheduling policy that minimizes an
important metric (for us) from different points of view.

Merging Node Selection And Job Policies
In order to have a complete scheduling policy that
considers every concerning stated in the previous
subsection, it is necessary to select a policy from each
defined class (i.e. Node Selection, Job Selection and Job
Ordering in Figure 3) and merge them into a complete
policy.
Considering that the Backfilling policy has been
demonstrated to be one of the most effective job selection
approaches, it is desirable for us to merge it into our
complete scheduling proposal. However, some concerns
have to be taken into account for combining a Backfilling
technique with our 2D policies (i.e. Node Selection
policies). The main problem comes from the need to
estimate the future state of the environment. Such
estimation should be applied to the whole cluster state, and
not to a VM with an MPL of at most 1 (as in an explicit
coscheduled system). Moreover, the estimation process
has to consider the local load. Hence, to take a combined
scheduling decision (i.e. Backfilling + 2D policy), we
have to consider three variables: the available cluster
nodes and their state (from 2D policies), and the future
cluster state (from the Backfilling technique). The addition
of this new concern (i.e. variable), raises our problem
dimensionality from 2D to 3D. In Figure 6, it is possible to
observe the variables to take into account for assuming a
backfilling strategy in our environment. This figure also
depicts a decision problem (assumes that a job J arrives
at the queue): which is the best thing to do, execute the J

application right now in a Normal () way or wait for a
while, and execute it in a Uniform way ()?. This is
another problem that arises using a backfilling approach
combined with our 2D policies that we have to deal with.

iJ

kJ

Consequently, we define a pair of policies that include a
backfilling mechanism and our 2D policies, termed
3DBackfilling techniques. The first 3D policy, called
3DBackfilling-Hard, is the combination of a backfilling
schema with our 2D Uniform-Hard policy (case in kJ
Figure 6). In the same way, we defined another policy,
termed 3DBackfilling-Light, set up using a Uniform-Light
policy (case in iJ Figure 6). The merging of a Backfilling
technique with the Normal 2D policy is not considered
because it is already included in the Uniform-Light
approach.

Figure 6 A 3DBackfilling example.

4. Experimentation

In the present section, we aim to show the evaluation of
our SS proposals for dynamically coscheduled, non-
dedicated clusters. To carry out the experimentation, we
introduce the exercised workloads and metrics. Then, in
the second subsection, we present a set of results that
shows how our defined SS policies perform.

Workloads and Metrics
A necessary element for carrying out our evaluation is a
way to represent a non-dedicated cluster. On one hand, we
need several parallel applications that arrive at some
intervals and, on the other hand, we need some local user
activity. We also define some other policies to compare
our proposal, giving a lower limit to compare with (e.g.
considering an MPL = 1). Finally, we measure the system
performance using system and user metrics from the
parallel and local user point of view.
The parallel workload was a list of 90 PVM/MPI NAS
parallel applications with a size of 2, 4 or 8 tasks that
reached the system following a Poisson distribution,
described in [5]. The chosen NAS applications and their
resource consumptions are depicted in Table 1.

 Memory
(min/max)

CPU
(min/max)

Exec. Time
(min/max)

CG 55 / 120 MB 67 / 75 % 37 / 51 sec.
IS 70 /260 MB 58 / 69 % 40 / 205 sec.

MG 60 / 220 MB 82 / 89 % 26 / 240 sec.
BT 7 / 60 MB 85 / 93 % 90 / 180 sec.

Table 1 The NAS benchmarks used.

The parallel applications were merged so that the entire
workload had a near-balanced requirement of computation

 JCS&T Vol. 5 No. 4 December 2005

192

and communication: each application comprised
approximately 25% of the workload. It is important to note
that the MPL reached for the workload depended on the
system state at each moment, but in no case surpassed an
MPL = 4. This was established in order to respect the
social contract, which was set at 50% of the resources
available for each kind of load (local/parallel) [3]. Besides,
the system uses the whole node for the parallel
applications if there is no local load.
Moreover, to evaluate the influence of the relation
between the application execution time and the application
inter-arrival time, we define two type of workloads. The
first one, termed SIT (Simple Inter-arrival Time), has an
application inter-arrival time shorter than the average
application execution time. The second, named DIT
(Double Inter-arrival Time) makes the inter-arrival of the
same order as the execution time. The case for an inter-
arrival time greater than the execution time is not treated
because in this scenario, the SS policy is almost irrelevant
considering that every time an application arrives it finds
the cluster idle.
On the other hand, the local workload was carried out by
running a synthetic benchmark. This allowed the CPU
load, memory requirements and network traffic used by
the local user to be fixed. To assign realistically these
values, we monitored the average resources used by real
users. According to this monitoring, we defined two local
user profiles. The first profile identifies 65% of the users
with high inter-activeness needs (called XWindows user:
15% CPU, 35% Mem., 0,5KB/sec LAN), while the other
profile distinguishes 35% of the users with web navigation
needs (called Internet user: 20% CPU, 60% Mem.,
3KB/sec. LAN). This benchmark alternates CPU activity
with interactivity by running several system calls and
different data transfers to memory. In order to measure the
level of intrusion into the local load, our benchmark
provide us with the system call latency. Besides, and
according to the monitorized values, we loaded 25% of the
nodes with local workload in our experiments.
Both workloads were executed in a Linux cluster using 16
P-IV (1,8GHz) nodes with 512MB of memory and a fast
ethernet interconnection network. In addition, a job
scheduling system developed by us, termed CISNE [6],
[16], was used to apply our proposals. This system
integrates our TS system, CCS, with a job scheduler that
lets us implement our 2D and 3D proposals easily.

 Node

Selection
Job

Selection
Job

Order
MPL
≤

Basic Normal JFirst FCFS 1
Normal Normal JFirst FCFS 4
Unifrm Light Uniform JFirst FCFS 4
Unifrm Hard Uniform JFirst FCFS 4
2DBackfill Normal Backfill FCFS 1
3DBackfilling-
Light Uniform Backfill FCFS 4
3DBackfilling-
Hard Uniform Backfill FCFS 4

Table 2 The whole set of evaluated policies.
To give a lower limit to compare our proposals (Normal,
Uniform-Hard, Uniform-Light, 3DBackfilling-Hard and
3DBackfilling-Light), we defined an extra pair of policies.
The first one, named Basic, is a Normal policy where the
maximum MPL is set to 1. This policy will give us an idea
of the benefits obtained by multiprogramming the cluster,
when compared with the other policies that use an MPL >
1. In addition, we wanted to evaluate this
multiprogramming profits, but from the Backfilling point
of view. Hence, we defined another policy, termed
2DBackfilling, that merges a Normal policy with a
backfilling schema, but with an MPL = 1. In such a
scenario, the MPL is not an important variable, and
therefore, the dimensionality of our problem is diminished

(i.e. 2D-Backfilling: available nodes and its future state),
even though we are considering estimation of the future
state of the cluster.
Table 2 shows the whole set of evaluated policies
composed of one policy from each of the classes defined
in Figure 3, and the allowed MPL in each case.
To evaluate our techniques, we first show some results
comparing our proposed policies for a plain Linux
scheduler and our CCS TS system. This allows us to
analyze the influence of the SS policy on the coscheduling
mechanism. The measures are done by means of the
average execution time of the parallel applications for the
SIT and DIT workloads. In a second step, we present
results for our proposed SS policies considering the SIT
and DIT workloads, but only for CCS. In this case we will
show the average application waiting, execution and
turnaround time, for each workload. To conclude the
evaluation from the parallel point of view, we include
some values representing the makespan (i.e. the
turnaround of the whole workload). With this metric we
evaluate how our SS policies perform from the system
point of view.
Finally, and to show that our integral scheduling system
does not introduce an excessive load on each node, we use
the local benchmark system call latency generated data.
This way, it is possible to present results obtained for CCS
compared with other coscheduling systems and the Linux
plain scheduler.

Results
In the first part of the experimentation, we show how the
proposed 2D and 3D policies could diminish the execution
time of the parallel applications. Besides, we aim to depict
the influence of CCS over the system performance.
The first effect that it worth mentioning is related to the
influence of the 2D policies (NORMAL, UNI-HARD,
UNI-LIGHT) on the execution time considering the job
inter-arrival time. In Figure 7.top, where the SIT workload
imposes a greater pressure on the system, it is possible to
observe that a Uniform-Hard policy (UNI-HARD)
improves the performance of a Normal policy. On the
other hand, when the pressure over the system is lower (i.e.
DIT workload, Figure 7.bottom), the performance of either
2D policy is almost the same. This confirms our
assumptions about the importance of the job distribution
considering the application execution performance, when
the job arrival rate is elevated. Besides, combining a
Uniform-Hard policy with a backfilling (3DBF-HARD)
schema, it is possible to obtain some gains for both
workloads, compared with a 3DBF-LIGHT approach. The
Uniform-Hard gains are justified by an enhancement of
the coscheduling system performance. This enhancement
is obtained because it is easier for CCS to coschedule
parallel applications when the tasks running in the same
node have different CPU-I/O requirements.
Figure 7 also shows the gains for the coscheduling system.
It is important to remark that for the SIT workload, the
load imposed on the system is greater due to the short
inter-arrival time, which in turn increases the reachable
MPL throughout the cluster. Therefore, the execution time
for the SIT workload is, on average, higher than in the
DIT case. Nevertheless, even considering a higher load,
the performance of the CCS system compared to the plain
Linux scheduler could reach 15% (3DFB-LIGHT policy)
for the SIT workload. On the other hand, with a lower
pressure over the waiting job queue (i.e. the DIT
workload), and hence, a lower MPL across the cluster, the
gains could reach 24% (NORMAL policy). In addition, for
policies with an MPL = 1 (Basic and 2DBF), we also
observe gains for the CCS system due to an enhancement
when there is local user activity.

 JCS&T Vol. 5 No. 4 December 2005

193

Figure 7 Application execution time for the SIT (top)

and DIT (bottom) workloads.

In the Figure 8 we can observe the wait, execution and
turnaround time for the evaluated SS policies under CCS
for the SIT and DIT workloads. Figure 8.a shows that due
to a short job inter-arrival time, a policy that reduces the
waiting time (backfilling) is preferable to another one that
reduces the execution time, whenever we are scheduling
with an MPL > 1. On the other hand, when the job
execution time is similar to the job inter-arrival time
(Figure 8.b), it is preferable to diminish the first, and
hence, a backfilling (job selection) policy has almost no
influence compared with the job allocation policy
(Uniform Hard, Uniform Light and Normal policies). The
inclusion of a backfilling policy is, nevertheless, harmless
in this situation, so we can use it in both scenarios.
Therefore, when the waiting time is the predominant
factor, we want to schedule applications fast, with little
care about the job distribution (Uniform Light or Normal
policies). However, when the execution time is more
important, we want to schedule well, which means trying
to reduce the execution time by helping the coscheduling
system with a more intelligent job distribution over the
cluster (i.e. 3DBF-Hard).

Figure 8 Wait, execution and turnaround time for the

evaluated SS policies under CCS.

Considering the influence of the MPL, it is clear that using
an MPL greater than one is always preferable over more
conservative policies such as Basic or 2DBF that use an
MPL = 1. This is because the reduction in the waiting time
is greater than the increment in the execution time due to
the MPL > 1, which results in a minimization of the
turnaround time.
From the system point of view, Figure 9 presents the
makespan for the SIT and DIT workloads. From the figure
it is clear that a policy that schedules applications fast
(Normal, Uni Light, 3DBF-Hard and 3DBF-Light) is
better than another that is more restrictive (Uni Hard or
2DBF). A policy such as Uniform Hard takes the same
time for both workloads due to the restrictions imposed.
However, if we are using resources that would otherwise
be wasted, we believe that this kind of behaviour is
tolerable if the user metrics are enhanced, which is the
case for workloads like DIT. On the other hand, policies
that merge backfilling are very suitable from the makespan
point of view. This is true when the job inter-arrival time
is short and the restrictions imposed by the node selection
policy (Uni Light) are lighter. This scenario is depicted by
the 3DBF-Light policy which gives us a really good
performance (35% better than Basic) for the SIT workload.

Figure 9 Workloads Makespan.

Finally, we consider that it is fundamental to include some
results concerning the system intrusion over the local tasks.
Therefore, Figure 9 shows the performance of our CCS
system in relation to the plain Linux scheduler and two
well known communication-driven coscheduling
strategies: Spinning and DCS coscheduling. In implicit
coscheduling, a process waiting for messages spins for a
determined time before blocking. In contrast, DCS
coscheduling deals with all message arrivals (like CCS,
but without resource balancing and local jobs
preservation). It works by increasing the receiving task
priority, even causing CPU preemption of the task being
executed inside. Besides, they were evaluated by running
the SIT parallel workload for several values of MPL (1 to
4), and applying a 3DBackfilling-Light SS policy. The
choice of this SS policy is due to the higher load that it
imposes on the system, and hence, a worst situation for the
TS system.

Figure 10. System call latency under the evaluated

policies.

 JCS&T Vol. 5 No. 4 December 2005

194

In the figure it is possible to observe how the social
contract implemented by CCS always maintains the
response time (measured by mean of the local benchmark
system call latency) under 400ms. This limit for the
response time, established by [17], [18], is an acceptable
threshold before the user can notice a lack of inter-
activeness. Hence, our system really protects the local
users from an excessive intrusion of the parallel
applications.

5. Conclusions and Future Work

This work presents a set of new SS policies oriented
towards dynamically-coscheduled, non-dedicated clusters
(2D and 3D policies). Using our policies and an integral
scheduling system (Time and Space Sharing system), the
paper analyzes how the performance of an implicit
coscheduling system could be affected by the distribution
policy over a non-dedicated cluster. With this aim, we
evaluated our proposed policies, some of them
complemented with a backfilling schema. From the
combination of our proposals with a backfilling technique,
a new backfilling approach for non-dedicated clusters
arises. We have called this policy 3DBackfilling, and it is
also evaluated in this work. The policies were evaluated
using a Linux cluster and considering user and system
metrics, from the parallel and local user points of view.
We found that a Uniform policy (i.e. a set of applications
running on the same set of nodes), can enhance the
coscheduling performance compared with other
approaches. Nevertheless, in systems with a higher load, it
is preferable to reduce the waiting time by combining such
policy with a backfilling schema (3DBackflling). In
addition, the inclusion of such a backfilling technique was
shown to be very profitable in some cases, while it is
never harmful. To resume, when the load is high it is
preferable to diminish the waiting time (i.e. 3DBF-
LIGHT), while with lower loads it is preferable to
diminish the execution time (3DBF-HARD). Doing this
we assure the minimization of the turnaround time, which
is our main parallel user metric.
Considering our future work we want to increase the
system predictability, thus allowing us to establish the
turnaround time within a certain range. In order to do this
we will include a historical system that lets us estimate
some parameters for the executing jobs. Besides, we will
study the characterization of the parallel applications and
the local user behaviour, and how this could be included
into the estimating schema.

References
[1] Giné, F. Cooperating Coscheduling: a coscheduling

proposal for non-dedicated, multiprogrammed
clusters. PhD Thesis, Universitat Autònoma de
Barcelona, 2004.

[2] Setia, S., Squillante, M. & Naik, V. The Impact of
Job Memory Requirements on Gang-Scheduling
Performance 1999.

[3] Hanzich, M.; Giné, F.; Hernández, P.; Solsona, F. &
Luque, E. Coscheduling and Multiprogramming
Level in a Non-dedicated Cluster. EuroPVM/MPI
2004, LNCS, 2004 , 3241, 327-336.

[4] Feitelson, D.G.; Rudolph, L.; Schwiegelshohn, U.;
Sevcik, K.C. & Wong, P. Theory and Practice in
Parallel Job Scheduling Lecture Notes in Computer
Science, 1997, 1291, 1-34.

[5] Feitelson, D.G. Packing schemes for gang
scheduling Job Scheduling Strategies for Parallel
Processing, Springer-Verlag, LNCS, 1996, 1162, 89-
110.

[6] Hanzich, M. Combining Space And Time Sharing
On A Non-Dedicated NOW Universitat Autònoma
de Barcelona, 2004.

[7] Zhang, Y.; Franke, H.; Moreira, J.E. &
Sivasubramaniam, A. An Integrated Approach to
Parallel Scheduling Using Gang-Scheduling,
Backfilling, and Migration Lecture Notes in
Computer Science, 2001 , 2221 , 133-151.

[8] Feitelson, D.G. & Jette, M.A. Improved Utilization
and Responsiveness with Gang Scheduling Springer
Verlag, 1997, 238-261.

[9] Giné, F.; Solsona, F.; Hernández, P. & Luque, E.
Adjusting Time Slices To Apply Coscheduling
Techniques in a Non-Dedicated NOW LNCS, 2002 ,
2400 , 234-240.

[10] Shmueli, E. & Feitelson, D.G. Backfilling with
lookahead to optimize the performance of parallel
job scheduling Job Scheduling Strategies for Parallel
Processing, LNCS, 2003, 2862, 228-251.

[11] Ousterhout, J. Scheduling techniques for concurrent
systems Proceedings of the Conference on
Distributed Computing Systems, 1982.

[12] Sobalvarro, P. & Weihl, W. Demand-based
coscheduling of parallel jobs on multiprogrammed
multiprocessors Job Scheduling Strategies for
Parallel Processing, LNCS, 1995 , 949 , 106-126

[13] Anglano, C. A Comparative Evaluation of Implicit
Coscheduling Strategies for Networks of
Workstations Ninth IEEE International Symposium
on High Performance Distributed Computing
(HPDC'00), 2000 , 221-228.

[14] Frachtenberg, E.; Feitelson, D.G.; Fernández, J. &
Petrini, F. Parallel Job Scheduling Under Dynamic
Workloads 9th Workshop on Job Scheduling
Strategies for Parallel Processing. HPDC, LNCS,
2003 , 2862 , 208-227.

[15] Arpaci, R.; Dusseau, A.; Vahdat, A.; Liu, L.;
Anderson, T. & Patterson, D. The Interaction of
Parallel and Sequential Workloads on a Network of
Workstations ACM SIGMETRICS 1995, 1995, 267-
277.

[16] Hanzich, M.; Giné, F.; Hernández, P.; Solsona, F. &
Luque, E. CISNE: A New Integral Approach for
Scheduling Parallel Applications on Non-Dedicated
Clusters Accepted at EuroPar 2005, 2005 , to be
appear at LNCS.

[17] Miller, R. Response Time in Man-Computer
Conversational Transactions AFIPS Fall Joint
Computer Conference Proceedings, 1968 , 33 , 267-
277.

[18] Nielsen, J. Nielsen, J. (ed.) Advances in Human-
Computer Interaction Intellect Publishers, 1995.

 JCS&T Vol. 5 No. 4 December 2005

195

