
Figure 1: Five-level Architecture for
Federated Systems

Design of a Service-Oriented Architecture for Federated Systems

Daniel Calegari Marcos Viera Regina Motz

dcalegar@fing.edu.uy mviera@fing.edu.uy rmotz@fing.edu.uy

Instituto de Computación, Facultad de Ingeniería,
Universidad de la República

Julio Herrera y Reissig 565, 5to piso
11300 Montevideo, Uruguay

ABSTRACT

A Federated System is a collection of independent,
cooperative, possibly heterogeneous and autonomous
computer systems (usually database systems) which
allows sharing all or some of its data. A Service-Oriented
Architecture is an application architecture whose
functionalities are defined as independent services which
offer transparent communication between physically
distributed components, possibly heterogeneous and
autonomous. In this context, it is interesting to analyze
how a Federated System can be designed within the ideas
proposed by Service-Oriented Architectures. This paper
presents the design of a Service-Oriented Architecture for
Federated Systems. The architecture supports many users
sharing data; access control to the data based on access
rights which generates many views from a data source, as
well as allowing a high automation level for the
integration and querying processes. In addition, the bases
of a federation’s management framework are defined. This
framework, as well as the architecture, is validated
through an evolutionary prototype towards a completely
functional implementation.

Keywords: Federated Systems, Service-Oriented
Architecture,Databases, Distributed Systems, Framework

1. INTRODUCTION
Federated Systems come into the game as an answer to the
growing needs of cooperation between independent
systems in order to share data and provide new
functionalities to the users.

A Federated Database System [1] coordinates the
cooperation between data sources (originally databases,
but it could be extended to information systems, among
others) to provide a unified view of them to different
users. Thr-ee properties characterize a Federated System:

• Distribution: The data of a federation is distributed
across different sources. This distribution, which is
not only logical but also physical, generates the need
of having flexible mechanisms of integration and
remote communication to connect the federation
with the sources.

• Autonomy: Each source is independent and decides
its participation level within the federation. As a
consequence, the sources must be loosely coupled
with the federation, in order to be able to execute
independently and decide the access level to the data
for each user.

• Heterogeneity: There can be different kinds of
heterogeneity between sources: in the platform they
execute, in its semantics, in its structure, in the query

language, among others. So, it’s convenient to
define a unified connectivity mechanism in the
format of the schemas, in the query language used in
the interaction with the federation and in the
connectivity technology used.

The five-level architecture proposed in [1] presents the
logical structure of a Federated System considering the
properties previously mentioned. Each source has a local
schema in its own language (also each source has its own
query language). This schema is transformed by a
transforming processor into a schema with a canonical
representation for all the federation (also transforms the
queries in the canonical language of the federation to the
language of the source), generating a component schema.
Each source defines the piece of information to which the
federation will be able to access. Based on this access
control a filtering processor generates an export schema.
From the export schemas of each source, the federation,
by means of a constructing processor, generates the
federated schema. After another access control,
performed by a filtering processor, this schema is
transformed into an external schema, to which the users
access.

Except for the transforming processor and the local
schema, the rest does neither depend on the nature of each
source nor on the federation itself. This motivates the

Federation
External
Schema

... Source

Constructing Processor

Federated
Schema

Source
Export
Schema

Transforming
Processor

Filtering Processor

Component
Schema

Local Schema

Filtering Processor

 JCS&T Vol. 5 No. 4 December 2005

167

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15766782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

construction of a generic solution in order to provide
support to federation’s management.

On the other hand, there is a clear separation between the
responsibilities of the sources and the federation. It is
possible to see the sources as service suppliers, offered in
a uniform way by all of them, and the federation as a
consumer of these services.

A Service-Oriented Architecture [2] is an application
architecture where the functionalities are defined as
independent services, with well defined interfaces, which
can be called in given sequences to build business
processes. This architecture provides a framework that
allows heterogeneity, integration and reusability of the
participant components in a flexible environment. In this
context, it is interesting to analyze how a Federated
System can be designed within the ideas proposed by the
Service-Oriented Architectures.

The primary goal of this paper is to present the design of a
Federated Systems architecture exploring the ideas
proposed by the Service-Oriented Architectures. The
design contemplates a Federated System with support for
multiple users and access control to the data, based in
access rights that generate multiple views for a source. A
second objective is to define the basis of a generic solution
(framework) in order to give support to federation’s
management and to explore possible levels of automation.
Also, the implementation of the framework validates the
architecture as it evolves towards a completely functional
implementation.

The rest of this paper is organized as follows. In Section 2
the basic capabilities of the proposed architecture are
exposed through a case study. In Section 3 the design of a
Service-Oriented Architecture for Federated Systems is
presented. In Section 4 the basis of a generic solution are
analyzed and the prototype is presented. Finally, in
Section 5 the final conclusions and future work guidelines
are discussed.

2. CAPABILITIES
In order to understand the architectural design of the
federated system we will first introduce the capabilities
that the solution must have with a Medical Federation case
study. This federation is composed by many hospitals
geographically distributed, each one with its own
computer system. The objective of the federation is to
integrate every computer system providing a unified view
of the data concerning the clinical histories of their
patients.

The data the sources use are structurally and semantically
heterogeneous. Moreover, each source can handle
different information. There also exists heterogeneity
given by the platform in which each source runs. There are
three sources: a relational database, an object-oriented
system and a XML-files source. Each source must have a
local schema to be part of the federation, so each one must
define its own data schema. In the relational database the
local schema is explicitly defined (it is shown by its tabled
structure) but in other cases as the object-oriented system
or the XML files there is no explicit data representation.
For this reason, the owner of each source must infer the
local schema, implicit in the data that the source uses. The
local schema of each source in the case study is shown in
Figure 2. Each schema is presented with a different
notation (Database tables, UML Class Diagram [3] and

Entity-Relationship Model [4]) to point out the
heterogeneity of the sources.

Fuente XML (Modelo Entidad Relación)

Fuente OO (Diagrama de Clases)Fuente DBMS (Tablas)

Patient

idPatient
Name
Address
Telephone

History

idPatient
idDoctor
Date
Info

Doctor

idDoctor
Speciality

Patient HistoryBed havehospitalize 0..10..1 1 N

idBed type [basic,intermediate,intensive] idPatient
name

fee date
diagnostic

treatment

-date
-info

History
-name
-speciality

Doctor

-idPatient
-name

Patient

-number
-stage

Room

-idBed
-available?

Bed

* *

1

1

* *

1

*0..10..1

DBMS Source (Database Tables) OO Source (Class Diagram)

XML Source (Entity-Relational Model)

Figure 2: Case Study Sources

As a first step in order to generate the federation, each
source must define which data will be exported, that is the
component schema. Considering the objective of the
Medical Federation, each source defines its own
component schema (according to the participation level
that they will have in the federation) as shown in Figure 3.
The component schemas are presented with a canonical
notation, a UML Class Diagram.

-date
-diagnostic
-treatment

History

-id
-name

Patient

DBMS Source

OO Source

XML Source

-id
-date
-info

History

-date
-info

History
-id
-name

Patient 1

1

*

*

Figure 3: Case Study Export Schemas

The federated schema that will be generated depends on
the strategy used. For example, the strategy followed
could maximize the information extracted from the
sources and therefore it will generate a schema that
contains all the available information. Using this strategy
in the case study, the schema shown in Figure 4 is
generated. In this schema, it is possible to query the
medical history of a patient. This query will be answered
by every source. However, as a consequence of this
strategy, there could be queries in which a source doesn't
contain enough information to answer. Each federation
must define a policy to clearly state what happens in this
case. Some federations could decide if they will cancel the
entire query or just to make the query in the sources that
can answer.

Federation

-date
-diagnostic
-treatment

History

-id
-name

Patient 1 *

Figure 4: Case Study Federated Schema

 JCS&T Vol. 5 No. 4 December 2005

168

A desired capability is to let sources define access rights
over its data and let the federation define user profiles that
will use these rights. The following sections present some
extensions to the export schema and the filtering process
of the sources to support these capabilities.

Access Rights

Through the definition of access rights, a source defines
the participation level it will have in the federation, not
only defining the exports the schema to share but also the
access rights who have the federation over each schema
element. For this purpose, the export schema must be
extended to include read/write access rights in each
schema element: classes, attributes and relationships.

Figure 5 shows the access rights defined in the case study
(for simplicity there are rights only at class level). The
federated schema is the same as the one of the OO Source.
In this case, it is valid to query and modify clinical
histories but not to delete patients because they have only
read rights.

-date
-diagnostic
-treatment

History

-id
-name

Patient

DBMS Source OO Source XML Source

-id
-date
-info

History

-date
-info

History
-id
-name

Patient 1 1* *
R WRW W

Figure 5: Export Schemas with Access Rights (R-Read,

W-Write)

The access control to the data can be complex. It is
convenient to define it together with the integration
strategy since it is necessary to define, among other things,
what happens when two semantically similar elements
have different access rights.

 The filtering processors of the source and federation are
responsible for checking the access rights of each CRUD
operation over the external schema. At this point, two
actions can be taken: discard a wrong query or carry it out
only where it has enough access rights. In the second case,
the query must be transformed into a partial query and the
results can be unexpected. This problem is fairly common,
mainly when creating/updating data into the federation,
but it is out of the scope of this work.

Profiles

The idea of access rights is extended by the definition of
user profiles, generating different “views” of the
federation. In this way, each source can export more than
one schema, one for each profile with its own access
rights.

The federation shown in the case study can be part of a
doctor profile. It is now possible to create a new profile,
called hospitalization advisor, for consulting bed-
availability in hospitals. For this new profile the schemas
generated are shown in Figure 6 (the DBMS Source
decides not to join the federation for this profile).

-id
-available?
-idPatient

Bed

OO Source XML Source

-numberOfBeds
Beds Available

R R

Figure 6: Export Schema for the Hospitalization

Advisor Profile

Profiles can represent many actors inside a federation (like
the doctor and the hospitalization advisor) as different
federations. This lets each source participate in more than

one federation with the same mechanism and also
supporting more than one user in one federation, each one
with different access rights and as a consequence with
different external schemas. In order to support this
capability it is necessary to verify the user identity
together with the access rights in each transforming
processor.

3. PROPOSED ARCHITECTURE
 A service-oriented architecture formed by two
components is proposed, one component on the federation
side and the other one on the sources' side. The following
diagram shows the modules within each component and
their dependencies.

Query Decomposer Integrator

Invoker

Rights Manager

Service Controller

Query FilterSchema FilterRights Manager

DataSource Connector

SourceFederationFederation Controller

Figure 7: Designed Architecture

The following description shows the responsibilities of
each module.

Federation

Federation
Controller

Works as an intermediary between the
user and the federation. Allows the
user to interact at two levels: at an
administrative level to generate the
federation on the basis of different
sources and from a user level to work
on the federated schema.

Integrator
Generates the federated schema based
on the schemas that arrive from each
source and integrates the access rights.

Query
Decomposer

Allows the query decomposition of a
query made by the user over the
federation into specific queries to each
one of the sources. Requires
information from the Integrator to
decompose each query. Verifies the
user’s rights over each source before
making the query. In addition, it is
responsible of constructing the result
of a distributed query.

Invoker
Knows the location of each source and
invokes its services by their Service
Controller.

Rights
Manager

Verifies the access rights that a user
has over a schema.

 JCS&T Vol. 5 No. 4 December 2005

169

Source

Service
Controller

Exports the services of a source.
Receives orders of the federation and
delegates them to the responsible
component within the source

Query Filter
Receives a query, verifies the rights of
the user who had made the query
(using the Rights Manager) and
executes the query on the source.

Schema
Filter

Generates and controls the exportation
schemas of a source, based on the
profiles and permissions defined for
each schema.

Data Source
Connector

Translates the model and query
language of each source to the
canonical model and language of the
federation.

Rights
Manager

It’s the same module described in the
component Federation.

The mapping between the components defined in the
proposed architecture and the components defined in the
five-tier architecture [1] are shown in Figure 8.

Query Decomposer Integrator

Invoker

Rights Manager

Service Controller

Query FilterSchema FilterRights Manager

Federation Controller

Federation

External Schema

Constructing Processor

Federated Schema

Source

Export Schema

Transforming Processor

Filtering Processor

Component Schema

Local Schema

Filtering Processor

DataSource Connector

Figure 8: Designed Architecture - Five-level

Architecture Mapping

Services

The federation offers administrative (sources, profiles and
permissions management) and federation (schema
integration and CRUD1 operations on the integrated
schemas) functionalities. In order to fulfill these
functionalities the services offered by each source are
used, which are: schema and permissions for profile
exportation, and CRUD operations. The interactions
between components in order to offer and consume these
services are shown in the following figures.

1 CRUD (Create, Retrieve, Update y Delete)

Federation
Controller Rights Manager Invoker Service Controller

add rights
(source,profile)

Service Controller
of the right source

ok analyze and
store rights

get rights
(source,profile)

rights

Rights Manager Data Source
Connector

get rights

rights

get rights (profile)

rights
analyze and
store rights

 Federation Source

get rights
(profile)

rights

Figure 9: Rights Exportation Interaction

Federation
Controller Integrator Invoker Service

Controller
Rights

Manager
Schema

Filter
DataSource
Connector

get schema
(source,profile)

Service Controller
of the right source

ok

stores schema
to be integrated

with the federation

schema

has rights?
(profile,element)

get schema

get schema
(profile)

schema

generates and
stores new schema

get schema
(source,profile)

schema

for each element
in the schema

 Federation Source

generates component
schema from rights
defined in each original
schema's elements

get schema
(profile)

schema

Figure 10: Schema Exportation Interaction

 Federation

Federation Controller Query Decomposer Integrator Invoker Service Controller

query
(query,profile)

get information

information

decompose
query (query,information)

query (query',profile,source)
query

(query’,profile)

partial resultpartial result

complete
result

generates
complete

result

Rights
Manager

has rights?
(profile,element)

for each
query element

for each source
involved in query

Service Controller
of the right source

Figure 11: Query Interaction (Federation side)

Service Controller Query Filter Schema Filter DataSource ConnectorInvoker

query
(query,profile)

partial result

query
(query,profile)

has rights?
(profile,element)

[ok] query (query)

Transform
and process

querypartial resultpartial result

for each
query element

ok

 Source

Figure 12: Query Interaction (Source side)

 JCS&T Vol. 5 No. 4 December 2005

170

Automation

During the execution of a great part of the functionalities
offered by the federation, interaction with an external user
is not required. This allows the (semi) automation of the
integration, query, data maintenance, and federation
management processes.

If a connection mechanism is chosen, the components that
implement it (Invoker and Service Controller) can be
automated. By fixing a format of the export schema
(canonical model, query language, permissions and
profiles) the components Rights Manager and Schema
Filter can be automated. Finally, by choosing an automatic
or semi-automatic schema integration strategy (for
example SIM2 [5,6]), and defining, based on it, permission
integration and query decomposition strategies, Integrator,
Query Decomposer and Query Filter are automated. A
hardly automatable component, because it depends on the
nature of each source, is the DataSource Connector,
although the transformations of schemas and queries for
certain types of sources could be studied.

4. FRAMEWORK
Most of the architecture doesn’t depend on specific
features of each federation. This particularity allows us to
generate a federation’s management framework. As we
saw in the last section, to instantiate this framework we
have to define the connectivity mechanism, a concrete
export schema and the different strategies involved. This
is what we will see in this section.

Connectivity Mechanism

Web Services [2] is the most used connectivity technology
for service-oriented architectures. Web Services are
modular applications, self-described, self-contained which
can be accessed through a network. Based in open
standards, they allow the construction of web applications
using any platform, object model and programming
language. Web Services modularity and flexibility [7]
make them appropriate for applications' integration with a
minimum programming effort. This is why we propose the
use of Web Services as the connectivity mechanism
between the federation and the sources.

Export Schema

As a canonical model, it is possible to use ODMG [8]
because its expressive power allows it to cover different
data models [9]; it offers an object description language
(ODL) and an object query language (OQL) on the model.
OQL, an extension of SQL, doesn’t have operators for
Create, Update, and Delete object instances. In this case
we use SQL operators.

Each source must create its component schema using
ODL. ODL will be the specification language of the
export, federated and external schema. As an example, the
federated schema of the case study for “doctor” profile is
shown in Figure 13.

2 SIM strategy is a database federation system’s integration
strategy based on correspondences between sub-schemas of the
schemas to be integrated. It is declarative and semiautomatic.

Federation

interface Patient (extent patients key id){
 attribute Integer id;
attribute String name;
relationship Set<History> have inverse History::of;

};
interface History (extent histories){
 attribute Date date;
 attribute String diagnostic;
 attribute String treatment;
 relationship Patient of inverse Patient::have;
};

Figure 13: Federation ODL

Queries on the external schema are carried out in OQL and
then decomposed in sub-queries, one for each source. An
example of global query, query decomposition and result
format for the case study is shown in Figure 14.

DBMS Source OO Source

XML SourceFederation

select h.date, h.diagnostic, h.treatment
from Patient p, p.have h
where p.id = ID

select h.date, h.info
from Patient p, p.have h
where p.id = ID

select h.date, h.info
from History h
where h.id = ID

select h.date, h.diagnostic, h.treatment
from Patient p, p.have h
where p.id = ID

Result

bag(History(date:'Date',diagnostic:“String”,treatment:”String”),...)
Date is: struct(month: Integer, day: Integer, year: Integer)

Figure 14: Query

Profiles and their access rights are specified using XML
format [10] whose structure is defined in a DTD [11] as
shows Figure 15. An example of a profile for the XML
Source of the case study is shown in Figure 16. This
example shows the “doctor” profile with read/write rights
over “History” class and its attributes, while the
“hospitalization advisor” profile has only read rights over
“BedsAvailable” class and its attribute.

<!ELEMENT Rights (Right+)>
<!ELEMENT Right (R,RW)>
<!ATTLIST Right profile CDATA #REQUIRED>
<!ELEMENT R EMPTY>
<!ATTLIST R name CDATA #REQUIRED
 type (Class|Attribute|Relationship) #REQUIRED>
<!ELEMENT RW EMPTY>
<!ATTLIST RW name CDATA #REQUIRED
 type (Class|Attribute|Relationship) #REQUIRED>

Figure 15: Access Rights DTD

XML Source

<Rights>
 <Right profile="doctor">
 <RW name="History" type="Class" />
 <RW name="History::id" type="Attribute" />
 <RW name="History::date" type="Attribute" />
 <RW name="History::info" type="Attribute" />
 </Right>
 <Right profile="advisor">
 <R name="BedsAvailable" type="Class" />
 <R name="BedsAvailable::numberOfBeds"
 type="Attribute" />
 </Right>
</Rights>

Figure 16: XMl Source Access Rights

 JCS&T Vol. 5 No. 4 December 2005

171

Strategies

ODMG allows using into the framework SIM
methodology. Access rights integration (and inconsistency
policy), decomposition and query validation strategies
depends on it. The concrete definition of this kind of
strategies is beyond the scope of this work.

Prototype

A prototype3 of the framework has been developed in
order to validate the architecture. The prototype has a full
implementation of the architecture structure and services
explained in section 3. Also, some processes have been
automated. it contains a functional version of Federation
Controller, Invoker and Rights Manager component in the
federation; and WebService Controller, Schema Filter and
Rights Manager component in the source.

The federation management and the access rights
validation on each schema component have been
automated. The access rights validation uses only rights
defined by each source, not considering integrated rights
(this depends on the integration strategy as we saw).
Integration, query and data maintenance processes have
not been automated. As a consequence, the prototype has
been adapted to support just some static CRUD queries.

The prototype showed the feasibility of the proposed
architecture as it consists the first version of a functional
system. It also helped in discovering future work required
to build a completely functional version, as will be
exposed in the next section.

5. CONCLUSIONS AND FUTURE WORK
This paper presents the design of a Service-Oriented
Architecture for Federated Systems. The designed
architecture, based on the five-tier architecture in Section
1, supports all of the characteristic properties of Federated
Systems: distribution, autonomy and heterogeneity of
sources, as well as some capabilities like user profiles,
access rights to federated data for each profile and source
transparency. Moreover, it enables the integration of not
only databases but also applications in an abstract manner
for the user because it can see the services but not the
provider. The paper analyzes the possible automation level
of each component within the architecture and defines the
basis of a federation’s management framework using these
ideas. The framework, as well as the architecture, was
validated through an evolutionary prototype.

There are works which analyze the application of Service-
Oriented Architectures for Federated Systems. In [13], an
architecture for federation’s management is built. In this
case, the architecture is not context-free and its focus is
the high-level administrative services of the federation, not
the integration and querying processes this paper focuses
on.

Some future work is required in order to continue the
evolution of the framework’s prototype towards a
completely functional version:

• Use of heterogeneity to add new source’s and
federation’s components in different languages in
order to generate a multi-language framework.

3 The prototype was implemented with J2EE Platform [12]; its
source code is available at:
www.fing.edu.uy/inco/grupos/coal/investigacion/publicaciones/

• Incorporation of new and better federation’s
management tools as those in [13].

• Incorporation of concrete schema integration and
query decomposition (and validation) strategies as
SIM. This promotes the study of new strategies with
access rights support.

• Study of alternatives for the instantiation of the
framework. This means the study of different
schema formats (for example UML Class Diagrams
and not ODMG) and query languages (for example
OCL [3] and not OQL) in order to make a
comparative analysis between framework’s
instances.

6. REFERENCES
[1] A. Sheth, J. Larson, Federated database systems for

managing distributed, heterogeneous, and
autonomous databases. ACM Comput. Surv. 22, 3
(September 1990), 183-236.

[2] D. Barry, Web Services and Service-Oriented
Architectures: The Savvy Manager's Guide, Morgan
Kaufmann Publishers, 1 ed., 2003, ISBN 1-55860-
906-7.

[3] Object Management Group. OMG Unified Modeling
Language Specification, Version 1.5, March 2003.

[4] P. Chen, The entity-relationship model—toward a
unified view of data. ACM Trans. Database Syst. 1,
1 (March 1976), 9-36.

[5] R. Motz, Dynamic Maintenance of an Integrated
Schema, PhD Thesis, Darmstadt, University of
Technology, Germany, 2004.

[6] P. Fankhauser, A Methodology for Knowledge-Based
Schema Integration. PHD-Thesis, Technical
University of Vienna, December 1997.

[7] Beneficios de una Arquitectura Orientada a
Servicios,
URL:
http://www.developer.com/services/article.php/1041
191 (August 2005).

[8] R. Cattell, The Object Database Standard: ODMG–
93,
Morgan Kaufmann Publishers, ISBN 1-55960-396-
4.

[9] E. Radeke, Extending ODMG for federated database
systems.
Proc. 7th international Workshop on Database and
Expert Systems Applications
(Setiembre 1996). DEXA. IEEE Computer Society,
Washington, DC, 304

[10] F. Yergeau et al, Extensive Markup Language 1.0,
W3C Recommendation, 3 ed., 2004.

[11] XML DTD Tutorial, URL:
http://www.xmlfiles.com/dtd (August 2005)

[12] Java 2 Platform, Enterprise Edition, URL:
http://java.sun.com/j2ee/ (August 2005)

[13] F. Alvarez, R. Amador, Federador Link-All,
Proyecto de Grado, Instituto de Computación,
Facultad de Ingeniería, Universidad de la República,
Uruguay, June 2005

 JCS&T Vol. 5 No. 4 December 2005

172

