
A Methodology for Vertically Partitioning in a
Multi-Relation Database Environment

Narasimhaiah Gorla

Professor of MIS
American University of Sharjah, UAE
ngorla@aus.edu, n_gorla@yahoo.com

ABSTRACT

Vertical partitioning, in which attributes of a relation are
assigned to partitions, is aimed at improving database
performance. We extend previous research that is based on
a single relation to multi-relation database environment,
by including referential integrity constraints, access time
based heuristic, and a comprehensive cost model that
considers most transaction types including updates and
joins. The algorithm was applied to a real-world insurance
CLAIMS database. Simulation experiments were
conducted and the results show a performance
improvement of 36% to 65% over unpartitioned case.
Application of our method for small databases resulted in
partitioning schemes that are comparable to optimal.

Keywords: Vertical partitioning, Database performance,
Referential integrity constraints, Multi-relation databases.

1. INTRODUCTION

Data volumes are increasing at an astonishing rate in the
commercial world due to increase in number and
complexity of transactions. In spite of advances in
computer technology, data access performance still
remains a critical issue in information system. Vertical
partitioning is a physical database design technique that is
aimed at improving the access performance of user
transactions. In vertical partitioning, a relation is split into
a set of smaller physical files, each with a subset of the
attributes of the original relation. The rationale is that
normally database transactions require access only to
subset of the attributes. Thus, if we can split the relation
into sub files that closely match the requirements of user
transactions, the access time for transactions reduces
significantly.
Several researchers have made significant contributions
for over two decades in the area of vertical partitioning
[5,8,17]. Research contributions in vertical partitioning
have been made in the areas of, for example, attribute
oriented approach [17], transaction oriented approach [7],
combined vertical partitioning and access methods [8,28],
distributed databases [5], and object-oriented databases
[12,14]. To our knowledge, previous research has dealt
with the vertical partitioning problem by considering
single relation only and ignored the impact of database
operations in a multi-relational context. In a logical
database schema, each relation is connected with one or
more relations through primary/foreign key links and data
integrity is achieved through enforcement of the
referential integrity constraints. Since update transactions
tend to violate these referential integrity constraints, the
relations and attributes are accessed and/or updates
performed as necessary in order to maintain database
integrity. These integrity enforcing operations affect the
“best” attribute partitioning scheme and ignoring these can
result in “suboptimal” partitioning solution. The effect is
even more prominent in volatile databases where the
frequency of update operations is high. Our methodology
explicitly considers these influences in determining the

“best” fragmentation scheme. Furthermore, unlike in most
previous research, we use access time of transactions in
determining and evaluating best partitioning schemes. In
this research, we extend one-relation based vertical
partitioning to multi-relation environment by including
referential integrity constraints, modeling a comprehensive
cost function, considering system/disk access
characteristics, and using differential access times of
various transaction types.
The objective of this research is to provide a general
approach for vertically fragmenting relations in a multi-
relation environment. Since the problem is
computationally intractable, we use a heuristic procedure
to solve the problem using a 2-attribute affinity index and
a 2-step clustering algorithm. The application of our
methodology on small problems yielded optimal solutions
obtained by exhaustive enumeration. We ran simulation
experiments under varying updates and join operations in
order to validate our proposed method. We also compared
our results with the solutions obtained by two previous
studies.
The organization of the paper is as follows. Section 2
provides a description of previous works on vertical
partitioning in relational databases. In section 3, we
describe the proposed partitioning method for a multi-
relation environment. Section 4 has database performance
model that is developed in this research, which is a
comprehensive access-time formula. Section 5 has the
application of the procedure on an insurance company's
CLAIMS database. Section 6 is regarding evaluation of
our solution procedure, including results of simulation
experiments, comparison with exhaustive enumeration,
and comparison with solution of previous researchers.
Section 7 contains conclusions and directions for future
research.

2. PREVIOUS RESEARCH
Because of the criticality of the database performance,
several researchers have contributed enormously to
vertical partitioning.. Database partitioning has been
applied in centralized relational databases [4,8,17,25,28],
distributed databases [2,5,8,19,22,26], Data Warehouse
Design [10,13,18], and Object-Oriented Database design
[12,14].
Hoffer and Severance [17] consider the vertical
partitioning problem by applying bond energy algorithm
on similarity of attributes, which are based on access
patterns of transactions. Their work was extended by
Navathe, Ceri, Widerhold, and Dou [23] by presenting
vertical partitioning algorithms for three contexts: a data
base stored on devices of a single type; in different
memory levels; and a distributed database. They used
affinity between attributes for partitioning, which is based
on number of disk accesses. An alternate graphical
approach was proposed by Navathe and Ra [24]. Cornell
and Yu [8] used an optimal binary-partitioning algorithm
to obtain vertical partitioning, which is iteratively applied
to obtain more partitions. The study uses number of

JCS&T Vol. 7 No. 3 October 2007

217

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15766754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

accesses to evaluate partitions. Chu and Ieong [7] develop
a transaction-based approach to vertical partitioning, in
which transaction rather than attribute is used as the unit
of analysis. Song and Gorla [28] used genetic algorithms
to obtain solutions simultaneously for vertical partitions
and access paths for those partitions. They also used the
number of disk accesses as the partitioning evaluation
criterion. Cheng, Lee, and Wong [5]use genetic search-
based clustering algorithm based on traveling salesman
problem to obtain vertical partitions in distributed
databases. With reference to object-oriented database
design, Gorla [14]used genetic algorithm to determine the
instance variables that should be stored in each class/
subclass in a subclass hierarchy, so that the total cost of
database operations is minimized. More recently,
Ailamaki et al [1]proposed Partition Attributes Across
(PAX) model by improving cache performance, while
Ramamurthy et al [27] proposed fractured mirrors
partitioning scheme based on Decomposition Storage
Model and N-ary Storage Model. Fung, Karlapalem, and
Li [12] analyze vertical partitioning of classes/ subclasses
for class composition hierarchy and subclass hierarchy and
develop the associated cost functions for query processing
under the cases of large memory and small memory
availability. Ng et al [25]proposed a combined vertical
partitioning and tuple clustering using genetic algorithm.
We extend previous research of single relation cases by
providing a procedure for vertical partitioning of relations
in a multi-relation database environment. An important
characteristic that distinguishes multi-relation schema
from single relation case is referential integrity constraints
enforcement due to update transactions. Our approach
makes use of a 2-attribute affinity, as used in previous
studies of Navathe et al [23] and Cornell and Yu [8].
However, we differ from their approach in that our
attribute affinity metric is based on differential access
times of transactions rather than number of disk accesses.
There is a substantial difference between these two
methods of evaluation, since fetching an additional block
of records from disk in a sequential scan takes much less
time than fetching an arbitrary block randomly, which
takes even less time than the time for inserting/deleting a
record. Our access time computations are baaed on disk I-
O service times. Furthermore, our algorithm is similar to
“hill climbing” [16] in that our algorithm groups attributes
such that the objective function keeps increasing; our
approach differs theirs in that we have two steps to our
algorithm – grouping and verifying. Thus, we extend
previous research on vertical partitioning by including
referential integrity constraints and join transactions, and
by using a comprehensive cost function to evaluate
fragmentation scheme that is based on access time rather
than count of accesses. Physical database design provides
truly optimal performance when the design is made to fit
specific disk characteristics and is only optimal on the
given hardware architecture [20]. Our proposed
methodology includes disk access characteristics as part of
our attribute affinity measure.

3. VERTICAL PARTITIONG PROCEDURE

The vertical partitioning problem in a multi-relation
environment is stated as follows: Given a relational
schema, the retrieval/update/join transactions on the
schema, the referential integrity constraints among
relations, and the disk access parameters, the objective is
to determine stored fragments for each relation, which
results in the minimum total database access costs. The

partitioning problem is computationally complex.
Consider a relational schema with N relations, with Ai
attributes for relation i. A relation with A attributes can be
partitioned in B(A) different ways [16], where B(A) is the
Ath Bell number (for A=30, B(A) = 1015). Using
exhaustive enumeration, the number of possible
fragmentations for the N-relation schema is approximately
B(A1)B(A2) ... B(AN). Yu et al [34]find out that the
number of attributes for base tables and views in a typical
relational environment are 18 and 41 respectively. Even if
we consider a small schema of 10 relations with 15
attributes per relation, the number of possible fragments is
approximately (109)10 =1090. Since the problem is
intractable, solving large problems requires the use of
heuristic techniques. Our procedure consists of three steps.
First, database transactions on the logical schema are
transformed into transactions on individual relations.
Second, an attribute grouping benefit index (AGBI) is
computed. Third, a clustering algorithm using AGBI is
applied to derive effective fragments.

Transaction Analysis
Single relation transactions are of two types: retrievals and
updates; retrievals can be sequential scans or random
retrievals; updates can be inserts, deletes, or modifications.
We use 3-tuple transaction mix: (updates: single relation
retrievals: joins). While the single relation retrievals cause
no problems, the update transactions may violate the
referential integrity constraints. For example, inserting a
tuple can violate integrity if the value of the foreign key
does not exist in the referenced relation. Deletion
operation can violate integrity if the related foreign keys
reference tuple being deleted. One of the options to
preserve referential integrity is to delete tuples that
reference the tuple being deleted; we avoid cascade deletes
by setting the foreign keys to null. Modifying a primary
key value is similar to adding and deleting tuples.
A referential integrity constraint between relation rn and
referenced relation rf implies that a foreign key value in rn
should match primary key value in rf. Thus, a transaction
that tries to insert a record in relation rn will generate a
random transaction on relation rf to ensure that there is a
matching primary key value. A delete transaction on
relation rn does not generate any additional transactions.
Similarly, a delete transaction on relation rf will generate
additional delete transactions on relation rn, which will
delete all the records in relation rn that corresponds to the
primary key of the record in rf. On the other hand, an
insert transaction on relation rf will not generate any
additional transactions.
Join transactions can be processed using any of the four
methods [11]: inner-outer loop, sort-merge, and using an
access structures such as index-join and hash-join. We
assume that join transactions use some access structure
(e.g. index) on join-attribute to retrieve joined records.
Furthermore, we ignore costs associated with access
structure. A join transaction such as "Select R1.a2, R1.a3,
R2.b3 from (R1 left outer join R2) on R1.a1=R2.b3" is
executed by sequentially retrieving R1 and retrieving
matching tuple(s) from R2 for each tuple of R1. Thus we
convert the join transactions into a sequential retrieval
transaction on R1 (i.e. Select a2, a3 from R1) and a
random retrieval transaction on R2 (i.e., Select b3 from R2
where b3=a1).

Attribute Grouping Benefit Index (AGBI)
 Notation: Let c (r) be the cardinality of relation

JCS&T Vol. 7 No. 3 October 2007

218

r, Li(r) be the length of attribute i of relation r, and B the
block size. The disk access parameters are tl (latency
time), ts (seek time), tbt (block transfer time), tbr (block
read time: tl + tbt), tar (time to access block and read: ts +
tbr), and trw (rewrite time: 2tl). The rewrite time involves
one latency time to locate the record and another latency
time to write it [31]. Also let transaction (k) be of the type
q (s: sequential retrieval, r: random retrieval, d: delete, m:
modify, and i: insert).
In order to compute AGBI based on 2-attribute grouping,
transactions are categorized with reference to attributes i
and j into three types: i) transactions that need access (for
read or for write) to attribute i but not j, ii) transactions
that need access to attribute j but not i, and iii) transactions
that need access to attributes i and j. Transactions that do
not access either i or j are not considered for AGBI
computation. The other notations are as follows:
 qk

Fy(r) = Frequency of kth transaction of type q accessing
yth attribute of relation r, where y ∈ (i, j, ij)
/* i = attribute i only, j = j only; ij = both i and j */

 q
Ft(r) = Total frequency of all transactions of type q
accessing attributes i and/or j in relation r

 qk qk qk
= Σ (Fi(r) + Fj(r) + Fij(r))
 k

AVRq
r = Average no. of records accessed by all

transactions of type q in relation r
=(selectivity)(cardinality)(frequency)/(total frequency)
 qk qk qk

 =Σ Σ (Sel y(r) . c (r) * Fy(r)) / Σ Σ Fy(r)
 k y∈(i,j,ij) k y∈(i,j,ij)

 for q ∈ (s,r,m)
 qk qk qk
 = Σ (Seli(r) . c (r) . FT(r)) / Σ FT(r) , for q ∈ (i,d)
 k k

In the expression for AVR, the numerator is total number
of records accessed (selectivity x cardinality) weighted by
transaction frequency and the denominator is the total
frequency of those transactions. In case of sequential
retrievals, random retrievals, and modify transactions, the
transactions that access attributes i and/or j need to be
considered, since these transactions access only a subset of
attributes. In case of insert and delete transactions, since
they affect all the attributes in the relation, all transactions
that access the relation are considered to be accessing
attributes i and j. The AVR expression is used in the
computation of AGBI.

AGBI Computation
Access cost and access time are used interchangeably in
this research. AGBI, an attribute-affinity measure,
represents the benefit in terms of access time obtainable
by storing the two attributes in one fragment compared to
storing them in separate fragments. AGBI is calculated for
each pair of attributes i and j, considering the two cases: i)
when attributes i and j are stored together as one fragment
and ii) when attributes i and j are stored in separate
fragments. AGBI is computed for each transaction type q
∈ (s, r, i, m, d), which are then totaled for all transaction
types.
 q
COST-COMij(r) = Database operating cost with type q
transactions when attributes i and j of relation r are stored
in separate fragments.

 q
COST-COMij(r) = Database operating cost with type q
transactions when attributes i and j of relation r are stored
in the same fragment.
 q
AGBIij(r) = Attribute Grouping Benefit Index
 q q
= COST-SEPij(r) – COST-COMij(r)

The AGBI computations for sequential retrieval, random
retrieval, insertion, deletion, and modify transactions are
shown below.

1. Sequential Retrievals:
The disk access time is the time to transfer all blocks of
the fragment from disk to buffer and is computed as (time
to transfer a block of records) x (transaction frequency) x
(cardinality) x (fragment length). When attributes i and j
are stored in the same fragment, the record length of the
fragment is length of attribute i (Li(r)) + length of attribute j
(Lj(r)). Thus,
COST-COMs

ij(r) = tbr . Fs
t(r) . c (r) . (Li(r) + Lj(r)) /B.

When attributes i and j are stored in separate fragments,
the access times need to be computed separately for
transactions that access attribute i only, transactions that
access attribute j only, and transactions that access
attributes i and j. In each case, the access time is
calculated as (time to transfer a block of records) x
(frequency of transactions) x (cardinality) x (fragment
length).
COST-SEPs

ij(r) = tbr . (c (r) . Li(r) . Fs
i(r) /B + c (r) . Lj(r) .

Fs
j(r) /B + c (r) . (Li(r) + Lj(r)) . Fs

ij(r) /B)
Thus, AGBIs

ij(r) = -tbr . c (r) . (Fs
j(r).Li(r) + Fs

i(r).Lj(r))/B

The negative sign of AGBI indicates it is not beneficial to
group attributes together in case of sequential retrieval
transactions. Here we ignore CPU time needed internally
to combine the fragments, since disk I-O times dominate
the internal CPU times. In a database environment, where
transactions are predominantly of sequential in nature, it is
more efficient to have highly fragmented relations.

2. Random Retrievals:
 The database access time for random retrieval
transactions is disk access and read time (tar) x frequency
of random transactions x number of blocks accessed per
transaction as per (Cardenas, 1975).
 AVRr

r.BLKS
COST-COMr

ij(r)= tar . Fr
t(r) .(1-(1-1/BLKS))

 = tar . Fr
t(r) . AVRr

r (first approximation)
 where BLKS = c (r).(Li(r)+Lj(r))/B

(AVRr

r is the no. of records accessed by random
transactions requiring attributes i and/or j in relation r).

COST-SEPr

ij(r)= tar (Fr
i(r).AVRr

i(r) + Fr
j(r).AVRr

j(r) +
2.Fr

ij(r).AVRr
ij(r))

In the above expression, AVRr

i(r) , AVRr
j(r) , and AVRr

ij(r)
are the number of records accessed by random retrievals
requiring attribute i only, requiring attribute j only, and
requiring both i and j, respectively. The factor 2 is applied
to the last term in COST-SEP because when attributes i
and j are stored in different fragments, transactions using
both attributes i and j have to access both fragments.

JCS&T Vol. 7 No. 3 October 2007

219

AGBIr
ij(r) = tar . Fr

ij(r) . AVRr
ij(r)

The positive AGBI in the above expression implies that
when predominantly random transactions exist, it is more
efficient not to fragment the relations. As the access time
for random transactions is proportional to number of
records to be accessed (as in formulae above), more access
time may result with highly fragmented relation.

3. Insert Transactions:
The time to insert a record depends on (time to read and
write the record) * (number of records to be inserted). The
2 in COST-SEP is because insertion has to be performed
in both the fragments. Here we assume random record
insertion, thus there may be a write required for each
record to be inserted, since there is little chance that
subsequent records to be inserted falls into the same block.

COST-COMi

ij(r) = Fi
t(r) .(tar +trw).AVRi

r
COST-SEPi

ij(r) = Fi
t(r) . 2.(tar+trw).AVRi

r
AGBIi

ij(r) = Fi
t(r) . (tar+trw).AVRi

r

4. Deletion Transactions:
The time computation for deletion is similar to record
insertion time described above.
AGBId

ij(r) = Fd
t(r) . (tar+trw).AVRd

r

5. Modify Transactions: The time is calculated similar to
the above.

COST-COMm

ij(r) = Fm
t(r) . (tar+trw).AVRm

r
COST-SEPm

ij(r) = Fm
t(r) . 2.(tar+trw).AVRm

r
AGBIm

ij(r) = Fm
ij(r) . (tar+trw).AVRm

r

The Total Grouping Benefit Index:
GBIT

ij(r) = Σ ΑGBIq
ij(r)

 q ∈ (s,r,i,d,m)

Clustering Algorithm
The GBIij computed as above are entered into an n*n
matrix, where n is the number of attributes in a relation.
The algorithm (Figure 1) uses only positive GBIij because
only positive ones contribute towards maximizing
SchemaValue, thus reducing execution time to half on the
average. The SchemaValue is the total value of GBIs in
the existing fragments and it is a heuristic measure of the
merit of a specific fragmentation scheme. The algorithm
ensures that SchemaValue increases as fragments are
generated. The algorithm is applied on each relation using
its GBI matrix. The algorithm has two steps: a grouping
step where the attributes with positive GBIs are grouped
into fragments and a regrouping step where a verification
is made if attributes with positive GBIs are in the same
fragment and reassignment of attributes is made as
needed.
If we assume an average of n attributes per relation, the
size of the GBI matrix is n(n-1)/2. Since we only use
positive values, there are on the average n(n-1)/4 elements
to be processed per relation. Considering regrouping step,
the number of elements to be processed is n(n-1)/2. For a
schema with m relations, the complexity of the proposed
algorithm is O(m*n2) and that of exhaustive enumeration
is O(nm*n).

Figure 1. Clustering Algorithm for Fragmentation
Step 1: (Grouping Step)

1.1. IF all GBIij >0,
 THEN group all attributes in one fragment, EXIT
 ELSEIF all GBIij <0,
 THEN keep each attribute in a separate fragment,
EXIT.

 Initialize a one-dimensional array B of size (=number
of attributes)
1.2. Pick an element with the highest positive GBIij;
 Group attributes i and j in one fragment.
 Mark GBIij, GBIji, Bi, Bj;
 SchemaValue GBIij
1.3. Do until no more unmarked positive GBIij exists:

 Pick an unmarked highest positive GBIij.
 1.3.1 Case: Neither attribute i nor j
 is already assigned

 Group i and j into a new fragment
 SchemaValue +GBIij.

 1.3.2 Case: attribute i is assigned and
 attribute j is unassigned

 Compute INCR = ΣGBIkj, Vk,
 where k is an attribute in fragment f;
 IF INCR >0,
 THEN assign j to fragment f

SchemaValue +INCR;
 ELSE
 Repeat for each fragment f’ (other than f)
 Compute INCR’ = ΣGBIkj, Vk,

 where k is an attribute in fragment f’;
 IF INCR’ > Max-INCR’
 THEN Max-INCR’ INCR’;
 IF Max-INCR’ > 0

 THEN store j in the corresponding f’
 SchemaValue + Max-INCR'.
 ELSE store attribute j in a new fragment.

 1.3.3 Mark GBIij, GBIji, Bi, Bj.

Step 2: (Regrouping step)
2.1. Unmark all GBIij and Bi.
2.2. Repeat for each unmarked highest GBIij >0:
 IF i and j are not in the same fragment, THEN

2.2.1 Compute Net GBI, if attribute j is moved to
another fragment f

 Repeat the above for each fragment
 Let the maximum Net GBI be incrj

 and the
corresponding fragment be fj

2.2.2 Repeat step 2.2.1 for attribute i
 Let the maximum Net GBI be incri

 and the
corresponding fragment be fi

2.2.3 IF max (incrj , incri) > 0,
 Move attribute (j or i) to the corresponding
 fragment (fj or fi)

 SchemaValue + max (incrj , incri);
 Mark GBIij.

4. PERFORMANCE MODELING
When tuples of relations are fragmented, there should be a
mechanism to identify the fragments of a tuple. There are
two methods to do this. One way of relating individual
fragments of a tuple is by duplicating primary key in all
the fragments or by using tuple-identifiers. This method
involves additional processing for accessing the records
through primary key or tuple identifier. While this
arrangement is useful for both fixed-length and variable-
length record files, this arrangement is essential for
variable length records. This method is also beneficial if
one needs to reconstruct the data record should there be
corruption of data in the database provided the key or

JCS&T Vol. 7 No. 3 October 2007

220

identifier is unaffected. In the second method, which is
less robust, the individual data fragments can be accessed
exploring the relative positions of records. For sequential
scan, there is no need to identify the corresponding
fragments on an individual basis. A sequential scan on a
relation is realized as sequential scans on individual
fragments. This is as though several files are read
simultaneously into their own buffers. However, a
fragment design implementation module should keep track
of which fragment block to read next.

Database Operating Cost
The database operating cost function consists of several
terms. The first term is total access time for sequential
transactions (fragment lengths x cardinality x frequency x
block transfer time). The second term is the total access
time for all random retrievals (number of accesses needed
for each fragment x frequency x block read time). The
other terms are join cost, insertion cost, deletion cost, and
referential integrity maintenance costs for deletions and
insertions. Several of the terms used in this formula are
described in section 2. The access-cost function for a
fragmentation scheme is shown in Appendix A.

5. ILLUSTRATIVE EXAMPLE

Insurance CLAIMS Database:
The above proposed procedure (hereafter called MRP -
Multi-Relation Partitioning procedure) is applied to a
small real-life insurance company’s CLAIMS database
(BUCLAIM.MDB) for illustration purposes. The database
contains 7 relations (CLAIMS, IMPORT ERRORS, KDB
ARCHIVE FILES, KDB CLOSED, KDB DATA,
POTENTIAL CLAIMS, WELDISP) with attributes
ranging from 3 to 42 and tuples from 6 to 3534. The
relations of CLAIMS database and the referential integral
constraints are given in Table 1 and Table 2, respectively.

Table 1. CLAIMS Database
Reln Attr Records Attribute Lengths
1 30 2099 9 100 20 20 10 8 20

32 8 8 100 10 25 20 8
15 10 30 10 50 100
8 20 100 20 8 8 10 50
50

2 3 6 255 255 4
3 5 1313 3 10 10 10 36
4 42 1377 7 13 9 7 7 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8
8 8 3 5 7 18 13 8 8 8
9 6

5 42 447 7 13 9 7 7 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8
8 8 3 5 7 18 13 8 8 8
9 6

6 15 99 50 15 8 100 100 15 15
15 8 25 100 8 25 25
50

7 29 3534 255 255 255 255 255 4
255 255 8 8 255 255
255 255 8 255 8
255 255 255 255 255
255 255 255 255 255
255 255

Table 2. Referential Integrity Constraints
 referenced relation
 1 2 3 4 5 6 7
 1 0 0 0 0 1 1 0
 2 0 0 0 0 0 0 0
relation 3 0 0 0 1 1 0 0
 4 1 0 1 0 1 0 0
 5 1 0 1 1 0 1 0
 6 1 0 0 1 0 0 0
 7 0 0 0 0 0 0 0

The referential integral constraint is denoted by a “1” in
Table 2. The referential integrity constraints are utilized to
generate additional random retrieval transactions and
additional delete transactions on the relations that
reference it. For example, a “1” in (relation 5, referenced
relation 4) implies that an insert transaction on relation 5
should generate an additional random retrieval transaction
on referenced relation 4, for verifying the primary key
value is present in relation 4.
The database transactions are composed of 36 inserts, 24
deletes, 108 random retrievals, 84 sequential transactions,
and 48 join transactions. Sequential transactions are
business reports extracted from relational tables. The
details of these transactions are as given in Table 3.
The transactions in Table 3 are applied to the CLAIMS
database. Using the referential integrity matrix in Table 2,
additional transactions are generated for insert and delete
transactions. The join transactions are decomposed into
transactions on individual relations. Tables 4 and 5 show
the total transactions (both original and additionally
generated) for relations #1 and #6, respectively. These two
relations are shown for illustration purposes. Gen Random
transaction (Table 4) is generated as a result of insert
transaction (2nd transaction in Table 3) on relation #5, in
order to satisfy referential integrity constraint.

Table 3.

Transaction Set for CLAIMS Database
Trans Relation Freq No of No of
Type Access* Attributes
--- Attribute List --
INSERT 1 24 17 -
all
INSERT 5 12 15 -
all
DELETE 4 24 11 -
all
RANDOM 1 12 178 5
12,8,15,28,22
RANDOM 1 12 299 6
12,8,22,15,28,6
RANDOM 1 12 472 5
1,2,16,17,34
RANDOM 1 12 339 8
8,6,12,13,14,15,28,22
RANDOM 1 12 27 8
8,22,6,28,15,3,2,4
RANDOM 1 12 423 7
1,8,18,28,6,7,12
RANDOM 6 12 19 2
10,6
RANDOM 1 12 113 4
6,8,28,12
RANDOM 1 12 399 11
22,5,6,7,8,11,12,14,15,21,23
SEQUENCIAL 1 12 - 5
8,11,12,22,6
SEQUENCIAL 1 12 - 5
12,8,22,15,28
SEQUENCIAL 1 12 - 8
12,8,22,6,11,15,13,14

JCS&T Vol. 7 No. 3 October 2007

221

SEQUENCIAL 1 12 - 8
12,8,22,6,11,15,13,14
SEQUENCIAL 5 12 - 5
34,1,2,16,17
SEQUENCIAL 1 12 - 8
12,8,7,6,22,11,14,15
SEQUENCIAL 1 12 - 8
12,22,5,6,7,8,11,14
JOIN 12
 Sequential 1 - 8
12,22,5,6,7,8,11,14
 random 5 213 5
5,1,2,16,17
JOIN 12
 Sequential 4 - 2
2,34
 random 6 292 5
15,13,6
JOIN 12
 random 1 85 5
12,7,8,11,14
 random 6 125 4
15,6
JOIN 12
 Sequential 3 - 5
1,2,3,4,5
 random 5 105 4
34,2,16,40

* number of records accessed each time
a transaction is executed.
** "-" for insert or delete operations
indicate all attributes.

Table 5 lists all transactions considered for Relation #6.
Three additional transactions are generated on relation #6
due to update transactions in “Total Transactions” Table.
For example, Gen RANDOM transaction (marked *) is
generated because of insert transaction on relation #1; Gen
RANDOM transaction (marked **) is generated because
of insert transaction on relation #5; Gen DELETE
transaction (marked ***) is generated due to delete
transactions on relation #4.
Then a GBI matrix is created for each relation, using the
time-cost formulae shown in section 3. The computed GBI
Matrices for relations 1 and 6 are shown in Tables 6 and 7,
respectively.

Table 4
Transaction Set for Relation #1

Transaction Freq Accesses Attributes
Type
INSERT 24 17 - -
Gen RANDOM 12 15 1 1
RANDOM 12 178 5 12,8,15,28,22
RANDOM 12 299 6 12,8,22,15,28,6
RANDOM 12 472 5 1,2,16,17,34
RANDOM 12 339 8 8,6,12,13,14,15,28,22
RANDOM 12 27 8 8,22,6,28,15,3,2,4
RANDOM 12 423 7 1,8,18,28,6,7,12
RANDOM 12 113 4 6,8,28,12
RANDOM 12 399 11
2,5,6,7,8,11,12,14,15,21,23
SEQUENCIAL 12 0 5 8,11,12,22,6
SEQUENCIAL 12 0 5 12,8,22,15,28
SEQUENCIAL 12 0 8 12,8,22,6,11,15,13,14
SEQUENCIAL 12 0 8 12,8,22,6,11,15,13,14
SEQUENCIAL 12 0 8 12,8,7,6,22,11,14,15
SEQUENCIAL 12 0 8 12,22,5,6,7,8,11,14
JOIN-SEQUEN 12 0 8 12,22,5,6,7,8,11,14

JOIN-RANDOM 12 85 5 12,7,8,11,14

Table 5
Transaction Set for Relation #6

Trans Type Freq Accs Attibutes

Gen RANDOM* 24 17 1 1
Gen RANDOM** 12 15 1 1
Gen DELETE*** 24 11 0
RANDOM 12 19 2 10,6
JOIN-RANDOM 12 292 5 15,13,6
JOIN-RANDOM 12 125 4 15,6

Table 6. GBI Matrix for Relation #1
(Part 1 of 4)

Attr 1 2 3 4 5 6 7 8
1 0 140 0 0 -4 113 119 111
2 140 0 8 8 -43 -

122
-65 -

144
3 0 8 0 8 -9 -18 -13 -22
4 0 8 8 0 -9 -18 -13 -22
5 -4 -43 -9 -9 0 109 116 107
6 113 -

122
-18 -18 109 0 230 471

7 119 -65 -13 -13 116 230 0 251
8 111 -

144
-22 -22 107 471 251 0

9 0 0 0 0 -3 -10 -5 -12
10 0 0 0 0 -3 -10 -5 -12
11 -12 -

130
-26 -26 109 118 130 121

12 111 -
152

-30 -30 107 463 251 543

13 -4 -43 -9 -9 -15 78 -25 73
14 -10 -

109
-22 -22 111 214 134 235

15 -8 -79 -9 -9 106 308 101 362
16 140 140 0 0 -7 -20 -10 -23
17 140 140 0 0 -4 -13 -7 -15
18 125 0 0 0 -13 86 105 79
19 0 0 0 0 -4 -13 -7 -15
20 0 0 0 0 -22 -65 -33 -76
21 0 0 0 0 74 -12 53 -34
22 -14 -

144
-22 -22 107 313 101 367

23 0 0 0 0 109 92 105 87
24 0 0 0 0 -43 -

130
-65 -

152
25 0 0 0 0 -9 -26 -13 -30
26 0 0 0 0 -3 -10 -5 -12
27 0 0 0 0 -3 -10 -5 -12
28 123 -14 4 4 -7 340 114 395
29 0 0 0 0 -22 -65 -33 -76
30 0 0 0 0 -22 -65 -33 -76

* The above numbers are obtained by dividing
 actual GBIs by 1000 and rounding

Table 6. GBI Matrix for Relation #1
(Part 2 of 4)

Attr 9 10 11 12 13 14 15 16
1 0 0 -12 111 -4 -10 -8 140
2 0 0 -

130
-

152
-43 -

109
-79 140

JCS&T Vol. 7 No. 3 October 2007

222

3 0 0 -26 -30 -9 -22 -9 0
4 0 0 -26 -30 -9 -22 -9 0
5 -3 -3 109 107 -15 111 106 -7
6 -10 -10 118 463 78 214 308 -20
7 -5 -5 130 251 -25 134 101 -10
8 -12 -12 121 543 73 235 362 -23
9 0 0 -10 -12 -3 -9 -7 0

10 0 0 -10 -12 -3 -9 -7 0
11 -10 -10 0 121 -22 139 91 -20
12 -12 -12 121 0 73 235 354 -23
13 -3 -3 -22 73 0 84 89 -7
14 -9 -9 139 235 84 0 210 -16
15 -7 -7 91 354 89 210 0 -13
16 0 0 -20 -23 -7 -16 -13 0
17 0 0 -13 -15 -4 -11 -9 140
18 0 0 -39 79 -13 -33 -26 0
19 0 0 -13 -15 -4 -11 -9 0
20 0 0 -65 -76 -22 -54 -43 0
21 0 0 -12 -34 -43 9 31 0
22 -12 -12 96 359 73 209 362 -23
23 0 0 92 87 -9 96 101 0
24 0 0 -

130
-

152
-43 -

109
-87 0

25 0 0 -26 -30 -9 -22 -17 0
26 0 0 -10 -12 -3 -9 -7 0
27 0 0 -10 -12 -3 -9 -7 0
28 -2 -2 -35 387 90 85 243 -3
29 0 0 -65 -76 -22 -54 -43 0
30 0 0 -65 -76 -22 -54 -43 0

Table 6. GBI Matrix for Relation #1

(Part 3 of 4)
Attr 17 18 19 20 21 22 23 24

1 140 125 0 0 0 -14 0 0
2 140 0 0 0 0 -

144
0 0

3 0 0 0 0 0 -22 0 0
4 0 0 0 0 0 -22 0 0
5 -4 -13 -4 -22 74 107 109 -43
6 -13 86 -13 -65 -12 313 92 -

130
7 -7 105 -7 -33 53 101 105 -65
8 -15 79 -15 -76 -34 367 87 -

152
9 0 0 0 0 0 -12 0 0

10 0 0 0 0 0 -12 0 0
11 -13 -39 -13 -65 -12 96 92 -

130
12 -15 79 -15 -76 -34 359 87 -

152
13 -4 -13 -4 -22 -43 73 -9 -43
14 -11 -33 -11 -54 9 209 96 -

109
15 -9 -26 -9 -43 31 362 101 -87
16 140 0 0 0 0 -23 0 0
17 0 0 0 0 0 -15 0 0
18 0 0 0 0 0 -46 0 0
19 0 0 0 0 0 -15 0 0
20 0 0 0 0 0 -76 0 0
21 0 0 0 0 0 -34 118 0
22 -15 -46 -15 -76 -34 0 87 -

152
23 0 0 0 0 118 87 0 0
24 0 0 0 0 0 -

152
0 0

25 0 0 0 0 0 -30 0 0
26 0 0 0 0 0 -12 0 0
27 0 0 0 0 0 -12 0 0
28 -2 119 -2 -11 -22 236 -4 -22
29 0 0 0 0 0 -76 0 0
30 0 0 0 0 0 -76 0 0

Table 6. GBI Matrix for Relation #1

(Part 4 of 4)
Attr 25 26 27 28 29 30

1 0 0 0 123 0 0
2 0 0 0 -14 0 0
3 0 0 0 4 0 0
4 0 0 0 4 0 0
5 -9 -3 -3 -7 -22 -22
6 -26 -10 -10 340 -65 -65
7 -13 -5 -5 114 -33 -33
8 -30 -12 -12 395 -76 -76
9 0 0 0 -2 0 0

10 0 0 0 -2 0 0
11 -26 -10 -10 -35 -65 -65
12 -30 -12 -12 387 -76 -76
13 -9 -3 -3 90 -22 -22
14 -22 -9 -9 85 -54 -54
15 -17 -7 -7 243 -43 -43
16 0 0 0 -3 0 0
17 0 0 0 -2 0 0
18 0 0 0 119 0 0
19 0 0 0 -2 0 0
20 0 0 0 -11 0 0
21 0 0 0 -22 0 0
22 -30 -12 -12 236 -76 -76
23 0 0 0 -4 0 0
24 0 0 0 -22 0 0
25 0 0 0 -4 0 0
26 0 0 0 -2 0 0
27 0 0 0 -2 0 0
28 -4 -2 -2 0 -11 -11
29 0 0 0 -11 0 0
30 0 0 0 -11 0 0

Table 7 GBI Matrix for Relation #6

(Part 1 of 2)
Attr 1 2 3 4 5 6 7 8

1 0 107 107 107 107 107 107 107

2 107 0 107 107 107 107 107 107

3 107 107 0 107 107 107 107 107

4 107 107 107 0 107 107 107 107

5 107 107 107 107 0 107 107 107

6 107 107 107 107 107 0 107 107

7 107 107 107 107 107 107 0 107

8 107 107 107 107 107 107 107 0

9 107 107 107 107 107 107 107 107

10 107 107 107 107 107 5722 107 107

JCS&T Vol. 7 No. 3 October 2007

223

11 107 107 107 107 107 107 107 107

12 107 107 107 107 107 107 107 107

13 107 107 107 107 107 86410 107 107

14 107 107 107 107 107 107 107 107

15 107 107 107 107 107 123355 107 107

Table 7 BI Matrix for Relation #6

(Part 2 of 2)
Attr 9 10 11 12 13 14 15

1 107 107 107 107 107 107 107

2 107 107 107 107 107 107 107

3 107 107 107 107 107 107 107

4 107 107 107 107 107 107 107

5 107 107 107 107 107 107 107

6 107 5722 107 107 86410 107 123355

7 107 107 107 107 107 107 107

8 107 107 107 107 107 107 107

9 0 107 107 107 107 107 107

10 107 0 107 107 107 107 107

11 107 107 0 107 107 107 107

12 107 107 107 0 107 107 107

13 107 107 107 107 0 107 86410

14 107 107 107 107 107 0 107

15 107 107 107 107 86410 107 0

Results
The clustering algorithm described in III.C is applied on
the GBI matrices to generate the partitioning solutions.
Table 8 gives the partitioning solution given by the
proposed MRP procedure. The time taken by the MRP
algorithm to solve this problem is 51.14 seconds on a
Pentium PC, an average of 7.3 seconds per relation. The
database access cost with MRP is 1632 milliseconds,
while those with unfragmented (UN) and trivially
fragmented (TR) are 226 milliseconds and 291
milliseconds, respectively. It represents cost savings over
UN and TR of 28% and 44%, respectively.
The individual transaction costs for the entire database
associated with the MRP, UN and TR designs are shown
in Table 9. MRP solution keeps lower update costs
(inserts/ deletes/ referential integrity maintenance) lower
compared to TR solution and lower sequential access costs
compared to UN solution. While UN has the highest
sequential access cost, TR has the highest update costs and
referential integrity checking costs.

Table 8. MRP Partitioning Solution

Relation Partitions

1.(8,12,6,22,14,11,13,18,1,23,5,7,28,1
 5)(2,16,17,3,4,21)(9)(10)(19)
 (20)(24)(25)(26)(27)(29)(30)

2 (1,2,3)

3 (1,2,3,4,5)

4.(1,3-33, 35-42) (2,34)

5.(2,16,1,17,34,6,40)
 (3-15,18-33,35-39,41,42)

6 (1-15)

7 (1-29)

Table 9 Transaction Cost Analysis

Transaction costs MRP UN TR
Sequental Retrievals 53 118 23
Random Retrievals 63 61 68
Inserts 21 3 81
Deletes 2 1 46
Referential Integrity Check 7 6 60
Joins 16 37 13
Total cost 162

ms
226
ms

291
ms

5. EVALUATION OF PARTITIONING

PROCEDURE
Simulation Experiments
In order to validate the proposed MRP procedure, we
performed simulation experiments under varying
operating conditions. In the experiments, the size of the
relational schema is set to 8 relations with 10 to 25
attributes each and tuples ranging from 10,000 to 20,000.
The database/ transaction profiles used in the experiments
are comparable to those of ‘real-world’ production
database [34]. We ran 10 simulation experiments, with 5
experiments varying update proportion and another 5
varying proportion of join transactions. In the low (5%)
update environment, our proposed MRP method showed
cost savings of 53% over unfragmented design and 19%
over trivial fragmentation design. In high update
environment that is characteristic of volatile databases, the
savings are 40% and 51% over unfragmented and trivially
fragmented designs, respectively.

Comparison with Exhaustive Enumeration
The partitioning solutions by MRP method are compared
with optimal partitioning design obtained by exhaustive
enumeration, for small database problems. Table 10 shows
the database access cost for MRP design and exhaustive
enumeration. For these database problems, the database
access cost by MRP is within 2% of the optimal access
cost. The reason for obtaining a solution closer to optimal
is that in smaller databases, search space is smaller and the
heuristic algorithm more likely will arrive at optimal or
near optimal solution. In larger databases, it may not be
the case since the search space is larger and is difficult to
verify the optimality. The time taken by MRP is of the
order of 1/10th second, while that of exhaustive
enumeration is about 11000 seconds for a 4-relation
schema with 4 attributes per relation. The execution time
for 5 relations is 0.6 seconds with 10 attributes per
relation, while it is 21.5 seconds with 34 attributes. As the
number of transactions increase the execution time of
MRP increased fairly linearly (0.5 sec with 500
transactions per hour and 0.6 sec for 1500 transactions per
hour).

Table 10. Database Access Cost Comparison
with Exhaustive Enumeration

Relation

 Attributes
 3 4 5
Exhaust, MRP Exhaust, MRP Exhaust,MRP

 3 44, 45 53, 54 ----

JCS&T Vol. 7 No. 3 October 2007

224

49, 50 52, 54 ----
 4
 5

49, 51 ---- -----

Example from Previous Studies
Since there are no prior studies on multi-relational
partitioning to compare, we construct a multi-relation
schema with two relations that are drawn from previous
studies. The first relation (R1) and the corresponding
transactions are taken from the study of [28]; the second
relation (R2) and the transactions are drawn from [8].
Table 11 gives description of the constructed database and
Table 11 has the transaction set for the example.

Table 11. Database Description
Relation Attr- Records Attribute
 ibutes Lengths
 R1 10 10000 10 8 4 6 15 14 3 5 9 12
 R2 20 10000 8 8 8 8 4 8 8 12 20 22 4 8 6
 5 3 30 12 8 6 6

Referential integrity constraints

Relation R1 R2

 R1 0 1

 R2 1 0

Table 12. Transaction Data

TranType Rel Freq Records Attributes

INSERT R1 100 25 0
DELETE R1 100 50 0
SEQUENCIAL R1 100 0 3 4,6,10
SEQUENCIAL R1 100 0 3 2,7,8
RANDOM R1 100 25 7 1-3,5,7-9
RANDOM R1 100 25 2 1,5
RANDOM R1 100 25 3 3,4,9
RANDOM R1 100 15 5 3,4,6,9,10

INSERT R2 100 50 0
DELETE R2 100 50 0
SEQUENCIAL R2 100 0 6
3,7,10,11,17,18
SEQUENCIAL R2 100 0 4 15,16,19,20
SEQUENCIAL R2 100 0 3 1,5,8
RANDOM R2 100 15 4 1,8,10,11
RANDOM R2 100 15 5 3,7,10,11,17
RANDOM R2 100 15 8 2,12-16,18,20
RANDOM R2 100 10 5 2,5,11,14,19
RANDOM R2 100 10 4 1,9,16,18
RANDOM R2 100 10 8 1-6,9,12,13
RANDOM R2 100 10 6
4,7,10,14,19,20
RANDOM R2 100 10 6 8,11,15,16-18
RANDOM R2 100 5 9 1-9
RANDOM R2 100 5 6 15-20

The partitioning results of Song and Gorla [1] for relation
R1 are four fragments: (1,5), (2,7,8), (3,4,9), and (6,10).
The results of Cornell and Yu [8] for relation R2 are two
fragments: (1, 3, 4, 5, 6, 7, 8, 10, 11, 17, 18) and (2, 9, 12,
13, 14, 15, 16, 19, 20). We modify the transaction data for
R1 and R2 from the respective examples by making the
first two transactions as insert / deletes and the next two
transactions as sequential access transactions. This is done

because, previous works do not need update transactions
and sequential transactions are not inputs to their studies.
The modified example has a transaction mix of 17%
updates, 20% sequential access transactions, and 63%
random access transactions. These are comparable to usual
transaction loads in real-world relational databases [34].
Also we made access frequency of 100 for all transactions,
while the previous research used 1 as the frequency. This
should not affect the results and conclusions.
Our MRP design procedure resulted in three fragments for
relation R1: (4, 6, 10), (1, 3, 5, 9), and (2, 7, 8), and four
fragments for relation R2: (3, 7, 10, 11, 17, 18), (15, 16,
19, 20), (2, 4, 6, 9, 12, 13, 14), and (1, 5, 8). The
procedure took 0.4 seconds for the 2-relation schema.
With a cardinality of 10000 records for each relation, the
access cost with the proposed design is 702 ms, compared
to 838 ms for unpartitioned solution and 2247 ms for
trivial partitioning, showing an improvement of 16% over
unpartitioned solution, and 70% over trivial partitioning.
Referential integrity maintenance cost amounted to 23%
of total access cost for the proposed design.
With cardinality of 50000 for each relation, we obtain
access time of 1324 ms for proposed design, 3441 ms for
unpartitioned design, and 2885 ms for trivial partitioning.
These imply the proposed solution has an improvement of
61% over unpartitioned and 54% over trivial partitioning.
The high costs for the unpartitioned is mainly due to
sequential access costs (772 ms for proposed design vs.
3253 ms for unpartitioned), which are inherent in large
databases with high cardinality. The high costs for trivial
partitioning is due to high update and referential integrity
maintenance costs (444 ms for proposed design vs. 1874
ms for trivial partition). Two opposing factors resulted in
fragmentation in our proposed design: sequential access
transactions lead to more fragmentation and the
update/referential integrity maintenance activities lead to
less fragmentation. MRP design arrived at the ‘best’
design that balanced these factors.

7. CONCLUSIONS AND FUTUTE RESEARCH
This paper develops a methodology for vertical
partitioning for a multi-relation database environment. Our
proposed procedure builds on previous research of one-
relation environment and extends substantially to multi-
relation environment. The results demonstrate database
access cost savings by the proposed method ranging from
36% to 62% over unfragmented design, and from 19% to
54% over fully fragmented design. Referential integrity
enforcement cost is found to be a major cost overhead in
medium to high update environments. The access costs
obtained with the proposed approach are comparable to
the optimal partitioning solutions obtained by exhaustive
enumeration for small problems. The complexity of the
proposed clustering algorithm is O(m*n2), where m is the
number of relations and n is the number of attributes per
relation. The proposed procedure produced partitioning
solutions within a few seconds for most database
problems. The proposed methodology can be applied to
partitioning problems in distributed and object-oriented
databases. Since the update transactions tend to cause
database integrity problems, the DBMS (Distributed
DBMS or Object-Oriented DBMS) generates additional
transactions to ensure data consistency. As discussed in
the paper, these additional transactions have implications
for effective attribute partitioning.
The research can be extended in several directions. First,
we assumed in this research that the transactions that

JCS&T Vol. 7 No. 3 October 2007

225

operate on the relational schema are static. Periodically,
say once a year, the vertical partitioning can be derived
using the change in transaction mix. Present research can
be extended to derive the vertical partitioning
dynamically, based on the incremental changes in the
transaction mix. Thus incremental changes to the vertical
partitions can be derived, which will make the physical
design optimal all the time. Adaptive designs are shown to
have better performance than static designs in database
design [33]. Second, the research can be extended to
include concurrency control into the model and its effect
on the response time model. Including concurrency control
mechanism, similar to enforcement of referential integrity
constraints, imposes additional database transactions on
the database records, and affects both ‘optimal’ fragment
design and access time performance with partitioned
databases. By considering the concurrency control issues,
the proposed research can be made even more
comprehensive. Third, in this research we assumed the
access paths as given. This research can be extended to
include the access path determination and to solve the
combined problem of attribute partitioning and access path
selection in a multi-relation environment. The methods
used by [8,28] can be starting points, since they specify
access paths to one or two fragments. Thus the multi-
relation partitioning case can be extended to include
access paths for all the partitions, along with query
processing schedule using those partitions and access
paths. Fourth, attribute affinity can be computed for
attributes of different relations, rather than in those for
attributes within each relation. The affinity between
attributes could be high due to enforcement of referential
integrity constraints and due to join transactions. The
design of storage structures using this approach is another
area of potential extension to our research. Fifth, presently
we are working on mixed fragmentation procedure, where
in vertical partitioning and tuple clustering are determined
simultaneously. Similar to attribute partitioning, record
clustering involves assignment of records to blocks. Since
these two problems are interdependent, an iterative
procedure is being developed that will solve the combined
problem.

Appendix A
Access-Cost Function

COST= tbr . Σ Fsk
T(r) Σ c (r) Σ Σ (Li(r) . zi(r)

f(r)) . xk
f(r) /B

 k r f(r) i(r)
 (sequential retrieval cost)

+ tar . Σ Frk
T(r) . Σ Σ ACCrk

f(r) . xk
f(r)

k r f(r)
 (random retrieval cost)

+ Σ Fm
T(r) . Σ Σ (uk

r . tbr . c (r) . (Σ Li(r) . zk
f(r))/B

 k r f(r) i(r)
 + vk

r . tar . ACCrk
f(r)) . xk

f(r) (join cost)

+ (tar + trw) . Σ Σ Fik

T(r) . AVRik
T(r) . NS(r) . pk

r
 k r (insertion cost)

+ (tar + trw) . Σ Σ Fdk
T(r) . AVRdk

T(r) . NS(r) . pk
r

 k r (deletion cost)

+ (tar + trw).Σ Σ Fdk
T(r) .AVRdk

T(r) .ΣNS(m) .pk
r .yrm

 k r m (m<>r)

 (referential integrity cost for deletions)

+ tar . Σ Σ Fik

T(r) . AVRik
T(r) . Σ pk

r . ymr
 k r m (m<>r)
 (referential integrity cost for insertions)
where
 NS(r) = No. of fragments in relation r.
 zi(r)

f(r) = 1 if attribute i of relation r is assigned to
 fragment f of relation r, 0 otherwise.
 xk

i(r) = 1 if kth transaction uses ith attribute of
 relation r, 0 otherwise.

 AVRrk
T(r)

ACCrk
f(r)=(1-(1-B/c(r).ΣLi(r).zi(r)

f(r))).c(r).ΣL i(r)/B
 i(r) i(r)

pk

r =1 if kth insert/delete transaction operates
 on relation r, 0 otherwise.
uk

r =1 if kth Join transaction needs a sequential
 access on relation r, 0 otherwise.
 (vk

r same as above for random access)
yrm =1 if m is a referenced relation to the primary
 relation r, 0 otherwise.
AVRqk

T(r) = Total no. of records accessed in relation
 r by kth transaction of type q.

8. REFERENCES

1. Ailamaki, A; Dewitt, D.J.; Hill, M.D. and Skounakis,
M.,“Weaving Relations for Cache Performance,”
Proceedings of the 27th VLDB Conference, 2001

2. Baiao, F; Mattoso, M and Zaverucha, G., “A
Distribution Design Methodology for Object
DBMS,” Journal of Distributed and Parallel
Databases, 16 (6), 2004, 45-90

3. Cardenas, A.F., “Analysis and performance of
inverted database structures”, Communications of the
ACM 18, 5, (May 1975), 253-263.

4. Ceri, S., Navathe, S., and Wiederhold, G.,
"Distribution Design of Logical Database Schemas",
IEEE Trans. Soft. Eng. SE-9, 4, (July 1983)

5. Cheng, C-H; Lee, W-K; Wong, K-F, “A Genetic
Algorithm-Based Clustering Approach for Database
Partitioning,” IEEE Transactions on Systems, Man,
and Cybernetics, 32(3), 2002, 215-230.

6. Chu, P., "A Transaction-Oriented Approach to
Attribute Partitioning," Information Systems, vol. 17,
no. 4, 1992, pp 329-342.

7. Chu, W. W. and Ieong, I.T., "A Transaction-Based
Approach to Vertical Partitioning for Relational
Database Systems", IEEE Transactions on Software
Engineering, 19-9, August 1993.

8. Cornell, D.W. and Yu, P.S., "An Effective Approach
to Vertical Partitioning for Physical Design of
Relational Databases", IEEE Transactions on
Software Engineering, 16-2, (Feb 1990)

9. Date, C.J., An Introduction to Database Systems.
Addision-Wesley Publishing Company, Sixth
Edition, (1995).

10. Ezeife, C.I., “Selecting and materializing horizontally
partitioned warehouse views,” Data and Knowledge
Engineering, 36, 2001, pp 185-210

11. Elmasri, R. and Navathe S. B., Fundamentals of
Database Systems, The Benjamin/ Cummings
Publishing Company, Inc., Second Edition, 1994.

12. Fung, C-w; Karlapalem, K. and Li, Q., “An
Evaluation of Vertical Class Partitioning for Query
Processing in Object-Oriented Databases,” IEEE

JCS&T Vol. 7 No. 3 October 2007

226

Transactions on Knowledge and Data Engineering,
14(5), 2002, 1095-1118.

13. Furtado, C; Lima, A.A.B.; Pacitti, E; Valduriez, P.
and Mattoso, M., “Physical and virtual partitioning in
OLAP database cluster,” 17th International
Symposium on Computer Architecture and High
Performance Computing, 2005, pp 143-150

14. Gorla, N., “An Object-oriented database design for
improved performance,” Data & Knowledge
Engineering, 2001.

15. Gorla, N. and Liu, C., “FHIN: an efficient storage
structure and access methods for object-oriented
databases,” Information and Software Technology,
vol. 41, 1999, pp. 673-688.

16. Hammer, M., and Niamir, B. "A Heuristic Approach
to Attribute Partitioning", ACM SIGMOD
International Conference on Management of Data
(1979).

17. Hoffer, J.A. and Severance, D.G. "The Use of Cluster
Analysis In Physical Data Base Design",
International Conference On Very large Databases
(1975).

18. Labio, W.J., Quass, D., and Adelberg, B., “Physical
Database Design for Data Warehouses, IEEE
Conference on Data Engineering, 1997, pp 277-288.

19. Lim, S-J and Ng, Y-K, “Vertical Fragmentation and
Allocation in Distributed Deductive Database
Systems,” Information Systems, vol. 22, No. 1, 1997,
pp 1-24.

20. Mannino, M.V., Database Design, Application
Development, and Administration. McGraw-Hill,
Third Edition, 2007

21. March, S.T. "Techniques for Structuring Database
Records", ACM Computing Surveys 15, 1, 1983.

22. March, S.T. and Rho, S., “Allocating Data and
Operations to Nodes in Distributed Database
Design,” IEEE Trans on Knowledge and Data
Engineering, vol. 7, no. 2., 1995, pp 305-317.

23. Navathe, S., Ceri, S., Wiederhold, G., and Dou, J.
"Vertical Partitioning Algorithms for Database

Design", ACM Trans. Database Syst. 9, 4 (Dec.
1984). 680-710.

24. Navathe, S and Ra, M. "Vertical Partitioning for
Database Design: A graphical algorithm",
Proceedings of ACM SIGMOD, 1989.

25. Ng, V; Gorla, N.; Law, D.M. and Chan, C.K.,
“Applying Genetic Algorithms in Database
Partitioning,” Proceedings of the 2003 ACM
Symposium on Applied Computing (SAC) 2003, pp
544-549.

26. Ozsu, M. and Valduriez, P., Principles of Distributed
Database Systems, Prentice Hall, 1996.

27. Ramamurthy, R; Dewitt, D.J. and Su, Q., “A Case for
Fractured Mirrors,” Proceedings of the 28th VLDB
Conference, 2002

28. Song, S.K. and Gorla, N., “A genetic Algorithm for
Vertical Fragmentation and Access Path Selection,”
The Computer Journal, vol. 45, no. 1, 2000, pp 81-93.

29. Stonebraker, M., Aoki,P.M., Litwin, W. and Olson,
M., "Mariposa: A Architecture for Distributed Data,"
10th International Conference on Data Engineering,
1994, pp 54-65.

30. Tamhankar, A.J. and Ram, S., “Database
Fragmentation and Allocation: An Integrated
Methodology and Case Study,” IEEE Trans on
Systems, Man, and Cybernetics – Part A, May 1998,
pp 288-305.

31. Wiederhold, G., File Organization for Database
Design. McGraw-Hill Company, 1987.

32. Yao, S.B. "Approximating Block Accesses in
Database Organizations", CACM 20, 4,1977.

33. Wolfson, Ouri; Jajodia, Sushil; Huang, Yixiu, “An
Adaptive Data Replication Algorithm,” ACM
Transactions on Database Systems, vol. 22, no. 2,
June 1997.

34. Yu, P.S., Chen, M-S, Heiss, H-U, and Lee, Sukho,
"On Workload Characterization of Relational
Database Environments," IEEE Trans. Software
Engineering, vol.18, no. 4, April 1992, pp 347-355.

JCS&T Vol. 7 No. 3 October 2007

227

	Text5: Received: May 2007. Accepted: Jun. 2007.

