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ABSTRACT 

Vertical partitioning, in which attributes of a relation are 
assigned to partitions, is aimed at improving database 
performance. We extend previous research that is based on 
a single relation to multi-relation database environment, 
by including referential integrity constraints, access time 
based heuristic, and a comprehensive cost model that 
considers most transaction types including updates and 
joins. The algorithm was applied to a real-world insurance 
CLAIMS database. Simulation experiments were 
conducted and the results show a performance 
improvement of 36% to 65% over unpartitioned case. 
Application of our method for small databases resulted in 
partitioning schemes that are comparable to optimal. 
 
Keywords:  Vertical partitioning, Database performance, 
Referential integrity constraints, Multi-relation databases. 

 
1. INTRODUCTION 

Data volumes are increasing at an astonishing rate in the 
commercial world due to increase in number and 
complexity of transactions. In spite of advances in 
computer technology, data access performance still 
remains a critical issue in information system. Vertical 
partitioning is a physical database design technique that is 
aimed at improving the access performance of user 
transactions. In vertical partitioning, a relation is split into 
a set of smaller physical files, each with a subset of the 
attributes of the original relation. The rationale is that 
normally database transactions require access only to 
subset of the attributes. Thus, if we can split the relation 
into sub files that closely match the requirements of user 
transactions, the access time for transactions reduces 
significantly.  
Several researchers have made significant contributions 
for over two decades in the area of vertical partitioning 
[5,8,17]. Research contributions in vertical partitioning 
have been made in the areas of, for example, attribute 
oriented approach [17], transaction oriented approach [7], 
combined vertical partitioning and access methods [8,28], 
distributed databases [5], and object-oriented databases 
[12,14]. To our knowledge, previous research has dealt 
with the vertical partitioning problem by considering 
single relation only and ignored the impact of database 
operations in a multi-relational context. In a logical 
database schema, each relation is connected with one or 
more relations through primary/foreign key links and data 
integrity is achieved through enforcement of the 
referential integrity constraints. Since update transactions 
tend to violate these referential integrity constraints, the 
relations and attributes are accessed and/or updates 
performed as necessary in order to maintain database 
integrity. These integrity enforcing operations affect the 
“best” attribute partitioning scheme and ignoring these can 
result in “suboptimal” partitioning solution. The effect is 
even more prominent in volatile databases where the 
frequency of update operations is high. Our methodology 
explicitly considers these influences in determining the 

“best” fragmentation scheme. Furthermore, unlike in most 
previous research, we use access time of transactions in 
determining and evaluating best partitioning schemes. In 
this research, we extend one-relation based vertical 
partitioning to multi-relation environment by including 
referential integrity constraints, modeling a comprehensive 
cost function, considering system/disk access 
characteristics, and using differential access times of 
various transaction types.  
The objective of this research is to provide a general 
approach for vertically fragmenting relations in a multi-
relation environment. Since the problem is 
computationally intractable, we use a heuristic procedure 
to solve the problem using a 2-attribute affinity index and 
a 2-step clustering algorithm. The application of our 
methodology on small problems yielded optimal solutions 
obtained by exhaustive enumeration. We ran simulation 
experiments under varying updates and join operations in 
order to validate our proposed method. We also compared 
our results with the solutions obtained by two previous 
studies.  
The organization of the paper is as follows. Section 2 
provides a description of previous works on vertical 
partitioning in relational databases. In section 3, we 
describe the proposed partitioning method for a multi-
relation environment. Section 4 has database performance 
model that is developed in this research, which is a 
comprehensive access-time formula. Section 5 has the 
application of the procedure on an insurance company's 
CLAIMS database. Section 6 is regarding evaluation of 
our solution procedure, including results of simulation 
experiments, comparison with exhaustive enumeration, 
and comparison with solution of previous researchers. 
Section 7 contains conclusions and directions for future 
research. 
 

2. PREVIOUS  RESEARCH 
Because of the criticality of the database performance, 
several researchers have contributed enormously to 
vertical partitioning.. Database partitioning has been 
applied in centralized relational databases [4,8,17,25,28],  
distributed databases [2,5,8,19,22,26], Data Warehouse 
Design [10,13,18], and Object-Oriented Database design 
[12,14].  
Hoffer and Severance [17] consider the vertical 
partitioning problem by applying bond energy algorithm 
on similarity of attributes, which are based on access 
patterns of transactions. Their work was extended by 
Navathe, Ceri, Widerhold, and Dou [23] by presenting 
vertical partitioning algorithms for three contexts: a data 
base stored on devices of a single type; in different 
memory levels; and a distributed database. They used 
affinity between attributes for partitioning, which is based 
on number of disk accesses. An alternate graphical 
approach was proposed by Navathe and Ra [24]. Cornell 
and Yu [8] used an optimal binary-partitioning algorithm 
to obtain vertical partitioning, which is iteratively applied 
to obtain more partitions. The study uses number of 
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accesses to evaluate partitions. Chu and Ieong [7] develop 
a transaction-based approach to vertical partitioning, in 
which transaction rather than attribute is used as the unit 
of analysis. Song and Gorla [28] used genetic algorithms 
to obtain solutions simultaneously for vertical partitions 
and access paths for those partitions. They also used the 
number of disk accesses as the partitioning evaluation 
criterion. Cheng, Lee, and Wong [5]use genetic search-
based clustering algorithm based on traveling salesman 
problem to obtain vertical partitions in distributed 
databases. With reference to object-oriented database 
design, Gorla [14]used genetic algorithm to determine the 
instance variables that should be stored in each class/ 
subclass in a subclass hierarchy, so that the total cost of 
database operations is minimized. More recently, 
Ailamaki et al [1]proposed Partition Attributes Across 
(PAX) model by improving cache performance, while 
Ramamurthy et al [27] proposed fractured mirrors 
partitioning scheme based on Decomposition Storage 
Model and N-ary Storage Model. Fung, Karlapalem, and 
Li [12] analyze vertical partitioning of classes/ subclasses 
for class composition hierarchy and subclass hierarchy and 
develop the associated cost functions for query processing 
under the cases of large memory and small memory 
availability. Ng et al [25]proposed a combined vertical 
partitioning and tuple clustering using genetic algorithm. 
We extend previous research of single relation cases by 
providing a procedure for vertical partitioning of relations 
in a multi-relation database environment. An important 
characteristic that distinguishes multi-relation schema 
from single relation case is referential integrity constraints 
enforcement due to update transactions. Our approach 
makes use of a 2-attribute affinity, as used in previous 
studies of Navathe et al [23] and Cornell and Yu [8]. 
However, we differ from their approach in that our 
attribute affinity metric is based on differential access 
times of transactions rather than number of disk accesses. 
There is a substantial difference between these two 
methods of evaluation, since fetching an additional block 
of records from disk in a sequential scan takes much less 
time than fetching an arbitrary block randomly, which 
takes even less time than the time for inserting/deleting a 
record. Our access time computations are baaed on disk I-
O service times. Furthermore, our algorithm is similar to 
“hill climbing” [16] in that our algorithm groups attributes 
such that the objective function keeps increasing; our 
approach differs theirs in that we have two steps to our 
algorithm – grouping and verifying. Thus, we extend 
previous research on vertical partitioning by including 
referential integrity constraints and join transactions, and 
by using a comprehensive cost function to evaluate 
fragmentation scheme that is based on access time rather 
than count of accesses. Physical database design provides 
truly optimal performance when the design is made to fit 
specific disk characteristics and is only optimal on the 
given hardware architecture [20]. Our proposed 
methodology includes disk access characteristics as part of 
our attribute affinity measure.  

 
3. VERTICAL PARTITIONG PROCEDURE 

The vertical partitioning problem in a multi-relation 
environment is stated as follows: Given a relational 
schema, the retrieval/update/join transactions on the 
schema, the referential integrity constraints among 
relations, and the disk access parameters, the objective is 
to determine stored fragments for each relation, which 
results in the minimum total database access costs.  The 

partitioning problem is computationally complex. 
Consider a relational schema with N relations, with Ai 
attributes for relation i. A relation with A attributes can be 
partitioned in B(A) different ways [16], where B(A) is the 
Ath Bell number (for A=30, B(A) = 1015 ). Using 
exhaustive enumeration, the number of possible 
fragmentations for the N-relation schema is approximately 
B(A1)B(A2) ... B(AN). Yu et al [34]find out that the 
number of attributes for base tables and views in a typical 
relational environment are 18 and 41 respectively. Even if 
we consider a small schema of 10 relations with 15 
attributes per relation, the number of possible fragments is 
approximately (109)10 =1090. Since the problem is 
intractable, solving large problems requires the use of 
heuristic techniques. Our procedure consists of three steps. 
First, database transactions on the logical schema are 
transformed into transactions on individual relations. 
Second, an attribute grouping benefit index (AGBI) is 
computed. Third, a clustering algorithm using AGBI is 
applied to derive effective fragments.  
 
Transaction Analysis 
Single relation transactions are of two types: retrievals and 
updates; retrievals can be sequential scans or random 
retrievals; updates can be inserts, deletes, or modifications. 
We use 3-tuple transaction mix: (updates: single relation 
retrievals: joins). While the single relation retrievals cause 
no problems, the update transactions may violate the 
referential integrity constraints. For example, inserting a 
tuple can violate integrity if the value of the foreign key 
does not exist in the referenced relation. Deletion 
operation can violate integrity if the related foreign keys 
reference tuple being deleted. One of the options to 
preserve referential integrity is to delete tuples that 
reference the tuple being deleted; we avoid cascade deletes 
by setting the foreign keys to null. Modifying a primary 
key value is similar to adding and deleting tuples.  
A referential integrity constraint between relation rn and 
referenced relation rf implies that a foreign key value in rn 
should match primary key value in rf. Thus, a transaction 
that tries to insert a record in relation rn will generate a 
random transaction on relation rf to ensure that there is a 
matching primary key value. A delete transaction on 
relation rn does not generate any additional transactions. 
Similarly, a delete transaction on relation rf will generate 
additional delete transactions on relation rn, which will 
delete all the records in relation rn that corresponds to the 
primary key of the record in rf. On the other hand, an 
insert transaction on relation rf will not generate any 
additional transactions. 
Join transactions can be processed using any of the four 
methods [11]: inner-outer loop, sort-merge, and using an 
access structures such as index-join and hash-join. We 
assume that join transactions use some access structure 
(e.g. index) on join-attribute to retrieve joined records. 
Furthermore, we ignore costs associated with access 
structure. A join transaction such as "Select R1.a2, R1.a3, 
R2.b3 from (R1 left outer join R2) on R1.a1=R2.b3" is 
executed by sequentially retrieving R1 and retrieving 
matching tuple(s) from R2 for each tuple of R1. Thus we 
convert the join transactions into a sequential retrieval 
transaction on R1 (i.e. Select a2, a3 from R1) and a 
random retrieval transaction on R2 (i.e., Select b3 from R2 
where b3=a1).  
 
Attribute Grouping Benefit Index (AGBI)  
                Notation:  Let c (r) be the cardinality of relation 
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r, Li(r) be the length of attribute i of relation r, and B the 
block size. The disk access parameters are tl (latency 
time), ts (seek time), tbt (block transfer time), tbr (block 
read time: tl + tbt), tar (time to access block and read: ts + 
tbr), and trw (rewrite time: 2tl). The rewrite time involves 
one latency time to locate the record and another latency 
time to write it [31]. Also let transaction (k) be of the type 
q (s: sequential retrieval, r: random retrieval, d: delete, m: 
modify, and i: insert). 
In order to compute AGBI based on 2-attribute grouping, 
transactions are categorized with reference to attributes i 
and j into three types: i) transactions that need access (for 
read or for write) to attribute i but not j, ii) transactions 
that need access to attribute j but not i, and iii) transactions 
that need access to attributes i and j. Transactions that do 
not access either i or j are not considered for AGBI 
computation. The other notations are as follows: 
         qk 

Fy(r) = Frequency of kth transaction of type q accessing 
yth attribute of relation r, where y ∈ (i, j, ij)           
/* i = attribute i only,  j = j only;   ij = both i and j */ 

    q 
Ft(r) = Total frequency of all transactions of type q 
accessing attributes i and/or j in relation r 

             qk       qk       qk 
=  Σ (Fi(r) + Fj(r) + Fij(r) ) 
     k 

AVRq
r = Average no. of records accessed by all 

transactions of type q in relation r 
=(selectivity)(cardinality)(frequency)/(total frequency)    
       qk                   qk                                    qk 

   =Σ  Σ  ( Sel y(r) . c (r) * Fy(r) )   /  Σ   Σ     Fy(r)                            
     k   y∈(i,j,ij)                               k  y∈(i,j,ij)                      

               for q ∈ (s,r,m) 
                  qk                qk                           qk 
   = Σ  ( Seli(r) . c (r) . FT(r) )  /    Σ  FT(r) , for q ∈ (i,d)                      
       k                                            k 
 
In the expression for AVR, the numerator is total number 
of records accessed (selectivity x cardinality) weighted by 
transaction frequency and the denominator is the total 
frequency of those transactions. In case of sequential 
retrievals, random retrievals, and modify transactions, the 
transactions that access attributes i and/or j need to be 
considered, since these transactions access only a subset of 
attributes. In case of insert and delete transactions, since 
they affect all the attributes in the relation, all transactions 
that access the relation are considered to be accessing 
attributes i and j. The AVR expression is used in the 
computation of AGBI.  
  
AGBI Computation 
Access cost and access time are used interchangeably in 
this research. AGBI, an attribute-affinity measure, 
represents the benefit in terms of access time obtainable 
by storing the two attributes in one fragment compared to 
storing them in separate fragments. AGBI is calculated for 
each pair of attributes i and j, considering the two cases: i) 
when attributes i and j are stored together as one fragment 
and ii) when attributes i and j are stored in separate 
fragments. AGBI is computed for each transaction type q 
∈ ( s, r, i, m, d), which are then totaled for all transaction 
types.   
                               q 
COST-COMij(r) = Database operating cost with type q 
transactions when attributes i and j of relation r are stored 
in separate fragments. 

                    q 
COST-COMij(r) = Database operating cost with type q 
transactions when attributes i and j of relation r are stored 
in the same fragment. 
         q    
AGBIij(r) =  Attribute Grouping Benefit Index   
                                q                                          q 
=  COST-SEPij(r) – COST-COMij(r) 
             
The AGBI computations for sequential retrieval, random 
retrieval, insertion, deletion, and modify transactions are 
shown below.  
 
1. Sequential Retrievals:  
The disk access time is the time to transfer all blocks of 
the fragment from disk to buffer and is computed as (time 
to transfer a block of records) x (transaction frequency) x 
(cardinality) x (fragment length). When attributes i and j 
are stored in the same fragment, the record length of the 
fragment is length of attribute i (Li(r)) + length of attribute j 
(Lj(r) ). Thus,                                                             
COST-COMs

ij(r)  = tbr . Fs
t(r) . c (r) . (Li(r) + Lj(r)) /B.  

 
When attributes i and j are stored in separate fragments, 
the access times need to be computed separately for 
transactions that access attribute i only, transactions that 
access attribute j only, and transactions that access 
attributes i and j. In each case, the access time is 
calculated as (time to transfer a block of records) x 
(frequency of transactions) x (cardinality) x (fragment 
length).                                                           
COST-SEPs

ij(r)  =  tbr  . (c (r) .  Li(r) . Fs
i(r)  /B  + c (r) . Lj(r) . 

Fs
j(r) /B + c (r) . (Li(r) + Lj(r)) . Fs

ij(r) /B) 
Thus, AGBIs

ij(r) =  -tbr . c (r) . (Fs
j(r).Li(r) + Fs

i(r).Lj(r))/B 
 
The negative sign of AGBI indicates it is not beneficial to 
group attributes together in case of sequential retrieval 
transactions. Here we ignore CPU time needed internally 
to combine the fragments, since disk I-O times dominate 
the internal CPU times. In a database environment, where 
transactions are predominantly of sequential in nature, it is 
more efficient to have highly fragmented relations.  
 
2. Random Retrievals:  
 The database access time for random retrieval 
transactions is disk access and read time (tar) x frequency 
of random transactions x number of blocks accessed per 
transaction as per (Cardenas, 1975). 
                                                                                  AVRr

r.BLKS 
COST-COMr

ij(r)=  tar . Fr
t(r) .(1-(1-1/BLKS)   )           

                          = tar . Fr
t(r) . AVRr

r   (first approximation) 
                             where BLKS = c (r).(Li(r)+Lj(r))/B
  
 
(AVRr

r  is the no. of records accessed by random 
transactions requiring attributes i and/or j in relation r). 
 
COST-SEPr

ij(r)= tar (Fr
i(r).AVRr

i(r) + Fr
j(r).AVRr

j(r) + 
2.Fr

ij(r).AVRr
ij(r) ) 

 
In the above expression, AVRr

i(r) , AVRr
j(r) , and AVRr

ij(r) 
are the number of records accessed by random retrievals 
requiring attribute i only, requiring attribute j only, and 
requiring both i and j, respectively. The factor 2 is applied 
to the last term in COST-SEP because when attributes i 
and j are stored in different fragments, transactions using 
both attributes i and j have to access both fragments.                
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AGBIr
ij(r) = tar . Fr

ij(r) . AVRr
ij(r) 

 
The positive AGBI in the above expression implies that 
when predominantly random transactions exist, it is more 
efficient not to fragment the relations. As the access time 
for random transactions is proportional to number of 
records to be accessed (as in formulae above), more access 
time may result with highly fragmented relation.  
 
3. Insert Transactions:  
The time to insert a record depends on (time to read and 
write the record) * (number of records to be inserted). The 
2 in COST-SEP is because insertion has to be performed 
in both the fragments. Here we assume random record 
insertion, thus there may be a write required for each 
record to be inserted, since there is little chance that 
subsequent records to be inserted falls into the same block.  
 
COST-COMi

ij(r) = Fi
t(r) .(tar +trw).AVRi

r 
COST-SEPi

ij(r) = Fi
t(r) . 2.(tar+trw).AVRi

r 
AGBIi

ij(r) = Fi
t(r) . (tar+trw).AVRi

r  
 
4. Deletion Transactions:  
The time computation for deletion is similar to record 
insertion time described above. 
AGBId

ij(r) = Fd
t(r) . (tar+trw).AVRd

r  
 

5. Modify Transactions:  The time is calculated similar to 
the above.  

           
COST-COMm

ij(r) = Fm
t(r) . (tar+trw).AVRm

r       
COST-SEPm

ij(r) = Fm
t(r) . 2.(tar+trw).AVRm

r 
AGBIm

ij(r) = Fm
ij(r) . (tar+trw).AVRm

r 
 
The Total Grouping Benefit Index:   
GBIT

ij(r) =   Σ      ΑGBIq
ij(r)        

    q ∈ (s,r,i,d,m) 
 
Clustering Algorithm 
The GBIij computed as above are entered into an n*n 
matrix, where n is the number of attributes in a relation. 
The algorithm (Figure 1) uses only positive GBIij because 
only positive ones contribute towards maximizing 
SchemaValue, thus reducing execution time to half on the 
average. The SchemaValue is the total value of GBIs in 
the existing fragments and it is a heuristic measure of the 
merit of a specific fragmentation scheme. The algorithm 
ensures that SchemaValue increases as fragments are 
generated. The algorithm is applied on each relation using 
its GBI matrix. The algorithm has two steps: a grouping 
step where the attributes with positive GBIs are grouped 
into fragments and a regrouping step where a verification 
is made if attributes with positive GBIs are in the same 
fragment and reassignment of attributes is made as 
needed. 
If we assume an average of n attributes per relation, the 
size of the GBI matrix is n(n-1)/2. Since we only use 
positive values, there are on the average n(n-1)/4 elements 
to be processed per relation. Considering regrouping step, 
the number of elements to be processed is n(n-1)/2. For a 
schema with m relations, the complexity of the proposed 
algorithm is O(m*n2) and that of exhaustive enumeration 
is O(nm*n). 
 
 
Figure 1. Clustering Algorithm for Fragmentation 
Step 1: (Grouping Step) 

1.1. IF all GBIij >0,  
     THEN group all attributes in one fragment, EXIT 
         ELSEIF all GBIij <0,  
         THEN keep each attribute in a separate fragment, 
EXIT. 

        Initialize a one-dimensional array B of size (=number 
of attributes) 
1.2.  Pick an element with the highest positive GBIij;  
        Group attributes i and j in one fragment.  
        Mark GBIij, GBIji, Bi, Bj;  
        SchemaValue  GBIij 
1.3.  Do until no more unmarked positive GBIij exists: 

        Pick an unmarked highest positive GBIij. 
  1.3.1 Case: Neither attribute i nor j  
                     is already assigned 

                      Group i and j into a new fragment 
                      SchemaValue  +GBIij. 

  1.3.2 Case: attribute i is assigned and  
                     attribute j is unassigned 

                      Compute INCR = ΣGBIkj, Vk,   
                                where k is an attribute in fragment f; 
                      IF INCR >0,  
                      THEN assign j to fragment f 

SchemaValue  +INCR; 
        ELSE  
        Repeat for each fragment f’ (other than f)                                    
             Compute INCR’ = ΣGBIkj, Vk,  

                                         where k is an attribute in fragment f’; 
             IF INCR’ > Max-INCR’   
                            THEN Max-INCR’  INCR’; 
        IF Max-INCR’ > 0 

       THEN store j in the corresponding f’  
            SchemaValue  + Max-INCR'. 
       ELSE store attribute j in a new fragment.            

    1.3.3 Mark GBIij, GBIji, Bi, Bj. 
 
Step 2: (Regrouping step) 
2.1.  Unmark all GBIij and Bi. 
2.2.  Repeat for each unmarked highest GBIij >0: 
        IF i and j are not in the same fragment, THEN 

2.2.1 Compute Net GBI, if attribute j is moved to 
another fragment f 

  Repeat the above for each fragment 
  Let the maximum Net GBI be incrj

  and the 
corresponding fragment be fj 

2.2.2  Repeat step 2.2.1 for attribute i 
   Let the maximum Net GBI be incri

  and the 
corresponding fragment be fi 

2.2.3 IF max (incrj , incri ) > 0,  
  Move attribute (j or i) to the corresponding 
                                                        fragment (fj or fi) 

  SchemaValue  + max (incrj , incri ); 
                 Mark GBIij. 
 

4. PERFORMANCE MODELING 
When tuples of relations are fragmented, there should be a 
mechanism to identify the fragments of a tuple. There are 
two methods to do this. One way of relating individual 
fragments of a tuple is by duplicating primary key in all 
the fragments or by using tuple-identifiers. This method 
involves additional processing for accessing the records 
through primary key or tuple identifier. While this 
arrangement is useful for both fixed-length and variable-
length record files, this arrangement is essential for 
variable length records. This method is also beneficial if 
one needs to reconstruct the data record should there be 
corruption of data in the database provided the key or 
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identifier is unaffected. In the second method, which is 
less robust, the individual data fragments can be accessed 
exploring the relative positions of records. For sequential 
scan, there is no need to identify the corresponding 
fragments on an individual basis. A sequential scan on a 
relation is realized as sequential scans on individual 
fragments. This is as though several files are read 
simultaneously into their own buffers. However, a 
fragment design implementation module should keep track 
of which fragment block to read next.  
 
Database Operating Cost 
The database operating cost function consists of several 
terms. The first term is total access time for sequential 
transactions (fragment lengths x cardinality x frequency x 
block transfer time). The second term is the total access 
time for all random retrievals (number of accesses needed 
for each fragment x frequency x block read time). The 
other terms are join cost, insertion cost, deletion cost, and 
referential integrity maintenance costs for deletions and 
insertions. Several of the terms used in this formula are 
described in section 2. The access-cost function for a 
fragmentation scheme is shown in Appendix A.                       

 
5. ILLUSTRATIVE EXAMPLE 

Insurance CLAIMS Database: 
The above proposed procedure (hereafter called MRP - 
Multi-Relation Partitioning procedure) is applied to a 
small real-life insurance company’s CLAIMS database 
(BUCLAIM.MDB) for illustration purposes. The database 
contains 7 relations (CLAIMS, IMPORT ERRORS, KDB 
ARCHIVE FILES, KDB CLOSED, KDB DATA, 
POTENTIAL CLAIMS, WELDISP) with attributes 
ranging from 3 to 42 and tuples from 6 to 3534. The 
relations of CLAIMS database and the referential integral 
constraints are given in Table 1 and Table 2, respectively. 
 

Table 1. CLAIMS Database 
Reln Attr Records Attribute Lengths 
1 30 2099 9 100 20 20 10 8 20 

32 8 8 100 10 25 20 8 
15 10 30 10 50 100  
8 20 100 20 8 8 10 50 
50 

2 3 6 255 255 4 
3 5 1313 3 10 10 10 36 
4 42 1377 7 13 9 7 7 8 8 8 8 8 

8 8 8 8 8 8 8 8 8 8 8 
8 8 8 8 8 8 8 8 8  
8 8 3 5 7 18 13 8 8 8 
9 6 

5 42 447 7 13 9 7 7 8 8 8 8 8 
8 8 8 8 8 8 8 8 8 8 8 
8 8 8 8 8 8 8 8 8  
8 8 3 5 7 18 13 8 8 8 
9 6 

6 15 99 50 15 8 100 100 15 15 
15 8 25 100 8 25 25 
50 

7 29 3534 255 255 255 255 255 4 
255 255 8 8 255 255 
255 255 8 255 8  
255 255 255 255 255 
255 255 255 255 255 
255 255 

 

Table 2. Referential Integrity Constraints 
       referenced relation   
        1 2 3 4 5 6 7 
         1    0 0 0 0 1 1 0 
         2    0 0 0 0 0 0 0 
relation 3    0 0 0 1 1 0 0 
         4    1 0 1 0 1 0 0 
   5    1 0 1 1 0 1 0 
         6    1 0 0 1 0 0 0 
         7    0 0 0 0 0 0 0 
 
The referential integral constraint is denoted by a “1” in 
Table 2. The referential integrity constraints are utilized to 
generate additional random retrieval transactions and 
additional delete transactions on the relations that 
reference it. For example, a “1” in (relation 5, referenced 
relation 4) implies that an insert transaction on relation 5 
should generate an additional random retrieval transaction 
on referenced relation 4, for verifying the primary key 
value is present in relation 4.  
The database transactions are composed of 36 inserts, 24 
deletes, 108 random retrievals, 84 sequential transactions, 
and 48 join transactions. Sequential transactions are 
business reports extracted from relational tables. The 
details of these transactions are as given in Table 3. 
The transactions in Table 3 are applied to the CLAIMS 
database. Using the referential integrity matrix in Table 2, 
additional transactions are generated for insert and delete 
transactions. The join transactions are decomposed into 
transactions on individual relations. Tables 4 and 5 show 
the total transactions (both original and additionally 
generated) for relations #1 and #6, respectively. These two 
relations are shown for illustration purposes. Gen Random 
transaction (Table 4) is generated as a result of insert 
transaction (2nd transaction in Table 3) on relation #5, in 
order to satisfy referential integrity constraint.  

 
Table 3. 

Transaction Set for CLAIMS Database 
Trans Relation Freq No of   No of   
Type                Access* Attributes 
--- Attribute List --  
INSERT        1    24    17       -      
all 
INSERT        5    12    15       -      
all  
DELETE        4    24    11       -     
all  
RANDOM        1    12   178      5  
12,8,15,28,22 
RANDOM        1    12   299      6  
12,8,22,15,28,6 
RANDOM        1    12   472      5  
1,2,16,17,34 
RANDOM        1    12   339      8  
8,6,12,13,14,15,28,22 
RANDOM        1    12    27       8  
8,22,6,28,15,3,2,4 
RANDOM        1    12   423      7  
1,8,18,28,6,7,12 
RANDOM        6    12    19       2  
10,6 
RANDOM        1    12   113      4  
6,8,28,12 
RANDOM        1    12   399  11  
22,5,6,7,8,11,12,14,15,21,23 
SEQUENCIAL    1    12     -       5  
8,11,12,22,6 
SEQUENCIAL    1    12     -       5  
12,8,22,15,28 
SEQUENCIAL    1    12     -       8  
12,8,22,6,11,15,13,14 
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SEQUENCIAL    1    12     -       8  
12,8,22,6,11,15,13,14 
SEQUENCIAL    5    12     -       5  
34,1,2,16,17 
SEQUENCIAL    1    12     -   8  
12,8,7,6,22,11,14,15 
SEQUENCIAL    1    12     -       8  
12,22,5,6,7,8,11,14 
JOIN        12 
   Sequential 1           -       8  
12,22,5,6,7,8,11,14 
   random     5         213       5  
5,1,2,16,17 
JOIN       12 
   Sequential 4           -       2  
2,34 
   random     6         292       5  
15,13,6 
JOIN        12 
   random     1         85        5  
12,7,8,11,14 
   random     6         125       4  
15,6 
JOIN       12  
   Sequential 3          -        5  
1,2,3,4,5 
   random     5         105       4  
34,2,16,40 
 
* number of records accessed each time 
a transaction is executed. 
** "-" for insert or delete operations 
indicate all attributes. 
 
Table 5 lists all transactions considered for Relation #6. 
Three additional transactions are generated on relation #6 
due to update transactions in “Total Transactions” Table. 
For example, Gen RANDOM transaction (marked *) is 
generated because of insert transaction on relation #1; Gen 
RANDOM transaction (marked **) is generated because 
of insert transaction on relation #5; Gen DELETE 
transaction (marked ***) is generated due to delete 
transactions on relation #4.  
Then a GBI matrix is created for each relation, using the 
time-cost formulae shown in section 3. The computed GBI 
Matrices for relations 1 and 6 are shown in Tables 6 and 7, 
respectively. 
 

Table 4 
Transaction Set for Relation #1 

Transaction        Freq  Accesses  Attributes 
Type 
INSERT        24    17     -   - 
Gen RANDOM    12    15     1  1 
RANDOM        12   178    5  12,8,15,28,22 
RANDOM        12   299    6  12,8,22,15,28,6 
RANDOM        12   472    5  1,2,16,17,34 
RANDOM        12   339    8  8,6,12,13,14,15,28,22 
RANDOM        12    27     8  8,22,6,28,15,3,2,4 
RANDOM        12   423    7  1,8,18,28,6,7,12 
RANDOM        12   113    4  6,8,28,12 
RANDOM        12   399  11 
2,5,6,7,8,11,12,14,15,21,23 
SEQUENCIAL    12     0     5  8,11,12,22,6 
SEQUENCIAL    12     0     5  12,8,22,15,28 
SEQUENCIAL    12     0     8  12,8,22,6,11,15,13,14 
SEQUENCIAL    12     0     8  12,8,22,6,11,15,13,14 
SEQUENCIAL    12     0     8  12,8,7,6,22,11,14,15 
SEQUENCIAL    12     0     8  12,22,5,6,7,8,11,14 
JOIN-SEQUEN   12     0     8  12,22,5,6,7,8,11,14 

JOIN-RANDOM  12    85    5  12,7,8,11,14 
 

Table 5 
Transaction Set for Relation #6 

Trans Type         Freq  Accs  Attibutes 
 
Gen RANDOM*   24    17          1  1 
Gen RANDOM**   12    15          1  1 
Gen DELETE***  24    11          0   
RANDOM        12    19          2  10,6 
JOIN-RANDOM   12   292         5  15,13,6 
JOIN-RANDOM   12   125         4  15,6 
 

Table 6. GBI Matrix for Relation #1 
(Part 1 of 4) 

Attr 1 2 3 4 5 6 7 8 
1 0 140 0 0 -4 113 119 111 
2 140 0 8 8 -43 -

122 
-65 -

144 
3 0 8 0 8 -9 -18 -13 -22 
4 0 8 8 0 -9 -18 -13 -22 
5 -4 -43 -9 -9 0 109 116 107 
6 113 -

122 
-18 -18 109 0 230 471 

7 119 -65 -13 -13 116 230 0 251 
8 111 -

144 
-22 -22 107 471 251 0 

9 0 0 0 0 -3 -10 -5 -12 
10 0 0 0 0 -3 -10 -5 -12 
11 -12 -

130 
-26 -26 109 118 130 121 

12 111 -
152 

-30 -30 107 463 251 543 

13 -4 -43 -9 -9 -15 78 -25 73 
14 -10 -

109 
-22 -22 111 214 134 235 

15 -8 -79 -9 -9 106 308 101 362 
16 140 140 0 0 -7 -20 -10 -23 
17 140 140 0 0 -4 -13 -7 -15 
18 125 0 0 0 -13 86 105 79 
19 0 0 0 0 -4 -13 -7 -15 
20 0 0 0 0 -22 -65 -33 -76 
21 0 0 0 0 74 -12 53 -34 
22 -14 -

144 
-22 -22 107 313 101 367 

23 0 0 0 0 109 92 105 87 
24 0 0 0 0 -43 -

130 
-65 -

152 
25 0 0 0 0 -9 -26 -13 -30 
26 0 0 0 0 -3 -10 -5 -12 
27 0 0 0 0 -3 -10 -5 -12 
28 123 -14 4 4 -7 340 114 395 
29 0 0 0 0 -22 -65 -33 -76 
30 0 0 0 0 -22 -65 -33 -76 

* The above numbers are obtained by dividing  
    actual GBIs by 1000 and rounding 
 

Table 6. GBI Matrix for Relation #1 
(Part 2 of 4) 

Attr 9 10 11 12 13 14 15 16 
1 0 0 -12 111 -4 -10 -8 140 
2 0 0 -

130 
-

152 
-43 -

109 
-79 140 
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3 0 0 -26 -30 -9 -22 -9 0 
4 0 0 -26 -30 -9 -22 -9 0 
5 -3 -3 109 107 -15 111 106 -7 
6 -10 -10 118 463 78 214 308 -20 
7 -5 -5 130 251 -25 134 101 -10 
8 -12 -12 121 543 73 235 362 -23 
9 0 0 -10 -12 -3 -9 -7 0 

10 0 0 -10 -12 -3 -9 -7 0 
11 -10 -10 0 121 -22 139 91 -20 
12 -12 -12 121 0 73 235 354 -23 
13 -3 -3 -22 73 0 84 89 -7 
14 -9 -9 139 235 84 0 210 -16 
15 -7 -7 91 354 89 210 0 -13 
16 0 0 -20 -23 -7 -16 -13 0 
17 0 0 -13 -15 -4 -11 -9 140 
18 0 0 -39 79 -13 -33 -26 0 
19 0 0 -13 -15 -4 -11 -9 0 
20 0 0 -65 -76 -22 -54 -43 0 
21 0 0 -12 -34 -43 9 31 0 
22 -12 -12 96 359 73 209 362 -23 
23 0 0 92 87 -9 96 101 0 
24 0 0 -

130 
-

152 
-43 -

109 
-87 0 

25 0 0 -26 -30 -9 -22 -17 0 
26 0 0 -10 -12 -3 -9 -7 0 
27 0 0 -10 -12 -3 -9 -7 0 
28 -2 -2 -35 387 90 85 243 -3 
29 0 0 -65 -76 -22 -54 -43 0 
30 0 0 -65 -76 -22 -54 -43 0 

 
Table 6. GBI Matrix for Relation #1 

(Part 3 of 4) 
Attr 17 18 19 20 21 22 23 24 

1 140 125 0 0 0 -14 0 0 
2 140 0 0 0 0 -

144 
0 0 

3 0 0 0 0 0 -22 0 0 
4 0 0 0 0 0 -22 0 0 
5 -4 -13 -4 -22 74 107 109 -43 
6 -13 86 -13 -65 -12 313 92 -

130 
7 -7 105 -7 -33 53 101 105 -65 
8 -15 79 -15 -76 -34 367 87 -

152 
9 0 0 0 0 0 -12 0 0 

10 0 0 0 0 0 -12 0 0 
11 -13 -39 -13 -65 -12 96 92 -

130 
12 -15 79 -15 -76 -34 359 87 -

152 
13 -4 -13 -4 -22 -43 73 -9 -43 
14 -11 -33 -11 -54 9 209 96 -

109 
15 -9 -26 -9 -43 31 362 101 -87 
16 140 0 0 0 0 -23 0 0 
17 0 0 0 0 0 -15 0 0 
18 0 0 0 0 0 -46 0 0 
19 0 0 0 0 0 -15 0 0 
20 0 0 0 0 0 -76 0 0 
21 0 0 0 0 0 -34 118 0 
22 -15 -46 -15 -76 -34 0 87 -

152 
23 0 0 0 0 118 87 0 0 
24 0 0 0 0 0 -

152 
0 0 

25 0 0 0 0 0 -30 0 0 
26 0 0 0 0 0 -12 0 0 
27 0 0 0 0 0 -12 0 0 
28 -2 119 -2 -11 -22 236 -4 -22 
29 0 0 0 0 0 -76 0 0 
30 0 0 0 0 0 -76 0 0 

 
Table 6. GBI Matrix for Relation #1 

(Part 4 of 4) 
Attr 25 26 27 28 29 30 

1 0 0 0 123 0 0 
2 0 0 0 -14 0 0 
3 0 0 0 4 0 0 
4 0 0 0 4 0 0 
5 -9 -3 -3 -7 -22 -22 
6 -26 -10 -10 340 -65 -65 
7 -13 -5 -5 114 -33 -33 
8 -30 -12 -12 395 -76 -76 
9 0 0 0 -2 0 0 

10 0 0 0 -2 0 0 
11 -26 -10 -10 -35 -65 -65 
12 -30 -12 -12 387 -76 -76 
13 -9 -3 -3 90 -22 -22 
14 -22 -9 -9 85 -54 -54 
15 -17 -7 -7 243 -43 -43 
16 0 0 0 -3 0 0 
17 0 0 0 -2 0 0 
18 0 0 0 119 0 0 
19 0 0 0 -2 0 0 
20 0 0 0 -11 0 0 
21 0 0 0 -22 0 0 
22 -30 -12 -12 236 -76 -76 
23 0 0 0 -4 0 0 
24 0 0 0 -22 0 0 
25 0 0 0 -4 0 0 
26 0 0 0 -2 0 0 
27 0 0 0 -2 0 0 
28 -4 -2 -2 0 -11 -11 
29 0 0 0 -11 0 0 
30 0 0 0 -11 0 0 

 
Table 7 GBI Matrix for Relation #6 

(Part 1 of 2) 
Attr 1 2 3 4 5 6 7 8

1 0 107 107 107 107 107 107 107

2 107 0 107 107 107 107 107 107

3 107 107 0 107 107 107 107 107

4 107 107 107 0 107 107 107 107

5 107 107 107 107 0 107 107 107

6 107 107 107 107 107 0 107 107

7 107 107 107 107 107 107 0 107

8 107 107 107 107 107 107 107 0

9 107 107 107 107 107 107 107 107

10 107 107 107 107 107 5722 107 107
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11 107 107 107 107 107 107 107 107

12 107 107 107 107 107 107 107 107

13 107 107 107 107 107 86410 107 107

14 107 107 107 107 107 107 107 107

15 107 107 107 107 107 123355 107 107

 
Table 7 BI Matrix for Relation #6 

(Part 2 of 2) 
Attr 9 10 11 12 13 14 15

1 107 107 107 107 107 107 107

2 107 107 107 107 107 107 107

3 107 107 107 107 107 107 107

4 107 107 107 107 107 107 107

5 107 107 107 107 107 107 107

6 107 5722 107 107 86410 107 123355

7 107 107 107 107 107 107 107

8 107 107 107 107 107 107 107

9 0 107 107 107 107 107 107

10 107 0 107 107 107 107 107

11 107 107 0 107 107 107 107

12 107 107 107 0 107 107 107

13 107 107 107 107 0 107 86410

14 107 107 107 107 107 0 107

15 107 107 107 107 86410 107 0

 
Results 
The clustering algorithm described in III.C is applied on 
the GBI matrices to generate the partitioning solutions. 
Table 8 gives the partitioning solution given by the 
proposed MRP procedure. The time taken by the MRP 
algorithm to solve this problem is 51.14 seconds on a 
Pentium PC, an average of 7.3 seconds per relation. The 
database access cost with MRP is 1632 milliseconds, 
while those with unfragmented (UN) and trivially 
fragmented (TR) are 226 milliseconds and 291 
milliseconds, respectively. It represents cost savings over 
UN and TR of 28% and 44%, respectively.  
The individual transaction costs for the entire database 
associated with the MRP, UN and TR designs are shown 
in Table 9. MRP solution keeps lower update costs 
(inserts/ deletes/ referential integrity maintenance) lower 
compared to TR solution and lower sequential access costs 
compared to UN solution. While UN has the highest 
sequential access cost, TR has the highest update costs and 
referential integrity checking costs.  

 
Table 8.  MRP Partitioning Solution 

Relation       Partitions 

1.(8,12,6,22,14,11,13,18,1,23,5,7,28,1 
   5)(2,16,17,3,4,21)(9)(10)(19) 
  (20)(24)(25)(26)(27)(29)(30) 
 
2 (1,2,3) 
 
3 (1,2,3,4,5)     
 
4.(1,3-33, 35-42) (2,34) 
 
5.(2,16,1,17,34,6,40) 
  (3-15,18-33,35-39,41,42) 

 
6 (1-15) 
             
7 (1-29)    

 
Table 9 Transaction Cost Analysis 

Transaction costs MRP  UN TR 
Sequental Retrievals 53 118 23 
Random Retrievals 63 61 68 
Inserts 21 3 81 
Deletes 2 1 46 
Referential Integrity Check 7 6 60 
Joins 16 37 13 
Total cost 162 

ms 
226 
ms 

291 
ms 

 
5. EVALUATION OF PARTITIONING 

PROCEDURE 
Simulation Experiments 
In order to validate the proposed MRP procedure, we 
performed simulation experiments under varying 
operating conditions. In the experiments, the size of the 
relational schema is set to 8 relations with 10 to 25 
attributes each and tuples ranging from 10,000 to 20,000. 
The database/ transaction profiles used in the experiments 
are comparable to those of ‘real-world’ production 
database [34]. We ran 10 simulation experiments, with 5 
experiments varying update proportion and another 5 
varying proportion of join transactions. In the low (5%) 
update environment, our proposed MRP method showed 
cost savings of 53% over unfragmented design and 19% 
over trivial fragmentation design. In high update 
environment that is characteristic of volatile databases, the 
savings are 40% and 51% over unfragmented and trivially 
fragmented designs, respectively. 
 
Comparison with Exhaustive Enumeration 
The partitioning solutions by MRP method are compared 
with optimal partitioning design obtained by exhaustive 
enumeration, for small database problems. Table 10 shows 
the database access cost for MRP design and exhaustive 
enumeration. For these database problems, the database 
access cost by MRP is within 2% of the optimal access 
cost. The reason for obtaining a solution closer to optimal 
is that in smaller databases, search space is smaller and the 
heuristic algorithm more likely will arrive at optimal or 
near optimal solution. In larger databases, it may not be 
the case since the search space is larger and is difficult to 
verify the optimality. The time taken by MRP is of the 
order of 1/10th second, while that of exhaustive 
enumeration is about 11000 seconds for a 4-relation 
schema with 4 attributes per relation. The execution time 
for 5 relations is 0.6 seconds with 10 attributes per 
relation, while it is 21.5 seconds with 34 attributes. As the 
number of transactions increase the execution time of 
MRP increased fairly linearly (0.5 sec with 500 
transactions per hour and 0.6 sec for 1500 transactions per 
hour).  
 

Table 10. Database Access Cost Comparison 
with Exhaustive Enumeration 

 
 
Relation 

                    Attributes 
       3                        4                          5 
Exhaust, MRP   Exhaust, MRP  Exhaust,MRP    

 3 44,     45 53,    54 ---- 
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49,     50 52,    54 ----   
 4 
 5 

49,     51 ---- ----- 

 
Example from Previous Studies 
Since there are no prior studies on multi-relational 
partitioning to compare, we construct a multi-relation 
schema with two relations that are drawn from previous 
studies. The first relation (R1) and the corresponding 
transactions are taken from the study of [28]; the second 
relation (R2) and the transactions are drawn from [8]. 
Table 11 gives description of the constructed database and 
Table 11 has the transaction set for the example.                     
 

Table 11. Database Description 
Relation  Attr-   Records    Attribute  
               ibutes                   Lengths 
  R1    10      10000   10 8 4 6 15 14 3 5 9 12 
  R2         20      10000   8 8 8 8 4 8 8 12 20 22 4 8 6 
                                                5 3 30 12 8 6 6 
 
Referential integrity constraints  
 
Relation  R1  R2 
     
    R1        0  1 
 
    R2        1  0 
 

 
Table 12. Transaction Data 

TranType  Rel  Freq  Records  Attributes 
 
INSERT      R1 100  25  0   
DELETE      R1 100  50  0   
SEQUENCIAL  R1 100   0  3  4,6,10 
SEQUENCIAL  R1 100   0  3  2,7,8 
RANDOM      R1 100  25  7  1-3,5,7-9 
RANDOM      R1 100  25  2  1,5 
RANDOM      R1 100  25  3  3,4,9 
RANDOM      R1 100  15  5  3,4,6,9,10 
 
INSERT      R2 100  50  0   
DELETE      R2 100  50  0   
SEQUENCIAL  R2 100   0  6  
3,7,10,11,17,18 
SEQUENCIAL  R2 100   0  4  15,16,19,20 
SEQUENCIAL  R2 100   0  3  1,5,8 
RANDOM      R2 100  15  4  1,8,10,11 
RANDOM      R2 100  15  5  3,7,10,11,17 
RANDOM      R2 100  15  8  2,12-16,18,20 
RANDOM      R2 100  10  5  2,5,11,14,19 
RANDOM      R2 100  10  4  1,9,16,18 
RANDOM      R2 100  10  8  1-6,9,12,13 
RANDOM      R2 100  10  6  
4,7,10,14,19,20 
RANDOM      R2 100  10  6  8,11,15,16-18 
RANDOM      R2 100   5  9  1-9 
RANDOM      R2 100   5  6  15-20 

 
The partitioning results of  Song and Gorla [1] for relation 
R1 are four fragments: (1,5), (2,7,8), (3,4,9), and (6,10). 
The results of Cornell and Yu [8] for relation R2 are two 
fragments: (1, 3, 4, 5, 6, 7, 8, 10, 11, 17, 18) and (2, 9, 12, 
13, 14, 15, 16, 19, 20). We modify the transaction data for 
R1 and R2 from the respective examples by making the 
first two transactions as insert / deletes and the next two 
transactions as sequential access transactions. This is done 

because, previous works do not need update transactions 
and sequential transactions are not inputs to their studies. 
The modified example has a transaction mix of 17% 
updates, 20% sequential access transactions, and 63% 
random access transactions. These are comparable to usual 
transaction loads in real-world relational databases [34]. 
Also we made access frequency of 100 for all transactions, 
while the previous research used 1 as the frequency. This 
should not affect the results and conclusions.  
Our MRP design procedure resulted in three fragments for 
relation R1: (4, 6, 10), (1, 3, 5, 9), and (2, 7, 8), and four 
fragments for relation R2: (3, 7, 10, 11, 17, 18), (15, 16, 
19, 20), (2, 4, 6, 9, 12, 13, 14), and (1, 5, 8). The 
procedure took 0.4 seconds for the 2-relation schema. 
With a cardinality of 10000 records for each relation, the 
access cost with the proposed design is 702 ms, compared 
to 838 ms for unpartitioned solution and 2247 ms for 
trivial partitioning, showing an improvement of 16% over 
unpartitioned solution, and 70% over trivial partitioning. 
Referential integrity maintenance cost amounted to 23% 
of total access cost for the proposed design.  
With cardinality of 50000 for each relation, we obtain 
access time of 1324 ms for proposed design, 3441 ms for 
unpartitioned design, and 2885 ms for trivial partitioning. 
These imply the proposed solution has an improvement of 
61% over unpartitioned and 54% over trivial partitioning. 
The high costs for the unpartitioned is mainly due to 
sequential access costs (772 ms for proposed design vs. 
3253 ms for unpartitioned), which are inherent in large 
databases with high cardinality. The high costs for trivial 
partitioning is due to high update and referential integrity 
maintenance costs (444 ms for proposed design vs. 1874 
ms for trivial partition). Two opposing factors resulted in 
fragmentation in our proposed design: sequential access 
transactions lead to more fragmentation and the 
update/referential integrity maintenance activities lead to 
less fragmentation. MRP design arrived at the ‘best’ 
design that balanced these factors.   
  

7. CONCLUSIONS AND FUTUTE RESEARCH 
This paper develops a methodology for vertical 
partitioning for a multi-relation database environment. Our 
proposed procedure builds on previous research of one-
relation environment and extends substantially to multi-
relation environment. The results demonstrate database 
access cost savings by the proposed method ranging from 
36% to 62% over unfragmented design, and from 19% to 
54% over fully fragmented design. Referential integrity 
enforcement cost is found to be a major cost overhead in 
medium to high update environments. The access costs 
obtained with the proposed approach are comparable to 
the optimal partitioning solutions obtained by exhaustive 
enumeration for small problems. The complexity of the 
proposed clustering algorithm is O(m*n2), where m is the 
number of relations and n is the number of attributes per 
relation. The proposed procedure produced partitioning 
solutions within a few seconds for most database 
problems. The proposed methodology can be applied to 
partitioning problems in distributed and object-oriented 
databases. Since the update transactions tend to cause 
database integrity problems, the DBMS (Distributed 
DBMS or Object-Oriented DBMS) generates additional 
transactions to ensure data consistency. As discussed in 
the paper, these additional transactions have implications 
for effective attribute partitioning.  
The research can be extended in several directions. First, 
we assumed in this research that the transactions that 
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operate on the relational schema are static. Periodically, 
say once a year, the vertical partitioning can be derived 
using the change in transaction mix. Present research can 
be extended to derive the vertical partitioning 
dynamically, based on the incremental changes in the 
transaction mix. Thus incremental changes to the vertical 
partitions can be derived, which will make the physical 
design optimal all the time. Adaptive designs are shown to 
have better performance than static designs in database 
design [33]. Second, the research can be extended to 
include concurrency control into the model and its effect 
on the response time model. Including concurrency control 
mechanism, similar to enforcement of referential integrity 
constraints, imposes additional database transactions on 
the database records, and affects both ‘optimal’ fragment 
design and access time performance with partitioned 
databases. By considering the concurrency control issues, 
the proposed research can be made even more 
comprehensive. Third, in this research we assumed the 
access paths as given. This research can be extended to 
include the access path determination and to solve the 
combined problem of attribute partitioning and access path 
selection in a multi-relation environment. The methods 
used by [8,28] can be starting points, since they specify 
access paths to one or two fragments. Thus the multi-
relation partitioning case can be extended to include 
access paths for all the partitions, along with query 
processing schedule using those partitions and access 
paths. Fourth, attribute affinity can be computed for 
attributes of different relations, rather than in those for 
attributes within each relation. The affinity between 
attributes could be high due to enforcement of referential 
integrity constraints and due to join transactions. The 
design of storage structures using this approach is another 
area of potential extension to our research. Fifth, presently 
we are working on mixed fragmentation procedure, where 
in vertical partitioning and tuple clustering are determined 
simultaneously.  Similar to attribute partitioning, record 
clustering involves assignment of records to blocks. Since 
these two problems are interdependent, an iterative 
procedure is being developed that will solve the combined 
problem. 
 

Appendix A 
Access-Cost Function 

COST= tbr . Σ Fsk
T(r)  Σ  c (r)  Σ   Σ (Li(r) . zi(r)

f(r) ) . xk
f(r) /B    

      k            r          f(r)   i(r) 
                                             (sequential retrieval cost) 
 
 

+ tar . Σ Frk
T(r) . Σ   Σ   ACCrk

f(r) . xk
f(r)                                 

k              r   f(r) 
             (random retrieval cost) 
 

+  Σ Fm
T(r) . Σ  Σ  (uk

r . tbr . c (r) . (Σ Li(r) . zk
f(r))/B            

                  k             r   f(r)                        i(r)                                         
                          + vk

r . tar . ACCrk
f(r) ) . xk

f(r)     (join cost) 
 
+ (tar + trw) . Σ  Σ Fik

T(r) . AVRik
T(r) . NS(r) . pk

r                      
   k   r                       (insertion cost) 
                                                                 

+ (tar + trw) . Σ  Σ Fdk
T(r) . AVRdk

T(r) . NS(r) . pk
r       

                                 k   r                       (deletion cost) 
 

+ (tar + trw).Σ Σ Fdk
T(r) .AVRdk

T(r) .ΣNS(m) .pk
r .yrm     

                k  r                             m (m<>r)  

         (referential integrity cost for deletions)                                       
 
+ tar .  Σ Σ Fik

T(r) . AVRik
T(r) . Σ pk

r . ymr                                
         k  r                             m (m<>r) 
          (referential integrity cost for insertions) 
where   
       NS(r) = No. of fragments in relation r. 
       zi(r)

f(r)  = 1 if attribute i of relation r is assigned to  
                        fragment f of relation r, 0 otherwise. 
       xk

i(r)  = 1 if kth transaction uses ith attribute of  
                      relation r, 0 otherwise. 

                                              AVRrk  
T(r) 

ACCrk
f(r)=(1-(1-B/c(r).ΣLi(r).zi(r)

f(r) )      ).c(r).ΣL i(r)/B              
                        i(r)                  i(r)
       
pk

r =1 if kth insert/delete transaction operates  
           on relation r, 0 otherwise. 
uk

r =1 if kth Join transaction needs a sequential  
              access on relation r,  0 otherwise. 
        (vk

r same as above for random access) 
yrm =1 if m is a referenced relation to the primary  
         relation r,  0 otherwise. 
AVRqk

T(r) = Total no. of records accessed in relation 
                    r by kth transaction of type q. 
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