
THE JK SYSTEM TO DETECT PLAGIARISM

Khair Eddin M. Sabri

Computer Science Department

University of Jordan

Amman, Jordan

sabrikm@ju.edu.jo

and

Jubair J. Al-Ja’afer

Computer Information System Department

University of Jordan

Amman, Jordan

jubair@ju.edu.jo

ABSTRACT

In this research a system, referred to as Jubair-Khaireddin

(JK), has been developed to assess the degree of similarity

between two programs even though they look superficially

dissimilar. The JK system has the capability to detect

deliberate attempts of plagiarism. Reverse engineering

technique is used to bring each suspected program back to its

initial specification stage. This operation enables us to

extract the structure of the program which is an important

factor in detecting plagiarism. This can be achieved through

the extraction of the Static Execution Tree (SET) for each

program. The SET is then transformed into Terminating

Binary Sequence (TBS). The TBSs generated from the tested

programs are compared in order to get similar branches.

Reengineering technique is then applied on these similar

branches in order to compute its entropy (information

content). The entropy is computed to prove or disprove the

existence of similarities between programs. The JK system

has been tested on different Java programs with different

modifications, and proved successful in detecting almost all

cases including those of partially plagiarised programs.

Keywords: Entropy, Plagiarism, Reverse Engineering,

Software Engineering, Java Programs

1. INTRODUCTION

Students of various disciplines, especially Computer

Science, develop large numbers of software systems

worldwide every year as part of their learning process. In

most cases, their instructors have the feeling that some of

these programs are in fact copies (with some modifications)

from software developed by others. Such unacceptable

conduct of claiming others’ work partially or completely is

called "plagiarism".

Conventional inspections for plagiarism are proved

ineffective and time-consuming. The instructor might

discover plagiarism incidentally by observing that a student

has forgotten to replace the name of his/her friend in the

program source text, or if two programs produce the same

weird failure for a test input. Therefore, better automated

inspections that can find similar pairs among a set of

programs would be practically more effective.

Plagiarism detection is a pattern analysis problem. A

plagiarized program is either an exact copy of the original, or

a variant obtained by applying various textual

transformations. A method to detect plagiarism must

produce a measure that quantifies how closely the two

programs are similar. Except for the case of a verbatim copy,

detection approaches that use direct comparison of text files

are usually weak, since there is no obvious closeness

measure. Most techniques adopt a lexical approach, where

the program tokens are classified as language keywords and

user symbols.

In this research, the JK system is developed to be capable of

detecting deliberate attempts of plagiarism. The system is

intended to be used by instructors to detect plagiarism acts

among students. The JK system also has wider applications,

as it offers a means of characterizing programming style and

attaching a “Fingerprint” to the program. Another incentive

for developing the system is the protection of intellectual

property. It is of note that plagiarism in software is

considered an extremely common practice of violating

intellectual properties and copyrights.

2. RELATED WORK

Early attempts to detect plagiarism were usually based on

feature comparison. Most systems were based on computing

a number of different software metrics for each program.

The systems then consider sets of programs that lie close to

be possibly plagiarized [1].

The earliest system is Ottenstein dated 1976. It applied only

basic Halstead metrics [2] on FORTRAN language (number

of unique operators n1, number of unique operands n2, total

number of operators N1, and total number of operands N2)

and considered programs to be plagiarized if all four values

coincide [2]. Later systems such as those of [2,3] introduced

much larger number of metrics (up to 24) in order to

improve performance. Also, other metrics-based systems for

monitoring similarities between programs are presented

[4,5].

On the other hand, there are systems that depend on the

structure of the program rather than on summary indicator.

Such systems are "MOSS" [6], "YAP3" [7], "JPlag" [8] and

"SIM" [9]. Measure Of Software Similarity (MOSS) [6] is an

automatic system for determining the similarity of C, C++,

Java, Pascal, Ada, ML, Lisp, or Scheme programs. To date,

JCS&T Vol. 6 No. 2 October 2006

66

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15766734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MOSS has been mainly used in detecting plagiarism in

software programs. Since its development in 1994, MOSS

has been very effective in this role. Moss is being provided

as an Internet service.

The "Yet Another Plague (YAP)" [7] series of tools are

based on the Plague plagiarism detection tool. Michael Wise

created the original version of "YAP1" followed by "YAP2".

In 1996, Wise produced the final version of "YAP3" that

depends on an algorithm called "Karp-Rabin Greedy-String-

Tiling (RKS-GST)" [1]. Also, "SIM" [9] is used to detect

plagiarism among a large set of programs in the C language.

"SIM" works by converting each program into a stream of

tokens. These tokens are compared using “string alignment

techniques” to detect similarity.

"JPlag" system [8] is used to find pairs of similar programs

among a given set of programs. It has been successfully used

in practice for detecting plagiarisms among student Java

program submissions. It also provides support to the

languages C, C++ and Scheme and if is widely available as a

web service. It takes a set of programs as input, compares

them pairwise (computing for each pair a total similarity

value and a set of similarity regions), and provides a set of

HTML pages as output that allows for exploring and

understanding observed similarities in detail. JPlag works by

converting each program into a stream of canonical tokens,

and then trying to cover one token string by substrings taken

from the other one (string tiling).

It is concluded that when very close copies are involved, the

attribute-counting-metric systems perform better than the

structure comparison system in the detection of plagiarism.

On the other hand, if a student copy is only a part of another

student’s program, the attribute-counting-metric systems will

not be able to detect plagiarism [10].

There are other systems which depend on both structure and

metrics comparisons, such as [3,11]. For example, Jankowitz

[11] constructed a ‘template’ for each program to extract

similar regions or areas from the set of programs. Then a

statistical analysis was performed on these regions in order

to detect plagiarism. Whereas, Donaldson et al [3] used eight

attributes counting metrics and generated a string

representation of the program text. Each letter in the string

represents single or multiple adjacent occurrence of program

structure, such as variable declarations, assignment

statements and procedure calls. These Strings are compared

in order to detect similar programs.

There are other techniques used to detect plagiarism, such as

[12,13]. Baker and Manber used the bytecode to detect

similarity in Java programs. They adopted three tools

designed to find similarity in both source code and text in

order to work with bytecode files [12]. Cunningham and

Alexander discovered another approach to detect plagiarism

in computer assignments using a Case Based Reasoning

(CBR) approach [13]. The problem of finding similarity in

programs is made analogous to the problem of case retrieval

in CBR [1].

The mentioned tools are effectively updated and extended to

cover other programming languages such as C#. Also, new

tools are developed to detect plagiarism such as [14,15].

3. ENTROPY MEASUREMENT

One of the most fundamental results of the statistical

communication theory is the Shannon's information theory

[17]. By ignoring the meaning of a message and focusing on

the probability of choosing any symbol out of the message,

Shannon was able to establish an Entropy function which

measures the statistical information content. By applying the

Shannon's concept to a program, its Entropy can be

calculated using the following formula:

H =
n

i

ii pp
1

2
log

Where:

 pi: probability of occurrence of the ith symbol in a message.

n: total number of symbols

Entropy concept can be used in a program by considering the

program as a message and the symbol is either an operator or

operand. The Entropy software metric, discussed by Davis

and LeBlanc [18], explains the notion of Entropy at a higher

conceptual level by considering the so-called chunks of

code. A chunk could be a single statement, a block of code,

or a module itself. An important notion is an equivalence

class of chunks. The concept of the equivalence class is

based on chunks’ in-degree and out-degree. Two chunks are

considered equivalent if they have the same number of in-

degree and out-degree of links.

4. THE PROPOSED APPROACH

Two techniques are used to detect plagiarism. The first one

is based on comparing the structure of the programs and

extracting similar branches. The second one is based on

analyzing the similar branches by comparing the general

characteristics and computing the Entropy (information

content in the programs).

Program Structure

Plagiarism could be detected in the programs by comparing

the Terminating Binary Sequence (TBS). TBS can be

obtained by constructing the Static Execution Tree (SET),

transforming it to a Strictly Binary Tree (SBT), and then

generating the TBS as shown in figure 1.

Determining the Static Execution Tree (SET): The

SET represents the interconnection between the "main"

method of a program to its other methods (functions). SET

can be constructed by parsing the source program and doing

the following:

Step1: The "main" method is made the root of the SET.

Step2: A branch is added to each method called from the

main method.

Step3: The same recursive algorithm is applied on each

method until no further call is made to another

method.

The generated tree is then slightly altered to generate another

SET free of user-dependent method name. The algorithm is

quite simple: each time a different method is encountered, a

unique number is assigned to replace the method's name. By

using this technique, all user-dependent information is

stripped out leaving the skeleton structure of the program.

JCS&T Vol. 6 No. 2 October 2006

67

SET SBT

Constructing SET

Figure 1: The process of generating the Terminating Binary Sequence (TBS)

TBSProgram

Generating TBS Transformed into

SBT

Determining the Strictly Binary Tree (SBT): A SBT is

defined as a tree in which every node has either 0 or 2

children. It can be produced by transforming the original

SET. If the original SET has “n” nodes, the resulting SBT

will have (2n-1) nodes [11].

The transformation can be accomplished by using the

following algorithm [19]. Given an ordered rooted tree, the

SBT can be constructed as follows:

Step1: If the tree is a single node, the SBT is just the root.

Step2: If the tree is not a single node, cut the branch

between the root and its eldest son. This divides the

original tree into two parts: the left and right subtrees

of the root of the SBT. The left subtree is the part of

the original tree rooted in the eldest son of the root,

and the right subtree is the remainder of the tree

including the root.

Step3: Recursively, repeat steps (1) and (2) on the two parts

of the original tree.

Determining the Terminating Binary Sequence

(TBS): TBS is defined as a binary set of numbers that

includes only 0 or 1 numbers. For a general tree, the TBS

can be constructed as follows:

1. Transform the tree into a strictly binary tree.

2. Traverse the resulting SBT using the pre-order walk, and

when a node is visited put a "1" in the binary sequence if

the node is a branch node and a "0" if the node is a

terminal node.

 Some interesting properties of the TBS are the following:

1. The original SBT can be reproduced without losing

any information from the TBS

2. A tree with "n" nodes has a TBS with "n" 0s and "n-1"

1s.

3. A group of "k" 0s corresponds to a node with k sons in

the original tree. (In our model, this group represents a

method which has called k methods. The followed '1'

is the method that calls 'k' methods.

4. This technique enables us to find in a given tree, all the

occurrences of a subtree with a certain structure. This

sequence forms the basis of our analysis.

Performing the Analysis

Once two identical branches are identified, their

corresponding methods (functions) are extracted and

analyzed. There are two separate analysis techniques. The

first one inspects the global characteristics of the procedures.

The second one, involving Entropy measurement, requires

more detailed analysis.

Inspecting the General Characteristics: The statistics

gathered in the first part are:

1. code lines

2. Attributes

3. reserved words

4. assignment statements

5. IF statements

6. FOR statements

7. WHILE-DO statements

8. CASE statements

9. function calls

Each of the above factors is computed for the two programs

(the authentic and the suspected).

Measuring the Entropy: The Entropy measurement is

used to further analyze the extracted branches and as a

crucial step to detect plagiarism. Based on Entropy, four

measurements are conducted:

1. Entropy based on the interconnection between the

classes: The Entropy of the class connection can be

computed by considering the chunk as a class. The

class which has the same number of sub and super

classes will be in the same equivalence classes.

2. Entropy based on the interconnection between the

methods: The Entropy of method connections is

computed by considering the chunk as a method. The

methods that have the same number of "call and

called" methods are placed in the same equivalence

class.

3. Entropy based on operators count: This factor is used

to compute the information content of each method in

the program as well as the whole program depending

on the number of operators. The Entropy is computed

as follows:

H =
j

i
n

n

n

n ii

1

2
log

Where:

j: number of distinct operators.

ni: frequency of occurrence of the operator i.

n: total number of operators

4. Entropy based on the operands count: This factor is

also used to compute the information content of each

method in the program as well as the whole program

depending on the number of operands. The Entropy is

computed as follows:

H =
j

i
n

n

n

n ii

1

2
log

 Where:

j: number of distinct operands

ni: frequency of occurrence of the operand i.

n: total number of operands.

JCS&T Vol. 6 No. 2 October 2006

68

The Algorithm

Input: Two Programs

Output: Plagiarized programs or none

Step 1: Compare the two programs by using the four

Entropy factors.

Step 2: If the factors (1, 2, 3, 4) of the two programs have

similarity of more than 95%, the system indicates

plagiarism

Step 3: If there is no significant plagiarism in the whole

program, branches are compared. SET is used to

extract similar branches.

1. Parse the two programs and construct SET for each

program.

2. Convert SET into SBT.

3. Generate the two TBSs.

Step 4: The system searches for the largest segment existing

in both TBSs.

Step 5: If the above segment consists of more than three

zeros, the methods corresponding the zeros are

extracted using the mapping function. The following

analysis is then performed:

1. Comparing the general characteristic:

a: For i=1 to n, where n is the total number of

factors

If (similarity > 95%) depending on factor i,

Then Increment COUNTER by 1

b: If ((COUNTER / n) * 100) > 50, then

Perform the deep analysis (Entropy) Else,

there is no similarity

2. These functions are then compared by using the

Entropy measurement (Factors 3, 4).

If (similarity between the two branches based on

the two entropy measurements > 95 %), Then

There is Plagiarism. Else, there is no similarity

Step 6: If the segment found in step 5 has less than three

zeros, then no indication for plagiarism.

5. EXPERIMENTAL RESULTS AND ANALYSIS

To test the system's capability of detecting plagiarism, three

test examples are given. First, two simple programs are

presented; one of them is plagiarized from the other. Second,

two relatively large programs are given: one of them is

applied for a bookstore which adds new records and view

existing records. Each record consists of the ISDN, name,

and price of each book. This program is plagiarized to be

used for adding and viewing employee name, number, and

salary. The third example represents a partially plagiarized

bookstore program which adds new employee record. All

three plagiarism cases are successfully detected by the

system, as shown in Appendix A.

The experimental results indicate that the JK system is

capable of detecting plagiarism among Java programs even

in the case of partial plagiarism. First, we will show the

effects of common modifications on the Entropy values

based on the operators and operands.

Case1:

Table 1: Similarity based on Entropy case 1

Modifications:

1. Code formatting.

2. Insertion, modification or deletion of comments.

3. Changing the names of variables methods or classes.

4. Alteration of modifiers such as private, final … etc.

5. Modification of constant values.

6. Replacing a for-loop by a while-loop or vice versa.

7. Reordering the cases of a switch-statement.

8. Recording independent statements within a basic

block.

9. Promote an int to a long.

10. Reordering a cascading if-statement.

Analysis:

The above modifications could not change the value of the

Entropy, since no changes were made on the operators or

operands of the program. As we can see from the

modification, changing the comment or output will not

change the operator or operand in the program. The same

thing applies to the changing of variable names, or the order

of independent statements. The value of entropy is not

affected as the number of operators and operands in the

program remains the same. In the case of replacing the "for-

loop" by "while loop", only the structure of the loop is

changed and the operator "for" is replaced with "while".

Case 2:

Table 2: Similarity based on Entropy case 2

Modifications:

1. Splitting or merging variable declaration lists.

2. Replacing a sequence of if-statement by a switch-

statement.

3. Replacing an int[2] by two separate int or vice versa.

Analysis:

These modifications have no effect on the Entropy value

which depends on the operands that doesn't change in the

program. On the other hand, there is a minor change in the

Entropy value which depends on the operators. For example,

replacing "if-statement" with "switch-statement" would

increase the Entropy as new operators are defined (switch,

case, break, default) instead of (if, else) operators. However,

the changes have a slight effect on the similarity (98%).

Splitting or merging the declaration of variables will not

affect the number of declared variables (operands), but a new

operator will be defined that affects the value of Entropy 1.

Entropy1 Entropy 2

Prog

1

Progr

2
Similarity

Prog

1

Prog

2
Similarity

3.84 3.84 100% 4.89 4.89 100%

Entropy1 Entropy 2

Prog

1

Progr

2
Similarity

Prog

1

Prog

2
Similarity

3.84 3.89 98% 4.89 4.89 100%

JCS&T Vol. 6 No. 2 October 2006

69

Case 3:

Table 3: Similarity based on Entropy case 3

Modifications

1. Moving an initialization away from the declaration.

2. Explicitly initializing with defaults value.

3. Adding or removing unused code.

4. Importing additional packages and classes.

5. Inserting output statements.

6. Moving a block of statement into a new method.

Analysis:

The modifications affect, to some extent, the value of both

entropy 1 and entropy 2. This effect depends on the size of

the program and on the degree of modifications. In general,

the system can detect plagiarism in all cases expect when

there is a large modification in a small program. Any

modification that changes the number of operands or

operators will affect the value of Entropy. For example,

adding output statements will increase the number of

operands (output) and operators (print functions) and,

therefore, the Entropy value will change. The same result is

obtained if new methods are created, or explicit initialization

variables are added. It can be concluded that any changes to

the number of operands and operands will change the

Entropy.

It is worth mentioning that the other two Entropy factors,

based on the methods and classes, are changed if the

structure of the program is changed. The system is tested on

various programs including small-sized programs, medium-

sized programs, relatively large-sized programs and partially

plagiarized programs.

Small-Sized Programs

A set of programs is selected from elementary classes to

detect plagiarism. It was found that most of the programs are

similar due to the fact that the structure and the idea of

elementary programs are almost the same. In order to

discover plagiarism, the similarity value should be 99 or 100

%.

Medium-Sized Programs

Two programs (calculator, analogue clock) are given to

students to perform some modifications. It is noted that all

changes are based on renaming variable names, reordering

statements, and changing the place of functions. Therefore,

the system detected all cases and the similarity was more

than 98%. Also, as there was no modification on the

structure of the methods or classes in all programs, the

measurement of similarity-based structure was 100 %.

Relatively Large-Sized Programs

A relatively large-sized program, which contains more than

one class and a large number of methods, has been selected

to test the system. The program was given to students in

order to make some modifications. The four Entropy

measurements indicated a high similarity between the

original and modified programs. However, there were few

cases where the students made some changes to the structure

of the program and the Entropy measurements failed to

detect them. However, in such cases, the system was able to

extract similar branches by determining the TBS.

Partially Plagiarized Program

In this case, a part of a relatively large-sized program has

been plagiarized. The Entropy measurements of the whole

program successfully detected some cases of partial

plagiarism. However, when TBS is used, the similar

branches are discovered and then detected.

6. CONCLUSIONS AND FUTURE WORK

The following conclusions have been reached based on the

application of the JK system on different programs using

various modifications.

1) Entropy measure is suitable for detecting plagiarism.

2) The values of the structure-based Entropy are in general

be the same in both the original and modified programs.

3) The TBS indicator is particularly useful in the case a

partial plagiarism.

4) Frequent addition or merge of methods would change the

TBS of the program. Therefore, in some cases, the

system fails to extract similar branches.

5) Changing the Entropy of a program, by adding

redundant statements, may affect the Entropy values and

mislead the system.

6) In case of small-sized programs, it is not recommended

to compare the TBS as it is almost equal for all

programs. Also, it is better to assume that two programs

are plagiarized if the similarity value is more than 99 %.

This is due to the fact that the structure and

implementation of the programs are almost the same.

7) The system is able to detect many plagiarism attempts

that many other systems fail to detect such as: replacing

"while" statements with "for", replacing "if" statement|

with "switch-case" and reordering independent

statements

Suggested future work

1. Apply the concept of entropy measures to cover all

software quality indicators subjected to modifications

such as complexity, effort, difficulty … etc.

2. Apply the concept of entropy to detect plagiarism in

textual products (Articles, Novels, … etc).

APPENDIX

Example 1
Original

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

class program1 extends JApplet implements ActionListener {

 private Container container = getContentPane ();

 private JTextField textfield= new JTextField (10); // TextField to

read the mark

 // The initialisation of the user interface

 public void init () {

 container.setLayout (new FlowLayout());

 JLabel label = new JLabel ("Enter the mark..");

 container.add (label);

 textfield.addActionListener(this);

Entropy1 Entropy 2

Prog

1

Progr

2
Similarity

Prog

1

Prog

2
Similarity

3.84 3.89 98% 4.89 4.92 98%

JCS&T Vol. 6 No. 2 October 2006

70

closeout closeIn

setName

Application

getName

getISDN

main

Frame

addButton

add

setISDN
setPrice rename

closeIn

viewButton

search

closeIn

getPrice

clearButton

Figure 2: The Static Execution Tree (SET) of the original program

closeOut

 container.add (textfield);

}

// Automatically invoked when the use press Enter.

 public void actionPerformed (ActionEvent e) {

 int mark=Integer.parseInt (textfield.getText()) ; // read the mark

 String msg ;

 if (mark > 100 || mark < 0) {

 msg="Mark is out of range" ;

 container.setBackground(Color.blue);

 } else if (mark>=90) {

 msg="Your Grade is A" ;

 container.setBackground(Color.green);

} else if (mark>=80) {

 msg="Your Grade is B" ;

 container.setBackground(Color.cyan);

} else if (mark>=70) {

 msg="Your Grade is C" ;

 container.setBackground(Color.black);

} else if (mark>=60) {

 msg="Your Grade is D" ;

 container.setBackground(Color.red);

} else {

 msg="Your Grade is F" ;

 container.setBackground(Color.gray);

} showStatus(msg); // print the message in status bar

Plagiarized

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;
class program2 extends JApplet implements ActionListener

 { JTextField textfield= new JTextField (15);

 byte m;

 Container container = getContentPane ();

 String grade ;

 public void init ()

 { container.setLayout (new FlowLayout());

 JLabel label = new JLabel ("Enter the mark..");

 container.add (label);

 textfield.addActionListener(this);

 container.add (textfield);

 }

 public void actionPerformed (ActionEvent e)

 { m=Integer.parseInt (textfield.getText()) ;

 if (m > 100 || m < 0)

 { grade="Error" ;

 container.setBackground(Color.blue);

 } else if (m>=90)

 { grade="A" ;

 container.setBackground(Color.green);

 } else if (m>=80)

 { grade="B" ;

 container.setBackground(Color.cyan);

 } else if (m>=70)

 { grade="C" ;

 container.setBackground(Color.black);

 } else if (m>=60)

 { grade="D" ;

 container.setBackground(Color.red);

 } else

 { grade="F" ;

 container.setBackground(Color.gray);

 } showStatus(grade);

 } }

Figure 1: example of two programs

Table 1: The output using JK system

Entropy Factors Program 1 Program 2 Similarity

Entropy 1 1.0 1.0 100%

Entropy 2 1.0 1.0 100%

Entropy 3 3.90 3.83 98%

Entropy 4 4.89 4.87 99%

 Result: Detecting plagiarism

Example 2

 (a) Original (b) Plagiarized

Figure 2: Example of two plagiarism programs,

 Table 2: The output using JK system

Entropy Factors program1 program2 Similarity

Entropy 1 0 0 100%

Entropy 2 2.59 2.59 100%

Entropy 3 4.48 4.48 99%

Entropy 4 6.21 6.02 97%

Result: Detecting plagiarism

Example 3: This program plagiarized only add and clear

functionality
Entropy Factors program1 program2 Similarity

Entropy 1 0 0 100%

Entropy 2 2.70 2.70 99%

Entropy 3 4.48 4.47 99%

Entropy 4 6.21 6.03 97%

 Result: Detecting plagiarism.

If a TBS technique is applied, it works as follows:

Step 1:

JCS&T Vol. 6 No. 2 October 2006

71

Frame

main

Application

clearButton

viewButtoncloseIn

getPrice

getName
getISDN

search

rename closeOut

closeIn

closeOut

setPrice

setISDN

add

setName closeIn

Figure 3: The Strictly Binary Tree (SBT) of the original program

The TBS generated from the original program is:

101011100101111000001011111101100000000

The TBS generated from the plagiarized program is:

101011001011111101100000000

The identical pattern is: 101111110110000000

The extracted methods from the original program are:

addButton, add, rename, closeOut, closeIn, setPrice,

setISDN, setName. The extracted methods from the

plagiarized program are: addButton, add, rename, closeout,

closeIn, setSalary, setNo, setName

Step 2: Analysis of the extracted methods:

Table 3: The first phase analysis

Factor Prog 1 Prog 2 Similarity outcome

size of methods 46 46 100% Pass

Attributes 14 14 100% Pass

reserved word 39 39 100% Pass

Assignment

statements

46 46 100% Pass

If statements 1 1 100% Pass

For statements 0 0 100% Pass

While-do

statements

2 2 100% Pass

Case statements 0 0 100% Pass

Function calls 36 36 100% Pass

Table 4: The second phase analysis (Entropy)

Entropy Factors Prog 1 Prog 2 Similarity

Entropy 1 4.01 4.01 100%

Entropy 2 4.83 4.77 98%

Result: Detecting plagiarism

6. REFERENCES

[1] P. Clough, “Plagiarism in Natural and Programming

Languages: An overview of current tools and

technologies”. Internal report, Department of Computer

Science, University of Sheffield, 2000
http://www.dcs.shef.ac.uk/~cloughie/papers/Plagiarism.pdf

[2] S. Grier, “A tool that detects plagiarism in Pascal

programs”, ACM SIGCSM Bulletin, Vol. 13, No. 1,

1981, pp. 15-20.

[3] J.L. Donaldson, L. Ann-Marie, and P.H. Sposato, “A

plagiarism detection system”, ACM SIGCSE Bulletin,

Vol. 13, No. 1, 1981, pp.21-25.

[4] L.J. Edward, “Metrics based plagarism monitoring”,

The Journal of Computing in Small Colleges, Vol. 16,

No. 4, 2001, pp. 253-261.

[5] S.D. Stephens, “Using metrics to detect plagiarism”

(Student paper). The Journal of Computing in Small

Colleges, Vol. 16, No. 3, 2001, pp.191-196.

[6] A. Aiken, “Measure of software similarity”, URL

http://www.cs.berkeley.edu/-aiken/moss.html.

[7] M.J. Wise, “YAP3: Improved Detection of similarities

in computer program and other Texts”, ACM SIGCSE,

1996, pp. 130-134.

[8] L. Prechelt, G. Malpohl and M. Phillippsen, “JPlag:

Finding Plagiarisms among a Set of Programs”,

Technical Report, 2000
http://www.ipd.uka.de/~prechelt/Biblio/Biblio/jplagTR.pdf

[9] D. Gitchell and N. Tran, “Sim: A Utility for Detecting

Similarity in Computer Programs”, ACM SIGCSE

Technical Symposium,Vol. 31,No.1, 1999, pp. 266-270.

[10] K.L. Verco and M.J. Wise, “Software for Detecting

Suspected Plagiarism: Comparing Structure and

Attribute-Counting Systems”, Proceedings of First

Australian Conference on Computer Science Education,

Sydney, Australia, July 3-5 1996, pp. 81-88.

[11] H.T. Jankowitz, “Detecting plagiarism in student Pascal

programs”,ComputerJournal, Vol.31,No1,1988,pp1-8.

[12] B. Baker and U. Manber, “Deducing similarities in java

sources from bytecode”, Proceeding of USENIX Annual

Technical Conference, New Orleans, 1998, pp. 179-190.

[13] P. Cunningham and A. Alexander, “Using CBR

techniques to detect plagiarism in computing

assignments”, Proceedings of the First European

Workshop on Case-Based Reasoning EWCBR-93,

Kaiserslauten, Germany, 1993, 178-183.

[14] C. Daly and J. Horgan, “Patterns of Plagiarism”,

Proceedings of the 36th SIGCSE technical symposium

on Computer science education, 2005, pp. 383-387.

[15] P. Vamplew and J. Dermoudy, “An anti-plagiarism

editor for software development courses”, Proceedings

of the 7th Australian conference on Computing

education, Australia, 2005, pp. 83-90.

[16] L.S. Shooman, Software Engineering Design,

Reliability and Management, McGraw-Hill Book

Company, 1983.

[17] J. Davis and R. LeBlanc, "A Study of the Applicability

of Complexity Measures", IEEE transactions on

Software Engineering, Vol. 14, No. 9, 1988, pp. 1366-

1372.

[18] E.S. Page and L.B. Wilson, Information Representation

and Manipulation in a Computer. Cambridge University

press, 1973.

Received: Oct. 2005. Accepted: Jun. 2006.

JCS&T Vol. 6 No. 2 October 2006

72

