
Computing Support for Problem Solving in
Virtual Communities of Practice

María Clara Casalini, Elsa Estevez

Departamento de Ciencias e Ingeniería de la Computación, Universidad Nacional del Sur
Bahía Blanca, Argentina

{mcca,ece}@cs.uns.edu.ar
and

Tomasz Janowski
United Nations University International Institute for Software Technology

Macau
tj@iist.unu.edu

ABSTRACT

The paper presents a formal model for a knowledge
repository shared by members of a Virtual Community of
Practice (VCPs), describes how the repository can be used
to underpin collaborative problem solving, and how to
build computer support for such processes. The repository
comprises the resources used and developed by VCPs
particularly through problem solving. As a case study, the
paper illustrates how the problem solving process and the
underlying repository can be applied in disaster prevention
and handling. The repository and the process are formally
described using the RAISE Specification Language.

Keywords: Virtual Community of Practice; Knowledge
Repository; Collaborative Problem Solving; Semantic
Web; Formal Specifications

1. INTRODUCTION
Communities of Practice (CoPs) are groups of individuals
with a common interest in a particular area of knowledge,
interacting regularly by sharing experiences and taking
part in joint activities, with the aim of learning from each
other and developing the area [19]. Virtual Communities
of Practice are CoPs supported by technology [16].

CoPs are characterised by [19]: domain – the subject
of interest that brings people together; community –
defined by members interacting through various activities,
all shaping the community and the relationships between
members; practice – the repertoire of resources, such as
experiences, tools, and ways of addressing recurring
problems. CoPs have a positive impact on organizations
and individuals since they contribute to: (1) providing the
context for people to interact, discuss and learn from one
another, (2) making existing knowledge explicit and
generating new knowledge, (3) introducing collaborative
processes and (4) promoting professional development.

Members of VCPs get involved in direct or indirect
collaborations. The former takes place when two or more
members communicate directly, the latter when a member
applies the knowledge other members made available in a
shared repository [6]. For both types of collaborations, a
number of tools exist to offer various kinds of computing
support. However there is little support for the process of
collaborative problem solving and limited understanding
of what the process, if one can be systematized, involves.

This paper presents a formal model for a shared
knowledge repository, and explains how the repository can
underpin the problem solving process defined in [5]. We
also illustrate how the process can be applied to solve
problems in the domain of disaster prevention and
handling. We also elaborate on available tools and
technologies that make VCPs, and the implementation of
the model presented here, possible.

The rest of the paper is organised as follows. Section
2 introduces related work and provides examples of
computer support for collaborations in VCPs. Sections 3
and 4 present the model of the repository and how it can
be used as part of the process for collaborative problem
solving. Section 5 presents a case study in the use of the
process and the repository in disaster prevention and
handling. Finally, Section 6 presents some conclusions.

2. RELATED WORK
The activities carried out in VCPs depend on the nature of
the community. A wide range of computer support exists
for various functions and activity types, including member
registration, uploading and browsing of resources, chat
rooms, emails, text editors and spreadsheets.

Examples of tools include: ACE – a collaborative
editor [1] and Google Docs & Spreadsheets – a text editor
and spreadsheet from Google [10]. Forum engines like
phpBB [15], while still evolving, are mature applications
that provide support for discussions and information
sharing, allowing member registration, roles and profiles
management, and content search, among others. Wikis are
an easy way to collaboratively build a shared knowledge
base [13] - a freely expandable collection of interlinked
Web pages, a hypertext system for storing and modifying
information and a database where each page can be edited
by users with a forms-capable Web browser. Wikis are
becoming the first choice for collaboration portals.
Probably the most illustrative example of the use of Wikis
is Wikipedia - the collaborative encyclopedia [20]. This
type of software is known as groupware, since it supports
Computer-Supported Cooperative Work (CSCW) [3][11].

A weakness of most tools is inability to interpret the
semantics of information, therefore lack of support for
generating new knowledge through exploring relationships
among data. To overcome this, we take advantage of the
concepts and technologies used by Semantic Web – an
extension of the current Web, in which information is
given well-defined meaning, enabling computers and
people to work in cooperation [2]. Semantic Web is
implemented through a set of technologies and standards,
such as the Resource Description Framework (RDF) [17].

RDF is a language for representing and exchanging
metadata about web resources, describing them in terms of
properties and their values. Resource descriptions are
called statements and consist of a subject, a predicate and
an object. The subject identifies the resource, the predicate
determines a property of the resource, and the object
defines the value of the property. Resources and properties
are identified using Unique Resource Identifiers (URIs).
Figure 1 shows a concrete RDF graph with three sentences
relating the GrandForks resource with the United
States resource and with two other data elements.

JCS&T Vol. 7 No. 1 April 2007

52

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15766722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Resources, Properties and Statements

3. MODEL - REPOSITORY
The process for collaborative problem solving proposed in
[5] relies on a repository of resources built and developed
by the community. This section presents in detail the
model of the repository using the notation of RSL [9].

The repository is modelled using three components:
resources – community assets categorized into types,
properties – data about resources or relations between
them, and statements – expressions about resources and
their properties. Following RDF definitions, resources are
uniquely identified and described through properties -
binary relations between pairs of resources or between
resources and simple values, and statements - triples of a
subject (resource), property and object (resource or data).
Statements are written as [sub,prop,obj]. Resource
types (categories) are organized into a tree-like hierarchy.

First, we introduce the abstract type Element
representing all the elements in the repository: data,
resources, properties and statements.

scheme ELEMENT = class type Element end

Second, the module CATEGORY introduces the abstract
type Cat, and concrete types Cats’ and Cats. Cats’
maps a category to the set of all descendant categories in
the hierarchy. Cats models categories that are well
formed using the function iswf to assess if a category is
well formed – it has a root element, the root is not a
subcategory of itself, all categories are subcategories of
the root, and every category has a single parent. The
values root and init model the root element and the
initial value of a category hierarchy respectively. In
addition, a hierarchy can be modified by adding categories
and subcategories and by deleting categories.

scheme CATEGORY = class
type
 Cat,
 Cats' = Cat -m-> Cat-set,
 Cats = {| cs: Cats' :- iswf(cs) |}
value
 root: Cat,
 init: Cats = [root +> {}]
value
 iswf: Cat' -> Bool
 iswf(cs) is
 isCat(root,cs) /\
 ~isSubCat(root, root,cs) /\
 (all c1,c2: Cat :-
 isCat(c1,cs) =>
 isSubCat(c1,root,cs) /\
 (isSubCat(c2,c1,cs) => isCat(c2,cs)) /\
 (isCat(c2,cs) => cs(c1) inter cs(c2) = {})
)
 value
 addCat: Cat >< Cats -~-> Cats,
 addSubCat: Cat >< Cat >< Cats -~-> Cats,
 deleteCat: Cat >< Cats -~> Cats
end

In addition to resources, data types representing values of
resource attributes are also organized into a hierarchy.
DATA and RESOURCE modules are introduced to model the
corresponding hierarchies. Both include the abstract types
Data and Res, the corresponding data/resource types, and
the functions to add and delete data/resource types and to
determine if a given type belongs to a category. The
functions are defined in terms of functions in the
CATEGORY module. Here is the DATA module:

scheme DATA = class
 object C: CATEGORY
 type
 Data,
 DType = C.Cat,
 DTypes = C.Cats
 value
 addDType: DType >< DTypes -~-> DTypes
 addDType(dt, dts) is
 C.addCat(dt, dts)
 pre canAddSubDType(dt,root,dts),
 isDType: DType >< DTypes -> Bool
 isDType(dt,dts) is C.isCat(dt,dts)
 ...
end

And here is the RESOURCE module:

scheme RESOURCE = class
 object
 C: CATEGORY
 type
 Res,
 RType = C.Cat,
 RTypes = C.Cats
 value
 addRType: RType >< RTypes -~-> RTypes
 addRType(rt,rts) is
 C.addCat(rt,rts)
 pre canAddSubRType(rt,root,rts),
 isRType: ResT >< ResTs -> Bool
 isRType(rt,rts) is C.isCat(rt,rts)
 ...
end

Information about resources is expressed through their
properties. A property maps a resource type to a simple
data type – associating a data value to a resource, or to
another resource type - establishing a relationship among
resources. Consequently, an object in a property can be a
data type or a resource type. Before we introduce the
PROPERTY module, we define the VALUE module for
representing possible values of an object. The Value type
contains two kinds of values: plain - instances of Data
and complex - instances of Res. Likewise, VType are
defined as plain or complex data/resource types and
VTypes represents the hierarchies of DTypes and RTypes.

scheme VALUE(D: DATA, R: RESOURCE) =
class
 type
 Value == plain(D.Data) | complex(R.Res),
 VType == plain(D.DType) | complex(R.RType),
 VTypes:: plain: D.DTypes complex: R.RTypes
 ...
end

Properties relate subjects (resources) to objects (values)
according to the resource and value types existing in the
repository. The type Prop is defined as a record composed
of an RType, a VType and the name of the property. A
property is correct (isProp) if its subType is a valid
RType and its objType is a valid VType.

http://VCP-DPH.org/GrandForks

18/04/97

http://VCP-DPH.org/UnitedStates

flood

http:// VCP-DPH.org/disasterType

http://VCP-DPH.org/located

http://VCP-DPH.org/occurred

JCS&T Vol. 7 No. 1 April 2007

53

scheme PROPERTY (D:DATA,R:RESOURCE,V:VALUE(D,R)) =
class
 type
 Name,
 Prop::
 subType: R.RType
 objType: V.VType
 name: Name
 value
 isProp: Prop >< D.DTypes >< R.RTypes -> Bool
 isProp(p, dts, rts) is
 R.isRType(subType(p), rts) /\
 V.isVType(objType(p), V.makeVTypes(dts,rts))
 ...
end

Statements are triples of: subject - identifies the resource
described by the statement, property - identifies a property
describing the resource, and object - identifies the value of
the property, which can be a data instance or another
resource depending on the property. In a correct statement,
the property must be present in the repository and the
types of the subject and object parts must conform to the
resource/values types required by the property.

scheme STATEMENT(D: DATA, R: RESOURCE,
 V: VALUE(D,R), P: PROPERTY(D, R, V)) = class
 type
 Stat:: sub: R.Res prop: P.Prop obj: V.Value
 value
 isStat: Stat >< D.DTypes >< R.RTypes -> Bool
 isStat(s, dts, rts) is
 P.isProp(prop(s), dts, rts) /\
 R.hasRType(sub(s),P.subType(prop(s)),rts) /\
 V.hasVType(obj(s),
 P.objType(prop(s)),
 V.makeVTypes(dts, rts))
 ...
end

In order to manage elements of the repository, resources,
properties and statements are grouped into collections. The
module COLLECTION is introduced to define an abstract
type Collection, a special value empty to represent the
empty collection, and some functions. Among them,
hasElem determines whether an element belongs to a
collection and addElem adds an element to the collection.

scheme COLLECTION(E: ELEMENT) = class
 type
 Col
 value
 empty: Col,
 hasElem: E.Element >< Col -> Bool
 axiom
 (all e:Element:- ~hasElem(e, empty))
 value
 addElem: E.Element >< Col -> Col
 addElem(e, c) as c’
 hasElem(e, c’) /\
 (all e’: E.Element :-
 hasElem(e’,c) => hasElem(e’,c’)
)
 ...
end

Finally, the module REPOSITORY defines the repository
along with the operations on it. It creates the instances of
the modules defined earlier, and defines types to represent
collections of resources, properties and statements.

scheme REPOSITORY = class
 object
 D: DATA,
 R: RESOURCE,
 V: VALUE(D, R),
 P: PROPERTY(D, R, V),
 S: STATEMENT(D, R, V, P),
 ER : class type Element = R.Res end,
 EP : class type Element = P.Prop end,

 ES : class type Element = S.Stat end,
 CR : COLLECTION(ER),
 CP : COLLECTION(EP),
 CS : COLLECTION(ES)
 type
 Ress = CR.Collection,
 Props = CP.Collection,
 Stats = CS.Collection
 ...
end

A set of functions is also defined in REPOSITORY to
determine if a given resource, property or statement exists
on the repository, based on the hasElem function of the
COLLECTION module. In addition, existsValue
determines if a value exists in the collection of resources.

value
 existsRes: R.Res >< Ress -> Bool,
 existsProp: P.Prop >< Props -> Bool,
 existsStat: S.Stat >< Stats -> Bool,
 existsValue: V.Value >< Ress -> Bool

The type Repository’ is defined as a record containing
collections of resources, properties and statements, along
with the hierarchies of data and resource types. The type
Repository models well-formed repositories, in which
resources, properties and statements are all well-formed.

type
 Repository'::
 dts: D.DTypes <-> re_dts
 rts: R.RTypes <-> re_rts
 res: Ress <-> re_res
 prop: Props <-> re_prop
 stat: Stats <-> re_stat,
 Repository = {| s:Repository' :- iswf(s)|}
value
 iswf: Repository' -> Bool
 iswf(r) is
 iswfRes(res(r), rts(r)) /\
 iswfProp(prop(r),dts(r),rts(r)) /\
 iswfStat(stat(r),res(r),prop(r),dts(r),rts(r))

Statements are well-formed if all statements are correct
and all their elements exist in their collections.

value
 iswfStat: Stats >< Ress >< Props ><
 D.DTypes >< R.RTypes -> Bool
 iswfStat(ss, rs, ps, dts, rts) is
 (all s: S.Statement :-
 existsStat(s, ss) =>
 S.isStat(s, dts, rts) /\
 existsRes(S.sub(s), rs) /\
 existsProp(S.prop(s), ps) /\
 existsValue(S.obj(s), rs)
)

A repository is build beginning from empty hierarchies
and collections and later adding the relevant types,
resources, properties and statements. Functions are defined
to perform all these operations. For example, the addStat
function is defined as follows:

value
 addStat: S.Stat >< Repository -~-> Repository
 addStat(s, rep) is
 let ss = stat(rep), ss' = CS.addElem(s, ss)
 in re_stat(ss', rep) end
 pre canAddStat(s, rep),
 canAddStat: S.Stat >< Repository -> Bool
 canAddStat(s, rep) is
 ~existsStat(s, stat(rep)) /\
 existsRes(S.sub(s), res(rep)) /\
 existsProp(S.prop(s), prop(rep)) /\
 case S.obj(s) of
 V.plain(_) -> true,
 V.complex(r) -> existsRes(r, res(rep))
 end /\
 S.isStat(s, dts(rep), rts(rep))

JCS&T Vol. 7 No. 1 April 2007

54

4. MODEL - PROCESS
The problem solving process defined in [5] relies on the
repository to carry out problem-solving, and generates
new resources, properties and statements as one outcome
of the process. The process is carried out collaboratively
by community members in a series of six steps:

1) Problem Registration – A new problem description is

registered as a problem resource by a member.
2) Problem Exploration – The problem is analyzed and

the repository is explored to find related resources.
New statements are added in the process

3) Problem Matching - The problem is matched against
similar problems existing in the repository to find
similarities, dependencies and partial solutions.

4) Solution Design - The problem is decomposed into a
set of sub-problems and these sub-problems are
analyzed for possible dependencies.

5) Solution Refinement - The solution is refined by
gradually replacing sub-problems by their solutions.

6) Solution Integration – Integrating all partial solutions
into complete solution to the problem.

Figure 2 depicts the process in its entirety. It is easy to see
how the number of statements about the problem increases
with every step, and how the number of unsolved
problems in the repository increases during Solution
Design and decreases during Solution Refinement.

Figure 2: Process for Collaborative Problem Solving

The process starts with Problem Registration when a
member posts a new problem and publishes it as the new
Problem resource in the repository. During Problem
Exploration, the problem is defined in more detail by
exploring the repository for related resources and adding
the corresponding statements, with the problem resource
figuring as a subject or an object of such statements.

Problem Matching enables comparing the problem
with existing problems. The comparison between a pair of
resources is done by looking at the statements describing
each of them and defining a degree of similarity. For
instance, a pair of problems may exhibit the following
similarities: (1) the same sets of properties and the same
values, (2) the same sets of properties but different values,
(3) a subset/superset of properties with the same values,
(4) a subset/superset of properties with different values. If
the problems exhibit condition (1), this may be an
indication that they are closely related to one another.

Solution Design consists in decomposing the problem
into a set of sub-problems. Sub-problems are registered in
the repository as Problem type resources, thus
recursively initiating the problem solving process. During
Solution Refinement, all knowledge generated about the
solution is added as statements. In addition, statements
specifying how to combine solutions to sub-problems into

solution to the original problem are also added.
Finally, once all sub-problems were solved, and the

constructed solution was completely documented, Solution
Integration enables linking the obtained solution to the
original problem, indicating that the problem has been
solved and the process is concluded.

5. A CASE STUDY
We present a case study illustrating the problem-solving
process and the use of the repository. The case study refers
to a VCP focusing on Disaster Prevention and Handling
[4]. First, the three components of the VCP are presented:
the domain, the community and the practice. The structure
of the repository is depicted and illustrated. Finally, a
problem posted by a member is described and the problem
solving process for this problem is developed.

The case study considers a Virtual Community of
Practice for Disaster Prevention and Handling (VCP-DPH)
- a community performing research and developing
recommendations in the area of prevention and handling
of disaster events. Members of this community comprise
representatives of non-governmental organizations, civil
defense, police, medical doctors, lifeguards, researchers
and detectives, and generally all people involved with
organization and coordination of actions to prevent and
handle natural or man-made disasters. The community
carries out various activities: develops and publishes best
practices; organizes workshops, conferences and seminars;
compiles data on documented cases; carries out online
discussions; and elaborates on the statistics obtained.

VCP-DPH relies in a shared repository of resources.
These resources have been gathered by members during
the lifetime of the community, and produced through their
interactions and activities in which they participate. The
repository is organized according to a hierarchy of
resource and simple data types defined by the community
administrator. The root of the hierarchy is the type All
and immediate descendants are: Document, Person,
Organization, Instance, Country, Problem and
Solution. Problem and Solution are two pre-defined
types of resources used by the problem-solving process.
The hierarchy may have several levels. For instance,
Member, Staff and Volunteer are descendents of
Person. The repository includes definition of data types.
A partial hierarchy of resource types is shown in Figure 3.

All resources added to the repository must belong to
an existing type. Properties are defined with a name and a
description comprising two elements. The first element is
the type of resource the property describes, and the second
element is a resource type or a data type. For instance, the
property located in Figure 1 is defined with its name and
the pair <Instance,Country>, since it maps an instance
of a disaster and the country where it happened.

Figure 3: Repository Structure – Resource Types

problem
registration

problem
exploration

problem
matching

solution
design

solution
refinement

solution
integration

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 steps

nu
m

be
r

7
6
5
4
3
2
1
0

number of
statements

number of
subproblems

All

Document Instance Solution

Recommendation

Standard

Policy

Procedure

Article

Flood

Fire

Earthquake

Typhoon

Eruption

Man-made

Event

Workshop

Conference

Seminar

Best Practice

Statistic

Person

Member

Staff

Volunteer

Problem

JCS&T Vol. 7 No. 1 April 2007

55

Members use the repository while searching for solutions
to problems. The solutions found and the knowledge
acquired are all recorded in the repository, allowing the
community to grow and expand.

Figures 4 and 5 show some resources, properties and
statements existing in the repository. References to real
cases of disasters, recommendations made and standards
adopted were obtained from [7], [8] and [14].

Type Instances
Flood Flood1: 1997-GrandForks,

North Dakota
Earthquake EarthQuake1: 2003-Bam, Kerman

Country1: Japan Country
Country2: Iran
Recommendation1:
What to do before a flood, FEMA

Recommendation

Recommendation2:
What to do during a flood, FEMA

Standard Standard1: 2006-Standard
Flood Hazard Determination Form
ProblemX: list the equipment
required in rescue operations

Problem

ProblemY: define a general chain
of commands for a rescue operation
SolutionX: list EQ of equipment Solution
SolutionY: chain CC of commands

Figure 4: Sample Resources

Properties: <subject, name, object>
<Problem, about, Topic>
<Problem, coversDisaster, Disaster>
<Problem, coversArea, Area>
<Solution, isSolving, Problem>
<Solution, solved, Problem>
<Solution, contains, Problem>
Statements: [resource, property, value]
[ProblemX, about, equipment]
[ProblemX, coversDisaster, generalDisasters]
[ProblemX, coversArea, anyArea]
[ProblemY, about, humanResources]
[ProblemY, coversDisaster, generalDisasters]
[SolutionX, solved, ProblemX]
[SolutionY, solved, ProblemY]

Figure 5: Sample Properties and Statements

Problem Description

When a member of the community presents a new
problem, the process starts. All resources and all members
can be involved in searching a solution to the problem.
Suppose the following problem is posted by a member:

ProblemP: Specify a plan for disaster handling
for the case of a flooding taking place in a
city located in a sea area.

The presented problem is only an example and is not
meant to be a real guide on how to specify a plan for
disaster handling. Parts of the example were written
following the guidelines taken from [12].

Problem Solving

The process for solving ProblemP includes the six steps
as described in the general case earlier:

1) Step 1: Problem Registration

The problem is added as a new resource of the type
Problem – the repository has one more resource
and the members start working on the problem.

2) Step 2: Problem Exploration
During problem exploration, the members analyse the
problem by determining the topics to which it is
related, categorising it, and adding statements to the
repository with the information collected. In
particular for the posted problem, members determine
that the problem is about three specific topics -
equipment, human resources and rescue techniques,
that it focuses on one type of disaster - flooding, and
that it may take place in a specific area - seaside. The
statements added are:

[ProblemP,about,equipment]
[ProblemP,about,humanResources]
[ProblemP,about,rescueTechniques]
[ProblemP,coversDisaster,flood]
[ProblemP,coversArea,sea]

3) Step 3: Problem Matching

The result of comparing ProblemP against all the
problem resources existing in the repository shows
that it has the same properties as ProblemX and a
superset of ProblemY. Two statements are added to
the repository reflecting this fact:

[ProblemP,sameProps,ProblemX]
[ProblemP,supProps,ProblemY]

4) Step 4: Solution Design

The design of solution starts by adding a new
resource to the repository - SolutionS. The
statement [SolutionS,isSolving,ProblemP] is
added as well, linking the solution to the problem.
Next, ProblemP is decomposed into:

a) SubP1: Define the chain of command and

the tasks for each position in the
chain for a rescue operation in the
case of flooding

b) SubP2: Design communications between
team members

c) SubP3: List the equipment required
d) SubP4: List rescue operations

The four sub-problems are registered, initiating the
problem solving process for each. Four statements are
added relating SolutionS to the sub-problems:

[SolutionS,contains,SubP1]
[SolutionS,contains,SubP2]
[SolutionS,contains,SubP3]
[SolutionS,contains,SubP4]

Since communication between members of the team
can be designed only after the chain of commands is
defined, there is a dependency between SubP1 and
SubP2 - the problem solving process for SubP2
waits for the results of the SubP1 process. This fact
is reflected by adding the statement
[SubP2,dependsOn,SubP1].

5) Step 5: Solution Refinement

Once all the problems identified in Step 4 have been
solved, their solutions can be combined to conclude
the construction of SolutionS. More information is
added to the repository in the form of statements
[descriptionS,documents,SolutionS] where
descriptionS is a resource of the type Document
containing a detailed explanation of how the solution

JCS&T Vol. 7 No. 1 April 2007

56

is constructed. The document will explain: that the
chain of commands defined in the solution to SubP1
must be set in place; that communications between
members of the chain must follow the guidelines of
the document produced as the solution to SubP2; that
the equipment provided to the working teams follows
the process applied to the problem SubP3. Finally,
the document will describe how the rescue operations
explained in the solution to SubP4 should be applied
to the case of flooding.

6) Step 6: Solution Integration

The last step in the process involves removing the
statement [SolutionS,isSolving,ProblemP]
added during Step 4, and adding instead the statement
[SolutionS, solved,ProblemP].

Sub-Problem Solving

While solving ProblemP, four sub-problems were
identified. The processes for solving these sub-problems
are explained in the following:

1) Sub-Problem 1: SubP1 - “Define the chain of

commands and tasks for each position in the chain for
a rescue operation in the case of flooding” was
added as a problem resource. Here is how this
problem is solved through a six-step process.

In Problem Registration, SubP1 is registered in the
repository. The exploration of SubP1 gives members
the insight that the problem is about human resources
for the operations in the case of flooding. As a result,
the statements [SubP1,about,humanResources]
and [SubP1, coversDisaster,flood] are
added to the repository. During problem matching,
SubP1 is matched against other problems in the
repository, showing that it shares the same properties
with the problem ProblemPY. As a result, the
statement [SubP1,sameProps,ProblemPY] is
added. During Solution Design, a new resource of the
type Solution - SolutionS1, and the statement
[SolutionS1,isSolving,SubP1] linking it with
SubP1 are added. The similarities between this
problem and ProblemPY, and further analysis of the
problem lead to the conclusion that this problem is
simple enough to be solved directly using the solution
to ProblemPY. Therefore it is not decomposed
further. For refining the solution, a new document
descriptionS1 describing the solution to this
problem is written and added as a resource. The
solution is added through the statement
[descriptionS1, documents, SolutionS1].
SolutionS1 reuses the resource SolutionY –
solution to ProblemPY. The chain of commands
defined for a general disaster event is taken as a base
design; necessary modifications are introduced to
create the appropriate chain of commands for this
particular case and define the responsibilities and
tasks assigned to each position in the chain –
explained in detail by descriptionS1. Finally,
the statement [SolutionS1,isSolving,SubP1]
is removed from the repository and the new statement
[SolutionS1,solved,SubP1] is added during
solution integration.

2) Sub-Problem 2: SubP2 defined as “Design
communications between team members” is added to
the repository. A dependency between this problem
and ProblemP1 was found during Step 4 of the
process for solving ProblemP. The dependency
indicates that SubP2 could only be solved after some
results from the problem solving process for SubP1
are obtained. In this case, since SubP2 aims to design
communication between members of the team, the
solution to SubP1 must be ready to start this process.

The first step in a solution includes adding SubP2 as
a new resource in the repository. Problem exploration
provides the knowledge that the problem is about
designing communications between members, so the
statement [SubP2, about, communication] is
added. The comparison of SubP2 against existing
problems in the repository does not find useful
matching, so no statements are added in this case. As
this problem is not further decomposed into smaller
sub-problems during Step 4, only the new resource
SolutionS2 is added along with the statement
[SolutionS2, isSolving, SubP2]. During
solution refinement, the members in charge of
solving this problem search for documentation about
communication designs for teamwork. In the process,
members may acquire books, articles and recordings,
and all these resources will be added as new instances
to the repository. Experts who are also resources of
the community will be consulted, and based on their
advice and the research done the communication for
the work team will be defined. The result will be
included as solution description, along with statement
[descriptionS2, documents, SolutionS2].
Finally, the statement added in Step 4 is replaced by
[SolutionS2, solved, SubP2].

3) Sub-Problem 3: The process for SubP3 is similar to
the one for SubP1: similarities between SubP3 and
ProblemPX are found; the problem is not further
decomposed into sub-problems; and the solution for
SubP3 is constructed by reusing the solution to
ProblemPY. Based on the list of equipment provided
by SolutionSY and advice from the members with
expertise in flooding events particularly in the coastal
areas, a new list is written. The list is added as a new
resource to the repository and a document is written
explaining this in detail. This generates the new
resource descriptionS3.

4) Sub-Problem 4: The approach for solving SubP4 is

similar to the one for SubP2, without reusing other
existing solutions. For solving this problem, members
search for documentation about techniques to apply
in rescue operations, in particular for operations that
need to take place in the indicated area and under a
flooding event. Members may acquire books, articles,
recordings, and all these resources will be added as
new instances to the repository. A new list is written
with the rescue operations required and included in
the description of the solution.

During the solution design phase of the posted problem,
four sub-problems were identified and the process was
recursively applied for solving these sub-problems.

JCS&T Vol. 7 No. 1 April 2007

57

6. CONCLUSIONS
The paper presented a formal model for a repository of
resources to underpin the process of collaborative problem
solving in Virtual Communities of Practice. The
application of the process and the utilization of the
repository were illustrated through a case study.

Following analysis of the existing tools providing
computer support to VCPs and their limitations for
defining and interpreting semantic information, RDF
concepts were applied to define the structure of the
repository and to drive the problem solving process. The
process utilizes the knowledge owned by the community
and enriches the community by enabling the systematic
growth of the underlying repository. A formal model for
the repository was described using the notation of RSL.
The problem solving process was explained, and a case
study was developed that showed how the repository and
the process can be applied. While the process enables
automating some steps of the process, human intervention
cannot be eliminated since members are responsible for
interpreting and selecting the results obtained.

Future work includes the implementation of the
problem solving process, further automation of some of its
steps, and the integration with other similar tools
supporting Virtual Communities of Practice.

ACKNOWLEDGEMENTS
We would like to thank Adegboyega Ojo, Irshad Khan,
and Gabriel Oteniya for useful discussions and comments.

REFERENCES
[1] ACE A Collaborative Editor, http://ace.iserver.ch
[2] T.Berneers-Lee, J. HEndler, O. Lassila. The Semantic Web.
Scientific American, 2001.

[3] B. Bruegge, A. Houghton. Computer-Supported Cooperative
Work. Discussion Summary. Software Engineering Education and
Practice, 1996.
[4] M.C.Casalini, E.Estevez, T.Janowski. Collaborative Problem
Solving in Virtual Communities of Practice – A Case Study in
Disaster Prevention and Handling. XII CACIC, 2006.
[5] M.C.Casalini, T.Janowski, E.Estevez. A Process Model for
Collaborative Problem Solving in Virtual Communities of
Practice. 7th Working Conference on Virtual Enterprises PRO-
VE’06, Helsinki, Finland. Springer Verlag, 2006.
[6] W.Conen, G. Neumann. Prerequisites for Collaborative
Problem Solving. Proceedings of WETICE 96, IEEE 5th Intl.
Workshops on Enabling Technologies, Standford, CA, 1996.
[7] Federal Emergency Management Agency (FEMA),
http://www.fema.gov
[8] First American Flood Data Services, http://fafds.floodcert.
com/news/index.asp?ID=103
[9] C.George et al. The RAISE Specification Language. Prentice
Hall, 1992.
[10] Google Docs & Spreadsheets, http://docs.google.com
[11] J. Grudin. Computer-Supported Cooperative Work: History
and Focus. Computer, 1994
[12] Interpol Disaster Handling Procedures, http://www.interpol.
int/Public/DisasterVictim/guide/chapitre2.asp
[13] B.Leuf, W.Cunningham. The Wiki Way: Quick
Collaboration on the Web. Addison-Wesley Professional.
[14] Natural Disaster Handling Procedures, http://library.
thinkquest.org/03oct/00758/en/home.html
[15] phpBB - Creating Communities, http://www.phpbb.com
[16] C. E. Porter. A Typology of Virtual Communities: A Multi-
Disciplinary Foundation for Future Research. Journal of
Computer-Mediated Communication. 10 (1) Article 3, 2004.
[17] Resource Description Framework (RDF) - Semantic Web
Activity - World Wide Web Consortium, http://www.w3.org/RDF
[18] Structured Analysis Wiki www.yourdon.com/strucanalysis
wiki
[19] E. Wenger. Communities of Practice, Introduction, 2004.
[20] Wikipedia, http://www.wikipedia.org

JCS&T Vol. 7 No. 1 April 2007

58

