
Spatial Selection of Sparse Pivots for Similarity Search in Metric Spaces *

Nieves R. Brisaboa, Antonio Fariña, Óscar Pedreira
Database Laboratory, University of A Coruña

Campus de Elviña s/n, A Coruña, 15071, Spain
{brisaboa, fari, opedreira}@udc.es

Nora Reyes

Departamento de Informática, Universidad Nacional de San Luis
Ejército de los Andes 950, San Luis, Argentina

nreyes@unsl.edu.ar

ABSTRACT
Similarity search is a fundamental operation for
applications that deal with unstructured data sources. In
this paper we propose a new pivot-based method for
similarity search, called Sparse Spatial Selection (SSS).
The main characteristic of this method is that it guarantees
a good pivot selection more efficiently than other methods
previously proposed. In addition, SSS adapts itself to the
dimensionality of the metric space we are working with,
without being necessary to specify in advance the number
of pivots to use. Furthermore, SSS is dynamic, that is, it is
capable to support object insertions in the database
efficiently, it can work with both continuous and discrete
distance functions, and it is suitable for secondary memory
storage. In this work we provide experimental results that
confirm the advantages of the method with several vector
and metric spaces. We also show that the efficiency of our
proposal is similar to that of other existing ones over
vector spaces, although it is better over general metric
spaces.
Keywords: Similarity search, metric spaces, pivot
selection, databases, searching, indexing.

1. INTRODUCTION
Similarity search has become a very important operation
in applications that deal with unstructured data sources.
For example, multimedia databases manage objects
without any kind of structure, such as images, fingerprints
or audio clips. Retrieving the most similar fingerprint to a
given one is a typical example of similarity search. The
problem of text retrieval is present in systems that range
from simple text editors (finding similar words to a given
one to correct edition errors) to big search engines
(retrieving relevant documents for a given query). We can
find more application examples in areas such as
computational biology (retrieval of DNA sequences) or
pattern recognition (where a pattern can be classified from
similar patterns previously classified). Unfortunately, the
high computational cost of the functions that measure the
distance between two objects makes similarity search a
very expensive operation. This fact has motivated the
development of many research works aiming to do
efficient similarity search over large collections of data.
The problem of similarity search can be formally defined
through the concept of metric space, which provides a
formal framework that is independent of the application
domain. A metric space (Χ,d) is composed of a universe
of valid objects X and a distance function d : X × X → ⎥+
defined among them. The distance function determines the
similarity or distance between two given objects. This
function holds several properties: strictly positiveness
(d(x,y) > 0 and if d(x,y) = 0 then x = y), symmetry
(d(x,y) = d(y,x)), and the triangle inequality (d(x,z) ≤ d(x,y)
+ d(y,z)). The finite subset U ⊆ X with size n = |U|, is

called dictionary or database, and represents the collection
of objects where searches are performed. A k-dimensional
vector space is a particular case of metric space in which
every object is represented by a vector of k real
coordinates. The definition of the distance function
depends on the type of the objects we are managing. In a
vector space, d could be a distance function of the family
Ls, defined as Ls(x,y) = (∑1≤i≤k |xi - yi|)1/s. For example, L1 is
known as Manhattan distance, L2 is the Euclidean
distance, and L∞ = max1≤i≤k |xi - yi| is the maximum distance.
In a collection of words, we can use edit distance d(x,y),
obtained as the number of insertions, deletions or
modifications of characters need to transform a string x
into other string y.
The dimensionality of a vector space is the number of
components of each vector. Although general metric
spaces do not have an explicit dimensionality, we can talk
about their intrinsic dimensionality, following the same
idea that in vector spaces. This is a very interesting
concept since the efficiency of search methods is worse in
metric spaces with a higher intrinsic dimensionality [8].
There are three main queries of interest for a collection of
objects in a metric space: i) range search, that retrieves all
the objects u ∈ U within a radius r of the query q, that is:
{u ∈ U ∧ d(q, u) ≤ r}; ii) nearest neighbour search, that
retrieves the most similar object to the query q, that is:
{u ∈ U / ∀ v ∈ U, d(q,u) ≤ d(q,v)}; and iii) k-nearest
neighbours search, a generalization of the nearest
neighbour search, retrieving the set A ⊆ U such that
|A| = k and ∀ u ∈ A, v ∈ U – A, d(q,u) ≤ d(q,v). The range
query is the most used, and the others can be implemented
in terms of it [8]. In any case, the distance function is the
unique information that can be used in the search
operation. Thus, the basic way of implementing these
operations is to compare all the objects in the collection
against the query.*

The problem is that the evaluation of the distance function
is very expensive, and therefore searches become
inefficient if the collection has a high number of elements.
Thus, reducing the number of evaluations of the distance
function is the main goal of the methods for similarity
search in metric spaces. To do that, they first build indexes
over the whole collection. Later, using the triangle
inequality, those indexes permit to discard some elements
without being necessary to compare them against the
query. The techniques that permit to search metric spaces
efficiently usually differ in some features. Some of them
only support discrete distance functions (e.g. the edit
distance), while others where developed to work with

* Partially supported by Xunta de Galicia grants 2006/4
and PGIDIT05SIN10502PR, and Ministerio de Educación
y Ciencia (PGE y FEDER) grant TIN2006-15071-C03-03

JCS&T Vol. 7 No. 1 April 2007

8

continuous distance functions. This is an important issue
that restricts their application in some domains. The
distinction between static and dynamic methods is very
important. With static methods the index has to be built
over the whole collection, while dynamic methods allow
insert/delete operations in the database and build the index
as the database grows. Other important factor is the
possibility of storing the index efficiently in secondary
storage, and the number of I/O operations needed to access
it. In general, the applicability and efficiency of the
method depends on these issues.
Search methods can be classified into two types [8]:
clustering-based and pivot-based techniques. Pivot-based
search methods choose a subset of the objects in the
collection that are used as pivots. The index stores the
distances from each pivot to each object in the collection
in adequate data structures. Given a query (q,r), the
distances from the query q to each pivot are computed,
and then some objects of the collection can be directly
discarded using the triangle inequality and the distances
precomputed during the index building phase. Being
x ∈ U an object in the collection, we can discard x if
|d(pi,u) – d(pi,q)| > r for any pivot pi. Some representative
examples of pivot-based methods are: Burkhard-Keller-
Tree (BKT) [5], Fixed-Queries Tree (FQT) [2], Fixed-
Height FQT (FQHT) [1], Fixed-Queries Array (FQA) [7],
Vantage Point Tree (VPT) [14] and its variants [3] and
[15], Approximating and Eliminating Search Algorithm
(AESA) [13] and LAESA (Linear AESA) [10].
Clustering-based techniques split the metric space into a
set of clusters each represented by a cluster center. Given
a query, whole regions can be discarded from the search
result using the distance from their center to the query and
the triangle inequality. The most important clustering-
based techniques are: Bisector Trees (BST) [9],
Generalized-Hyperplane Tree (GHT) [12], Geometric
Near neighbor Access Tree (GNAT) [4] and Spatial
Approximation Tree (SAT) [11]. More details on the
problem of searching metric spaces and complete
descriptions of all the algorithms enumerated here can be
found in [8] and [16].
In this paper we present Sparse Spatial Selection (SSS), a
new pivot-based technique that permits to deal with
dynamic collections and continuous distance functions. It
is also well-suited for its use in secondary memory. It is a
dynamic method since the collection can be initially empty
and/or grow as more elements are added to the database.
The main contribution of SSS is the use of a new pivot
selection strategy. This strategy selects a number of pivots
that depends on the intrinsic dimensionality of the space
and not on the size of the collection (which is interesting
both from theoretical and practical issues). Moreover, this
pivot selection strategy is dynamic and is able to maintain
the efficiency of the index during searches, as new objects
are added to the collection.
The rest of the paper is structured as follows: Section 2
describes the pivot-selection problem and its importance
for the efficiency of pivot-based methods. Then, SSS, the
new method proposed in this work, is presented in Section
3. In Section 4 we present and discuss the experimental
results obtained in our experiments. Finally, Section 5
shows our conclusions and future lines of work.

2. PREVIOUS WORK ON PIVOT SELECTION
It is well-known that the efficiency of a similarity search
method depends on the set of objects chosen as pivots, the
number of pivots and their “location” in the metric space.

Most of the pivot-based search methods choose pivots at
random. Furthermore, there are no guidelines to determine
the optimal number of pivots, since this parameter
depends on the metric space we are working with. In
previous work, some heuristics for pivot selection have
been proposed. For example, in [10] pivots are objects
maximizing the sum of distances between them. [14] and
[4] propose heuristics to obtain pivots far away from each
other. In [6] the importance of the pivot selection strategy
was studied in depth, showing empirically how it affects to
the performance of a technique.
The main contribution in [6] is a criterion to compare the
efficiency of two sets of pivots of the same size. Let {p1,
p2, …, pk} be a set of pivots, with pi ∈ U. Given an object
u ∈ U, a tuple that contains all the distances from u to
each pivot is denoted as [u] = (d(u,p1), d(u,p2), …,
d(u,pk)). Thus there is a space P = {[u] / u ∈ X}, that is
also a vector space k. Over the elements of this space the
distance function D{p1, p2, …, pk}([x],[y]) =max{1≤i≤k}| d(x,pi) -
d(y, pi)| can be defined. Then, we have a metric space (P,
L∞). Under this conditions, given a query q and a radius r,
the condition to discard u ∈ U can be seen as |d(pi,u) -
d(pi, q)| > r for some pivot pi, in D{p1, p2, …, pk}([q], [u]) > r.
Since the more objects a set of pivots can discard, the
better it is, then a set of pivots will be better than others if
it increases the probability of D{p1, p2, …, pk}([q], [u]) > r.
Being μD the mean of the distribution D, that probability
increases when μD is maximized. Therefore, authors'
criterion establishes that the set of pivots {p1, p2, …, pk} is
better than the set of pivots {p1', p2', …, pk'} if μ{p1, p2, …, pk}
> μ{p1', p2', …, pk'}.
In [6] several selection strategies based on the previous
efficiency criterion were proposed: i) Random, that
chooses the set of pivots randomly; ii) Selection, that
selects N random sets of pivots and finally chooses the one
maximizing μD; iii) Incremental, in which the next pivot
chosen will be that object such that, after adding it to the
current set of pivots, maximizes μD; and iv) Local
Optimum, an iterative strategy that, starting with a random
set of pivots, in each step replaces by a new object, the
current pivot which less contributes to μD. The
performance obtained by many of these techniques
depends on the metric space considered. Their conclusions
show that, in general, good pivots should be far from each
other and also from the rest of objects in the database.
Unfortunately, this second condition does not always lead
to obtain good pivots.
Determining the optimal number of pivots (the value k) is
an important problem. However, it is known that the
efficiency of the searches depends on that parameter.
Moreover, k can vary greatly for different metric spaces.
All the pivot selection techniques shown use a
precomputed fixed value. In [6] a brute-force approach to
determine the optimal number of pivots is used. Results
confirm that this number depends greatly on the metric
space, and affects the efficiency of the methods.
Therefore, adjusting it as well as possible is an interesting
problem.

3. OUR PROPOSAL: SPARSE SPATIAL
SELECTION

In this section we present a new pivot-based search
method called Sparse Spatial Selection (SSS). It is an
efficient method with some important advantages over the
previous work. It is a dynamic method since the database
can be initially empty and grow/decrease later as objects

JCS&T Vol. 7 No. 1 April 2007

9

are inserted/deleted. It is adaptive since the method adapts
itself the index to the complexity of the collection as the
database grows. The main contribution of SSS is the pivot
selection strategy, which selects dynamically a set of
pivots well-distributed in the metric space, a property that
permits to discard more objects from the result when
solving a search.

3.1. Pivot selection strategy
Let (X,d) be a metric space, U ⊆ X an object collection,
and M the maximum distance between any pair of objects,
M = max {d(x,y) / x, y ∈ U}. First, the set of pivots is
initialized with the first object of the collection. Then, for
each element xi ∈ U, xi is chosen as a new pivot iff its
distance to any pivot in the current set of pivots is equal or
greater than Mα, being α is a constant which optimal
values are around 0.4 (as shown later). That is, an object in
the collection becomes a new pivot if it is located at more
than a fraction of the maximum distance with respect to all
the current pivots. For example, if α = 0.5 an object is
chosen as a new pivot if it is located further than a half of
the maximum distance from the current pivots. Next
pseudocode summarizes the process of pivot selection:

PIVOTS ← {x1}
for all xi ∈ U do
 if ∀ p ∈ PIVOTS, d(xi, p) ≥ Mα
 PIVOTS ← PIVOTS ∪ {xi}
 end if
end for

It is evident that all the selected pivots will be far from
each other (more that Mα), a desirable characteristic in a
set of pivots [6]. However, our selection strategy has even
more advantages. Forcing the distance between two pivots
to be greater or equal than Mα, we ensure that they are
well distributed in the space. It is important to take into
account that our pivots are not very far from others neither
very far from the rest of objects in the collection. These
are two important conditions that, as shown in previous
works, good pivots have to maintain. Our hypothesis is
that, being well distributed in the space, the set of pivots
will be able to discard more objects in the search.

Being dynamic and adaptive is other good feature of our
pivot selection technique. The algorithm adapts itself the
set of pivots to the growth of the database. When a new
element xi is added to the database, it is compared against
the pivots already selected and it becomes a new pivot if
needed. Therefore, the set of pivots maintains its good
distribution in the metric space. Actually the collection
could be initially empty, which is interesting in a practical
application of this method. In this way, the growth of the
collection does not imply a decrease in the performance of
the algorithm.

3.2. Intrinsic dimensionality of the metric space
In a vector space, the dimensionality can be seen as the
number of elements of each vector. Although general
metric spaces do not have an explicit dimensionality,
following the same idea that in vector spaces, we can talk
about their intrinsic dimensionality. These interesting
concepts allow us to distinguish between low and high
dimensionality values. The efficiency of similarity search
algorithms is worse with a high intrinsic dimensionality.
For instance, any search method will behave better in a

vector space with dimensionality 10 than in other with
dimensionality 15. This fact has been empirically proved
in previous research. In [8] this concept and its influence
in the efficiency of search methods were analyzed. That
paper proposed also a way to obtain an approximation of
the intrinsic dimensionality as: ρ = μ / 2σ2 where μ and σ2
are respectively, the mean and variance of the histogram
of distances among points in the metric space.
Another important feature in our method is that the
number of pivots chosen does not depend on the size of
the collection, but in the intrinsic dimensionality of the
metric space. For example, assuming α = 0.5, in a
1-dimensional space we could only need two pivots, in a
2-dimensional space we could have at most 4 pivots, etc.
This question has never been taken into account in
previous search techniques. Therefore, another advantage
of our pivot selection method is that the number of pivots
generated is adapted to the intrinsic dimensionality of the
space (even if it is unknown). When we are dealing with
spaces whose intrinsic dimensionality cannot be
approximated these results of special interest (it helps to
determine the number of pivots). When the number of
pivots is too small, they could not be enough to cover all
the dimensions of the space, what could lead to less
efficient searches. As our proposal generates a number of
pivots depending on the dimensionality of the space, the
number of chosen pivots should grow quickly when the
first objects of the collection are processed. Then, the
number of pivots should become stable when the number
of processed elements is high. In Section 4 we provide
empirical results that confirm this hypothesis.

3.3. The parameter α
Although in our method it is not necessary to state in
advance the number of pivots to use, as in [6], we have to
set in advance the value of α. This value in turn conditions
the number of pivots. However, α must always take values
between 0.35 and 0.40, depending on the dimensionality
of the space. Figure 1 shows the number of evaluations of
the distance function in terms of α for vector spaces of
dimensionalities 8, 10, 12, and 14. In this figure we can
see that the best result is always obtained for values of α
that range from 0.35 to 0.40, and that the efficiency of the
method is virtually the same for all the values of α
included in this interval. We can also see that when α >
0.40 the number of evaluations of the distance function
takes higher values in spaces of high dimensionality. This
result is due to the fact that an increase in the value of α
implies a reduction of the number of pivots, and that this
reduction has a stronger effect in spaces of higher
dimensionality.
These results show some of the main advantages of our
proposal. Our pivot selection technique is simpler and
more efficient than others previously proposed. In
addition, our pivots are far away from each other, but they
are not far away from the rest of the objects of the
collection (i.e., our pivots are not outliers). However, we
have achieved a similar efficiency to that of the existing
techniques without having to state in advance the number
of pivots to use. Our method finds itself the appropriate
number of pivots for the complexity of the metric space,
using only the maximum distance between any pair of
objects in the collection.

JCS&T Vol. 7 No. 1 April 2007

10

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
10

10

10

α

E
va

lu
at

io
ns

of
th

e
di

st
an

ce
fu

nc
tio

n
Dim. 8
Dim. 10
Dim. 12
Dim. 14

100,000 objects, 10,000 queries, retrieving the 0.01% of the database

Figure 1. Efficiency in vector spaces

3.4. Index construction and collection growth
One of the main advantages of our method is its dynamic
nature. Thus, we describe the index construction process
assuming that the collection is initially empty. The first
object inserted in the database, u1, becomes the first
selected pivot, p1. When a new object is inserted in the
database, its distance to all the pivots already selected is
computed and stored. If its distance to all of them is equal
or greater than Mα, the object is added to the set of pivots.
In this case, the distance from every object in the database
to the new pivot is computed and stored in the index
structure. Thus, the number of pivots does not have to be
stated in advance over an initial object collection, but it
grows at the same time as the collection does. This
implementation makes it possible the index to be
completely dynamic, and the set of pivots to adapt
appropriately to the new inserted objects. Furthermore, it
guarantees that even though the collection grows, the
pivots will be well distributed over the metric space.

3.5. Searching
We finally describe how to use the index in the range
query operation, since the other query types can be
implemented in terms of this one. Being (q,r) a query, the
first step consists in computing the distance from q to
every pivot in the index. With this information, we can
discard every object xi ∈ U such that |d(xi,pj) - d(q,pj)| > r
for any pivot pj, since by the triangle inequality (d(x,y) ≤
d(x,z) + d(z,y)), if this condition is true, its distance to q
will be d(xi,q) > r. The objects that are not discarded by
this condition make up the candidate list {u1, u2, …, um} ⊆
U and they must be directly compared against the query.
The complexity of the search operation is measured as the
number of evaluations of the distance function. First we
have to compare the query q against every pivot. These
distance computations constitute the internal complexity of
the algorithm. Then we have to compare the query q with
each object in the candidate list. These distance
evaluations constitute the external complexity of the
algorithm. The total complexity is the sum of the internal
and external complexities [8].

4. EXPERIMENTAL RESULTS
Our method has been tested with several data collections
in different situations. First we used synthetic sets of
random points in vector spaces of dimensionalities 8, 10,
12 and 14. Although they are objects of a vector space,
this information has not been used in the tests. The
advantage of using this data types to test the algorithm is
that we can study its behaviour in spaces with different
intrinsic dimensionality. The Euclidean distance was the
distance function used with these data sets. We also have

tested the algorithm with real metric spaces: collections of
words extracted from the English and Spanish dictionaries,
using the edit distance as distance function.

4.1. Number of pivots generated in terms of the
dimensionality
In Section 3 we emphasized that our method dynamically
generates a number of pivots that depends on the
dimensionality of the space, and not on the number of
elements in the database. To validate this hypothesis we
used collections of 1,000,000 of vectors of dimensions 8,
10, 12 and 14. For each vector space we obtained the
number of pivots selected in terms of the number of
objects inserted in the collection, with α fixed to 0.5.

n, collections size (× 103) k
100 200 300 400 500 600 700 800 900 1000

8 16 17 19 20 21 22 22 22 22 22
10 20 24 28 29 30 30 30 30 30 30
12 44 50 53 54 55 57 58 58 58 58
14 56 62 69 71 73 79 80 80 82 82

Table 1. Number of pivots selected in vector spaces of
dimensionality 8, 10, 12, 14 in terms of the size of the
collection

Table 1 shows the results obtained in this experiments.
First we can see that the number of objects selected as
pivots increases as the dimensionality of the vector space
does. This result shows that the number of pivots depends
on the intrinsic dimensionality of the metric space. Let us
take a look now to the number of pivots in terms of the
collection size. In all the test spaces the number of pivots
grows quickly with the first objects of the database. Then
this number grows much more slowly until it becomes
stable. Obviously, when the collection has few elements,
the number of pivots depends on its size. However, when
the collection reaches a given size no more pivots will be
selected even if new objects are inserted in the database.
This happens because the current set of pivots covers all
the space and captures its dimensionality. With these
results we can conclude that the number of pivots
generated depends on the intrinsic dimensionality of the
space, and not on the size of the collection.

4.2. Search efficiency in vector spaces
In this section we show the results obtained in the tests
performed to evaluate the efficiency of the algorithm in
the search operation. In the first set of tests we used vector
spaces of dimensions 8, 10, 12, and 14, each of them with
100,000 vectors uniformly distributed in an hypercube of
side 1. We got the mean number of evaluations of the
distance function over 10,000 queries. The mean number
of elements retrieved in each of them is the 0.01% of the
database. In order to evaluate the behaviour of the
algorithm, we compared the results with those obtained
with the pivot selection techniques proposed in [6].

JCS&T Vol. 7 No. 1 April 2007

11

k = 8 k = 10 k = 12 k = 14
Method

#p #d #p #d #p #d #p #d
Random 85 213 190 468 460 998 1000 2077
Selection 85 204 200 446 360 986 800 2038

Incremental 65 157 150 335 300 714 600 1458
Loc. Opt. A 70 155 150 333 300 708 600 1448
Loc. Opt. B 60 157 150 369 300 881 760 1930

SSS 57 151 148 389 258 689 598 1452

Table 2. Minimum number of evaluations of d with
different pivot selection strategies in vector spaces.

Table 2 shows the minimum number of evaluations of d
(#d) we obtained with each pivot selection strategy, and
the number of pivots used (#p). We can observe that the
number of evaluations of the distance function obtained
with our method is always around the best result obtained
with the strategies proposed in [6]. In some cases we
performed less evaluations of d with less pivots. However,
in other cases our method performs more evaluations,
although we used less pivots too. This results show that
the proposed pivot selection strategy has a similar
efficiency to that of other methods. In the results of our
tests we can also see that the number of pivots that our
method selects is very similar to the optimum number of
pivots of other pivot selection techniques.

4.3. Search efficiency in metric spaces
In addition to the tests with uniformly distributed vector
spaces, we have also compared our method with others
using “real” metric spaces. More specifically, we used two
collections of words. The first one contains 69,069 words
from the English dictionary, and the second contains
51,589 words from the Spanish dictionary. We used the
edit distance as the distance function. We used a 10% of
the database as queries and a query range r = 2, that
retrieves around the 0.02% of the collection. Table 3
shows the minimum number of evaluations of d we
obtained with our pivot selection technique and the ones
proposed in [6], for the collection of words taken from the
English dictionary. In this case, the result obtained with
our technique its better than the obtained with any other
one. As happened with vector spaces, the number of pivots
that our method selects is similar to the optimal number of
pivots used by other strategies that have got this number
by trial and error.

Methods pivots eval. d
Random 85 213

Good Pivots 85 204
Outliers 65 157

SSS 57 151

Table 3. Minimum number of evaluations of d in a
collection of words taken from the English dictionary.

Finally, we ran the same tests with a collection of words of
51,589 words taken from the Spanish dictionary. As in the
case of the English dictionary, approximately the 10% of
the database was used as queries (5.200 queries), we also
used a query range r = 2 to retrieve around 0.02% of the
database for each query. Figure 2 shows the results of this
test.

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
0

100

200

300

400

500

600

700

800

900

α

N
um

be
r o

f p
iv

ot
s

ge
ne

ra
te

d

Spanish
English

(a) Number of pivots selected in terms of α

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
300

400

500

600

700

800

900

1000

1100

α

Ev
al

ua
tio

ns
 o

f t
he

 d
is

ta
nc

e
fu

nc
ito

n

Spanish
English

(b) Number of evaluations of d in terms of α

Figure 2. Minimum number of pivots selected (a) and
number of evaluations of the distance function for
different values of α (b) in collections of words taken
from the English and Spanish dictionaries

In figure 2 we can notice important differences both in the
number of pivots selected and the number of evaluations
of the distance function. In the case of the Spanish
dictionary, the number of pivots selected is much smaller
than the obtained with the English dictionary. However,
the optimum number of evaluations of d is very similar in
both cases, and is obtained for very similar values of α.
Since the two sets are both collections of words this result
could seem strange. However, this happens because the
two spaces have a different complexity. The number of
words in the English collection is a bit bigger than the
number of words in the Spanish collection. In addition, the
word length distribution is different in each collection, and
this fact has an important influence in the result of the
query. In spite of these differences, our method has
selected an appropriate number of pivots for each space,
obtaining a similar efficiency in searches in both of them.
This result is another evidence of the ability of our
proposal to adapt itself to the complexity of the space we
are working with.

5. CONCLUSIONS AND FUTURE WORK
In this paper we propose a new pivot-based method for
similarity search in metric spaces. The main characteristics
of this method are its efficiency (as we have seen in
Section 4), dynamism (which allows the database to be
initially empty and grow later) and adaptability (since the
method adapts itself the number of pivots and the index to
the complexity of the collection). The main contribution of
our method is the pivot selection strategy, the responsible
of these three important characteristics. In addition, the
index structure makes possible its efficient storage in
secondary memory.
Our experimental results show that the method selects a
number of pivots that depends on the intrinsic

JCS&T Vol. 7 No. 1 April 2007

12

dimensionality of the metric space, and not on the number
of elements of the collection. In addition, this number of
pivots is very similar to the optimum number for other
strategies. This makes it unnecessary to state in advance
the number of pivots needed for the index structure,
something that no method has considered until now. The
number of pivots selected is adapted to the space
complexity, avoiding the selection of unnecessary pivots
which could reduce the search performance. The
efficiency of our method in vector spaces is similar to that
obtained in previous works. However, our tests show that
our method is more efficient than the existing ones in
similarity search over general metric spaces.

6. REFERENCES
[1] Ricardo Baeza-Yates. Searching: an algorithmic tour.
Encyclopedia of Computer Science and Technology,
37:331-359, 1997.

[2] Ricardo Baeza-Yates, Walter Cunto, Udi Manber, and
Sun Wu. Proximity matching using fixed-queries trees. In
Proceedings of the 5th Annual Symposium on
Combinatorial Pattern Matching, pages 198-212,
Springer-Verlag, 1994.

[3] Tolga Bozkaya and Meral Ozsoyoglu. Distance-based
indexing for high-dimensional metric spaces. In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD 1997), pages 357-368,
May 1997.

[4] Sergey Brin. Near neighbor search in large metric
spaces. In 21st conference on Very Large Databases
(VLDB), 1995.

[5] Walter A. Burkhard and Robert M. Keller. Some
approaches to best-match file searching. Communications
of the ACM, 16(4):230-236, April 1973.

[6] Benjamín Bustos, Gonzalo Navarro, and Edgar
Chávez. Pivot selection techniques for proximity search in
metric spaces. In SCCC 2001, Proceedings of the XXI
Conference of the Chilean Computer Science Society,
pages 33-40. IEEE Computer Science Press, 2001.

[7] Edgar Chávez, José Luis Marroquín, and Gonzalo
Navarro. Overcoming the curse of dimensionality. In
European Workshop on Content-based Multimedia
Indexing (CBMI'99), pages 57-64, 1999.

[8] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-
Yates, and José Luis Marroquín. Searching in metric
spaces. ACM Computing Surveys, 33(3):273-321,
September 2001.

[9] Iraj Kalantari and Gerard McDonald. A data structure
and an algorithm for the nearest point problem. IEEE
Transactions on Software Engineering, 9:631-634, 1983.

[10] Luisa Micó, José Oncina, and R. Enrique Vidal. A
new version of the nearest-neighbor approximating and
eliminating search (AESA) with linear pre-processing time
and memory requirements. Pattern Recognition Letters,
15:9-17, 1994.

[11] Gonzalo Navarro. Searching in metric spaces by
spatial approximation. In Proceedings of String
Processing and Information Retrieval (SPIRE'99), pages
141-148. IEEE Computer Science Press, 1999.

[12] Jeffrey K. Uhlmann. Satisfying general
proximity/similarity queries with metric trees. Information
Processing Letters, 40:175-179, 1991.

[13] Enrique Vidal. An algorithm for finding nearest
neighbors in (aproximately) constant average time.
Pattern Recognition Letters, 4:145-157, 1986.

[14] Peter Yianilos. Data structures and algorithms for
nearest-neighbor search in general metric spaces. In
Proceedings of the fourth annual ACM-SIAM Symposium
on Discrete Algorithms, pages 311-321. ACM Press, 1993.

[15] Peter Yianilos. Excluded middle vantage point forests
for nearest neighbor search. In Proceedings of the 6th
DIMACS Implementation Challenge: Near neighbour
searches (ALENEX 1999), January 1999.

[16] Pavel Zezula, Giuseppe Amato, Vlatislav Dohnal, and
Michal Batko. Similarity search. The metric space
approach, volume 32 of Advances in Database Systems.
Springer, 2006.

JCS&T Vol. 7 No. 1 April 2007

13

