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ABSTRACT 
Similarity search is a fundamental operation for 
applications that deal with unstructured data sources. In 
this paper we propose a new pivot-based method for 
similarity search, called Sparse Spatial Selection (SSS). 
The main characteristic of this method is that it guarantees 
a good pivot selection more efficiently than other methods 
previously proposed. In addition, SSS adapts itself to the 
dimensionality of the metric space we are working with, 
without being necessary to specify in advance the number 
of pivots to use. Furthermore, SSS is dynamic, that is, it is 
capable to support object insertions in the database 
efficiently, it can work with both continuous and discrete 
distance functions, and it is suitable for secondary memory 
storage. In this work we provide experimental results that 
confirm the advantages of the method with several vector 
and metric spaces. We also show that the efficiency of our 
proposal is similar to that of other existing ones over 
vector spaces, although it is better over general metric 
spaces. 
Keywords: Similarity search, metric spaces, pivot 
selection, databases, searching, indexing. 
 

1. INTRODUCTION 
Similarity search has become a very important operation 
in applications that deal with unstructured data sources. 
For example, multimedia databases manage objects 
without any kind of structure, such as images, fingerprints 
or audio clips. Retrieving the most similar fingerprint to a 
given one is a typical example of similarity search. The 
problem of text retrieval is present in systems that range 
from simple text editors (finding similar words to a given 
one to correct edition errors) to big search engines 
(retrieving relevant documents for a given query). We can 
find more application examples in areas such as 
computational biology (retrieval of DNA sequences) or 
pattern recognition (where a pattern can be classified from 
similar patterns previously classified). Unfortunately, the 
high computational cost of the functions that measure the 
distance between two objects makes similarity search a 
very expensive operation. This fact has motivated the 
development of many research works aiming to do 
efficient similarity search over large collections of data. 
The problem of similarity search can be formally defined 
through the concept of metric space, which provides a 
formal framework that is independent of the application 
domain. A metric space (Χ,d) is composed of a universe 
of valid objects X and a distance function d : X × X → ⎥+ 
defined among them. The distance function determines the 
similarity or distance between two given objects. This 
function holds several properties: strictly positiveness 
(d(x,y) > 0 and if d(x,y) = 0 then x = y), symmetry    
(d(x,y) = d(y,x)), and the triangle inequality (d(x,z) ≤ d(x,y) 
+ d(y,z)). The finite subset U ⊆ X with size n = |U|, is 

called dictionary or database, and represents the collection 
of objects where searches are performed. A k-dimensional 
vector space is a particular case of metric space in which 
every object is represented by a vector of k real 
coordinates. The definition of the distance function 
depends on the type of the objects we are managing. In a 
vector space, d could be a distance function of the family 
Ls, defined as Ls(x,y) = (∑1≤i≤k |xi - yi|)1/s. For example, L1 is 
known as Manhattan distance, L2 is the Euclidean 
distance, and L∞ = max1≤i≤k |xi - yi| is the maximum distance. 
In a collection of words, we can use edit distance d(x,y), 
obtained as the number of insertions, deletions or 
modifications of characters need to transform a string x 
into other string y. 
The dimensionality of a vector space is the number of 
components of each vector. Although general metric 
spaces do not have an explicit dimensionality, we can talk 
about their intrinsic dimensionality, following the same 
idea that in vector spaces. This is a very interesting 
concept since the efficiency of search methods is worse in 
metric spaces with a higher intrinsic dimensionality [8]. 
There are three main queries of interest for a collection of 
objects in a metric space: i) range search, that retrieves all 
the objects u ∈ U within a radius r of the query q, that is: 
{u ∈ U ∧ d(q, u) ≤ r}; ii) nearest neighbour search, that 
retrieves the most similar object to the query q, that is:    
{u ∈ U / ∀ v ∈ U, d(q,u) ≤ d(q,v)}; and iii) k-nearest 
neighbours search, a generalization of the nearest 
neighbour search, retrieving the set A ⊆ U such that       
|A| = k and ∀ u ∈ A, v ∈ U – A, d(q,u) ≤ d(q,v). The range 
query is the most used, and the others can be implemented 
in terms of it [8]. In any case, the distance function is the 
unique information that can be used in the search 
operation. Thus, the basic way of implementing these 
operations is to compare all the objects in the collection 
against the query.*

The problem is that the evaluation of the distance function 
is very expensive, and therefore searches become 
inefficient if the collection has a high number of elements. 
Thus, reducing the number of evaluations of the distance 
function is the main goal of the methods for similarity 
search in metric spaces. To do that, they first build indexes 
over the whole collection. Later, using the triangle 
inequality, those indexes permit to discard some elements 
without being necessary to compare them against the 
query. The techniques that permit to search metric spaces 
efficiently usually differ in some features. Some of them 
only support discrete distance functions (e.g. the edit 
distance), while others where developed to work with 
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continuous distance functions. This is an important issue 
that restricts their application in some domains. The 
distinction between static and dynamic methods is very 
important. With static methods the index has to be built 
over the whole collection, while dynamic methods allow 
insert/delete operations in the database and build the index 
as the database grows. Other important factor is the 
possibility of storing the index efficiently in secondary 
storage, and the number of I/O operations needed to access 
it. In general, the applicability and efficiency of the 
method depends on these issues. 
Search methods can be classified into two types [8]: 
clustering-based and pivot-based techniques. Pivot-based 
search methods choose a subset of the objects in the 
collection that are used as pivots. The index stores the 
distances from each pivot to each object in the collection 
in adequate data structures. Given a query (q,r), the 
distances from the query q to each pivot are computed, 
and then some objects of the collection can be directly 
discarded using the triangle inequality and the distances 
precomputed during the index building phase. Being         
x ∈ U an object in the collection, we can discard x if 
|d(pi,u) – d(pi,q)| > r for any pivot pi. Some representative 
examples of pivot-based methods are: Burkhard-Keller-
Tree (BKT) [5], Fixed-Queries Tree (FQT) [2], Fixed-
Height FQT (FQHT) [1], Fixed-Queries Array (FQA) [7], 
Vantage Point Tree (VPT) [14] and its variants [3] and 
[15], Approximating and Eliminating Search Algorithm 
(AESA) [13] and LAESA (Linear AESA) [10]. 
Clustering-based techniques split the metric space into a 
set of clusters each represented by a cluster center. Given 
a query, whole regions can be discarded from the search 
result using the distance from their center to the query and 
the triangle inequality. The most important clustering-
based techniques are: Bisector Trees (BST)  [9], 
Generalized-Hyperplane Tree (GHT) [12], Geometric 
Near neighbor Access Tree (GNAT) [4] and Spatial 
Approximation Tree (SAT) [11]. More details on the 
problem of searching metric spaces and complete 
descriptions of all the algorithms enumerated here can be 
found in [8] and [16]. 
In this paper we present Sparse Spatial Selection (SSS), a 
new pivot-based technique that permits to deal with 
dynamic collections and continuous distance functions. It 
is also well-suited for its use in secondary memory. It is a 
dynamic method since the collection can be initially empty 
and/or grow as more elements are added to the database. 
The main contribution of SSS is the use of a new pivot 
selection strategy. This strategy selects a number of pivots 
that depends on the intrinsic dimensionality of the space 
and not on the size of the collection (which is interesting 
both from theoretical and practical issues). Moreover, this 
pivot selection strategy is dynamic and is able to maintain 
the efficiency of the index during searches, as new objects 
are added to the collection. 
The rest of the paper is structured as follows: Section 2 
describes the pivot-selection problem and its importance 
for the efficiency of pivot-based methods. Then, SSS, the 
new method proposed in this work, is presented in Section 
3. In Section 4 we present and discuss the experimental 
results obtained in our experiments. Finally, Section 5 
shows our conclusions and future lines of work. 
 

2. PREVIOUS WORK ON PIVOT SELECTION 
It is well-known that the efficiency of a similarity search 
method depends on the set of objects chosen as pivots, the 
number of pivots and their “location” in the metric space.  

Most of the pivot-based search methods choose pivots at 
random. Furthermore, there are no guidelines to determine 
the optimal number of pivots, since this parameter 
depends on the metric space we are working with. In 
previous work, some heuristics for pivot selection have 
been proposed. For example, in [10] pivots are objects 
maximizing the sum of distances between them. [14] and 
[4] propose heuristics to obtain pivots far away from each 
other. In [6] the importance of the pivot selection strategy 
was studied in depth, showing empirically how it affects to 
the performance of a technique. 
The main contribution in [6] is a criterion to compare the 
efficiency of two sets of pivots of the same size. Let {p1, 
p2, …, pk} be a set of pivots, with pi ∈ U. Given an object 
u ∈ U, a tuple that contains all the distances from u to 
each pivot is denoted as [u] = (d(u,p1), d(u,p2), …, 
d(u,pk)). Thus there is a space P = {[u] / u ∈ X}, that is 
also a vector space k. Over the elements of this space the 
distance function D{p1, p2, …, pk}([x],[y]) =max{1≤i≤k}| d(x,pi) - 
d(y, pi)| can be defined. Then, we have a metric space (P, 
L∞). Under this conditions, given a query q and a radius r, 
the condition to discard u ∈ U can be seen as |d(pi,u) - 
d(pi, q)| > r for some pivot pi, in D{p1, p2, …, pk}([q], [u]) > r. 
Since the more objects a set of pivots can discard, the 
better it is, then a set of pivots will be better than others if 
it increases the probability of  D{p1, p2, …, pk}([q], [u]) > r. 
Being μD the mean of the distribution D, that probability 
increases when μD is maximized. Therefore, authors' 
criterion establishes that the set of pivots {p1, p2, …, pk} is 
better than the set of pivots {p1', p2', …, pk'} if μ{p1, p2, …, pk} 
> μ{p1', p2', …, pk'}. 
In [6] several selection strategies based on the previous 
efficiency criterion were proposed: i) Random, that 
chooses the set of pivots randomly; ii) Selection, that 
selects N random sets of pivots and finally chooses the one 
maximizing μD; iii) Incremental, in which the next pivot 
chosen will be that object such that, after adding it to the 
current set of pivots, maximizes μD; and iv) Local 
Optimum, an iterative strategy that, starting with a random 
set of pivots, in each step replaces by a new object, the 
current pivot which less contributes to μD. The 
performance obtained by many of these techniques 
depends on the metric space considered. Their conclusions 
show that, in general, good pivots should be far from each 
other and also from the rest of objects in the database. 
Unfortunately, this second condition does not always lead 
to obtain good pivots. 
Determining the optimal number of pivots (the value k) is 
an important problem. However, it is known that the 
efficiency of the searches depends on that parameter. 
Moreover, k can vary greatly for different metric spaces. 
All the pivot selection techniques shown use a 
precomputed fixed value.  In [6] a brute-force approach to 
determine the optimal number of pivots is used. Results 
confirm that this number depends greatly on the metric 
space, and affects the efficiency of the methods. 
Therefore, adjusting it as well as possible is an interesting 
problem. 
 

3. OUR PROPOSAL: SPARSE SPATIAL 
SELECTION 

In this section we present a new pivot-based search 
method called Sparse Spatial Selection (SSS). It is an 
efficient method with some important advantages over the 
previous work. It is a dynamic method since the database 
can be initially empty and grow/decrease later as objects 
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are inserted/deleted. It is adaptive since the method adapts 
itself the index to the complexity of the collection as the 
database grows. The main contribution of SSS is the pivot 
selection strategy, which selects dynamically a set of 
pivots well-distributed in the metric space, a property that 
permits to discard more objects from the result when 
solving a search. 
 
3.1. Pivot selection strategy 
Let (X,d) be a metric space, U ⊆ X an object collection, 
and M the maximum distance between any pair of objects, 
M = max {d(x,y) / x, y ∈ U}. First, the set of pivots is 
initialized with the first object of the collection. Then, for 
each element xi ∈ U, xi is chosen as a new pivot iff its 
distance to any pivot in the current set of pivots is equal or 
greater than Mα, being α is a constant which optimal 
values are around 0.4 (as shown later). That is, an object in 
the collection becomes a new pivot if it is located at more 
than a fraction of the maximum distance with respect to all 
the current pivots. For example, if α = 0.5 an object is 
chosen as a new pivot if it is located further than a half of 
the maximum distance from the current pivots. Next 
pseudocode summarizes the process of pivot selection: 
 
PIVOTS ← {x1} 
for all xi ∈ U do 
     if ∀ p ∈ PIVOTS, d(xi, p) ≥ Mα 
          PIVOTS ← PIVOTS ∪ {xi} 
     end if 
end for 
 
It is evident that all the selected pivots will be far from 
each other (more that Mα), a desirable characteristic in a 
set of pivots [6]. However, our selection strategy has even 
more advantages. Forcing the distance between two pivots 
to be greater or equal than Mα, we ensure that they are 
well distributed in the space. It is important to take into 
account that our pivots are not very far from others neither 
very far from the rest of objects in the collection. These 
are two important conditions that, as shown in previous 
works, good pivots have to maintain. Our hypothesis is 
that, being well distributed in the space, the set of pivots 
will be able to discard more objects in the search. 
  
Being dynamic and adaptive is other good feature of our 
pivot selection technique. The algorithm adapts itself the 
set of pivots to the growth of the database. When a new 
element xi is added to the database, it is compared against 
the pivots already selected and it becomes a new pivot if 
needed. Therefore, the set of pivots maintains its good 
distribution in the metric space. Actually the collection 
could be initially empty, which is interesting in a practical 
application of this method. In this way, the growth of the 
collection does not imply a decrease in the performance of 
the algorithm. 
 
3.2. Intrinsic dimensionality of the metric space 
In a vector space, the dimensionality can be seen as the 
number of elements of each vector. Although general 
metric spaces do not have an explicit dimensionality, 
following the same idea that in vector spaces, we can talk 
about their intrinsic dimensionality. These interesting 
concepts allow us to distinguish between low and high 
dimensionality values. The efficiency of similarity search 
algorithms is worse with a high intrinsic dimensionality. 
For instance, any search method will behave better in a 

vector space with dimensionality 10 than in other with 
dimensionality 15. This fact has been empirically proved 
in previous research. In [8] this concept and its influence 
in the efficiency of search methods were analyzed. That 
paper proposed also a way to obtain an approximation of 
the intrinsic dimensionality as: ρ = μ / 2σ2 where μ and σ2 
are respectively, the mean and variance of the histogram 
of distances among points in the metric space. 
Another important feature in our method is that the 
number of pivots chosen does not depend on the size of 
the collection, but in the intrinsic dimensionality of the 
metric space. For example, assuming α = 0.5, in a            
1-dimensional space we could only need two pivots, in a 
2-dimensional space we could have at most 4 pivots, etc. 
This question has never been taken into account in 
previous search techniques. Therefore, another advantage 
of our pivot selection method is that the number of pivots 
generated is adapted to the intrinsic dimensionality of the 
space (even if it is unknown). When we are dealing with 
spaces whose intrinsic dimensionality cannot be 
approximated these results of special interest (it helps to 
determine the number of pivots). When the number of 
pivots is too small, they could not be enough to cover all 
the dimensions of the space, what could lead to less 
efficient searches. As our proposal generates a number of 
pivots depending on the dimensionality of the space, the 
number of chosen pivots should grow quickly when the 
first objects of the collection are processed. Then, the 
number of pivots should become stable when the number 
of processed elements is high. In Section 4 we provide 
empirical results that confirm this hypothesis. 
 
3.3. The parameter α 
Although in our method it is not necessary to state in 
advance the number of pivots to use, as in [6], we have to 
set in advance the value of α. This value in turn conditions 
the number of pivots. However, α must always take values 
between 0.35 and 0.40, depending on the dimensionality 
of the space. Figure 1 shows the number of evaluations of 
the distance function in terms of α for vector spaces of 
dimensionalities 8, 10, 12, and 14. In this figure we can 
see that the best result is always obtained for values of α 
that range from 0.35 to 0.40, and that the efficiency of the 
method is virtually the same for all the values of α 
included in this interval. We can also see that when α > 
0.40 the number of evaluations of the distance function 
takes higher values in spaces of high dimensionality. This 
result is due to the fact that an increase in the value of α 
implies a reduction of the number of pivots, and that this 
reduction has a stronger effect in spaces of higher 
dimensionality. 
These results show some of the main advantages of our 
proposal. Our pivot selection technique is simpler and 
more efficient than others previously proposed. In 
addition, our pivots are far away from each other, but they 
are not far away from the rest of the objects of the 
collection (i.e., our pivots are not outliers). However, we 
have achieved a similar efficiency to that of the existing 
techniques without having to state in advance the number 
of pivots to use. Our method finds itself the appropriate 
number of pivots for the complexity of the metric space, 
using only the maximum distance between any pair of 
objects in the collection. 
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Figure 1. Efficiency in vector spaces 

 
3.4. Index construction and collection growth 
One of the main advantages of our method is its dynamic 
nature. Thus, we describe the index construction process 
assuming that the collection is initially empty. The first 
object inserted in the database, u1, becomes the first 
selected pivot, p1. When a new object is inserted in the 
database, its distance to all the pivots already selected is 
computed and stored. If its distance to all of them is equal 
or greater than Mα, the object is added to the set of pivots. 
In this case, the distance from every object in the database 
to the new pivot is computed and stored in the index 
structure. Thus, the number of pivots does not have to be 
stated in advance over an initial object collection, but it 
grows at the same time as the collection does. This 
implementation makes it possible the index to be 
completely dynamic, and the set of pivots to adapt 
appropriately to the new inserted objects. Furthermore, it 
guarantees that even though the collection grows, the 
pivots will be well distributed over the metric space. 
  
3.5. Searching 
We finally describe how to use the index in the range 
query operation, since the other query types can be 
implemented in terms of this one. Being (q,r)  a query, the 
first step consists in computing the distance from q to 
every pivot in the index. With this information, we can 
discard every object xi ∈ U such that |d(xi,pj) - d(q,pj)| > r 
for any pivot pj, since by the triangle inequality (d(x,y) ≤ 
d(x,z) + d(z,y)), if this condition is true, its distance to q 
will be d(xi,q) > r. The objects that are not discarded by 
this condition make up the candidate list {u1, u2, …, um} ⊆ 
U and they must be directly compared against the query. 
The complexity of the search operation is measured as the 
number of evaluations of the distance function. First we 
have to compare the query q against every pivot. These 
distance computations constitute the internal complexity of 
the algorithm. Then we have to compare the query q with 
each object in the candidate list. These distance 
evaluations constitute the external complexity of the 
algorithm. The total complexity is the sum of the internal 
and external complexities [8]. 
 

4. EXPERIMENTAL RESULTS 
Our method has been tested with several data collections 
in different situations. First we used synthetic sets of 
random points in vector spaces of dimensionalities 8, 10, 
12 and 14. Although they are objects of a vector space, 
this information has not been used in the tests. The 
advantage of using this data types to test the algorithm is 
that we can study its behaviour in spaces with different 
intrinsic dimensionality. The Euclidean distance was the 
distance function used with these data sets. We also have 

tested the algorithm with real metric spaces: collections of 
words extracted from the English and Spanish dictionaries, 
using the edit distance as distance function. 
 
4.1. Number of pivots generated in terms of the 
dimensionality 
In Section 3 we emphasized that our method dynamically 
generates a number of pivots that depends on the 
dimensionality of the space, and not on the number of 
elements in the database. To validate this hypothesis we 
used collections of 1,000,000 of vectors of dimensions 8, 
10, 12 and 14. For each vector space we obtained the 
number of pivots selected in terms of the number of 
objects inserted in the collection, with α fixed to 0.5. 
 

n, collections size (× 103) k 
100 200 300 400 500 600 700 800 900 1000

8 16 17 19 20 21 22 22 22 22 22 
10 20 24 28 29 30 30 30 30 30 30 
12 44 50 53 54 55 57 58 58 58 58 
14 56 62 69 71 73 79 80 80 82 82 

 
Table 1. Number of pivots selected in vector spaces of 
dimensionality 8, 10, 12, 14 in terms of the size of the 
collection 
 
Table 1 shows the results obtained in this experiments. 
First we can see that the number of objects selected as 
pivots increases as the dimensionality of the vector space 
does. This result shows that the number of pivots depends 
on the intrinsic dimensionality of the metric space. Let us 
take a look now to the number of pivots in terms of the 
collection size. In all the test spaces the number of pivots 
grows quickly with the first objects of the database. Then 
this number grows much more slowly until it becomes 
stable. Obviously, when the collection has few elements, 
the number of pivots depends on its size. However, when 
the collection reaches a given size no more pivots will be 
selected even if new objects are inserted in the database. 
This happens because the current set of pivots covers all 
the space and captures its dimensionality. With these 
results we can conclude that the number of pivots 
generated depends on the intrinsic dimensionality of the 
space, and not on the size of the collection. 
 
4.2. Search efficiency in vector spaces 
In this section we show the results obtained in the tests 
performed to evaluate the efficiency of the algorithm in 
the search operation. In the first set of tests we used vector 
spaces of dimensions 8, 10, 12, and 14, each of them with 
100,000 vectors uniformly distributed in an hypercube of 
side 1. We got the mean number of evaluations of the 
distance function over 10,000 queries. The mean number 
of elements retrieved in each of them is the 0.01% of the 
database. In order to evaluate the behaviour of the 
algorithm, we compared the results with those obtained 
with the pivot selection techniques proposed in [6]. 
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k = 8 k = 10 k = 12 k = 14 
Method 

#p #d #p #d #p #d #p #d 
Random 85 213 190 468 460 998 1000 2077
Selection 85 204 200 446 360 986 800 2038

Incremental 65 157 150 335 300 714 600 1458
Loc. Opt. A 70 155 150 333 300 708 600 1448
Loc. Opt. B 60 157 150 369 300 881 760 1930

SSS 57 151 148 389 258 689 598 1452
 
Table 2. Minimum number of evaluations of d with 
different pivot selection strategies in vector spaces. 
 
Table 2 shows the minimum number of evaluations of d 
(#d) we obtained with each pivot selection strategy, and 
the number of pivots used (#p). We can observe that the 
number of evaluations of the distance function obtained 
with our method is always around the best result obtained 
with the strategies proposed in [6]. In some cases we 
performed less evaluations of d with less pivots. However, 
in other cases our method performs more evaluations, 
although we used less pivots too. This results show that 
the proposed pivot selection strategy has a similar 
efficiency to that of other methods. In the results of our 
tests we can also see that the number of pivots that our 
method selects is very similar to the optimum number of 
pivots of other pivot selection techniques. 
 
4.3. Search efficiency in metric spaces 
In addition to the tests with uniformly distributed vector 
spaces, we have also compared our method with others 
using “real” metric spaces. More specifically, we used two 
collections of words. The first one contains 69,069 words 
from the English dictionary, and the second contains 
51,589 words from the Spanish dictionary. We used the 
edit distance as the distance function. We used a 10% of 
the database as queries and a query range r = 2, that 
retrieves around the 0.02% of the collection. Table 3 
shows the minimum number of evaluations of d we 
obtained with our pivot selection technique and the ones 
proposed in [6], for the collection of words taken from the 
English dictionary. In this case, the result obtained with 
our technique its better than the obtained with any other 
one. As happened with vector spaces, the number of pivots 
that our method selects is similar to the optimal number of 
pivots used by other strategies that have got this number 
by trial and error. 
 

Methods pivots eval. d 
Random 85 213 

Good Pivots 85 204 
Outliers 65 157 

SSS 57 151 
 
Table 3. Minimum number of evaluations of d in a 
collection of words taken from the English dictionary. 
 
Finally, we ran the same tests with a collection of words of 
51,589 words taken from the Spanish dictionary. As in the 
case of the English dictionary, approximately the 10% of 
the database was used as queries (5.200 queries), we also 
used a query range r = 2 to retrieve around 0.02% of the 
database for each query. Figure 2 shows the results of this 
test. 
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(a) Number of pivots selected in terms of α 
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(b) Number of evaluations of d in terms of α 

 
Figure 2. Minimum number of pivots selected (a) and 
number of evaluations of the distance function for 
different values of α (b) in collections of words taken 
from the English and Spanish dictionaries 
 
In figure 2 we can notice important differences both in the 
number of pivots selected and the number of evaluations 
of the distance function. In the case of the Spanish 
dictionary, the number of pivots selected is much smaller 
than the obtained with the English dictionary. However, 
the optimum number of evaluations of d is very similar in 
both cases, and is obtained for very similar values of α. 
Since the two sets are both collections of words this result 
could seem strange. However, this happens because the 
two spaces have a different complexity. The number of 
words in the English collection is a bit bigger than the 
number of words in the Spanish collection. In addition, the 
word length distribution is different in each collection, and 
this fact has an important influence in the result of the 
query. In spite of these differences, our method has 
selected an appropriate number of pivots for each space, 
obtaining a similar efficiency in searches in both of them. 
This result is another evidence of the ability of our 
proposal to adapt itself to the complexity of the space we 
are working with. 
 

5. CONCLUSIONS AND FUTURE WORK 
In this paper we propose a new pivot-based method for 
similarity search in metric spaces. The main characteristics 
of this method are its efficiency (as we have seen in 
Section 4), dynamism (which allows the database to be 
initially empty and grow later) and adaptability (since the 
method adapts itself the number of pivots and the index to 
the complexity of the collection). The main contribution of 
our method is the pivot selection strategy, the responsible 
of these three important characteristics. In addition, the 
index structure makes possible its efficient storage in 
secondary memory.  
Our experimental results show that the method selects a 
number of pivots that depends on the intrinsic 
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dimensionality of the metric space, and not on the number 
of elements of the collection. In addition, this number of 
pivots is very similar to the optimum number for other 
strategies. This makes it unnecessary to state in advance 
the number of pivots needed for the index structure, 
something that no method has considered until now. The 
number of pivots selected is adapted to the space 
complexity, avoiding the selection of unnecessary pivots 
which could reduce the search performance. The 
efficiency of our method in vector spaces is similar to that 
obtained in previous works. However, our tests show that 
our method is more efficient than the existing ones in 
similarity search over general metric spaces. 
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