
Buckets Inverted Lists for a Search Engine with BSP

V. Gil Costa, A. M. Printista
LIDIC - Computer Science Department

University of San Luis
San Luis, Argentina

{gvcosta,mprinti}@unsl.edu.ar∗

M. Marı́n
Center of Web Research
University of Magallanes

Punta Arenas, Chile
mmarin@ona.fi.umag.cl

ABSTRACT

Most information in science, engineering and
business has been recorded in form of text. This
information can be found online in the World-Wide-
Web. One of the major tools to support information
access are the search engines which usually use
information retrieval techniques to rank Web pages
based on a simple query and an index structure
like the inverted lists. The retrieval models are the
basis for the algorithms that score and rank the Web
pages. The focus of this presentation is to show
some inverted lists alternatives, based on buckets, for
an information retrieval system. The main interest
is how query performance is effected by the index
organization on a cluster of PCs. The server design is
effected on top of the parallel computing model Bulk
Synchronous Parallel-BSP.

Keywords: Search Engine, Buckets, BSP, Tex-
tual Databases, Supersteps.

1. INTRODUCTION

One of the major tools for information access are the
search engines. Most search engines use information
retrieval techniques to rank web pages in presumed
order of relevance based on a simple query. Com-
pared to the bibliographic information retrieval sys-
tems of the 70s and 80s, the new search engines must
deal with information that is much more heteroge-
neous, messy, more varied in quality, and vastly more
distributed or linked. In the current Web environment,
queries tend to be short (1-2 words) and the potential
database is very large and growing rapidly. Estimates
of the size of the Web range from 500 million to a bil-
lion pages, with many of these pages being portals to
other databases (the hidden Web).
In response to this huge expansion of potential infor-
mation sources, today’s web search engines have em-
phasized speed, with less importance attached to ef-
fectiveness. Because of this, several studies have been
met to the development of new strategies that allow to

∗Group supported by the UNSL and the ANPCYT (National
Agency for Promotion of the Science and the Technology)

satisfy this demands through the parallel processing,
that has demonstrated to be a paradigm that allows to
improve the algorithms execution time.
For efficient query processing, specialized indexing
techniques have to be used with large documents col-
lections. A number of distinct indexing techniques
for text retrieval exist in the literature and have been
implemented under different scenarios. Some exam-
ples are suffix arrays, inverted files, and signature
files [19]. Each of them has their own strong and
weak points. However, due to its simplicity and good
performance, inverted files have been traditionally
the most popular indexing technique used along the
years. Therefore, in this work, we consider that the
document collection is indexed using inverted lists.
Assuming a text collection composed of a large set
of documents, an inverted list is basically composed
of a table (the vocabulary) that maintains all the rele-
vant words found in the text, and an associated list for
every such word that registers all occurrences of the
word in the text (document-id and another informa-
tion used to rank out responses to users queries) [5].
Because the user does not exactly understand the mea-
ning of seraching using a set of words, and he may
get unexpected answer, because he is not aware of the
logical view of the text adopted by the system and fi-
nally, because he has trouble with the boolean logic,
is why these algorithms use single key models (vecto-
rial model [4]).
In the following sections, the bucket strategies that
implement the parallel inverted lists, which attempt
to reduce the execution time required to process the
queries coming from different users, are analyzed
through the BSP model.

2. PREVIOUS WORK

In previous works, parallel algorithms for the local
inverted list and global inverted list strategies have
been developed, using an analysis and well struc-
tured design methodology, through the BSP com-
puting model [7, 9]. Paralellization using the global
index approach consists on distributing uniformly at
random every vocabulary word and its associated list
accross the processors. Thus processing a query in
parallel consists on determining to what processors

JCS&T Vol. 6 No. 1 April 2006

28

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15766709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

route every word that compose the query, and then re-
trieving the associated lists to perform the ranking of
documents that will be presented to the user.
The local index case is very simple, the inverted list
is built using the documents that each processor has.
Here, each processor builds its inverted list using its
own local documents, therefore each machine will
have a table with the same T terms, but the length
of the associated list with the document identifiers
will be approximately 1/P , where P is the number
of server’s machines; and the queries processing op-
eration consists to route the query to a processor, then
broadcasting this query, to then retrieve the associated
lists and to finally perform the ranking of documents.
Other researchers have tried to process this data struc-
ture in parallel, using traditional models of para-
llel computing such as message passing computing
throughPVM orMPI [11] [15]. These experiments
have proven that this structure can be efficiently pro-
cessed in parallel.
Also the query performance have been studied to an-
alyze how it is affected by the network speed, and the
disk transfer rate under these index organization [14].
The outcome of this works is as follows. First the
computing model and the architecture used to do this
work are shown and then the proposed strategies.
Preliminary versions of this work appear in [7, 8].

3. COMPUTING MODEL

In the Bulk Synchronous Parallel, BSP model of com-
puting, proposed in 1990 by Leslie Valiant [17], any
parallel computer is seen as composed of a set of P
processor-local-memory components which commu-
nicate with each other through messages. The com-
putation is organised as a sequence of supersteps.
During a superstep, the processors may perform se-
quential computations on local data and/or send mes-
sage to others processors. The messages are avail-
able for processing at their destination by the next
superstep, and each superstep is ended with a bar-
rier synchronization of processors [16]. The practi-
cal model of programming is SPMD, which is real-
ized as C and C++ program copies running on P pro-
cessors, wherein communication and synchronization
among copies are performed by ways of libraries such
as BSP lib [19] or BSPpub [20]. BSP is actually
a parallel programming paradigm and not a particu-
lar communication library. In practice, it is certainly
possible to implement BSP programs using the tra-
ditional PVM and MPI libraries.
The total running time cost of a BSP program is the
accumulative sum of the cost of its supersteps, and
the cost of each superstep is the sum of three quanti-
ties: w, h ∗G y L, where w is the maximum number
of calculation performed by each processor, h is the
maximum of messages sent/received by each proces-
sor with each word costing G units of running time,

and L is the cost of barrier synchronising the pro-
cessors. The effect of the computer architecture is
included by the parameters G and L, which are in-
creasing functions of P . This values along with the
processor’s speed s (e.g. mflops) can be empirically
determinate for each parallel computer by executing
benchmark programs at installation time.

4. SERVER’S
ARCHITECTURE

The environment selected to process the queries is
a network of 8 SMP (dual) workstations connected
by fast switching technology. A network of work-
stations is an attractive alternative nowadays due to
the emergent fast switching technology provides fast
message exchanges and consequently less parallelism
overhead. In this network, each machine has its own
operating system, and the communication is made by
a messages passage library.
To process the user queries, the server has to access
the textual database. This server has P processors
and at least one broker machine that acts as middle-
man between the server’s processors and the users.
The queries coming from the users are received by the
broker machine which should route them, with some
methodology, to a target machine of the server.
Also, for each received query, one of those P server’s
processors will be the ranker, which is selected by
the broker during the queries distribution time. This
ranker will perform the final ranking of document
and will send them to the requesting user machine.

5. BUCKETS DISTRIBUTED
AMONG DIFFERENT

PROCESSORS

This strategy proposes to group the associated lists
in buckets, and then distribute these buckets among
the different processors (BADP). Its goal is to reduce
the processing time and the data size that has to be
recovered from secondary memory.
Four distribution are presented for this strategy:
uniform sequential and circular distribution, a hash
distribution, and lastly a random distribution.

5.1. Uniform Sequential and Circular
Distribution

These distributions combine the global index strat-
egy for the inverted lists building, and the local index
strategy for the queries processing. To build the voca-
bulary table with the relevant terms and their associa-
ted lists, the complete collection of documents from
the textual database must be considered. The asso-
ciate list consists of pairs < d, fd,t >, where d is the
document identifier and fd,t is the frequency of the
term t in the document d. The pairs of the associa-

JCS&T Vol. 6 No. 1 April 2006

29

ted lists are in decrease order by their frequencies.
Then the associated lists are divided in buckets of
size K = N/P , where P is the number of proces-
sors in the BSP server, and N is the number of pairs
< d, fd,t >. So, in this way, the first buckets will have
higher frequencies than the last ones.
In the uniform sequential distribution, these buckets
are distributed among the processors in a sequential
way, so the bucket0 goes to P0, the bucket1 goes to
P1, and so on. As you can observe, the processors
with low logical identifier receive buckets with higher
frequencies, and processors with high logical identi-
fier receive buckets with lower frequencies.
On the other hand, in the uniform circular distribu-
tion, the buckets of the terms are distributed among
all processors in a circular way as indicates its name.
So, the buckets of the term1 are distributed follow-
ing the sequence P0, P1, P2,.., PP−1, then the buckets
of the term2 are distributed following the sequence
P1, P2,.., PP−1, P0 and so on, like it is shown in the
Figure 1.

Term1

Term2

Term3

����������
���������� ����������

����������

����������
��������������������

���������� 	�	�		�	�	

�
�

�
�

����������
���������� ����

���������� ����������
����������

����������
����������

 P0 P1 P2

 P2 P0 P1

P1 P2 P0

 Bucket 0 Bucket 1 Bucket 2

Higher Lower
frequencies frequencies

Figure 1: Uniform circular distribution for a
server with three processors

The queries may have one or more terms and some of
the letters (a,c,m,p) that are in these terms have bigger
probability of appearing than others. The broker ma-
chine has to receive the queries and has to send them
to the server. To make this, it will select a ranker and
a target machine for each query.
The BSP model can predict the query processing op-
eration cost, and for that we assume that the associa-
ted lists are stored on secondary memory. Also, it is
considered the query processing cost since the bro-
ker machine sends the queries until this machine re-
ceives the results from the BSP server [12]. The
secondary memory is treated as the network commu-
nication. It is to say, that a parameterD is included to
represent the average cost of accessing the secondary
memory. This parameter can be easily obtained us-
ing benchmark programs from the Unix systems. If
the database index can be completely stored in the P
main memory, then D = 1.
The execution of a lot of Q = qP queries using the
sequential distribution, is as follows. In the first su-
perstep, the processors get q queries and broadcast

2 units

2 units

2 units

3 units

3 units

3 units

5 units

5 units

5 units

P0 P1 P2

15 units

9 units

6units

idler

Synchronization

Figure 2: Processing time for the sequential
distribution

them with a cost of qP , a synchronization barrier
ends this superstep. So this superstep has a cost of
t1 = q + qPG + L, where L is the synchronization
cost, qP is the h-relationship (the maximum number
of messages send/received in this superstep), andG is
the cost in words of sending the message.
In the second superstep, the processors will get the
qP = Q queries, then they will join the queries
coming from the different processors, and they will
work on the determination of the document identi-
fier lists, using the vectorial model, for each one of
these queries, to built the partial result with a cost
of KDγid, where K = N/P is the bucket size (N
is the number of pairs < d, fdt >), and γid >= 1
is the load factor (see Eq.(1)) that reflects the work-
load of the processors. So in this superstep the cost is
t2 = Q + qDKγid + qKG + L, where qKG is the
cost of sending the partial result to the ranker, and in
the worst case they will send K partial result. It is im-
portant to see that the processors with low identifiers
receives the buckets with higher frequencies. If the
processorid has a low logical identifier, γid will re-
turn a high value, in other case, γid will return a value
close to one. Therefore, the load factor γ allows to
represent the work disparity that each processor has.

γid =eK ∗ ((B − bucketid)/B) (1)

The parameter B is the number of buckets for a term,
and in this distribution,B is equal to P when the num-
ber of pair <document,frequency> is bigger or equal
to the number of processors.
If the server has three processors, where P0 requires
5 units of time to process each bucket, P1 requires 3
units of time and P2 requires only 2 units of time, as
its shown in the Figure 2, then due to the BSP model
synchronize all processors to the higher time spent by
any processor, the tree processors of this server will
synchronize at P0 time, making the others ones re-
main idlers 6 and 9 units of time.
Finally, in the last superstep, the ranker processors re-
ceive qK messages from the others to perform the fi-
nal ranking with a cost of qK and send the results
to the broker machine. Therefore the cost of this su-
perstep is t3 = qKP + qK + qKG + L. Then the

JCS&T Vol. 6 No. 1 April 2006

30

asymptotic cost of this distribution is the sum:

3∑

s=1

ts = q(1+P+K(1+P+γiD))+q(K+P)G+L

(2)
In the first superstep, this distribution consumes a lot
of communication and synchronization time, because
of the broadcast. This cost will grow up as the num-
ber of processors is increased. The second and third
superstep, have more computation and the communi-
cation depends on the query being processing.
The disadvantage presented by the sequential distri-
bution, is that the documents with higher weights will
fall among the first logical processors (P0,P1,..), mak-
ing a work overload over these. In the circular distri-
bution the buckets with the highest frequencies will
not always go to the same processor, and due to this
the unbalance of workload presented in the sequential
distribution can be compensated. Because of this, the
cost of the circular algorithm using the BSP model,
for the execution of a lot of Q = qP queries, is just
like the described before but without γ, that represents
the load factor, because in this case the average time
required by each processor to process the queries is
the same (see Figure 3).
An optimization that has been applied to these search
strategies is the use of filters proposed in [13] which
allows to filtrate documents during the ranking opera-
tion with a significant reduction in the ranking evalu-
ation cost without degradation in retrieval effective-
ness. The filtering method considers as candidate
answers only the documents that with high within-
document frequency. The memory usage is reduced
because having fewer candidates means that fewer ac-
cumulators are required to store information about
these candidates. Disk traffic and CPU processing
time are also reduced, because by ordering inverted
lists by decreasing within-document frequency, only
the first portion of each list containing high frequen-
cies will be processed, and the rest can be ignored.
Although, this filtrate technique does not benefit all
the distributions proposed, because the uniform se-
quential distribution will be harmed. That is because
the processors with low logical identifiers have do-
cuments with higher frequencies than the processors
with high logical identifiers, leaving these last ones
idlers at the queries processing time.
Another important issue in a Web engine, is the space
required to store the index. If we are working with a
vocabulary table of size T (that means T terms), and
the number of pairs in the associated lists is approxi-
mately N , then the space needed to store the index in
each processor is shown in Eq.(3), where k =eN/P
is the bucket size (that is to say, the number of pairs in
each bucket), and in these distributions every machine
gets only one bucket.

T∗eN/P (3)

5 units
3 units

5 units

2 units

P0 P1 P2

2 units

3 units

2 units

3 units

5 units

time
Synchronization

Figure 3: Processing time for the circular dis-
tribution

So, the processors will have approximately the same
term, but the associated list will be smaller.

5.2. Hash and Random Distribution

Up to now, the presented distribution of the vocabu-
lary table’s terms, work with buckets of fixed size K,
which is calculated considering the number of proces-
sors P and the number of pairs < d, fd,t >.
In these cases, the global organization is used for the
inverted list construction and it requires building the
vocabulary table with the relevant terms and its re-
spective locations in decreasing order by their fre-
quencies. Then, the associated lists is divided in buc-
kets of variable sizeK in a range of 2, .., N−1, where
N is the number of pairs that each term has (the cases
K = 1 and K = N are avoided). If K is big enough,
then the number of buckets is small, the data distri-
bution over the different processors is poor, and the
concurrence during the queries processing is bigger.
But a small K allows a good data distribution and a
bigger parallelism during the queries processing.
To distribute the buckets among the server’s proces-
sors, a hash function that considers the term (because
some terms have higher probability of appearing than
others), the identifiers number of the bucket, (so not
all the buckets go to the same processor) and the num-
ber of processors is be used.
This hash function reduces the probability that one
processor receives more than one bucket with high
frequencies. The queries processing requires just two
supersteps, and due to the use of a hash function, the
broker machine has to perform an additional control
before sending the queries to the server. This con-
trol implies to identify the processors that have buc-
kets for the terms that appear in the query. Once the
processors are identified, the broker generates a sub-
query for each one of these processors.
In the random distribution, the processors that receive
the buckets of the inverted lists are randomly selected.
Due to this, it is necessary that as the buckets are dis-
tributed among the processors, the broker machine
has to update a structure with the following format:

JCS&T Vol. 6 No. 1 April 2006

31

< term1, < P1, .., Pn >> where the second list cor-
responds to the processors that have buckets for that
term. As in the previous case, the broker machine has
to select the processors that have buckets for the terms
of the received queries, but using the structure men-
tioned before. Then it has to generate a sub-query for
each processor that has a bucket for the terms of the
query, exploding the bulk property of BSP [10].
In both distributions, when the processors receive the
q sub-queries, they will search in their inverted list for
the terms of these sub-queries with a cost of qDK,
and will send the found document identifiers as par-
tial result to the ranker machine (qKG) with a cost of
t1 = q + qDK + qKG+ L.
In the second superstep, the ranker processors will get
qK messages with the partial result, and will perform
the final ranking with a cost of qK. Finally, they will
send a list with the top document identifiers to the bro-
ker (qKG). Therefore, this superstep has a cost of
t2 = qKP + qK + qKG + L. So, the asymptotic
cost of this distribution is:

2∑

s=1

ts = q(1 +K + P) + qKG+ L (4)

So these distributions require only two supersteps to
perform the queries processing, and they allow more
concurrency. The only difference between both, is
that the random requires an additional structure to
know which processor has information about a term.
So the queries processing and the analytic cost is the
same, and it is not expected to have a significant vari-
ation of values in the empirical experiments.
The purpose of using a random distribution is to be
able to measure how good is the selected hash func-
tion. These two last distributions reduce the probabil-
ity that one processor receives more than one bucket
belonging to the same term, and when the buckets are
bigger enough a better load balance during the queries
processing can be obtained.
Finally, analyzing the space metric, and due to these
distributions have different bucket size; if T is the
number of term in the vocabulary table,N is approxi-
mately the associated list size, and P is the number of
processors in the server, then we have three possible
cases. In the first one if the number of processors P is
equal to the number of buckets B =eN/K, then the
space required is shown in Eq.(5). Here, each proces-
sor will have one bucket for each term of size K. In
the second case, if if B < P then the Eq.(6) shows
the space required. In this case, some processors will
not get buckets for some terms (T/P), and the buc-
kets will have a K size. Finally, the space needed if
B < P , is shown by Eq.(7), where again every pro-
cessor will get the T terms and some of them may get
eB/P buckets of size K for these terms.

T∗eN/B = T ∗K (5)

T/P∗eN/B = T/P ∗K (6)

T ∗ [eN/B∗eB/P] = T ∗ [K∗eB/P] (7)

6. BUCKETS DISTRIBUTED
AMONG DIFFERENT

SUPERSTEPS

This strategy distributes the buckets among the super-
steps of a processor (BADSS) according to the BSP
model. The main idea is to divide the associated lists
in buckets of size K, keeping only one of them in
main memory, the one with the higher frequencies.
The construction of the inverted list is just like in the
global strategy, where a sequential vocabulary table
is built and then the terms are distributed among the
processors with their whole associated lists.
Therefore it’s remains to explain how to perform the
queries processing (see Figure 4). First all proces-
sors have to recover from secondary memory the first
bucket of each term and the frequency of the next
bucket. Once all processors are ready they can be-
gin with the first superstep, where some of them, pre-
viously selected by the broker machine, receive the
queries and select the top documents (forming a par-
tial result) for these queries. These documents are
send to the ranker machine and then there is a barrier
synchronization, which separates the supersteps. Af-
ter this synchronization, the ranker machines proceed
as follows:

1: procedure
2: for each query do
3: switch(message.type)
4: case ranking:Rank()
5: case new bucket:Get the results from the
6: next bucket and send them to the ranker
7: end for
8: end procedure

In the Rank() function the ranker has to check if the
partial results received are new buckets previously re-
quired for a term. If that so, it has to replace the old
buckets with these new ones. Then for each term of
the query been processing, the ranker has to verify if
some processor has a bucket with higher frequencies
than the received. If that happens, then it has to re-
quest a new bucket to those processors and return. In
other case, the ranker performs the final ranking oper-
ation to return the top documents.
With this strategy there are two extreme cases, the
worst one is when a processor has to search in all the
buckets of a term, because it has higher frequencies
than any other. And the best case is when all the pro-
cessors only need the first bucket to solve the query.

JCS&T Vol. 6 No. 1 April 2006

32

5 20 9

4 8 7

2 5 6

bucket 1

bucket 2

bucket 3

P 0 P1 P2 1º Superstep

 Send the first frequencies of the bucket 2

2º Superstep

 Check that P1 has the next bucket with
 higher frequencies than the bucket sent by P0
 Ask to P1 for the next bucket

 Send the bucket 1 to the ranker

 The ranker gets the buckets 1
 The ranker gets the next frequencies

Frequencies

Figure 4: Bucket distributed among different
supersteps

The cost of this strategy under the BSP model as-
suming T the maximum number of terms that will be
required by the next superstep, is as follow:

1. First the processors get q queries, process them
and send the partial results to the ranker with a
cost of q + qDK + qKG+ L.

2. Then the ranker machines will get qK messages
and will check if some processor has a bucket
with higher frequencies than the received. If
that does not happens, the rankers will perform
the final ranking and will send the top docu-
ment identifiers to the broker, with a cost of
qK+ qK+ qKG+L. In the other case, if more
buckets are needed, the rankers will send a mes-
sage with the terms to the processors that have
buckets with higher frequencies. So the cost of
this superstep would be qK + TG+ L.

3. This superstep is executed if more buckets were
requested in the previous superstep. Here, the
processors get the messages with the terms that
require the next bucket, recover them from sec-
ondary memory, select the top document iden-
tifiers and send them again to the ranker with a
cost of T + TDK + TKG+ L. Then return to
the second superstep.

A variant for this strategy will be that the target ma-
chines, that generate the partial results, send only
K/P results instead of K (KBADSS). This allows
reducing the communication between the processors
and the time worn-out in the synchronization barrier.
As with the previous strategy, now the size metric will
be show. In this case, the vocabulary table has T terms
and due to each term is send to a processors with the
whole associated list, each processor will need the
space shown by the Eq.(8).

T/P ∗N (8)

7. EXPERIMENTAL RESULTS
In this section the experiments performed using a
2GB sample of the Chilean Web with a query log from

www.todocl.cl, the Fibrosis database (4.7 Mb) with
1239 documents published from 1974 to 1979 [14]
and the Magazine database (1.5 Mb) with 546 do-
cuments of (ftp://ftp.cs.cornell.edu/pub/smart/time/)
will be shown. This gave as a realistic setting both
on the set of term that compose the text collec-
tion and the type of term that typically are part of
user’s queries. Transactions were generated at ran-
dom by taking terms from the query log. The pre-
sented strategies are compared with the local index
and the global index organization. The experiments
were performed with a filter Cins=0.12 [13] and
Cadd={0.0,0.25,0.50,0.75,1.0}. The developments
were performed in a cluster of 8 SMP (dual), con-
nected by a FastEthernet.

0

2

4

6

8

10

12

2 3 4 5 6 7 8 9 10

Sy
nc

hr
on

iza
tio

n T
im

e

Number of Processors

Bucket Strategies
Circular

Global
Sequential

Local
KBADSS

BADSS
Hash

Random

Figure 5: Running Time - Chilean Database.

0

5

10

15

20

25

2 3 4 5 6 7 8 9 10

Ru
nn

in
g T

im
e

Number of Processors

Bucket Strategies
Circular

Global
Sequential

Local
KBADSS

BADSS
Hash

Random

Figure 6: Running Time - Fibrosis Database.

0

5

10

15

20

2 3 4 5 6 7 8 9 10

Ru
nn

in
g T

im
e

Number of Processors

Bucket Strategies
Circular

Global
Sequential

Local
KBADSS

BADSS
Hash

Random

Figure 7: Running Time - Magazine Database.

JCS&T Vol. 6 No. 1 April 2006

33

Figure 5 shows the running time for the execution of
a lot of Q=2000 queries under the Chilean database.
Figure 6 shows the times obtained by each strategy
for a lot of Q=100 queries with the Fibrosis database;
and finally the Figure 7 shows the running time ob-
tained for a lot of Q=81 queries. With the first two
databases, where the associated lists are not bigger
than the number of terms in the vocabulary table, the
hash and random distribution for the BADP strategy,
followed by the global organization, perform better
that the others. But in the Magazine database where
the associated lists are really big, the BADSS and the
KBADSS outperforms the others, because these ones
work with smaller lists and in generally they do not
require more than one superstep to complete a query
request. In all the cases as the number of processors is
increased, the speedup in the query processing oper-
ation is limited, at the bottom, by the communication
and synchronization time, and the network traffic.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5 6 7 8 9 10

Sy
nc

hr
on

iza
tio

n T
im

e

Number of Processors

Bucket Strategies
Circular
Global

Sequential
Local

KBADSS
BADSS

Hash
Random

Figure 8: Synchronization Time - Magazine
Database.

0

2

4

6

8

10

12

2 3 4 5 6 7 8 9 10

Sy
nc

hr
on

iza
tio

n T
im

e

Number of Processors

Bucket Strategies
Circular
Global

Sequential
Local

KBADSS
BADSS

Hash
Random

Figure 9: Synchronization Time - Fibrosis
Database.

Then Figures 9,8 and 10 show the synchronization
time for each one of the presented strategies and
the global and local organization, using the three
databases. In the three of them, the BADSS and
KBADSS consume more communication than the
others ones, allowing confirming the behaviour pre-
sented in the running time figures. That is to say,
the experimental results obtained by these two strate-

0

2

4

6

8

10

12

2 3 4 5 6 7 8 9 10

Sy
nc

hr
on

iza
tio

n T
im

e

Number of Processors

Bucket Strategies
Circular

Global
Sequential

Local
KBADSS

BADSS
Hash

Random

Figure 10: Synchronization Time - Chilean
Database.

gies are dependent on the communication and syn-
chronization time consumed by each one.
The bucket size is also studied in this work, trying
to find the optimal size for each one of these strate-
gies. But as the Figures 11 and 12 show, as the num-
ber of buckets is increased the running time does not
varies very much, that is because as the number of
buckets grows up the computation and the communi-
cation also does.
Another important issue is that when the number of
pairs in the associated lists is smaller then the number
of processors (N << P) there is a moment when the
computation cost can not be reduced any more and the
running time arrives to a threshold that can not pass.
The ideal case is when the number of buckets is equal
to the number of processors (NmodP = 0), so every
machine gets only one bucket, but whenNmodP <>
0 some processors will have more buckets requiring
more computing time than others.

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000

Ru
nn

in
g T

im
e

Number of Buckets

Number of Processors
"2"
"3"
"4"
"5"
"6"
"7"
"8"
"9"

"10"

Figure 11: Bucket size with the hash distribu-
tion - Fibrosis database.

8. CONCLUSIONS
The query processing performance has been studied
with strategies that use the concept of buckets for the
parallel implementation of the inverted lists index. In-
verted lists are used as index structures and the vector
model is adopted as ranking strategy.

JCS&T Vol. 6 No. 1 April 2006

34

0

1

2

3

4

5

6

0 200 400 600 800 1000

Ru
nn

in
g T

im
e

Number of Buckets

Number of Processors
"2"
"3"
"4"
"5"
"6"
"7"
"8"
"9"

"10"

Figure 12: Bucket size with the BADSS strat-
egy - Magazine database.

The proposed strategies are compared with the local
and global index strategies. The goal of the presented
strategies is to divide the associated lists in buckets of
sizeK, and to distribute them among the server’s pro-
cessors, to be able to reduce on one hand the storage
space required by these lists in each processor, and
the processing time.
The study of these strategies is based on the BSP
model. The theorical analysis shows that the BDASS
requires a lot of communication and synchronization,
if the ranker has to ask documents from more than one
bucket, and the number of supersteps depends on the
query and the frequencies that each processor has.
Also the circular and sequential distribution analysis
show that the cost of the broadcast is high. Finally,
the random and hash distribution requires the small-
est quantity of supersteps (only two), and they allow
greater concurrency among the various queries and
less communication.
The results for the Chilean Web and the Fibrosis
databases indicate that for small databases the global
strategy and the hash distribution get similar running
times, and the times obtained by the others are above
these ones. But for big databases, where the use of
parallelism is justify, the buckets strategies outper-
forms the local index organization and get better run-
ning times than the global index organization.
As future work it is intended to work with another
type of data structure, like the trees (SAT,dSAT,etc.),
that also allow to search texts and another multimedia
information like sounds, videos, etc.

References
[1] Serge Abiteboul and Victor Vianu. “Queries and

Computation on the Web”. Proceedings of the In-
ternational Congerence on Database Theory. Delphi,
Greece 1997.

[2] C. S. Badue. “Distributed query processing using
partitioned inverted files”. Master’s thesis, Federal
University of Minas Gerais, Belo Horizonte, Minas
Gerais, Brazil, March 2001.

[3] R. A. Barbosa. “Departameho de consultas em bib-
liotecas digitais fortemente aclopadas”. Master’s the-
sis, Federal Univerity of Minas Gerais, Belo Hori-

zonte, Minas Gerais Brazil, May 1998. ——-in Por-
tuguese.

[4] R. Baeza and B. Ribeiro. “Modern Information Re-
trieval”. Addison-Wesley. 1999.

[5] R. Baeza-Yates and A. Moffat and G. Navarro.
“Searching Large Text Collections”, Handbook of
Massive Data Sets,Kluwer Academic Publishers,
2002, ISBN 1-4020-0489-3.

[6] T. Berners-Lee, R. Cailliau, A. Luotonen, H. Nielsen,
and A. Secret.“The World-Wide Web”. Comm. of the
ACM, 37(8):76-82,aug 1994.

[7] G. V. Gil Costa. “Procesamiento Paralelo de Queries
sobre Base de Datos Textuales”. Tesis de licenciatura.
Universidad Nacional de San Luis. 2003.

[8] Veronica Gil Costa, A. Marcela Printista. “Estrategia
de Buckets para Listas Invertidas Paralelas”. XII Jor-
nadas Chilenas de computación. Arica, Chile. 8-12 de
noviembre del 2004.

[9] V. Gil Costa, M. Printista y M. Marı́n. “Modelización
de Listas Invertidas Paralelas”. X Congreso Argentino
de Ciencias de la Computación, 4-8 de Octubre
2004.(CACIC 2004).

[10] M. Goudreau and J. Hill and K. Lang and
B. Mc Coll and S. Rao. “A Proposal for the
BSP Worldwide Standar Library”. http://www.bsp-
worldwide.org/standar/stand2.html. 1996.

[11] A. MacParlane, J.A.McCann y S.E. Robertson. “Pa-
rallel Search Using Inverted Files”. In the 7th. Inter-
national Symposium on String Processing and Infor-
mation Retrieval, 2000.

[12] M. Marin, C. Bonacic y S. Casas. “Analysis of two
indexing structures for text databases”, Actas del VIII
Congreso Argentino de Ciencias de la Computación
(CACIC2002). Buenos Aires, Argentina, Octubre 15
- 19, 2002.

[13] M. Persin, J. Zobel, R. Sacks-Davis. “Filteres Docu-
ment Retrieval with Frequency-Stores Indexes”. Jour-
nal of the American Society for Information Science,
1996.

[14] B.A. Ribeiro-Neto and R.A. Barbosa. “Query per-
formance for tightly coupled distributed digital li-
braries”. In Third ACM Conference on Digital Li-
braries, pages 182-190, 1998.

[15] C. Santos Badue, R. Baeza-Yates, B. Ribeiro-Neto,
and N. Ziviani. “Concurrent query processing using
distributed inverted files”. In the 8th. International
Symposium on String Processing and Information
Retrieval, pages 10-20, 2001.

[16] D.B. Skillcorn and J. Hill and W.F. McColl. “Ques-
tions and Answers about BSP”. Oxford University
Computing Laboratory. PRG-TR-15-96. 1996.

[17] L. Valiant. “A Bridging Model for Parallel Computa-
tion”. Communications of the ACM, Vol. 33, Pp 103-
111, 1990.

[18] I. Qitten, A. Moffat and T. C. Bell. “Managing Gi-
gabytes - Compressing and Indexing Documents and
Images”. Morgan Kaufmann Publishers, Inc. second
edition, 1999.

[19] WWW.BSP and Worldwilde Standard,
http://www.bsp-worldwide.org

[20] WWW.BSP PUB Library ar Paderborn Univertity,
http://www.uni-paderborn.de/bsp

JCS&T Vol. 6 No. 1 April 2006

35

	r-a2: Received: Nov 2005. Accepted: Feb. 2006.

