
A Single-Version Scheme of Fault Tolerant Computing

Goutam Kumar Saha
Scientist-F, Centre for Development of Advanced Computing, Kolkata, India

Mail To: CA – 2 / 4 B, Baguiati, Deshbandhu Nagar, Kolkata 700059, INDIA
gksaha@rediffmail.com, sahagk@gmail.com

ABSTRACT
This paper describes how to design low-cost reliable
computing software for various application systems, by
incorporating a single-version fault tolerant scheme
along with run-time signature-based control-flow
checking. Most of the ordinary systems lack fault tolerant
software fix. The conventional fault tolerant approaches
viz., Recovery Block (RB), N Version Programming
(NVP) etc., are too costly to fix in an ordinary low-cost
application system because, both the RB and NVP rely
on multiple (at least three) versions of both software and
computing machines. However, the proposed approach
needs a single version (SV) of an enhanced application
program that gets executed on one computing machine
only. It is common that we often face interrupted service
(caused either by an intermittent fault in an application
program or in hardware), during the service delivery
period of an ordinary cheaper application system.
Execution of an application program often show
malfunctions or it gets interrupted due to memory bit
errors. Error Correction Codes (ECC) (viz., parity,
Hamming codes, CRC etc.,) that are used in memory, are
not as effective for online correction of multiple bit
errors, as they are, for the detection of few bit errors.
Again, software implemented ECC has a significant
overhead over both time and code redundancy. In other
words, built in ECC in memory, cannot recover all bit
errors but can detect only. As a result, if an error is
detected by ECC, the application program needs to be
restarted for its re-execution afresh in various
microprocessor based application systems. So, the ECC
alone is useful for designing a fail-stop kind of system
but it suffers from high time redundancy. Other software
implemented fault- tolerance schemes are also towards
fail-stop kind. But, the proposed (SV) based approach is
capable of tolerating such errors without stopping the
execution of an application. This SV Scheme (SVS) aims
to provide an uninterrupted service at no extra money,
but at an acceptable more execution time and memory
space. This SV is a non- fail-stop kind fault tolerance
scheme that can be implemented in various computing
systems without spending an additional money, and as a
result, major part of common people in our society, can
gain reliable service from the low – cost, SV- based
computing system.
Keywords: Single-Version Scheme, bit errors in
memory and register, fail-stop, fault tolerance.

1. INTRODUCTION
Many of us in our society cannot always afford to buy a
costly - computing system. A costly-system is expected
to be a reliable one because of its built in redundancy in
its various components. Many commodity systems use
off- the- shelf - microprocessor or micro-controller that
may lack ECC scheme. Electrical surges, transients,

alpha particles or cosmic rays etc., often cause multiple
bit errors in a memory or in a processor register. As a
result, an application fails often. The vast majority of
hardware - failures in modern microprocessors (MP),
especially for memory faults (for example, multiple byte
errors or random bit-errors), is because of the limited
hardware detection in them [1]. Though, memory has
Forward Error Correction (FEC) or Error Correcting
Codes (ECC) (e.g. Parity bits, Hamming Code, BCH,
and Cyclic redundancy codes in which bits are
interpreted as coefficients in a polynomial etc.) that are
capable of detecting and correcting a few bit errors on
using both code and high time redundancy. For example,
BCH (63,45) can correct only 3 errors in a 45
information bits. CRC - 32 codes detects any single - bit,
all double - bit, any odd number of errors, and error
bursts of 32 bits errors. In general, CRC can detect
burst errors up to length < number of redundancy bits.
However, CRC (polynomial codes) take high processing
time to calculate some function y = f(m), where m is the
message data, for coding and decoding. Again, in CRC,
there is a chance to have false negative test for error.
Though CRC is more complicated than parity or
checksum (that is, computing the sum of all words in the
application memory space before the application starts
and re-compute the sum to validate with the earlier sum),
it can be implemented in hardware. Checksum or such
Error Correcting Codes (ECC) or Error Detection
Mechanism (EDM) in the memory or in a processor, are
useful for detecting and correcting a few bit errors only
in memory. Software implemented ECC is not effective
for online detection and correction of all bit errors in
memory, but they are effective for a single or few bit
flips in memory. Transient faults (whose presence is
bounded in time) are random events. Transient bit errors
can be tolerated by re-computing an application afresh. A
permanent fault is one that continues to exist until the
faulty component is repaired. Software Fault Tolerance
is the reliance on “Design Redundancy” to mask
residual design faults present in software program.
Current fault tolerant techniques utilized in commercial
systems such as IBM S/390 G5 [1,2,3] rely on
redundancies. For example, duplicating chips and
comparing results implement error checking. These
techniques need two times or more hardware overhead.
In addition, the duplicate and compare is adequate for
error detection only. Hence, low-cost fault tolerant
technique is necessary for future microprocessor systems.
This paper describes an economically very important
method to tolerate multiple bit-faults, permanent and
transient bit errors by acting on software only. The
proposed SV scheme is based on a procedure or
application triplication along with a signature-based
control-flow checking, and comparison of the outputs of
two copies for errors detection, and in case an error is

JCS&T Vol. 6 No. 1 April 2006

22

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15766708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

detected, then it is followed by voting upon the outputs
of all three copies that get executed sequentially in order
to tolerate one fault, and to produce a correct output (that
is, the output in majority). Fault tolerance is the ability of
a system to perform its function correctly even in the
presence of internal faults. We should accept that, relying
on software techniques for obtaining dependability
means accepting some overhead in terms of increased
size of code and reduced performance (or slower
execution).

2. PREVIOUS WORKS
In order to design an ultra reliability in computing
application, it is necessary to adopt the strategy of
defensive programming based on code and time
redundancy (i.e. fault - tolerant software), e.g., Recovery
Blocks (RB) [4,9], N Version Programming (NVP) [5].
Both the RB and NVP rely on software design
diversification and multiple machines. In other words,
these schemes rely on multiple versions of an application
running on different machines. In Recovery Blocks, the
acceptance test condition is expected to be met by the
successful execution of either the primary module or the
alternate (different version) modules. When an
acceptance test detects a primary module's failure, an
alternate module executes. If all alternate modules are
exhausted, the system crashes. In NVP, N number of
variants (different versions) or alternates run
simultaneously on N different machines and at the end of
program, the results are voted upon to find an answer in
majority and it is considered as a correct result. If no
consensus result is found, then the NVP system crashes.
However, both RB and NVP need multiple versions of
software to be developed independently using different
languages, tools etc. In reality, designing one version of
reliable software is itself a very costly and challenging
task. Again, designing multiple versions of software is
found to be very expensive and beyond reach for many
low cost applications. The RB scheme needs f+1 number
of alternates to tolerate f sequential faults. The NVP
scheme needs f+2 number of alternates to tolerate f
sequential faults. The various single-version software
implemented fault tolerance (SIFT) schemes, for
example, Algorithm Based Fault Tolerance (ABFT) [6],
Assertions [7, 17, 18], and Control Flow Checking [8]
are meant for supplementing the intrinsic error detection
mechanisms (EDM) of a microprocessor system only for
designing fail-stop (that is, stopping an application on
detection of error) kind of fault tolerance against the fault
model of transient bit errors in memory. ABFT is suited
for applications using regular structures. Its applicability
is valid for a limited set of problems. Therefore, it lacks
of generality. The use of logic statements or assertions at
different points in the program that reflect invariant
relationships between the variables of the program can
lead to different problems. Because, assertions are not
transparent to the programmer and their effectiveness
largely depends on the nature of an application and on
the ability of a programmer. Again, the success of
Control Flow Checking largely depends on partitioning
an application program in basic blocks (branch - free
parts of code). For each block, a deterministic signature
is computed and errors can be detected by comparing the
run-time signature with a pre-computed one. In most of
the control flow checking techniques, one of the main

problems is to tune the test granularity that should be
used. In procedure duplication (PD) [19], a programmer
decides to duplicate critical procedures and to compare
the obtained results for detection of transient bit - errors.
Here, a programmer has to define a set of procedures to
be duplicated and to introduce the proper checks on the
results. So, PD approach is useful to detect a few bit
errors only, towards fail-stop fault tolerance through re-
starting an application. These SIFT techniques that
basically rely on a set of carefully chosen software
detection techniques, aim towards detection of few bit -
errors in memory towards fail-stop kind of fault
tolerance through system reset and they lack of
generality and applicability. Row-checksum based fault
detection and tolerance has been discussed in the work
[11]. Interested readers should refer to other important
works on hardware or software implementations of time-
constrained and reliable embedded systems [10, 12, 13]
also. Other works [14,15,16,20] also discussed on
software hardening and the limitations of ECC and
conventional software based techniques through single
bit fault injection. Software cost analysis for RB, NVP
and SIFT approaches have been discussed in
[21,22,23,24].

3. THE SVS DESCRIPTION
The proposed SVS technique relies on procedure
triplication in order to tolerate one erroneous
computation. This scheme detects errors by executing
two copies of an application program with similar inputs
and then comparing the results. An inequality in results
indicates an error. Again, the SV approach is able to
tolerate a fault or to mask errors through executing the
three copies of an application program with similar
inputs and then comparing or voting upon all the results
for getting a result in majority.
The basic steps involved in this scheme are stated below.

Step 1. Triplicate an application program in the form of
a procedure: PI1, PI2, PI3
Step 2. Sequentially execute: PI1, PI2 with similar
inputs.
Step 3. Validate the signature-based control-flow
checking and then compare the outputs say, RI1 and RI2
of PI1 and PI2 respectively.
Step 4. If both the outputs (values) are found to be same
on comparison (no transient or permanent bit error has
occurred or amidst fail silent faults), then application-
system's output is RI1 or RI2.
Step 5. If both the outputs (values) are not same, then
execute the third image PI3 with similar input.
Step 6. Validate the signature-based control-flows and
compare the outputs (values) obtained from either of
these application-copies that is, either RI1 and RI3, or
RI2 and RI3, in order to find out equality and to output it.

Step 7. If run-time signatures of control-flows are
detected as erroneous then we need to compare (or vote)
all the outputs from all the three replicas of an
application, and if there is an output (value) in majority,
then application-system's output is the majority one only.
Thus, faults in either one of the application-replicas or
bit-errors in run-time signatures are tolerated by masking
the erroneous output (caused by transient or permanent
bit errors).

JCS&T Vol. 6 No. 1 April 2006

23

Step 8. If no output in majority, then application is
restarted or reloaded for re-execution. In such
disagreement, SVS converges to a fail-stop kind scheme.
The schematic diagram of the SVS with three replicas of
an application is shown in figure-1. This scheme is
explained in details in the flowchart (as shown in figure-

2).

As shown in the figure 1, the three copies of a procedure
that is, Proc, Proc_cp1 and Proc_cp2 are sequentially
executed on similar inputs, and on validating their
control-flows, their outputs are compared or voted upon
in order to mask an erroneous output. A procedure-copy
may compute erroneous result due to transient or
permanent- bit errors in its memory space or in processor
registers. The scheme is described in detail in a
flowchart. The flowchart of the proposed Single Version
(SV) based low cost fault tolerant computing scheme is
described in Figure 2. Each of the variables: cf1, cf2 and
cf3 are to hold the run-time signatures for the control-
flows in the replicas: Application_copy_1,
Application_copy_2, Application_copy_3 respectively.
Here, an application program can also be treated as a
procedure itself.

4. THE SV APPLICATION
The SV based fault tolerant scheme is demonstrated on a
typical application like "Computing the greatest of 3
numbers" for our understanding. The application
program is in the form of a procedure or a function say,
greatest. We triplicate the greatest function into say,
greatest1, greatest2 and greatest3. All three copies of the
function greatest works on similar input variables
namely i1, i2, and i3. The control flow global variables
namely, cf1, cf2, cf3 have been used to keep the run-time
signatures of control flows. The cf1, cf2 and cf3 are to
store such signatures for the greatest1, greatest2 and
greatest3 functions respectively. We use a generic C
language programming for understanding.

#include <stdio.h>
int greatest1 (int, int, int), greatest2 (int, int, int),
greatest3 (int, int, int);
int cf1, cf2, cf3; /* Control-Flow signature variables */
int main (void)
{
 int i1, i2, i3; /* input values */
 int r1, r2, r3, r;

 /* output values; r1, r2 and r3 are the results of
greatest1, greatest2 and greatest3 respectively. The final
output from application is r. */
 int retrynum;
start: retrynum=0;
/* Initialize the variable for holding number of retry */
 cf1=0;
 cf2=0;
 cf3=0;
 /* Initialize the control-flow signatures variables */

 scanf ("%d %d %d", &i1, &i2, &i3);
 /* read input data */
 r1= greatest1(i1,i2,i3);
 r2= greatest2(i1,i2,i3);
 r3= greatest3(i1,i2,i3);
 If (cf1==1 && cf2==2 && r1 == r2)
 /*validate the control-flow signatures for
greatest1 and greatest2, and compare their output values
*/
 r = r1 ;
 /* final output of the system is either r1 or r2 */

 else if (cf1==1 && cf3 == 3 && r1 == r3)
/* validate the control-flow signatures for greatest1 and
greatest3 functions, and compare their output values */
 r = r3 ;
 /* final output (r)of the system is either r1 or r3 */
 else if (cf2==2 && cf3==3 && r2 == r3)
 /*validate the control-flow signatures
for greatest2 and greatest3 and compare their output
values */
 r = r2 ;
 /* final output of the system is either r1 or r2 */
 else if (r1 == r2 && r1 == r3)
 /* compare the output values from all copies */
 r = r1 ;
 /* final output of the system is set to either r1 or r2 or
r3 */
 else if (retrynum < 1)
 { retrynum++;
 goto start; }
 /* repeat the computation once again in order to tolerate
transient bit-errors in memory or processor registers */
 else
 /* only one retry is allowed otherwise re-execute the
application */
 exit(1);
}

int greatest1 (int a, int b, int c)
{
 if (a > b)
 {
 if (a > c)
 return a;
 else
 return c;
 }
 else
 {
 if (b > c)
 return b;
 else

Comparator
&

Voter
Voter
Inputs

Figure 1. Schematic Diagram of a Single-
Version Scheme (SVS).

Proc

Proc_cp2

Proc_cp1 Inputs

Control-Flow
Validation

Outputs

JCS&T Vol. 6 No. 1 April 2006

24

 return c;
 }
 cf1=1;

 /* set the control flow signature to 1 during execution
of this function. */
}

int greatest2 (int a1, int b1, int c1)
{
 if (a1 > b1)
 {
 if (a1 > c1)
 return a1;
 else
 return c1;
 }
 else
 {
 if (b1 > c1)
 return b1;
 else
 return c1;
 }
 cf2=2;

 /* set the control flow signature to 2 during execution of
this function. */
}

int greatest3 (int a2, int b2, int c2)
{
 if (a2 > b2)
 {
 if (a2 > c2)
 return a2;
 else
 return c2;
 }
 else
 {
 if (b2 > c2)
 return b2;
 else
 return c2;
 }
 cf3 =3;

 /* set the control flow signature to 3 during execution
of this function. */

}

5. DISCUSSION
The proposed single version scheme (SVS) of fault
tolerant computing uses three copies of an application-
procedure that reside on memory. Sequential execution
of these identical (RAM resident) procedures on a
machine can mask permanent bit errors in the affected
memory space of an image of a procedure. Transient bit
errors in memory and processor registers get masked by
executing three images of a procedure, and by validating
the run-time control-flow signatures, and then by voting
upon the results (similar to NVP) for an output data in
agreement. Unlike the conventional fault tolerant

scheme, the SV approach does not execute the same
procedure-code (or copy) repetitively. We know that the
repetitive execution of a code can be helpful for masking
transient bit errors only whereas, the SV approach aims
to tolerate not only transient bit errors but also
permanent-bit errors in memory. Like any other software
based fault tolerance approach, the SVS is also not free
from both time and space redundancy. Code size
increases on an average, here by 3.3 times and, execution
time increases by 3.2 times. This approach's overhead on
time and memory space is similar to that of a recovery
block scheme (RBS), with three alternate application-
codes that are based on design diversity. But, the
software development cost of a SV based application is
almost one-third of both the conventional RBS and
NVP Scheme. Unlike PD, this SV scheme does not
rely on selective procedure duplication. Thus, even an
ordinary programmer who may not have the application
system domain expertise can easily implement this SV
approach. We assume that bit-errors in voting or
comparator code will be detected by the ECC of a
modern memory system. However, we may use
duplicated comparator codes also with more overheads
on memory and execution time to detect errors in voting
codes [23, 24]. This SVS can tolerate one control-flow
error and one wrong computation in any of the three
copies of an application (for example, in greatest
function). However, the proposed SVS converges to a
fail-stop approach when there is no agreement among
computed answers or when there is an error in control-
flow signature. Like NVP, here also we need N + 2
copies of an application for tolerating N number of
faults. Like any conventional SIFT, or triple modular
redundancy (TMR) based fault tolerance schemes, this
SVS approach also cannot claim to be free from an
overhead on code and execution time redundancy.
Execution time redundancy as observed in SVS on an
average is 2.6 times [21] the basic application code
without any software fix for fault tolerance.

Overhead Comparison
The major drawback of error detection and fault
tolerance by software means come from the increase in
execution time and the memory area overhead. On
studying over random bit errors on a simple program of
Bubble sort (as a benchmark) of 150 integer values, the
overhead factors of various approaches including the
SVS are listed in Table-1. It is found that SVS scheme

Program
Approach

Time
Overhead

Memory
Overhead

CRC-Non-
Distribute

>10 < 2

Hamming >10 < 3

SVS > 2.3 and < 3 < 3.2

Triple Modular
Redundancy or
RBS or an NVP
using a
Uniprocessor
system.

> 3 and < 3.4

< 3.25

Table 1. Overhead factors of various software

JCS&T Vol. 6 No. 1 April 2006

25

 can tolerate transient bit errors both on memory and
processor registers by error masking through voting. Bit
error has been introduced and tested. This approach has
also been implemented in a real-life application, e.g.,
Boiler-Turbine Efficiency computation for a Thermal
Power Plant, India. It is observed that this SVS based
application (with three copies of application program) is
capable of tolerating single memory error amidst an
industrial environment. However, software design bug is
not tolerated by this SVS approach. Overhead factors are
similar to above benchmark program. SVS is applicable
to any application where memory constraint does not
exist. It is observed that single-version software scheme
leads to a better performance.

6. CONCLUSION

The proposed single-version scheme (SVS) for software -
based fault tolerance has been described thoroughly in
this paper. It is a new variation of other single-version
scheme. It does not consider the issue of eliminating
software bugs. It is considered that faulty behavior of an
application is due to execution - time operational faults
that affect the system. Of course, we need to be careful in
order to make the program code correct here. Unlike RB
and NVP scheme, this SVS does not rely on design
diversity in both software and hardware. Rather, it relies
on entire application's triplication. Like PD, it relies on
two copies for detecting an erroneous result. But unlike
PD, it does not rely on selective procedure duplication.
Instead it uses entire application's triplication. Unlike
other software - based fault tolerance techniques viz.,
ABFT or control flow checking etc.; this SV scheme is
not basically a fail-stop kind scheme. Rather, this is a
non-fail-stop kind of fault tolerance scheme. In absence
of any fault, the SVS ‘s time redundancy is only
marginally greater than 3. Depending on asking
robustness, designer can also use four copies for
tolerating two faults. For many applications, the SVS ‘s
overhead (or limitation) on memory redundancy and time
redundancy is acceptable because of its simplicity in
implementation and, of its minimum cost for software
development (of one version only), and it does not need
multiple machines. Like RB and NVP, this SVS also can
suffer from the problem of disagreement among the
results. But, unlike both the RB and NVP, this SVS does
not crash even if disagreement arises among the results
because, SVS then, converges into a fail-stop kind of
fault tolerance scheme like any other SIFT schemes viz.,
ABFT, Control Flow Checking and PD etc. Again, at the
modern trend of falling prices on hardware (e.g.,
processor, memory) cost, we can afford an increased
memory, and we can speed up (in order to meet an
application's execution time constraint) our SV-based
applications' performance by employing an affordable
high-speed processor. The cost ratio [22] i.e., (Cost of
fault-tolerant software / non-fault-tolerant software) is
2.71 and 2.96 for a three-variant NVP and RB schemes
respectively. However, the three-copy SVS 's cost ratio
(Cost of fault-tolerant software / non-fault-tolerant
software) [24] is only 1.21. It includes the cost of single-
version software and the cost for extra codes for voting
and branching. We can implement this SVS on a

multiprocessor environment also for better performance
at the cost of higher hardware-cost. Though SVS is a
simple scheme but it is a very useful and effective tool
for designing many low-cost, reliable computing
applications.

7. REFERENCES

[1] L. Spainhower and T.A. Gregg, "IBM S/390 Parallel
Enterprise Server G5 Fault Tolerance: A Historical
Perspective," IBM Journal of Research & , Vol. 43,
No. 5/6, 1999.
[2] T. Sato, "Analyzing Overhead of Reissued
Instructions on Data Speculative Processors," Workshop
on Performance Analysis and its Impact on Design, held
in conjunction with 25th International Symposium on
Computer Architecture, 1998.
[3] Stephen B. Wicker, Error Control Systems for Digital
Communication and Storage, Prentice Hall, NJ, USA,
pp.72- 127, 1995.
[4] B. Randell, "Design - Fault Tolerance," in The
Evolution of Fault-Tolerant Computing, A. Avizienis, H.
Kopertz, and J.-C. Laprie, eds., Springer-Verlag, Vienna,
1987, pp. 251-270.
[5] A. Avizienis, “The N-Version Approach to Fault –
Tolerant Systems,” IEEE Transactions on Software
Engineering , Vol. SE -11, No. 12, Dec., 1985, pp.1491-
1501.
[6] K.H. Huang, J.A. Abraham, "Algorithm-Based Fault
Tolerance for Matrix Operations," IEEE Transactions on
Computers, Vol. 33, 1984, pp. 518-528.
[7] M. Zenha Rela, H.Madeira, J.G. Silva, "Experimental
Evaluation of the Fail-Silent Behaviour in Programs with
Consistency Checks," Proceedings of the FTCS-26,
1996, pp.394-403.
[8] S. Yau, F. Chen, "An Approach in Concurrent
Control Flow Checking," IEEE Transactions on Software
Engineering, Vol. SE-6, No. 2, 1980, pp. 126-137.
[9] K.H. Kim and H.O. Welch, “Distributed Execution of
Recovery Blocks: An Approach for uniform Treatment
of Hardware and Software Faults in Real- Time
Applications,” IEEE Transactions on Computers, Vol.38,
No. 5, May 1989, pp. 626-636.
[10] R.K. Gupta, C.N. Coelho, G. De. Micheli," Program
Implementation Schemes for Hardware - Software
Codesign," IEEE Computer, June 1994, pp. 48-55.
[11] Goutam K. Saha, “Transient Fault Tolerant
Processing in a RF Application,” International Journal –
System Analysis Modelling Simulation, vol. 38, 2000,
Gordon and Breach, USA, pp.81-93.
[12] R.K. Gupta, C.N. Coelho Jr., G.De. Micheli,
"Sysnthesis and Simulation of Digital Systems
Containing Interacting Hardware and Software
Components," Proc. Design Automation Conference,
June 1992.
[13] Yervant Zorian, Dimitris Gizopoulos, "Design for
Yield and Reliability," IEEE Design & Test, May/June,
2004.
[14] G.K. Saha, "Designing an EMI Immune Software
for Microprocessor Based Application," Proceedings 11th
IEEE International Symposium, EMC'95, Switzerland,
March, 1995, pp. 401-404.
[15] A. Benso, P.L. Civera, M. Rebaudengo, M. Sonza
Reorda, "An Integrated HW and SW Fault Injection
Environment for Real -Time Systems," Proc. IEEE

JCS&T Vol. 6 No. 1 April 2006

26

International Symposium on Defect and Fault Tolerance
in VLSI Systems, 1998, pp. 117-122.
[16] Goutam Kumar Saha, "Transient Fault Tolerance in
Mobile Agent Based Computing," INFOCOMP Journal
of Computer Science, Vol. 4, No. 4, 2005, pp. 1-11.
[17] Goutam Kumar Saha, "Fault Tolerant Computation
for a Scientific Application," CSI Communications,
Computer Society of India Press Mumbai, Vol. 20(5),
May 1996.
[18] Goutam Kumar Saha, "EMP- Fault Tolerant
Computing: A New Approach," International Journal of
Microelectronic Systems Integration, Vol. 5, No.3,
Plenum Publishing Corp, USA, 1997, pp. 183-193.
[19] D.K. Pradhan, Fault - Tolerant Computer System
Design, Prentice Hall, 1996.
[20] B. Nicolescu, R. Velazco, M. Sonza-Reorda,
"Effectiveness and Limitations of Various Software

Techniques for Soft Errors Detection: A Comparative
Study," TIMA Lab. Research Reports: ISRN TIMA-RR-
01/10-7-FR, 2001, France.
[21] Goutam Kumar Saha, "Software Implemented Fault
Tolerance Through Data Error Recovery," ACM
Ubiquity, vol. 6(35), September 2005, ACM Press, USA.
[22] C.V. Ramamoorthy et al., "Software Engineering:
Problems and Perspectives," Computer, Vol. 17, No. 10,
October 1984, pp. 191-209.
[23] Goutam Kumar Saha, “Low- Cost, Fault Tolerance
Applications,” IEEE Potentials, Vol. 24, No. 4, 2005,
IEEE Press, pp. 35-39.
[24] Goutam Kumar Saha, “Software Based Fault
Tolerant Computing,” ACM Ubiquity, vol. 6, No. 40,
November 2005, ACM Press, USA.

Similar
 Input

 Run Appl_Copy_1
 (Output R1)

 Run Appl_Copy_2
 (Output R2)

 Run Appl_Copy_3
 (Output R3)

 Is
 R1 = R2 ?

R1

No
Yes

Display R1 as
the Appl_Output

No

 Retry the Application

R1

R1

Start SVS-Based
Application

Figure 2. Flowchart of the SVS based Fault Tolerant Computing Scheme.

 cf1=1 & cf2=2
?

Yes

cf1=1 & cf3=3 ?

No

Is R1= R3

R3

 Yes
Yes

Display R3 as
the Appl_Output cf2=2 & cf3=3

No

α
α

Is R2= R3 ?

Yes

R2

No

R3
Display R2 as
the Appl_Output

R2

No

Is there Output in majority?
Display the output
in majority

 Major

R1

Yes
No

JCS&T Vol. 6 No. 1 April 2006

27

	r-a2: Received: Nov 2005. Accepted: Feb. 2006.

