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ABSTRACT

Many classification systems rely on clustering techniques
in which a collection of training examples is provided as an
input, and a number of clustersc1, . . .cm modelling some
conceptC results as an output, such that every clusterci is
labelled aspositiveor negative. Given a new, unlabelled
instanceenew, the above classification is used to determine
to which particular clusterci this new instance belongs. In
such a setting clusters can overlap, and a new unlabelled
instance can be assigned to more than one cluster with con-
flicting labels. In the literature, such a case is usually solved
non-deterministically by making a random choice. This pa-
per presents a novel, hybrid approach to solve this situation
by combining a neural network for classification along with
a defeasible argumentation framework which models pref-
erence criteria for performing clustering.

Keywords: Machine Learning, Defeasible Argumenta-
tion, Neural networks, Pattern Classification

1. INTRODUCTION

Many classification systems rely on clustering techniques
in which a collection of labelled training examples{e1, e2,
. . .en } (each of them labelled as positive or negative) is
provided as an input, and a number of clustersc1, . . .cm
modelling some conceptC results as an output. Every clus-
ter ci is labelled aspositive(resp.negative) indicating that
those examples in the cluster belong (resp. do not belong)
to the conceptC. Given a new, unlabelled instanceenew, the
above classification is used to determine to which particular
clusterci this new instance belongs. Should the clusterci
be labelled as positive (negative), then the instanceenew is
regarded as positive (negative). This approach has been ex-
ploited in some applications such as the web document fil-
tering agent Querando! [9] and in the counter-propagation
neural network model [19]. In such a setting clusters can
overlap, and a new unlabelled instance can be assigned to

∗Member of the Instituto de Investigación en Ciencia y Tecnologı́a In-
formática.
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more than one clusterwith conflicting labels (ie., some clus-
ters are positive whereas others are negative). In the litera-
ture, such a case is solved non-deterministically, usually by
making a random choice.
This paper introduces a novel, hybrid approach to solve the
above problem by combining a background theoryT speci-
fied indefeasible logic programming(DeLP) [7] and a neu-
ral networkN based on the Fuzzy Adaptive Resonance The-
ory model [2]. Given a new, unlabelled instanceenew it will
be first analyzed and classified using the networkN. Should
enew belong to one or more conflicting clusters, then defea-
sible argumentation based on the theoryT is used to make a
decision based on preference criteria declaratively specified
by the user.
The article is structured as follows. First in Section 2 we
present a particular learning algorithm for neural networks,
called Fuzzy Adaptive Resonance Theory (ART). Then, in
Section 3 we introduce the fundamentals of DeLP, a de-
feasible argumentation formalism. In Section 4 we show
how to model clustering in terms of Fuzzy ART learning
and DeLP, characterizing the user’s preference criteria in
terms of adefeasible logic program. Section 5 presents a
worked example of the proposed approach. Section 6 sum-
marizes previous work related to combining argumentation
with other machine learning techniques. Finally section 7
discusses the main conclusions that have been obtained and
outlines some future research work.

2. FUZZY ART NEURAL NETWORKS:
FUNDAMENTALS

Adaptive Resonance Theory (ART) [2, 19] is a class of neu-
rally inspired models of how the brain performs clustering
and classification of sensory data, and associations between
the data and representation of concepts. Fuzzy ART per-
forms unsupervised learning of categories under continuous
presentation of inputs, through a process of ‘adaptive reso-
nance’ in which the learned patterns adapt only to relevant
inputs, but remain stable under irrelevant or insignificant
ones. Thus the ART models solve the so-calledstability-
plasticitydilemma where new patterns are learned without
forgetting those learned previously.
The Fuzzy Adaptive Resonance Theory neural network
model is a kind of ART neural network that accepts ana-



log inputs (in the real interval[0,1]) [15, 16]. Familiar in-
puts activate the category, whereas unfamiliar inputs trig-
ger either adaptive learning by an existing category or a
commitment of a new category. The behaviour of Fuzzy
ARTs lends itself well to simple geometrical interpreta-
tion of category prototypes ashyperrectanglesin the input
space. These rectangles are allowed to overlap each other.
Although Fuzzy ART always responds the same way to a
familiar input —it recalls the smallest hyperrectangle con-
taining this input—, the overlaps are inconvenient if cate-
gories are mutually exclusive.
Next we present a synthetized version of the Fuzzy ART
algorithm as well as the geometrical interpretation of its fast
learning rule. For further details we refer the reader to [15].

Learning Algorithm

The Fuzzy ART learns acategorizationor clusteringof a
sequence of examples presented to the network. Its learning
algorithm is as follows [15]:

Category initialization: Each categoryj is represented by
an 2M-dimensional vectorw j = (w j1, . . . ,w j2M) of
adaptive weights. Before any input presentation oc-
curs, each category is initially uncommitted, and its
weights are initialized to one.

Complement coding: To avoid a category proliferation
problem, the input is normalized by complement cod-
ing. Let a be anM-dimensional vector(a1, . . . ,aM),
where 0≤ ai ≤ 1. The complement coded inputI is
obtained asI=(a1, . . . ,aM ,1−a1, . . . ,1−aM)=(a,ac).

Category choice: Upon presentation of an inputI , achoice
function Tj is computed for each categoryj, with Tj =
(|I ∧w j |) / (α+ |w j |). The norm operator| · | is defined
as|x|= ∑2M

i=1 |xi |, the symbol∧ denotes the fuzzy AND
operator, i.e,x∧y = (min(x1,y1), . . . ,min(x2M ,y2M)),
andα is a user-defined parameter,α > 0. The cate-
gory J for which the choice functionTJ is maximal is
chosen for the vigilance test.

Vigilance test: The similarity betweenwJ and I is com-
pared to a parameterρ calledvigilance, 0≤ ρ ≤ 1, in
the following test:

|I ∧wJ|
|I |

≤ ρ. (1)

If the test is passed, then resonance occurs and learning
takes place. Is the test is failed, then mismatch reset
occurs: the value ofTj is set to -1 for the duration
of the current input presentation, another category is
chosen and the vigilance test is repeated. Categories
are searched until one that meets Eq. 1 is found. This
category is said to be selected forI . It is either already
committed or uncommitted, in which case it becomes
committed during resonance.

Resonance:During resonance, the weight vectorwJ of the
selected category is updated according to:

wJ(t +1) = β(I ∧wJ(t))+(1−β)wJ(t) (2)

whereβ is a learning rate parameter, 0< β≤ 1. When
β = 1, this special case is called fast learning. Once
resonance is finished, a new input may be presented
and the last three steps repeated.

Geometrical Interpretation of Learning

The Fuzzy ART has a very well known geometrical in-
terpretation [15]. Each weight vectorw j may be writ-
ten in the formw j = (u j ,vc

j ) where u j and v j are M-
dimensional vectors corresponding to the two opposite cor-
ners of a hyperrectangleRj . With fast learning Eq. 2 re-
duces towJ(t + 1) = I ∧wJ(t) and the corners ofRj are
updated byuJ(t + 1) = a∧uJ(t) andvJ(t + 1) = a∨ vJ(t),
where∨ denotes the fuzzy OR operator, that is,x∨ y =
(max(x1,y1), . . . ,max(xM ,yM)). When a committed cate-
gory is selected,RJ expands to the minimum hyperrectanlge
containing bothRJ and the inputa. If a lies inside ofRJ,
thenRJ is unchanged. Thus when a categoryj is commit-
ted, its size can only grow or remain the same.

Fuzzy ART as a Basis for Supervised Learning

As explained above, the Fuzzy ART neural network learns a
clustering of the input space. If we choose to label each one
of these clusters either as positive or negative depending on
a label assigned to training examples, the Fuzzy ART can
be used as a basis for supervised learning.
Given a setS = {e1,e2, . . . ,en} of positive and negative
training instances wrt some conceptC, the application of
the Fuzzy ART neural network will result in a number of
labelled clusters{c1,c2, . . . ,cn}. A cluster labelled as pos-
itive (resp. negative) will group instances belonging (resp.
not belonging) to the conceptC. In the Fuzzy ART setting,
conflict appears when a new unlabelled instance is classified
as belonging tomore than one cluster with different labels.
In the literature [15, 16], such situation is usually solved
nondeterministically by making a random choice. Our pro-
posal is to define a novel, hybrid approach to solve this
problem by relying ondefeasible logic programming[7], an
argument-based framework based on logic programming.

3. DEFEASIBLE ARGUMENTATION AND
DEFEASIBLE LOGIC PROGRAMMING:

FUNDAMENTALS

Artificial Intelligence has long dealt with the issue of find-
ing a suitable formalization for commonsense reasoning.
Defeasible argumentation [22, 4, 18] has proven to be a suc-
cessful approach in many respects, since it naturally resem-
bles many aspects of human commonsense reasoning. As
pointed out in [1], most argument-based frameworks share
a number of common notions, namely:

1. Knowledge Base. Underlying logical language:
Most argument-based frameworks involve a knowl-
edge baseK = (Π,∆) which providesbackground
knowledgeusing a first-order languageL. This back-
ground knowledge typically involves a setΠ of strict
rulesandfactsas well as a set∆ of defeasible rules.

2. Argument: An argumentis a defeasible proof ob-
tained from the knowledge baseK by applying suitable
(defeasible) inference rules associated with the under-
lying logical languageL.

3. Dialectical reasoning: Given two argumentsA andB,
conflict (or attack) among arguments arises whenever
A andB cannot be simultaneously accepted. Many ar-
gument systems provide a preference criterion which



defines a partial order among arguments, allowing to
determine whenA defeats B. In order to determine
whether a given argumentA is ultimately undefeated
(or warranted), a dialectical process is recursively car-
ried out, where defeaters forA, defeaters for these de-
featers, and so on, are taken into account.

Argumentation provides mostly a non-numerical,quali-
tative setting for commonsense reasoning. Contrasting
with defeasible argumentation, pattern classification relies
mostly onquantitative aspectsof the data involved (such as
numeric attributes or probability distributions). As we will
see in the next sections, our final goal is to develop a hybrid
approach in which both quantitative and qualitative features
required for pattern classification are combined. Qualitative
aspects will be captured in terms of defeasible argumenta-
tion using DeLP, whereas quantitative ones will be captured
by using Fuzzy Adaptive Resonance Theory.

Defeasible Logic Programming: Fundamentals

Defeasible logic programming(DeLP) [7] is a particular
formalization of defeasible argumentation [4, 18] based on
logic programming. A defeasible logic program (delp) is a
setK = (Π,∆) of Horn-like clauses, whereΠ and∆ stand
for sets of strict and defeasible knowledge, respectively.
The setΠ of strict knowledge involvesstrict rules of the
form p ← q1, . . . ,qk and facts (strict rules with empty
body), and it is assumed to benon-contradictory. The set
∆ of defeasible knowledge involvesdefeasible rulesof the
form p −−≺ q1, . . . ,qk, which stands forq1, . . .qk provide a
tentative reason to believe p. The underlying logical lan-
guage is that of extended logic programming, enriched with
a special symbol “−−≺ ” to denote defeasible rules. Both de-
fault and classical negation are allowed (denotednot and
∼, resp.). Syntactically, the symbol “−−≺ ” is all what distin-
guishes adefeasiblerule p −−≺ q1, . . .qk from astrict (non-
defeasible) rulep ← q1, . . . ,qk. DeLP rules are thus Horn-
like clauses to be thought of asinference rulesrather than
implications in the object language.
Deriving literals in DeLP results in the construction ofargu-
ments. An argumentA is a (possibly empty) set of ground
defeasible rules that together with the setΠ provide a log-
ical proof for a given literalh, satisfying besides the addi-
tional requirements ofnon-contradictionandminimality.

Definition 1 (Argument) Given a DeLP programP , an
argumentA for a query q, denoted〈A ,q〉, is a subset of
ground instances of defeasible rules inP , such that:

1. there exists adefeasible derivationfor q fromΠ∪A ,

2. Π∪A is non-contradictory (ie,Π∪ A does not en-
tail two complementary literals p and∼ p (or p and
not p)), and

3. A is minimal with respect to set inclusion.

An argument〈A1,Q1〉 is a sub-argumentof another ar-
gument〈A2,Q2〉 if A1 ⊆ A2. Given a DeLP programP ,
Args(P ) denotes the set of all possible arguments that can
be derived fromP .

The notion of defeasible derivation corresponds to the usual
query-driven SLD derivation used in logic programming,

performed by backward chaining on both strict and defea-
sible rules; in this context a negated literal∼ p is treated
just as a new predicate nameno p. Minimality imposes
a kind of ‘Occam’s razor principle’ [22] on argument con-
struction: any supersetA ′ of A can be proven to be ‘weaker’
than A itself, as the former relies on more defeasible in-
formation. The non-contradiction requirement forbids the
use of (ground instances of) defeasible rules in an argu-
ment A wheneverΠ∪ A entails two complementary lit-
erals. It should be noted that non-contradiction captures
the two usual approaches to negation in logic programming
(viz. default negation and classic negation), both of which
are related to the notion of counterargument, as shown next.

Definition 2 (Counterargument. Defeat) An argument
〈A1,q1〉 is acounterargumentfor an argument〈A2,q2〉 iff

1. There is an subargument〈A ,q〉 of 〈A2,q2〉 such that
the setΠ∪{q1,q} is contradictory.

2. A literal notq1 is present in the body of some rule in
A1.

An argument〈A1,q1〉 is adefeaterfor an argument〈A2,q2〉
if 〈A1,q1〉 counterargues〈A2,q2〉, and 〈A1,q1〉 is pre-
ferred over〈A2,q2〉 wrt a preference criterion� on con-
flicting arguments. Such criterion is defined as a partial
order�⊆ Args(P )×Args(P ). For cases (1) and (2) above,
we distinguish betweenproperand blocking defeatersas
follows:

• In case 1, the argument〈A1,q1〉will be called aproper
defeaterfor 〈A2,q2〉 iff 〈A1,q1〉 is strictly preferred
over〈A ,q〉 wrt �.

• In case 1, if〈A1,q1〉 and〈A ,q〉 are unrelated to each
other, or in case 2,〈A1,q1〉 will be called ablocking
defeaterfor 〈A2,q2〉.

Specificity [22] is typically used as a syntax-based criterion
among conflicting arguments, preferring those arguments
which aremore informedor more direct[22, 23]. However,
other alternative partial orders could also be valid.

Computing Warrant Through Dialectical Analysis

An argumentation linestarting in an argument〈A0,Q0〉
(denoted λ〈A0,q0〉 ) is a sequence [〈A0,Q0〉, 〈A1,Q1〉,
〈A2,Q2〉, . . . , 〈An,Qn〉 . . . ] that can be thought of as an
exchange of arguments between two parties, aproponent
(even-indexed arguments) and anopponent(odd-indexed
arguments). Each〈Ai ,Qi〉 is a defeater for the previous
argument〈Ai−1,Qi−1〉 in the sequence,i > 0. In order
to avoidfallaciousreasoning, dialectics imposes additional
constraints on such an argument exchange to be considered
rationally acceptable:

• Non-contradiction Given an argumentation lineλ, the
set of arguments of the proponent (resp. opponent)
should benon-contradictorywrt P . Non-contradiction
for a set of arguments is defined as follows: a setS=⋃n

i=1{〈Ai ,Qi〉} is contradictorywrt a DeLP program
P iff Π∪

⋃n
i=1 Ai is contradictory.

• No circular argumentation No argument〈A j ,Q j 〉 in
λ is a sub-argument of an argument〈Ai ,Qi〉 in λ, i < j.



• Progressive argumentationEvery blocking defeater
〈Ai ,Qi〉 in λ is defeated by a proper defeater
〈Ai+1,Qi+1〉 in λ.

The first condition disallows the use of contradictory infor-
mation on either side (proponent or opponent). The sec-
ond condition eliminates the“circulus in demonstrando”
fallacy (circular reasoning). Finally, the last condition en-
forces the use of a stronger argument to defeat an argument
which acts as a blocking defeater. An argumentation line
satisfying the above restrictions is calledacceptable, and
can be proven to be finite [7].
Given a DeLP programP and an initial argument〈A0,Q0〉,
the set of all acceptable argumentation lines starting in
〈A0,Q0〉 accounts for a whole dialectical analysis for
〈A0,Q0〉 (ie., all possible dialogues about〈A0,Q0〉 between
proponent and opponent), formalized as adialectical tree.

Definition 3 (Dialectical Tree) LetP be a DeLP program,
and letA0 be an argument for Q0 in P . A dialectical tree
for 〈A0,Q0〉, denotedT〈A0,Q0〉, is a tree structure defined as
follows:

1. The root node ofT〈A0,Q0〉 is 〈A0,Q0〉.

2. 〈B ′,H ′〉 is an immediate children of〈B,H〉 iff there
exists an acceptable argumentation lineλ〈A0,Q0〉 =
[〈A0,Q0〉, 〈A1,Q1〉, . . . ,〈An,Qn〉 ] such that there are
two elements〈Ai+1,Qi+1〉 = 〈B ′,H ′〉 and〈Ai ,Qi〉 =
〈B,H〉, for some i= 0. . .n−1.

Nodes in a dialectical treeT〈A0,Q0〉 can be marked asun-
defeatedanddefeatednodes (U-nodes and D-nodes, resp.).
A dialectical tree will be marked as anAND-OR tree: all
leaves inT〈A0,Q0〉 will be marked U-nodes (as they have no
defeaters), and every inner node is to be marked asD-node
iff it has at least one U-node as a child, and asU-nodeoth-
erwise. An argument〈A0,Q0〉 is ultimately accepted as
valid (or warranted) wrt a DeLP programP iff the root of
its associated dialectical treeT〈A0,Q0〉 is labelled asU-node.
Given a DeLP programP , solving a queryq wrt P accounts
for determining whetherq is supported by a warranted ar-
gument. Different doxastic attitudes are distinguished when
answering that queryq according to the associated status of
warrant, in particular:

1. Believeq (resp.∼ q) when there is a warranted argu-
ment forq (resp.∼ q) that follows fromP .

2. Believeq is undecidedwhenever neitherq nor∼ q are
supported by warranted arguments inP .

4. A HYBRID APPROACH COMBINING FUZZY
ART NETWORKS AND DELP

As discussed in the introduction, conflict appears in the
Fuzzy ART setting when a new unlabelled instance is clas-
sified as belonging totwo or more clusters with different la-
bels. The proposed hybrid approach involves combining a
traditional Fuzzy ART networkN with a background theory
formalized as a DeLP programP . As the neural network
N is fed with a set of training examples, new facts encod-
ing knowledge about such examples as well as the resulting
cluster structure are added as part of a DeLP programP .
The programP also models the user’s preference criteria
to classify new, unlabelled instances belonging to conflict-
ing clusters. This can be encoded by providing appropriate

strict and defeasible rules as part of the programP . Several
preference criteria among competing clusters are possible,
such as:

• The cluster with newer information is preferred over
other ones (newer examples are considered more ac-
curate than older ones).

• The cluster that subsumes more examples is preferred
(the more examples are subsumed by a cluster proto-
type, the more veritable the cluster label is).

• The smallest cluster containing the new instance is
preferred (the smaller a cluster is, the more specific
it is assumed to be).

It must be noted that the above criteria may be also in con-
flict, making necessary to analyze which one prevails over
the other ones. This ultimate decision will be made on the
basis of a dialectical analysis performed by the DeLP infer-
ence engine.
Figure 1 shows a sketch of an algorithm that combines the
use of DeLP and the Fuzzy ART for determining the clas-
sification of a new unlabelled instanceenew after training
the Fuzzy ART networkN. The algorithm takes as input
a Fuzzy ART neural network, a DeLP programP (char-
acterizing a set of examples and preference criteria), and
the data corresponding to a new unlabelled instanceenew.
Such an instanceenew is first classified using the Fuzzy
ART neural network (modifying the cluster structure ac-
cordingly if needed). In case that such a classification
cannot be solved successfully by the networkN, then the
programP is used to perform a dialectical analysis to de-
cide how to label the new instanceE. To do so, a dis-
tinguished predicateis(<NewInstance>,<Label>) will be
considered. The classification will be (1) positive (pos) if
the literalis(E, pos) is warranted fromP ; (2) negative (neg)
if the literal is(E,neg) is warranted fromP ; (3) undecided
if neither (1) nor (2) hold. Is is important to note that if
some argument〈A ,h〉 is warranted, then there does not ex-
ist a warranted argument for the opposite conclusion, i.e,
〈B,∼ h〉 [7]. As a consequence, when analyzing the la-
belling associated with a new instanceE, it cannot be the
case that bothis(E, pos) andis(E,neg) hold, provided that
posandnegare defined as opposite concepts.

5. A WORKED EXAMPLE

In this section we will discuss an example of how the pro-
posed approach works. First we will describe how the train-
ing of the neural network results in new facts added to a
DeLP programP . Then we will show how to specify pref-
erence criteria inP . Finally we show how to apply the algo-
rithm shown in Figure 1 for solving a conflicting situation
wrt a given unlabelled instanceenew and a particular pro-
gramP .

Encoding Training Information

Suppose that a setS= {p1, p2, . . . , pk} of training instances
in a 2-dimensional space are obtained from a particular ex-
periment, each of them having an associated timestamp.
Such setS is provided as a training set for a Fuzzy ART
neural networkN, resulting in three clustersc+

1 , c−2 andc−3



ALGORITHM ClassifyNewInstance
INPUT: NetN, DeLP programP , new instanceE
OUTPUT: pos, neg, undecided{Classification of E}
BEGIN
Propagate unlabelled instanceE through NetN
CL := SetOfClustersContainingNewInstance(E, F )
IF everyci ∈CL is posOR everyci ∈CL is neg
THEN RETURN Label = label of anyci ∈CL
ELSE
Solve queryis(P, pos) using DeLP programP
IF is(P, pos) is warranted
THEN RETURN Label=pos
ELSE

Solve queryis(P,neg) using DeLP programP
IF is(P,neg) is warranted

THEN RETURN Label=neg
ELSE RETURN Label=undecided

END

Figure 1: High-level algorithm for integrating DeLP and the
Fuzzy ART model

being learnt (see Figure 2). As the networkN is trained,
new facts corresponding to a DeLP programP will be gen-
erated to encode some of the above information, as shown
below:

point(p1,neg,5,coor(x1,y1)). trigger(p3,c2).
point(p2,neg,7,coor(x2,y2)). trigger(p5,c1).
point(p3, pos,9.9,coor(x3,y3)). trigger(p2,c3).
point(p4, pos,10.7,coor(x4,y4)). cluster(c1, pos).
point(p5,neg,12.5,coor(x5,y5)). cluster(c2,neg).
. . . cluster(c3,neg).

c+
1

c−2

c−3qenew

Figure 2: Unlabelled instanceenew belonging to conflicting
clustersc1, c2, andc3

Note that every new training instance corresponding to a
point p labelled ass at time t with coordinates(x,y) re-
sults in a factpoint(p,s, t,coor(x,y)) added to the DeLP
programP . When the dynamics of the neural network de-
termines that a new cluster is to be created by occurrence
of a pointp, a new facttrigger(p,c) is added toP . Analo-
gously, when the networkN determines that a clusterc is la-
belled as positive (resp. negative), a new factcluster(c, pos)
(resp.cluster(c,neg)) is also added toP .

Providing Preference Criteria

Figure 3 presents strict and defeasible rules that character-
ize possible preference criteria among clusters. Predicate
oppindicates thatposandnegare opposite concepts. Pred-
icatenewer(C1,C2) holds whenever clusterC1 is newer than
C2. We adopt here one possible criterion, using the times-
tamp associated with the trigger point for comparing clus-
ters. Predicatesubset(C1,C2) holds whenever clusterC1 is
subsumed by clusterC2. This is assumed to be computed

opp(pos,neg).
opp(neg, pos).
newer(C1,C2) ← trigger(P1,C1), point(P1, ,T1, ),

trigger(P2,C2),point(P2, ,T2, ),
T1 > T2.

subset(C1,C2) ← [ computed elsewhere ]
activates(P,C) ← [ computed elsewhere ]
∼ is(P,L1) ← is(P,L2),opp(L1,L2).

is(P,L) −−≺ assume(P,L).
assume(P,L) −−≺ belongs(P,C),cluster(C,L).

assume(P,L2) −−≺ newer(C2,C1),cluster(C1,L1),
cluster(C2,L2),
belongs(P,C2),belongs(P,C1).

belongs(P,C) −−≺ activates(P,C).
∼ belongs(P,C1) −−≺ subset(C2,C1),cluster(C1,L1),

cluster(C2,L2),opp(L1,L2),
activates(P,C2).

Figure 3: Modelling preference among clusters in DeLP

elsewhere, based on the data structures of the neural net-
work N where cluster information is stored. The same ap-
plies to predicateactivates(P,C), which holds whenever a
point P falls within clusterC. The definition of predicate
is involves two parts: on the one hand, we specify that if
a clusterC is labelled as positive (resp. negative), then it
is not negative (resp. positive); on the other hand, we also
have a defeasible rule indicating that a clusterC gets a la-
bel L if we have tentative reasons to assume this to be so.
The predicateassume(P,L) defeasibly holds whenever we
can assume that a pointP gets a labelL. First, belonging to
a clusterC with labelL is a tentative reason to assume that
point P gets that labelL. If point P belongs to two clusters
C1 andC2, andC2 is newer thanC1, this provides a tenta-
tive reason to assume thatP should be labelled as the newer
clusterC2. If P is found within clusterC (ie. P activatesC),
then usuallyP belongs to clusterC. If P belongs to a cluster
C2 which is a subset of another clusterC1 with a conflicting
label, then this is a tentative reason to believe thatP does
not belong toC1 (the smaller cluster is preferred over the
bigger one).

Performing Dialectical Analysis

Consider a new unlabelled instanceenew, as shown in
Figure 2. As discussed before, in the traditional Fuzzy
ART setting, such instance would be classified non-
deterministically. A DeLP programP as the one presented
before can provide additional,qualitative information for
making such a decision. Asenewbelongs to the intersection
of clustersc1, c2 andc3, and not all of them have the same
label, the algorithm shown in Figure 1 will start searching
for a warranted argument foris(enew, pos), which involves
solving the queryis(enew, pos) wrt P . The DeLP inference
engine will find an argument〈A1, is(enew, pos)〉, with
A1={ (is(enew, pos) −−≺ assume(enew, pos)),

(assume(enew, pos) −−≺ belongs(enew,c1),cluster(c1, pos)),

(belongs(enew,c1) −−≺ activates(enew,c1))}
supporting the fact thatenew should be labelled as positive,
as it belongs to positive clusterc1. The DeLP inference en-
gine will search (in a depth-first fashion) for defeaters for
〈A1, is(enew, pos)〉. A blocking defeater〈A2, is(enew,neg)〉,
will be found, stating thatenew should be labelled as nega-
tive as it belongs to negative clusterc2. Here we have
A2={(is(enew,neg) −−≺ assume(enew,neg)),

(assume(enew,neg) −−≺ belongs(enew,c2),cluster(c2,neg)),

(belongs(enew,c2) −−≺ activates(enew,c2))}



Note in this case thatΠ∪A2 derives the complement of
A1 (i.e. ∼ is(enew, pos)) via the strict rule∼ is(P,L1) ←
is(P,L2), opp(L1,L2) (see Figure 3). This second argu-
ment will in turn be defeated by a more informed argument
〈A3, is(enew, pos)〉: the new instanceenewshould be labelled
as positive as it belongs to both clustersc1 andc2, but pos-
itive clusterc1 is newer than negative clusterc2. Here we
have:
A3={(is(enew, pos) −−≺ assume(enew, pos)),

(assume(enew, pos) −−≺ newer(c1,c2), cluster(c1, pos),

cluster(c2,neg), belongs(enew,c2),belongs(enew,c1)),

(belongs(enew,c1) −−≺ activates(enew,c1))

(belongs(enew,c2) −−≺ activates(enew,c2))

Note that〈A1, is(enew, pos)〉 could not be used once again to
defeat〈A2, is(enew,neg)〉, as it would be a fallacious, circu-
lar reasoning, which is disallowed in acceptable argumen-
tation lines. However there is a fourth argument〈A4,∼
belongs(enew,c1)〉 that can be derived fromP which
defeats〈A3, is(enew, pos)〉, providing a more informed ar-
gument about the notion of membership for an instance:
enewdoes not belong to clusterc1 because that cluster sub-
sumes clusterc3, andenew belongs to clusterc3. Here we
have:
A4={∼ belongs(enew,c1) −−≺ subset(c3,c1),cluster(c1, pos),

cluster(c3,neg),opp(pos,neg),activates(enew,c3) }

Note that the argument〈A4,∼ belongs(enew,c1)〉 is also
a defeater for the first argument〈A1, is(enew, pos)〉. This
completes the computation of the dialectical tree rooted in
〈A1, is(enew, pos)〉, as there are no more arguments to con-
sider as acceptable defeaters. The dialectical tree can be
marked as discussed before: leaves will be marked as un-
defeated nodes (U-nodes), as they have no defeaters. Every
inner node will be marked as a defeated node (D-node) if it
has at least one U-node as a child, and as a U-node other-
wise. The original argument (the root node) will be a war-
ranted argument iff it is marked as U-node. In the preced-
ing analysis, the resulting marked dialectical tree is shown
in Figure 4(a): nodes are arguments, and branches stand
for acceptable argumentation lines. As the root of the tree
is marked asD, the original argument〈A1, is(enew, pos)〉
is not warranted. The DeLP inference engine will start
searching automatically for other warranted arguments for
is(enew, pos). Figure 4(b) shows the dialectical tree for
〈A3, is(enew, pos)〉, in which 〈A3, is(enew, pos)〉 is not a
warranted argument. There are no other arguments for
is(enew, pos) to consider. Following the algorithm shown in
Figure 1, the DeLP inference engine will now start search-
ing for warranted arguments foris(enew,neg). A warranted
argument will be found, namely〈A2, is(enew,neg)〉, whose
dialectical tree is shown in Figure 4(c). Therefore, program
P allows us finally to conclude that the given unlabelled
instanceenew should be labelled as negative.

DeLP: Implementation Issues

Performing defeasible argumentation is a computationally
complex task. An abstract machine for an efficient im-
plementation of DeLP has been developed, based on an
extension of the WAM (Warren’s Abstract Machine) for
Prolog. Several features leading to efficient implementa-
tions of DeLP have been also recently studied, particularly
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Figure 4: Dialectical analysis for arguments
〈A1, is(enew, pos)〉, 〈A3, is(enew, pos)〉 and
〈A2, is(enew,neg)〉

those related to comparing conflicting arguments by speci-
ficity [23], pruning the search space [5], and logical prop-
erties relating DeLP to normal logic programming [3]. In
particular, the search space associated with dialectical trees
is reduced by applyingα−β pruning. Thus, in Figure 4(a),
the right branch of the tree is not even computed, as the
root node can be already deemed as ultimately defeated af-
ter computing the left branch.

6. RELATED WORK

The combination of machine learning and argumentation is
a recent development. In a recent paper [8], we explored
the combination of machine learning techniques and argu-
mentation systems. To the best of our knowledge, there
have been no similar approaches in this direction. There
are many texts that explore the field of neural network ap-
plications [15, 19, 25]. The area of clustering algorithms
has a wide range of applications which include image pro-
cessing, information retrieval [20], text filtering [10, 9],
among others. In particular, the pitfalls of Fuzzy ART
are exploited as an advantage for doing multiple catego-
rization in [15], proposing a variation on the Fuzzy ART
model. In early work for combining neural networks and
rule sets [21], rules are used to initialize the neural network
weights, whereas we use defeasible rules for revising a neu-
ral network classificationa posteriori. Other approaches
[13] involve algorithms for inducing a defeasible theory
from a set of training examples. In our case, the defeasi-
ble logic theory is assumed to be given. In [12], a method
to generate non-monotonic rules with exceptions from pos-
itive/negative examples and background knowledge is de-
veloped. Such a method induces a defeasible theory from
examples; in contrast, the proposed approach uses a defea-
sible theory for improving an incremental categorization.
Another hybrid approach includes an agent collaboration
protocol for database initialization of a memory-based rea-
soning algorithm [14], using rules for improving learning
speed. In contrast, the proposal presented in this paper is
aimed to improve learning precision.

7. CONCLUSIONS AND FUTURE WORK

The growing success of argumentation-based approaches
has caused a rich cross-breeding with interesting results in
several disciplines, such as legal reasoning [17], text classi-
fication [11] and decision support systems [1].
As we have shown in this paper, frameworks for defeasi-
ble argumentation (such as DeLP) can be also integrated



with clustering techniques, making them more attractive
and suitable for solving real-world applications. Argumen-
tation provides a soundqualitative setting for common-
sense reasoning, complementing thus the pattern classifi-
cation process, which relies onquantitativeaspects of the
data involved (such as numeric attributes or probabilities).
Recent research in information technology is focused on
developingargument assistance systems[24], i.e. systems
that can assist users along the argumentation process. Such
systems provide visual tools which help to keep track of
the different issues that are raised and the conclusions that
are drawn. We think that such assistance systems could be
integrated with the approach outlined in this paper, com-
plementing existing visual tools for clustering and pattern
classification [6].
The algorithm presented in this paper has been implemented
and tested successfully on several representative problems
with different competing criteria for clustering. Part of our
current research involves to test it with respect to some
benchmark standard collections.1
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[7] A. J. Garćıa and G. R. Simari. Defeasible Logic Pro-
gramming: An Argumentative Approach.Theory and
Practice of Logic Programming, 4(1):95–138, 2004.
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