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Abstract

Optionshave beenshown to bea key stepin extending
reinforcementlearningbeyondlow-level reactionarysys-
temsto higher-level, planningsystems.Mostof theop-
tions researchinvolveshand-craftedoptions;therehas
beenonly very limited work in theautomateddiscovery
of options. We extendearlywork in automatedoption
discoverywith aflexible androbustmethod.
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1 Introduction

ReinforcementLearninghasprovento beuseful in low-
level, control andsense-reactsystems.Extendingthe
role of reinforcement learningto higher levels of ab-
stractionis a major focusof research.While work in
thisareafallsundermultiplenamesof HierarchicalRe-
inforcementLearning,HierarchicalDecomposition,Op-
tions, Macro-Actions,and TemporalAbstraction,the
goal is thesame:to move beyondthelow-level, sense-
and-reactsystemsbyabstractingactionstohigherlevels
of reasoning;thatis, to applyreinforcementlearningin
planning-likedomains.

Options(weusethetermoptions)haveclearlyproven
to beusefulin anumberof previously troublingaspects
of reinforcementlearningincludingaccelerating learn-
ingandthetransferenceof knowledgebetweentwosim-
ilar learningtasks[6, 4]. However, mostof thework in
this areainvolvesoptionsthatarea priori hand-crafted
to suit theproblemdomain.This requiresprior domain
knowledgeand,for sometasks,a significantamountof
humaneffort. It is desireableto have thelearningagent
automaticallyfind andform theseoptionsbasedupon

thecurrentlearningexerience.
Section2 provides a very brief discussionof re-

inforcementlearninganddefinitionsfor options while
Section3 reviewsrecentwork onautomatedoptioncre-
ation. In Section4, we provide an alternative auto-
matedmethod,calledtheFD Algorithm thathasmany
attractive propertiesincluding flexibility acrossdiffer-
enttasks,applicationto taskswithoutphysicaldistance
metrics,fewer parameters,and a relative insensitivity
to parametertuning. We presentan exampleof suc-
cessfuloptioncreationin Section5. Finally, Section6
concludeswith a few remarks.

2 Option Overview

Reinforcementlearningis a relatively new domainof
machinelearningin which a machineattemptsto op-
timize performanceat a task via trail-and-error. The
learnersensesstatesandchoosesfrom amonga setof
actionsavailable for eachstate. The state-actionpair
producesa next stateand also a reward signal. It is
the goal of the learningagentto chooseactionsso as
to maximizethe accumulative sum of reward signals.
The problemis complicatedby the fact that different
actionchoicesmight appearto have lower rewardsbut
they leadtheagentto morereinforcement-richpartsof
the statespace. The agentmust properly assignthe
credit/blameof action choicesto the payoff of future
rewards.Interestedreadersshouldconsult[7] asanex-
cellentreferenceon reinforcementlearning.

Optionsare a set of primitive action choices. An
agentmaychooseto select anoption in which caseall
the actionsof that option are executedin succession;
thusthe option canbe viewed asa macro-action.Op-
tionshave shown promisein allowing theagentto rea-
sonat a highercognitive level by learningover a setof
high-level optionsratherthanasetof low-level actions.



Readersshouldconsult [6] for a morecomprehensive
referenceonoptions.

F
�
ormally, anoptionis a3-tuple � � � � � � � where� is

�
the option input set: the setof statesin which the op-
tion maybeselectedinsteadof a primitive action. The
optionincludesapolicy, � , thatindicateshow theagent
is to act while following the option,anda terminating
function, � , that providesa probability of terminating
theoptionpereachstatein theoption.

The
	

work in this paperusesa subsetof thegeneral
options.Hereweconsideroptionswith asinglestatein
theoption is definedasthesubgoalof theoption. The
option’s purpose
 is to move the agentto the subgoal
so as to maximizereward (positive reward cycles are
forbidden). All the otheroption statesarepart of the
input set � . The terminatingfunction, � , is zeroover
all statesin � andis onefor theoptionsubgoal.

Figure1 shows thestructureof anexampleoption.
Thetaskhasnineteendiscretestates–ninein eachroom
andonein thedoorway. Therearefour actionsavailable
from eachstate( up, down, right and left ). We have
craftedanoptionthathelpsusmove from a statein the
left room toward the right room. The option subgoal
is the doorway state( State10 ). The option input set
consistsof all statesin the left room ( State1 through
State9 ). The option terminatesin the subgoal,State
10. Formally,

� � � 
 � � � � � � � � � �� � 
 � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �
� � � � � � 
 if

� � � 
 �� otherwise.

1

2

3
�

4

5
�

6
 

8

9
!

10

11

12

13

14

15

16

17

18

19

7
"

Figure1: SimpleTaskwith Option in Left Room
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Automated Subgoal Discovery

Theoptionof Figure1 is craftedby hand;however it is
moreusefulto be ableto discover this optionautomat-

ically. If the agentwereto performmultiple trials (or
episodes)by startingin astatein theleft room,andthen
moving to somegoalin theright room,theagentshould
beabletosensecommonpatternsin eachtrial; theagent
shouldbe ableto find thosesequencesof stateswhich
arecommonlyperformedin solvingthesedifferentbut
relatedtasks.Thesecommonsequences,or trajectories,
shouldbecandidatesfor options.

The mostpromisinginitial work in automatedop-
tiondiscoveryisbyMcGovernandBarto[3, 4,5]. Their
ideais tocombineMaron’sDiverseDensityAlgorithm[2]
for automatedsubgoaldiscoveryandthenLin’sExperi-
enceReplayAlgorithm [1] for forming theoptionpol-
icy. The McGovern/BartoDiverseDensityAlgorithm
is sketchedbelow:

1. Startinitial learningon a task.

2. Recordtrajectories(sequencesof states)asexpe-
riencedby theagent.

3. Classify the trajectoriesas positive
 if the agent
reachesthegoalor negativeotherwise1.

4.
$

After accumulatinganumberof trajectories,per-
form theDiverse DensityAlgorithm to compute
candidatesfor theoptionsubgoal.Pick thestate
with thelargestDiverseDensity metricasthesub-
goal2.

5. Constructtheoptioninputset,� by searchingtra-
jectories

%
andadding thosestatesthatpreceedthe

subgoal.

6. The terminationfunction, � , is set to 1 for the
subgoaland0 for all otherstatesin theinput set.

7. Performa separateQ-learningproblemusingthe
trajectoriesas experience.Formulatethe policy,� , basedon theresultof this Q-learningover the
option’sstatesandtrajectories.Thisstepisknown
asExperienceReplay[1].

This
	

algorithm is the first viable methodof auto-
matedsubgoaldiscovery, but it is not without some
drawbacks. First, the useof the DiverseDensity Al-
gorithmdictatesthatsubgoalscannotbepresentin any
negative trajectories;this hastheeffect of immediately
eliminating any statefrom subgoal considerationif it
appearsjust oncealong any non-goalachieving trajec-
tory. In a two room problemsimilar to Figure1, it is

1An episodemight becut short(andhencebeclassifiedasnega-
tive)if theagentfailsto reachthegoalwithin apredeterminednumber
of steps.

2A moresophisticatedvariationis to successively computetheDi-
verseDensityaftereachnew trajectoryis addedandemploy arunning
averageto find that statethat consistentlyhashigh DiverseDensity
scores.



quitepossiblethata trajectorymovesthroughthedoor-
way but thenterminatesbeforeit findsthecorrectgoal
statein the right-handroom. As moretrajectoriesare
added,the effect is exacerbatedbecauseit is increas-
ingly likely that a negative trajectorycontainsan oth-
erwisegoodcandidatefor a subgoal;intuitively, this is
oppositeof thedesiredeffect of increasingthe chances
of findingdesirablesubgoalswith increasedexperience.

A secondmajor limitation arisesbecausethe Di-
verseDensity Algorithm employs a physical distance
metric. This impliesthat thestatespacemustcorrelate
to physicaldistances.Therearenumerousapplications
withoutany notionof physicaldistance;it wouldnotbe
possibleto applythis algorithmto theselearningtasks.
Furthermore,therearetasksin which two statesmight
appearto

&
bephysically near, but arein factquitesepa-

ratefrom eachother. This is illustratedby State7 and
State11 in the two-roomtaskof Figure1; thesestates
appearto beclosebut areactuallyseparatedby awall –
temporallythey arefurtherapart.

Thirdly, the McGovern/Bartoalgorithm is highly
sensitive to variousparameters.In our experienceof
applying this algorithm to a larger-versionof the two
roomproblem,numerousparametershadto beadjusted
preciselybeforeusefulsubgoalswerediscoveredatall.
Slight deviationsfrom theseparameters causedthe al-
gorithmto fail. Thelist of parameters includes:thecor-
rectnumberof trajectories,thecorrecttemporallength
of trajectories,whento startrecordingtrajectories,and
othersubtledetails.Evenwhenthealgorithmdid work,
it worked sporadically, usually failing becauseviable
subgoalcandidatesappeared on unsuccessfultrajecto-
ries.

Finally, a hand-craftedfilter is appliedto eliminate
certainstatesfrom considerationassubgoals.After ap-
plication of the DiverseDensityAlgorithm to the two
roomtask,thevery bestcandidatesfor subgoalarethe
statesimmediatelysurroundingtheoverallgoal,thestates
nearthe starting state,andthen, lastly, thosestatesin
thedoorway. McGovern/Bartoemploy a filter to elim-
inatestateswithin a neighborhoodof the overall goal
andstartstates;this is anotherparameterthatrequiresa
priori
 knowledgeof thestatespace.

In thenext section,wepresentanalternativemethod
of automatedsubgoal discovery basedupon the Mc-
Govern/Bartoalgorithmthateliminatesormitigatesmany
of thesedifficulties. We retainthe excellent insight of
theMcGovern/Bartoalgorithm,but discardmany of the
limiting factorsassociatedwith theDiverseDensityAl-
gorithm.

4
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The FD Algorithm for Automated
Subgoal

(
Discovery

Our alternative for automateddiscovery of subgoalsis
calledtheFD Algorithm becauseit usesa combination
of a fr

)
equencymetric* andadistancemetric:*

1. Collect trajectories.We collectonly positive tra-
jectories

%
thatreachthetaskgoalstateandignore

negativetrajectories.Wealsoeliminateall cycles
from positive trajectories.

2. Computecandidacy metric. For eachstate,we
computeit’spotential asasubgoalandthenselect
theoptimumstateasthesubgoal.Thisprocessis
describedfully below.

3. UseExperienceReplayto initially train the op-
tion [1].

Specifically, the candidacy metric for state + , re-
ferredto as , - , is computedas:

, - � . - / - 0 + 1 2 � (1)

where . - is
�

the + 3 4 state’s frequency measureand / -
is it’s distancemeasure.Supposethe task has 5 dis-
cretestates. We collect 6 trajectories

&
eachof which

will have no morethan 5 states(becausewe eliminate
cycles).Thefrequency measurefor state+ is simply the
percentageof trajectoriesthat containstate+ :

. - � # of trajectorieswith state +6 � (2)

As correctlypointedout in [5], thedifficulty with using
afrequency metricaloneis thatstatesnearthegoaltend
to have the highestfrequency; theseare not typically
themostdesireablecandidatesfor a subgoal.Thuswe
incorporateadistancecomponentto ourmetricaswell.

The
	

distancemetric for eachstate,/ - , is computed
basedon the temporal distanceof eachstatefrom un-
desireablesubgoallocations.McGovern/Bartoemploy
a staticfilter to eliminate statesnearthegoalascandi-
datesfor the option subgoal. Instead,the FD distance
metricnegatively weightsstateswhich arecloserto the
taskgoalbutdoesnotautomaticallyprecludethemfrom
consideration.

First
�

we computea simplifieddistancemeasure,7 - ,
as:

7 - � � 8 9 : ;3 < = 9 : ;> < ? > @ A B C D � E + DF 3 � (3)

If state + is not in any trajectoryof 6 , then 7 - � � . We
use D � E + D to

&
indicate the temporal distancebetween

state + andstate � . That is, if both state + andstate �



exist on thesametrajectory G , then D � E + D is thenum-
ber of stepsalong the trajectoryto transitionbetween
the two states.In the above equation,state � is

�
either

theinitial state( � H ) or thetaskgoalstateI . We choose
theminimumtemporaldistancebetweenstate+ andthe
startstate( � H ), or state+ andthegoalstate( I ). Themin-
imumtemporaldistanceis normalizedby thetrajectory
length,

F 3 , so that trajectoriesof different lengthscan
becompared.We computethis mininumtemporaldis-
tancefor every trajectory G 1 6 that

&
containsstate + ,

and then selectthe smallestnormalizedtemporaldis-
tanceover all thetrajectories. Finally we multiply by 2
sothat � J 7 - J 
 .7 - is a linear function that is maximal( 7 - � 
 ) at
themidpointalongany trajectoryandminimal ( 7 - � � )
at theendpoints(startandgoalstates)of thetrajectory.
Figure2 illustratesthis relationship.
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Figure2: Examplesimplifieddistance7 - , anddistance/ -
W
M

ethencomputethedistancemeasure,/ - , bypass-
ing 7 - throughagaussianfunction:

/ - � N O P Q H R S T U V WX Y Z (4)

where [ and \ areparametersto shapethe width and
slopeof thegaussian(typically [ � � � � � \ � � � � unless]
indicatedotherwise).

This
	

metrichasseveraladvantages.

^ No notionof physicaldistance.

^ Fasterto computethanDiverseDensity.

^ Actively preferstatesnearer to themiddleof the
trajectorywhile not absolutely precludingstates
neartheendsof thetrajectory.

^ Favor statesthatarevisited morefrequently.

^ Fewer parametersandincreasedrobustnesswith
respectto parametertuning.
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A Case Study

In this section,we test our FD Algorithm for finding
goodsubgoalcandidates.For thepurposesof compari-
son,weapplythealgorithmto thereinforcementlearn-
ing taskusedin previous studieson automatedoption
creation.

The taskfeaturedin the McGovern/Bartowork on
automatedsubgoaldiscovery is shown in Figure3; it
consistsof two roomsconnectedby a 2-statedoorway.
Theoverall taskgoal is a stateneartheuppercornerof
theright-handroomindicatedby a ` in

�
thefigure.The

agentstartsrandomlyin one of the statesof the left-
handroom. Therearefour deterministicactionsof up,
down, right,andleft. Thestandard SARSAalgorithmis
appliedwith variousreinforcementlearningparameters
of a � � � 
 , b � � � 
 , and c � � [7].

G 

Figure
�

3: Two RoomTask

G 

Figure4: Frequency d - of Statesin Trajectories
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e collect 6 � � � trajectoriesfor learningexperi-
ence.However, we do not collect thefirst 50 trajecto-
riesasthesearelikely to be longerandless“efficient”
atmoving towardthegoalthanlatertrajectoriesexperi-
encedaftersomelearninghasoccurred. We wait until
therunningaveragetrajectorylengthdropsbelow apre-
determinedlevel. For thisparticulartask,we ignorethe
first 150 or so trajectoriesandthencollect the next 50
for usein theautomatedsubgoal discoveryalgorithm.



G 

Figure5: SimplifiedDistance7 -

G 

Figure6: Distance/ -

Figure7: FD Candidacy Metric , -

F
�
or the purposesof illustration, Figures4 through

Figure 7 show all the metricsusedin computingour
FD Algorithm to find good subgoalcandidates. We
show the valuefor the frequency measured - , the sim-
plified distancemetric 7 - , the distancemetric / - , and
finally the overall subgoalcandidacy metric , - � d - 8/ - . In Figure 4 we seethat states near the goal and
also (to a slightly lesserextent) statesin the doorway
have the highestfrequency metric. Figure5 correctly
shows that the simplified distancemetric 7 - is great-
estfor thosestatesin betweenthegoalandstartstates
and leastfor thosestatesnearthe goal or start states.
Figure6 shows thedistancemetric / - which is merely

7 - passedthrougha gaussian.Finally Figure7 shows
theoverall candidacy metric , - ; clearlyoneof the two
doorway statesis identifiedastheoptimalchoicefor a
subgoal.
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Concluding Remarks and Future
Resear

f
ch

The FD Algorithm is ableto usereinforcement learn-
ing experienceto identify candidatestatesfor useasa
subgoalin automatedoptioncreation. Furthermore,this
algorithmhasadvantagesoverpreviousattemptsin that
it is simplerto apply, lesssensitive to parametertuning,
andmost importantly, is moreflexible in the rangeof
possibletasks.

This
	

work in automatedoption creationimmedi-
ately introducesa list of directionsfor future research.
Wearecurrentlyengagedin thefollowing activities:^ Continuetheprocessof automatedoptiondiscov-

ery. The FD Algorithm selectsa subgoalstate
and thencreatesthe initial option usingexperi-
encereplay. As the agentcontinues to interact
with its environment,theoptioncanbe tunedto
bettersuit thesubgoal(statescanbeadded,poli-
ciescanbetweaked).^ RetainandusetheunderlyingOptionValueFunc-
tion. Eachoptioncanstoreaseparatevaluefunc-
tion (andpolicy) to measurethe costof moving
from an option stateto the option subgoal. As
pointedout in [6], theoptionvaluefunctioncan
facilitateanoff-line “dynamic programming”like
approachto computingthevaluefunction of the
overall task for statesboth in this option andin
otheroptions.^ IncludeMultiple Options. The creationof mul-
tiple options introducesadditional problemsin
effectively achieving goodoption coverageover
thestatespacewhile simultaneouslylimiting un-
neccessaryoptionoverlap. This is relatedto the
problemof distributing local representationalre-
sources(ie radialbasisfunctions)in astatespace.^ Extendoption-basedreinforcementlearningto
POMDPs(partially observableMarkov decision
processes).Theseoptionsare fixed to specific
states. There are taskswith similar groupsof
states(considera5-roomtaskin whicheachroom
looks exactly the same).Here,we would rather
relateoptionsto observationsof the statespace
rather than to specific states. In this way, the
sameoptioncanbeappliedto differentbut simi-
lar locationswithin thestatespace.
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