JCS&T Vol. 3 No. 2

Improved AutomaticDiscovery of Subgoaldor Optionsin
HierarchicalReinforcement.earning

R. Matthev Kretchmay Todd Feil, Rohit Bansal
Departmenbf MathematicandComputerScience
DenisonUniversity
Grarville, OH 43023,USA

kretchmar@denison.edu

Abstract

Optionshave beenshavn to be a key stepin extending
reinforcementearningbeyondlow-level reactionansys-
temsto higherlevel, planningsystemsMaost of theop-
tions researchinvolves hand-craftedptions;therehas
beenonly verylimited work in theautomatediiscovery
of options. We extendearly work in automatedption
discovery with aflexible androbustmethod.
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1 Introduction

Reinforcementearninghasprovento beusédul in low-
level, control and sense-reactystems. Extendingthe
role of reinforcenent learningto higher levels of ab-
stractionis a major focus of research.While work in
this areafalls undermultiple namesof HierarchicalRe-
inforcement.earning HierarchicalDecompositionQp-
tions, Macro-Actions,and Temporal Abstraction, the
goalis the same:to move beyondthe low-level, sense-
and-reacsystemdy abstractingctionso higherlevels
of reasoningthatis, to applyreinforcementearningin
planning-like domains.

Options(we usethetermoptions)have clearlyproven
to beusefulin anunberof previously troublingaspects
of reinforcementearningincludingacceleréing learn-
ing andthetransferencef knowledgebetweernwo sim-
ilar learningtasks[6, 4]. However, mostof thework in
this areainvolvesoptionsthatarea priori hand-crafted
to suitthe problemdomain. This requiresprior domain
knowledgeand,for sometasks,a significantamountof
humaneffort. It is desireabldo have thelearningagent
automaticallyfind and form theseoptionsbasedupon

thecurrentlearningexerience.

Section2 provides a very brief discussionof re-
inforcementlearningand definitionsfor options while
Section3 reviews recentwork onautomateaptioncre-
ation. In Section4, we provide an alternatve auto-
matedmethod,calledthe FD Algorithm thathasmary
attractive propertiesincluding flexibility acrossdiffer-
enttasks,applicationto taskswithout physicaldistance
metrics, fewer parametersand a relative insensitvity
to parametertuning. We presentan example of suc-
cessfuloption creationin Section5. Finally, Section6
concludeswith afew remarks

2 Option Overview

Reinforcementearningis a relatively nev domainof
machinelearningin which a machineattemptsto op-
timize performanceat a task via trail-and-error The
learnersensestatesand choosedrom amonga setof
actionsavailable for eachstate. The state-actiorpair
producesa next stateand also a reward signal. It is
the goal of the learningagentto chooseactionsso as
to maximizethe accumulatie sum of reward signals.
The problemis complicatedby the fact that different
actionchoicesmight appeairto have lower rewardshbut
they leadthe agentto morereinforcement-rictpartsof
the statespace. The agentmust properly assignthe
credit/blameof action choicesto the paydf of future
rewards.Interestedeadershouldconsult[7] asanex-
cellentreferenceon reinforcenentlearning.
Optionsare a setof primitive action choices. An
agentmay chooseto sele¢ anoptionin which caseall
the actionsof that option are executedin succesion;
thusthe option canbe viewed asa macro-action.Op-
tionshave shavn promisein allowing the agentto rea-
sonat a highercognitive level by learningover a setof
high-level optionsratherthana setof low-level adions.
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Readershouldcorsult [6] for a morecompréiensve
referenceon options.

Formally, anoptionis a 3-tuple(Z, , 3) whereZ is
the optioninput set the setof statesin which the op-
tion may be selectednsteadof a primitive acion. The
optionincludesa policy, 7, thatindicateshow theagent
is to actwhile following the option, anda terminating
function, 3, that provides a probability of terminating
theoptionpereachstatein the option.

Thework in this paperusesa subsebf the geneal
options.Herewe considemoptionswith asingle statein
the optionis definedasthe subgoalof the option. The
option’s purposeis to move the agentto the subgoal
so asto maximizereward (positive reward cycles are
forbidden). All the other option statesare part of the
input setZ. The terminatingfunction, 3, is zeroover
all statesn 7 andis onefor the optionsulgoal.

Figure 1 shaws the structureof an exampleoption.
Thetaskhasnineteerdiscretestates- ninein eachroom
andonein thedoorway. Therearefour actionsavailable
from eachstate ( up, down, right andleft ). We have
craftedanoptionthathelps us move from a statein the
left room toward the right room. The option subgoal
is the doorway state( State10). The optioninput set
consistsof all statesin the left room ( Statel through
State9 ). The optionterminatesn the subgoal,State
10. Formally,

Figurel: SimpleTaskwith Option in Left Room

3 Automated Subgoal Discovery

Theoptionof Figurel is craftedby hand;howeverit is
moreusefulto be ableto discover this option auomat-
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ically. If the agentwereto performmultiple trials (or

episodespy startingin astatein theleft room,andthen
moving to somegoalin therightroom,theagentshould
beableto senseeomman patternsn eachtrial; theagent
shouldbe ableto find thosesequencesf stateswhich

arecommonlyperformedin solvingthesedifferentbut

relatedtasks. Thesecommonsequencesr trajecories,
shouldbe candidatesor optiors.

The mostpromisinginitial work in automatedop-
tiondiscoveryis by McGovernandBarto([3, 4,5]. Their
ideais to combineMaron’s DiverseDensityAlgorithm [2]
for automatedubgoaliscorery andthenLin’s Experi-
enceReplayAlgorithm [1] for forming the option pol-
icy. The McGovern/BartoDiverseDensity Algorithm
is sketchedbelow:

1. Startinitial learningon atask.

2. Recordtrajectoriegsequencesf stateshsexpe-
riencedby theagent.

3. Classify the trajectoriesas positiveif the agent
reacheshe goalor negativeotherwise'.

4. After accunulatinga numberof trajectoriesper
form the Diverse Density Algorithm to compue
candidatedor the option subgoal.Pick the stae
with thelargestDiverseDensty metricasthesub-
goal?.

5. Constructheoptioninputset,Z by searchingra-
jectoriesandaddng thosestateshatpreceedhe
subgoal.

6. The terminationfunction, 3, is setto 1 for the
subgoaklndO for all otherstatesin theinputset.

7. PerformaseparateQ-learningproblemusingthe
trajectoriesas experience.Formulatethe policy,
7, bagdon theresultof this Q-learningover the
option’sstatesandtrajectores. Thisstepis known
asExperienceReplay[1].

This algorithm s the first viable methodof auo-
mated subgoaldiscovery, but it is not without some
drawbacks. First, the use of the DiverseDensity Al-
gorithmdictatesthat subgoalsannotbe presenin ary
negative trajectoriesthis hasthe effect of immedately
eliminating ary statefrom subga@l considerationf it
appeargust oncealong ary non-goalachieving trajec-
tory. In atwo room problemsimilar to Figurel, it is

1An episodemight be cut short(andhencebe classifiedasnega-
tive)if theagenftfailsto reachthegoalwithin apredeterminedumber
of steps.

2A moresophisticatedariationis to successiely computethe Di-
verseDensityaftereachnew trajectoryis addedandemploy arunning
averageto find that statethat consistentlyhashigh DiverseDensity
scores.
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quitepossiblethata trajectorymovesthroughthe door
way but thenterminateseforeit findsthe correctgoal
statein the right-handroom. As moretrajectoriesare
added,the effect is exacebatedbecausét is increas-
ingly likely that a negative trajectorycontainsan oth-
erwisegoodcandidatdor a subgoal;intuitively, thisis
oppositeof the desiredeffect of increasinghe chances
of finding desirablesubgoalsvith increasedxperience.

A secondmajor limitation arisesbecausethe Di-
verseDensity Algorithm employs a physical distance
metric. This impliesthatthe statespacemustcorelate
to physical distancesTherearenumepusapplications
withoutary notionof physicaldistancejt would notbe
possibleto applythis algorithmto theselearningtasks.
Furthermoretherearetasksin which two statesmight
appearto be physically near but arein factquite sepa-
ratefrom eachothea. Thisis illustratedby State7 and
Statell in the two-roomtaskof Figure 1; thesestates
appeato beclosebut areactuallyseparatety awall —
temporallythey arefurtherapart.

Thirdly, the McGovern/Bartoalgorithm is highly
sensitie to various parameters.In our experienceof
applying this algorithmto a largerversionof the two
roomproblem,numerougparametrshadto beadusted
preciselybeforeusefulsubgoalsverediscoveredatall.
Slight deviationsfrom theseparametes causedthe al-
gorithmto fail. Thelist of parametesincludes:thecor-
rectnumberof trajectoriesthe correcttemporallength
of trgjectories,whento startrecordingtrajectoriesand
othersubtledetails.Evenwhenthealgorithmdid work,
it worked sporadically usually failing becauseviable
subgoalcandidatesappeaed on unsuccessfulrgjecto-
ries.

Finally, a hand-craftedilter is appliedto eliminate
certainstatesfrom consideratiorassubgoals After ap-
plication of the DiverseDensity Algorithm to the two
roomtask,the very bestcandidatedor subgoalarethe
statesmmediatelysurrourdingtheoverallgoal,thestates
nearthe staring state,andthen, lastly, thosestatesin
thedoorway. McGovern/Bartoemplogy afilter to elim-
inate stateswithin a neighborhoocf the overall goal
andstartstatesthisis anotheparametethatrequiresa
priori knowledgeof the statespace.

In thenext sectionwe presentinalternative method
of automatedsulyoal discovery basedupon the Mc-
Govern/Bartaalgorithmthateliminatesor mitigatesmary
of thesedifficulties. We retainthe excellentinsight of
theMcGovern/Bartoalgorithm,but discardmary of the
limiting factorsassociateavith the DiverseDensityAl-
gorithm.
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4 TheFD Algorithm for Automated
Subgoal Discovery

Our alternative for auomateddiscovery of subgoalds
calledthe FD Algorithm becausét usesa combiration
of afrequencymetricandadistancemetric:

1. Collecttrajectories.We collectonly positive tra-
jectoriesthatreachthe taskgoal stateandignore
negative trajectories We alsoeliminateall cycles
from positive trajectories.

2. Computecandidayg metric. For eachstate,we
computet’ spotental asasubgoabkndthensekect
theoptimumstateasthe subgoal.This processis
describedully below.

3. UseExperienceReplayto initially train the op-
tion [1].

Specifically the candidag metric for states, re-
ferredto asc;, is computedas:

where F; is the i** states frequeny measureand D;
is it's distancemeasure. Supposethe task hasn dis-
cretestates. We collect T' trajectorieseachof which
will have no morethann stategbecasewe eliminate
cycles). Thefrequeny measurdor statei is simply the
percentagef trajectorieghat containstatei:

# of trajectorieswith stae
n . @

As correctlypointedoutin [5], thedifficulty with using
afrequeng metricaloneis thatstatesnearthegoaltend
to have the highestfrequeng; theseare not typically
the mostdesireablecardidatesfor a subgoal. Thuswe
incorporatea distan@ componento our metricaswell.

Thedistancandric for eachstate,D;, is computed
basedon the tempoal distanceof eachstatefrom un-
desireablesubgoalocations.McGovern/Bartoenploy
a staticfilter to eliminake statesnearthe goal ascandi-
datesfor the option subgoal. Instead the FD distance
metric negatively weightsstateswvhich arecloserto the
taskgoalbut doesnotautomaticallyprecludehemfrom
consideration.

Firstwe computea simplifieddistancemeasured;,
as:

F, =

|s —

d; = 2-min min
teT se{so,g} lt

®3)

If state: is notin any trajectoryof T', thend; = 0. We
use|s — 4| to indicae the tempoal distancebetween
state; andstae s. Thatis, if both state: andstae s
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exist on the sametrajectoryt, then|s — 7| is the num-
ber of stepsalong the trajectoryto transitionbetween
the two states.In the abore equation,states is either
theinitial state(sp) or thetaskgoalstateg. We choose
theminimumtemporaldistancebetweerstate; andthe
startstate(sy), or statei andthegoalstate(g). Themin-

imumtemporaldistancds normalizedby thetrajectory
length, I;, so that trajectoriesof differentlengthscan
be compared We computethis mininumtemporaldis-

tancefor every trajectoryt € T that containsstates,

and then selectthe smallestnormalizedtemporaldis-

tanceover all thetrajectaies. Finally we multiply by 2

sothat0 < d; < 1.

d; is alinear functionthatis maximal(d; = 1) at
themidpointalongary trajectoryandminimal (d; = 0)
attheendpoints(startandgoalstatespf thetragjectory,
Figure2 illustratesthis relationship.

©O—O—-0O0—-0O0-0O0-OO

0.5~

Figure2: Examplesimplified distanced;, anddistance
D;

Wethencomputehedistancaneasurel;, by pass-
ing d; througha gaussiarfunction:

Dy — 671.0‘(1:11-)1; @

wherea andb are parameterd¢o shapethe width and
slopeof thegaussiar(typically a = 0.5,6 = 3.5 unless
indicatedotherwise).

This metrichasseveraladwantages.

¢ No notionof physicaldistarce.
e Fasterto computethanDiverseDensity

o Actively preferstatesneaer to the middle of the
trajectorywhile not absoldely precludingstaes
nearthe endsof thetrajecbry.

e Favor stateshatarevisited morefrequently

e Fewer parameterandincreasedobustnesswith
respecto parametetuning.
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5 A CaseStudy

In this section,we testour FD Algorithm for finding
goodsubgoalcandidatesFor the purpose®f compari-
son,we applythealgorithmto thereinforcementearn-
ing taskusedin previous studieson automatecdption
creation.

Thetaskfeaturedin the McGovern/Bartowork on
automatedsubgoaldiscovery is shovn in Figure 3; it
consistf two roomsconnectedy a 2-statedoorway.
Theoveralltaskgoalis a statenearthe uppercornerof
theright-handroomindicatedby a G in thefigure. The
agentstartsrandomlyin one of the statesof the left-
handroom. Therearefour deterministicactionsof up,
down, right, andleft. Thestandad SARSAalgorithmis
appliedwith variousreinforcementearningparaneters
of a =0.1,¢ =0.1,and) = 0 [7].

Figure3: Two RoomTask

Figure4: Frequeng f; of Statesn Trajectories

We collectT' = 50 trajectoriesfor learningexperi-
ence. However, we do not collectthe first 50 trgjecto-
riesasthesearelikely to belongerandless“efficient”
atmoving towardthe goalthanlatertrajectoriesexperi-
encedafter somelearninghasoccurred We wait until
therunningaveragerajectorylengthdropsbelow apre-
determinedevel. For this particulartask,we ignorethe
first 150 or sotrajectoriesandthencollectthe next 50
for usein theautomatedubgal discovery algorithm.
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Figure5: Simplified Distanced;

Figure6: DistanceD;

Figure7: FD Candidag Metric ¢;

For the purposef illustration, Figures4 through
Figure 7 showv all the metricsusedin computingour
FD Algorithm to find good subgoalcandidates. We
shav the valuefor the frequeny measuref;, the sim-
plified distancemetric d;, the distancemetric D;, and
finally the overall subgoalcandidag metrice;, = f; -
D;. In Figure 4 we seethat staes near the goal and
also (to a slightly lesserexteni) statesin the doorway
have the highestfrequeng metric. Figure5 correctly
shaws that the simplified distancemetric d; is great-
estfor thosestatesn betweenthe goal andstartstates
and leastfor thosestatesnearthe god or startstates.
Figure6 shaws the distancemetric D; whichis merely
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d; passedhrougha gaussian.Finally Figure7 shows
the overall candidag metric ¢;; clearly oneof the two
doorway statess identifiedasthe optimal choicefor a
subgoal.

6 Concluding Remarksand Future
Resear ch

The FD Algorithm is ableto usereinforcemat learn-
ing experienceto identify candidatestatesfor useasa
subgoain automate@ptioncreatian. Furthermorethis
algorithmhasadwantage®ver previousattemptsn that
it is simplerto apply, lesssensitve to parametetuning,
and mostimportanty, is moreflexible in the rangeof
possibletasks.

This work in automatedoption creationimmedi-
atelyintroducesa list of directionsfor future resarch.
We arecurrentlyengagedin thefollowing actiities:

e Continuetheprocesof automateaptiondiscov-
ery. The FD Algorithm selectsa subgoalstate
andthen createshe initial option using experi-
encereplay As the agentcontinues to interact
with its environment,the option canbe tunedto
bettersut the subgoal(statescanbe added pali-
ciescanbetwealed).

¢ RetainandusetheunderlyingOptionValueFunc-
tion. Eachoptioncanstorea separat&aluefunc-
tion (andpolicy) to measurehe costof moving
from an option stateto the option subgal. As
pointedoutin [6], the optionvaluefunctioncan
facilitateanoff-line “dynamc programming’like
approachto computingthe valuefunction of the
overall taskfor statesbothin this option andin
otheroptions.

¢ Include Multiple Options. The creationof mul-
tiple optionsintroducesadditional problemsin
effectively achieving good option coverageover
the statespacewhile simultaneouslyimiting un-
neccessarpption overlap. This is relatedto the
problemof distributing local representationale-
sourcegie radialbasisfunctions)in astatespae.

¢ Extendoption-basedeinforeementiearningto

POMDPs(partially obsenable Markov decison
processes).Theseoptions are fixed to spedfic
states. There are taskswith similar groups of
stateqgconsiderl5-roomtaskin whicheachroom
looks exactly the same). Here, we would rather
relateoptionsto observationf the statespace
ratherthanto specific states. In this way, the
sameoption canbe appliedto differentbut simi-
lar locationswithin the statespace.
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