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ABSTRACT

Boundary extraction is an important procedure associ-
ated with recognition and interpretation tasks in dig-
ital image processing and computer vision. Most of
the segmentation techniques are based on the detec-
tion of the local gradient, and then their application
in noisy images is unstable and unreliable. There-
fore global mechanisms are required, so that they can
avoid falling into spurious solutions due to the noise.
In this paper we present a gradient-based evolutionary
algorithm as a heuristic mechanism to achieve bound-
ary extraction in noisy digital images. Evolutionary
algorithms explore the combinatory space of possible
solutions by means of a process of selection of the
best solutions (generated by mutation and crossover),
followed by the evaluation of the new solutions (fiz-
ness) and the selection of a new set of solutions. Each
possible solution is in our case a contour, whose fit-
ness measures the variation of intensity accumulated
along it. This process is repeated from a first approxi-
mation of the solution (the initial population) either a
certain number of generations or until some appropri-
ate halting criterion is reached. The uniform explo-
ration of the space of solutions and the local minima
avoidance induce to form better solutions through the
gradual evolution of the populations.

Keywords: Boundary Extraction, Pattern Recog-
nition, Image Processing, Evolutionary Algorithms,
Metaheuristics.

1 Introduction

Boundary extraction is an important procedure for
segmentation and pattern identification purposes in
digital images, not only for recognition and inter-
pretation tasks but also for object classification [4].
The gradient operator is a widespread tool used for
these purposes, detecting local level variations that
could correspond to contours of interest. Although
this methodology provides acceptable results for typ-
ical cases, there are a number of situations in which
an extra computational effort is required to expand the
possible range of successful application. This is the
case of boundary extraction in noisy images or with
non-uniform intensity levels objects. Under these con-
ditions the common applied strategy consists on a bor-
der detection procedure by means of the gradient oper-
ator followed by some kind of global processing. One
of the modern techniques most applied in this sense
-and under permanent research- is the active contour
approach (also called snakes) [1, 6]. It consists on the
utilization of user-initialized curves that “evolve” in-

side the image until they find the contour sought for,
taking advantages of different possible mechanisms,
as B-splines, vector gradient flow and others. In gen-
eral the active contours have limitations regarding the
concavities of the contour to segment [10].

In this work we propose a boundary extraction sys-
tem that combines the use of the gradient operator
within the implementation of an evolutionary algo-
rithm. Evolutionary algorithms [2] are a means for
finding nearly optimal solutions to non-trivial and
computationally expensive problems that have a very
precise mathematical formulation. For this reason in
this work we will recast the boundary extraction prob-
lem as an instance of an combinatory optimization
problem. In Section 2 we present the main concepts
of boundary extraction, with particular emphasis on
noisy images and with non-uniform intensity levels.
In Section 3 we introduce the idea of evolutionary al-
gorithms and their application to boundary extraction
in our particular case. We finally present in Sections
4 and 5 respectively, some illustrative examples and
the conclusions.

2 Boundary Extraction

The most widely used feature extraction techniques
characterize the contours of an object through the de-
tection of its boundary, according to local ostensible
discontinuities in the intensity levels I(z,y) with re-
spect to neighboring pixels [4]. It is adequate then,
to use a gradient operator to find these local intensity
changes. This gradient is mathematically described as

[3]:

G ol (x,y
VI((E,y) = |: GI :| = ol f,y (1)
y Oy

In many occasions it is very convenient to regard in
G+ Gz which
is independent from the direction of the gradient it-
self. We will refer to V as the scalar gradient if not
stated otherwise. The operators G, and G repre-
sent generic implementation of the directional gradi-
ents of the digital image, and could be easily obtained
through the Roberts, Prewitt or Sobel “masks”. We
have adopted for this work the Sobel mask because
it achieves the best results. If I(z,y) denotes the in-
tensity in the pixel (z,y), then the utilization of the
mentioned operator in the pixel (z;,y;) is:

particular the scalar gradient V =

G, = (I(wi-1,yj-1) +2I(zi,yj-1) + I(Ti41,¥i-1)) —
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(I(wi-1,Yj+1) + 21(zi, Y1) + 1(Tit1, Yiv1))
G, = (I(wi-1,y5-1) +2I(zi-1,y;) + I(@i-1,Y541)) —
(I(@it1,y5-1) + 20 (ziv1,y5) + I(@it1,¥5+1))

Therefore, the operators could be found through the
respective convolution of the image with the scalar
masks
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We present in Fig. 1(b) the graphic of the scalar gra-
dient V of the image shown in Fig. 1(a). In this image
the main object has a uniform intensity level and there
is no noise. For this reason, a threshold of the scalar
gradient renders a highly perceptible boundary for the
object. However, in noisy images this segmentation
technique will fail because of spurious blurts of the
gradient above any useful threshold level. For in-
stance in Fig. 1(c)), the magnitude of the scalar gra-
dient V still captures the contour for a human assisted
segmentation (see Fig. 1(d)), though considerably de-
graded as a consequence of the “amplification” of the
small local perturbations produced by the noise. Any
kind of segmentation for automatic recognition pur-
poses is doomed to fail.

Regrettably, the presence of noise in digital images
is almost unavoidable, in most cases due to the acqui-
sition process or to numerical and quantization errors
in the storing/processing stages. Moreover, the nor-
mal situation in real applications (v. g. robotic vision)
adds varying intensity levels and not uniform illumi-
nation conditions in the objects to be recognized. If
we also consider that the objects within an image may
have different and varying intensity levels (Fig. 1(e)),
then the contour detection through the gradient V is
even worse (Fig. 1(f)).

Then, we can assume that segmentation by means
of local processing techniques based on the isolated
application of the gradient operator is very restricted.
This operator amplifies the small local differences in
the noisy images and the extraction process tends to
deviate from the optimal solution. Feature extraction
is mostly a global operation. Any successful strat-
egy under these conditions combine contour detection
and global processing schemes to avoid local minima.
This is in fact the of the most known global extrac-
tion mechanisms, as the Hough transform for border
detection, graph search methods [3] and dynamic pro-
gramming [4]. Here we propose a different approach.
Perhaps a good measure of the adequacy of a proposed
boundary may be the accumulated intensity difference
through successive pixels. In this setting, a gradient
operator minimizes this difference locally, but may
remain stuck in local minima. However, a non-local
operator may overlook these local minima and search
for better global solutions. Therefore, the extraction
problem is recast as an optimization problem that can
be solved with heuristic search, as we will see in the
next Section.

3 Evolutionary Algorithms

3.1 Preliminary Concepts

Evolutionary algorithms are stochastic search methods
that allow an exploration of a large space of solutions
with the objective of finding a solution satisfactorily
close to the optimal in an acceptable time. Among
these kind of algorithms are evolutionary program-
ming (EP) [9] and genetic programming (GP) [5],
which have both a common origin in the imitation of
natural evolution. EP and GP are adequate to solve
problems that are either impractical or unmanageable
through traditional Artificial Intelligence techniques
(heuristic search, logic, etc.). EP and GP are success-
fully employed in several problems, including combi-
natory optimization, scheduling, classification, system
identification and pattern recognition [7, 8].

The main idea derives from a metaphor of natural
evolution in biological processes, where the individu-
als (phenotypes) express a genetic information (geno-
type) and are subjected to rules of “survival of the
fittest” (fitness and selection). Those best fit indi-
viduals (with higher fitness) have more chances of
survival and generate their offspring, which may be
subject of further processes of mutation and crossover.
This general scheme has been used with variations in
many successful different applications.

An evolutionary algorithm maintains a population
set or generation of possible solutions of the prob-
lem and allows them to progress through the trans-
formation of the population in the successive gener-
ations. The transformation is produced by mutation
and crossover operations, by means of which the pop-
ulation set of the next generation is assembled from
the actual one. The crossover operator combines the
genotype of two or more solutions to generate a new
genotype, and the mutation operator generates a new
genotype as a random perturbation of the genotype of
a previous solution. In each of these generations a

fitness function (related in some way to a cost func-

tion) is evaluated, in order to quantify the adequacy
of every individual. Therefore, there exists a selection
stage that chooses the best fit individuals to conform
the new generation.

This process of mutation, crossover, fitness evalu-
ation and selection is repeated from a first generation
(initial population) either until a certain number of
generations were produced or until some appropriate
halting criterion is reached. The first generation may
be any suitable approximation of the solution sought
for. The uniform exploration of the space of solu-
tions and the avoidance of local minima (mostly due
to the effect of the mutation operator) induce to refine
progressively better solutions. Finally, the best fit in-
dividual at the last generation or the best fit individual
ever observed is chosen as the (so far) best solution.

3.2 Evolutionary Algorithms for Bound-
ary Extraction

As we stated in Section 2, the extraction of a boundary
close to the optimum through the gradient operator is
harder with noisy images. For this reason, of global
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Figure 1: Input images in (a), (c) and (e) and their corresponding images of V in (b), (d) and (f) respectively.

searching techniques should be employed. It is there-
fore sensible to regard border detection through the
gradient operator not at face value, but only within
an evolutionary algorithm to achieve nearly optimum
boundary detection. This is in fact the idea proposed
in this work. Starting from an initial population of
feasible solutions (possible boundaries), the systems
evolves throughout mutation and crossover operations
that induce gradually better solutions. The selection
is performed evaluating the fitness of the solutions via
the V operator.

Let’s suppose the existence of a population of
C;{ contours, v. g., the ancestors. Each contour
C;(i € N) has a genotype ¢; codified with numbers
that represent the M vertices of a polygonal descrip-
tion of every contour. Then, a set C;:“ of offspring is
created, where the genotype c; of each contour comes

form the previous genotype through a mutation that
modifies only one of its vertices stochastically. Con-
sidering the image of Fig. 2(a) as a generic example,
we will show in the remaining of this Section the
main components of the evolutionary algorithm im-
plemented for boundary extraction.

3.2.1 Initial Population

In any case, any possible contour that may count as
an object boundary should be in the nearby of the
outer limit of that given object. Consider for instance
the image in Fig. 2(a), and its gradient V (Fig. 2(b)).
Therefore it may be sensible to start the evolutionary
algorithm generating an initial population of solutions
that lay close to this target, that is, a random set of
contours that are in the nearby of the sought for con-
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Figure 2: Generic example: input image in (a), image of V in (b), circles to generate the initial population of

contours in (c) and generated contours in (d).

tour. In our case this set may be created positioning
two concentric circles (Fig. 2(c)), one properly includ-
ing the target boundary, and other properly included
in it. This could be produced in other ways, but in
this work we consider this strategy of initialization
only. Thus, the initial population will consist of a set
of contours laying inside a ring.

Once the inner and outer radii are determined, N
contours of M vertices are generated within the ring
(Fig. 2(d)). Vertices are spaced at uniform angles
along the ring, and the radius associated with each is
randomly chosen among the minimum and maximum
radii. It is important to remark that both the number
of contours to generate and the angular separation of
the vertices that conform these contours can be set by
the user.

3.2.2 Mutation and Crossover

Given a set of contours (a generation), the next set
to be considered is produced by means of a couple
of genetic operators. For each of the newly generated
contours, the mutation operator is responsible of the
random selection of one of its vertices and of modi-
fying its location. This modification is randomly pro-
duced within a radial and an angular range, being the
former much larger than the later, and taking care to
consider the limits of adjacent vertices. In this way a
new contour is obtained modifying the original one.
Fig. 3(a) and Fig. 3(b) show two contours and the

-10-

correspondent offspring produced by the mutation op-
erator.

The crossover operator is another widely used ge-
netic operator. In our application, it takes the se-
quence of vertices of two contours, randomly chooses
a place in the sequences, and swaps their vertices from
this chosen place on, thus producing two completely
new contours. Fig. 3(c) and Fig. 3(d) show two con-
tours and their offspring produced by the crossover
operator. These two operators add new candidate so-
lutions, but do not replace their ancestors. This means
that we are using a p + A evolutionary strategy, that
is, previous to the selection function application, both
the current population and their offspring are mixed.

3.2.3 Fitness and Selection

The evaluation of the fitness of a contour must quan-
tify how close it is from the optimum. Since the op-
timal contour is unknown, our idea for selection is to
consider fittest the “lowest cost” contour, where the
cost is associated with the cumulative local intensity
differences. That is, our idea of optimal contour is
a set of pixels which are both linearly connected and
of very similar intensity. Thus, the local cost that is
accumulated at each vertex of the contour diminishes
when the local gradient in the image is high. We use
the following standard function to compute the local
cost k(z,y) in the pixel (z,y):
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Figure 3: Mutation in (b) of the contours shown in (a), and crossover in (d) of the contours shown in (c).

1 1
Kz,y) =9- Y > V(e+1ly+))
i=—1j=—1

In this way the local cost at vertex CZ of a contour

¢! can be expressed as k(c]). Masks of bigger size
would imply a better estimation, but also a heavier
computational cost. To evaluate the fitness f(C;) of
the ¢-contour we only have to cumulate the local cost
of each of the points that conform its genotype.

$(C) =3 k(e)

The selection criterion is based on the elimination
of those contours whose fitness is below a given rela-
tion to the maximal fitness of the present generation.
That is, the population size along generations is not
fixed. In practice, there is a tradeoff between this sur-
vival threshold, the computational cost, and the pos-
sibility of discarding feasible solutions. In this work
we are considering the adequacy of the generated so-
lutions, and for this reason we choose a high survival
rate, thus sacrificing computational cost.

4 Expermental Results

To investigate the performance of the boundary ex-
traction system based on evolutionary algorithms sev-
eral noisy images were generated adding zero mean

-11 -

Gaussian noise with different standard deviations over
some evaluation images.

Fig. 4 shows input images with Gaussian noise
(0=50), together with the corresponding contour
found. For the object of Fig. 4(a), the number of si-
multaneous contours explored used was 3000 and the
number of generations was 15000, while for the ob-
ject in Fig. 4(d), the number of iterations was 100000
because of its greater complexity. To achieve a cor-
rect detection of larger objects (Fig. 5) the number
of contours required was higher (4000) and also the
number of generations (140000).

In all the cases that we tested our algorithm the re-
sults were successful, detecting nearly optimum con-
tours in diverse conditions of noise, size and com-
plexity of the contours to segment. For the detec-
tion of contours of larger or more complex objects,
the amount of simultaneous contours and generations
need to be increased. It is important to remark that all
the best results were found with low mutation rates
(lower than 10%).

5 Conclusions

In this work we have presented a boundary extraction
methodology for digital images based on the imple-
mentation of an evolutionary algorithm. This solution
features both the conceptual simplicity of the detec-
tion strategy provided by gradient operators and the
robust behavior of the evolutionary mechanism. This
robustness is indeed preserved under several varia-
tions in the input images, not only in the shape and
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Figure 4: Evaluation images in (a) and (d), their corresponding V in (b) and (e) and the detected contours

respectively in (c) and (f).

(b)

Figure 5: Larger evaluation images: (a) input image, (b) image of V and (c¢) detected contour.

size of the objects of interest but also in difficult de-
tection conditions, for instance non-uniform intensity
levels and noise perturbations. The system performs
adequately in a large evaluation set, finding adequate
contours in every case in a reasonable time.

The set of genetic operators is quite standard, and
can be easily extended to include the utilization and
evaluation of other mutation and crossover operators,
and also alternative fitness evaluation (frequency op-
erators, transformations, etc.). These changes can be
easily embedded within our working framework. Fi-
nally, the “adaptive” nature of the evolutionary system
is able to support dynamic conditions in the input im-
ages for border detection “on-the-fly”.
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