

Custom Architectures for Fuzzy and Neural Networks Controllers
Acosta Nelson & Tosini Marcelo

INCA/INTIA – Departamento de Computación y Sistemas – UNCPBA – Tandil
Email: nacosta@exa.unicen.edu.ar

Abstract: Standard hardware, dedicated microcontroller or
application specific circuits can implement fuzzy logic or neural
network controllers. This paper presents efficient architecture
approaches to develop controllers using specific circuits. A
generator uses several tools that allow translating the initial
problem specification to a specific circuit implementation, by
using HDL descriptions. These HDL description files can be
synthesized to get the FPGA configuration bit-stream.

Keywords: computer aided control system design, fuzzy &
neural networks control, integrated circuit.

1. INTRODUCTION

The term CAD (Computer Aided Design) is applied to a design
process based on sophisticated computer graphic techniques
used to help the designer in analytic problem resolutions,
development, cost estimations, and so on. The graphic power
facilitates the scheme description; but the main revolution is the
inclusion of some tools such as simulators and module
generators. These tools give assistance to all the design
processes.

EDA (Electronic Design Automation) is the name of a set of
tools to help the electronic design. Hardware design essential
problem is the high cost of the development cycle: design,
prototype generation, testing, and back to design. To avoid
repetition of prototype generation in the design cycle,
simulation and verification of circuits can be introduced. These
tools make unnecessary building a physical prototype to verify
the circuit operation.

CAD tools are mainly used for hardware design in the
following steps: a) Description of the idea, by using an electric
scheme, a block diagram, or an HDL (Hardware Description
Language) description. b) Circuit simulation and verification,
with different types of simulation (events, functional, digital or
electrical). c) Circuit manufacture. d) PCB (Printed Circuit
Boards) manufacture. e) ASIC (Application Specific Integrated
Circuits) accomplishment. f) On board test and verification.

At the end of the 1980s, the use of development tools
(automatic synthesis, place and route) and technologies
(microprocessor programmability) produced the drastic project
cost reduction. The FPGA (Field Programmable Gate Array)
and the HDL allow simplifying the design process.

The most used HDLs are VHDL (Very high speed integrated
circuit HDL), Verilog, Handle C and Abel (Advanced Boolean
Equation Language). By using HDL, the circuit design shows
some advantages: 1) The implementation technology
independence facilitates the migration to a newer technology. 2)
It increases modular reusability. 3) It facilitates the automatic
circuit generation. 4) It makes easy understanding the high-
level code.

ASIC produces the highest speed circuits, but large series are
required for a reasonable cost. Applications (like image
processing, real-time control, audio and video compression,

data acquisition, and so on) that need high throughput and high
number of input/output ports leave processors out of run. The
FPGA adopts the advantages imposed by the microprocessors:
programming capacity, low development cost, debugging
capabilities, and on chip emulation, at a best cost/speed ratio.

High-performance low-cost digital controllers are used from
domestic equipment to high-complexity industrial control
systems.

Custom controller designers are using these technologies to
develop projects. The development cycle is defined as follows:
a) System description (HDL). b) Simulation. c) Design testing.
d) Synthesize the design in some specific FPGA device. e)
Emulation using a FPGA platform. f) When the controller is
made, it can be implemented on ASIC or FPGA.

Fuzzy logic (FLC) and neural networks (NNC) controllers can
be implemented by standard hardware. To increase the
throughput a dedicated microcontroller can be used. Another
possibility is to use specific circuits HDL based (ASIC, FPGA,
PLD): this approach is considered in this paper. FLC and NNC
architecture are shown and analyzed using several examples
and two FPGA families.

Section 2 formalizes the fuzzy control algorithm, and it deals
with the computing scheme by using rule-driven engine
approach. Section 3 shows the architecture details. In section 4,
the neural networks approach is used to define the architecture
controller. Section 5 shows the architecture details. Section 6
shows the conclusions and future works.

2. INTRODUCTION TO DIGITAL FLC

A fuzzy logic controller (FLC) produces a nonlinear mapping of
an input data vector into a scalar output. It contains four
components: a) The rules define the controller behavior by
using IF-THEN statements. b) The fuzzifier maps crisp values
into input fuzzy sets to activate rules. c) The inference engine
maps input fuzzy sets into output fuzzy sets by applying the
rules. d) The defuzzifier maps output fuzzy values into crisp
values.

FLC can be implemented by software running on standard
hardware or on a dedicated microcontroller [01] [02] [03] [04].
Controllers for high rates can be implemented by specific
circuits [05] [06] [07] [08]. In order to process a high number of
rules, optimization techniques must be applied; for example: a)
reduction of the number of inference computing steps [09]; b)
parallel inference execution and c) active rules processing. The
Watanabe controller design has a reconfigurable cascadable
architecture.

In [10] neural networks are used to determine the active rule set
in adaptive systems by attaching a weight to each rule. Analog
circuits are attractive for fuzzy chips as they implement
arithmetic operations easily, but suffer noise disturbance and
interference. On the other hand, digital fuzzy controllers are

JCS&T Vol. 2 No. 7 October 2002

-9-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15766634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

robust and easy to design, but require large circuit areas to
perform arithmetic operations.

The architecture goal is to present an alternative scheme to
compute the controller functions by using an inference engine
that only computes the relevant rules. This approach reduces the
number of registers and instructions required; so it minimizes
the algorithm computing time.

3. FUZZY LOGIC PROCESSOR

An FLC (fuzzy logic controller) maps crisp inputs into crisp
outputs. It includes four components: rules, fuzzifier, fuzzy-
logic inference engine and defuzzifier. The fuzzifier maps the
crisp values into fuzzy sets, this operation is necessary to
activate the rules. The fuzzy inference engine maps the input
fuzzy sets into the output fuzzy sets, it drives the set of rules to
determine how to combine them. The defuzzifier maps the
fuzzy inference engine output to a crisp value; this value means,
in control applications, the control action. The application rules
generation is not focused in this work.

A. ACTIVE RULES

The “bank of rules” represents a set of control rules. The fuzzy
association (A, B) relates the output fuzzy set B (of control
values) with the input fuzzy set A (of input values), where the
pair represents associations as antecedent-consequent of IF-
THEN clauses. Each input variable value is fuzzyfied by
applying the membership functions. These output values are
different from zero only for a few fuzzy sets, depending on the
MF (membership function) shape. Only the non-zero values
will fire rules, so most output consequent sets will be empty. By
using this principle, it is possible to develop architecture to
compute only the fired (not empty) consequent rules. It will
drastically reduce the total number of operations, and
consequently, the computing time [07].

The proposed algorithm is based on the following features:

The MF determines which rule will be activated, so the set
of rules are fired by a sensitive context.
The operations use ALU internal registers, which are
addressed by index registers. In some applications, this
technique allows to reduce the number of I/O control lines.
Different ALUs are used to compute the lattice and
arithmetic operations.
Only parts of the decoding functions are accessed.
Only the significant arithmetic and lattice operations are
computed.
The control microprogram can be linear (without jumps) to
reduce the control area.

B. PROPOSED ALGORITHM

First, the following notations are introduced:

n and m are the number of input and output variables
respectively.
i and k are the identification of an input and output variable
respectively.
p and r are the number of input and output membership
functions.
j is the identification of an input variable MF.
q is the maximum number of simultaneously fired rules.

This algorithm works with a unique reset signal to force all the
registers in the register banks to zero state: RegV(i,0..log2 pi),
IdfV(i,0..log2 pi), ADF, SOP(0..log2 rk), N, and D. The
computing algorithm of the fk functions is:

i:0 i n-1, j:0 j pi-1:
IF Aij(xi) 0 THEN

RegVi[ptri = Aij(xi);
IdfVi[ptri = AIDF(i j)(xi);

For every k,
For every combination

(ind1, ind2, ..., indn),
where indi points to one of the non-zero MF of xi, and,
For every output MF number pdf:

ADF = FAMk (IDF[vi]1[ind1 +
 IDF[vi]2[ind2 +
 +
 IDF[vi]n[indn);
SOP[ADF = max(SOP[ADF ,
 min(REG[vi]1[ind1 ,
 REG[vi]2[ind2 ,
 ,
 REG[vi]n[indn));

ind: 0 ind q-1, compute
VVVind = B(ADF, SOP[ind);
Nk = Nk + VVVkh;
Dk = Dk + SOPkh;
Fk = Nk / Dk;

C. FLC ARCHITECTURE

The computing circuit is independent of the MF
implementation. In this paper a memory approach is used as an
example. An architecture diagram is shown in Fig. 1.

Two big blocks construct the architecture diagram: a) A multi-
plane fuzzifier for 2 input variables, a plane each. b) An
inference and defuzzifier block for a unique output variable.
The MIN and Address Maker are multi-plane operations
because they need information about all input variables.
Note that clock and reset signals are not shown in the
architecture diagram. The applications need define: a) the
memory block widths (like ADF, D and N), b) the register bank
data and address widths (like RegVi, IdfVi and SOP).

Architecture details:

Memory blocks:
REG[vi] store the MF value of the input variables.
IDF[vi] store the MF identifiers.
SOP store the inference engine outputs,
ADF is a pointer to the output fuzzy set,
N holds the numerator value, and
D holds the denominator value.

Circuit blocks:
Address Calculation: determines the pointer to REG
and IDF register.
MIN and MAX: compute the minimum and maximum
values.
Address Maker: determines the active rule for the
inference engine.
MF[vi] are the membership functions for each input
variable value.
MF-IDF[vi] are the membership function identifiers for
each input variable value.
Rule Bank holds the set of rules.
Output-MF is the output MF for the input variable.
ADD and DIVISION operations. Note that the division
operation is not detailed.

Control signals:

SelVi is a pointer to REG/IDF registers.
AB_PTR selects the address between SelVi (at
inference time) and the computed address (at fuzzifier
time).

JCS&T Vol. 2 No. 7 October 2002

-10-

IND addresses the SOP registers in the defuzzification
stage.
ADF_IND selects the address between IND (at
defuzzification time) and ADF (at inference time).

D. RESULTS

The FLC architecture has been used to develop a wide variety
of applications. The selected implementation platforms were the
Virtex or the xc4000 Xilinx FPGA families. The original design
was generated in an automatic way by using a FLC generator
[06] [11] [12] that produces VHDL in RTL (Register Transfer
Level). The Xilinx Foundation v4 was used to generate the
configuration bit-stream. In this paper 3 implementations are
described.
In the Bart Kosko parking a truck in a load zone FLC [13] [14],
the main features are: a) 2 input variables (with 7 and 5 MF).
b) 1 output variable (with 7 MF). c) 35 rules (with 2 antecedents

and 1 consequent). d) 22 microinstructions at a maximum
frequency. The FLC runs: a) in the Virtex at 18 MHz, so it
produces a throughput of 818 K FIPS (Fuzzy Inferences Per
Second) and 28 M FRPS (Fuzzy Rules Per Second). b) In the
xc4000 at 12 MHz, 545 K FIPS and 19 M FRPS.

In the inverted pendulum FLC [15], the main features are: a) 2
input variables (both with 7 MF). b) 1 output variable (with 7
MF). c) 49 rules. d) 16 microinstructions. The pendulum runs:
a) in the Virtex at 21 MHz, 131 K FIPS and 64 MFRPS. b) In
the xc4000 at 11 MHz, 687 K FIPS and 33 M FRPS.

In the Aptronix autofocus [16] FLC, the main features are: a) 3
input variables (with 3 MF). b) 3 output variables (with 3 MF).
c) 20 rules. d) 14 microinstructions. The autofocus runs: a) in
the Virtex at 23 MHz, 1642 K FIPS and 32 M FRPS. b) In the
xc4000 at 14 MHz, 1 M FIPS and 20 M FRPS.

MF(x)

var1

 add

MF-IDF(x)

Address
Computing

0 1

RegV1(0)
RegV1(1)

IdfV1(0)
(1)idfV1

MIN

MAX

SOP(0)
SOP(1)
SOP(2)
SOP(3)
SOP(4)
SOP(5)
SOP(6)
SOP(7)

1 0 ADF

 add

Div
D

Output MF

N

OutputValueVar1

selV1

AB_ptr

adf_ind

ind

var2

selV2

Address maker

Rule bank

Fig. 1.-Multi-resource architecture

JCS&T Vol. 2 No. 7 October 2002

-11-

4. INTRODUCTION TO DIGITAL NEURAL NETWORKS

Artificial neuronal networks (ANN) can be classified into two
groups based on the degree of parallelism obtained in the diverse
developments.

There are developments with high degree of parallelism that
implement the architecture of the network with all their neuronal
interconnections. Those developments are limited to small
networks consisting generally of one hidden level with less than
10 neurons.

On the other hand, there are developments of low (or null) level
of parallelism that completely implement the functionality of a
single neuron plus a control unit. That unit successively feeds the
neuron with sets of weights and input values to obtain a valid
output result. This last alternative allows implementing time
multiplexed hardware circuits with a high advantage in area to
risk of a reduced performance.

Time Multiplexed neural networks are commercially available
whereas other designs are taken ahead by many research and
academic groups.

The two main categories consist of neurocomputers based on
standard integrated circuits and ASIC. The first ones are
accelerator boards that optimize the speed of calculation in
conventional computers (PC like or workstation). In these cases,
where standard components are used, the designers can be
concentrated totally in the development of a particular
technology. In the second, several alternatives and technologies
of implementation can be chosen for the neuronal
accomplishment of chips, like digital, analog or hybrid
neurochips.

The direct implementation in circuits generally alters the exact
operation of the original processing elements (analyzed or
simulated). It is due to the limitation in precision. The influence
of this limited precision is of great importance for the correct
operation of the original paradigm. Because of this many
designers have dedicated much time to study these topics. In
order to obtain implementations on great scale, several
neurochips must be interconnected to create systems of greater
complexity, with advanced communication protocols.

5. NEURAL NETWORK ARCHITECTURE

The developed ANN has two essential features. By one side, a
data route is highly used by segmented components (multiplier,
adder, data/results memory), which allows a high performance of
the data circuit, with the consequent speed increase. On the other
side, the possibility of microprogramming the data route, allows a
great flexibility to implement different ANN architectures:
feedforward, cyclic, acyclic, and so on. The general circuit
building blocks are depicted in Fig. 2 [17].

As it may be seen, the proposed ANN datapath is a circular
pipeline of a multiplier, an accumulator, an activation function
module and data memory; all of them pipelined as well.
The multiplier has two 8-bit inputs, one 16-bit output, with a total
of 360 registers and 64 basic 1-bit multipliers. Although this 8-bit
configuration for internal data can be easily rearranged, a new
configuration of more bits will increase the resources (cost)
needed for the implementation of the multiplier with a quadratic
factor. The 8-bit data route allows a new result in each clock
cycle, being of 16 cycles the latency for each computation. The
accumulator output is wired to the activation function circuit.

Fig. 2: Developed ANN building blocks.

A. THE ACTIVATION FUNCTION

A common approach for this activation function in ANN is the
sigmoid function of eq. (1).

 (1)

In the software implementations there is not a major drawback on
computing eq. (1). However, from the hardware standpoint, there
is a high cost on implementing both a lookup table for the
exponential function, and the division operation. Instead, a usual
approximation in the hardware world is [18]:

1
12

1
)(

x

x
xy (2)

This approach, although simpler than the one of eq. (1), still
needs the module and the division computation. In this work a
third proposal is used. It consists of an approximation of eq. (1)
with several polynomial functions in powers of 2, conforming a
piecewise linear function [19] [20]. Particularly, the input for the
developed circuit was a 16-bit integer [-32768..32767], and its
output is a signed 8-bit integer [-128..127]. Table 1 shows the
six input ranges with their corresponding output ranges.

INPUT OUTPUT
0..1023 0..31

1024..2047 32..63
2048..4095 64..95
4096..5119 96..111
5120..6143 112..115
6144..7167 116..119
7168..8191 120..123
8192..12287 124..127

12288..32767 127
Table 1: Polynomial functions in power of 2 for the

approximation of the exponential function.

In Fig. 3 a comparison among the three described approaches for
the activation function is depicted (eq. (1), (2), and Table 1). It
may be seen that the third implementation is closer to eq. (1) than
the proposal of eq. (2). Then, this option was used for the present
application. The selected approach, as well as the remaining
presented components were described in VHDL. Then, it is
immediate to replace for instance the module in the data route to
change the activation function of the ANN. In a following
section, it will be shown how easy it is to change the synaptic
weights and the data/results memory from the parameters defined
for a specific ANN.

JCS&T Vol. 2 No. 7 October 2002

-12-

Fig. 3: Three approaches for the sigmoid activation

function [eq. (1) (continuous line), eq. (2) (discontinuous
line), table1 (doted line)]

B. PRECISION ANALYSIS

As in any digital circuit, in this case there is a trade off between
precision and physical parameters like area and computing speed.
Then, it seems interesting to analyze the behavior of the ANN
when trained with different data series and different internal
precision (number of bits). An exhaustive study of this was left
for a near future. Nevertheless, the ANN was studied in
simulation using representations for the weights and data of 20,
16, 12 and 8 bits. The results obtained for this last case were
considered acceptable for the present application, as shown in
Fig. 4.

Fig. 4: The simulated ANN output with double precision

(in gray) vs. 8 bits precision (in black).

C. PROGRAMMING THE ANN

The proposed architecture is programmed according to two main
parameters to be selected previously. Once this step is fulfilled, a
microprogram should be written to control the computations of
the particular design.

D. PARAMETER DEFINITION

The first parameter to consider is the number of cells of the
data/results row (L), according to:

L = max (N – 1) (3)

where N is the number of neurons in two contiguous level. This L
row must always be able to store the outputs of the just computed
level (data) plus the results of computing each neuron in the
present level. The second parameter is the size of the weight’s
memory (Swm), which will store all of ANN weights.

Example 1: a classical feedforward ANN of nine neurons in the
hidden layers and four inputs and three outputs is described
according to Fig. 5.

E. MICROPROGRAM CREATION

From two levels of abstraction, a software tool (assembler) was
developed to analyze the precedence relationships in the
computations needed in the network under design. The highest
level of abstraction generically describes which kind of neural

network is under development. The present supported types are
feedforward and Hopfield, synchronic and asynchronic [21].

Fig. 5: Parameters definition of an ANN

Example II: the feedforward ANN of Fig. 5 is defined as:

Net <name> Description
type feedforward
Input : 4
Output : 3
Hidden : 4 , 5

End <name>

Example III: a given Hopfield ANN (Fig. 6) is defined as:

Net <name> Description
type sync Hopfield
Nodes : 3

End <name>

Fig. 6. Hopfield ANN.

The synchronous or asynchronous feature of the Hopfield ANN
is achieved by the microprogram. In the first case the neurons are
all updated in each clock cycle. In the second, the neurons are
updated sequentially. This high level description only allowed
the generation of simple and remarkably regular neural nets, but
did not permit to outline more specific details about the neurons
interaction of a particular design. Then, a lower level of
description was needed, in which neuron dependencies were
explicitly stated. This was achieved by programming as shown in
Example IV.

Example IV: a more detailed description of a feedforward ANN
with 4 inputs, 2 outputs and a hidden layer of 3 neurons, in a
lower level of abstraction (Fig. 7)

Net <name> Description
type Feedforward
Nodes: A, B, C, D, E, F, G, H, I
Weights: w1..w18
Input Nodes: A, B, C, D
Output Nodes : H, I
Relation

E = A * w1 + B * w2 + C * w3 + D * w4
F = A * w5 + B * w6 + C * w7 + D * w8
G = A * w9 + B * w10 + C * w11 + D * w12
H = E * w13 + F * w14 + G * w15
I = E * w16 + F * w17 + G * w18

End Relation
End <name>

JCS&T Vol. 2 No. 7 October 2002

-13-

Fig. 7. Feedforward ANN.

From this description, the assembler can settle down the
introduced parameters L (equation (3)) and Swm which will be 6
and 18 cells respectively for this example. The microprogram
generation is based on these specifications, which map into a set
of microinstructions that the control unit successively stores in
the corresponding register. This register has 2*L bits, coding one
among the four possible operations for each cell of the
data/results row. They are presented in Table 2.

Rotation (C) The cell receives the row output value

No operation (N) The cell is not modified

Shift (S) The cell receives the value from its prior
one (left)

Datum load (L) The cell is loaded with the value from the
activation function or the input data

Table 2: Microinstructions of the microprogram.

The resulting microprogram of Example VI is partially shown in
Table 3. The microprogram puts the resulting values of
computing each neuron in the data row, in a position such that
this value operates with the corresponding weight when going out
of the row. To achieve this, weights are stored in a circular buffer
of ROM memory. In this way, the ANN behaves like a systolic
system, multiplying a value from the data/results row and a
corresponding synaptic weight in each clock cycle. This product
(a partial result) is stored until every input to each neuron is
processed. Once the output of a processed neuron is obtained, it
is crossed through the activation function and the result is stored
in the data row, in the cell pointed by the current
microinstruction. This procedure is illustrated in Fig. 8.

C Microinst Row state Operation Comments
0 NNNNNL _ _ _ _ _ A _ initial data

load
1 NNNNLN _ _ _ _ B A _
2 NNNLNN _ _ _ C B A _
3 NNLNNN _ _ D C B A _
4 NNCSSS _ _ A D C B Acc = A * w1 A is recycled
5 NNCSSS _ _ B A D C Acc += B * w2 B is recycled
6 NNCSSS _ _ C B A D Acc += C * w3 C is recycled
7 NLCSSS _ E D C B A E = Acc += D

* w4
D is recycled

and E is
loaded

11 SLSSSS _ F E D C B F = Acc += A

* w4
shift and F is

loaded
12 SSSSSS _ _ F E D C Computation of

G
global shift

Table 3: Part of the microprogram of Example VI.

Fig. 8: Data flow in the ANN.

F. RESULTS

Two alternatives of the presented architecture were implemented:
STANDARD; the displayed design. OPTIMIZED; optimized
version of the design. Redundant multiplexors in data memory
are reduced or eliminated. This alternative reduces the size of the
data memory and control unit.

With the Xilinx Foundation tool an important difference in
synthesis and implementation speed was observed. In fact, the
F3.1i version was around 40% superior in average to the F2.1i
version.

With reference to the number of decisions per second (DPS) it
was observed that, independently of the circuit frequency, DPS
value is inversely proportional to the complexity of the neuronal
network (in terms of inputs and hidden neurons).

The number of CLBs increases sensibly in circuits with more
inputs or hidden neurons. This is due to the increase in the data
memory cells but mainly by the increase in complexity in the
control unit (as well by the higher number of control signals that
must handle).

The operating frequency for all the versions tends to diminish
when increasing the size of the circuit. This effect is not itself
related to the datapath, since it is the same for all
implementations. In fact, it is related to two factors: first, the
increase of the circuit size which goes in detriment of more
optimal locations and connections (place and routing) and forces
to use tracks of smaller speed. Secondly, the synthesis of control
units of higher number of signals increases the depth of logic in
the design increasing the clock period of the circuit.

Fig. 9 shows several implementations of the architecture with
F3.li version of Xilinx Foundation tool. All circuits have only
one hidden level with two neurons and 16-bit precision datapath.

Inputs CLB Flops
Frec.

(MHz)
Logic
deep

DPS

10 182 270 12,032 10 802133,3

12 207 280 12,839 12 755235,3

14 218 288 13,265 10 698157,9

16 230 296 11,369 11 541381

18 222 304 10,199 11 443434,8

20 257 313 8,773 10 350920

22 267 321 9,762 10 361555,6

24 272 329 9,490 11 327241,4

26 284 337 10,784 11 347871

Fig. 9: Implementation results of the architecture with several
inputs.

JCS&T Vol. 2 No. 7 October 2002

-14-

6. CONCLUSIONS

This paper shows an efficient digital approach to develop an
ANN or an FLC. The development approach to obtain a specific
circuit (ASIC, FPGA) is automatically performed according to
the following steps: a) Controller definition in a description
language. b) Circuit and control program generation. c)
Automatic synthesis of the design by using the commercial
FPGA development tools. d) FPGA and memory configuration.

The FPGA shows to be an efficient development platform, but
they need to be in an efficient card that provides: a) Access to
external RAM. b) Connection to multiple clocks running at
different rates. c) Connectivity to a great number of external
lines. d) Low power consumption. e) A prototyping area. As a
prototyping platform, the card must have a great number of
interconnection lines connected straight to the computer I/O
ports.

The developed tool has been implemented in Delphi. It parses the
input language while loading, and then, the interface lets the user
to select which kind of synthesis is needed. This prototype
includes generators for: a) VHDL in RTL (automatic synthesis
allowed). b) Prototyping languages like VHDL in behavioral
descriptions, C and Pascal.

As a future work, the synthesis tools will be adapted in order to
support: a) Other tools, such as Viewlogic, standard cells library.
b) Analogical platforms. c) Multi-resource architectures (multi-
ALU pipelined data path) in the FLC. d) Area and speed metric
estimation before the place and route process.

REFERENCES

[01]. “Expert System on a Chip: An Engine for Real-Time

Approximate Reasoning”. Togai M. and Watanabe H. IEEE
Expert, vol. 1, Nro. 3, pp: 55-62.

[02]. “A VLSI Fuzzy Logic Controller with Reconfigurable,
Cascadable Architecture”. Watanabe H, Dettlof W. and
Yount K. IEEE Journal on Solid-State Circuits, vol. 25,
nro. 2.

[03]. “Architecture of a PDM VLSI Fuzzy Logic Controller with
Pipelining and Optimized Chip Area”. Ungering A.,
Thuener K. and Gosser K. Proc. of IEEE International
Conference on Fuzzy Systems, pp: 447-452.

[04]. “7.5 MFLIPS Fuzzy Microprocessor using SIMD and
Logic-in-Memory Structure”. Sasaki M. Ueno F. and Inoue
T. Proc. of IEEE International Conference on Fuzzy
Systems, pp: 527-534.

[05]. “Customized Fuzzy Logic Controller Generator”, Acosta
N., Deschamps J-P. and Sutter G. Proc. of IFAC-MIM´97,
Vienna, Austria, February 1997, pp: 93-98.

[06]. “Automatic Program Generator for Customized Fuzzy
Logic Controllers”, Acosta N., Deschamps J-P. and Sutter
G. Proceedings of IFAC-AART´97, Vilamoura, Portugal,
April 1997, pp: 259-265.

[07]. “Hardware design of Asynchronous Fuzzy Controllers”.
Costa A., De Gloria A. and Olivieri M. IEEE Trans. on
Fuzzy Systems, vol. 4, Nro. 3, August. 1996, pp.: 328-338.

[08]. “Dedicated Digital Fuzzy Hardware”. Hung D. L. IEEE
Micro, vol. 15, nro. 4, pp: 31-39.

[09]. “Algoritmo de optimización de funciones reticulares
aplicado al diseño de Controladores Difusos”. Deschamps
J-P and Acosta N. XXV JAIIO, pp: 1.17-1.27. September
1996.

[10]. “On Fuzzy Associative Memory with Multiple-rule Storage
Capacity”. Chung F. and Lee T. IEEE Trans. on Fuzzy
Systems, vol. 4, Nro. 3, August, pp: 375-384.

[11]. “Optimized active rule fuzzy logic custom controller”, Int.
Symp. on Engineering of Intelligent Systems (EIS'98),

organizado por IFAC (International Federation of
Automatic Control), Tennerife, España. February 1998.
Acosta N., Deschamps JP. y Garrido J. Pp. 74-79.

[12]. “Materialización de Controladores Difusos Activos”,
Acosta N. CACIC'2001. October 2001. El Calafate (Arg).

[13]. “Adaptative Fuzzy Systems for Backing up a Truck-and-
trailer”, Kong S. and Kosko B. IEEE Trans. Neural
Networks, Vol. 3, Nro. 2, pp.: 211-223, March 1992.

[14]. “Neural Network and Fuzzy Systems”, Kosko B. Prentice
Hall, chapter 9.

[15]. “Robust fuzzy control of nonlinear systems with parametric
uncertainties”, H Lee, B Park & G Chen. IEEE Trans. on
Fuzzy Systems, Vol. 9, Nro. 2, April 2001. Pp: 369-378.

[16]. “FuzzyNET”, Aptronix. http://www.aptronix.com.
[17]. “Hardware Implementation of a segmented data route for

Neural Networks”, Tosini, M. VI Workshop Iberchip,
IWS´2000, Sao Paulo, Brazil, pp. 292-299, March 2000.

[18]. “Using and Designing Massively Parallel Computers for
Artificial Neural Networks”, Nordström, T. and Svensson,
B. Journal of Parallel and Distributed Processing, vol. 14,
no. 3, pp. 260-285, 1992.

[19]. “Efficient implementation of piecewise linear activation
function for digital VLSI neural networks”, Myers, D. J.
and Hutchinson, R. A. Electronic Letters, Vol. 25, pp.
1662-1663, 1989.

[20]. “Simple approximation of sigmoidal functions: realistic
design of digital neural networks capable of learning”,
Alippi, C. and Storti-Gajani, G. Proc. IEEE Int. Symp.
Circuits and Systems, pp. 1505-1508, 1991.

[21]. “Computers and Symbols Versus Nets and Neurons”,
Gurney, K. UCL Press Limited, UK, 1995.

JCS&T Vol. 2 No. 7 October 2002

-15-

