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Abstract: Standard hardware, dedicated microcontroller or 
application specific circuits can implement fuzzy logic or neural 
network controllers. This paper presents efficient architecture 
approaches to develop controllers using specific circuits.  A 
generator uses several tools that allow translating the initial 
problem specification to a specific circuit implementation, by 
using HDL descriptions.  These HDL description files can be 
synthesized to get the FPGA configuration bit-stream. 
 
Keywords: computer aided control system design, fuzzy & 
neural networks control, integrated circuit. 
 

1. INTRODUCTION 
 
The term CAD (Computer Aided Design) is applied to a design 
process based on sophisticated computer graphic techniques 
used to help the designer in analytic problem resolutions, 
development, cost estimations, and so on. The graphic power 
facilitates the scheme description; but the main revolution is the 
inclusion of some tools such as simulators and module 
generators. These tools give assistance to all the design 
processes.   
 
EDA (Electronic Design Automation) is the name of a set of 
tools to help the electronic design. Hardware design essential 
problem is the high cost of the development cycle: design, 
prototype generation, testing, and back to design. To avoid 
repetition of prototype generation in the design cycle, 
simulation and verification of circuits can be introduced. These 
tools make unnecessary building a physical prototype to verify 
the circuit operation.  
 
CAD tools are mainly used for hardware design in the 
following steps: a) Description of the idea, by using an electric 
scheme, a block diagram, or an HDL (Hardware Description 
Language) description. b) Circuit simulation and verification, 
with different types of simulation (events, functional, digital or 
electrical). c) Circuit manufacture. d) PCB (Printed Circuit 
Boards) manufacture. e) ASIC (Application Specific Integrated 
Circuits) accomplishment. f) On board test and verification. 
 
At the end of the 1980s, the use of development tools 
(automatic synthesis, place and route) and technologies 
(microprocessor programmability) produced the drastic project 
cost reduction. The FPGA (Field Programmable Gate Array) 
and the HDL allow simplifying the design process.  
 
The most used HDLs are VHDL (Very high speed integrated 
circuit HDL), Verilog, Handle C and Abel (Advanced Boolean 
Equation Language). By using HDL, the circuit design shows 
some advantages: 1) The implementation technology 
independence facilitates the migration to a newer technology. 2) 
It increases modular reusability. 3) It facilitates the automatic 
circuit generation. 4) It makes easy understanding the high-
level code.   
 
ASIC produces the highest speed circuits, but large series are 
required for a reasonable cost. Applications (like image 
processing, real-time control, audio and video compression, 

data acquisition, and so on) that need high throughput and high 
number of input/output ports leave processors out of run. The 
FPGA adopts the advantages imposed by the microprocessors: 
programming capacity, low development cost, debugging 
capabilities, and on chip emulation, at a best cost/speed ratio. 
 
High-performance low-cost digital controllers are used from 
domestic equipment to high-complexity industrial control 
systems.  
 
Custom controller designers are using these technologies to 
develop projects. The development cycle is defined as follows: 
a) System description (HDL). b) Simulation. c) Design testing. 
d) Synthesize the design in some specific FPGA device. e) 
Emulation using a FPGA platform. f) When the controller is 
made, it can be implemented on ASIC or FPGA. 
 
Fuzzy logic (FLC) and neural networks (NNC) controllers can 
be implemented by standard hardware. To increase the 
throughput a dedicated microcontroller can be used. Another 
possibility is to use specific circuits HDL based (ASIC, FPGA, 
PLD): this approach is considered in this paper. FLC and NNC 
architecture are shown and analyzed using several examples 
and two FPGA families. 
 
Section 2 formalizes the fuzzy control algorithm, and it deals 
with the computing scheme by using rule-driven engine 
approach. Section 3 shows the architecture details. In section 4, 
the neural networks approach is used to define the architecture 
controller. Section 5 shows the architecture details. Section 6 
shows the conclusions and future works. 
 

2. INTRODUCTION TO DIGITAL FLC 
 
A fuzzy logic controller (FLC) produces a nonlinear mapping of 
an input data vector into a scalar output. It contains four 
components: a) The rules define the controller behavior by 
using IF-THEN statements. b) The fuzzifier maps crisp values 
into input fuzzy sets to activate rules. c) The inference engine 
maps input fuzzy sets into output fuzzy sets by applying the 
rules. d) The defuzzifier maps output fuzzy values into crisp 
values. 
 
FLC can be implemented by software running on standard 
hardware or on a dedicated microcontroller [01] [02] [03] [04]. 
Controllers for high rates can be implemented by specific 
circuits [05] [06] [07] [08]. In order to process a high number of 
rules, optimization techniques must be applied; for example: a) 
reduction of the number of  inference computing steps [09]; b) 
parallel inference execution and c) active rules processing. The 
Watanabe controller design has a reconfigurable cascadable 
architecture. 
 
In [10] neural networks are used to determine the active rule set 
in adaptive systems by attaching a weight to each rule. Analog 
circuits are attractive for fuzzy chips as they implement 
arithmetic operations easily, but suffer noise disturbance and 
interference. On the other hand, digital fuzzy controllers are 
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robust and easy to design, but require large circuit areas to 
perform arithmetic operations. 
 
The architecture goal is to present an alternative scheme to 
compute the controller functions by using an inference engine 
that only computes the relevant rules. This approach reduces the 
number of registers and instructions required; so it minimizes 
the algorithm computing time.  
 

3. FUZZY LOGIC PROCESSOR 
 
An FLC (fuzzy logic controller) maps crisp inputs into crisp 
outputs. It includes four components: rules, fuzzifier, fuzzy-
logic inference engine and defuzzifier.  The fuzzifier maps the 
crisp values into fuzzy sets, this operation is necessary to 
activate the rules. The fuzzy inference engine maps the input 
fuzzy sets into the output fuzzy sets, it drives the set of rules to 
determine how to combine them. The defuzzifier maps the 
fuzzy inference engine output to a crisp value; this value means, 
in control applications, the control action. The application rules 
generation is not focused in this work.  
 
A. ACTIVE RULES  
 
The “bank of rules” represents a set of control rules. The fuzzy 
association (A, B) relates the output fuzzy set B (of control 
values) with the input fuzzy set A (of input values), where the 
pair represents associations as antecedent-consequent of IF-
THEN clauses. Each input variable value is fuzzyfied by 
applying the membership functions. These output values are 
different from zero only for a few fuzzy sets, depending on the 
MF (membership function) shape. Only the non-zero values 
will fire rules, so most output consequent sets will be empty. By 
using this principle, it is possible to develop architecture to 
compute only the fired (not empty) consequent rules. It will 
drastically reduce the total number of operations, and 
consequently, the computing time [07].  
 
The proposed algorithm is based on the following features: 

The MF determines which rule will be activated, so the set 
of rules are fired by a sensitive context. 
The operations use ALU internal registers, which are 
addressed by index registers. In some applications, this 
technique allows to reduce the number of I/O control lines. 
Different ALUs are used to compute the lattice and 
arithmetic operations. 
Only parts of the decoding functions are accessed. 
Only the significant arithmetic and lattice operations are 
computed. 
The control microprogram can be linear (without jumps) to 
reduce the control area. 

 
B. PROPOSED ALGORITHM 
 
First, the following notations are introduced: 

n and m are the number of input and output variables 
respectively. 
i and k are the identification of an input and output variable 
respectively. 
p and r are the number of input and output membership 
functions. 
j is the identification of an input variable MF. 
q is the maximum number of simultaneously fired rules. 

 
 
 
This algorithm works with a unique reset signal to force all the 
registers in the register banks to zero state: RegV(i,0..log2 pi), 
IdfV(i,0..log2 pi), ADF, SOP(0..log2 rk), N, and D. The 
computing algorithm of the fk functions is: 

i:0  i  n-1, j:0  j  pi-1: 
IF Aij(xi)  0 THEN 

RegVi[ ptri  = Aij( xi ); 
IdfVi[ ptri  = AIDF(i j)( xi ); 

For every k, 
For every combination  

(ind1, ind2, ..., indn), 
where indi points to one of the non-zero MF of xi, and, 
For every output MF number pdf: 

ADF = FAMk (  IDF[vi]1[ind1 +  
  IDF[vi]2[ind2 + 
  ................ + 
  IDF[vi]n[indn      ); 
SOP[ ADF  = max( SOP[ ADF ,  
  min( REG[vi]1[ind1 ,  
   REG[vi]2[ind2 ,  
   ...................,  
   REG[vi]n[indn  ) ); 

ind: 0  ind  q-1, compute  
VVVind = B( ADF, SOP[ ind  );  
Nk = Nk + VVVkh; 
Dk = Dk + SOPkh;  
Fk = Nk / Dk; 

 
C. FLC ARCHITECTURE  
 
The computing circuit is independent of the MF 
implementation. In this paper a memory approach is used as an 
example. An architecture diagram is shown in Fig. 1. 
 
Two big blocks construct the architecture diagram: a) A multi-
plane fuzzifier for 2 input variables, a plane each. b) An 
inference and defuzzifier block for a unique output variable. 
The MIN and Address Maker are multi-plane operations 
because they need information about all input variables. 
Note that clock and reset signals are not shown in the 
architecture diagram. The applications need define: a) the 
memory block widths (like ADF, D and N), b) the register bank 
data and address widths (like RegVi, IdfVi and SOP).  
 
Architecture details: 

Memory blocks:  
REG[vi] store the MF value of the input variables.  
IDF[vi] store the MF identifiers.   
SOP store the inference engine outputs,  
ADF is a pointer to the output fuzzy set,  
N holds the numerator value, and  
D holds the denominator value. 

Circuit blocks:  
Address Calculation: determines the pointer to REG 
and IDF register.  
MIN and MAX: compute the minimum and maximum 
values.  
Address Maker: determines the active rule for the 
inference engine.  
MF[vi] are the membership functions for each input 
variable value. 
MF-IDF[vi] are the membership function identifiers for 
each input variable value. 
Rule Bank holds the set of rules. 
Output-MF is the output MF for the input variable. 
ADD and DIVISION operations. Note that the division 
operation is not detailed.  

 
Control signals:  

SelVi is a pointer to REG/IDF registers.  
AB_PTR selects the address between SelVi (at 
inference time) and the computed address (at fuzzifier 
time).  
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IND addresses the SOP registers in the defuzzification 
stage.  
ADF_IND selects the address between IND (at 
defuzzification time) and ADF (at inference time).  

 
D. RESULTS  
 
The FLC architecture has been used to develop a wide variety 
of applications. The selected implementation platforms were the 
Virtex or the xc4000 Xilinx FPGA families. The original design 
was generated in an automatic way by using a FLC generator 
[06] [11]  [12] that produces VHDL in RTL (Register Transfer 
Level). The Xilinx Foundation v4 was used to generate the 
configuration bit-stream. In this paper 3 implementations are 
described. 
In the Bart Kosko parking a truck in a load zone FLC [13] [14], 
the main features are: a) 2 input variables (with 7 and 5 MF).  
b) 1 output variable (with 7 MF). c) 35 rules (with 2 antecedents 

and 1 consequent). d) 22 microinstructions at a maximum 
frequency. The FLC runs: a) in the Virtex at 18 MHz, so it 
produces a throughput of 818 K FIPS (Fuzzy Inferences Per 
Second) and 28 M FRPS (Fuzzy Rules Per Second). b) In the 
xc4000 at 12 MHz, 545 K FIPS and 19 M FRPS. 
 
In the inverted pendulum FLC [15], the main features are: a) 2 
input variables (both with 7 MF).  b) 1 output variable (with 7 
MF). c) 49 rules. d) 16 microinstructions. The pendulum runs: 
a) in the Virtex at 21 MHz, 131 K FIPS and 64 MFRPS. b) In 
the xc4000 at 11 MHz, 687 K FIPS and 33 M FRPS. 
 
In the Aptronix autofocus [16] FLC, the main features are: a) 3 
input variables (with 3 MF).  b) 3 output variables (with 3 MF). 
c) 20 rules. d) 14 microinstructions. The autofocus runs: a) in 
the Virtex at 23 MHz, 1642 K FIPS and 32 M FRPS. b) In the 
xc4000 at 14 MHz, 1 M FIPS and 20 M FRPS. 
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Fig. 1.-Multi-resource architecture  
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4. INTRODUCTION TO DIGITAL NEURAL NETWORKS 
 
Artificial neuronal networks (ANN) can be classified into two 
groups based on the degree of parallelism obtained in the diverse 
developments.   
 
There are developments with high degree of parallelism that 
implement the architecture of the network with all their neuronal 
interconnections. Those developments are limited to small 
networks consisting generally of one hidden level with less than 
10 neurons.   
 
On the other hand, there are developments of low (or null) level 
of parallelism that completely implement the functionality of a 
single neuron plus a control unit. That unit successively feeds the 
neuron with sets of weights and input values to obtain a valid 
output result. This last alternative allows implementing time 
multiplexed hardware circuits with a high advantage in area to 
risk of a reduced performance.   
 
Time Multiplexed neural networks are commercially available 
whereas other designs are taken ahead by many research and 
academic groups.   
 
The two main categories consist of neurocomputers based on 
standard integrated circuits and ASIC. The first ones are 
accelerator boards that optimize the speed of calculation in 
conventional computers (PC like or workstation).  In these cases, 
where standard components are used, the designers can be 
concentrated totally in the development of a particular 
technology.  In the second, several alternatives and technologies 
of implementation can be chosen for the neuronal 
accomplishment of chips, like digital, analog or hybrid 
neurochips.   
 
The direct implementation in circuits generally alters the exact 
operation of the original processing elements (analyzed or 
simulated).  It is due to the limitation in precision.  The influence 
of this limited precision is of great importance for the correct 
operation of the original paradigm. Because of this many 
designers have dedicated much time to study these topics.  In 
order to obtain implementations on great scale, several 
neurochips must be interconnected to create systems of greater 
complexity, with advanced communication protocols. 
 

5. NEURAL NETWORK ARCHITECTURE  
 
The developed ANN has two essential features. By one side, a 
data route is highly used by segmented components (multiplier, 
adder, data/results memory), which allows a high performance of 
the data circuit, with the consequent speed increase. On the other 
side, the possibility of microprogramming the data route, allows a 
great flexibility to implement different ANN architectures: 
feedforward, cyclic, acyclic, and so on. The general circuit 
building blocks are depicted in Fig. 2 [17]. 
 
As it may be seen, the proposed ANN datapath is a circular 
pipeline of a multiplier, an accumulator, an activation function 
module and data memory; all of them pipelined as well. 
The multiplier has two 8-bit inputs, one 16-bit output, with a total 
of 360 registers and 64 basic 1-bit multipliers. Although this 8-bit 
configuration for internal data can be easily rearranged, a new 
configuration of more bits will increase the resources (cost) 
needed for the implementation of the multiplier with a quadratic 
factor. The 8-bit data route allows a new result in each clock 
cycle, being of 16 cycles the latency for each computation. The 
accumulator output is wired to the activation function circuit. 

 
Fig. 2:  Developed ANN building blocks. 

 
A. THE ACTIVATION FUNCTION 
 
A common approach for this activation function in ANN is the 
sigmoid function of eq. (1).  

   (1) 
 
In the software implementations there is not a major drawback on 
computing eq. (1). However, from the hardware standpoint, there 
is a high cost on implementing both a lookup table for the 
exponential function, and the division operation. Instead, a usual 
approximation in the hardware world is [18]: 

1
12

1
)(

x

x
xy    (2) 

 
This approach, although simpler than the one of eq. (1), still 
needs the module and the division computation. In this work a 
third proposal is used. It consists of an approximation of eq. (1) 
with several polynomial functions in powers of 2, conforming a 
piecewise linear function [19] [20]. Particularly, the input for the 
developed circuit was a 16-bit integer  [-32768..32767], and its 
output is a signed 8-bit integer  [-128..127]. Table 1 shows the 
six input ranges with their corresponding output ranges. 
 

INPUT OUTPUT 
0..1023 0..31 

1024..2047 32..63 
2048..4095 64..95 
4096..5119 96..111 
5120..6143 112..115 
6144..7167 116..119 
7168..8191 120..123 
8192..12287 124..127 

12288..32767 127 
Table 1: Polynomial functions in power of 2 for the 

approximation of the exponential function. 
 
In Fig. 3 a comparison among the three described approaches for 
the activation function is depicted (eq. (1), (2), and Table 1). It 
may be seen that the third implementation is closer to eq. (1) than 
the proposal of eq. (2). Then, this option was used for the present 
application. The selected approach, as well as the remaining 
presented components were described in VHDL. Then, it is 
immediate to replace for instance the module in the data route to 
change the activation function of the ANN. In a following 
section, it will be shown how easy it is to change the synaptic 
weights and the data/results memory from the parameters defined 
for a specific ANN. 
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Fig. 3: Three approaches for the sigmoid activation 

function [eq. (1) (continuous line), eq. (2) (discontinuous 
line), table1 (doted line)] 

 
B. PRECISION ANALYSIS 
 
As in any digital circuit, in this case there is a trade off between 
precision and physical parameters like area and computing speed. 
Then, it seems interesting to analyze the behavior of the ANN 
when trained with different data series and different internal 
precision (number of bits). An exhaustive study of this was left 
for a near future. Nevertheless, the ANN was studied in 
simulation using representations for the weights and data of 20, 
16, 12 and 8 bits. The results obtained for this last case were 
considered acceptable for the present application, as shown in 
Fig. 4.  
 

 
Fig. 4: The simulated ANN output with double precision 

(in gray) vs. 8 bits precision (in black). 
 
C. PROGRAMMING THE ANN 
 
The proposed architecture is programmed according to two main 
parameters to be selected previously. Once this step is fulfilled, a 
microprogram should be written to control the computations of 
the particular design. 
 
D. PARAMETER DEFINITION 
 
The first parameter to consider is the number of cells of the 
data/results row (L), according to: 
 

L = max (N – 1)   (3) 
 
where N is the number of neurons in two contiguous level. This L 
row must always be able to store the outputs of the just computed 
level (data) plus the results of computing each neuron in the 
present level. The second parameter is the size of the weight’s 
memory (Swm), which will store all of ANN weights. 
 
Example 1: a classical feedforward ANN of nine neurons in the 
hidden layers and four inputs and three outputs is described 
according to Fig. 5. 
 
E. MICROPROGRAM CREATION 
 
From two levels of abstraction, a software tool (assembler) was 
developed to analyze the precedence relationships in the 
computations needed in the network under design. The highest 
level of abstraction generically describes which kind of neural 

network is under development. The present supported types are 
feedforward and Hopfield, synchronic and asynchronic [21]. 
 

 
Fig. 5: Parameters definition of an ANN 

 
Example II: the feedforward ANN of Fig. 5 is defined as: 

Net <name> Description 
type feedforward 
Input : 4 
Output : 3 
Hidden : 4 , 5 

End <name> 
 
Example III: a given Hopfield ANN  (Fig. 6) is defined as: 

Net <name> Description 
type sync Hopfield 
Nodes : 3 

End <name> 
 

 
Fig. 6. Hopfield ANN. 

 
The synchronous or asynchronous feature of the Hopfield ANN 
is achieved by the microprogram. In the first case the neurons are 
all updated in each clock cycle. In the second, the neurons are 
updated sequentially. This high level description only allowed 
the generation of simple and remarkably regular neural nets, but 
did not permit to outline more specific details about the neurons 
interaction of a particular design. Then, a lower level of 
description was needed, in which neuron dependencies were 
explicitly stated. This was achieved by programming as shown in 
Example IV.  
 
Example IV: a more detailed description of a feedforward ANN 
with 4 inputs, 2 outputs and a hidden layer of 3 neurons, in a 
lower level of abstraction (Fig. 7) 

Net <name> Description 
type Feedforward 
Nodes: A, B, C, D, E, F, G, H, I 
Weights: w1..w18 
Input Nodes: A, B, C, D 
Output Nodes : H, I 
Relation 

E = A * w1 + B * w2 + C * w3 + D * w4 
F = A * w5 + B * w6 + C * w7 + D * w8 
G = A * w9 + B * w10 + C * w11 + D * w12 
H = E * w13 + F * w14 + G * w15 
I = E * w16 + F * w17 + G * w18 

End Relation 
End <name> 

JCS&T Vol. 2 No. 7                                                                                                                                                                                                            October 2002

-13-



 
 

 

 
Fig. 7. Feedforward ANN. 

 
From this description, the assembler can settle down the 
introduced parameters L (equation (3)) and Swm which will be 6 
and 18 cells respectively for this example. The microprogram 
generation is based on these specifications, which map into a set 
of microinstructions that the control unit successively stores in 
the corresponding register. This register has 2*L bits, coding one 
among the four possible operations for each cell of the 
data/results row. They are presented in Table 2. 
 

Rotation (C) The cell receives the row output value  
 

No operation (N) The cell is not modified  
 

Shift (S) The cell receives the value from its prior 
one (left)  

Datum load (L) The cell is loaded with the value from the 
activation function or the input data  

Table 2: Microinstructions of the microprogram. 
 
The resulting microprogram of Example VI is partially shown in 
Table 3. The microprogram puts the resulting values of 
computing each neuron in the data row, in a position such that 
this value operates with the corresponding weight when going out 
of the row. To achieve this, weights are stored in a circular buffer 
of ROM memory. In this way, the ANN behaves like a systolic 
system, multiplying a value from the data/results row and a 
corresponding synaptic weight in each clock cycle. This product 
(a partial result) is stored until every input to each neuron is 
processed. Once the output of a processed neuron is obtained, it 
is crossed through the activation function and the result is stored 
in the data row, in the cell pointed by the current 
microinstruction. This procedure is illustrated in Fig. 8. 
 
C Microinst Row state Operation Comments 
0 NNNNNL _ _ _ _ _ A _ initial data 

load 
1 NNNNLN _ _ _ _ B A _  
2 NNNLNN _ _ _ C B A _  
3 NNLNNN _ _ D C B A _  
4 NNCSSS _ _ A D C B Acc = A * w1 A is recycled
5 NNCSSS _ _ B A D C Acc += B * w2 B is recycled
6 NNCSSS _ _ C B A D Acc += C * w3 C is recycled
7 NLCSSS _ E D C B A E = Acc += D 

* w4 
D is recycled 

and E is 
loaded 

 ........ ........ ........  
11 SLSSSS _ F E D C B F = Acc += A 

* w4 
shift and F is 

loaded 
12 SSSSSS _ _ F E D C Computation of 

G 
global shift 

 ........ ........ ........  
Table 3: Part of the microprogram of Example VI. 

 

 
Fig. 8: Data flow in the ANN. 

 
F. RESULTS 
 
Two alternatives of the presented architecture were implemented: 
STANDARD; the displayed design.  OPTIMIZED; optimized 
version of the design.  Redundant multiplexors in data memory 
are reduced or eliminated.  This alternative reduces the size of the 
data memory and control unit.   
 
With the Xilinx Foundation tool an important difference in 
synthesis and implementation speed was observed. In fact, the 
F3.1i version was around 40% superior in average to the F2.1i 
version.   
 
With reference to the number of decisions per second (DPS) it 
was observed that, independently of the circuit frequency, DPS 
value is inversely proportional to the complexity of the neuronal 
network (in terms of inputs and hidden neurons).   
 
The number of CLBs increases sensibly in circuits with more 
inputs or hidden neurons.  This is due to the increase in the data 
memory cells but mainly by the increase in complexity in the 
control unit (as well by the higher number of control signals that 
must handle). 
 
The operating frequency for all the versions tends to diminish 
when increasing the size of the circuit.  This effect is not itself 
related to the datapath, since it is the same for all 
implementations.  In fact, it is related to two factors: first, the 
increase of the circuit size which goes in detriment of more 
optimal locations and connections (place and routing) and forces 
to use tracks of smaller speed.  Secondly, the synthesis of control 
units of higher number of signals increases the depth of logic in 
the design increasing the clock period of the circuit. 
 
Fig. 9 shows several implementations of the architecture with 
F3.li version of Xilinx Foundation tool. All circuits have only 
one hidden level with two neurons and 16-bit precision datapath. 
 

 

Inputs CLB Flops 
Frec. 

(MHz) 
Logic 
deep 

 

DPS 

10 182 270 12,032 10 802133,3

12 207 280 12,839 12 755235,3

14 218 288 13,265 10 698157,9

16 230 296 11,369 11 541381 

18 222 304 10,199 11 443434,8

20 257 313 8,773 10 350920 

22 267 321 9,762 10 361555,6

24 272 329 9,490 11 327241,4

26 284 337 10,784 11 347871 

Fig. 9: Implementation results of the architecture with several 
inputs. 
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6.  CONCLUSIONS 

 
This paper shows an efficient digital approach to develop an 
ANN or an FLC. The development approach to obtain a specific 
circuit (ASIC, FPGA) is automatically performed according to 
the following steps: a) Controller definition in a description 
language. b) Circuit and control program generation. c) 
Automatic synthesis of the design by using the commercial 
FPGA development tools. d) FPGA and memory configuration.  
 
The FPGA shows to be an efficient development platform, but 
they need to be in an efficient card that provides: a) Access to 
external RAM. b) Connection to multiple clocks running at 
different rates. c) Connectivity to a great number of external 
lines. d) Low power consumption. e) A prototyping area. As a 
prototyping platform, the card must have a great number of 
interconnection lines connected straight to the computer I/O 
ports.  
 
The developed tool has been implemented in Delphi. It parses the 
input language while loading, and then, the interface lets the user 
to select which kind of synthesis is needed. This prototype 
includes generators for: a) VHDL in RTL (automatic synthesis 
allowed). b) Prototyping languages like VHDL in behavioral 
descriptions, C and Pascal. 
 
As a future work, the synthesis tools will be adapted in order to 
support: a) Other tools, such as Viewlogic, standard cells library. 
b) Analogical platforms. c) Multi-resource architectures (multi-
ALU pipelined data path) in the FLC. d) Area and speed metric 
estimation before the place and route process. 
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