
Doctoral Dissertation

Defeasible Logic Programming:
Language De¯nition, Operational Semantics,

and Parallelism

Alejandro Javier Garc¶³a

Departamento de Ciencias de la Computaci¶on
Universidad Nacional del Sur { Bah¶³a Blanca, Argentina

http://cs.uns.edu.ar/»ajg

This thesis de¯nes Defeasible Logic Programming and provides a concrete speci¯cation of

this new language through its operational semantics. Defeasible Logic Programming, or DeLP
for short, has been de¯ned based on the Logic Programming paradigm and considering features
of recent developments in the area of Defeasible Argumentation. DeLP relates and improves
many aspects of the areas of Logic Programming, Defeasible Argumentation, Intelligent Agents,
and Parallel Logic Programming.

The language of DeLP considers two kinds of program rules, defeasible rules, used for rep-
resenting weak or tentative information, like »flies(X) |< mammal(X), \a mammal does not
°y", and strict rules for representing strict (sound) knowledge, like mammal(X) Ã dog(X),
\a dog is a mammal". Syntactically, the symbol \|<" is all that distinguishes a defeasible rule
from a strict one. Pragmatically, a defeasible rule is used to represent defeasible knowledge, i. e.,
tentative information that may be used if nothing could be posed against it. Defeasible Rules
will add a new representational capability for expressing a weaker link between the head and
the body of a rule.

In DeLP, an argumentation formalism is used for deciding between contradictory goals
through a dialectical analysis. Intuitively, an argument is a minimal set of rules used to de-

rive a conclusion. A query q will succeed when there is an argument A for q that is warranted.
The warrant procedure involves looking for counterarguments that could be defeaters for A.
Nute in [16] remarks \An inference is defeasible if it can be blocked or defeated in some way".
Weak rules provide the locus where the blocking or defeating might occur. Our defeaters will
take the form of arguments, therefore defeaters for the defeaters may exist.

In DeLP,a query q will succeed if a supporting argument A for q is not defeated. In order
to establish whether A is a non-defeated argument, argument rebuttals or counter-arguments
that could be defeaters forA are considered, i. e., counter-arguments that for some criterion, are
preferred toA. Since counter-arguments are arguments, there may exist defeaters for them, and
so on. This prompts a complete dialectical analysis. This analysis will impose certain constrains
for averting problematic situations that may arise during the argumentation process, leading
for example to an in¯nite sequence of defeaters. Thus, DeLP can manage defeasible reasoning,
allowing the representation of defeasible and non-defeasible knowledge.

The language of DeLP has been de¯ned as an extension of the latest developments in Logic
Programming [14, 3, 20, 9], and considering new features of recent approaches in defeasible
argumentation [17, 1, 15, 2, 4, 18]. Thedefeasible argumentation formalism used for the inference

engine of the language has also been extended, considering new restrictions over argumentation
lines, and de¯ning a belief operator for warranted conclusions.

Another contribution of this thesis is the study of di®erent sources of parallelism in Defeasible
Logic Programming. Implicitly exploitable parallelism for Logic Programming has received
ample attention in the last years [11, 12, 13, 10]. Defeasible Logic Programming could take

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15766621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


full advantage of several kinds of parallel evaluation to improve the computational response of
its proof procedure. Since DeLP is an extension of Logic Programming, the di®erent types of
parallelism studied for Logic Programming can be applied. We also propose new sources of
parallelism that can be implicitly exploited in the defeasible argumentation formalism used by
DeLP. Both the argumentation process and the dialectical analysis bene¯t from exploiting these
sources of parallelism.

An extension of Defeasible Logic Programming was also developed in this thesis. The syntax
of the language was extended allowing default negation over literals in the body of defeasible
rules. Thus, extended DeLP programs may use two kinds of negation: strong negation \»" for

representing contradictory knowledge; and, default negation, \not" for representing incomplete
information. For instance, the following rule uses both types of negation:

»cross railway tracks |< not »train is coming:
expressing that: \in general, do not cross railway tracks if it cannot be proven that no train is

coming". The defeasible argumentation formalism was extended accordingly in order to handle
default negation properly.

Defeasible Logic Programming can be used for representing knowledge and for providing an
inference engine in many applications. Applications that deal with incomplete and contradictory
information can be easily modeled using DeLP programs. The defeasible argumentation basis of
DeLP allows the building of applications for dynamic domains, where information may change.
In the thesis, a concrete application of DeLP for building deliberative Intelligent agents was
developed. This application consist of a multi-agent system for the stock market domain, where
several agents can be programmed for monitoring the stock market and performing actions based
on the retrieved information. The agents have a Reasoning Module, based on DeLP, capable of
formulating arguments and counterarguments in order to decide whether to perform an action
or not. For instance, an agent can be programmed to alert the user when it is the right moment
for buying some stock.

Future work includes two main areas. On one hand, we will continue the basic research on
the DeLP proof procedure and in the area of defeasible argumentation. On the other hand, new
applications for DeLP will be considered.

.

References

[1] Grigoris Antoniou, Michael J. Maher, and David Billington. Defeasible logic versus logic
programming without negation as failure. Journal of Logic Programming, 42:47{57, 2000.

[2] A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract, argumentation-
theoretic approach to default reasoning. Arti¯cial Intelligence, 93:63{101, 1997.

[3] Yannis Dimopoulos and Antonis Kakas. Logic programming without negation as failure.
In Proceedings of 5th. International Symposium on Logic Programming, pages 369{384,
Cambridge, MA, 1995. MIT Press.

[4] Phan M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning and logic programming and n-person games. Arti¯cial Intelligence, 77:321{357,
1995.

[5] Alejandro J. Garc¶³a. Defeasible Logic Programming: De¯nition, Operational Semantics
and Parallelism. PhD thesis, Computer Science Department, Universidad Nacional del
Sur, Bah¶³a Blanca, Argentina, December 2000.



[6] Alejandro J. Garc¶³a, Devender Gollapally, Paul Tarau, and Guillermo Simari. Delibera-
tive stock market agents using jinni and defeasible logic programming. In Proceedings of
ESAW'00 Engineering Societies in the Agents' World, Workshop of ECAI 2000, August
2000.

[7] Alejandro J. Garc¶³a and Guillermo R. Simari. Parallel defeasible argumentation. Journal
of Computer Science and Technology Special Issue: Arti¯cial Intelligence and Evolutive
Computation. http://journal.info.unlp.edu.ar/, 1(2):45{57, 1999.

[8] Alejandro J. Garc¶³a and Guillermo R. Simari. Strong and default negation in defeasible
logic programming. In Proc. Fourth Dutch-German Workshop on Nonmonotonic Reasoning
Techniques and Their Applications, DGNMR'99, March 1999.

[9] Michel Gelfond and Tran Cao Son. Reasoning with prioritized defaults. In Lecture Notes
in Arti¯cial Intelligence 1471, Selected Papers from the Workshop on Logic Programming
and Knowledge Representation, pages 164{223, 1997.

[10] Steve Gregory. Parallel Logic Programming in PARLOG. The language and its implemen-
tation. Addison-Wesley, 1987.

[11] Gopal Gupta. Multiprocessor Execution of Logic Programs. Kluwer Academic Publishers,
1994.

[12] Gopal Gupta, Khayri, A.M. Ali, Manuel Hermenegildo, and Mats Carlsson. Parallel exe-

cution of prolog programs: A survey. Technical report, Department of Computer Science,
New Mexico State University, 1994. http://www.cs.nmsu.edu/lldap/pub para/survey.html.

[13] M. Hermenegildo. An Abstract Machine Based Execution Model for Computer Architecture
Design and E±cient Implementation of Logic Programs in Parallel. PhD thesis, Dept. of
Electrical and Computer Engineering (Dept. of Computer Science TR-86-20), University of
Texas at Austin, Austin, Texas 78712, August 1986.

[14] Vladimir Lifschitz. Foundations of logic programs. In G. Brewka, editor, Principles of
Knowledge Representation, pages 69{128. CSLI Pub., 1996.

[15] Ronald P. Loui. et al. Progress on Room 5: A Testbed for Public Interactive Semi-Formal
Legal Argumentation. In Proc. of the 6th. International Conference on Artifcial Intelligence
and Law, July 1997.

[16] D. Nute. Defeasible logic. In D.M. Gabbay, C.J. Hogger, and J.A.Robinson, editors,
Handbook of Logic in Arti¯cial Intelligence and Logic Programming, Vol 3, pages 355{395.
Oxford University Press, 1994.

[17] John Pollock. Implementing defeasible reasoing. workshop on Computation Dialectics, 1996.

[18] Henry Prakken and Giovanni Sartor. Argument-based logic programming with defeasible
priorities. J. of Applied Non-classical Logics, 7(25-75), 1997.

[19] Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of Defeasible Rea-
soning and its Implementation. Arti¯cial Intelligence, 53:125{157, 1992.

[20] Francesca Toni and A. C. Kakas. Computing the acceptability semantics. In Proceedings
of the 3rd. International Workshop on Logic Programming and Non-monotonic reasoning,
pages 401{415, Lexington,USA, June 1995. Springer Verlag.


