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Abstract: Let G be a real reductive algebraic group with maximal compact subgroupK, and let Fr be a rank r
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1 Introduction
Let G be a complex reductive algebraic group and Γ be a finitely generated group. Moduli spaces of repre-
sentations of Γ into G, the so-called G-character varieties of Γ, play important roles in hyperbolic geometry,
the theory of bundles and connections, knot theory and quantum field theories. These are spaces of the form
XΓ(G) := Hom(Γ, G)//G, where the quotient is to be understood in the setting of (a�ne) geometric invariant
theory (GIT), for the conjugation action of G on the representation space Hom(Γ, G).

Some particularly relevant cases include, for instance, the fundamental group Γ = ð1(X), of a compact
Riemann surface X. In this situation, character varieties can be identified, up to homeomorphism, with cer-
tainmoduli spaces ofG-Higgs bundles overX ([21, 27]). Another important case iswhen Γ = ð1(M \ L)whereL
is a knot (or link) in a 3-manifoldM; here, character varieties define important knot and link invariants, such
as the A-polynomial ([11]).

In the case when Γ is a free group Fr of rank r ⩾ 1, the topology ofXr(G) := XFr (G), in this generality, was
first investigated in [14]. Note thatwe always have embeddingsXΓ(G) ⊂ Xr(G), since any finitely generated Γ is
a quotient of some free group Fr. With respect to natural Hausdor� topologies, the spacesXr(G) turn out to be
homotopy equivalent to the quotient spacesXr(K) := Hom(Fr, K)/K, whereK is amaximal compact subgroup
of G. Moreover, there is a canonical strong deformation retraction from Xr(G) to Xr(K). The proofs of these
results use Kempf–Ness theory, which relates, under certain conditions, the action of a compact group K on
a complex algebraic variety to the action of its complexification G = Kℂ.

In the present article, we extend these results to themore general casewhenG is a real reductive Lie group
(see Definition 2.1 below, for the precise conditions we consider). Note that this situation includes both the
compact case G = K, and its complexification G = Kℂ, since both are special cases of real reductive groups,
but also includes non-compact real groups for which we cannot identify G with the complexification of K.
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As main examples, we have the split real forms of complex simple groups such as SL(n, ℝ), Sp(2n, ℝ) and
other classical matrix groups. For such groups G, the appropriate geometric structure on the analogous GIT
quotient, still denoted by Xr(G) := Hom(Fr, G)//G (and where G again acts by conjugation), was considered
by Richardson and Slodowy in [26]. As in the complex case, this quotient parametrizes closed orbits underG,
but contrary to that case, even when G is algebraic, the quotient is in general only a semi-algebraic set, in
a certain real vector space.

One of our main results is that, with respect to the natural topologies induced by natural embeddings in
vector spaces,Xr(G) is again homotopy equivalent toXr(K). As a corollary, we obtain a somewhat surprising
result that the homotopy type ofXr(G) depends only on r and onK, but not onG. This is especially interesting
when we have two distinct real groups G1 and G2 sharing the same maximal compact K, as it means that
the G1- and G2-character varieties of Fr are equivalent, up to homotopy.

The second main result states that, when G is algebraic, there is also a strong deformation retraction
fromXr(G) toXr(K). The proofs of these statements use the Kempf–Ness theory for real groups developed by
Richardson and Slodowy in [26].

It should be remarked, byway of contrast, that the homotopy equivalence statement above does not hold
for other finitely generated groups, such as Γ = ð1(X), for a Riemann surfaceX, even in the casesG = SL(n, ℂ)
and K = SU(n) ([6]). On the other hand, very recently it was shown by di�erent techniques that the defor-
mation statements hold when Γ is a finitely generated Abelian group ([17]), or a finitely generated nilpotent
group ([5]).

Using these homotopy equivalences, we present new computations of Poincaré polynomials of some of
the character varieties considered, such as Sp(4, ℝ) and U(2, 2).

Lastly, when G is a complex reductive algebraic group there are very explicit descriptions of some of
the spaces Xr(G) in terms of natural coordinates which we call trace coordinates (see Section 6). Thus, for
these examples, and taking the real points in these trace coordinates, we obtain a concrete relation between
Xr(G(ℝ)) and Xr(G)(ℝ), which allows the visualization of the deformation retraction.

The article can be outlined as follows. In Section 2, we present the first definitions and properties of real
reductive Lie groups G, and of G-valued character varieties of free groups. In the third section, we use the
polar/Cartan decomposition to describe the deformation retraction of Hom(Fr, G)/K onto Xr(K). The fourth
section is devoted to describe the Kempf–Ness set for this context and to the proof of the main results: the
homotopy equivalence between Xr(G) and Xr(K), and the canonical strong deformation retraction, in the
case of algebraic G. In Section 5 we consider low rank orthogonal, unitary and symplectic groups, and
compute the Poincaré polynomials of some G-character varieties, for non-compact G, such as Xr(U(2, 1)),
Xr(U(2, 2)), Xr(Sp(4, ℝ)) and Xr(SO(3, ℂ)). One crucial ingredient for these computations is the topology
of Xr(U(2)) which is based on T. Baird’s determination of the Poincaré polynomial of Xr(SU(2)). Finally,
Section 6 describes in detail the geometry of SL(2, ℝ)-character varieties in terms of natural invariant
functions, such as trace coordinates, defined on the corresponding SL(2, ℂ)-character variety.

2 Real character varieties

2.1 Setting

Let us define the precise conditions on a real Lie group G, for which our results will apply.

Definition 2.1. Let K be a compact Lie group. We say that G is a real K-reductive Lie group if the following
conditions hold:
(i) K is a maximal compact subgroup of G,
(ii) G is a subgroup, containing the identity component, of a linear real algebraic group G(ℝ) defined as the
ℝ-points of a complex reductive algebraic group G defined over the fieldℝ,

(iii) G is Zariski dense in G.
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In other words, condition (ii) says that the Lie groupG is such that there exists a complex reductive algebraic
group G, given by the zeros of a set of polynomials with real coe�cients, such that

G(ℝ)0 ⊆ G ⊆ G(ℝ), (2.1)

where G(ℝ) denotes the real algebraic group of ℝ-points of G, and G(ℝ)0 its identity component. We note
that, if G ̸= G(ℝ), then G is not necessarily an algebraic group (consider for example G = GL(n, ℝ)0). WhenK
is understood, we often simply call G a real reductive Lie group.

Remark 2.2. (i) Since G is a complex reductive algebraic group, it is isomorphic to a closed subgroup of
some GL(m,ℂ) (see [28, Theorem 2.3.7]), so G(ℝ) is isomorphic to a closed subgroup of some GL(n, ℝ) (i.e.,
it is a linear algebraic group). Hence, one can think of both G and G as Lie groups of matrices. Accordingly,
unless explicitly mentioned otherwise, we will consider on G and on G the usual Euclidean topology which
is induced from (and is independent of) such an embedding.

(ii) SinceG(ℝ) is a real algebraic group, it follows that, if it is connected,G = G(ℝ) is algebraic and Zariski
dense in G. So, condition (iii) in Definition 2.1 holds automatically provided that G(ℝ) is connected.

(iii) We point out that our working definition of real K-reductive group does not coincide with some
definitions of a real reductive group encountered in the literature, such as, for instance, [23].

Denote by g the Lie algebra of G, and by Lie(G), respectively Lie(G(ℝ)), the Lie algebras of G, and G(ℝ). It is
clear thatG(ℝ) is a real formofG, so thatLie(G) = Lie(G(ℝ))ℂ, whereLie(G(ℝ))ℂ denotes the complexification
of Lie(G(ℝ)). It follows that G is also a real form of G, since (2.1) implies that g = Lie(G(ℝ)) and hence

gℂ = Lie(G).
In view of this, we shall write gℂ instead of Lie(G).

The given conditions on G are not very restrictive. Indeed, all classical real matrix groups are in this
setting. On the other hand, G can also be any complex reductive Lie group, if we view it as a real reductive
Lie group in the usual way.

As an example which is not under the conditions of Definition 2.1, we can consider ̃SL(n, ℝ), the universal
covering group of SL(n, ℝ), which admits no faithful finite dimensional linear representation (and hence is
not a matrix group).

2.2 Character varieties

Let Fr be a rank r free group and G be a complex reductive algebraic group defined over ℝ. The G-represen-
tation variety of Fr is defined as

Rr(G) := Hom(Fr,G).
There is a bijection between Rr(G) and Gr, in fact this is a homeomorphism if Rr(G) is endowed with

the compact-open topology (as defined on a space of maps, with Fr given the discrete topology) and Gr with
the product topology. As G is a smooth a�ne variety, Rr(G) is also a smooth a�ne variety and it is defined
overℝ.

Considernow theactionofGonRr(G)by conjugation. This defines anactionofGon thealgebraℂ[Rr(G)]
of regular functions on Rr(G). Let ℂ[Rr(G)]G denote the subalgebra of G-invariant functions. Since G is
reductive, the a�ne categorical quotient may be defined as

Xr(G) := Rr(G)//G = Specmax(ℂ[Rr(G)]G).
This is a singular a�ne variety (not necessarily irreducible), whose points correspond to unions of G-orbits
in Rr(G) whose Zariski closures intersect. Since Xr(G) is an a�ne variety, it is a subset of an a�ne space,
and inherits the Euclidean topology. With respect to this topology, in [17], it is shown that Xr(G) is homeo-
morphic to the conjugation orbit space of closed orbits (called the polystable quotient); Xr(G), together with
that topology, is called the G-character variety.
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As above, letK be a compact Lie group, and G be a realK-reductive Lie group. In like fashion, we define
the G-representation variety of Fr:

Rr(G) := Hom(Fr, G).
Again,Rr(G) is homeomorphic to Gr. Similarly, as a set, we define

Xr(G) := Rr(G)//G
to be the set of closed orbits under the conjugation action ofG onRr(G).We giveXr(G) theHausdor� topology
induced by the quotient topology on Rr(G). It is likewise called the G-character variety of Fr even though it
may not even be a semi-algebraic set. However, it is an a�ne real semi-algebraic set when G is real algebraic,
and it is always Hausdor� because we considered only closed G-orbits; see [26]. This quotient coincides with
the one considered by Richardson–Slodowy in [26, Section 7].

ForK a compact Lie group, with its usual topology, we also define the space

Xr(K) := Hom(Fr, K)/K ≅ Kr/K,

called theK-character variety ofFr, which is a compact andHausdor� space as theK-orbits are always closed.
Moreover, it can be identified with a semi-algebraic subset ofℝd, for some d.

Our aim in this paper is to compare the topologies ofXr(G) and ofXr(K), wheneverG is a realK-reductive
Lie group, as in Definition 2.1. In fact, we will show thatXr(G) andXr(K) are generally homotopy equivalent,
and when G is further assumed to be algebraic, there is a natural strong deformation retraction from Xr(G)
to Xr(K). The first step in that direction is the proof that there is a strong deformation retraction of Rr(G)/K
onto Xr(K). This follows directly from the existence of a K-equivariant strong deformation retraction of G
ontoK, as will be explained in the next section.

3 Cartan decomposition and deformation to the maximal compact
We begin by recalling some facts on real Lie algebra theory.

3.1 Cartan decomposition

As before, let g denote the Lie algebra of G, and gℂ be the Lie algebra of G. We will fix a Cartan involution
è : gℂ → gℂ which restricts to a Cartan involution

è : g → g, (3.1)

still denoted in the same way. Recall (see, for instance, [23, Theorem 6.16] and also [20, Theorem 7.1]) that
such a è is defined as è := òó, where ò, ó are involutions of gℂ that commute, and such that g = Fix(ò) and
k� := Fix(ó) is the compact real form of gℂ (so that k� is the Lie algebra of a maximal compact subgroup of G).
See Remark 4.4 for concrete descriptions of these involutions in the setting of our main theorems.

Our choice of è yields a Cartan decomposition of g:

g = k ⊕ p (3.2)

where k = g ∩ k�, p = g ∩ ik� and è|k = 1 and è|p = −1. Furthermore, k is precisely the Lie algebra of a maximal
compact subgroup K of G. Notice that K = K� ∩ G, where K� is a maximal compact subgroup of G, with Lie
algebra k� = k ⊕ ip. Moreover, k and p are such that [k, p] ⊂ p and [p, p] ⊂ k. Of course, we also have a Cartan
decomposition of gℂ:

gℂ = kℂ ⊕ pℂ (3.3)

with è|kℂ = 1 and è|pℂ = −1.
Recall also that the Cartan involution (3.1) lifts to a Lie group involutionΘ : G → Gwhose di�erential is è

and such thatK = Fix(Θ) = {g ∈ G : Θ(g) = g}.
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3.2 A deformation retraction from G ontoK

The multiplication map
m : K × exp(p) → G,

provides a di�eomorphism G ≃ K × exp(p) (see [26, Theorem 2.2] and the references therein). In particular,
the exponential is injective on p. The inversem−1 : G → K × exp(p) is defined as

m−1(g) = (g(Θ(g)−1g)−1/2, (Θ(g)−1g)1/2).
Here, we notice that if g ∈ exp(p), then Θ(g) = g−1. If we write g = k exp(X), for some k ∈ K andX ∈ p, then

Θ(g)−1g = Θ(k exp(X))−1k exp(X)

= (k exp(−X))−1k exp(X)

= exp(−X)−1k−1k exp(X) = exp(2X).

So define
(Θ(g)−1g)t := exp(2tX),

for any real parameter t. From this, one concludes that the topology of G is determined by K. It is a known
fact that there is a K-equivariant strong deformation retraction from G to K. For completeness, we provide
a proof.

Consider, for each t ∈ [0, 1], the continuous map ft : G → G defined by

ft(g) = g(Θ(g)−1g)−t/2.
More precisely, if g = k exp(X), for some k ∈ K andX ∈ p, then ft(g) = k exp((1 − t)X).

Lemma 3.1. Let a ∈ ℝ, ℎ ∈ K and g ∈ G. Then

(ℎΘ(g)−1gℎ−1)a = ℎ(Θ(g)−1g)aℎ−1.
Proof. When a is an integer, this is obvious. Suppose that a ∈ ℝ. Then, as noted above,Θ(g)−1g = exp(X) for
someX ∈ p and since the exponential is equivariant with respect to conjugation and to the adjoint represen-
tation, we have

(ℎΘ(g)−1gℎ−1)a = exp(ℎXℎ−1)a
= exp(aℎXℎ−1)
= ℎ exp(aX)ℎ−1 = ℎ(Θ(g)−1g)aℎ−1.

Proposition 3.2. The map H : [0, 1] × G → G, H(t, g) = ft(g) is a strong deformation retraction from G to K,
and for each t,H(t, −) = ft isK-equivariant with respect to the action of conjugation ofK in G.

Proof. ClearlyH|{0}×G = 1G andH({1} × G) ⊂ K. Moreover, it is also clear thatH|{t}×K = 1K for all t. This shows
that H is a strong deformation retraction from G to K. To prove that ft is K-equivariant, we see, using
Lemma 3.1, that for any ℎ ∈ K,

ft(ℎgℎ−1) = ℎgℎ−1(Θ(ℎgℎ−1)−1ℎgℎ−1)−t/2
= ℎgℎ−1(ℎΘ(g)−1gℎ−1)−t/2
= ℎg(Θ(g)−1g)−t/2ℎ−1 = ℎft(g)ℎ−1.

By Proposition 3.2, there is a K-equivariant strong deformation retraction from G to K, so there is a K-equi-
variant strong deformation retraction from Gr onto Kr with respect to the diagonal action of K. This
immediately implies:

Corollary 3.3. Let K be a compact Lie group and G be a real K-reductive Lie group. Then Xr(K) is a strong
deformation retract ofRr(G)/K.
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4 The Kempf–Ness set and the deformation retraction
As before, fix a compact Lie group K, and a real K-reductive Lie group G. Suppose that G acts linearly on
a complex vector spaceV, equipped with a Hermitian inner product ⟨ ⋅ , ⋅ ⟩. Without loss of generality we can
assume that ⟨ ⋅ , ⋅ ⟩ isK-invariant, by averaging.

Definition 4.1. A vector X ∈ V is a minimal vector for the action of G in V if ‖X‖ ⩽ ‖g ⋅ X‖ for every g ∈ G,
where ‖ ⋅ ‖ is the norm corresponding to ⟨ ⋅ , ⋅ ⟩. Let KNG = KN(G, V) denote the set of minimal vectors;
KNG is known as the Kempf–Ness set in V with respect to the action of G. Note that KNG depends on the
choice of ⟨ ⋅ , ⋅ ⟩.

For eachX ∈ V, define the smooth real valued function FX : G → ℝ by

FX(g) = 1
2
‖g ⋅ X‖2.

The following characterization of minimal vectors is given in [26, Theorem 4.3].

Theorem 4.2. LetX ∈ V. The following conditions are equivalent:
(1) X ∈ KNG,
(2) FX has a critical point at 1G ∈ G,
(3) ⟨A ⋅ X,X⟩ = 0, for every A ∈ p.

Since the action is linear and condition (3) above is polynomial, we see that KNG is a closed algebraic set
inV. Kempf–Ness theory also works for closed G-subspaces. Indeed, let Y be an arbitrary closed G-invariant
subspace ofV, and define

KN
YG := KNG ∩ Y.

Consider the map
ç : KN

YG/K → Y//G

obtained from theK-equivariant inclusionKNYG í→ Y and the natural map Y/K → Y//G.
The next theorem is proved in [26, Proposition 7.4, Theorems 7.6, 7.7 and 9.1].

Theorem 4.3. The map ç : KNYG/K → Y//G is a homeomorphism. In particular, if Y is a real algebraic subset
ofV, then Y//G is homeomorphic to a closed semi-algebraic set in some ℝd. Moreover, there is a K-equivariant
deformation retraction of Y ontoKNYG.
4.1 Kempf–Ness set for character varieties

To apply the Kempf–Ness Theorem to our situation, we need to embed the G-invariant closed set

Y = Rr(G) = Hom(Fr, G) ≅ Gr
in a complex vector spaceV, as follows. According to Remark 2.2, wewill assume, fromnow on, the following
commutative diagram of inclusions,

O(n) ⊂ GL(n, ℝ) ⊂ GL(n, ℂ) ⊂ gl(n, ℂ) ≅ ℂn2
∪ ∪ ∪
K ⊂ G ⊂ G,

(4.1)

where G ⊂ GL(n, ℝ) is a closed subgroup. Note that the commuting square on the left is guaranteed by one of
the versions of the Peter–Weyl Theorem (see, for example, [23]).

Remark 4.4. As we consider G embedded in some GL(n, ℂ) as a closed subgroup, the involutions ó, ò, è
and Θ, mentioned in Section 3.1, become explicit. Indeed, under the inclusions g ⊂ gl(n, ℝ), gℂ ⊂ gl(n, ℂ)
andG ⊂ GL(n, ℝ)wehave ó(A) = −A∗, where∗denotes transpose conjugate, andò(A) = Ā. Hence, the Cartan
involution is given by è(A) = −At, so thatΘ(g) = (g−1)t. Fromnowon,wewill use these particular involutions.
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From (4.1) we obtain the embedding of Kr (r ∈ ℕ) into the vector space given by the product of the spaces of
all n-square complex matrices, which we denote byV:

gl(n, ℂ)r ≅ ℂrn2 =: V.
The adjoint representation of GL(n, ℂ) in gl(n, ℂ) restricts to a representation

G → Aut(V)

given by
g ⋅ (X1, . . . , Xr) = (gX1g−1, . . . , gXrg−1), g ∈ G, Xi ∈ gl(n, ℂ). (4.2)

Moreover, (4.2) yields a representation
g → End(V)

of the Lie algebra g of G inV given by the Lie brackets:

A ⋅ (X1, . . . , Xr) = (AX1 − X1A, . . . , AXr − XrA) = ([A, X1], . . . , [A, Xr]), A ∈ g, Xi ∈ gl(n, ℂ). (4.3)

In what follows, the context will be clear enough to distinguish the notations (4.2) and (4.3).
We choose an inner product ⟨ ⋅ , ⋅ ⟩ in gl(n, ℂ) which is K-invariant, under the restriction of the rep-

resentation GL(n, ℂ) → Aut(gl(n, ℂ)) to K. From this we obtain a inner product on V, K-invariant by the
corresponding diagonal action ofK:

⟨(X1, . . . , Xr), (Y1, . . . , Yr)⟩ = r
∑i=1⟨Xi, Yi⟩, Xi, Yj ∈ gl(n, ℂ). (4.4)

In gl(n, ℂ), ⟨ ⋅ , ⋅ ⟩ can be given explicitly by ⟨A, B⟩ = tr(A∗B).
We can now prove one of the main results.

Theorem 4.5. The spacesXr(G) = Rr(G)//G andXr(K) = Hom(Fr, K)/K ≅ Kr/K have the same homotopy type.

Proof. By the strong deformation retraction from Corollary 3.3, we have that Xr(K) and Rr(G)/K have the
same homotopy type. From Theorem 4.3, putting Y = Gr = Rr(G) ⊂ V, we deduce thatRr(G)/K andKNYG/K
have the same homotopy type. Again by Theorem 4.3, we also have that KNYG/K is homeomorphic to Xr(G).
As homotopy equivalence is transitive, we conclude thatXr(K) andXr(G) have the same homotopy type.

Corollary 4.6. The homotopy type of the space Xr(G) depends only on the maximal compact subgroup K of G.
In other words, given two real Lie groups G1 and G2 verifying our assumptions, and which have isomorphic
maximal compact subgroups, then Xr(G1) and Xr(G2) have the same homotopy type.

Proof. Since both G1 and G2 haveK as maximal compact, this follows immediately from Theorem 4.5.

4.2 Deformation retraction fromXr(G) ontoXr(K)

Now, we want to show that Xr(K) is indeed a deformation retraction of Xr(G).
For the G-invariant space Y = Rr(G) ≅ Gr, the Kempf–Ness set KNYG ⊂ V includes the K-invariant sub-

space Y = Hom(Fr, K) ≅ Kr, and can be characterized in concrete terms as follows.

Proposition 4.7. For Y = Rr(G) ≅ Gr ⊂ V, the Kempf–Ness set is the closed set given by

KN
YG = {(g1, . . . , gr) ∈ Gr : r

∑i=1 g∗i gi = r
∑i=1 gig∗i }.

In particular, sinceK is precisely the fixed set of the Cartan involution, we have the inclusion

Kr ≅ Hom(Fr, K) ⊂ KN
YG.

The Kempf–Ness set is a real algebraic set when G is algebraic.
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Proof. By Theorem 4.2 (3), an element g = (g1, . . . , gr) ∈ Gr ⊂ GL(n, ℂ)r is in the Kempf–Ness set if and only if

⟨A ⋅ g, g⟩ = ⟨([A, g1], . . . , [A, gr]), (g1, . . . , gr)⟩ = 0

for every A ∈ p (see (3.2)), where we used formula (4.3). Using (4.4), this means that, for all A ∈ p, we have

0 = ⟨([A, g1], . . . , [A, gr]), (g1, . . . , gr)⟩
=

r
∑i=1⟨Agi − giA, gi⟩

=
r
∑i=1(⟨Agi, gi⟩ − ⟨giA, gi⟩)

=
r
∑i=1(tr(g∗i A∗gi) − tr(A∗g∗i gi))

=
r
∑i=1(tr(A∗gig∗i ) − tr(A∗g∗i gi))

=
r
∑i=1⟨A, gig∗i − g∗i gi⟩ = ⟨A, r

∑i=1(gig∗i − g∗i gi)⟩.
Here, we used bilinearity of ⟨ ⋅ , ⋅ ⟩ and the cyclic permutation property of the trace. In fact, the last expres-
sion should vanish for all A ∈ g = k ⊕ p (by K-invariance of the norm, the vanishing for A ∈ k is automatic).
So, since ⟨ ⋅ , ⋅ ⟩ is a nondegenerate pairing, we conclude thatX ∈ KNYG if and only ifr

∑i=1(gig∗i − g∗i gi) = 0 for all (g1, . . . , gr) ∈ Gr,
as wanted. The last two sentences are immediate consequences.

Recall that amatrixA ⊂ GL(n, ℂ) is called normal ifA∗A = AA∗. So, when r = 1, the previous proposition says
thatKNYG = {g ∈ G : g is normal} ⊂ R1(G).

The following characterization, then follows directly from Theorem 4.3.

Proposition 4.8. When r = 1, the character variety X1(G) = G//G is homeomorphic to the orbit space of the set
of normal matrices in G, under conjugation byK.

Now, to prove that Xr(K) is a deformation retraction of Xr(G) we need to further assume, due to a technical
point, that G is algebraic. First, we have the following lemma.

Lemma 4.9. Assume thatGandKare as before, and furthermore thatG is a real algebraic set. There is a natural
inclusion of finite CW-complexes Xr(K) ⊂ Xr(G).
Proof. We need to show that the natural composition

Xr(K) → Rr(G)/K → Xr(G)
does not send two distinctK-orbits to a singleG-orbit. This follows by [16, Remark 4.7], and the polar decom-
position discussed in Section 3.2. However, we prove it directly as follows. It is equivalent to showing that
given ñ1, ñ2 ∈ Rr(K) such that ñ2 = g ⋅ ñ1 for some element g ∈ G, then ñ1 and ñ2 are in the same K-orbit.
UsingY = Rr(G), we haveRr(K) ⊂ KNYG by Proposition 4.7. On the other hand, Richardson–Slodowy showed
thatG ⋅ ñ1 ∩KNYG = K ⋅ ñ1 ([26, Theorem4.3]),which is enough toprove the inclusionXr(K) ⊂ Xr(G).Weknow
thatXr(K) is a semi-algebraic set and is closed. By Theorem 4.3, since we have assumedG is algebraic,Xr(G)
is also a semi-algebraic set and closed. Thus, Xr(K) can be considered as a semi-algebraic subset of Xr(G).
It is known that all semi-algebraic sets are cellular. Now, from [7, p. 214] we get that Xr(K) is a sub-complex
of Xr(G).
Theorem 4.10. There is a strong deformation retraction from Xr(G) to Xr(K).

Brought to you by | Universidade Nova de Lisboa
Authenticated

Download Date | 5/9/18 12:13 AM



A. Casimiro et al., Topology of moduli of free group representations | 283

Proof. Proposition 4.7 implies the following diagram is commutative:

Kr/K� _õ
��

� � i
// Gr/K

KNGrG /K �
� j

// Gr/K.

Corollary 3.3 and Theorem 4.3, imply the maps i and j induce isomorphisms on all homotopy groups; that is,

in : ðn(Kr/K) → ðn(Gr/K) and jn : ðn(KN
GrG /K) → ðn(Gr/K)

are isomorphisms for all n ⩾ 0. Thus, õ induces isomorphisms on all homotopy groups as well since i = j ∘ õ.
Then, Lemma 4.9 and Whitehead’s theorem (see [19, Theorem 4.5]) imply Kr/K is a strong deformation
retraction ofKNGrG /K ≅ Gr//G.

Remark 4.11. In [23, Theorem 6.31] it is shown that any semi-simple Lie group G, even those not considered
in this paper like ̃SL(2, ℝ), admits a Cartan involution. The fixed subspace of this involution defines a sub-
group H, and G deformation retracts onto H equivariantly with respect to conjugation by H. Now H is not
always the maximal compact; in fact it is if and only if the center of G is finite. Nevertheless, we conclude
that Gr/H is homotopic toHr/H.

Additionally, it is a general result, proven independently by Malcev and later by Iwasawa ([22, Theo-
rem 6]), that every connected Lie group G, deformation retracts onto a maximal compact subgroup H
(we thank the referee for the reference). If this deformation is H-equivariant, we likewise conclude Gr/H
is homotopic toHr/H.

Either way, it would be interesting try to compare Gr/G and Gr/H without Kempf–Ness theory available
in these more general situations.

5 Poincaré polynomials
In this section, we describe the topology of some character varieties and compute their Poincaré polynomials.

5.1 Low rank unitary groups

Proposition 5.1. For any r, n ∈ ℕ, the following isomorphisms hold:

Xr(U(n)) ≅ Xr(SU(n)) ×(ℤ/nℤ)r U(1)r,
Xr(O(n)) ≅ Xr(SO(n)) × (ℤ/2ℤ)r if n is odd.

Proof. The first isomorphism is proved in [15, Theorem 2.4]. The second isomorphism follows because, for n
odd,O(n) is isomorphic to SO(n) × ℤ/2ℤ.

In what follows, we consider cohomology with rational coe�cients.
The Poincaré polynomial of Xr(SU(2)) was calculated by T. Baird in [3, Theorem 7.2.4], using methods of

equivariant cohomology. His result is that

Pt(Xr(SU(2))) = 1 + t −
t(1 + t3)r
1 − t4 +

t3
2
(
(1 + t)r
1 − t2 −

(1 − t)r
1 + t2 ). (5.1)

From Proposition 5.1 and general results concerning finite quotients and rational cohomology (see, for
example, [9]) we conclude that

H∗(Xr(U(n))) ≅ H∗(Xr(SU(n)) × U(1)r)(ℤ/nℤ)r . (5.2)

For n = 2, we now show the action on cohomology is trivial. The argument for this theoremwas suggested
to us by T. Baird.
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Theorem 5.2. The action of (ℤ/2ℤ)r onH∗(Xr(SU(2))) is trivial.
Proof. Let Γ be a finite subgroup of a connected Lie group G, and let G act on a space X. If we restrict the
action to Γ acting onX, then the induced action of Γ onH∗(X) is trivial. This is because for any element ã ∈ Γ,
the corresponding automorphism ofX is homotopic to the identity map (take any path from the identity in G
to ã to obtain the homotopy).

Therefore, since the action of (ℤ/2ℤ)r is the restriction of the action of the path-connected group SU(2)r
acting by multiplication, we conclude that the quotient map induces an isomorphism

H∗(SU(2)r) ≅ H∗(SU(2)r/(ℤ/2ℤ)r).
Next, let X and Y be two G-spaces and let ℎ : X → Y be a G-equivariant map which induces an iso-

morphism in cohomology H∗(X) ≅ H∗(Y). Then ℎ also induces an isomorphism in equivariant cohomology
H∗G(X) ≅ H∗G(Y); recall thatH∗G(X) := H∗(EG ×G X). See [24] for generalities on equivariant cohomology, and
in particular a proof of this fact ([24, Theorem 83, p. 52]).

Since ℤ/2ℤ is central (the center of SU(2) is isomorphic to ℤ/2ℤ), the quotient map with respect to
the (ℤ/2ℤ)r-action on SU(2)r is SU(2)-equivariant (with respect to conjugation). It follows then that

H∗SU(2)(SU(2)r) ≅ H∗SU(2)(SU(2)r/(ℤ/2ℤ)r) ≅ H∗SU(2)(SU(2)r)(ℤ/2ℤ)r ,
where the second isomorphismholds for the same reasonas (5.2).Hence, the action is trivial onH∗SU(2)(SU(2)r).

Let G = SU(2), and let Y be the set of those tuples in Gr that lie in a common maximal torus. The same
homotopy argument in the previous paragraph shows the action is trivial on H∗G(Y) since Y ⊂ Gr. Moreover,
considering the pair (Gr, Y) and [19, Proposition 2.19], we likewise conclude that the (ℤ/2ℤ)r-action is trivial
onH∗G(Gr, Y). We now recall a natural diagram in [3, diagram (7.8)]:

⋅ ⋅ ⋅ // H∗G(Gr, Y) // H∗G(Gr) // H∗G(Y) // ⋅ ⋅ ⋅

⋅ ⋅ ⋅ // H∗(Gr/G, Y/G) //

OO

H∗(Gr/G)
OO

// H∗(Y/G)
OO

// ⋅ ⋅ ⋅ .

We just showed that the (ℤ/2ℤ)r-action on all spaces in the top row is trivial. By [3, equation (7.4), p. 59], we
obtain that

H∗G(Gr, Y) ≅ H∗(Gr/G, Y/G);
establishing the action is trivial onH∗(Gr/G, Y/G) since themapH∗(Gr/G, Y/G) → H∗G(Gr, Y) is (ℤ/2ℤ)r-equi-
variant. The maps on the bottom row,H∗(Gr/G, Y/G) → H∗(Gr/G), are equivariant and surjective in positive
degrees (see [3, proof of Theorem 7.2.4]); which then implies the (ℤ/2ℤ)r-action is trivial on H∗(Gr/G) in
positive degrees. However, in degree 0 the (ℤ/2ℤ)r-action is also trivial since Gr/G is connected. Thus, the
action is trivial onH∗(Gr/G), as required.
Thus, H∗(Xr(U(2))) ≅ H∗(Xr(SU(2))) ⊗ H∗(U(1)r)(ℤ/2ℤ)r . However, the action of (ℤ/2ℤ)r on H∗(U(1)r) is the
action of −1 on the circle, which is rotation by 180 degrees. Rotation by 180 degrees is homotopic to the
identity, and thus the action is trivial on cohomology (the first paragraph in the above proof shows that this
part generalizes to SU(n)). In other words,H∗(U(1)r)(ℤ/2ℤ)r = H∗(U(1)r), and we conclude that

H∗(Xr(U(2))) ≅ H∗(Xr(SU(2))) ⊗ H∗(U(1)r). (5.3)

Proposition 5.3. The Poincaré polynomial of Xr(U(2)) is the following:

Pt(Xr(U(2))) = (1 + t)r+1 − t(1 + t + t3 + t4)r
1 − t4 +

t3
2
(
(1 + t)2r
1 − t2 −

(1 − t2)r
1 + t2 ).

Proof. This follows from the isomorphism (5.3), from (5.1) and the fact that the Poincaré polynomial of a circle
is 1 + t.
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Now, take G = U(p, q), the group of automorphisms ofℂp+q preserving a nondegenerate hermitian form with
signature (p, q). In matrix terms, one can write

U(p, q) = {M ∈ GL(p + q, ℂ) : M∗Ip,qM = Ip,q}
where

Ip,q = (
Ip 0
0 −Iq) .

Its maximal compact isK = U(p) × U(q) and it embeds diagonally in U(p, q):

(M,N) í→ (
M 0
0 N
) .

It follows from this that, as a subspace ofXr(U(p, q)),Xr(U(p)×U(q)) is homeomorphic toXr(U(p))×Xr(U(q)).
From Theorem 4.10 and from Proposition 5.3, we have the following:

Proposition 5.4. For any p, q ⩾ 1 and any r ⩾ 1, there exists a strong deformation retraction from Xr(U(p, q))
onto Xr(U(p)) × Xr(U(q)). In particular, the Poincaré polynomials of Xr(U(2, 1)) and Xr(U(2, 2)) are given
respectively by

Pt(Xr(U(2, 1))) = Pt(Xr(U(2)))(1 + t)r
and

Pt(Xr(U(2, 2))) = Pt(Xr(U(2)))2.
Exactly in the same way, since U(2) is a maximal compact subgroup of Sp(4, ℝ) and of GL(2, ℂ), we have the
following:

Proposition 5.5. For and r ⩾ 1, There exists a strong deformation retraction fromXr(Sp(4, ℝ)) andXr(GL(2, ℂ))
onto Xr(U(2)). In particular, the Poincaré polynomials of Xr(Sp(4, ℝ)) and Xr(GL(2, ℂ)) are such that

Pt(Xr(Sp(4, ℝ))) = Pt(Xr(GL(2, ℂ))) = Pt(Xr(U(2))).
5.2 Low rank orthogonal groups

Proposition 5.6. We have Xr(SU(2))/(ℤ/2ℤ)r ≅ Xr(SO(3)).
Proof. Observe that SU(2) → SO(3) is the universal cover of SO(3) with fiber ℤ/2ℤ ≅ ð1(SO(3)). The deck
group is given bymultiplication byminus the identity matrix. This induces a (ℤ/2ℤ)r-cover SU(2)r → SO(3)r.
The corresponding (ℤ/2ℤ)r-action is equivariant with respect to the conjugation action of SO(3) since ℤ/2ℤ
is acting by multiplication by central elements in each factor. Therefore,

(SU(2)r/SO(3))/(ℤ/2ℤ)r ≅ Xr(SO(3)),
where SO(3) ≅ PSU(2) acts diagonally by conjugation on SU(2)r. However, sincePSU(2) ≅ SU(2)/Z(SU(2)), it is
clear that SU(2)r/SO(3) ≅ Xr(SU(2)).
From this result we conclude that the cohomology of Xr(SO(3)) is the (ℤ/2ℤ)r-invariant part of the cohomol-
ogy of Xr(SU(2)):

H∗(Xr(SO(3))) ≅ H∗(Xr(SU(2)))(ℤ/2ℤ)r . (5.4)

Proposition 5.7. The Poincaré polynomials of Xr(SO(3)) and of Xr(O(3)) are the following:

Pt(Xr(SO(3))) = Pt(Xr(SU(2)))
and

Pt(Xr(O(3))) = 2rPt(Xr(SU(2))).
Proof. The formula for Pt(Xr(SO(3))) follows from Theorem 5.2 and the isomorphism (5.4). The formula for
Pt(Xr(O(3))) is immediate from the one of Pt(Xr(SO(3))) and from Proposition 5.1.
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Take G = SO(p, q), the group of volume preserving automorphisms of ℝp+q preserving a nondegenerate
symmetric bilinear form with signature (p, q). In matrix terms, one can write

SO(p, q) = {M ∈ SL(p + q, ℝ) : MtIp,qM = Ip,q}
where

Ip,q = (
−Ip 0
0 Iq) .

If p + q ⩾ 3, then SO(p, q) has two connected components. Denote by SO0(p, q) the component of the identity.
The maximal compact subgroup of SO0(p, q) is K = SO(p) × SO(q) and it embeds diagonally in SO(p, q).

So, as in the case ofU(p, q)mentioned above, it follows that, as a subspace ofXr(SO0(p, q)),Xr(SO(p) × SO(q))
is homeomorphic to Xr(SO(p)) × Xr(SO(q)).

From Theorem 4.10 and Proposition 5.7, we have thus the following:

Proposition 5.8. For any p, q ⩾ 1 and any r ⩾ 1, there exists a strong deformation retraction fromXr(SO0(p, q))
onto Xr(SO(p)) × Xr(SO(q)). In particular, the Poincaré polynomials of Xr(SO0(2, 3)) and of Xr(SO0(3, 3)) are
given respectively by

Pt(Xr(SO0(2, 3))) = Pt(Xr(SU(2)))(1 + t)r
and

Pt(Xr(SO0(3, 3))) = Pt(Xr(SU(2)))2.
In the same way, since SO(3) (resp. O(3)) is a maximal compact subgroup of both SL(3, ℝ) (resp. GL(3, ℝ))
and SO(3, ℂ) (resp.O(3, ℂ)), we have the following:

Proposition 5.9. For any r ⩾ 1, there exists a strong deformation retraction fromXr(SL(3, ℝ)) andXr(SO(3, ℂ))
onto Xr(SO(3)) and from Xr(GL(3, ℝ)) and Xr(O(3, ℂ)) onto Xr(O(3)). In particular, the Poincaré polynomials
of Xr(SL(3, ℝ)) and Xr(SO(3, ℂ)) are equal and given by

Pt(Xr(SL(3, ℝ))) = Pt(Xr(SO(3, ℂ))) = Pt(Xr(SU(2))).
Similarly, the Poincaré polynomials of Xr(GL(3, ℝ)) and Xr(O(3, ℂ)) are equal and given by

Pt(Xr(GL(3, ℝ))) = Pt(Xr(O(3, ℂ))) = 2rPt(Xr(SU(2))).
6 Comparing real and complex character varieties
In this section, we slightly change the perspective. Instead of comparing the topologies ofK- andG-character
varieties, we present some results on the relation between the topology and geometry of the character
varieties Xr(G) and (the real points of) Xr(G), making explicit use of trace coordinates. These coordinates
have previously been considered in the literature, and serve to embedXr(G) in complex vector spaces. Then,
we provide a detailed analysis of some examples (real forms G of G = SL(2, ℂ)), showing how the geometry
of these spaces compare, and how to understand the deformation retraction of the previous section in these
coordinates. We also briefly describe the Kempf–Ness sets for some of these examples.

Consider a generating set of G-invariant polynomials in ℂ[Rr(G)]G. Because these polynomials distin-
guish orbits of theG-action, this defines an embedding, denotedõ, of theG-character varietyXr(G) in a vector
space V := ℂN, given by sending an orbit to all the values it takes on this generating set. The embedding
realizes Xr(G) as a complex a�ne subvariety in V, and the Euclidean topology mentioned above coincides
with the subspace topology induced from V (see [14, Section 2.3.3]). Since G ⊂ G andRr(G) ⊂ Rr(G), we can
try to use the generating set of invariants to relate Xr(G) with the real points of Xr(G),

Xr(G)(ℝ) = Xr(G) ∩ V(ℝ),

as follows. Since
ℂ[Rr(G)]G ≅ ℝ[Rr(G(ℝ))]G(ℝ) ⊗ℝ ℂ,
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there exists a generating set for ℝ[Rr(G(ℝ))]G(ℝ), which equals ℝ[Rr(G(ℝ))]G by density of G, that extends
(by scalars) to one for ℂ[Rr(G)]G. Thus, with respect to such a generating set, the real points Xr(G)(ℝ) are
a well-defined real algebraic subset of V(ℝ).

Denote by fG : Rr(G) → V the composition of natural maps

Rr(G) ⊂ Rr(G(ℝ)) ⊂ Rr(G) → Xr(G) õ
→ V.

ByG-invariance offG, this defines amap pG : Xr(G) → Vwhose image lies inV(ℝ). Now, [26, Proposition 6.8]
states that the image pG(Xr(G)) is a closed subset in Xr(G)(ℝ) ⊂ V(ℝ). Thus, we have shown the following
proposition.

Proposition 6.1. Let G be a fixed real form of a complex reductive algebraic group G. The set of real points
Xr(G)(ℝ) contains pG(Xr(G)) as a closed subset. Therefore,⋃G pG(Xr(G)) ⊂ Xr(G)(ℝ), where the union is over
all G which are real forms of G.

ThemappG is neither surjectivenor injective in general, andwewill seebelowexplicit examples that illustrate
this situation. Note, however, that for any real form G of G, the map pG : Xr(G) → Xr(G)(ℝ) is always finite,
as shown in [26, Lemma 8.2].

Remark 6.2. The image of pG in Proposition 6.1 depends on the given embedding õ. For example, both the
groups SO(2, ℂ) = {x2 + y2 = 1} and GL(1, ℂ) = {xy = 1} are isomorphic to ℂ∗ but the real points for the first
is S1 and the real points for the second is ℝ∗ (disconnected). So Xr(G) can have di�erent sets of real points,
depending on the algebraic structure defined by õ.

Another example is G = SU(3) and G = SL(3, ℂ). With respect to the trace coordinates, SL(3, ℂ)//SL(3, ℂ)
can be identified withℂ2. Its real points areℝ2 but the traces of SU(3) are not real in general. So the image is
not contained in the real locus with respect to the trace coordinates. Thismeans that, in each case, we should
fix a generating set having certain properties which avoids these issues.

We now describe some particularly simple examples where one can check directly and explicitly the strong
deformation retraction from Xr(G) = Gr//G ontoKr/K, using the trace coordinates for the complex character
variety Xr(G), and also by describing their Kempf–Ness sets.

6.1 The caseK = SO(2)

Since the special orthogonal group SO(2) is Abelian, the conjugation action is trivial. As SO(2) is isomorphic
to the circle group, S1, it follows that

Xr(SO(2)) ≅ (S1)r. (6.1)

The maximal compact subgroup of SO(2, ℂ) ≅ ℂ∗ is SO(2), and it is clear that

Xr(SO(2, ℂ)) ≅ (ℂ∗)r
deformation retracts to (S1)r.

Of course, in general, for any Abelian groupG, we haveXr(G) = Gr, and the deformation retraction toKr
is given, componentwise, by the polar decomposition.

6.2 The case G = SL(2, ℝ), r = 1

The group SO(2) is also a maximal compact subgroup of SL(2, ℝ). Hence, from (6.1) and Theorem 4.10, one
concludes thatX1(SL(2, ℝ)) also retracts onto S1. Let us also see this directly:X1(SL(2, ℝ)) is the space of closed
orbits under the conjugation action. These closed orbits correspond to diagonalizable matrices overℂ. When
amatrix in SL(2, ℝ) is diagonalizable overℝ, it corresponds to apoint inX1(SL(2, ℝ))determinedbyamatrix of
the form diag(ë, ë−1) for some ë ∈ ℝ∗. Since the diagonal matrices diag(ë, ë−1) and diag(ë−1, ë) are conjugated
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in SL(2, ℝ), we can suppose ë ⩾ ë−1 (with equality exactly when |ë| = 1) and thus the elements ofX1(SL(2, ℝ))
corresponding to these kind of matrices are parametrized by the space

Dℝ = {diag(ë, ë−1) : ë ∈ ℝ \ (−1, 1)}. (6.2)

Similarly the space of matrices in SL(2, ℝ) diagonalizable over ℂ \ ℝ is parametrized by

Dℂ = {diag(z, z−1)) : z ∈ ℂ∗, z + z−1 ∈ ℝ}.
Notice that we impose the condition of real trace, since the trace is conjugation invariant. Now, for z ∈ ℂ \ ℝ,
the condition z + z−1 ∈ ℝ is equivalent to |z| = 1, so these matrices are in fact in SO(2, ℂ), hence the corre-
sponding ones in SL(2, ℝ) belong to SO(2), and have the form

Aè = (
cos è − sin è
sin è cos è

) , 0 ⩽ è < 2ð.

Now, the only possible SL(2, ℂ)-conjugatedmatrices of this type areAè andA−è, and it is easily seen that they
are not conjugate in SL(2, ℝ). So, for each è, we have a representative of a class in X1(SL(2, ℝ)). Hence, from
this and from (6.2), we have a homeomorphism

X1(SL(2, ℝ)) ≅ ℝ \ (−1, 1) ∪ {z ∈ ℂ \ ℝ : |z| = 1}. (6.3)

From (6.1) and (6.3) we see here directly an example of our main theorem (Theorem 4.10).
Using Proposition 4.8, we can also obtain the same space considering the Kempf–Ness quotient. For the

group G = SL(2, ℝ), one can compute directly that the set of normal matrices is a union of two closed sets,
KNG = Y1 ∪ Y2, with

Y1 = {(á ã
ã â
) ∈ SL(2, ℝ) : á, â, ã ∈ ℝ},

and
Y2 = {Aè : è ∈ ℝ} = SO(2).

These correspond precisely to the SL(2, ℝ) matrices that are ℝ-diagonalizable or not, and they are distin-
guished by the absolute value of their trace being greater or less than 2, respectively (it is easy to show di-
rectly that the equation áâ = 1 + ã2 for á, â, ã real implies |á + â| ⩾ 2). Now, for an element ofKNG = Y1 ∪ Y2,
besides the trace, we have an extra invariant for the action of SO(2) (obviously Y2 is invariant under SO(2))
which is the Pfa�an, defined by (see [2])

Pf(A) = c − b for A = (
a b
c d
) .

Wehave Pf(B) = 0 for anyB ∈ Y1 and Pf(Aè) = 2 sin è. So, the picture in Figure 1 is indeed a precise description
of the embeddingKNG/K í→ ℝ2 under the map A Ü→ 12 (tr(A), Pf(A)),

Figure 1. The spaceX1(SL(2, ℝ)) ≅ ℝ \ (−1, 1) ∪ {z ∈ ℂ \ ℝ : |z| = 1}.
Finally, we can compare the geometry ofX1(SL(2, ℂ)) = SL(2, ℂ)//SL(2, ℂ) and that ofX1(SL(2, ℝ)), in trace

coordinates. In these coordinates,X1(SL(2, ℂ)) isℂ and thus its real points formℝ. However, SL(2, ℝ)//SL(2, ℝ)
is (−∞, −1] ∪ [1,∞) ∪ S1 where S1 is a circle centered at 0 of radius 1. However, after projecting to the real
locus, the north and south hemispheres in S1 are identified (since they are conjugated overℂ but not overℝ).
The image is thenℝ and this is an example where the projection pG is not injective.

On the other hand, considering SU(2), the quotient SU(2)/SU(2) is [−2, 2]whichprojects to the same (since
the projection is injective for maximal compact subgroups). So we see that the projection to the real locus is
not always surjective.
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6.3 The caseK = SO(2), r = 2, G = SL(2, ℝ)

Addressing the SL(2, ℝ) casewith r = 2 amounts to describing two real unimodularmatrices up to conjugation
in SL(2, ℝ). Generically, such a pair will correspond to an irreducible representation. The non-generic case is
when A1, A2 ∈ SL(2, ℝ) are in the same torus; in particular, in this degenerate case they commute.

Consider first the complex invariants in SL(2, ℂ)×2. By Fricke–Vogt (see [18] for a nice exposition) we have
an isomorphism

X2(SL(2, ℂ)) = SL(2, ℂ)×2//SL(2, ℂ) ≅ ℂ3,
explicitly given by [(A1, A2)] → (tr(A1), tr(A2), tr(A1A2)). Let t1 = tr(A1), t2 = tr(A2) and t3 = tr(A1A2). Then

ê(t1, t2, t3) := tr(A1A2A−11 A−12 ) = t21 + t22 + t23 − t1t2t3 − 2.

Since commuting pairs (A1, A2) have trivial commutator, the reducible locus is contained in ê−1(2). The
converse also holds (see [12]).

Thus, the ℝ-points of X2(SL(2, ℂ)), here denoted by X2(SL(2, ℂ))(ℝ), form ℝ3. The reducible locus
in X2(SL(2, ℂ))(ℝ) is therefore ê−1(2) ∩ ℝ3 (see Figure 2).

Figure 2. Reducible locus inX2(SL(2, ℂ))(ℝ).
Suppose both A1 and A2 have eigenvalues of unit norm and commute. So, up to conjugation in SL(2, ℂ),

they are of the form

A1 = (cos á − sin á
sin á cos á

) , A2 = (cos â − sin â
sin â cos â

) ,

and thus t1 = 2 cos á, t2 = 2 cos â, t3 = 2 cos(á + â). Note that in unitary coordinates these matrices take the
form diag(eiá, e−iá) and diag(eiâ, e−iâ). Putting these values in ê(t1, t2, t3) precisely determines the boundary of
the solid closed 3-ball B3

≅ X2(SU(2)) depicted in Figure 3 (see [14, Lemma 6.3 (ii)]).

Figure 3. The solid closed 3-ballX2(SU(2)).
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So the reducible locus is homeomorphic to S2 and is givenby those representations that, up to conjugation
in SL(2, ℂ), are in SO(2) = SL(2, ℝ) ∩ SU(2); this fact was first shown in [8].

Therefore, the four disjoint planes in Figure 2 correspond to pairs

((
ë 0
0 1/ë
) , (

ì 0
0 1/ì
))

where ë, ì ∈ ℝ∗.
As shown in [25, Proposition III.1.1, p. 458], every point in X2(SL(2, ℂ))(ℝ) ≅ ℝ3 corresponds to either

an SU(2)-representation or an SL(2, ℝ)-representation (this is a case where the union in Proposition 6.1 gives
equality). A point corresponds to a unitary representation if and only if −2 ⩽ t1, t2, t3 ⩽ 2 and ê(t1, t2, t3) ⩽ 2;
as in Figure 3. Otherwise, the representation is in SL(2, ℝ).

Figure 4 gives a picture ofX2(SL(2, ℂ))(ℝ), restricted to ê(x, y, z) ⩽ 5; from this, the deformation retraction
to the boundary of the solid ball X2(SU(2)) can be seen.

Figure 4. Region ê ⩽ 5 inX2(SL(2, ℂ))(ℝ).
Having described the ℝ-points of X2(SL(2, ℂ)), we now can describe X2(SL(2, ℝ)). Since we are consid-

ering the closed SL(2, ℝ)-orbits, we have three sets to consider. First, there are the representations that are
irreducible over SL(2, ℂ); these are called absolutely irreducible, or ℂ-irreducible. Secondly, we have the
representations that are irreducible over ℝ but are reducible over ℂ; called ℂ-reducible or ℝ-irreducible.
Third, we have the representations that are reducible overℝ; calledℝ-reducible.

Notice that conjugating by diag(i, −i) defines aℤ/2ℤ-action onX2(SL(2, ℝ)). Since the characteristic poly-
nomial is quadratic, any conjugation action from SL(2, ℂ) on X2(SL(2, ℝ)) has to be equivalent to the action
of diag(i, −i). It is a free action on the irreducible locus (consisting of ℝ and ℂ-irreducibles), and has its fixed
locus exactly theℝ-reducible representations. The quotient of this action is exactly

X2(SL(2, ℂ))(ℝ) − X2(SU(2))0 = ℝ3 − B3
since diag(i, −i) preserves SL(2, ℂ)-orbits. Hence, the ℝ-reducible locus in X2(SL(2, ℝ)) is exactly the four
planes depicted in Figure 2, and the irreducible locus in X2(SL(2, ℝ)) is a ℤ/2ℤ-cover of the complement
of those four planes inℝ3 − B3.

On the other hand, X2(SO(2)) is a torus S1 × S1, and the sphere S2 arises as the quotient of S1 × S1 by
theℤ/2ℤ-action described above (see [8]).

Lastly, we observe that the ℤ/2ℤ-action is equivariant with respect to the deformation retraction from
X2(SL(2, ℝ)) to X2(SO(2)) since it is conjugation, which explains why we see the deformation retraction
ofℝ3 − B3 = X2(SL(2, ℂ))(ℝ) − X2(SU(2))0 ≅ X2(SL(2, ℝ))/(ℤ/2ℤ) onto S2 = àX2(SU(2)) ≅ X2(SO(2))/(ℤ/2ℤ).
Remark 6.3. By [10], X2(SO(3)) is a (ℤ/2ℤ)2 quotient of X2(SU(2)), and both relate to the moduli space of
generalized spherical triangles. This makes X2(SO(3)) an orbifold quotient of a solid 3-ball (this also follows
from [15]).
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Now, let us consider the Kempf–Ness set for this case. From Proposition 4.7,

KN
YG = {(A1, A2) ∈ G2 : A∗1A1 − A1A∗1 + A∗2A2 − A2A∗2 = 0}.

Let us write the two matrices in convenient variables as

A i = (ai bi
ci di) = ( ti + si qi − pi

qi + pi ti − si ) , i = 1, 2.

So, the new variables are

ti = ai + di
2

, si = ai − di
2

, qi = ci + bi
2

, pi = ci − bi
2

, i = 1, 2.

In particular, note that the traces and Pfa�ans are tr(A i) = 2ti and Pf(A i) = 2pi, respectively. We can describe
insideℝ8 with coordinates (a1, . . . , d2) as the closed algebraic set

KN
YG = {(a1, . . . , d2) ∈ ℝ8 : a1d1 − b1c1 = a2d2 − b2c2 = 1,

2
∑i=1 c2i − b2i =

2
∑i=1(ai − di)(ci − bi) = 0},

or equivalently,

KN
YG = {(t1, p1, s1, q1, t2, p2, s2, q2) ∈ ℝ8 : t21 + p21 − q21 − s21 = t22 + p22 − q22 − s22 = 1,

q1p1 + q2p2 = s1p1 + s2p2 = 0}.

Now, KNYG is invariant under K = SO(2), although it is not immediately apparent. From [2] we know that,
for the SO(2) simultaneous conjugation action on two 2 × 2 real matrices, there are eight invariants: the five
traces tr A1, tr A2, tr A1A2, tr A21, tr A22, and the three Pfa�ans Pf A1, Pf A2 and Pf A1A2. Obviously, the traces
ofA21 andA22 are not important here since for unimodular matricesA, tr A2 = (tr A)2 − 2. So the six remaining
invariants give rise to an embedding

÷ : KN
YG/K → ℝ6, [(A1, A2)] Ü→ (t1, t2, t3, p1, p2, p3)

with
ti := 1

2
tr A i, pi := 1

2
Pf A i, i = 1, 2,

and
t3 := 1

2
tr(A1A2) = t1t2 − p1p2 + s1s2 + q1q2,

p3 := 1
2
Pf(A1A2) = p1t2 + t1p2 + q1s2 − s1q2.

For i = 1, 2, let Δ i = 1 − t2i − p2i . Then the closure of the image is defined by the four equations

p1(t2p1 + t1p2 − p3) = 0,

p2(t2p1 + t1p2 − p3) = 0,

p21Δ 1 − p22Δ 2 = 0,

p22(Δ 1(p21 − t21) − Δ 2(p22 − t22)) = p3Δ 1(t1p2 − t2p1),
as can be obtained using a computer algebra system. So KNYG/K is a semi-algebraic set whose closure, in
these natural coordinates, is an algebraic set of degree 6 in ℝ6, and it can be checked that it has indeed
dimension 3, as expected.

6.4 The caseK = SO(2), r ⩾ 3, G = SL(2, ℝ)

In this subsection we shall say a few words about the r = 3 case. The complex moduli space X3(SL(2, ℂ)) is
a branched double cover ofℂ6 (it is a hyper-surface inℂ7). Given a triple (A1, A2, A3) ∈ Hom(F3, SL(2, ℂ)), the
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sevenparameters determining its orbit closure are ti = tr(A i), tk = tr(A iAj), t7 = tr(A1A2A3), 1 ⩽ i ̸= j ⩽ 3 and
4 ⩽ k ⩽ 6. See [18] for details. From [8, 14] it follows thatX3(SL(2, ℂ)) is homotopic to a 6-sphereX3(SU(2)) ≅ S6.
Remark 6.4. Fixing the values of the four parameters tr(A i), tr(A1A2A3) defines relative character varieties
since these are the four boundary coordinates for a 4-holed sphere; likewise, in the r = 2 casefixing thebound-
ary of a 1-holed torus is equivalent to fixing the value of ê. The topology of the ℝ-points of relative character
varieties for r = 2 and r = 3 have been explored in [4]; and some of their pictures relate to ours given that ê
arises naturally in both contexts.

The defining equation for X3(SL(2, ℂ)) is given by

R = t21 − t2t4t1 − t3t5t1 + t2t3t7t1 − t6t7t1 + t22 + t23 + t24 + t25 + t26 + t27 − t2t3t6 + t4t5t6 − t3t4t7 − t2t5t7 − 4.

In [15], it is shown that the reducible locus is exactly the singular locus, and thus the Jacobian ideal J,
generated by the seven partial derivatives of R, defines the reducible locus explicitly as a sub-variety. Thus

J = ⟨
àR
àti : 1 ⩽ i ⩽ 7⟩

= ⟨2t1 − t2t4 − t3t5 + t2t3t7 − t6t7, 2t2 − t1t4 − t3t6 + t1t3t7 − t5t7, 2t3 − t1t5 − t2t6 + t1t2t7 − t4t7,
−t1t2 + 2t4 + t5t6 − t3t7, −t1t3 + 2t5 + t4t6 − t2t7, −t2t3 + t4t5 + 2t6 − t1t7, t1t2t3 − t4t3 − t2t5 − t1t6 + 2t7⟩.

Using a Gröbner basis algorithm, J is equivalent to the ideal

⟨t41 − t2t5t6t31 − 2t22t21 + t22t25t21 − 2t25t21 + t22t26t21 + t25t26t21 − 2t26t21 − t2t5t36t1 − t2t35t6t1 − t32t5t6t1 + 8t2t5t6t1
+ t42 + t45 + t46 − 2t22t25 − 2t22t26 + t22t25t26 − 2t25t26⟩.

Thus, the reducible locus is isomorphic to a hypersurface in ℂ4. If all coordinates are restricted to [−2, 2],
then we are in X3(SU(2)) since the r = 1 case implies that t1, t2, t3 are in [−2, 2] if and only if A1, A2, A3 are
SL(2, ℂ)-conjugate to elements in SU(2), and that forces all the other coordinates to take values in [−2, 2]
as well.

Figure 5. A level set in the hypersurfaceXℤ3 (SU(2)).
As described in [17], the reducible locus in X3(SU(2)) is homeomorphic to

Xℤ3 (SU(2)) := Hom(ℤ3, SU(2))/SU(2) ≅ (S1)3/(ℤ/2ℤ),
and thus it is a 3-dimensional orbifold with eight isolated singularities. Neighborhoods around singularities
will look like real cones overℝP2; and thus are not locally Euclidean at those points (see [1, p. 475]).

Similar to the r = 2 case, the orbifold Xℤ3 (SU(2)) is the quotient of X3(SO(2)) ≅ (S1)3 by the ℤ/2ℤ-action
defined from conjugation by diag(i, −i). As before, this action is equivariant with respect to the deformation
retraction of X3(SL(2, ℝ)) onto X3(SO(2)), and it is a double cover over the absolutely irreducible representa-
tions and fixes theℝ-reducible representations.
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In fact, this situation is completely general. The space Xr(SL(2, ℝ)) decomposes into three sets:
(1) the absolutely irreducible locus which double covers the irreducible locus in Xr(SL(2, ℂ))(ℝ),
(2) theℝ-irreducible locus isomorphic to (S1)r = Xr(SO(2)) which branch double covers the orbifold

Xℤr (SU(2)) ≅ (S1)r/(ℤ/2ℤ)
having 2r discrete fixed points from the central representation, making orbifold singularities with
neighborhoods isomorphic to real cones overℝPr−1,

(3) the ℝ-reducible locus which is isomorphic to that same locus in Xr(SL(2, ℂ))(ℝ) intersecting Xℤr (SU(2))
at the central representations and homeomorphic to ((−∞, −1] ∪ [1,∞))r.

The deformation retraction we establish in this paper from Xr(SL(2, ℝ)) to Xr(SO(2)) is equivariant with
respect to the ℤ/2ℤ-action of diag(i, −i) and therefore determines a deformation retraction on the level of
ℝ-points fromXr(SL(2, ℂ))(ℝ)−Xr(SU(2))0 ontoXℤr (SU(2)). For an explicit characterization of theℂ-reducible
locus, in terms of traces of minimal words, see [13].
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