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Abstract   

Porous materials are suitable for gas storage and separation applications. Synthesized 

as powders, these materials must be formulated to be handled in industrial settings. 

Formulation provides an optimized structure with improved mechanical and chemical 

stability. Extrusion is frequently employed and enables formulation using small 

amounts of solvent.  

This work reports the formulation of zeolites and metal-organic frameworks (MOFs), 

namely ZSM-5 and UTSA-16. Pastes comprising the porous material, binders (colloidal 

silica and poly-vinyl alcohol, PVA) and plasticizers (water and propanol) are extruded 

into pellets in a four-step process comprising paste preparation, extrusion, drying and 

thermal treatment. The formulation process leads to slight surface area reduction in 

zeolite samples (9% decrease); more significant variation is observed in MOF extrudates 

(38% decrease). In both cases, lower binder content originates denser pellets. The 

density of ZSM-5 extrudates was similar to commercial zeolite pellets, while in UTSA-

16 it was considerably superior.  

The adsorption capacity of each formulated material for methane, carbon dioxide and 

water is measured. Both extrudates can adsorb methane and carbon dioxide. The 

amount of methane adsorbed is slightly higher on ZSM-5 extrudates, while UTSA-16 

extrudates show higher selectivity than ZSM-5 for carbon dioxide molecules, adsorbing 

nearly twice as much. ZSM-5 extrudates show resistance to water, which is desirable 

for utilization in several industrial applications. 

 

Keywords: Formulation; Extrusion; Zeolite; Metal-organic framework. 
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Resumo  

Os materiais porosos podem ser aplicados em processos de separação e captura de gases. 

É necessário proceder à sua formulação para que estes materiais possam ser utilizados 

na indústria, uma vez que são sintetizados como pós. Esta técnica confere ao material 

uma estrutura optimizada, com aumento da sua estabilidade mecânica e química. A 

extrusão é o processo mais frequente e permite a formulação de materiais com recurso 

a quantidades reduzidas de solventes. 

Este estudo descreve a formulação de zeólitos e redes metal-orgânico (MOF), 

nomeadamente ZSM-5 e UTSA-16. Pastas compostas por um material poroso, binders 

(silica colloidal e álcool poli-vinílico, PVA) e plastificantes (água e propanol) são 

extrudadas, formando pellets, num processo de quatro etapas: preparação da pasta, 

extrusão, secagem e tratamento térmico. O processo de formulação leva a uma ligeira 

diminuição de área superficial nas amostras de zeólito (redução de 9%); a variação 

observada nos extrudados de MOF é mais significativa (redução de 38%). Em ambos 

os casos, uma composição com menos binders origina pellets mais densas. A densidade 

dos extrudados de ZSM-5 obtidos é semelhante à de pellets de zeólito comerciais. No 

caso dos extrudados de UTSA-16, a densidade é consideravelmente superior.  

A capacidade de adsorção de metano, dióxido de carbono e água foi avaliada para cada 

material formulado. Tanto os extrudados de zeólito como os de MOF adsorvem metano 

e dióxido de carbono. A quantidade de metano adsorvida nos extrudados de ZSM-5 é 

ligeiramente superior. O oposto ocorre no caso do dióxido de carbono: os extrudados 

de MOF adsorvem quase duas vezes mais do que os de zeólito. Extrudados de ZSM-5 

mostram resistência à água, uma característica vantajosa para aplicação em diversas 

indústrias. 

 

Palavras-chave: Formulação, Extrusão, Zeólito, Rede metal-orgânico. 
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Nomenclature 
 

BET technique Brunauer-Emmett-Teller technique 

CH4 Methane 

CNG Compressed Natural Gas 

CO2 Carbon dioxide 

GWP Global Warming Potential 

IUPAC International Union of Pure and Applied Chemistry 

LNG Liquid Natural Gas 

MOF Metal-Organic Framework 

NGV Natural Gas Vehicles 

PCP Porous Coordination Polymers, different denomination for MOFs 

PVA Polyvinyl Alcohol, [𝐶𝐻2𝐶𝐻(𝑂𝐻)]𝑛 

SEM Scanning electron microscopy 

UTSA-16 University of Texas San Antonio-16 

{[KCo3(C6H4O7)(C6H5O7)(H2O)2]·8H2O}n 

ZSM-5 Zeolite Socony Mobil-5, [NanAlnSi96–nO192·16H2O], n<27 

1-PrOH 1-Propanol, 𝐶𝐻3𝐶𝐻2𝐶𝐻2𝑂𝐻 
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1. Introduction 

 

1.1  Context and motivation 

 

Energy is the foundation of all living systems and throughout time mankind 

acknowledged its potential. In fact, capture, collection and utilization of energy are 

pivotal to economic and social transformation and development. Population global 

growth and fast emergence of developing economies are driving a huge increase in 

energy demand.  

Fossil fuels provide over 85% of all energy used, remaining the leading source of energy 

worldwide because of their high calorific value and reasonable cost [1]. Recently, the 

depletion of fossil fuel resources and the impact of the greenhouse gases generated by 

their combustion (e.g. carbon dioxide, CO2, and methane, CH4) has increased 

awareness of environmental issues. 

Natural gas is originated from the decomposition of organic matter and trapped 

beneath the surface of the Earth in terrestrial or oceanic deposits. It is mainly composed 

of methane (55% to 98% in volume) which retains a high Global Warming Potential 

(GWP), making it essential to prevent accidental release into the atmosphere in every 

stage of application [2].  

Natural gas currently supplies around 25% of all energy produced and its use is 

expected to increase in the future. The combustion of this fuel yields mostly water 

vapour and CO2 emissions in significantly lower amounts per unit of produced energy 

than those generated by oil or charcoal combustion [2]. This makes natural gas the 

cleanest of fossil fuels, regarded as an alternative to petroleum in the automobile 

industry.  

Engineering developments in drilling techniques revealed larger gas reserves than 

previously known. Still, some drawbacks hinder a widespread use of this fuel: under 

atmospheric conditions, natural gas is a gaseous fluid with lower volumetric energy 

density than liquid fuels. Storage by compression (compressed natural gas, CNG) or 

liquefaction (liquified natural gas, LNG) can decrease this gap but require high 

pressure, overly expensive technology [3], [4]. 

Biogas is formed through the anaerobic decomposition of organic matter and is 

primarily composed of methane and carbon dioxide. Other components include oxygen, 

and nitrogen from air, water and sulphur compounds. It can be used to produce 

electricity, heat, fuel vehicles and for injection in natural gas grids. Separation of 
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components to upgrade biogas into biomethane is made sequentially, starting with 

removal of hazardous sulphur compounds and water, followed by the separation of the 

CH4 and CO2 mixture [5], [6].  

Mitigation of climate change caused by greenhouse gas accumulation in the atmosphere 

represents a major and urgent challenge for the 21st century. As advances in the 

establishment of zero-carbon sources at significant levels will entail decades of R&D 

[7], continued dependence on fossil fuels is expectable. Extensive reduction of 

greenhouse gas emissions is thus vital to prevent a further rise of global temperature.  

The industrial application of gases for energy production involves complex separation 

and purification processes. These are used for removal of impurities from gaseous 

mixtures, bulk separations and gas storage [8]. Gas adsorption techniques have been 

increasingly implemented for this purpose because of their flexible design nature and 

high efficiency. The storage of natural gas has been a target of research for nearly 50 

years [9] and may be applied to natural gas vehicles (NGVs), mobile tankers and 

cylinders or large-scale storage on distribution pipelines [10]. The capture and storage 

of CO2 using adsorption techniques is also under extensive study as an essential 

strategy for reduction of atmospheric greenhouse gas concentration [11].  

Solid microporous materials with large sorptive capacities can store considerable 

amounts of gases at relatively low pressures. Early research was focused on activated 

carbons and zeolite adsorbents; the extensive study of new structures and applications 

for these materials has led to the targeted design and synthesis of porous solids with 

high selectivity for specific applications [12]. Metal-organic frameworks (MOFs) are a 

new generation of adsorbents that has received a lot of attention for their outstanding 

features for gas storage and separation [13]. Tuneable pore surface paired with 

extremely high porosity are responsible for considerable improvements in the 

performance of these new materials.  

Porous materials are synthesised in powdered form. Shaping strategies are essential for 

large-scale application as they ensure the optimization of packing within large reactors 

or tanks while maintaining the powdered material’s properties, improving performance 

and reducing process cost [14]. Several techniques are under study for formulation of 

porous materials. The most widely used method, extrusion, allows for formulation using 

little or no solvent. The reduction of solvent use is a critical aspect for implementation 

of more sustainable chemical processes with industrial application. However, the main 

challenge to industrial implementation of this method is scalability [15]. Considering 

its relevance, this aspect is relatively under-examined, with only a small number of 

articles on formulation being published yearly.  

The objective of this study is the formulation of powdered zeolites and MOFs into 

pellets using extrusion techniques. For this purpose, each extrusion paste is prepared 

using the porous material (ZSM-5 or UTSA-16), binders (PVA and silica) and 

plasticizers (water and propanol). Characterization techniques are applied for the 
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evaluation of material properties following extrusion. The adsorption capacity of each 

material for methane, carbon dioxide and water are measured. 

 

 

1.2  Outline 

 

This study will address the formulation of zeolites and metal-organic frameworks by 

extrusion. The formulated extrudates will be characterized by basic techniques and 

evaluated for gas adsorption purposes.  

The study is structured as follows:  

Chapter 2: Background 

Explanation of major theoretical concepts, general definitions and terminology 

concerning adsorption at the gas/solid interface and porous materials. 

Chapter 3: Materials and experimental methods 

Description of all experimental work, from formulation of the adsorbent materials to 

their characterization and adsorption evaluation, including method references and 

experimental methodology employed. 

Chapter 4: Results and Discussion 

Description, explanation and interpretation of the experimental results and key 

findings, in particular the effect of paste composition and processing on the 

characteristics of extrudates and their adsorptive capacity. 

Chapter 5: Conclusions and future work 

Summary of findings and analysis of significance of the study. Highlight on 

opportunities for future research.  

A table of nomenclature including acronyms used throughout the text is provided 

before the index. 
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2. Background 

 

2.1  Adsorption 

Frequent and naturally occurring, sorption processes have long been known. These 

mechanisms involve the removal of a substance (sorptive) from the surrounding 

medium by a mass separating agent (sorbent). One of these phenomena, adsorption, is 

defined as the enrichment of fluid density at an interfacial layer. Removal occurs by 

spontaneous adhesion of a gas or liquid adsorptive to the surface of the adsorbent. 

Attraction forces between adsorbent and adsorptive cause the release of energy, thus 

the process is exothermic [16].  

 
Figure 1 - Representation of the adsorption process of a gas on the surface of a porous solid  

[3], adapted. 

In cyclic adsorption processes, the term desorption or regeneration describes the process 

approached from the opposite equilibrium direction. In this stage, the bonds within the 

adsorbate complex are broken, and adsorbate molecules removed from the surface of 

the adsorbent. The capacity of the adsorbent is regenerated, and valuable elements can 

be recovered. Desorption does not occur spontaneously; it may be induced by pressure 

reduction, temperature increase or addition of a competitive adsorptive [17], [18].   

Useful products can be obtained from both steps: the effluent during the adsorption 

stage corresponds to the purified “raffinate” product and the strongly adsorbed species 

recovered in concentrate form during the regeneration step are called the “extract” 

products [19]. 

The separation by adsorption follows one of three mechanisms: steric, kinetic and 

equilibrium mechanisms. In the steric mechanism, the dimension of pores within a 

porous material allows small molecules with the right shape to be diffused into them, 

keeping out any other molecules. Kinetic separation is based on the different diffusing 

rates of different adsorptives, meaning the time of exposure dictates which species is 

preferentially removed. The equilibrium mechanism relies on the adsorbent’s ability to 

accommodate different species, causing the stronger adsorbing species to be 

preferentially removed from the fluid phase [20], [21]. 

The type of bond formed between adsorptive molecules and the adsorbent surface 

enables a distinction between two types of adsorption: physical (physisorption) and 

SOLID SOLID 

GAS 
GAS 

ADSORBENT 

ADSORBATE 
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chemical (chemisorption). Physisorption processes are characterized by weak 

interaction forces between molecules, based on Van der Waals forces or electrostatic 

interactions. They present a relatively low heat of adsorption and reversible character, 

meaning the adsorbent can be regenerated. Most gas adsorption processes comprise 

this kind of interactions [17], [18], [22], [23]. Chemisorption processes entail chemical 

interactions within the adsorbate-adsorbent system. The formation of ionic or covalent 

bonds requires intense heat of adsorption and is highly specific. Often irreversible, 

chemisorption may involve dissociation of the adsorbed species [18], [22]. 

 

Classification of adsorption isotherms 

Adsorption equilibrium is commonly reported in the form of isotherms, which can be 

described as a relation between the quantity adsorbed and a given equilibrium pressure, 

or concentration of gas, at constant temperature. When the adsorption and desorption 

branches of the isotherm are not coincident, adsorption hysteresis arises [21]. 

Different gas physisorption systems present characteristic isotherm curves, most of 

them fitting into one of the six types shown in Figure 2. This classification depends on 

the strength of surface interactions and porosity of the material. The shape of these 

curves can provide relevant information on the pore structure of the adsorbent  [24]–

[26].  

 

Figure 2 – Types of physisorption isotherms, IUPAC classification [25]. Amount adsorbed 

plotted as function of the relative pressure p/p0, with p0 as saturation vapor pressure of the 

adsorptive. 
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Type I are reversible adsorption isotherms that rise sharply at low pressures, reaching 

a plateau as relative pressure approaches 1. These are common in microporous solids, 

when the gas uptake is limited by micropore volume. Smaller pore widths cause higher 

adsorption energy and lower the micropore-filling pressure. Type I(a) isotherms are 

given by microporous materials having mainly narrow micropores while type I(b) 

isotherms are delivered by materials with pore size distributions over a wider range 

including wide micropores and narrow mesopores [24]–[27]. 

Type II reversible isotherms progress from concave to the p/p0 axis to almost linear 

and then convex to the p/p0 axis. These are obtained with solids that enable 

unrestricted multimolecular adsorption at high relative pressures, such as microporous 

or non-porous adsorbents. Point B indicates complete monolayer coverage and the 

outset of the multilayer adsorption stage [24], [27], [26]. 

Type III isotherms are convex to the p/p0 axis. These uncommon, reversible isotherms 

are indicative of weak adsorbate interactions within a microporous or non-porous 

adsorbent [18–20].  

Type IV isotherms are completely reversible and present a similar shape to type II 

isotherms at an early stage, reaching a saturation plateau at high relative pressures. 

These are obtained with mesoporous adsorbents and present a characteristic hysteresis 

loop, resultant from capillarity condensation within the pores. Type IV(a) isotherm 

hysteresis is due to capillary condensation. Adsorbents having smaller width mesopores 

present completely reversible Type IV(b) isotherms. These are also given by conical 

and cylindrical mesopores with closed tapered end [24]–[27]. 

Type V isotherms are related to type III isotherms, initially convex to the p/p0 axis 

but reaching a plateau at high relative pressures. They are quite uncommon and present 

a hysteresis loop, related to the process of filling and emptying pores [24], [27], [26]. 

Type VI isotherms occur in subsequent steps dependant on the system and 

temperature. These uncommon isotherms are related to layer-by-layer adsorption on 

very uniform surfaces [24], [27], [26]. 

This classification system applies only to single component adsorption. Many isotherms 

have a more complex nature, not fitting into this classification list. 
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2.2  Adsorptives 

In an adsorption process, the adsorptives correspond to the fluid phase that adheres to 

the surface of an adsorbent. In this work, methane, carbon dioxide and water are 

employed in adsorption equilibria studies. 

 

Methane 

Methane (CH4) is an odourless but flammable gas, generally stable but explosive when 

mixed with air containing 5% to 14% of methane. Produced by anaerobic bacterial 

decomposition of matter in the presence of water, methane can be used in hydrogen 

production, manufacture of ammoniac and fertilizers, among others [3]. 

Naturally produced methane is mostly offset by natural mechanisms, however great 

amounts are produced by anthropogenic activity causing increasing concentration of 

this gas in the atmosphere. The growth in use of natural gas results in direct release of 

methane that represents a considerable environmental issue because methane is around 

21 times more potent than CO2 as greenhouse gas, trapping larger amounts of heat at 

the surface of the planet [2].  

It is considered a potential transition fuel for the automobile sector because it is 

naturally abundant and results in lower CO2 emission than petroleum [28]. 

 

Carbon Dioxide  

Carbon dioxide (CO2) is an odourless, nontoxic and non-flammable gas. It presents 

linear geometry and nonpolar character, comprising two oxygen atoms double 

covalently bonded to a single carbon at an angle of 180º.  

This stable molecule is produced in large amounts by combustion of fossil fuels for the 

industrial and automotive sectors [28]. Industrialization, through the extensive use of 

non-renewable sources of energy, is responsible for a sharp increase in concentration of 

CO2 in the atmosphere. Being a greenhouse gas, this variation led to the increase of 

global temperatures. For this reason, technologies and materials for capture and storage 

of CO2 have been studied extensively as an urgent response for mitigation of the 

environmental impact of carbon-based fuels [7].  

 

Water 

Colourless and odourless, water (H2O) is a polar molecule, commonly used as solvent. 

When used for adsorption, it provides information about surface interactions, adsorbent 

stability and moisture resistance, essential for application in an industrial setting [29]. 
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2.3   Adsorbent M aterials 

Being a surface phenomenon, adsorption depends directly on the properties of the 

adsorbent. The surface area, pore network dimension and chemical properties of the 

adsorbent are crucial aspects in achieving a high adsorptive capacity that enables the 

material to interact with atoms and molecules at the surface but also throughout their 

bulk region [21]. 

Small particles exhibit high external surface areas, making fine particle powders great 

adsorbents. However, surface area in porous materials mostly depends on the amount 

and dimension of pores. A solid presenting a combination of micropore and macropore 

range pores provides optimal surface areas [21]. 

Porosity can be described as a ratio between pore volume and solid volume. The 

IUPAC recommendation for pore size classification is presented in Table 1 [27]. This 

is an arbitrary classification, based on nitrogen adsorption on a range of porous solids 

at boiling temperature [21]. 

 

Table 1 - IUPAC pore classification according to their size. 

Classification Pore width (nm) 

Micropores < 2 

Mesopores 2 < d < 50 

Macropores > 50 

 

Within a porous solid, gas molecules become surrounded by pore walls, which increase 

the interaction forces between them. In smaller pores, the interaction potentials of each 

wall overlap, greatly enhancing adsorption performance [24]. 

Several materials may be used as adsorbents. Activated carbon, zeolites, silica gel and 

activated alumina are the most widely used for commercial purposes, having large 

application in chemical, petrochemical and pharmaceutical industries.  

In the past decades, enormous advances have been made in tailored design and 

synthesis of porous materials [30]. The formulation of superior sorbents can greatly 

impact the productivity of industrial processes. Future progress in the adsorption field 

depends on the development of new sorbents with improved characteristics, tailored to 

specific applications [12].  

Currently, the development of innovative sorbent materials is strongly focused on clean, 

sustainable processes. The design of sorbents has moved from an empirical process to 

become the product of careful theoretical study, followed by molecular simulation. 
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2.3.1 Zeolites 

Known for hundreds of years, natural zeolites have been object of study since the 18th 

century. Research on adsorptive properties for air purification and separation was 

initiated in the late 1940s and the first successful synthesis of zeolites was reported one 

decade later [31]–[33]. With high surface areas and crushing strength, these materials 

showed great potential for application as catalysts and adsorbents. Because of their 

interesting properties, several studies on synthesis and properties of zeolites have been 

published, resulting in a rapid development of synthetic zeolite framework types over 

the last decades, as illustrated in Figure 3 [34]. 

 
Figure 3 - Evolution of verified Zeolite Framework Types, as reported by the Atlas of 

Zeolite Framework Types, 6th ed. (dark blue) and by the International Zeolite Association  

database, IZA-SC (light blue). 

Zeolites are a broad class of microporous, crystalline aluminosilicate materials. 

Composed of three-dimensional tetrahedral frameworks with densities of 19 to 21 T-

atoms (Si, Al, P, Ga, Ge, B, Be, etc.) per 1000 Å3 [34], these sorbents present cavities 

in uniform size, shape and structure. Rings composed of T- and O-atoms form intra-

crystalline channels of pores, measuring 0.2 to 0.8 nm and with volumes of 0.10 to 0.35 

cm3/g.  

Zeolites are typically very stable to temperature variations, which have been shown to 

confer flexibility to the framework [35]. Synthesis conditions determine the framework 

composition. Through post synthesis modifications, it is possible to vary the Si/Al 

ratio, affecting the hydrothermal stability and hydrophobicity of the material [36]. 

In addition to remarkable properties, low cost has contributed for the broad use of 

zeolites as catalysts and adsorbents.  
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ZSM -5 

The ZSM-5 (Zeolite Socony Mobil-5), is a MFI framework type  patented by Mobil in 

1975 [34]. Traditionally used in the fields of petrochemistry and oil refining, this 

aluminosilicate pentasil zeolite has a high silica content and approximately cylindrical 

pores. It presents a linked tetrahedral configuration consisting of chains of eight 5-

membered rings, the pentasil units, bonded by oxygen bridges. The pore size of the 

straight 10-member ring channels, y axis orientation, is estimated to be 5.4-5.6 Å, while 

that of the sinusoidal channels, x axis orientation, is of 5.1 – 5.4 Å [37]. 

 

 
Figure 4 - ZSM -5 layer with pentasil chain 

outlined [37]. 

 
Figure 5 - SEM  image of powdered ZSM -5. 

The channel structure, specific pore size and shape and high thermal stability of this 

material render it desirable for gas separation applications. ZSM-5 has been successfully 

adopted as methane and carbon dioxide adsorbent [38]. 

Table 2 - Characteristics of ZSM -5 zeolite powder. 

H-ZSM5 zeolite powder 

Chemical formula [HnAlnSi96–nO192·16H2O], n<27 

SiO2/Al2O3 ratio 200 

BET Surface area 341 m2g-1 
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2.3.2 M etal-Organic Frameworks 

Metal-Organic Frameworks (MOFs), also known as porous coordination polymers 

(PCPs), are an emerging class of highly crystalline porous materials. Composed of 

networks of organic ligands (linkers) and metals (secondary building unit, SBU) and 

connected by strong coordination bonds, these materials form complex, porous 

frameworks. MOFs display extremely high porosity (up to 90%) and surface areas 

reaching above 10 000 m2/g, the highest known for any porous material [39]–[41]. Due 

to their remarkable properties, this class of materials presents outstanding adsorption 

capacity, applied in gas storage [42], catalysis [43], [44], gas separation [13], electronic 

[45], [46] and medical applications [47].  

Although the first reports on coordination compounds date from the late 1950s and 

early 1960s [48]–[50], it was not until the turn of the century that this class of materials 

started to get more attention from the scientific community and the potential of MOFs 

was noticed [51]–[54]. The remarkable features of these materials quickly generated 

great interest, leading to an incredibly fast development of this field. Nowadays, with 

ca. 70,000 different MOF structures on report at the Cambridge Crystallographic Data 

Centre [55] and thousands of papers published, MOFs have become ubiquitous and 

their study continues developing at a fast pace. 

 
Figure 6 - Number of publications containing the keyword: "metal-organic framework”. 

Source: Web of Science, 23 Jan 2018. 

During the past two decades of research, the focus was in the development of structures 

and investigation on their applications [56], [57]. The modular nature of MOFs enables 

countless combinations of the organic and inorganic structural blocks that shape these 

frameworks. This choice influences framework topology and functionality although the 

determination of ideal synthesis conditions for a specific structure involves substantial 

trial and error. As an alternative process, computational simulations enable the rapid 

study of hypothetical structures for property prediction and structure identification. In 
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spite of being at an early stage, this process greatly increases the feasibility of  precise 

tailoring and optimization of structural properties [58].  

An interesting feature that has arisen from the extensive development of new MOFs is 

framework flexibility.  Structures present dynamic behaviour, exhibiting larger ability 

to withstand physical or chemical transformations [59]. Understanding the link between 

framework geometry, chemical composition and the material’s response to stimuli 

should enable the creation of materials with specific responses and the development of 

guidelines for the synthesis of novel materials [12]. 

 

UTSA-16 

The UTSA-16 (University of Texas San Antonio-16) is a cobalt acetate – citric acid -

based MOF. Its 3-D structure is shaped by tetrahedral Co(II) atoms and tetranuclear 

cobalt citrate clusters bonded in octahedral geometry.  

This highly porous framework shape can be compared to an infinite anatase crystal 

structure, showing open interconnected channels of large dimensions (9.5 x 4.3 Å) along 

the x and y axis orientation [60], [61].  

 

 
Figure 7 - SEM  image of powdered UTSA-16. 

The structure of this antiferromagnetic MOF has shown great potential for CO2 capture 

applications [55, 56]. A hydrogen purification cycle from steam-methane reforming off-

gas has been reported, offering high recovery and productivity yields [63].  

Table 3 - Characteristics of UTSA-16 M OF powder. 

UTSA-16 M OF powder  

Chemical formula {[KCo3(C6H4O7)(C6H5O7)(H2O)2]·8H2O}n 

BET Surface area 837.05 m2g-1 

Total pore volume  0.315 cm3g-1 
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2.3.3    Formulation 

Adsorbents are usually synthesized as small crystals in powdered form. To be suited 

for industrial application, these hierarchically microporous materials must be 

formulated into macroscopic shapes such as spheres, pellets or monoliths. Their use as 

high performance adsorbents in cyclic adsorption processes depends on the chemical 

and mechanical properties of the structured material. For that reason, formulation is 

an essential step that should provide an optimized structure for efficient gas flow and 

mass transfer without property deterioration [64]. 

The shaping process and the selected shape of the adsorbent affect important 

parameters, such as the external surface area, pressure drop (through the adsorbent 

bed), adsorbent loading (amount of adsorbent in given volume), void volume and 

channelling and dispersion characteristics [64]. These geometric parameters greatly 

impact the size of the equipment, product recovery, power consumption and, 

consequently, the overall performance and cost of the process [14]. 

The formulation process involves the selection, mixing and shaping of component 

materials (active phase + additives). The primary function of each additive and the 

behaviour of the complex mixture must be taken into consideration [65]. Common 

processing techniques for adsorbent formulation include extrusion, coating, colloidal 

processing and templating. The shaping process is followed by a thermal treatment to 

retain shape [66]. 

Despite the growing interest in porous materials and their potential application in 

industrial processes, few articles addressing structuring and formulation processes have 

been published. Current research is focused on the efficient shaping of materials with 

preservation or improvement of properties, easing handling and storage [67], [68]. 

 

Extrusion 

Extrusion processes involve the movement of a material through a confined space using 

little to no solvents. Most often, the movement is propelled by a set of screws that 

pushes the material forward. This technique may involve the use of one single screw, 

Single Screw Extrusion (SSE) or twin screws, Twin Screw Extrusion (TSE). In the 

extrusion process, materials are mixed, heated and shaped while strong compression 

and shear forces are exerted [15]. 

Described for the first time by Joseph Bramah in 1797, in a patent for a lead pipe 

manufacturing process, extrusion processes are nowadays well established and 

commonly applied in industrial processes (manufacture of metals, polymers, 

pharmaceuticals, food). More recently found to efficiently process porous materials in 

a solvent-free environment, extrusion is the most frequently employed technique 

applied in structuring and formulating powders for adsorption and catalysis [69], [70].  
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Often, the porous material does not naturally possess the necessary plasticity to 

undergo extrusion; the high levels of compression and shearing it is exposed to may 

lead to destruction of the porous structure, rendering the material amorphous. To 

prevent it, the porous media is mixed with additional substances forming a paste with 

improved rheological properties [69]. The extrusion paste is composed of the powdered 

porous material, a binder that provides mechanical strength and mouldability, and a 

plasticizer that serves as wetting agent and decreases the viscosity of the mixture, 

forming a plastic composition. Optionally, a dispersant can be added to avoid 

agglomeration [66], [70], [71].  

Several types of binder exist: Clays [72], alumina [73] and silica [74] are commonly used 

and should provide hardness to the extrudates. Organic additives may also be added, 

increasing the strength of the extrudate and reducing shape variations. Cellulose [75], 

methylcellulose [76] and polyvinyl alcohol (PVA) [74] are the most common additives. 

The selection of appropriate binders and their proportions is complex and depends on 

the composition of the adsorbent, as well as desired shape. 

Water is the most used plasticizer, though organic solvent-water mixes are also 

common [71]. Plasticizers can usually be removed by heating (or vacuum) after 

extrusion by controlled burning, resulting in macro-porosity. Certain porous materials, 

such as MOFs, cannot withstand such high temperatures without severe structural 

damage. Therefore, alternative approaches are needed when using this kind of porous 

solids. 

The stages of the extrudate formulation process are usually the paste preparation, 

followed by extrusion, drying, and thermal treatment, as illustrated in Figure 8. 

 
Figure 8 - Stages of the formulation process by extrusion. 

The paste preparation step is frequently divided into a dry mixing step, followed by 

addition of liquid plasticizers and subsequent kneading until homogeneity of the paste 

is achieved. During the extrusion step the paste is extruded through a die of adjustable 

size and shape. The drying stage is planned so the sample will dry evenly without 

changing shape or forming cracks. Finally, the thermal treatment ensures the removal 

of binders and plasticizers, maintaining the high surface area of the porous material. 

The development of sustainable industrial processes using porous adsorbents depends 

on the scalability of this technique, reducing the effects of pore blocking and crystal 

structure damage .

Paste 
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3. Experimental M ethods 

3.1   M aterials 

Adsorbents: ZSM-5 (Clariant), UTSA-16 (Obtained by hydrothermal synthesis, as 

described in the literature [62], [63]). 

Binders: Polyvinyl alcohol (PVA, Aldrich) and colloidal silica (LUDOX® LS, 

220m2/g, 30 wt%, Aldrich). 

Plasticizers: water and propanol (1-Propanol, Sigma-Aldrich)  

 

3.2  Formulation 

The first step in the formulation process is the preparation of an extrusion paste. It 

should improve the rheological properties of the powdered adsorbent, letting it undergo 

extrusion without or with minimal damage to its physical properties. 

One of the challenges in paste preparation is the identification of binders and 

plasticizers that yield favourable mechanical properties, maintaining adequate surface 

area. Different sets of binders and plasticizers are used for the ZSM-5 and the UTSA-

16 pastes, in accordance with the characteristics of each material. 

Extrusion was selected as processing method and all pastes formulated into pellets with 

2 mm diameter. The equipment used for extrusion, Thermo Scientific HAAKE MiniLab 

II – Micro Rheology Compounder, is a twin-screw extruder (TSE) equipped with two 

co- or counter-rotating screws that transport the material along a barrel, exposing it 

to high compression forces and shearing. It compounds 5 g or 7 cm3 samples (amount 

strongly related to sample density). 

 
Figure 9 - Thermo Scientific Haake M inilab II extruder, at SINTEF Oslo . 
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This extruder is equipped with a backflow channel and an automatic bypass valve that 

allow the operator to work with well-defined residence times. The backflow channel 

includes two pressure transducers (p1 and p2, Figure 10) that enable the measurement 

of the relative melt viscosity.  

 
Figure 10 – Internal part of the Thermo Scientific Haake M inilab II extruder  available at 

SINTEF Oslo. 

The operating panel is composed of an LCD screen. Temperature, torque, rotation 

frequency, measurement time and volume stream can be set before each measurement. 

While measurement is in progress, instant readings of time, temperature, pressure, 

torque and speed are displayed. When the test is completed, the material is extruded 

as a strand, through a 2mm die. 

 
Figure 11 - Operating panel of the Thermo Scientific Haake M inilab II extruder available 

at SINTEF Oslo, during closed cycle extrusion, taken on 27/11/2017. 
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During the drying stage, the extrudates lose water and propanol by evaporation from 

the surface, which may cause the sample to shrink, crack or alter its shape. Following 

extrusion, the samples are allowed to air dry at constant temperature (298 K) for at 

least 24h. This step should allow the samples to solidify and later go through thermal 

treatment without suffering great shape variation. 

The thermal treatment or "firing" stage consists of gradually heating samples to 

temperatures above 700 K. This process enables the removal of plasticizers and 

temporary binders, generating macroporosity within the extruded sample. The zeolite 

samples undergo thermal treatment at 773 K for 12h. MOFs do not have such a high 

thermal stability, meaning they cannot withstand the firing stage without damaging 

the crystalline structure. UTSA-16 extrudate activation is performed at temperatures 

up to 393 K, in accordance with limits established in previous research [71].  

 

ZSM -5 extrudates:  

Commercial ZSM-5 extrudates (prepared and distributed by Clariant) are prepared 

using alumina as binder. It should be noted that, in this study, the ZSM-5 extrusion 

paste is prepared using a mixture of powdered ZSM-5 zeolite, PVA as temporary 

binder, colloidal silica as permanent binder and water as plasticizer. The added silica 

content should increase the material’s selectivity to methane.  

ZSM-5 powder is weighed; PVA added and (dry) mixed. Water and Ludox added in 

appropriate amounts. The paste is thoroughly blended for 5 - 10 min and put through 

the extruder in open or closed cycle for 5 minutes. The extrudate is collected and 

allowed to air-dry for 24 hours. Calcination is performed at 773 K. 

Several compositions were prepared and tested. Variations were imposed on the ratio 

of zeolite/binders and their effect on the properties of the material was analysed. The 

composition of the extrudates is detailed on Table 4, including only the trials that 

retained shape successfully and were selected for further characterization. 

Note that PVA presents low solubility in water. To prevent a variable binder content 

throughout the paste, the PVA should have been diluted in water and integrated in 

the paste as a solution.  

 
Figure 12 - ZSM -5 paste exiting the output channel, following extrusion. 
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Table 4 - Composition of ZSM -5 extrusion pastes, amounts in grams. 

 
Trial 4 Trial 5 Trial 6 Trial 7.2 

% g % % g g % g 

ZSM-5 77.4 6.00 81.0 80.0 6.42 6.00 80.0 6.42 

PVA 9.0 0.70 5.0 5.0 0.40 0.14 5.0 0.40 

SiO2 

(Ludox) 
13.6 1.05 14.0 15.0 1.20 1.02 15.0 1.20 

Total 

(dry) 
100.0 7.75 100.0 100.0 8.02 7.16 100.0 8.02 

H2O 

(Ludox) 
31.6 2.45 32.6 34.9 2.80 2.39 34.9 2.80 

H2O 6.5 0.50 5.1 0.0 0 0.67 0.0 0 

Total 

(H2O) 
38.1 2.95 37.7 34.9 2.80 3.06 34.9 2.80 

Total  10.70   10.82 10.22  10.82 

     

 
Trial 7.3 Trial 8.2 Trial 8.3 

% g % g % g 

ZSM-5 78.0 6.21 81.2 6.00 84.0 6.20 

PVA 5.0 0.40 5.8 0.43 5.0 0.37 

SiO2 

(Ludox) 
17.0 1.35 13.0 0.96 11.0 0.81 

Total 

(dry) 
100.0 7.96 100.0 7.39 100.0 7.38 

H2O 

(Ludox) 
39.6 3.15 30.3 2.24 25.7 1.90 

H2O 0.0 0 6.4 0.47 14.1 1.04 

Total 

(H2O) 
39.6 3.15 36.7 2.71 39.8 2.94 

Total  11.11  10.10  10.32 
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UTSA-16 Extrudates 

The extrusion paste is prepared using a mixture of powdered UTSA-16 MOF, PVA as 

binder and a mixture of water and propanol as plasticizer.  

For the preparation of PVA solution, PVA is weighed and immersed in water, stirred 

at 200 rpm overnight or until the solution is homogenous. 

UTSA-16 is weighed, propanol is added and mixed. PVA solution and water are then 

added in appropriate amounts. Paste is thoroughly blended for 5 - 10 min. 

The paste is put through the extruder in open cycle as running circulation mode results 

in gradual evaporation of propanol and solidification of the mixture inside the extruder. 

The extrudate is collected and allowed to air-dry before storing. 

Note: Attempts to soak the UTSA-16 in excess propanol over a 48-hour period were 

not successful due to difficulties in controlling the amount adsorbed and, consequently, 

the variable consistency on the paste. 

 

 
Figure 13 - Preliminary step: UTSA-16 

soaking in propanol. 

 

 
Figure 14 - Extrusion paste. 

 
Figure 15 - Extruder compartment 

following 5 minute, closed-cycle extrusion. 

 

 
Figure 16 - Resulting UTSA-16 extrudate. 
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Trial 5 Trial 7 Trial 9 Trial 16.2 Trial 16.3 

% g % g % g % g % g 

UTSA-16 97.0 9.40 96.1 10.00 96.2 10.00 97.5 5.00 97.1 5.00 

PVA 3.0 0.29 3.9 0.40 3.8 0.39 2.5 0.13 2.9 0.15 

Total 

(dry) 
100 9.69 100 10.40 100 10.39 100 5.13 100.0 5.15 

H2O (in 

PVA) 
11.7 1.13 7.7 0.81 7.5 0.78 5.0 0.26 5.8 0.30 

H2O 2.0 0.19 4.9 0.51 5.1 0.53 7.2 0.37 4.9 0.25 

Total 

(H2O) 
13.6 1.32 12.7 1.32 12.6 1.31 12.2 0.63 10.7 0.55 

1-PrOH 3.2 0.31 12.6 1.31 12.6 1.31 12.2 0.63 14.2 0.73 

Total 

(liquid) 
16.8 1.63 25.2 2.63 25.2 2.62 24.5 1.26 24.9 1.28 

Total  11.32  13.03  13.01  6.39  6.43 

% 1-PrOH 

(in liquid) 
19.0 49.9 50.0 50.0 57.0 

 

 

3.3   Characterization 

 

Every sample prepared was subject to instrumental characterization methods to assess 

its properties following formulation and evaluate if property deterioration took place. 

All samples underwent compression tests, scanning electron microscopy and BET 

surface area assessments. Adsorption equilibrium of pure CH4, CO2 and H2O was 

measured. 

 

Compression Test 

Young’s modulus is a mechanical property of solid materials. It measures the stiffness 

by a defined relation between stress applied in the material and the consequent strain.  

To evaluate the stiffness and mechanical stability of the extrudates, 3 pieces of 

extrudate sample (aprox. 2 mm diameter, 5 mm long) were subjected to compression 

tests. A Zwick/Roell Z250 universal test machine was equipped with a 500 N load cell 

for the purpose. Each sample was placed on the centre of the lower compression plate, 

which was lifted against the upper plate at a rate of 0.5 mm/min. Using the TestXpert 

II software, a stress-strain curve was plotted with force (N) as function of the sample 

deformation (mm). 
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Figure 17 – Diagram of the compression test of a pellet , adapted from [77]. 

 

 

Morphology Analysis with SEM  

Scanning electron microscopes (SEM) was used to analyse the morphology of the 

extrudates, examine their surface and detect any cracks that may have resulted from 

the drying process. SEM are powerful magnifying instruments with applications in a 

wide range of research areas. These devices emit a high-energy electron beam over a 

surface, enabling the observation and characterization of materials on a very small 

scale. The interaction between the electrons and the sample generates an image of its 

surface and may disclose information about morphology (texture), composition, 

crystalline structure and orientation [78]. 

A Zeiss Auriga CrossBeam FIB/SEM workstation, available at Cenimat/i3N (FCT-

UNL), was used to take all SEM images at 5.0 kV acceleration voltage. The extrudates 

were positioned laying horizontally to expose a flat surface, easing focus. 

 

Surface area assessment  

The measurement of the surface area of porous materials is a complex process: while 

porosity and surface roughness impact the available area, the dimension of the adsorbed 

molecules influences its determination. The first successful endeavours in surface area 

determination by gas adsorption were performed in the 1930s by Brunauer and Emmet, 

leading to the development of the Brunauer-Emmet-Teller (BET) theory in 1938. The 

BET method has since been applied extensively for gas-solid equilibrium systems. In 

porous material characterization, it is used for determination of surface area and pore 

size distribution. Nitrogen (N2) at liquid temperature (77K) is generally used as 

adsorptive and the amount adsorbed is evaluated by measurement of gas pressure 

variation [24]. 

A BELSORP-mini II instrument was used to obtain N2 adsorption measurements at 

77 K. The first step is activation of the material by heating under vacuum, to ensure 

the full surface area of the material is available for adsorption. The activation 

temperature is determined by the properties of the material and their thermal stability. 

Activation of zeolite extrudates was performed at 773 K overnight followed by 2 hours 
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at 423 K under vacuum. For MOF extrudates, activation was performed at 393 K for 

18 hours, under vacuum. 

Following the pre-treatment, an air-tight glass cell containing the sample is flooded 

with nitrogen at 77K. The measurement follows a discontinuous, point-by-point cycle: 

increasing amounts of nitrogen are introduced in the sample cell and enough time is 

allocated for the system to reach equilibrium. The pressure in the sample cell is 

compared with that of an empty control cell, filled with the same amount of nitrogen 

at the same temperature. The amount of nitrogen loaded increases gradually until 

atmospheric pressure is reached.  

The formulation of extrudates involved the addition of binders that may block the 

pores of the material, affecting the porosity. The nitrogen adsorption isotherms allowed 

measuring the surface area of the formulated materials and control the effect of paste 

composition on the properties of the material. 

 

3.4   Adsorption equilibrium measurements 

The adsorption measurements were performed using volumetric gas adsorption 

apparatus. The pressure of the studied gas was measured at constant volume and 

temperature. Inner volume was calibrated before each measurement.  

A Belsorp-MAX instrument was used to obtain low pressure adsorption measurements, 

carried out at 303, 323 and 343 K with CH4 (purity > 99.995%), CO2 (purity > 

99.9992%) provided by Yara, Norway. Water adsorption measurements were performed 

at the same temperatures, under pressures of 0 to 4 bar. Activation of zeolite extrudates 

was performed at 573 K overnight followed by 2 hours at 393 K under vacuum in the 

Belsorp-MAX instrument. MOF extrudates were activated at 393 K overnight followed 

by 2 hours at 393 K under vacuum in the Belsorp-MAX instrument. All measurements 

were performed on the same sample under pressures ranging from 0 to 1 bar. Recording 

of several adsorption and desorption cycles confirmed that the process is reversible. 

The adsorption equilibrium for CH4 and CO2 follow a Type I isotherm and were fitted 

to the Langmuir model, which describes adsorption and desorption at identical rates. 

This is the most basic model for gas-solid adsorption as a monolayer on an ideal surface 

and the cornerstone of several adsorption theories [21]. The expression used for pure 

component isotherm is 

𝑞𝐴 =
𝑞𝐴,𝑚𝑎𝑥 𝐾𝐴𝑝𝐴

1 + 𝐾𝐴𝑝𝐴
 

where 𝑞𝐴,𝑚𝑎𝑥 represents the maximum amount adsorbed of component A and 𝐾𝐴 is the 

adsorption equilibrium constant with exponential dependence on temperature 

expressed by: 

𝐾𝐴 = 𝐾𝐴
0 exp (

−∆𝐻

𝑅𝑇
) 
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with 𝐾𝐴
0 being the adsorption constant at infinite temperature and −∆𝐻 as the heat of 

adsorption. 

The adsorption equilibrium for water follows a Type IV isotherm, so it cannot be fitted 

to a Langmuir model.  
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4. Results and Discussion 

4.1   Effect of additives 

The additive content greatly affects the consistency of the extrusion paste and its 

viability to undergo the extrusion process.  

In the case of ZSM-5 extrudates, successful extrusion was achieved throughout a wide 

range of paste compositions. Consequently, extrudates with varied features were 

obtained. Figure 18 and Figure 19 show the binder composition of the ZSM-5 extrusion 

pastes and the effect of this composition on extrudate shape and appearance. 

The true density of each extrudate sample was calculated by measurement of the mass, 

length and diameter of each pellet, volume calculation, 𝑉 = 𝜋
𝑑2

4
∗ 𝑙, and application of 

the density formula, 𝜌 =
𝑤

𝑉
. 

 
Figure 18 – Graphic representation of binder composition in the ZSM -5 extrusion pastes.  

◊ - Open cycle.  □ – circulation for 5 minutes. 
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Figure 19 - Effect of binder composition on ZSM -5 extrudates. 

Samples 1 to 3 were not extruded successfully. 

Sample 4 has high PVA content. The extruded paste was very viscous and flexible 

resulting, after thermal treatment, in uneven extrudates, with irregular diameter and 

low mechanical resistance. Extrusion in closed cycle for 5 minutes slightly improved 

consistency, however these samples weren’t selected for further characterization. 

Sample 5, with average content, resulted in consistent extrudates. Extrusion in closed 

cycle for 5 minutes produced stronger extrudates than in open cycle, with true density 

of 1.17 g/cm3. 

Sample 6 has low PVA content and produced extrudates with regular shape and 

diameter, with 1.03 g/cm3 density. This was the only sample in which a 5-minute closed 

cycle extrusion had detrimental result on the extrudates’ quality. 

Sample 7, with high silica content, resulted in extrudates with a very irregular surface 

and slight diameter variations. Closed cycle extrusion resulted in higher viscosity and 

surface uniformity. Density of 1.13 g/cm3 was calculated at 15% silica content and 0.98 

g/cm3 at 17%, indicating that the increase past a certain level doesn’t improve the 

extrudate’s properties. 

Sample 8 has low silica content and resulted in regular shaped extrudates. Extrusion 

in closed cycle improved surface smoothness and increased viscosity causing greater 

diameter variations. Density was calculated at 1.14 g/cm3 for samples with 11% silica 

and 1.86 g/cm3 for 13% silica content, representing the highest value obtained, 

indicative of the ideal composition. Table 5 summarized the results obtained in relation 

to paste composition. 
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Table 5 - Relation between composition and extrudate density in ZSM -5 extrudates. 

Sample 
PVA 

(wt %) 

Silica 

(wt %) 

Density 

(g/cm 3

) 

5 5.0 14 1.17 

6 2.0 14.3 1.03 

7.2 5.0 15.0 1.13 

7.3 5.0 17.0 0.98 

8.2 5.8 13.0 1.86 

8.3 5.0 11.0 1.14 

 

Concerning UTSA-16 crystals, lower susceptibility to composition variations was 

observed. Successfully extruded MOFs presented similar composition and the small 

variations produced more uniform samples than in the case of zeolites. The variation 

in propanol amount had a considerable effect in the resulting amount of extrudate. 

Figure 20 provides a graphic representation of extrusion paste composition. 

 
Figure 20 - Graphic representation of PVA and Propanol composition in the UTSA -16 

extrusion pastes. 

 
Figure 21 - UTSA-16 extrudates following extrusion and activation. 

Samples 1 to 4 were not successfully extruded. 
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Sample 5 contained a very low amount of propanol, resulting in very limited amount 

of extrudates, as can be observed in Figure 21. It was verified, however, that the large 

amount of water used provided this sample with a very uniform surface, and higher 

density than sample 16.3, with the same amount of PVA and higher propanol content.  

Samples 7, 9 and 16.2 were prepared using the same amount of propanol and varying 

PVA contents. Extrudate density appears to decrease with the increase of PVA 

content. The extrudate sample with lowest PVA content presented the highest density, 

at 1.66 g/cm3. 

Table 6 - Relation between composition and extrudate density in UTSA -16 extrudates. 

Sample 
PVA 

(wt %) 

Propanol 

(wt % in liquids) 
Density 

5 3 19 1.58 

7 3.9 49.9 1.34 

9 3.8 50 1.39 

16.2 2.5 50 1.66 

16.3 2.9 57 1.37 

    

4.2  SEM  Imaging 

SEM imaging techniques were used to analyse the morphology of the extrudates and 

compare them with the pristine powder. Figure 22 and Figure 23 show extrudates with 

no cracks, uniform surface and regular diameter. A 2 mm die was used for extrusion; 

the average diameter obtained was 1.88 mm for zeolite pellets and 1.98 mm for MOF 

pellets. In Figure 22 it is possible to observe a flat area in one of the sides of the ZSM-

5 extrudate sample. This deformation occurred as the material was placed on a flat 

surface to dry following extrusion; the slightly viscous nature of the fresh sample caused 

it to mould to the surface.

 
Figure 22 - ZSM -5 extrudate, sample 8.3. 

 
Figure 23 - UTSA-16 extrudate, sample 9. 
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Figure 24 - ZSM -5 extrudate surface. 

 
Figure 25 - UTSA-16 extrudate surface . 

 
Figure 26 - Powdered ZSM -5. 

 
Figure 27 - Powdered UTSA-16. 

 

The comparison of the surfaces of extrudates with the imaging of the pristine powder 

before any alteration, shows how the extrusion process affected the surface of the 

materials. In the case of ZSM-5, the comparison of Figure 24 and Figure 26 makes it 

clear that the material underwent extrusion without suffering deformation. The crystal 

structure remains almost unchanged, although it is possible to observe a tighter crystal 

packing in the extrudate and predominance of smaller and more homogenous 

structures, with sizes of 200 to 500 nm. Silica particles are too small to be 

distinguishable. In the case of the UTSA-16 extrudates, a much larger variation is 

observable between Figure 25 and Figure 27, due to the MOF lower stability and 

resistance to pressure. While the powdered material originally presented complex 

crystal structures of very large dimensions, the high shear forces it was exposed to 

during extrusion appears to have caused damage to the crystalline structure. The 

extrudates present a mostly smooth surface with small irregularities throughout. 

 

4.3   M echanical strength 

The mechanical stability of the extrudates was assessed by exposing pellets from 

different samples to crush tests. Three repetitions were performed for each sample, 

using one single pellet for each. Examples of test results for each material are shown 

on Figure 28 and Figure 29.  
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Figure 28 - Compression test results, two 

pellets of the same ZSM -5 extrudate 

sample. (Commercial 4A zeolite extrudate 

reported result for comparison [71]). 

 
Figure 29 - Compression test results, two 

pellets of the same UTSA-16 extrudate 

sample. (Commercial 4A zeolite extrudate 

reported result for comparison [71]). 

There seems to be a correlation between silica content and hardness in ZSM-5 

extrudates, shown in Figure 30, although at high silica concentrations the material’s 

resistance drops. Irregular surface and diameter variations observed in samples with 

high silica content may explain this behaviour. Only silica content is analysed as PVA 

is expected to be removed from ZSM-5 extrudates. The results obtained for UTSA-16 

extrudates seem to indicate that the hardness of the material would decrease as binder 

content increases, as shown in Figure 31. This inference is opposite to what is reported 

in previous studies [71], [79], where the binder content was reported to have a positive 

effect on the mechanical strength of the material. 

  
Figure 30 – Force applied on ZSM -5 

extrudates in relation to Silica content. 

 
Figure 31 – Force applied on UTSA-16 

extrudates in relation to PVA content.

Another study, analyses the mechanical strength in MOF-5 pellets as a function of 

density, observing that as density increases, so does the pellet’s resistance [80]. 

However, in this case, the ZSM-5 extrudates do not follow the relation described 

(Figure 32). At the UTSA-16 extrudates the denser samples are considerably more 

resistant than the least dense one (Figure 33).
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Figure 32 – Force applied on ZSM -5 

extrudates in relation to sample density. 

 
Figure 33 - Force applied on UTSA-16 

extrudates in relation to binder content. 

 

4.4   Surface area 

The N2 adsorption isotherms for determination of surface area and micropore volume 

are shown on Figure 34 and Figure 35,for zeolite and MOF pellets, respectively.  

 
Figure 34 - N2 adsorption isotherms at 77 K for ZSM -5 powder and extrudate. 

 
Figure 35 – N 2 adsorption isotherms at 77 K for UTSA -16 extrudates and powder. 
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All extrudates display a type I isotherm indicative of a microporous sample with pore 

filling at high relative pressures.  

In the case of zeolite extrudates, an average 9% decrease was observed in relation to 

the original BET surface area, with 7% reduction in the best samples. In metal-organic 

framework extrudates, the PVA is not removed from the extrudates because activation 

is performed at lower temperatures. An average decrease of 38% in the BET surface 

area was observed in these extrudates, with 22% reduction on the best sample.  

The textural results obtained for the best extrudate formulations are summarized in 

Table 7. 

Table 7 - Textural results for best formulation compositions. 

Porous 

Material 

BET area 

(m2/g) 
Micropore volume (cm3/g) 

Mean pore 

diameter (nm) 

ZSM-5 318 0.260 3.27 

UTSA-16 651 0.256 1.57 

 

Increasing amounts of binders should cause a decrease in the surface area of extrudates. 

Figure 36 and Figure 37 show the loss of surface area in relation to the samples’ binder 

content.

 
Figure 36 - Surface area decrease in 

relation to the pristine powder as function 

of the binder content, activation at 773K. 

Figure 37 – Surface area decrease in 

relation to the pristine powder as function 

of the binder content, activation at 393K. 

A correlation doesn’t seem to exist between silica content and surface area in ZSM-5 

extrudates. This may happen because, despite causing pore blockage within the zeolite, 

silica is porous itself. A direct relation is observable between binder content and surface 

area reduction for UTSA-16 extrudates. This observation is in agreeance with previous 

studies [71], where pore blockage by the large dimension binder molecules was 

highlighted as a possible cause for surface area reduction. 
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4.5  Adsorption 

The adsorption equilibrium measurements for CH4, CO2 and H2O on ZSM-5 extrudates 

are shown in Figure 38 to Figure 42. The same measurements on UTSA-16 extrudates 

are shown in Figure 43 to Figure 47.  

The Langmuir model was used for the fitting of CH4 and CO2 samples, providing an 

adequate fit to the experimental data. Model parameters are listed on Table 8.  

The H2O adsorption equilibrium isotherms do not follow a Type I shape and, therefore 

cannot be fitted using the Langmuir model. These isotherms have not been modelled.  

  
Figure 38 - Adsorption equilibrium of CH 4 on ZSM -5 extrudates at 303, 323, and 343 K . 

The filled symbols denote adsorption data and open symbols denote desorption data. 

Solid lines are fittings from the Langmuir isotherm. 

  

Figure 39 - Adsorption equilibrium of CO2 on ZSM -5 extrudates at 303, 323, and 343 K . 

The filled symbols denote adsorption data and open symbols denote desorption data. 

Solid lines are fittings from the Langmuir isotherm.  
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Figure 40 – Isosteric heat as a function of 

loading. Dashed lines represent the Δ H 

parameter employed in the Langmuir 

fitting. 

 
Figure 41 – CO2/CH 4 selectivity as a 

function of pressure. 

 

 

 
Figure 42 – Adsorption equilibrium of H 2O on ZSM -5 extrudates at 303, 323, and 343 

K, not modelled. 

Figure 1 and 2 present the adsorption equilibria of CH4 and CO2 on ZSM-5 at 303, 323, 

and 343 K within 0 to 100 kPa. The isotherms shape are Type I and the results 

presented show that the experimental data is successfully fitted with the Langmuir 

model. The results obtained for each adsorbate in ZSM-5 extrudates are in good 

agreement with data reported in the literature [81], [82]. The high silica content within 

these extrudates explains the adsorption of higher quantities of methane and lower 

quantities of water when compared with previous studies.  

Figure 3 shows the isosteric heats of adsorption for CO2 and CH4 as a function of the 

respective loadings. The horizontal dashed lines represent, the adsorption heat used as 

parameter for the Langmuir model curve fitting. The study of isosteric heat confirms 

the occurrence of physisorption in both modelled cases (Qst < 80kJ/mol). The 

adsorption of carbon dioxide involves higher interaction energy than methane. 

Although both components show variation of isosteric heat with loading, indicative of 

energetically heterogenous behaviour, methane presents a considerable wider variation 

with loading. Nevertheless, the results presented in Figure 40 show that the ΔH 

parameter employed in the Langmuir fitting (dashed lines), reported in Table 8, is in 

accordance with the calculated isosteric heats of adsorption. 
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Figure 4 presents the CO2/CH4 equilibrium selectivity. The study of selectivity, made 

by comparison of adsorption capacities of CO2 and CH4 under the same pressure and 

temperature, shows the extrudates hold higher affinity to CO2 than CH4. This feature 

seems to be highly dependent on pressure, decreasing significantly as pressure increases.  

Figure 5 presents the adsorption equilibria of water vapour on ZSM-5 extrudates at 

303, 323, and 343 K. Previous studies report that the saturation concentration of water 

in ZSM-5 presents significant variation in connection with Si/Al ratios and the presence 

of defects within the porous material [83], [84]. For this reason, due to the high Si/Al 

ratio in the ZSM-5 extrudates a lower H2O uptake was obtained, in comparison with 

the literature.  

 

  
Figure 43 – Adsorption equilibrium of CH 4 on UTSA-16 extrudates at 303, 323, and 343 

K. The filled symbols denote adsorption data and open symbols denote desorption data. 

Solid lines are fittings from the Langmuir isotherm. 

  
Figure 44 – Adsorption equilibrium of CO2, on UTSA-16 extrudates at 303, 323, and 

343 K . The filled symbols denote adsorption data and open symbols denote desorption 

data. Solid lines are fittings from the Langmuir isotherm.. 
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Figure 45 - Isosteric heat as a function of 

loading. Dashed lines represent the Δ H 

parameter employed in the Langmuir 

fitting. 

 
Figure 46 - CO2/CH 4 selectivity as a 

function of pressure. 

 

 

 
Figure 47 - Adsorption equilibrium of H 2O on UTSA-16 extrudates at 303, 323, and 343 

K, not modelled. 

 

Figure 6 and 7 present the adsorption equilibria of CH4 and CO2 on UTSA-16 at 303, 

323, and 343 K within 0 to 100 kPa. The isotherms shape are Type I and the results 

presented show that the experimental data is successfully fitted with the Langmuir 

model. The values obtained in UTSA-16 adsorption are somewhat lower than those 

reported in the literature [71]. This is expectable, considering the lower surface areas 

in these extrudates. 

Figure 8 shows the isosteric heats of adsorption for CO2 and CH4 on UTSA-16 as a 

function of the respective loadings. The occurrence of physisorption in the modelled 

cases is once again confirmed by the analysis of isosteric heats (Qst < 80kJ/mol). In 

UTSA-16, the adsorption of carbon dioxide also involves higher interaction energy than 

methane. In this case, the isosteric heat seems to be independent of loading in both 

cases, indicating energetically homogenous behaviour. Once again, the calculated heats 

of adsorption are in accordance with the Langmuir fitting parameter (ΔH), as reported 

in Table 8. 
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Figure 9 shows the CO2/CH4 equilibrium selectivity as a function of pressure at 303, 

323, and 343 K. The study of selectivity shows the extrudates hold very high affinity 

to CO2 (about 10 times as high as observed on ZSM-5 extrudates). Again, this feature 

seems to be highly dependent on pressure, decreasing considerably as it increases. 

Zeolite extrudates show slightly higher capacity for methane adsorption than UTSA-

16 extrudates. The opposite is observed for CO2 adsorption, where UTSA-16 pellets 

show nearly twice as much capacity than ZSM-5 extrudates. This justifies the much 

higher CO2/CH4 selectivity observed for the MOF. 

Figure 10 presents the adsorption equilibria of water vapour on UTSA-16 extrudates 

at 303, 323, and 343 K. The isotherms shape corresponds to Type V of the IUPAC 

classification and, therefore, could not be fitted with the Langmuir model. The obtained 

results show that UTSA-16 adsorbs more than 10 times the amount of water adsorbed 

by the high Si/Al ratio ZSM-5 extrudates produced.   

 

 

Table 8 - Langmuir parameters of CH4 and CO2 adsorption on ZSM -5 and UTSA-16 

extrudates. 

 CH4 CO2 

ZSM-5 extrudates 

qA,max, mol/kg 1.50 2.0 

KA
0, kPa-1 5.7x10-7 3.8x10-7 

-ΔH, J/mol 22500 26600 

UTSA extrudates 

qA,max, mol/kg 2.8 4.0 

KA
0, kPa-1 1.2x10-6 3.2x10-8 

-ΔH, J/mol 17700 36120 
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5. Conclusions and Further W ork 

 

This study was focused on the formulation of porous materials and their 

characterization, with measurement of adsorption equilibrium for methane and carbon 

dioxide to evaluate the viability of the application of these materials for natural gas or 

biogas capture. Additionally, water adsorption was evaluated to evaluate material 

stability and moisture resistance.  

Zeolite (ZSM-5) and metal-organic framework (UTSA-16) pellets were formulated by 

extrusion, in an established four-step. Pre-existent paste compositions were adapted 

and variations were made to evaluate the effect of varying additive composition on the 

extrudate properties. In the case of ZSM-5 extrudates, the commonly used alumina 

binder was replaced with colloidal silica, which increase the material’s selectivity to 

methane adsorption. 

The formulation process resulted in pellets of uniform surface and diameter, without 

cracks. A surface area reduction was observed in zeolite samples (9% average decrease) 

and more significant decrease in MOF extrudates (38% average decrease), due to 

considerable collapse of the crystalline structure subject to high shear forces during the 

extrusion process and some degree of pore blocking caused by the binder molecules. It 

was observed that lower binder content originates denser pellets. The density of ZSM-

5 extrudates (1.19 g/cm3, average) was similar to commercial zeolite pellets. In UTSA-

16 it was considerably superior (1.47 g/cm3, average). Increasing silica content to a 

certain level in zeolites led to growing mechanical strength of the extrudates. The 

opposite was observed in MOF extrudates, which is contrary to previously reported 

results. The mechanical strength obtained for the majority of samples was considerably 

higher than reported for commercial zeolite pellets. 

Both extrudates were shown to adsorb methane and carbon dioxide at rates similar to 

those described in the literature. Slightly higher amounts of methane were adsorbed on 

ZSM-5 extrudates than what is described in previous studies, likely due to the larger 

silica ratio existing in these pellets. Additionally, ZSM-5 extrudates showed 

considerably low affinity to water, a desirable feature that can be explored for several 

applications. UTSA-16 extrudates show higher capacity for carbon dioxide adsorption, 

adsorbing nearly twice as much as ZSM-5 extrudates. The formulation processes 

implemented yielded favorable results, particularly for ZSM-5 extrudates. Both 

materials showed viability for application in natural gas or biogas storage. 

Future research in formulation should be focused on process optimization, namely the 

prevention of crystal structure collapse and pore blocking. Regarding adsorption 

selectivity, it would be interesting to evaluate adsorption at higher pressures. In 

addition, the study of separation efficiency for binary mixes, like CH4/CO2 would 
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provide further insight into the suitability of these materials for gas separation and 

storage.   
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