

Master Program in Advanced Analytics

NOVA Information Management School
Instituto Superior de Estatística e Gestão da Informação

Universidade Nova de Lisboa

Algorithmic Composer, an Unconventional
Music Classification System

Carolina Almeida Duarte

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master in Advanced Analytics

Algorithmic Composer, an Unconventional Music Classification System

Copyright © Carolina Almeida Duarte, Faculty of Sciences and Technology, NOVA

University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dis-

sertation through printed copies reproduced on paper or on digital form, or by any

other means known or that may be invented, and to disseminate through scientific

repositories and admit its copying and distribution for non-commercial, educational

or research purposes, as long as credit is given to the author and editor.

To all of those who supported me throughout this journey.
Every second I shared with you was timeless. Your company

has inspired me and made me a better person.

Acknowledgements

I would like to express my gratitude to my advisor Professor Leonardo Vanneschi, for

his support in the development of this thesis and, specially, for his joy and dedication

as a teacher which sparked my own passion for the Machine Learning world.

I would also like to thank Bea Babiak and András Kolbert, my dearest friends and

colleagues during the first year of the Masters and from whom I have learned so much.

Also, this thesis would not be possible without Miguel Domingos - you introduced me

to Music. You have inspired me with your knowledge and with your skills.

And finally, I would like to thank my dearest work friends, with whom I have shared

so much during the last year. I feel blessed to have met you all. Márcia Pinheiro, Sara

Lopes, Joana Loureiro, Alexandra Jesus, Tiago Rodrigues... And especially you, André

Marques! You gave me the strengh and energy to finish this document.

vii

Abstract

Music is an inherent part of the human existence. As an art, it has mirrored its

evolution and captured its thinking and creative process over the years. Given its

importance and complexity, machine learning has long embraced the challenge of

analyzing music, mainly through recommendation systems, classification and compo-

sition tasks.

Current classification systems work on the base of feature extraction and analysis.

The same applies for music classification algorithms, which require the formulation of

characteristics of the songs. Such characteristics can be of varying degrees of complex-

ity, from spectrogram analysis to simpler rhythmic and melodic features. However,

finding characteristics to faithfully describe music is not only conceptually hard, but

mainly too simplistic and restrictive given its complex nature.

A new methodology for music classification systems is proposed in this thesis,

which aims to show that the knowledge learned by state of the art composition systems

can be used for classification, without need for direct feature extraction.

Using an architecture of recurrent neural networks (RNN) and long-short term

memory cells (LSTMs) for the composition systems and implementing a voting scheme

between them, the classification accuracy of the experiments between classes of the

Nottingham dataset ranged between 60% and 95%. These results provide strong evi-

dence that composition systems do indeed possess valuable information to distinguish

between classes of music. They also prove that an alternative method to standard

classification is possible, as classification targets are not directly used for training.

Finally, the extent to which these results can be used for other applications is

discussed, namely its added value to more complex classification systems, as well as

to recommendation systems.

Keywords: Music Classification; Composition Systems; Recurrent Neural Networks;

Long Short Term Memory Cells

ix

Resumo

A Música é uma componente inerente à existência humana. Enquanto arte, tem

refletido a sua evolução e captado o seu processo cognitivo e criativo ao longo dos tem-

pos. Tendo em conta a sua importância e complexidade, a área do Machine Learning

desde há muito abraçou este desafio, sobretudo através de sistemas de recomendação,

classificação e composição musical.

Os sistemas de recomendação atuais funcionam na base de extração de features

e respetiva análise. O mesmo se aplica a algoritmos de classificação musical, que re-

querem a formulação de características musicais. Estas podem ter diferentes graus

de complexidade, desde análise de espectros a simples features melódicas e rítmicas.

Contudo, formular caracteríticas musicais não só é conceptualmente difícil, como so-

bretudo simplista e restritivo dada a sua natureza complexa.

Uma nova metodologia para sistemas de classificação musical é proposta nesta

tese, com o objectivo de demonstrar que o conhecimento aprendido por sistemas de

composição pode ser utilizado para classificação, sem que haja necessidade de um

processo de conceptualização e extração de características.

Utilizando uma arquitectura de redes neuronais recorrentes e células de memória

longa e curta para os sistemas de composição e implementando um sistema de votação

entre eles, a precisão para classificações binárias entre as classes do Nottingham dataset

variou entre 60% e 95%. Estes resultados demonstram uma forte evidência de que os

algoritmos de composição podem ser utilizados para tarefas de classificação e provam

ainda que um método alternativo à classificação convencional é possível.

Finalmente, a aplicabilidade destes resultados para outros projetos é discutida,

nomeadamente o valor acrescentado que pode trazer para sistemas de classificação

mais complexos, assim como a sistemas de recomendação.

Palavras-chave: Classificação Musical; Sistemas de Composição; Redes Neurais Recor-

rentes; Células de Memória Longa e Curta

xi

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

2 Previous and Related Work 3

2.1 Algorithmic Composition . 3

2.2 Classification . 5

3 Neural Networks 7

3.1 The Inspiration Behind Neural Networks 7

3.2 Components of Artificial Neural Networks 8

3.2.1 Propagation Function . 9

3.2.2 Activation Function . 9

3.2.3 Cost Function . 11

3.3 Neural Networks Architectures . 13

3.3.1 Feedforward Neural Network 13

3.3.2 Recurrent Neural Network . 14

3.4 Methods to Improve Learning Performance 19

4 Data Representation 23

4.1 Digital Audio Files . 23

4.2 Sheet music and ABC notation . 24

4.3 MIDI Files . 24

5 Methodology 27

5.1 High Level Design and Concept . 27

5.2 Data Preparation . 29

5.2.1 Details on the Matrix Representation 29

5.2.2 Dataset . 30

5.2.3 MIDI file to matrix representation 31

5.2.4 Data Quality . 34

xiii

CONTENTS

5.3 Technical Details on the Algorithm Architecture 35

5.3.1 Basic Structure . 35

5.3.2 Internal Elements . 35

5.3.3 Algorithm Parameters . 36

6 Results 39

6.1 Composition System . 39

6.2 Classification System . 43

7 Future Work 47

8 Conclusions 49

Bibliography 51

xiv

List of Figures

3.1 Three Layer Neural Network. 9

3.2 The sigmoid activation function and its derivative. 11

3.3 Basic Structure of a Recurrent Neural Network. 15

3.4 Unfolded Recurrent Neural Network along the time axis. 15

3.5 Structure of a basic Neural Network cell. 16

3.6 Structure of a Long-Short Term Memory cell (LSTM). 16

3.7 Forget Gate of a LSTM cell. 17

3.8 Input Gate of a LSTM cell. 18

3.9 Output Gate of a LSTM cell. 18

5.1 Proposed Architecture of the Classification System. 28

5.2 Sample Matrix with 15 time steps, 2 melody notes and 1 chord. 30

5.3 Note played within the limits of the defined time step. 33

5.4 Note played during the previous time step and also at the beggining of the

current time step. 33

5.5 Note played at the end of the current time step and also in the following

time step. 33

6.1 Accuracy of the notes and chords prediction for a varying melody coefficient. 41

6.2 Distribution of the chords and melody notes in the Nottingham dataset. . 42

6.3 Distribution of songs per class in the Nottingham dataset. 43

xv

List of Tables

6.1 Results obtained for the binary classification between the categories ”Hpps”

and ”Waltzes”. 44

6.2 Results obtained for the binary classification experiments between the cat-

egories ”Jigs”, ”Reels”, ”Hpps” and ”Waltzes”. 44

6.3 Results obtained for the binary classification experiments between the cat-

egories ”Reels” and ”Jigs”. 45

6.4 Results obtained for the binary classification experiments using a voting

system between the categories ”Jigs”, ”Reels”, ”Hpps” and ”Waltzes”. . . 46

xvii

Chapter 1

Introduction

Machine learning techniques have opened new possibilities in a world where most

seemed already explored. Wherever there is data, there is potential for discovery.

There has come a time when it is possible to stare again at an immense ocean and

wonder what is beyond. An ocean of data waiting to be uncovered.

Reality is data waiting to be processed and comprehended – it is why it is such a

plentiful resource – and yet, some things are still hardly recognized as such because

of their unstructured nature. Music, for instance. Music is the information the human

mind extracts from a collection of sounds. However, thinking of music as data is

still somehow surprising. The first goal of this thesis is therefore to explore a subject

outside the beaten path and increase the sensibility and awareness of what data is and

is not and how it can be treated in order to extract information from it.

With the current machine learning solutions, the number of tasks that only the

human mind can do in comparison with intelligent systems is rapidly decreasing and

in many cases the performance of the later has been higher than the former – otherwise,

such systems would not be in use. Music, however, is still a task reserved to the talented

mind. Intelligent systems are still far from composing at a high-quality level or even

understanding music, mostly because of our inability to properly describe it so that

the knowledge behind its creation can be learnt. This brings the second goal of this

thesis – to explore the current work made on the field regarding music composition

and classification and understand its fundamental ideas, as well as its weaknesses and

strengths.

An investigation of the current state of music classification algorithms reveals an

interesting paradox. Classification systems work based on characteristics of the data,

from which several algorithms can be applied to determine a function that performs

a better separation between classes. In the case of music classification systems, those

characteristics are musical features of the songs. However, given the inherent difficulty

of describing something as complex as music, it makes little sense to base a classifi-

cation system on characteristics that are unable to capture the nature of music itself.

This factor brings motivation and inspiration to the theme of this thesis, which is to

1

CHAPTER 1. INTRODUCTION

develop a new concept of a musical classification system that avoids the direct use of

characteristics of the songs, requiring no extraction of the same.

Such system will be based on the performance of the composition systems on the

songs to be classified. Each composer will be specialized in a certain class of music,

which can theoretically be achieved by training it only with songs that belong to that

class. It is then expected that, given a song, the composition system which better

succeeds at predicting it will determine its class.

With this methodology, no direct training on the target variable is performed for

the classification and no need for direct extraction of features of the songs is necessary,

which represents a new paradigm in classification algorithms. In order explore this

concept, the current work is organized as follows. In section 2 the literature of current

composition and musical classification algorithms is reviewed. Section 3 provides

basic knowledge on the mathematical foundations of the algorithms which will be used

ahead. Section 4 explores a variety of musical representations and its weaknesses and

strengths regarding its use for composition. In section 5, the structure and technical

details of the classification system proposed in this thesis are explained in detail and

in section 6 its results on several different experiments are presented and discussed.

Finally, section 7 provides an overlook of future improvements to the current work, as

well as perspective of its value and scope of application.

2

Chapter 2

Previous and Related Work

Music has long captivated and inspired the human mind, with millions of songs being

composed over the course of history. What might be surprising at first sight is that

music is also data – much like everything that surrounds us. To be aware of reality

is to be cognizant of the surrounding events and this is only possible when receiving

data from those elements – when the lights go off, awareness of the surrounding space

is lost. Music is the brain’s interpretation of the information present in sound waves

and so, in its simplest form, data waiting to be processed.

With music being such a plentiful and challenging type of data, and considering

its importance to society, the research on the field has been intensive. The main fields

of study include recommendation systems, classification and algorithmic composition.

In this thesis, the focus will be on the latter two.

2.1 Algorithmic Composition

For years, music composition has been a task reserved only to the most talented. Time

has brought new players into action and, since the 1950s, different computational

techniques related to Artificial Intelligence have been used for composition. Hiller and

Isaacson introduced the first computer-generated musical piece in 1955 [1]. The “lliac

Suite” was a composition for string quartet divided into four experiments - the first

three where generated with pre-defined musical rules and the fourth using variable

order Markov chains. This work was particularly interesting as it contained the two

main approaches later followed in the field: rule-based and learning systems.

Rule-based systems are the most intuitive means of creating an artificial compo-

sition and rely on a set of rules which the computer is obliged to follow either in

producing or assessing music. The complexity of such rules may vary, but a simple

example may be found in the Musical Dice Games developed by Mozart in which pre-

composed phrases were combined using a table of rules and the outcome of a dice

roll. Those rules can also embody complex knowledge about specific musical styles, as

in [18] where 270 production rules, constraints and heuristics where found from the

3

CHAPTER 2. PREVIOUS AND RELATED WORK

empirical observation of J. S. Bach chorales.

The systems previously described use rules to evaluate randomly generated se-

quences of music and their connection with the previously defined sequence. How-

ever, more complex systems can be built based on rules, as is the case of evolutionary

algorithms. Such algorithms rely on a fitness function to evaluate sequences and then

evolve them through a set of operators that simulate the effects of crossover and mu-

tation on a population of musical sequences. In theory, human evaluation could be

used to assess the quality of those sequences, however it is not a scalable solution.

This fitness bottleneck can be eliminated by creating automated evaluators, which are

commonly defined as a weighted sum of a set of features of the composition [9]. Rel-

evant works can be found in [1], [7] and [21], where several rules concerning melody,

harmony and rhythm are incorporated into a fitness function and in [11], where a

statistical approach is taken to find mean values for certain characteristics, with fit-

ness being then defined as the distance between the individual and the mean of the

characteristic.

Two main issues arise with the rule-based systems described: not only it is difficult

to determine rules concerning what is musically pleasant or not - whenever a set of

rules is nailed down, exceptions and extensions are always discovered that necessitate

more rules [3] - but those rules can also restrict the system. With music being an art,

creativity and unpredictability are both critical. Rule-based systems, by definition,

lack exactly this higher-level knowledge.

Learning systems are the other main approach to music composition - rather than

requiring the development of a set of musical rules, they are trained on a set of musical

examples. As such, and unlike rule-based systems, the richness of the final composi-

tions is only limited by the power of the algorithm and, naturally, by the data itself.

The first notable works following this approach used Markov chains [1] [2].

Although Markov-process music has proven to be successful over the short term,

it has failed to show structure over the long term. In other words, the events at a

given time have a small influence range over the following events, which for time

dependent problems such as music is a critical downside. Theoretically this issue

could be overcome by using higher order chains, for they would allow to increase

the influence range along the time axis. However, this would imply an exponential

growth in the state space, making it increasingly difficult to adequately populate the

corresponding transition matrix and, ultimately, to train the model [4]. For this reason,

recurrent neural networks (RNNs) have taken place as the number one choice for

learning composition systems. In theory, their architecture should allow an easier

exploration of long term dependencies on time series problems.

However, the first works on music composition with RNNs revealed difficulties

in the training procedure, as stated by Mozer (1994) [5]. In his work, melodies were

generated by a system named CONCERT, which was trained on sets of 10 Bach pieces

to generate melodies by note-wise prediction. The results exposed a lack of ability

4

2.2. CLASSIFICATION

to learn the global structure of the music, similarly to what had been reported with

Markov chains. But the issue was identified - the difficulty in training the system was

due to the vanishing gradient problem.

The vanishing gradient problem, as described by Bengio et al. (1994) [32] causes

difficulty in learning long term dependencies in the sequence. It is inherent not only

to RNNs, but to all gradient based methods in general and may be avoided to some

extent using different techniques. Regarding RNNs, the problem can be solved us-

ing modified cells – Long-Short Term Memory cells (LSTMs). As the name suggests,

each of these cells contains an internal memory that allows them to keep track of the

information considered relevant, even if it refers to events from a distant past.

Several studies have been made in the recent years using this architecture (RNN +

LSTM), for instance [24] and [31]. Mostly, they differ by the type of music representa-

tion used and the extent to which the different components of the music are used for

prediction – if more than one instrument is used, if only chords or only melodies are

predicted, etc. Regarding the representation of music, various alternatives have been

studied, with focus on text and binary matrix representations. The first corresponds

to music written in abc notation and can be viewed as a natural language processing

(NPL) problem, as explored in [29] and [24]. This approach is certainly richer than

a binary matrix representation, however it is also considerably slower to successfully

train such systems. For this reason, and as composition is not the final goal of this

thesis, a binary matrix representation is used.

Works following this approach can be found in [35], [31] and [15], with focus on the

former two, for they successfully analyze both the melodic and the harmonic structure

of music and thus serve as the main source of inspiration for the composition system

used in this thesis.

2.2 Classification

Reality is a continuous flow of information – processing such an amount of data is

a task the human mind has successfully accomplished through its ability of finding

patterns and organize them into groups.

Algorithmic classification aims at automating this task and ultimately apply it to

problems that are still unreachable. This process usually implies the identification

of characteristics that are as unique as possible to the subject of study. Music clas-

sification follows the same direction – classification in genre / artist / epoch, etc. is

usually accomplished by determining a set of characteristics and feeding them into an

algorithm. Through the years, the differences between studies in the field have mainly

been around feature extraction and the algorithms used.

Inspiring works can be found in [33], where 109 musical features where extracted

from symbolic recordings and trained with an ensemble of feedforward neural net-

works and k-nearest neighbor classifiers to classify the recordings by genre with success

5

CHAPTER 2. PREVIOUS AND RELATED WORK

rates of up to 90%, and also in [10], where a convolutional recurrent neural network

(CRNN) was developed for the purpose of music tagging. Adopting a RNN architec-

ture allowed to consider the global structure of the music by taking into consideration

the information extracted from log-amplitude mel-spectrograms at each time interval

analyzed. Other works have been important to the field of music classification, as in

[12], [13] and [17], with success rates ranging between 63% and 84%.

All the classification systems mentioned before share a common ground – they

all rely on a set of pre-defined musical features. The challenge is to find which of

those features can successfully describe something as complex as music, assuming it

is possible. The similarity with rule-based systems is undeniable and so current music

classification systems suffer from the same issues – good rules or features are hard to

find and, mainly, they are usually restrictive.

In this thesis, a classification system is proposed in order to overcome this issue.

With inspiration on the mentioned works, an ensemble of recurrent neural networks

will be used to classify different types of music. However, no set of extracted features

will be used. Instead, the analysis of the songs similarity will be left for a composition

system to determine, allowing to consider the time series nature of the problem. Such

architecture defies the nature of classification algorithms, as the information of the

target classes is not directly provided for training and no predefined set of features

is used. Rather, n composition systems are trained for each of the n target classes

defined, only with songs from the corresponding class. A new music will then be

labeled according to the target class of the most successful composer.

6

Chapter 3

Neural Networks

This chapter aims to cover the principles of neural network architectures needed to

develop a successful music composition system.

3.1 The Inspiration Behind Neural Networks

The study of artificial neural networks has been motivated by their similarity to work-

ing biological systems, which consist of very simple but numerous neurons that work

massively in parallel and have the capability to learn [17].

A neuron is a nerve cell composed by:

• Dendrites: these structures receive information passed on from other neurons

by means of an electrical or chemical process called synapse;

• Nucleus: when the accumulated signal collected from different dendrites exceeds

a certain threshold, an electrical pulse is activated;

• Axon: the electrical pulse generated in the nucleus is transmitted through the

axon to all the connected neurons.

While a single neuron is an extremely simple entity, it is the number and the way

neurons are interconnected that makes the brain so powerful. Inside a computer, the

equivalent to a brain cell is a device called a transistor. While a typical brain contains

1011 neurons with a switching time of 10−3, a computer comprises 109 transistors with

a switching time of 10−9 seconds [17]. However, transistors in a computer are wired in

relatively simple serial chains, while the neurons in a brain are densely interconnected

in complex, parallel ways.

The basic idea behind an artificial neural network is therefore to simulate the struc-

ture of the brain by recreating the process occurring inside neurons and connecting

them together.

7

CHAPTER 3. NEURAL NETWORKS

3.2 Components of Artificial Neural Networks

Neurons are the building blocks of neural networks and hence, the first step in building

an artificial neural network is to replicate their functioning. In order to design an

artificial neuron i, the roles of each of the components of biological neurons should be

reproduced:

• The dendrites of an artificial neuron i are represented by all the incoming con-

nections from other neurons;

• The nucleus of an artificial neuron i is simulated using a propagation function

f , which congregates all the signals from incoming neurons, and an activation

function σ (f), which models the response of the neuron to the stimuli;

• The axon of an artificial neuron k establishes synapses with the dendrites of all

the connected neurons. A synapse between the axon from the neuron k and the

dendrites of the neuron j in the ith layer of the network has an associated strength

wijk . Synaptic strenghts are learnable parameters and control the influence of the

information passed along neurons. The learning process is dependent on a cost

function E and it is usually achieved artificially using gradient descent methods.

The functioning of biological neurons can then be reproduced given the associ-

ations described previously and once the mentioned functions have been properly

defined. The learning mechanisms will be explored in later sections, as they are de-

pendent on the neural network architecture as a whole and not on a single neuron.

Before defining and exploring in greater detail the propagation, activation and cost

functions, it is imperative to define a terminology for the different components of an

artificial neural network (ANN) architecture. In ANNs, neurons are distributed in

layers – at least two, the input and the output layer. Generally, the neurons from one

layer are connected to all the neurons from the antecedent and the preceding layers.

Considering only the interactions between the jth neuron in the ith layer of the network

and all its connections from the previous layer, as shown in figure 3.1.

The following notation applies:

• wijk is the weight of the connection between the jth neuron in the ith layer and

the kth neuron from the previous layer;

• bij is the weight of the bias term, sometimes also interpreted as bij =ωij0. The bias

term is constant and equal to 1, the same for all the neurons in the network, and

its weight only changes in order to allow for shifts in the activation function;

• ai−1
k is the output of the kth neuron in the (i − 1)th layer of the network. Let

zij = f (ωijk , a
i−1
k) and σ (zij) be respectively the propagation and the activation

functions yet to be defined. Then: aij = σ (zij).

8

3.2. COMPONENTS OF ARTIFICIAL NEURAL NETWORKS

𝑎𝑘
𝑖−1

𝑎𝑘+1
𝑖−1

𝑎𝑘+2
𝑖−1

𝑖𝑡ℎ𝑙𝑎𝑦𝑒𝑟

𝑗𝑡ℎ
𝑛𝑒𝑢𝑟𝑜𝑛

(𝑖 − 1)𝑡ℎ𝑙𝑎𝑦𝑒𝑟

𝑤𝑗 𝑘
𝑖

𝑤𝑗 𝑘+1
𝑖

𝑤𝑗 𝑘+2
𝑖

𝑏𝑗
𝑖

𝑘𝑡ℎ
𝑛𝑒𝑢𝑟𝑜𝑛

(𝑘 + 1)𝑡ℎ
𝑛𝑒𝑢𝑟𝑜𝑛

(𝑘 + 2)𝑡ℎ
𝑛𝑒𝑢𝑟𝑜𝑛

Figure 3.1: Three Layer Neural Network.

3.2.1 Propagation Function

Each neuron i receives multiple input connections, either direct inputs of the problem

at hand or outputs of other neurons and aggregates all this stimuli into a single signal

using a propagation function:

f = f (wijk , a
i−1
k)

Although this net signal could be calculated using innumerous functions, the most

common propagation function is an inner product between the vector of weights and

the vector of neuron outputs:

f (wijk , a
i−1
k) = zij =

n∑
k=0

ωijk ∗ a
i−1
k =

n∑
k=1

ωijk ∗ b
k
j

3.2.2 Activation Function

Biological neurons respond differently according to the received stimuli. If the resul-

tant signal is above a certain threshold, the neuron sends an electrical signal, or a

spike, along its axon. In artificial neural networks, the assumption is that the precise

timings of the spikes are not relevant, but it is rather their frequency that holds the

information [14]. To model this behavior, a function representing the frequency of the

spikes along the axon is used - the activation function.

9

CHAPTER 3. NEURAL NETWORKS

Using the previous notation, the activation function σ is such that:

aij = σ (zij)

Different functions can and have been used as activation functions. The most basic

activation function is the binary threshold function or Heaviside function. It is defined

as:

σ (zij) =

0 if zij < 0

1 if zij ≥ 0

The function takes only two possible values and is not differentiable at zij = 0. As

such, learning algorithms as backpropagation cannot be used.

A historically popular choice for the activation function was the sigmoid function,

which is a special case of the logistic function and is defined as:

σ (zij) =
1

(1 + e−z
i
j)

As for the Heaviside function, the sigmoid outputs values between 0 and 1, how-

ever unlike the first it is continuous and therefore differentiable. The drawback with

this activation function is that it promotes what is known as the vanishing gradient

problem if the network uses gradient based methods to learn [20].

Essentially, if a change in a parameter’s value causes very small changes in the

network’s output, then that parameter cannot be learnt effectively. This can be easily

seen by analyzing the expression for the update of the weights using backpropagation,

which is dependent on the first derivative of the activation function (please refer to

the next section on Neural Networks Architecture for further details).

For the case in which the activation function σ is the sigmoid function:

σ (zij) =
1

(1 + e−z
i
j)
⇒ σ ′(zij) =

e−z
i
j

(1 + e−z
i
j)

2

For both large and small inputs, the derivative is very close to zero, thus killing the

gradient and making the learning process harder. This effect can be observed in figure

3.2. The issue worsens when multiple layers of neurons are used.

Several functions have been found to overcome this issue. In particular, the Rec-

tified Linear Unit (ReLU) has become very popular in the last few years. It is defined

as:

σ (zij) = max(0, zij)

This function was found to greatly accelerate the convergence of stochastic gradient

descent compared to the sigmoid functions, allegedly due to its linear, non-saturating

form [22].

10

3.2. COMPONENTS OF ARTIFICIAL NEURAL NETWORKS

𝜎′

𝜎

Figure 3.2: The sigmoid activation function and its derivative.

The previous examples of activation functions depended only on the net value of

the input for a specific neuron j. However, activation functions might also take into

consideration the inputs of the other neurons in the same layer. One case of such

functions is the softmax function, also known as the normalized exponential. It is

defined as:

σ (zij) =
ez

i
j∑

k e
zik

Although this activation function can be used in any layer of the network, it is

usually used in the last. As a consequence of the mathematical definition of this

function, the outputs of the network are always positive and sum up to one. This can

be easily proven using the properties of summations and the exponential function:

ez
i
j > 0∀zij ∈R⇒

ez
i
j∑

k e
zik
> 0∀zij ∈R

∑
j

σ (zij) =
∑
j

ez
i
j∑

k e
zik

=

∑
j e
zij∑

k e
zik

= 1

Being always positive and adding up to one, the outputs of a softmax layer can be

thought of as belonging to a probability distribution. In many cases this interpretation

might be convenient. For instance, in a classification problem the output of a the

softmax layer will be the probability of a chosen input to belong to a certain class.

3.2.3 Cost Function

Learning to perform a task usually requires several trials – each successive trial should

be an attempt to improve on the results achieved in the past. Learning systems, and in

11

CHAPTER 3. NEURAL NETWORKS

particular neural networks, follow the same approach: in each iteration, the network

gives an output that is compared with the true value. This comparison operation

is performed by a cost function, and its result is used to modify the weights of the

connections in the network, thus allowing the network to better shape the solution

surface. In principle, the more different the real and the expected output are, the

larger will be the modifications in the network’s weights.

Using the previously defined notation and representing yij as the correct output of

the jth neuron in the ith layer of the network, the cost function E is such that:

E = E(aij , y
i
j)

Multiple cost functions may be used, the simplest and most common of all being

the quadratic cost, also known as squared error, maximum likelihood or sum squared

error. Let n be the number of training examples. Then the quadratic cost is defined as:

Eij =
1

2n

n∑
x=1

(aij − y
i
j)

2

Although the quadratic cost is a popular choice for the cost function, it has a

major disadvantage if the activation function chosen for the network is the sigmoid.

Learning is expected to be faster when the difference between the real and the expected

output (the error) of the network is larger, however this premise may be compromised

if using this cost function, as the update of the connection weights is proportional

to the derivative of the activation function [27] (please refer to the next section on

Neural Networks Architecture for further details). If this function is the sigmoid, the

derivative is very close to zero to either large or small outputs (neuron saturation), as

seen before. As such, even if the error is large, the update in the weights will be small:

∂Eij

∂ωijk
= (aij − y

i
j)ω
′(zij)a

i−1
j

∂Eij

∂bij
= (aij − y

i
j)ω
′(zij)

In order to overcome this issue, a common solution is to use a cross-entropy cost

function, which is defined as:

E = −1
n

n∑
x=1

yij ln(aij) + (1− yij) ln(1− aij)

This cost function was developed precisely to fix the learning slowdown problem

presented before. Making use of a property of the sigmoid function, whose deriva-

tive can be written as a function of the sigmoid itself, it can be easily seen that the

derivatives are no longer dependent on σ ′(zij):

12

3.3. NEURAL NETWORKS ARCHITECTURES

σ (zij) =
1

1 + e−z
i
j

⇒ σ ′(zij) =
e−z

i
j

(1 + e−z
i
j)2

=
1

1 + e−z
i
j

× (1− 1

1 + e−z
i
j

) = σ (zij)× (1− σ (zij))

∂Eij

∂ωijk
=

1
n

n∑
x=1

σ ′(zij)a
i−1
j

σ (zij)× (1− σ (zij))
(σ (zij)− y

i
j) =

1
n

n∑
x=1

(aij − y
i
j)a

i−1
j

∂Eij

∂bij
=

1
n

n∑
x=1

(aij − y
i
j)

Therefore, the cross-entropy cost function is the most common choice whenever

the activation function is the sigmoid.

3.3 Neural Networks Architectures

Several different network architectures exist, however their basic learning principle

is the same: to find the vector of weights [wijk] and bias [bij] that minimizes the differ-

ence between the actual and the expected output of the network. In this section, the

two main existing architectures and their most common learning methodologies are

analyzed.

3.3.1 Feedforward Neural Network

In feedforward networks, information flows in only one direction, from the input

nodes, through (possible multiple or none) hidden layers of neurons and finally to the

output nodes. The simplest example of such architecture is a single layer network.

For this simple example, the delta rule, which is based on gradient descent, is

applied as the learning mechanism of the network. According to this rule, the weights

of the network should be modified in the following way:

wijk = wijk +∆wijk

∆wijk = −η ∂E

∂wijk

Here η is an adjustable parameter called learning rate which regulates the magni-

tude of the update. As this network has no hidden layers, there are only connections

between the input and the output layer. As such, the index i may be ommited from

the previous expressions. Furthermore, only the neurons from the output layer are

responsible for performing computations and their output is also the final output of

the network. As such, the associated error is clearly defined – both the output of the

neuron and the expected output are known - and its exact form is only dependent on

13

CHAPTER 3. NEURAL NETWORKS

the chosen cost function E. For example, in the case in which the cost function is the

quadratic cost:

∂E
∂ωjk

=
∂E
∂σ

∂σ
∂ωjk

= (aj − yj)σ ′(zj)

As demonstrated before, the derivative of the sigmoid function can be written as a

function of the sigmoid itself. For this case, the previous expression may be written as:

σ ′(zij) = σ (zij)× (1− σ (zij))

∂E
∂ωjk

= (aj − yj)σ ′(zj) = aj(1− aj)(aj − yj)

A similar methodology is followed for multilayer feedforward networks. The dif-

ference between these and the single layer network analyzed before is the existence

of hidden layers of neurons between the input and the output layers. This fact trig-

gers a crucial observation - only the expected outputs of output layer of the network

are known, as they correspond to the targets on the training data used. There is no

information on what the outputs of the hidden neurons should be. As such, instead of

the delta rule, a more general method should be used, the most common of which is

backpropagation. Backpropagation may be decomposed in one forward step and one

backward step. In the forward step, the weights of the connections remain unchanged

and the outputs of the network are calculated propagating the inputs through all the

neurons of the network. The backward step consists in the modification of the weights

of each connection:

• For the output neurons, the modification is performed as before, by means of the

delta rule;

• For the hidden neurons, the modification is done by propagating forwards the

error of the output neurons: the error of each hidden neuron is considered as

being equal to the sum of all the errors of the neurons of the subsequent layers.

3.3.2 Recurrent Neural Network

In feedforward neural networks, information flows in a single direction - from the

input layer directly to the output layer. Recurrent neural networks (RNNs) do not

impose such constraints, thus allowing for the existence of loops in the architecture.

As such, each neuron in the hidden layer receives not only the inputs from the previous

layer in the network, but also its own outputs from the last time step. This structure

is shown in figure 3.3. The same architecture can be represented more clearly by

unfolding the network along the time axis, as shown in figure 3.4.

14

3.3. NEURAL NETWORKS ARCHITECTURES

Figure 3.3: Basic Structure of a Recurrent Neural Network.

Ti
m
e

Figure 3.4: Unfolded Recurrent Neural Network along the time axis.

In this representation, each horizontal line of layers is the network running at a

single time step. Each hidden layer receives both input from the previous layer and

input from itself one time step in the past.

The cyclic nature of recurrent neural networks allows them to maintain context on

past events, making them best suited for modeling sequential processes, such as time

series, text, and music. Although in theory the above architecture should be able to

explore long term dependencies in a chain of events, it has been proven that due to

the vanishing gradient problem the memory is actually very short-term [5].

To overcome this issue, the networks neurons can be replaced by a specially de-

signed memory cell – a long short-term memory (LSTM) cell, introduced by Hochreiter

and Schmidhuber in 1997 [6].

All recurrent neural networks have the form of a chain of repeating modules, but

the structure of these models is different between simple RNNs and RNN + LSTM

architectures, as can be understood in figures 3.5 and 3.6. In standard RNNs, the

repeating module has a very simple structure, with only one activation function to

process all the incoming information simultaneously (the output xt of the previous

neurons and its own output ht−1 from the previous time step). In LSTMs, the repeating

module has a different structure, as information flows in different paths - part of it

is stored in the cell (the state Ct), and another serves as the output (ht), which is

determined by a system of gates which control the information that enters, stays and

15

CHAPTER 3. NEURAL NETWORKS

leaves the cell, with the help of two functions g and σ and a set of bitwise operators

[16].

𝜎

𝑥𝑡−1

ℎ𝑡−1

𝜎

𝑥𝑡

ℎ𝑡

𝜎

𝑥𝑡+1

ℎ𝑡+1

Figure 3.5: Structure of a basic Neural Network cell.

𝑥𝑡−1

ℎ𝑡−1

𝑔

x +

x

x𝑔 𝑔𝜎

𝜎

𝑥𝑡

ℎ𝑡

𝑔

x +

x

x𝑔 𝑔𝜎

𝜎

𝑥𝑡+1

ℎ𝑡+1

𝑔

x +

x

x𝑔 𝑔𝜎

𝜎

Figure 3.6: Structure of a Long-Short Term Memory cell (LSTM).

The advantage of LSTMs over the simple architecture is precisely the ability to

control the information that flows through its gates, allowing the implementation of

a memory unit - the cell state Ct, which ensures the network can preserve whatever

information from the past that is considered relevant and not lose it after a few time

steps. LSTM have three of these gates:

• Forget Gate

Not all the information received is necessarily useful. This layer looks at the

output from the previous time-step, ht−1, and the input xt and applies a sigmoid

g to output a number ft between 0 and 1 for each number in the cell state Ct−1,

with 1 represeting “keep” and 0 representing “do not keep the information”

(figure 3.7):

ft = g(wf · [ht−1,xt] + bf)

16

3.3. NEURAL NETWORKS ARCHITECTURES

x +

x

x𝑔 𝑔𝜎

𝜎

𝑔

𝑓𝑡

𝑥𝑡

ℎ𝑡−1

Figure 3.7: Forget Gate of a LSTM cell.

• Input Gate

The cell state is a unit memory that keeps the information considered relevant.

This information can be modified through the input gate. The process is accom-

plished in two steps: first a sigmoid g is used to select which values are going to

be updated (it) and then an activation function σ (usually a hyperbolic tangent)

is used to generate a vector of candidates C′t . These two are combined to update

the cell state with it ×C′t , where:

it = g(wi · [ht−1,xt] + bi)

C′t = σ (wC · [ht−1,xt] + bC)

Figure 3.8 represents the operations to calculate it and C′t and to update the

current cell state Ct where, as described before:

Ct = ft ×Ct−1 + it ×C′t

• Output Gate

The information that is considered relevant to keep in the cell’s memory is not

necessarily the same that is important to output. This fact motivates the existence

of the output gate – its purpose it to select a filtered version of the cell state as

output. The process is accomplished in two steps: first an activation function σ

(usually an hyperbolic tangent) is applied to the cell state and then its result is

multiplied by a sigmoid g applied to the cell input (ot), allowing for only certain

values to be selected:

17

CHAPTER 3. NEURAL NETWORKS

ot = g(wo · [ht−1,xt] + bo)

ht = ot × σ (Ct)

x +

x

x𝑔

𝜎

𝑔

ℎ𝑡

𝐶𝑡−1 𝐶𝑡

ℎ𝑡
ℎ𝑡

ℎ𝑡

x𝑔𝜎

𝜎

𝑥𝑡

𝑔 𝜎

𝐶𝑡−1 𝐶𝑡

ℎ𝑡−1

x

𝑔

+

x

𝑔

𝑓𝑡 𝑖𝑡

𝐶′𝑡

𝑥𝑡

ℎ𝑡−1

𝑖𝑡

𝐶′𝑡

Figure 3.8: Input Gate of a LSTM cell.

x +

x

𝑔 𝜎𝑔

𝐶𝑡−1 𝐶𝑡

ℎ𝑡−1 ℎ𝑡

ℎ𝑡

𝜎

x𝑔

𝑥𝑡

𝑜𝑡

Figure 3.9: Output Gate of a LSTM cell.

An important question may now be answered – why do LSTMs have the ability

to avoid the vanishing gradient problem? The LSTM architecture allows disabling of

writing to a cell (partially or completely) by controlling the information which goes

through the input gate. This prevents too many changes to the cell’s contents over the

learning cycles, thus preserving information from early parts of the sequences that are

considered relevant. Modeling long term dependencies is, as such, not a difficult task

for this network architecture.

18

3.4. METHODS TO IMPROVE LEARNING PERFORMANCE

Recurrent neural networks are trained in a similar way to feedforward neural net-

works, however the change in architecture requires an adapted version of the backprop-

agation algorithm called backpropagation through time [25]. Provided the network is

fed with finite time steps [8], it can be unfolded along the time axis, as demonstrated

before, and the usual backpropagation algorithm can then be applied.

3.4 Methods to Improve Learning Performance

Learning algorithms are applied to data in which some hidden knowledge is expected

to be found. Their goal is to learn this knowledge and code it into the model using a

subset of the data for which the targets are known.

The ability to generalize well from this subset is essential to a good model, as it

determines its ability to make accurate predictions on unseen data. When models are

too specialized on the data they were trained with, they fail to comprehend the inherent

process behind it and, as such, predictions tend to be off. This issue is commonly

known as overfitting and it can be controlled in a variety of ways, some specific to the

model used and some applicable to all the data models.

Focusing on neural networks, the most common techniques for dealing with over-

fitting include regularization, dropout and adaptive learning rates:

• Regularization

Different techniques exist, the most popular of which is the L2 regularization,

also known as “weight decay”. The concept behind this technique is to add a

term to the old cost function E0, such that:

E = E0 +
λ
2n

∑
ω

ω2

This term is a sum of the squared weights of the network, scaled by a factor λ
2n ,

where λ is known as the regularization parameter. Its purpose is to control the

weights of the network, as larger weights may lead to overfitting. In other words,

regularization can be viewed as a way of compromising between finding small

weights and minimizing the original cost function. The relative importance of

the two elements of the compromise depends on the value of the regularization

parameter [27].

• Dropout

Instead of using all the network neurons at each step of the learning process,

with dropout part of the hidden neurons of the network are randomly and tem-

porarily deleted (or dropped), leaving the input and output neurons untouched.

19

CHAPTER 3. NEURAL NETWORKS

The network is then trained over a batch of training examples before a new con-

figuration is selected. With this method, the weights and biases are learnt in

different conditions, thus preventing overfitting [27].

The concept behind dropout can be compared to the one used in ensemble mod-

els [34]– in these, several models vote together to classify the data instances. As

they were trained independently, it is expected that these models may have over-

fitted the data in different ways and, as such, joining them together may help

to overcome their individual weaknesses. The main difference between these

techniques is that with dropout the strategy is applied during the training of

only one model, instead of after the training with multiple ones.

• Adaptive Learning Rate

Traditionally the learning rate η is the same for all parameters in the model and

also constant in time. However, the simplicity in this formulation may have

implications in the learning process.

First of all, some parameters may be closer to their optimal value than others at

a given time. Therefore, being subject to a common learning rate may not be the

best approach to their progress – much like with students in a class.

Secondly, a constant learning rate in time is also not the smartest solution. In the

beginning of the training process, a higher learning rate is desirable to speed up

the process. However, in later stages of training, lower values for this parameter

are preferable because they allow a more thorough search of the solution space

in the quest for the optimal solution. Several adaptive learning rate methods

have been developed over the years. Particularly interesting are the Adagrad and

the RMSprop techniques [30].

With Adagrad, the learning rate is adjusted for each individual parameter. If a

parameter has a low gradient, i.e, if it is close to an optimal value, the learning

rate will be barely modified. However, if the gradient is high, Adagrad will

shrink the learning rate for that parameter. The downside of this method is that

the gradient aggressively and monotonically decreases in each iteration and so,

there will be a point during training in which the learning rate is so small that

effective learning is no longer possible.

RMSPRop aims at resolving Adagrad’s primary limitation, by considering only

a portion of the gradients – the n most recent. The learning rate is therefore

updated using the formula:

η =
η
√
G
,with G = γ ×

t−1∑
t−n

(
∂E
∂ω

)2 + (1−γ)× (
∂E
∂ω

)2
t

20

3.4. METHODS TO IMPROVE LEARNING PERFORMANCE

Here γ is a parameter called the learning rate decay, as it controls the effect of

the past gradients on the update of the learning rate.

This formulation prevents the learning rate from decreasing too rapidly and so

it allows an effective training.

21

Chapter 4

Data Representation

While data has an intrinsic value and meaning, it can be communicated through differ-

ent means and, as a consequence, be understood in different ways. Between humans,

the same ideas can be shared with gestures or drawings, be written, spoken and even

felt by touch. As such, a critical component of any data modeling task is the choice of

the data representation to be used during the processing phase and also, if possible, of

the data source itself.

Regarding the sources of data, music has been coded over the years in a variety

of ways, with focus on digital audio files, sheet music, abc notation and MIDI files.

Each of these possibilities was designed with different end purposes, with their own

advantages and disadvantages, which are briefly discussed below.

4.1 Digital Audio Files

When a medium is disturbed, pressure waves are created and propagated from this

origin point until they eventually dissipate. A visual example of this phenomenon

would be the waves formed on the surface of a liquid when an external object hits its

surface. Humans capture these pressure waves through the eardrums, which convert

them into a signal that the brain processes as sound. In order to store information

on these phenomena, an instrument – usually a microphone – is used to convert the

pressure waves into an electric potential with amplitude corresponding to the intensity

of the pressure. In this phase, the signal obtained is an analog signal. To convert it to a

digital signal used by current audio files, the electrical signal is sampled, by measuring

its amplitude at regular intervals, often 44100 times per second. Each measurement is

then stored as a number with a fixed precision, often 16 bits.

While digital audio files are rich in the information they contain, the way in which

it is stored poses great challenges for data analysis tasks. There is no direct way to

know which note is being played at each time and by which instrument. In order to

extract information for analysis, processes such as Fourier transforms, beat detection

algorithms and frequency spectrograms are usually applied. To extract the necessary

23

CHAPTER 4. DATA REPRESENTATION

information for a composition or classification task from audio files is therefore not

impossible, but rather complex and, as such, it will not be used in this thesis.

4.2 Sheet music and ABC notation

Music has long accompanied the human existence and so has the need to take record of

all the pieces composed and played over the millenniums. Since computers are a recent

invention in this time frame, visual and symbolic systems for musical representations

were used in the past and inherited to the present times. The most common of such

systems is sheet music. In this notation, the fundamental latticework is the staff –

there are five staff lines and four intervening spaces corresponding to note pitches of

the diatonic scale. Different symbols are then displaced in specific positions within

those lines to represent the notes played, their duration, the associated rhythm and

other musical characteristics.

While highly spread and used, this notation is not simple to learn, in part because

it is rich enough to express something as complex as music and in part because it is

an old system. More recently, other written forms of musical notation have appeared,

as was the case of the ABC notation. In its basic form, this notation uses the letters A

through G to represent notes and other elements, always characters or symbols present

on a computer keyboard, to add value to the notes – if its sharp or flat, its length, the

key or any necessary ornamentation. In a way, ABC notation is a mapping between

each character or a group of characters to specific symbols on a sheet music [32].

Because ABC notation is closer to a conventional language system, it is possible to

use text mining tools and algorithms to process it. For the specific case of algorithmic

composers, it might even be the best option, as it better simulates how humans create

music. Furthermore, digital audio files and MIDI files, being continuous, require

discretization and a range of possibly restrictive assumptions in order to be used for

composition. The downside of using data in the ABC notation for the purpose of music

composition is the time and computer resources needed to obtain a satisfactory model,

as language modeling is still not an easy task [28].

4.3 MIDI Files

MIDI (Musical Instrument Digital Interface) is a standardized data protocol to ex-

change musical control data between digital instruments. It is not a digital audio file

and does not even contain any sounds, but rather a set of instructions that tell an elec-

tronic device how to generate a certain sound. These instructions are coded into MIDI

messages [19], for instance:

• Note On: signals the beginning of a note, how hard it was pressed and at which

velocity;

24

4.3. MIDI FILES

• Note Off: signals the end of the note;

• Control Change: indicates that a controller, such as a foot pedal or a fader knob,

has been pressed;

• Pitch Wheel Change: signals that the pitch of a note has been bent with the

keyboard’s pitch wheel.

While this format might not be as rich as the previously mentioned notations, it

is certainly easier to extract information from it, especially for the purpose of music

composition. The information about the notes being played during the music, when

they start and end is all completely determined by a sequence of messages that can be

easily extracted using any programming language with a MIDI package. As such, this

source format will be the one used in this thesis.

In addition to the choice of a data source format, it is imperative to determine

the representation of data to be used in the modeling phase itself. In other words, it

should be determined what will be the structure of the data the model will receive

and aim to predict. For this purpose, a piano roll representation has been chosen,

for it is both easy to process by a neural network and simple to construct from MIDI

files. A piano roll shows on the vertical axis the notes as on a piano keyboard and

displays time on the horizontal axis. When a note is played, it is represented in the

piano roll as a horizontal bar vertically positioned according to its pitch and with a

width correspondent to its the duration. This continuous representation can be easily

discretized into a two-dimensional matrix, with pitch as the first dimension and time

as the second dimension. Each element of the matrix will correspond to a chosen

time step and will be either a 1, if the note was played during that time step or 0 if it

was not [26]. This will be the representation used to construct the composition and

classification models in this thesis.

25

Chapter 5

Methodology

The goal of this thesis is to construct a novel music classification algorithm, capable

of discriminating between different types of music without explicitly analyzing its

characteristics nor the target category to which they belong. This chapter explains

the design process behind the construction of the algorithm and the details of its

implementation, such as the data preparation and the technical steps required to put

the algorithm to work.

5.1 High Level Design and Concept

Classification tasks are usually achieved by exploring a set of extracted features or

characteristics of the subjects of study. An algorithm is then responsible for finding

patterns that relate those characteristics to the known targets, learning the inherent

knowledge hidden in the data.

While some subjects of study might be easy to describe – a description of a person’s

face can easily provide an accurate identification - others reveal unexpected difficul-

ties. Music, for instance, is something present in the everyday life, however when

asked to describe a song one would always try to reproduce it instead of describing it.

Expressing something as complex as music in words is as difficult as it is simplistic and

restrictive. And yet, current music classification systems work on the base of melodic

and rhythmic characteristics [23]. This fact motivates an important question – would it

be possible to design a classification system more similar to the way humans interpret

music? This is precisely the goal of this thesis.

To achieve such an ambitious objective, it is first important to understand or at least

grasp some ideas on how humans themselves classify songs, so that this behavior can

be reproduced artificially. One could say that, with the information of a song’s author

or genre, humans know what to expect of a song. Even more, knowing that same genre

or author well, humans have the ability to improvise a more or less reliable excerpt

of that musical type. These observations are as obvious as they are revealing, for they

suggest the knowledge of these different musical types is intrinsically connected with

27

CHAPTER 5. METHODOLOGY

the ability to compose them.

Artificial composition systems have already been explored over the years. It is

relatively clear that, providing different types of music to such systems, they should

learn to compose different types of songs. If this assumption holds true, and given

the conclusions stated before, then these systems possess the necessary knowledge to

classify songs.

The following statements summarize the concept of the classification algorithm

proposed in this thesis:

• Given n artificial composition systems, if each is trained using data from a spe-

cific type of music, then each should be specialized in this type only.

• If there exists a substantial difference between these musical types, then it is

expected that a system specialized in type 1 will be more successful composing

songs belonging to this type than any of the remaining n− 1 systems.

• If a song belonging to one of the n types of music is provided to each of the n

composition systems, each will try to compose it and achieve different degrees

of success, measurable using a comparison between the predicted song and the

real one. A classification algorithm can then be based on this measure – the type

of music in which the most successful composition system is specialized will be

the one attributed to the song.

CS 𝑛

…

CS 𝑛 − 1

CS 2

CS 1

Type 1

Type 2

Type 𝑛 − 1

Type 𝑛

Music 𝑥

Prediction through CS 1
with score 𝑥1

Prediction through CS 2
with score 𝑥2

Prediction through CS 𝑛 −
1 with score 𝑥𝑛−1

Prediction through CS 𝑛
with score 𝑥𝑛

Music 𝑥 is classified as
belonging to type 𝑦 , where:

𝑦: 𝑠𝑐𝑜𝑟𝑒 𝑥𝑦 =

min 𝑠𝑐𝑜𝑟𝑒 𝑥𝑤: 𝑤 ∈ 1, 𝑛

Figure 5.1: Proposed Architecture of the Classification System.

The model described before is the basic classification model to be tested and imple-

mented in this thesis. A more robust solution will be also implemented, by substituting

each of the n composition systems, consisting of a single RNN + LSTM architecture,

28

5.2. DATA PREPARATION

by a tree of such structures. With this tweak, a voting system can be implemented –

several systems are trained with the same type of music and, given a new song, the

average of its prediction score in the various systems is taken, instead of the score

of a single system. This will possibly correct some existing overfitting and make the

model more stable and robust. As a disadvantage, the training is also expected to be

more time consuming and, as such, the possible benefits of this option will be explored

ahead.

5.2 Data Preparation

Every data exploration and modeling task should require an initial step of data prepa-

ration. Data preparation can be defined as the process of collecting, cleaning, and

consolidating data in a structured way, making it ready for analysis.

Particularly important in this thesis is the transformation of the data from the MIDI

format to a piano-roll or matrix representation. Data quality procedures will also be

taken to ensure that the song matrices are a reliable representation of the music that

originated it.

5.2.1 Details on the Matrix Representation

Music can be understood as an interplay of melody and harmony. The first is defined as

a linear succession of musical notes, while the second refers to the use of simultaneous

notes, i.e., chords. In this thesis, this dual interpretation of music is adopted. Each

music can then be represented in a piano-roll or matrix format. Let rm be the number

of melody notes and rc the number of chords played. If the song is divided into t

temporal steps, then it can be represented as a matrix of size (rm+ rc+2)× t where each

element is either one, if the note/chord was played in that time step, or zero if it was

not [31]. The plus 2 term exists to account for the cases in which no chord or melody

note is played.

Given this representation, what does the algorithm aim to learn? A composer has

the knowledge to play the next note based on the past context, such as a writer knows

what the next word in a sentence should be to give it meaning. Learning how to write

or compose is to develop the ability to know what comes next or, in algorithmic terms,

to learn to predict at each step t the vector describing the notes and chords played at

t + 1.

This formulation would imply that the learning targets would be vectors of size

(rm + rc + 2), where each element of the vector could be either one or zero. However,

there is one issue with such formulation – its complexity.

There are two possible states for each note or chord considered at each time step,

which means there are 2(rm+rc+2) possible configurations for the target vector, making

the search space sparse and difficult to explore. In order to overcome this situation,

29

CHAPTER 5. METHODOLOGY

[1 0 1 0 0 0 1 1 0 0 1 0 0 0 1]

[0 1 0 0 1 0 0 0 0 0 0 0 0 0 0]

[0 0 0 1 0 1 0 0 1 1 0 1 1 1 0]

[1 1 0 0 1 0 0 1 0 0 1 1 1 0 0]

[0 0 1 1 0 1 1 0 1 1 0 0 0 1 1]

Melody notes

Absence of melody notes

Chords

Absence of chords

Figure 5.2: Sample Matrix with 15 time steps, 2 melody notes and 1 chord.

a constraint is added to the previous formulation: in each time step, a maximum of

one melody note and one chord are allowed. With this rule, the number of possible

configurations becomes (rm + 1)× (rc + 1).

Considering a practical example, a lower estimate of the number of melody notes

and chords in a dataset would be rm ≈ 40 and rc ≈ 10, respectively. This setting would

give 2(40+10+2) ≈ 4.5× 1015 possible states per each time step for the naïve formulation

against (40 + 1)× (10 + 1) ≈ 4.5×102 for the more restrictive formulation – a difference

of 13 orders of magnitude. Naturally, the first formulation is richer and a closer rep-

resentation of the original music, but given the computational power of the machines

used in this thesis, the second formulation is clearly more appropriate.

5.2.2 Dataset

Before explaining the technical steps needed to construct the binary matrix repre-

sentation, it is important to understand what data is going to be used and how it is

structured.

In theory, any collection of MIDI files may be translated into the previously de-

scribed representation. However, the data preparation involved could be expensive,

as MIDI files may contain information from various instruments. Usually, each instru-

ment is coded in a specific channel and there is no indication what instruments are

responsible for the melody and which are assigned to the harmony.

To overcome this situation, and as the data preparation is not the primary goal

of this thesis, the Nottingham dataset was chosen, as the majority of its songs have

already been coded in only two channels: one dedicated to the melody notes and the

other dedicated to the chords. This dataset is a collection of 1037 British and American

folk tunes, containing different categories of songs (jigs, christmas songs, etc.).

30

5.2. DATA PREPARATION

Each song in the dataset is subject to a set of procedures, which are performed

automatically through a script. The Python language was chosen not only for this

section, but for this thesis as a whole, for it is intuitive and simple, but mainly because

it is an open source language with excellent packages in data science and also music.

5.2.3 MIDI file to matrix representation

Once the dataset has been chosen, the MIDI files can be analyzed one by one in order

to construct a suitable matrix representation. However, it is imperative to fully under-

stand the information contained in such files so that the process can be as accurate as

possible, ensuring minimum loss or disruption of information.

MIDI files are organized in tracks, which are a collection of messages containing

relevant data. Each track is normally assigned to a specific instrument, but this is not

mandatory. In the case of the Nottingham dataset, the majority of songs have 3 tracks

– one track for the metadata, another for the melody and the final one dedicated to the

harmony, which is precisely the structure needed to construct the matrix representa-

tion presented before. As such, all the songs that do not respect this structure have

not been considered.

Each MIDI track is a collection of messages, the most important of each are the

NoteOn, NoteOff and EndOfTrack, which designate the beginning of a note, the end

of a note and the end of a track, respectively. Below is an example of a sequence of

such messages, extracted with the help of the Python “MIDI” package, which provides

functions to open the files and easily extract information from the tracks:

midi.NoteOnEvent(tick=1, channel=0, data=[78, 105])

midi.NoteOffEvent(tick=479, channel=0, data=[78, 0])

midi.NoteOnEvent(tick=1, channel=0, data=[76, 80])

midi.NoteOffEvent(tick=239, channel=0, data=[76, 0])

midi.EndOfTrackEvent(tick=26, data=[])

As observed in the example above, each message contains a set of information.

Starting from the end of the message, the array “data” contains two elements, the

first of which is the pitch of the note being played (in MIDI numbers) and the second

being the velocity with which the note has been played (in case of the piano, it would

correspond to how hard a key was pressed). The next element attributes a “channel”

to the message (a different instrument, for example). Finally, the first element of the

message is the “tick” value. Ticks represent the lowest level of resolution of a MIDI

track, which is precisely defined has:

Resolution =
Number of T icks

Beats

31

CHAPTER 5. METHODOLOGY

Ticks can be interpreted as a measure of time. For instance, if the tempo of a song

is 120 beats per minute, then 1 beat corresponds to 60× 106

120 = 500000 microseconds.

If the resolution is 103, then 103 ticks correspond to one beat and so each tick has a

duration of 500 microseconds.

An important observation can be made on the sample messages shown before –

tick values are not absolute, in the sense that their reference point is not a single,

unique point in time (the beginning of the song, for instance). Instead, they refer to

the previous related message. Considering the example shown before, it is possible

to observe that the 3rd message has a tick value of 1, although its previous message

had a tick value of 479. This is because the tick value of the 3rd message refers to the

last event (the 2nd message) and not to the beginning of the song. In order to convert

the tick values to this fixed reference frame, its cumulative sum should be considered.

Following the example, the 3rd message would then refer to 1 + 479 + 1 = 481 ticks

from the start of the music.

Considering the interpretation of ticks as a measure of time, both the resolution

and the tempo of the songs should be fixed over the dataset so that a tick represents the

same amount of time through the songs. In fact, almost all the songs in the Nottingham

dataset already have a resolution of 480 and a tempo of 120 beats per minute and so

the remaining ones are discarded. Another data quality test can be made by checking

if for every NoteOnEvent there exists the correspondent NoteOffEvent and vice versa.

Although rare, these events can happen and, in that case, the associated messages are

simply not considered.

After all the previously described preparation steps and quality checks have been

made, the matrix representation can be built. First the minimum and maximum of

all the note pitches p in the dataset is determined, so that all the matrices have the

same number of lines. This number (r) corresponds to the range of melody (rm) and

harmony (rh) notes being played +2, to include the cases where no melody or/and

harmony note is being played:

r = rm + rh + 2

A matrix of size [r, t], where t is the number of time steps of each song, is then

initialized with all the elements equal to zero. Each time step ∆t (a column in the

matrix) corresponds to 120 ticks, which given the resolution and tempo of the songs

in the dataset corresponds to 0.125 seconds. The melody and harmony notes are then

attributed to one of those steps, following the logic explained below.

Let ti and tf mark the beginning and the end of a note, respectively. There are 2

possible cases for the position of the notes relatively to each time step t:

• The note is within the boundaries of the time step t. In this case, the interval

tf − ti , during which the note is played, is taken into consideration.

32

5.2. DATA PREPARATION

𝑡 − 1 𝑡 𝑡 + 1

𝑡𝑖 𝑡𝑓

Figure 5.3: Note played within the limits of the defined time step.

• The note starts being played in one time step and continues in the following

step(s). In this situation, the interval tf − (t − 1) is considered for the case in

which the note starts being played at the time step (t − 1) and ends in time step

t and the interval t − ti is considered for the case in which the note starts being

played in time step t and ends in the following time step.

𝑡 − 1 𝑡 𝑡 + 1

𝑡𝑖 𝑡𝑓

Figure 5.4: Note played during the previous time step and also at the beggining of the
current time step.

𝑡 − 1 𝑡 𝑡 + 1

𝑡𝑖 𝑡𝑓

Figure 5.5: Note played at the end of the current time step and also in the following
time step.

At this stage, and as only one melody note is allowed per time step, the chosen

note for the time step t is the one with the longest time interval in that step. As for

the harmony notes, several notes are allowed at each step, which are then analyzed

through the Python “Mingus” package to get the associated chords. The part of the

matrix correspondent to the harmony notes is then substituted by a matrix of chords

with a number of lines correspondent to the range of chords in the dataset (rc) plus 1

for the case in which no chord is played. The final matrix for each song has, therefore,

a size of [rm + rc + 2, t], where the elements are either 1 or 0, representing whether a

specific chord or melody note was played at each time step.

33

CHAPTER 5. METHODOLOGY

5.2.4 Data Quality

Generally, data encapsulates hidden knowledge that exploration and mining processes

may help to reveal. But, much like in real mining activities, gold bars are not find

lying in riverbanks. Rather, tiny pieces of this precious metal are scattered along with

many other non-valuable residues. A careful separation process is needed to get to

what really matters and the same logic occurs in data science processes through data

quality procedures. Not every piece of data is necessarily valuable and it is important

to remove this noise in order to get clearer and more objective results.

At this stage, several data quality steps previous to the matrix construction have

already been applied and described. The following is a summary of such procedures:

• Only MIDI files with 3 tracks (the first containing metadata, the second the

melody notes and the third dedicated to the harmony) are considered. MIDI files

with higher number of tracks likely follow a different structure, which can be

difficult to translate. Following this rule, 15 files are removed from the initial

1037, leaving 1022 left.

• Resolution (480) and tempo (120 beats per minute) are fixed parameters through

the dataset, otherwise the tick interpretation as a measure of time would be

different for different songs. Only one MIDI file out of the 1022 has different

values for these and so it is discarded, leaving 1021 left.

• For each track in each MIDI file, the events “NoteOnEvent” and “NoteOffEvent”

should exist in pairs. If this is not the case, there was likely an error in the

creation of the associated MIDI messages and so these events are not considered.

The described procedures were applied before the transformation of the MIDI files

into binary matrices. Given the importance and complexity of this transformation, it

is imperative to check the data in this new structure. In particular, the transformation

from harmony notes to the associated chords can be difficult. In the cases where it is

not possible to determine the chord from the associated harmony notes, the “no chord”

element of the matrix is populated. Although this can be a simple and unharmful

decision for a few time steps, if it happens too often the matrix will not be a reliable

representation of the original song.

To overcome this issue, a final data quality check is performed to each matrix. Only

38 songs from a total of 1021 had some chords that could not be recognized. Of these

38, 12 had more than 2% of its chords unidentified and so they will be discarded.

After all the quality procedures have been complete, 28 songs have been discarded,

which corresponds approximately to a percentage of 2.7%. The 1009 remaining songs

will all be used in the classification algorithm, whose technical details will be explained

in the following section.

34

5.3. TECHNICAL DETAILS ON THE ALGORITHM ARCHITECTURE

5.3 Technical Details on the Algorithm Architecture

5.3.1 Basic Structure

The classification algorithm proposed on this thesis is best understood in two phases:

in the first phase, n composition systems are trained, one for each of the n different

types of music considered. In the second phase, the scores of these composition sys-

tems on a specific song are used for its classification.

The complexity of the process clearly resides in the first step – in fact, the last

step can be interpreted as a simple voting system, which has already been thoroughly

explained. As such, it is important to clarify how the composition systems work.

Each of these systems consists of a recurrent neural network with an input layer

of size rm + rc + 2 (number of melody notes + melody chords +2 to encompass the

possibility of a silent note or chord), which corresponds to the possible notes and

chords being played and hence to the rows of the matrix representation of the songs.

Regarding the hidden layers of the network, their size and number is to be empiri-

cally determined in the next chapter, in which it is discussed how the parameters can

be set appropriately. As for their functioning, the hidden layers will receive inputs not

only from the preceding layers, but also a recurrent input from itself, referent to past

time steps. The number of time steps to be considered is also an adjustable parameter

– it should not be too small otherwise it will not allow enough past context. In other

words, the number of time steps determines the quantity of information from the past

which will be used for prediction. For instance, considering only the previous word in

a sentence would surely not be enough to predict the next, because it does not provide

enough past context. On the other hand, this parameter should also not be so high as it

may introduce unnecessary noise and, specially, to enable computationally acceptable

time resources.

Finally, the output layer of the network has the exact same dimensions as the input

layer – one cell per possible melody note or chord, which should output a number

between 0 and 1 representing its probability of being played in a specific time step.

5.3.2 Internal Elements

Once the external structure of the network has been clarified, it is important to focus

the attention on the internal elements. As seen before, neural networks depend on a

set of functions, in particular one or more activation functions, a cost function and a

propagation function.

The propagation function used is the usual inner product between the vector of

weights and the vector of neuron outputs, for there is no evidence that a different

function could enhance the results:

35

CHAPTER 5. METHODOLOGY

f (wijk , a
i−1
k) = zij =

n∑
k=0

ωijk × a
i−1
k =

n∑
k=1

ωijk × a
i−1
k + bij

Regarding the activation function, two are used in the composition system:

• In the hidden layers, the activation function used is the sigmoid. Although

this activation function alone is not currently the most powerful, the associated

issues (the vanishing gradient problem) can be overcome using methods such as

dropout. The dropout probability will be another parameter in the algorithm,

thus enabling a more flexible model.

• In the output layer of the network, the activation function used is the softmax

function or normalized exponential. As mentioned in earlier chapters, this func-

tion is dependent not only on one neuron, but on all the neurons of a layer. For

each neuron, the softmax function outputs a number between 0 and 1. Moreover,

its sum across all the outputs of the layer is always 1, thus enabling the inter-

pretation of the result as a probability distribution. In this thesis, two softmax

functions will be used in the final layer, one to deal with the melody notes and

one to deal with the chords. As only one note and/or chord is permitted per

time step, the chosen notes and chords will be the ones with higher probability

of being played, at each time-step.

Finally, the cost function used will be cross-entropy cost function, as it is better than

the usual sum of squares given a sigmoid activation function [27]. More importantly,

this function will also be used to assess the scores of each composition system on the

songs that will later be classified - the voting system used for classification is in fact

based on this score, as it is by definition a measure of similarity between the original

and the predicted songs. Once again, the winning composition system will be the

one with the lower score, i.e., the one which was able to compose a song closer to the

original. From this result, the song will be classified according to the type of music in

which the winning composition system is specialized in.

5.3.3 Algorithm Parameters

This section aims at summarizing the parameters involved in the algorithm. In the next

chapter, these will be explored further, to find the values that optimize the outcomes

of the system.

Following is a list of such parameters, their meaning and their expected contribu-

tion:

• Number and size of the hidden layers

The number of hidden neurons per layer and the number of layers itself deter-

mine the complexity of the solution that the algorithm can generate. A higher

36

5.3. TECHNICAL DETAILS ON THE ALGORITHM ARCHITECTURE

value for these parameters allows more freedom and complexity, which is de-

sirable. However, too high values may promote overfitting and too low values

may lead the algorithm to underfit – in the first case, the solution found may be

too adapted to the data with which the algorithm was trained with, leading to a

bad generalization ability on unseen data, while in the second case the solution

found may be too simplistic.

• Learning rate and learning rate decay of the RNNs

This is a common parameter to neural networks and it controls the magnitude

of the changes to the network’s weights in each iteration, and thus its learning

speed. A high learning rate should allow for a fast learning, at least at an initial

stage, however later it might prevent it from achieving optimal results. On the

other hand, if the learning rate is too slow, the algorithm will likely take a long

time to converge.

Instead of having a constant learning rate, a possibility is to decrease it over

the iterations. This is a smarter solution, as the learning rate can be larger in

the beginning of the training, allowing for fast convergence, and then decrease

slowly, enabling the algorithm to explore the solution space more thoroughly.

Several methods can be used to determine the decay. In this thesis, the RMSprop

method is adopted, which is the most common method used in recurrent neural

networks.

• Dropout

Dropout can be applied to neural networks in order to prevent overfitting, at

least to a certain degree. As mentioned in earlier sections, with dropout part of

the hidden neurons of the network are randomly and temporarily deleted (or

dropped), leaving the input and output neurons untouched. As such, the dropout

value corresponds to the percentage of these dropped neurons – it should not

be so low as to produce some effects, and not too high as to prevent the network

from learning efficiently.

• Number of past time-steps to be considered

In time series problems, there is always a window into the past that is considered

in order to predict a certain value. In this algorithm, this window corresponds

to the number of past time steps to be considered in order to predict the notes

played on the current time step. As mentioned before, this value should be large

enough to have sufficient past context. Also, it should not be too large, otherwise

training will be extremely time consuming.

• Melody and Harmony coefficients

In this thesis, not only melody notes are predicted, but also chords. While it

is possible to give an equal importance to the prediction of one or the other, it

37

CHAPTER 5. METHODOLOGY

is possible to manage this importance by multiplying the cost function outputs

of the melody by a factor of α and the cost function outputs of the chords by a

factor of (1−α), with α ∈ [0,1]. The cost function would then be re-written as:

E = α ×Emelody + (1−α)×Echords

A factor α = 0 would mean that only the prediction of the chords would be

considered when training the network and, in the other end of the spectrum, a

factor of α = 1 would mean that only the melody notes were being considered.

Given that the chords are usually more predictable and constant than the melody

notes, an α > 0.5 should yield results musically more accurate and pleasable.

However, results with changing alphas cannot be compared by means of the

outputs of the cost function because the cost function itself is being changed. For

this reason, these coefficients will be explored ahead, but no search for a best

value will be performed.

• Number of voting compositions systems

For n different types of musics there will be β × n composition systems, where

β ≥ 1. In other words, for each type of music there will be β composition systems

specialized only in this type of music, that will vote in the classification phase.

This structure is inspired on ensemble methods and aims to be a more robust

solution against overfitting. In theory, the larger the parameter β, the better.

However, given than an increase of this parameter implies a linear increase on

the time resources needed to train the algorithm, only very small values for β

will be tested.

All the technical implementation of the algorithm described before has been done

using the Python language. The packages Numpy, for dealing with vector and ma-

trix calculations efficiently, and Tensor Flow, for the implementation of the recurrent

neural networks, were particularly relevant and useful.

38

Chapter 6

Results

This chapter is subdivided in two major sections: in the first one, the parameters

defined for the composition algorithm will be explored in the search for the values

that optimize its results. This is a critical step to ensure the success of the classification

phase – if the composition systems are unable to learn effectively, they will not possess

enough knowledge to be of any aid in the classification task.

In the second part, the results of various binary classification experiments will be

presented and discussed.

6.1 Composition System

The concept of the classification system proposed in this thesis assumes that a success-

ful composition system possesses the necessary musical knowledge to classify songs.

If no such knowledge is present, then the theoretical base for the classification task is

lost. As such, it is fundamental to optimize the parameters of the composition system

and ensure the best possible results.

To successfully tune the parameters, some portion of the data should be used for

training and another should be set aside until the model is finished, to unbiasedly

estimate the results on unseen data. What has just been described is a train/test split

of the data. As the composition and classification tasks are not done simultaneously,

but the one after the other, the following splits will be applied:

• For the classification, the train set will consist of 70% of the total number of

songs and the test split will consist of the remaining 30%, which equates to 706

songs and 303 songs, respectively;

• For the composition system, only the data from the train set of the classification

task will be used, which makes up to 70% of the original data. From this per-

centage, 70% will be used for training purposes and 30% will be used for testing,

which equates to 494 songs and 212 songs, respectively.

39

CHAPTER 6. RESULTS

As described in the last chapter, there are 6 configurable parameters for the compo-

sition algorithm: number of layers of the network, number of hidden neurons, dropout

probability, learning rate, learning rate decay and number of past time steps to be con-

sidered. To select the values that optimize the results of the algorithm, it is a common

procedure to test each parameter individually. In the end, the chosen configuration

is based on the best value found for each parameter. The issue with this approach

is that this configuration is not necessarily optimal – although the best value of each

parameter was selected, this value was found with experiments where the remaining

parameters were fixed. As such, it is only possible to admit that such “best value” is

valid for the conditions in which it was tested and not necessarily for all the possible

configurations.

The most obvious way to overcome this situation is to perform grid search. This

method consists in setting a grid in a hyperspace of configurations, where each node

corresponds to a possible algorithm configuration that is to be tested. In the case

when there are only 2 parameters, this can be easily visualized as a two-dimensional

grid. The issue with this method is that it is resource intensive: considering x testing

values for each of the n parameters, the grid will have a total of xn nodes or possible

configurations, which is clearly prohibitive.

Given the limitations of the described methodologies, in this thesis the following

approach is followed:

• First, a large range of values for each parameter is tested, leaving the rest fixed.

Rather from selecting one “best value”, a small range of optimal values is selected

for each of the parameters;

• Secondly, grid search is performed in a limited subspace of configurations, de-

fined by the ranges of values encountered in the previous step.

Although this still does not guarantee that an optimal configuration is found, it pro-

vides a good strategy in terms of time resources. With this methodology, the following

set of parameters was chosen:

• Number of the hidden layers: 2;

• Size of the hidden layers: 250;

• Learning rate: 0.005;

• Learning rate decay: 0.8;

• Dropout: 0.9 in the first layer and 0.5 in the remaining layers;

• Number of past time-steps to be considered: 128, which corresponds to 16 sec-

onds;

40

6.1. COMPOSITION SYSTEM

There is still one parameter left to analyze before proceeding to the classification

results – the melody coefficient. Choosing the weights of the melody and harmony

prediction will affect the way the composition system learns, however as changing this

coefficient will also change the cost function, the results between experiments are not

comparable using this measure. Nonetheless, it is still possible to assess the results of

the predictions using a different measure – the overall accuracy of the predictions. To

calculate this, the final melody and harmony notes predicted are compared one by one

to the expected outcomes:

prediction accuracy =
number of notes successf ully predicted

number of notes

The following graphics show the evolution of the melody and harmony accuracy

prediction for a changing melody coefficient:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Melody Coefficient

Melody Accuracy Harmony Accuracy Overall Accuracy

Figure 6.1: Accuracy of the notes and chords prediction for a varying melody coeffi-
cient.

The melody accuracy increases when the coefficient is closer to 1 and decreases

when approaching 0, while the harmony accuracy has precisely the opposite behavior.

This behavior is expected, because the coefficient regulates the importance given to

the learning of the melody and the harmony – the higher the coefficient, the more

the melody will be learnt and the less importance the harmony values will have and

vice-versa. In the extreme cases where the coefficient is maximum or minimum, one of

the components of the song will have completely random results, because their value

was ignored, while the other will have the best results achieved with the experiment.

What is truly interesting about this analysis is the different accuracy values between

melody and harmony. For instance, when the coefficient is 0.5 and so the weights of

the components are equally distributed, the accuracy of the harmony (92%) is clearly

41

CHAPTER 6. RESULTS

superior to the accuracy of the melody (65%). Also, the best melody accuracy achieved

is clearly inferior to the best harmony accuracy. The answer for this observation can

be stated empirically – it is intuitively known that chords are generally more stable

throughout and amongst the songs, which make them more predictable. This can be

verified by analyzing the distribution of the different chords and melody notes present

in the dataset:

0

20000

40000

60000

80000

100000

120000

140000

 D G A C

 E
m

 A
m E

 B
m F

 N
O

N
E

 G
m

 A
#

 D
m B

 F
#

m

 C
m

 D
#

 F
#

 C
#

m

 C
#

 F
m

 G
#

 D
#

m

 G
#

m

F
re

q
u

en
cy

Chords

0

5000

10000

15000

20000

25000

30000

74 71 57 67 59 78 79 72 66 81 60 65 77 53 56 80 75 43 51 82 84 41 46 86 39 88

F
re

q
u

en
cy

Melody Notes (in MIDI numbers)

Figure 6.2: Distribution of the chords and melody notes in the Nottingham dataset.

The number of chords used is clearly inferior to the number of melody notes and

its distribution is more skewed, which justifies the ability of the algorithm to better

predict chords in relation to the melody notes.

Considering that the best overall accuracy has been achieved with a melody coeffi-

cient around 0.5, this parameter will be set to this value for the rest of the experiments.

With this setting, the overall test accuracy achieved is around 89% (65% for the melody

notes and 92% for the chords).

One last question to consider at this point is what are the criteria to define that a

certain composition system is successful or not. Of course, the more the cost function is

minimized, the better. It is also possible to use other measures, such as the prediction

accuracy, to better understand the level of success of the composition system. What is

not clear is what results represent a good, acceptable or bad solution. In other words,

at what stage has the algorithm learnt the basic musical features so that its songs can

be enjoyable? Is a predicted song with an accuracy of 80% pleasant? What about one

with 60% or 70%?

In fact, this is a subjective question. Without using pre-defined rules, which can be

quite difficult to formulate and are usually restrictive, it is difficult to judge the quality

of a song without listening to it. As such, the best one can do is to evaluate the songs

composed by the algorithm after it has been trained.

Doing so, reveals that songs with accuracies higher than 70% start to resemble

musical pieces composed by humans; although its musical structure is simple, they

are pleasant to hear.

42

6.2. CLASSIFICATION SYSTEM

6.2 Classification System

The Nottingham dataset is a collection of 1037 British and American folk tunes,

containing different categories of songs. For instance, the “reels” category includes

marches and polkas and the “hpps” category includes hornpipes, schottisches and

strathspeys, all of which are traditional songs used in marches, dances and popular

celebrations.

After the data quality steps performed in chapter 5, of the 1037 initial songs, only

1009 were selected to be used in the experiments of this thesis. The following graphic

shows the distribution of these songs amongst the categories present in the Nottingham

dataset:

453

332

64
51

44

25
15 13 11

0

50

100

150

200

250

300

350

400

450

500

Reels Jigs Hpps Waltzes Ashover Morris Playford Christmas Slip Simple

F
re

q
u

en
cy

Figure 6.3: Distribution of songs per class in the Nottingham dataset.

For classification purposes, only the categories with a large number of songs should

be considered. If the number of songs is too small, then there will be not enough

to properly train and test the composition and classification systems. Although the

“Reels” and the “Jigs” categories have a considerable number of songs, the rest of the

dataset is scattered amongst smaller categories.

As a first experiment, a binary classification between the “hpps” and the “waltzes”

category will be performed to assess the results of the classification algorithm given

two categories with a relatively small representation. Given that the number of train

songs should be the same for both categories for the results to be comparable, the

following split will be made:

• As the number of songs in the “hpps” (64) category is larger than the number of

songs in “waltzes” category, the excess (13) will be used only for assessing the

results of the classification system.

43

CHAPTER 6. RESULTS

• For each category, the splitting of the data will be made following the percentages

stated before: 70% of the total 51 songs will be used for the composition system,

which yields a total of 36 songs. Of these 36, 70% will be used for training (25)

and the remaining 30% will be used for testing (11).

• This implies that 30% of the original 51 songs will be used for testing the classifi-

cation system (15) plus 13 songs for the case of the “hpps” category, as explained

before.

With these settings, and using the parameters defined before, the following results

have been obtained:

Class 1 vs Class 2 Accuracy Class 1 Accuracy Class 2 Overall Accuracy

Hpps vs Waltzes 85.7% 100% 90.7%

Table 6.1: Results obtained for the binary classification between the categories ”Hpps”
and ”Waltzes”.

The results are surprising. Although the number of songs is small, the results of the

classification system clearly demonstrate the ability two distinguish between the two

classes – all the “waltzes” songs and 85.7% of the “hpps” songs have been correctly

classified. Other attempts to this same classification task have revealed consistent

results, varying only by less than 5%.

To ensure these results are solid and demonstrate the efficiency of the algorithm, it

is imperative to perform other classifications experiments. As before, the same rules

for the splitting of the data apply: between the two categories of songs being tested,

the one with fewer songs is used to determine the size of the training and validating

sets for the composition systems (70% of the total number of songs of that category),

while the remaining are used for testing the classification. The following table shows

the results obtained for another 4 experiments:

Class 1 vs Class 2 Accuracy Class 1 Accuracy Class 2 Overall Accuracy

Jigs vs Waltzes 84.1% 66.7% 83.3%
Reels vs Waltzes 67.4% 80.0% 67.9%

Jigs vs Hpps 89.9% 85.0% 89.6%
Reels vs Hpps 84.1% 75.0% 83.7%

Table 6.2: Results obtained for the binary classification experiments between the cate-
gories ”Jigs”, ”Reels”, ”Hpps” and ”Waltzes”.

As before, the results demonstrate a considerable discrimination power between

the classes – for 3 of the 4 experiments, the overall accuracy is higher than 80% and

the least successful classification has, nonetheless, an accuracy of 67.9%. What is more

interesting is that these results have been obtained using few songs for the training of

44

6.2. CLASSIFICATION SYSTEM

the composition systems: the experiments involving the “waltzes” category used only

25 songs and the experiments involving the “hpps” category used 31 songs. This factor

might help to explain the least impressive result, obtained for the experiment “reels”

vs “waltzes”: the number of songs provided may not have been enough to enable a

clear training of the composition systems and, as such, the results of the classifications

where not as expected. Another option would be that, in fact, the two categories

share significant musical similarities among themselves, making the classification task

harder.

A final experiment between the two classes with greater representation in the

dataset is highly important to assess if the size of the training data may have a posi-

tive impact on the classification results – this is expected because, if the composition

systems are better specialized in their respective category, they will more likely be

successful in composing a music belonging to it. The following table shows the results

obtained for such experiment:

Class 1 vs Class 2 Accuracy Class 1 Accuracy Class 2 Overall Accuracy

Reels vs Jigs 95.3% 92.9% 94.6%

Table 6.3: Results obtained for the binary classification experiments between the cate-
gories ”Reels” and ”Jigs”.

Not only the overall accuracy in this experiment is the highest obtained, it is also

the most consistent given the accuracies obtained for each class (only 2.4% different),

which support the interpretation that a higher number of training songs increases the

discrimination power of the algorithm and thus leads to a more successful classifica-

tion.

In the preceding experiments, only one composition system per music class was

used. However, it is also possible to design an architecture with n composition systems

per class, which then vote amongst themselves to determine the songs class. For

instance, if n = 3 in a binary classification task between classes A and B, there would

be 3 composition systems specialized on A and another 3 specialized on B. A test song

would then be evaluated by these 6 systems and the top 3 results selected. The most

represented class in this top 3 would then be selected as the class attributed to the test

song.

With this methodology – which is basically a voting or ensemble system - results

are expected to be more consistent and reliable, for they depend less on the training of

a specific system. However, this will also increase the training time of the composition

systems by a factor of 2×n for a binary classification task or, more generally, by a factor

c ×n, where c is the number of classes. This is a clear disadvantage, especially for the

case when the training of a single system is already very time consuming, as is the

case.

45

CHAPTER 6. RESULTS

For this experiment, a voting system with n = 5 was considered for the same binary

classification tasks as in the previous experiment. The results are exposed below:

Class 1 vs Class 2 1st Exp. Accuracy 2nd Exp. Accuracy Accuracy Difference

Hpps vs Waltzes 90.7% 95.3% 4.6%
Jigs vs Waltzes 83.3% 85.9% 2.6%

Reels vs Waltzes 67.9% 69.7% 1.8%
Jigs vs Hpps 89.6% 91.1% 1.5%

Reeks vs Hpps 83.7% 88.5% 4.8%
Reels vs Jigs 94.6% 95.8% 1.2%

Table 6.4: Results obtained for the binary classification experiments using a voting
system between the categories ”Jigs”, ”Reels”, ”Hpps” and ”Waltzes”.

Although the chosen number of voting systems was relatively small, the results

clearly indicate an overall performance improvement over the previous experiments.

In fact, all the experiments registered a positive performance difference.

In summary, the classification experiments with a single system provided an aver-

age accuracy of 85.0% over 6 binary classification tasks, while a voting system archi-

tecture with n = 5 improved this average to 87.7%. The evidence that the classification

system proposed in this thesis is capable of distinction between classes is, thus, strong.

46

Chapter 7

Future Work

The results of the previous experiments suggest a strong evidence that composition

systems possess valuable information on the songs they are trained with, which can

be used for classification purposes. In this section, future strategies are presented as

pathways to continue the work started with this thesis, with the aim of improving not

only its results but also extending the scope of its applications.

Regarding the improvement of the results, there is a large pool of possible options:

• For the experiments performed in this thesis, only songs from the Nottingham

dataset were considered. As explained in earlier chapters, this was due to the

clean structure and simplicity of the MIDI files in this dataset. Considering MIDI

files from other sources is also possible, but it would require a more complex

data preparation process. However, being able to use a broader range of songs is

essential, because it allows a better training of the composition system and, spe-

cially, because it enables the classification algorithm to be used and tested with

any available class of songs. As such, it is imperative to improve the processing

of data, allowing any MIDI file to be considered and thus boosting the amount

of data for which the algorithm can be applied.

• Another possibility regarding the previous point would be to change the ini-

tial source of the data, from MIDI files to songs in ABC notation. In theory,

this could facilitate the data preparation process, but it would also imply core

changes in the composition system. However, it is important to underline that

the composition system is just a means to an end regarding the primary goal

of this thesis – the classification algorithm. Changing the internal mechanism

of the composition system should not affect the classification phase, providing

its performance is good. On the other hand, a composition system using lan-

guage processing techniques and ABC notation is theoretically more capable to

express music in all its complexity, because musical embellishments are easier

to represent with language than in a fixed matrix system. As such, using ABC

47

CHAPTER 7. FUTURE WORK

notation could contribute to a better composition and, hence, to an increased

classification performance;

• As stated in the previous point, one of the downsides of the music representation

used in the composition system is its lack of ability to represent musical em-

bellishments or effects of the songs. A simple example would be a song played

with a piano – certain notes of the song are played harder or softer than oth-

ers, however these nuances are not captured by the current representation. This

particular example could be easily solved by replacing the current binary ma-

trices by matrices of natural numbers, where each number would represent the

strength with which the note was played, with zero meaning it was not played

at all.

• While the current dataset had only mono instrumental songs, the generality

of the songs is poly instrumental. To reflect this in the current representation

is, therefore, a crucial point. One option would be to increase the size of the

matrices to include the notes played by each instrument. As for now each line of

the matrix represents a specific note, but in the future, it should represent a note

played by a specific instrument (a D played in a guitar is a distinct prediction

from a D played in a piano and so it should be represented in a distinct line

of the matrix). This, however, will imply a considerable increase in the size of

the matrix, which should motivate new strategies for the improvement of the

algorithm’s computational performance;

Regarding the extension of the scope of applications, the following applies:

• Although in this thesis the proposed classification was solely based on the results

of the composition systems, this was a choice directed towards a proof of concept.

In fact, this strategy could be used in the future as part of a more traditional

classification system, by including its results as another input variable of the data.

This could provide valuable information, which current and common variables

used in such classification systems do not possess;

• The concept of the classification system proposed in this thesis is based on a

similarity measure between a song and a group of songs. As such, this concept

can be extended beyond a simple discrete classification and be used continuously

as a measure of a song’s similarity for recommendation systems.

48

Chapter 8

Conclusions

Music is complex in nature and difficult to describe. Although it is easy to distinguish

between songs in the mind, the task of justifying this distinction is still hard. As

such, it is surprising that current classification systems are based on the extraction of

musical characteristics, for this concept represents a challenge in the first place.

The fundamental work on this thesis was to conceptualize, build and test a music

classification system which could avoid the difficult, but also restrictive task of figuring

out musical features for classification. To achieve this, the proposed solution was

to take advantage of the knowledge learned by composition systems, following the

premise: if there are two composition systems, each specialized in a different class of

music, the outcome of their compositions is expected to be significantly different; in

particular, given a song from one class, the composition system which is specialized in

that same class is expected to be more successful predicting it than any other system

trained with different music classes.

With the concept of the classification system relying on the possible knowledge

learned by composition systems, it was fundamental to ensure that these were as

successful as possible and so an architecture of recurrent neural networks with long-

term memory cells was used. This solution has been one of the most successful so far,

as demonstrated in recent works on the field.

Another fundamental aspect was the data representation phase. Data can come in

a variety of formats and music is a seamless example of this pluralism of languages.

Considering the more structured nature of the MIDI format, which allowed for a

simpler data extraction and manipulation, this was the chosen format for this work.

Also, although technically any MIDI dataset could have been used to test the results of

the proposed system, the Nottingham data set was chosen for its simplicity – songs are

all mono instrumental – and also the fact that multiple labeled classes of songs were

present, allowing for a number of experiments to be made.

While no other works on music classification have been found using this dataset,

which rules out the possibility of comparing the results, the goal of the current work

49

CHAPTER 8. CONCLUSIONS

should be regarded as a proof of concept – the objective was to present a new method-

ology for classification and not necessarily make an improvement on previous results

achieved for any specific dataset. As such, results significantly and consistently higher

than 50% for binary experiments should be interpreted as evidence that composition

systems do indeed possess valuable knowledge to be used in classification tasks.

In fact, the results obtained in all the experiments for the classification accuracy

where all significantly higher than 50%, ranging between 67.9% and 94.6% for the

experiments with a simpler architecture of only one composition system per class and

between 69.7% and 95.8% for an architecture of 5 voting composition systems per

class.

Regarding the future, the most relevant aspects to underline are the extension of

this work to other music datasets and the potential improvement of its results based on

the enhancement of the composition systems and the use of different and more flexible

music notations, such as ABC notation. But fundamentally, the relevance of this work

can be extended to more complex classification systems, and also to recommendation

systems, for the similarity concept used in this thesis – a composition based similarity

– can be also applied in this field.

To summarize, the results of this thesis provide strong evidence that a step towards

more alternative classification systems is possible, particularly but not only in the field

of music, and that separate tasks as classification, composition and recommendation

systems can share a common ground and its results can be of greater help to one

another.

50

Bibliography

[1] H. Lejaren and L. Isaacson. Experimental music: Composition with an electronic
computer. McGraw-Hill, 1979.

[2] C. Ames. “The Markov Process as a Compositional Model: A Survey and Tuto-

rial.” In: Leonardo, v22 n2. 1989.

[3] P. M. Todd and D. G. Loy. Music and Connectionism. MIT Press, 1991.

[4] M. C. Mozer. “Neural network music composition by prediction.” In: Connection
Science 6. 1994.

[5] YoshuaBengio, P. Frasconi, and P. Simard. “Learning Long-Term Dependencies

with Gradient Descent is Difficult.” In: IEEE transactions on neural networks / 5,
no. 2. 1994.

[6] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory.” In: (1997).

[7] G. Wiggins, G. Papadopoulos, S. Phon-Amnuaisuk, and A. Tuson. “Evolutionary

Methods for Musical Composition.” In: (1998).

[8] J. C. Principe, N. R. Euliano, and W. C. Lefebvre. Neural and adaptive systems
: fundamentals through simulations. New York : Wiley, 2000. isbn: 978-0-471-

35167-2.

[9] N. L. Wallin, B. Merker, and S. Brown. The origins of Music. MIT Press, 2000.

[10] W. Chai and B. Vercoe. Folk Music Classification Using Hidden Markov Models.
2001.

[11] M. Towsey, A. Brown, S. Wright, and J. Diederich. “Towards melodic extension

using genetic algorithms.” In: International Forum of Educational Technology and
Society. 2001.

[12] P. de Leon and J. Inesta. “Musical style identification using selforganising maps.”

In: Second International Conference on Web Delivering of Music. 2002.

[13] M.-K. Shan and F.-F. Kuo. “Music style mining and classification by melody.”

In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME).
2002.

[14] J. Vreeken. Spiking neural networks, an introduction. 2003.

51

BIBLIOGRAPHY

[15] C. McKay and I. Fujinaga. “Automatic Genre Classification Using Large High-

Level Musical Feature Sets.” In: ISMIR 2004, 5th International Conference on
Music Information Retrieval. 2004.

[16] A. Graves. Supervised Sequence Labelling with Recurrent Neural Networks. Springer,

2007.

[17] D. Kriesel. A Brief Introduction to Neural Networks. http://www.dkriesel.com,

2007.

[18] K. Ebcioglu. “An expert system for harmonization of chorals in the style of J.S.

Bach.” In: The Journal of Logic Programming (2008).

[19] N. Collins. Introduction to Computer Music. Wiley, 2009.

[20] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feedfor-

ward neural networks.” In: Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, PMLR 9:249-256. 2010.

[21] P. Donnelly and J. Sheppard. “Evolving Four-Part Harmony Using Genetic Algo-

rithms.” In: Applications of Evolutionary Computation. 2011.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet classification with

deep convolutional neural networks.” In: Advances in Neural Information Process-
ing Systems, v2. 2012.

[23] G. Lu, K. M. Ting, and D. Zhang. “A Survey of Audio-Based Music Classification

and Annotation.” In: Journal IEEE Transactions on Multimedia archive Volume 13
Issue 2. 2013.

[24] I.-T. Liu and B. Ramakrishnan. Bach in 2014: Music composition with recurrent
neural network. 2014.

[25] Z. Lipton, J. Berkowitz, and C. Elkan. “Long Short-Term Memory.” In: (2015).

[26] M. Müller. Fundamentals of Music Processing:Audio, Analysis, Algorithms, Appli-
cations. Springer, 2015.

[27] M. A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[28] M. Araoz. Training a Recurrent Neural Network to Compose Music. 2016.

[29] K. Choi, G. Fazekas, and M. Sandler. “Text-based LSTM networks for Automatic

Music Composition.” In: (2016).

[30] S. Ruder. “An overview of gradient descent optimization algorithms.” In: (2016).

[31] Y. Zimmerman. A Dual Classification Approach to Music Language Modeling.

2016.

[32] N. Agarwala, Y. Inoue, and A. Sly. “Music Composition using Recurrent Neural

Networks.” In: (2017).

52

BIBLIOGRAPHY

[33] K. Choi, G. Fazekas, and M. Sandler. “Convolutional recurrent neural networks

for music.” In: ICASSP 2017 - 2017 IEEE International Conference on Acousticsl.
2017.

[34] K. Hara, D. Saitoh, and H. Shouno. “Analysis of dropout learning regarded as

ensemble learning.” In: (2017).

[35] D. D. Johnson. “Generating Polyphonic Music Using Tied Parallel Networks.” In:

EvoMUSART 2017: Computational Intelligence in Music, Sound, Art and Design
pp 128-143. 2017.

53

	Contents
	List of Figures
	List of Tables
	Introduction
	Previous and Related Work
	Algorithmic Composition
	Classification

	Neural Networks
	The Inspiration Behind Neural Networks
	Components of Artificial Neural Networks
	Propagation Function
	Activation Function
	Cost Function

	Neural Networks Architectures
	Feedforward Neural Network
	Recurrent Neural Network

	Methods to Improve Learning Performance

	Data Representation
	Digital Audio Files
	Sheet music and ABC notation
	MIDI Files

	Methodology
	High Level Design and Concept
	Data Preparation
	Details on the Matrix Representation
	Dataset
	MIDI file to matrix representation
	Data Quality

	Technical Details on the Algorithm Architecture
	Basic Structure
	Internal Elements
	Algorithm Parameters

	Results
	Composition System
	Classification System

	Future Work
	Conclusions
	Bibliography

