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ABSTRACT 

This work project applies the Dynamic Model Averaging methodology to forecast 

quarterly house price growth in Portugal, Spain, Italy, Ireland, the Euro Area and the United 

States. This recent econometric technique uses the Kalman filter to recursively estimate 

dynamic models and ultimately produces a forecast by averaging these models using a 

prediction performance criterion. Results show the superior predictive ability of this 

methodology when compared to the usual autoregressive benchmarks. Furthermore, we make 

use of the model’s outputs to provide a comparative analysis of the six series, concluding that 

there is no single predictor transversally important for all series. 
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1. INTRODUCTION 

The housing sector is an essential sector of the economy, primarily because it satisfies a 

basic need of the human being – shelter. In addition, the way most of our modern economies 

are built, put houses as one of the major assets in which people tend to invest their money. 

However, the role of the housing sector is larger and more complex than this. For instance, 

housing feeds mortgage markets, which are important drivers in the transmission of monetary 

policy and it is also argued that proper housing may facilitate labor mobility in the economy, 

helping it to adjust to adverse shocks. Furthermore, house prices have a significant positive 

impact on private consumption, residential investment and provide a useful indicator of demand 

pressures in the economy. Bottom line, “as economies develop one should expect a deepening 

and growth of housing markets” (Min Zhu speech at the IMF Conference, 2014). 

The 2007/2008 recession urged the need to pay closer attention to this sector, which had 

until then been somewhat neglected by macroeconomists in general. Widely read textbooks in 

the field at the time, did not give real estate the due importance, as noted by Leamer (2007). 

Leamer explains that “Housing is the most important sector in our economic recessions, and 

any attempt to control the business cycle needs to focus especially on residential investment.” 

A substantial increase in house prices contributes to an over-heating of the economy, whereas 

its opposite is usually associated with an economic slowdown. When the economy is growing, 

rising demand for housing pushes residential investment and construction employment upward, 

strengthening aggregate demand. On the other hand, contraction phases are characterized by 

falling income and job uncertainty, decreasing housing demand, reducing prices and the overall 

attractiveness of residential investment; see e.g. Risse and Kern (2016). 

This sector has experienced several booms and busts over time and the close connection 

between sharp house price declines and financial recessions is well documented. In their famous 

book about financial crises, This Time Is Different, Reinhart and Rogoff (2007) call attention 
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to the historical link between housing bubble bursts and banking crisis, both in advanced and 

emerging economies. The pattern that is highlighted by the authors and had already been 

addressed by Bordo and Jeanne (2002) refers that “a boom in real housing prices in the run-up 

to a crisis is followed by a marked decline in the year of the crisis and subsequent years.” This 

statement shows, once again, the unquestionable importance of the housing market and the 

repercussions that its dynamics can have on the economy. 

Considering all these facts, we can conclude that accurate house price forecasting is of 

great importance to extract valuable information on the business cycle and to help governments 

and policymakers to better regulate the real estate market, influencing the real economy. This 

paper intends to add to the existent literature of house price forecasting using Dynamic Model 

Averaging (DMA) and it closely relates with the works developed by both Wei and Cao (2017) 

and Risse and Kern (2016), as we aim to use DMA to forecast real house price growth in several 

European countries, namely peripheral countries such as Portugal, Spain and Italy, but also 

other economies strongly affected by the financial crisis of 2008 like Ireland and the US. 

2. LITERATURE REVIEW 

Predicting house prices is a problem addressed by a vast number of scholars, which have 

already produced quite extensive research on the topic, using a substantial quantity of different 

methods. DiPasquale and Wheaton (1994) were pioneers in the application of some 

macroeconomic variables to forecast house prices in the US and found that this approach led to 

improvements in the models’ forecasting accuracy. Later, Brown et al. (1997) used time-

varying coefficients (TVC) models to forecast UK’s quarterly house price changes from 1968 

to 1992, allowing for the introduction of a dynamic component inherent to markets in general 

that was being neglect until then. The methodology of these authors rivals with previous studies 

that assume that the underlying data generating process behind house price growth is stable and 

apply constant parameter techniques, which may not exactly match reality. The housing market 
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tends to be exposed to structural shocks, such as institutional changes or government policies, 

thus coefficient stability is not present, and a methodology that incorporates this instability 

should be more appropriate to use. They show that the TVC model, in fact, yields better 

forecasting performance when compared to alternative constant parameter regressions, such as 

vector autoregressive (VAR) models, error correction mechanisms (ECM) and autoregressive 

models. 

The historical boom and bust cyclical behavior of real estate markets drew researchers’ 

attention, arousing the question of the existence of some heterogeneous regimes. Crawford and 

Fratantoni (2003), focusing on five US states from 1979 to 2001, tested regime-switching 

models, which also incorporate some instability by allowing the model to adapt itself to 

different states. The study aimed to forecast quarterly variations in house prices and the main 

conclusions were that despite achieving a good in-sample performance, the regime-switching 

model did not outperform the classical ARIMA in the out-of-sample evaluation. According to 

Miles (2008), some researchers have found in subsequent years that Markov-switching models 

are particularly “ill-suited for forecasting”. Nevertheless, he also concludes that nonlinear 

models improve the forecasting performance in housing markets, particularly when these are 

subject to great volatility. 

Rapach and Strauss (2009) use an autoregressive distributed lag (ARDL) model, 

considering 29-35 potential predictors including state and regional economic variables to 

forecast real house price growth in the 20 largest US states, in terms of population, from 1975 

to 2006. They found substantial differences in forecasting house price growth in interior and 

coastal states. In interior states, there is evidence that combining models with different lag 

structures leads to accuracy improvements. However, in coastal states, house prices exhibit 

some disconnection in relation to economic variables, making forecasting an (even more) 

difficult task. This shows that there is no “one-size-fits-all” approach concerning house price 



5 
 

forecasting, suggesting that each market and region may experience different dynamics, even 

if they belong to the same country. 

Kouwenberg and Zwinkels (2015) rely on a different approach, as they try to exploit the 

short-term positive serial correlation and long-term mean reversion to fundamental values that 

real estate returns exhibit. These authors developed an econometric model (VECM with smooth 

transition between components) that dynamically weights these two stylized facts depending 

on the model’s recent performance. Such balance implies an overweight of the positive serial 

correlation component in boom times when possible bubbles are gaining dimension and more 

weight to reversal to fundamental values during subsequent downturns. They found that the 

difference in forecasting performance is significantly better when compared to the fundamental 

mean reversion models and the random-walk benchmark, however it is not shown to outperform 

the classical AR(1). This result suggests that the problem with these models might lie in the 

correct estimation of the fundamental value of houses, which is not very consistent. The 

fundamental value estimate resembles the Gordon Model to value a stock’s fundamental value 

based on dividends. This approach is based on a central assumption stating that the fundamental 

value is not conditional on any exogenous information, apart from rent and price data. Plus, it 

also requires the estimate of a constant discount and growth rates; and the assumption of an 

equilibrium relationship that implies that the long-run rate of capital gains is equal to the growth 

rate of rents. However, the characteristics of the real estate market, especially the lack of 

effective short-selling mechanisms, introduce some efficiency problems that can potentially 

undermine these assumptions and make fundamental value’s estimation an onerous challenge. 

With the revived interest in forecasting variables that have the power to undermine the 

entire economic stability, brought by the 2007 global financial crisis, novel methods and 

techniques have been applied to economic forecasting, particularly from the machine learning 

field. Jirong et al. (2011) presented a hybrid genetic algorithm and support vector machine (G-
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SVM) approach to forecast the average selling house price in China, between 1993 and 2002. 

Their results are ambiguous since they only compare them with another genetic algorithm and 

do not provide a commonly used benchmark. Nonetheless, the support vector regressions 

(SVR) methodology is gaining some popularity among researchers and Plakandaras et al. 

(2014) propose a methodology that combines signal processing field tools with SVR. The 

results are quite interesting, as they found that the forecasting ability of their model outperforms 

the classical random walk, the Bayesian autoregressive and the Bayesian vector autoregressive 

models, both in and out-of-sample. Moreover, they also show that the model can be used as a 

warning system for sudden price drops, for instance, predicting the 2006-2009 US housing 

market decline, up to 2 years ahead. 

Ghysels et al. (2013) make a thorough classification of the recent literature on house price 

forecasting, highlighting several problems with the more traditional models that motivate the 

use of dynamic models. First, it was found that the effects of the determinants of house prices 

change over time. As mentioned above, the relationships between fundamentals and house 

prices are subject to structural breaks and it may also be the case that the effect that certain 

variables have on the housing sector depend on time and market conditions.  Second, research 

also points out that a model with a specific set of variables may not perform consistently over 

time, thus motivating the use of a model selection procedure that selects the best model at each 

point in time (Koop and Korobilis, 2012). The idea is that movements in house prices may be 

driven by different factors at different points in time, i.e. the best house price predictors during 

house price booms are different in boom and bust periods (Bork and Møller, 2015). The issue 

with the model selection procedure is that it comes with a huge computational task attached. To 

illustrate the point, take the following example: with n predictors, one would need to evaluate 

2𝑛 models at each point in time, which totalizes 2𝑛𝑇 models for a sample with T periods. With 

sufficiently large n and T, it becomes computationally demanding and unfeasible. The model 
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averaging solution seems now compelling if one considers different sets of predictors as 

separate models and compute the weighted average of all possible combinations of predictors. 

The challenge here is that the weights used to combine the different models cannot be 

constant over time, otherwise it will not be possible to have enough flexibility as to capture the 

time-varying contribution of each model. The classical Bayesian model averaging (BMA) fails 

at this point, as the weights assigned to each model over time are not time-varying (Próchniak 

and Witkowski, 2013; Man, 2015). Focusing on this issue, researchers developed several 

forecasting combination methods, namely the information-theoretic model averaging (ITMA) 

proposed by Kapetanios et al. (2008). The ITMA method takes the Akaike information criterion 

(AIC) of each individual model computed with respect to previous observations and then 

updates the model probability in the BMA. Their paper adopts this new averaging scheme to 

forecast inflation in the UK, concluding that it can be a powerful alternative to BMA and factor 

models.  

Raftery et al. (2010) address some issues mentioned above with a new method named 

Dynamic Model Averaging (DMA). The methodology exposed in the paper is not directly 

related to economic forecasting, notwithstanding it has deserved the attention of some 

researchers. These authors aimed to solve the problem of online prediction when it is uncertain 

what is the best prediction model to use and was initially applied to the prediction of the output 

strip thickness for a cold rolling mill, where the output is measured with a time delay. The 

parallelism with economic forecasting is quite straightforward, as frequently there is a lot of 

uncertainty involved regarding which model to use and in the parameter estimation. Koop and 

Korobilis (2012) used this technique to forecast quarterly US inflation and found substantial 

improvements over both simple benchmark regressions and TVC models.  The advantage of 

the DMA approach lies in the fact that it allows for the model to change and parameters to shift, 

adding the necessary flexibility to adapt to an ever-changing macroeconomic framework. 
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Additionally, this method combines the different models dynamically, using forgetting factors, 

which approximate the evolution of model parameters and model switching probabilities; see 

e.g. Wei and Cao (2017). 

Bork and Møller (2015) were the first to apply DMA and Dynamic Model Selection 

(DMS) forecasting techniques to house prices. Their paper examined the house price forecast 

ability across the 50 US states and concluded that the accuracy of these new models’ forecasts 

substantially improves in comparison with the usual OLS regressions and AR(1) model. They 

highlight that the states where the housing markets had been the most volatile, were the ones in 

which the model changes and parameter shifts were needed the most. 

The focus of most research mentioned until now has been the US, where a state-specific 

approach is justified by the heterogeneity of house price dynamics between states. Though, 

other scholars have recently published research on the European and Chinese housing markets. 

Wei and Cao (2017) apply the DMA method to forecast the monthly growth rate of house prices 

in 30 major Chinese cities between 2007 and 2015. Their paper adds to the existent literature 

by using a model confidence set test (MCS) to statistically evaluate the forecasting efficiency 

of different models and by introducing a new predictor – the Google search index. This index 

was based on the popularity of the Google online search for the binomial “city name + house 

price”. Their results proved once again the superior predictive power of these models and 

showed that the Google search index, in the last years of their sample, exhibits a greater 

importance than the macroeconomic or monetary indicators to predict house prices in China. 

This result should be taken into consideration in further studies on the housing market, as 

nowadays, people heavily use internet searches to make more informed purchasing decisions. 

The challenge here is to ensure the proper selection and quality of the data used to extract 

information about online searches related to the house-buying process. 



9 
 

Risse and Kern (2016) applied the same methodology (DMA) to the six largest countries 

of the European Monetary Union. Various macroeconomic, monetary and demographic 

fundamentals were used to forecast quarterly house-price growth for Belgium, France, 

Germany, Italy, the Netherlands and Spain in the period between 1975 and 2015. Their findings 

show that there is no predictor that is equally important in all countries, across all time periods. 

For instance, in France and Germany, house-price growth appears to be driven by 

macroeconomic fundamentals (such as e.g. unemployment and CPI), while the Belgian market 

is more influenced by industrial production and the term spread. The Italian market was found 

to be rather peculiar, as no set of predictors proved to have a significant effect. Interestingly, 

the Dutch market showed no influence from macroeconomic predictors, but solely the term 

spread and credit supply. Finally, the Spanish housing market displays a wider influence of 

variables, ranging from credit supply and industrial production to GDP and labor force. This 

dynamic averaging scheme allows us to obtain the evolution of each variables’ probability of 

inclusion over time. This feature is quite useful in order to understand what are the drivers of 

each housing market and to see what is the behavior that they exhibit across time-periods. 

The remaining sections of this paper are organized as follows: the econometric 

methodology is discussed in Section 3; the data is described in Section 4 followed by the 

empirical results in Section 5 and conclusion in Section 6. 

3. ECONOMETRIC METHODOLOGY 

3.1. Dynamic Model Averaging and Dynamic Model Selection 

To better understand the methodology applied in this work project it is useful to consider 

the following: suppose that we have a set of 𝐾 models that are built with different subsets of 𝑥𝑡 

as predictors, where 𝑥(𝑘) for 𝑘 = 1, 2, … , 𝐾, denotes the subset belonging to each model. Assume 

that the relation between the dependent variable and these predictors, can be written as 

𝑦𝑡 = 𝑥𝑡−1
(𝑘)′

𝛽𝑡
(𝑘)

+ 𝜀𝑡
(𝑘)

,                     𝛽𝑡
(𝑘)

= 𝛽𝑡−1
(𝑘)

+ 𝜂𝑡
(𝑘)

, (1) 
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where, 𝑥𝑡−1
(𝑘)′

⊆ 𝑥𝑡−1
′  for 𝑘 = 1, 2, … , 𝐾, denotes a specific predictor set, 𝛽𝑡

(𝑘)
 is the vector of 

parameters respective to each predictor set, 𝜀𝑡~𝑖. 𝑖. 𝑑. 𝑁 (0, 𝑉𝑡
(𝑘)

) and 𝜂𝑡~𝑖. 𝑖. 𝑑. 𝑁 (0,𝑊𝑡
(𝑘)

). Let 

𝐿𝑡 ∈ {1, 2, … , 𝐾} identify the model that applies at time 𝑡, Β𝑡 = (𝛽𝑡
(1)′

, … , 𝛽𝑡
(𝑘)′

) ′ and 𝑌𝑡 =

{𝑦1, … , 𝑦𝑡}. To produce a time 𝑡 forecast using information conditional on 𝑡 − 1, DMA requires 

the computation of Pr(𝐿𝑡 = 𝑘|𝑌𝑡−1), i.e. the conditional probability of selecting model 𝑘 as the 

right one to forecast. Then, the final prediction is made by averaging forecasts across the 

different models, weighted by the respective probabilities. DMS follows a similar principle, but 

the final prediction is based on the model with the single highest probability, Pr(𝐿𝑡 = 𝑘|𝑌𝑡−1). 

The dynamic word in the methodology’s name is merged with the model averaging 

feature, explained above, by allowing for different models to hold at different points in time. 

Such flexibility is important in macroeconomic modelling, as we can allow not only for the 

predictors of house prices but also their marginal impact to change over time. However, one 

should be careful, since the method still suffers from the usual risk of suggesting models which 

include many parameters – overparameterization. Attached to this, comes a great computational 

burden when forecasting with a large number of predictors. Note that the number of predictors 

increases exponentially the number of different forecasting models to be averaged, 𝐾. With 𝑛 

predictors in 𝑥𝑡−1, the total number of different forecasting models will be 𝐾 = 2𝑛, at each point 

in time. 

The application of the model described in (1) can only proceed if some specification for 

how predictors can get in and out of the model is modelled, in other words, a criterion for how 

transition between models would occur. An alternative would be to specify a transition matrix, 

𝑃, with elements 𝑝𝑖𝑗 = Pr(𝐿𝑡 = 𝑖|𝐿𝑡 = 𝑗) for 𝑖, 𝑗 = 1,… , 𝐾, using what is known as Markov 

switching processes. Once again, the computational effort arises as a barrier, since we add the 

additional estimation of the probability transition matrix, 𝑃, of dimensions 𝐾 × 𝐾. Thus, the 

number of predictors does not need to be that large for inference to be very imprecise due to 
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(3) 

(4) 

(5) 

the number of parameters in 𝑃. Bayesian inference through this alternative does not seem very 

attractive, motivating Raftery et al. (2010) to use an approximation that allows for the 

application of standard state space methods such as the Kalman filter. 

The structure in (1) relates to the switching linear Gaussian state space models, which 

imply that the state vector, Β𝑡, is broken into independent blocks, each one representing a 

different model. This independence means that the predictive density of Β𝑡 depends on 𝛽𝑡
(𝑘)

, 

but conditionally on 𝐿𝑡 = 𝑘. By assuming this, it is possible to follow the accurate 

approximation of Raftery et al. (2010), where the Kalman filter is run 𝐾 times. 

The approximation mentioned above involves two parameters, λ and α, which the authors 

defined as forgetting factors, and which assume values slightly below 1. To properly understand 

these factors and how the algorithm works, let us consider the model in (1) ignoring the part of 

model uncertainty. With given values for 𝑉𝑡
(𝑘)

 and 𝑊𝑡
(𝑘)

, one can apply standard filtering results 

to recursively estimate or forecast. The Kalman filter’s starting point assumes that the set of 

parameters on  Β𝑡−1  conditional on 𝐿𝑡 = 𝑘 and with information until 𝑡 − 1, (𝑌𝑡−1), follows a 

normal distribution with the following moments 

Β𝑡−1|L𝑡−1 = 𝑘, 𝑌𝑡−1~𝑁(�̂�𝑡−1
(𝑘)

, Σ𝑡−1|𝑡−1
(𝑘)

). 

It proceeds with parameter prediction for the subsequent period with information conditioned 

on the previous period, 

Β𝑡|L𝑡−1 = 𝑘, 𝑌𝑡−1~𝑁 (�̂�𝑡−1
(𝑘) , Σ𝑡|𝑡−1

(𝑘) ), 

where, 

Σ𝑡|𝑡−1
(𝑘) = Σ𝑡−1|𝑡−1

(𝑘) +𝑊𝑡
(𝑘). 

The first forgetting factor, λ, enters here. Raftery et al. (2010) simplify calculations by replacing 

equation (4) with 

Σ𝑡|𝑡−1
(𝑘) = 𝜆−1Σ𝑡−1|𝑡−1

(𝑘) , 

(2) 
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(6.1) (6.2) 

(7) 

(6) 

which is equivalent to 𝑊𝑡
(𝑘)

= (𝜆−1 − 1)Σ𝑡−1|𝑡−1
(𝑘)

, where 0 < 𝜆 ≤ 1. This forgetting factor implies 

that data 𝑗 time periods old is assigned with 𝜆𝑗 weight in comparison with the last period and it 

implies an effective window size of 
1

1−𝜆
. Moreover, as it is set for the factor to assume a value 

slightly below one, coefficients in the model will experience a gradual evolution. Now, by 

applying this simplification, we can avoid the estimation or simulation of 𝑊𝑡
(𝑘)

. Then, the 

estimation of the parameters is achieved by the following updating equation: 

Β𝑡|L𝑡 = 𝑘, 𝑌𝑡~𝑁(�̂�𝑡
(𝑘)

, Σ𝑡|𝑡
(𝑘)

). 

Equation (6) is the final stage of the Kalman filter. To properly detail the meaning of (6), the 

equations to estimate the first (6.1) and second (6.2) moments of the represented distribution 

are exhibited below. 

�̂�𝑡|𝑡
(𝑘)

= �̂�𝑡|𝑡−1
(𝑘)

+𝐾𝑡𝑒𝑡                                  Σ𝑡|𝑡
(𝑘) = Σ𝑡|𝑡−1

(𝑘) −𝐾𝑡𝑥𝑡−1
(𝑘) Σ𝑡|𝑡−1

(𝑘)
 

with 𝐾𝑡 = Σ𝑡|𝑡−1
(𝑘) 𝑥𝑡−1

(𝑘)′ (𝑉𝑡
(𝑘) + 𝑥𝑡−1

(𝑘)′Σ𝑡|𝑡−1
(𝑘) 𝑥𝑡−1

(𝑘) )
−1

, which corresponds to the Kalman gain and 𝑒𝑡 =

(𝑦𝑡 − 𝑥𝑡−1
(𝑘)′�̂�𝑡−1

(𝑘) ) to the one-step-ahead prediction error. The Kalman filter implements nothing 

more than an “average” between the one-step-ahead prediction and the measured value, 

weighted by the Kalman gain. The inference process is repeated recursively as we advance 

through time, nonetheless to start the process �̂�0
(𝑘)

 and Σ0
(𝑘)

 must be specified. Recursive 

forecasting is completed using the predictive distribution 

𝑦𝑡|𝑌
𝑡−1~𝑁(𝑥𝑡−1

(𝑘)′�̂�𝑡−1
(𝑘) , 𝑉𝑡

(𝑘) + 𝑥𝑡−1
(𝑘)′Σ𝑡|𝑡−1

(𝑘) 𝑥𝑡−1
(𝑘) ). 

It is important to reinforce the idea that the application of the previous results in (2), (3) 

and (6) is conditional on L𝑡 = 𝑘, consequently, the prediction and updating equations only 

provide information on 𝛽𝑡
(𝑘)

 and not on the full vector Β𝑡. Therefore, we need a prediction 

method that is not conditional on a specific model 𝑘 (unconditional prediction). As we have 

already discussed, the specification of a transition matrix and posterior use of MCMC algorithm 

to estimate the unconditional predictions is not suitable in practical terms, given its 
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(9) 

(10) 

(11) 

(12) (13) 

(8) 

computational burden and parameter proliferation. We turn to another approximation as 

suggested by Raftery et al. (2010), adding an additional forgetting factor, α, with interpretation 

similar to 𝜆. To solve the issue of being conditioned on a particular model, we would need to 

estimate the following equation:  

𝑝(Β𝑡−1|𝑌
𝑡−1) = ∑ 𝑝 (𝛽𝑡

(𝑘)
|L𝑡−1 = 𝑘, 𝑌𝑡−1) Pr(L𝑡−1 = 𝑘|𝑌𝑡−1)𝐾

𝑘=1 ,  

where 𝑝 (𝛽𝑡
(𝑘)
|L𝑡−1 = 𝑘, 𝑌𝑡−1) is given by (2). What (8) means is that the conditional distribution 

(predictive density) of all parameters derived from every possible combination of models, 

𝑝(Β𝑡−1|𝑌
𝑡−1), is given by an average of the distribution of the parameters of each specific 

model, 𝑝 (𝛽𝑡
(𝑘)
|L𝑡−1 = 𝑘, 𝑌𝑡−1), weighted by the respective probability of each model, 

Pr(L𝑡−1 = 𝑘|𝑌𝑡−1). All we have left to estimate is this last probability. 

Let 𝜋𝑡|𝑠,𝑙 = Pr(L𝑡 = 𝑙|𝑌𝑠), implying that Pr(L𝑡−1 = 𝑘|𝑌𝑡−1) = 𝜋𝑡−1|𝑡−1,𝑘. If we used the 

transition probability matrix, 𝑃, with elements 𝑝𝑘𝑙 (probability of “jumping” from model 𝑘 to 

model 𝑙), the model prediction equation would be 

𝜋𝑡|𝑡−1,𝑘 = ∑ 𝜋𝑡−1|𝑡−1,𝑙𝑝𝑘𝑙
𝐾
𝑙=1 .  

Instead, with the approximation suggested by Raftery et al. (2010) we obtain 

𝜋𝑡|𝑡−1,𝑘 =
𝜋𝑡−1|𝑡−1,𝑘
𝛼

∑ 𝜋𝑡−1|𝑡−1,𝑙
𝛼𝐾

𝑙=1
  

where 0 < 𝛼 ≤ 1 is set to a value slightly below 1. Following a Kalman filter type approach, 

the model updating equation is 

𝜋𝑡|𝑡,𝑘 =
𝜋𝑡−1|𝑡−1,𝑘
𝛼 𝑝𝑘(𝑦𝑡|𝑌

𝑡−1)

∑ 𝜋𝑡−1|𝑡−1,𝑙
𝛼𝐾

𝑙=1 𝑝𝑙(𝑦𝑡|𝑌
𝑡−1)

, 

where 𝑝𝑙(𝑦𝑡|𝑌
𝑡−1) is the predictive density of model 𝑙, i.e., the density of a 𝑁 (𝑥𝑡−1

(𝑙)′ �̂�𝑡−1
(𝑙) , 𝑉𝑡

(𝑙) +

𝑥𝑡−1
(𝑙)′Σ𝑡|𝑡−1

(𝑙) 𝑥𝑡−1
(𝑙) ) distribution evaluated at 𝑦𝑡. 

Finally, the DMA and DMS one-step ahead recursive forecast, which dynamically incorporates 

the 𝐾 models will be, respectively: 

�̂�𝑡
𝐷𝑀𝐴 = ∑ 𝜋𝑡|𝑡−1,𝑘

𝐾
𝑘=1 𝑥𝑡−1

(𝑘)′
�̂�𝑡−1
(𝑘)

,        and                      �̂�𝑡
𝐷𝑀𝑆 = 𝑥𝑡−1

(𝑘∗)′
�̂�𝑡−1
(𝑘∗)

. 
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(14) 

(15) 

As mentioned above, the DMA forecast is a result of averaging all 𝐾 models according to their 

historical performances, reflected in the probability 𝜋𝑡|𝑡−1,𝑘. The DMS forecast just considers 

the model with the best historical performance, 𝑘∗, thus the one with the highest probability 

𝜋(𝑡|𝑡−1,𝑘∗). 

To correctly understand the interpretation of the forgetting factor, α, note that the weight 

of model 𝑘 at time 𝑡 is 

𝜋𝑡|𝑡−1,𝑘 ∝ [𝜋𝑡−1|𝑡−2,𝑘𝑝𝑘(𝑦𝑡−1|𝑦
𝑡−2)]

𝛼
= ∏ [𝑝𝑘(𝑦𝑡−𝑖|𝑦

𝑡−𝑖−1)]
𝛼𝑖

𝑡−1
𝑖=1 .  

Thus, model 𝑘 is over weighted at time 𝑡 if its forecasting performance, measured by the 

predictive density 𝑝𝑘(𝑦𝑡−𝑖|𝑦
𝑡−𝑖−1), was good in the recent past. To control for “recent past”, we 

rely on an exponential decay with rate 𝛼𝑖, for observations 𝑖 periods ago. For instance, if 𝛼 =

0.99, the forecast performance 5 years ago with quarterly data receives 82% (0.995×4 ≅ 82%) 

as much weight as the forecasting performance last period. On the other hand, with 𝛼 = 0.95, 

this percentage drops to 36%, i.e. the lower the value of 𝛼, the faster information is forgotten. 

If  𝜆 = 𝛼 = 1, DMA is just the standard approach to BMA using conventional linear forecasting 

models with no time variation in coefficients, thus it is interesting to include this case as a 

competitive model of DMA in our empirical analysis. 

To estimate the error variance 𝑉𝑡
(𝑘)

 the suggestion of Koop and Korobilis (2012) is 

followed. They avoid the computational burden of using a stochastic volatility or ARCH 

specification by applying an Exponentially Weighted Moving Average (EWMA) to estimate 

𝑉𝑡
(𝑘)

, i. e., 

�̂�𝑡
(𝑘) = √(1 − 𝜅)∑ 𝜅𝑗−1𝑡

𝑗=1 (𝑦𝑗 − 𝑥𝑗
(𝑘)′�̂�𝑗−1

(𝑘) )
2
.  

The use of EWMA estimators is common in finance applications and 𝜅 the decay factor 

is recommended to be set at 0.97 for monthly data and 0.94 for daily data. Just like these authors, 
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(17) (18) 

in this paper, we use quarterly data and so the chosen 𝜅 is 0.98. To obtain the volatility forecasts 

�̂�𝑡+1|𝑡
(𝑘)

 we recursively approximate and get 

�̂�𝑡+1|𝑡
(𝑘)

= 𝜅�̂�𝑡|𝑡−1
(𝑘)

+ (1 − 𝜅) (𝑦𝑡 − 𝑥𝑡
(𝑘)′

�̂�𝑡
(𝑘)

)
2
. 

3.2. Evaluation of forecasts 

Forecast evaluation is a crucial procedure in forecasting exercises, ultimately trying to 

answer the question: “Which is the best forecasting model?”. The question is then what 

forecasting evaluation measures should be used. In this paper, two well-known loss functions 

are used: MAFE (Mean Absolute Forecast Error) and MSFE (Mean Squared Forecast Error), 

i.e., 

𝑀𝐴𝐹𝐸 = 𝑁−1∑ |𝑦𝑡 − �̂�𝑡|
𝑁
𝑡=1 ,          and                       𝑀𝑆𝐹𝐸 = 𝑁−1∑ (𝑦𝑡 − �̂�𝑡)

2𝑁
𝑡=1 , 

where 𝑦𝑡 is the actual value of the real house price growth, �̂�𝑡 is the respective forecast and 𝑁 

is the number of forecasts. These criteria are quite similar, yet some differences are worth 

noting. Due to the quadratic loss function it uses, MSFE, assigns a relatively large weight to 

large errors, thus being more suitable when this kind of errors are particularly problematic. On 

the other hand, MAFE has the advantage of providing a real interpretation of its value, as it 

represents the average difference between the forecast and the actual value, something that 

cannot be achieved using MSFE. 

3.2.1. The Clark and West Test 

MAFE and MSFE are good measures to have a sense of how the forecasting accuracy 

compares between forecasts. However, if we are interested in knowing which alternative model 

presents the best predictive ability, considering the statistical significance of the forecasting 

losses between models, we must apply more advanced methods. We follow the method used by 

Bork and Møller (2015) and Risse and Kern (2016) that opt for the test proposed by Clark and 

West (2007). They reference a paper by Clark and McCracken (2001) that shows that the 

commonly used Diebold and Mariano (1995) statistic has a nonstandard distribution when 

(16) 
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(20) 

testing for the equal accuracy of forecasts from nested models. As we are precisely working in 

a framework with nested models, we should use a methodology that is robust to this problem 

instead – the Clark and West test. The new statistic proposed is adjusted and it is approximately 

normally distributed in the case of nested models. The test statistic is defined as 

𝑓𝒋,𝒕 = (𝑦𝑡 − �̂�𝑀𝐸𝐴𝑁,𝑡)
𝟐
− [(𝑦𝑡 − �̂�𝑗,𝑡)

𝟐
− (𝑦𝑀𝐸𝐴𝑁,𝑡 − �̂�𝑗,𝑡)

𝟐
],  

where �̂�𝑀𝐸𝐴𝑁,𝑡 represents the historical forecast of 𝑦𝑡 using the historical mean benchmark and 

�̂�𝑗,𝑡 represents the forecast of model 𝑗 = 𝐴𝑅1, 𝐷𝑀𝐴, 𝐷𝑀𝑆, for the different forgetting factor 

levels. The Clark and West test is completed by regressing 𝑓𝒋,𝒕 on a constant and then testing its 

significance using the underlying heteroscedasticity and autocorrelation corrected t-statistic. 

Rejection of the null hypothesis means that model 𝑗 significantly overperforms the benchmark 

from a statistical stand point. We have statistical evidence to reject the null, at the 5% level, if 

the t-statistic is greater than 1.645, which is the corresponding critical value. For simplicity, the 

test hereby described uses the historical mean forecast as the benchmark against which we 

compare other models. Nonetheless, in this paper, we considered the AR(1) and AR(2) as 

benchmarks to conduct the Clark and West test, since it is straightforward that almost every 

model would outperform the historical mean forecast and in this way, we would be less 

demanding than what is required. 

4. DATA 

The data set used to conduct this analysis consists of quarterly observations of the real 

house price growth rate for Portugal, Italy, Spain, Ireland, the Euro Area and the US. Data was 

provided by Banco de Portugal, OECD, ECB and INE. The dependent variable is calculated as 

follows: 

𝑦𝑖,𝑡 = 100 × [ln(𝑟ℎ𝑝𝑖,𝑡) − ln(𝑟ℎ𝑝𝑖,𝑡−1)]  

where, 𝑖 = 1,… , 6, stands for the country’s index. The objective is to build forecasting models 

tailored to each of the countries, providing an analysis of European peripheral countries’ 

(19) 
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(Portugal, Spain and Italy) housing market, adding Ireland, the Euro Area and the US to 

establish comparisons. Table 1 depicts the main descriptive statistics of the house price growth 

rate for the 5 countries considered, plus the Euro Area.  

Table 1. Descriptive statistics of the dependent variable for each country. 

Note: ADF stands for augmented Dickey-Fuller unit root test. The significance levels for the null hypothesis’ 

rejection (unit root) are represented as follows: 10% ‘*’, 5% ‘**’ and 1% ‘***’ 

Four out of the six series used have data available since the 70’s providing more than 180 

observations each. However, Portugal and the Euro Area have shorter series counting with 116 

and 148 observations, respectively. Regarding the behavior of the series, we can observe 

substantial disparities. Portugal figures as the country with the lowest quarterly average real 

house price growth (0.0207%), contrasting with the rest of the time series, where the average is 

at least 10 times above this. From this country set, only Portugal and Italy posted averages 

below the Euro Area. Ireland stands at the top of the six with a quarterly average growth rate 

of 0.6908%, followed by Spain and the United States. The largest quarterly drop occurred in 

Italy in the first quarter of 1980, where real house prices fell almost 10%, largely due to a surge 

in inflation at the time. Just a few years before, in 1973, the Italian real house prices increased 

more than 15%, which represents the largest quarterly growth among all the series. These huge 

ups and downs between the decade of 70 and 90 are a pattern that emerges in other countries as 

well, namely in Ireland and Spain, where volatility spiked in this period as one can observe 

from Figure 1. These three countries stand out with standard deviations at least two times above 

the ones for Portugal, the Euro Area and the US, where movements went a lot smoother. A 

quick look at the plots does not suggest a great correlation between the six series, though we 

can see that from the end of 2007 until the end of 2013 real house prices fell, almost 

Country Obs. Start End Mean Min. Max. Std. Dev. ADF 

Portugal 116 1988.Q2 2017.Q1 0.0207 -3.7873 3.6691 1.4156 -5.4829*** 

Spain 184 1971.Q2 2017.Q1 0.5843 -5.9795 10.8534 2.7950 -5.4997*** 

Italy 

 

188 1970.Q2 2017.Q1 0.2445 -9.8101 15.4302 3.3120 -6.1450*** 

Ireland 188 1970.Q2 2017.Q1 0.6908 -7.6876 11.0981 3.1086 -8.8122*** 

Euro Area 148 1980.Q2 2017.Q1 0.2739 -2.7273 2.1452 0.9353 -3.7228*** 

United States 188 1970.Q2 2017.Q1 0.3645 -3.8490 2.6937 1.1674 -5.7357*** 



18 
 

uninterruptedly, in all of them and the cause of this tumble is well-known. After the burst of the 

housing market bubble in the US in 2007/2008, the contagion effect spread the decline all over 

Europe. The dimension of this drop is remarkable, though quite heterogeneous. In the period 

between the end of 2007 and 2013, real house prices fell 63% in Ireland and 54% in Spain. Italy 

and Portugal experienced a fall of around 20% and the Euro Area and the US 13% and 17%, 

respectively. Additionally, Table 1 also shows the test statistic of the Augmented Dickey-Fuller 

test for stationarity. The null hypothesis of the presence a unit root is rejected, at the 1% 

significance level, for all series (as expected). 

Figure 1. Quarterly real house price growth. 

For fair forecast evaluation, each individual sample was divided into in and out-of-sample 

data. Observations until and including the last quarter of 2006 were included in the training set, 

using these data points to compute the priors to input at the start of the recursive estimation. 

From the first quarter of 2007 onwards, the model does not include any forward-looking 

information and is recursively estimated in each quarter. 

The DMA methodology allows for the inclusion of a set of predictors for the dependent 

variable, thus the model presented in this paper includes a group of 15 explanatory variables. 

One can subdivide the set in 4 types of variables: macroeconomic (LABOR, 
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UNEMPLOYMENT, INCOME, GDP, GFCF and INFLATION), financial (SPREAD, 

MORTGAGE), housing market specific (RENT, RENTPRICE, LOAN, CONSTCOST and 

PERMITS) and lead sentiment indicators (CONSTCONF and CONFIDENCE). Table 2 lists 

these regressors, briefly describing each of them and the transformations applied. The choice 

of these variables was based on the variables used in previous research on this topic, including 

also some new variables, namely RENTPRICE, MORTGAGE, GFCF, LOAN, CONSTCOST, 

CONSTCONF and CONFIDENCE, with the objective to test if they are relevant predictors of 

house prices. 

Table 2. Description of the explanatory variables. 

Transformation Codes: 1 – No transformation, 2 – First difference of natural logarithm 

5. EMPIRICAL RESULTS 

5.1. Average number of predictors 

One of the remarkable advantages of the methodology used in this paper is its flexibility 

concerning the number of different explanatory variables included in the model over time. The 

inclusion or exclusion of each variable is conditioned on its recent past performance in terms 

of predictive ability, measured by 𝜋. It would be interesting to see if the model does capture the 

dynamic inclusion or exclusion of variables and how this number changes over time and across 

# ID Tcode Description 

1 LABOR 2 Total labor force in thousands 

2 UNEMPLOYMENT 2 Unemployment rate 

3 RENT 2 Rents index, calculated trough price-to-rent ratio 

4 RENTPRICE 2 Rent to price ratio 

5 SPREAD 2 10 years versus 3 months public debt spread 

6 MORTGAGE 2 Real mortgage rate 

7 INCOME 2 Real disposable income of households, in million euros 

8 GDP 2 
Real GDP, million euro or national currency (volume chained link 

and market prices) 

9 GFCF 2 
Real GFCF (housing), real gross fixed capital formation, million 

euros or national currency 

10 LOAN 2 Loans to house purchase, base 2010 

11 CONSTCOST 2 Construction costs index, base 2010 

12 PERMITS 2 Number of housing permits, base 2010 

13 CONSTCONF 2 Construction confidence index, base 2010 (Not available for Ireland) 

14 CONFIDENCE 2 Economic sentiment indicator, base 2010 (Not available for Ireland) 

15 PCD 2 Private consumption deflator, base 2010 
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countries. Koop and Korobilis (2012) show that the expected number of predictors, at time 𝑡, 

will be 

𝐸(𝑠𝑖𝑧𝑒𝑡) = ∑ 𝜋𝑡|𝑡−1,𝑘𝑠𝑖𝑧𝑒(𝑘)
𝐾
𝑘=1   

where 𝑠𝑖𝑧𝑒(𝑘) is the number of explanatory variables in model 𝑘. Figure 2 contains the expected 

number of coefficients in a historical time frame for the six series under analysis, for λ=α=0.95, 

on the left and λ=α=1, on the right, for a DMA with the 15 variables in our dataset. These plots 

show that the model size varies substantially across time. Additionally, it is possible to see a 

positive relation between the factor values and the expected number of coefficients. For the 

0.95 case, expected size ranges from 9 to 4, whereas for the other it also starts at 9, but quickly 

decreases to values below 4. The conclusion is that the faster information is forgotten, the larger 

we expect models to be, possibly because in this way the algorithm can adapt more easily and 

allow for a larger number of predictors to input information on the final forecast. 

Figure 2. Plot of the expected model size for DMA with (λ=α=0.95) and (λ=α=1) 

 

5.2. Estimation process 

To completely understand the results, it is important to know the process followed to 

achieve them, therefore, the inclusion probabilities are of utmost relevance for a detailed and 

correct perception of the empirical approach. Recall that in the DMA methodology these 

probabilities are the weights used in the averaging of the different model forecasts, thus they 

contain valuable information regarding the relative importance of each variable for the 

movements in aggregate housing prices. Plots of these probabilities for (λ=α=0.95) are available 

(21) 
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in the appendix. In addition to the variables included in Table 2, we also tested the model with 

the inclusion of one lag of the dependent variable. The rationale for the inclusion of this lag is 

that house price growth tends to exhibit a strong correlation with the previous period, mainly at 

higher frequencies, like quarterly variations. Further evidence of this claim is reflected in the 

probability plots with and without the lag that can be found in the appendix. A closer look at 

these plots shows that in general, all probabilities decrease when the lag is included, which can 

be interpreted as a caption of information by the lag itself. By looking at the probability plots, 

some country independent conclusions can be taken. One of them is that sentiment variables 

are rarely of great importance to predict house prices, being assigned with low (below 0.5) 

probabilities of inclusion by the algorithm. The methodology itself can ignore less relevant 

variables, by assigning them low probabilities of inclusion, nevertheless they still have a 

considerable weight in the final forecast, especially if they produce extreme predictions, what 

introduces a lot of “noise” in the system. With this issue in mind, we opted to exclude less 

relevant variables (variables with historical inclusion probability below 0.5 during the training 

period) from the set, building models as parsimonious as possible. Our findings reinforce the 

idea of heterogeneity of the different housing markets and show that there is no single variable 

that is an important predictor across the countries under analysis. Table 3 contains the models 

with variables that have shown relevance during the training period, i.e. with probabilities above 

0.5 within the training period, plus a one-period lag (LAG) of the dependent variable. 

Table 3. Forecasting model’s composition. 

In Portugal, we find the term spread, income and construction confidence as the regressors 

with most importance in the training period. It is interesting to note that during the financial 

Portugal Spain Italy Ireland Euro Area United States 

LAG LAG LAG LAG LAG LAG 

SPREAD UNEMPLOYMENT LABOR RENT MORTGAGE RENTPRICE 

INCOME RENTPRICE UNEMPLOYMENT RENTPRICE GDP SPREAD 

CONSTCONF INCOME RENT GDP GFCF GDP 

- GDP RENTPRICE GFCF PCD LOAN 

- - INCOME LOAN - PERMITS 

- - PCD PCD - - 
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crisis specific variables instantly experienced increased probabilities, including variables that 

were previously disregarded. This can be seen in the plots of INCOME (2008), GFCF (2008), 

CONSTCOST (2008) and SPREAD (2011). The Spanish market displays different dynamics, 

with a dominance of macroeconomic variables, such as the unemployment rate, income and 

GDP, but also the rent-to-price ratio. The Italian house price growth series provides a clear 

example of regime switching series. It is possible to conclude this by observing its plot in 

Figure 1, where we can see a highly volatile behavior with huge variations, roughly until 1995, 

and then volatility plummets, turning Italy into one of the most stable series of the sample. The 

probability plots are consistent with this since several variables have plots peaking at the 

beginning of the sample and then they abruptly decrease. This is the case for the unemployment 

rate, rents, rent-to-price and the deflator, only labor force and income exhibit a slower decrease 

of importance. In opposition to what we have seen above for Portugal, the financial turmoil 

lived in 2007-2011 did not have a great impact on the probabilities for the Spanish and Italian 

cases. The Irish housing market model is dominated by both housing market specific (RENT, 

RENTPRICE, LOAN) and macroeconomic variables (GDP, GFCF and PCD). Rents and the 

rent-to-price proved to have a great importance at the beginning of the sample that was rapidly 

lost at the time and has been approximating past levels again, along with the loan to house 

purchase series. Such as Portugal, the probability of inclusion of some variables spikes during 

the 2007-2011 period, namely for rents, rent-to-price, the term spread and loan. Regarding the 

Euro Area, the historical housing market growth rate displays very low volatility, mainly 

because it is an average of a considerable number of different markets, thus softening its 

behavior. The relevant variables in the in-sample period are all macroeconomic (GDP, GFCF 

and PCD), except for the mortgage rate. The four variables produce quite similar plots, with 

peaks at the beginning of the sample until mid-80’s and then a sudden drop, remaining low until 

today. At present, these variables were surpassed in terms of probability of inclusion by the 
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loan to house purchase series. Finally, the US housing market shows some similarities with the 

Euro Area, which makes sense as both are composed by smaller and heterogeneous housing 

markets. As in the previous case, the most relevant variables (RENTPRICE, SPREAD, GDP, 

LOAN and PERMITS), apart from GDP, have all very high probabilities of inclusion at the 

start of the sample and then they all drop in a short time, becoming less significant. Analyzing 

these probabilities as a whole, we could not disclose any pattern regarding the importance of 

predictors among peripheral and non-peripheral countries. Even so, some variables seem to be 

more relevant than others, for instance, the rent-to-price ratio appears to have substantial 

importance in Portugal, Spain, Italy and the in US. Quite surprisingly, the unemployment rate 

did not show a high probability of inclusion for any series, apart from Spain and, momentarily 

the US in 2008. Although, its probability still presented a slight increase in 2008 for every 

series, excluding Italy. Recently, we can observe that loan to house purchase describes a 

growing importance in every country except in the US, where it stands stable at low levels. 

As mentioned in Section 3.1, the values for λ and α set the degree of past information that 

is considered at each point in time. Lower values for these factors mean a higher pace of 

information forgetting, introducing more flexibility in the model. In this forecasting exercise, λ 

and α were bound to the following set {0.95; 0.97; 0.99; 1}, which includes the optimal values 

suggested by Koop and Korobilis (2012) for output and inflation forecasting. According to 

these authors values below 0.95 may, sometimes, increase forecasting performance, though 

they increase the possibility of overfitting. Therefore, we tested four DMA and four DMS, one 

for each forecasting factor value. Additionally, to test our predictions, recursive AR(1) and 

AR(2) models were estimated. A summary of the forecasting performance, for a quarterly 

horizon, of the best models by country is depicted in Table 4 (please see Table 5 in the 

Appendix for detailed results). 
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Table 4. Forecasting performance summary. 

Note: The significance levels for the null hypothesis’ rejection are represented as follows: 10% ‘*’, 5% ‘**’ and 1% 
‘***’ 

Overall, the results of this estimation are quite satisfactory, as all the best models beat the 

MAFE and MSFE of the AR1 benchmark. The levels of improvement of the MSFE in relation 

to the AR1 can be seen in the column ‘Relative MSFE’, where Portugal stands in last with 

modest 0.82% and Ireland figures as the first with more than 80% improvement. When 

comparing the MAFE and MSFE with the AR2 benchmark results are less positive, though 

Italy, Ireland and US’s best models still outperform the two-lag autoregressive model. 

Nonetheless, we are also interested in testing the differences in the forecasting performance of 

different models, because MAFE and MSFE are mere averages. As mentioned in Section 3.2.1 

we can do this using the Clark and West test (CW). This test was applied to test whether the 

best model for each country was statistically better than the autoregressive benchmarks. Results 

were promising as each of dynamic models proved to outperform both AR1 and AR2 in 

forecasting house price growth, contradicting the MAFE and MSFE measures. The forecasting 

loss function of MAFE and MSFE is not the same as the one used in the CW test, motivating 

Forecasting method MAFE MSFE Rel. MSFE CW AR1 CW AR2 

 Portugal         

AR1 1.1550 2.1690 1 -  
AR2 1.1304 2.0742 1.0457  - 

DMA (λ=α=0.95) 1.0898 2.1514 1.0082 2.8523*** 2.7875*** 

 Spain         

AR1 1.1995 2.2989 1 -  
AR2 1.0668 1.8589 1.2367  - 

DMA (λ=α=0.95) 1.0778 1.9136 1.2013 3.2059*** 2.7084*** 

 Italy         

AR1 0.5193 0.4699 1 -  
AR2 0.6614 0.7208 0.6520  - 

DMS (λ=α=0.95) 0.4670 0.3719 1.2636 2.8990*** 4.0583*** 

 Ireland         

AR1 2.3736 8.8063 1 -  
AR2 2.1515 6.8913 1.2779  - 

BMA (λ=α=1) 1.8324 4.7660 1.8477 4.2624*** 3.2692*** 

 Euro Area         

AR1 0.3894 0.2325 1 -  
AR2 0.3715 0.2086 1.1149  - 

DMA (λ=α=0.99) 0.3871 0.2207 1.0534 2.0189***            1.9343** 

 United States         

AR1 0.7391 0.9763 1 -  
AR2 0.7453 0.9232 1.0576  - 

DMS (λ=α=0.97) 0.6699 0.7069 1.3810 2.3621*** 2.7102*** 



25 
 

the different conclusions. Nonetheless, being specifically designed to be applied to nested 

models, the CW test is more reliable in this case. 

6. CONCLUSION 

This paper aimed to develop a comprehensive literature review of house price forecasting 

and to apply a recent methodology to peripheral countries’ housing markets, as well as Ireland, 

the Euro Area and the US. As the results show, the final objective of producing valid forecasting 

models for this variable were met. However, some changes in the algorithm can potentially 

improve our results, for instance, with the introduction of clusters instead of using the whole 

span of forecasting models and with the use of dynamic processes to input optimal time-varying 

forecasting factors.  

A thorough review and explanation of the Dynamic Model Averaging algorithm were 

made and the main advantages of it became clear, namely the way the econometrician can 

include several predictors inside the system, so that the algorithm chooses the most important 

ones at each point in time. This flexibility proved useful, not only to predict economic variables, 

but also to analyze their behavior through the inclusion of probability plots. Our results 

demonstrated the superior predictive ability of DMA and reinforced the idea that, despite the 

increased globalization of economies and financial markets, each individual housing market is 

subject to its own dynamic. The DMA methodology has already been applied to inflation and 

house prices, nevertheless, the potential of DMA can go beyond these applications and be tested 

with other macroeconomic variables, even outside of the economic scope. Possibly, pure 

financial applications like multifactor stock pricing models are one area for further research 

applying this method. Multifactor models can benefit from the model and parameter adaptation 

of DMA, as classic approaches fail to incorporate the break of linear relationships or are too 

slow to adapt to the new regimes. 
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Table 4. Forecasting performance summary. 

Note: The significance levels for the null hypothesis’ rejection are represented as follows: 10% ‘*’, 5% ‘**’ and 1% 
‘***’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Forecasting method MAFE MSFE Rel. MSFE CW AR1 CW AR2 

 Portugal         

AR1 1.1550 2.1690 1 -  
AR2 1.1304 2.0742 1.0457  - 

DMA (λ=α=0.95) 1.0898 2.1514 1.0082 2.8523*** 2.7875*** 

 Spain         

AR1 1.1995 2.2989 1 -  
AR2 1.0668 1.8589 1.2367  - 

DMA (λ=α=0.95) 1.0778 1.9136 1.2013 3.2059*** 2.7084*** 

 Italy         

AR1 0.5193 0.4699 1 -  
AR2 0.6614 0.7208 0.6520  - 

DMS (λ=α=0.95) 0.4670 0.3719 1.2636 2.8990*** 4.0583*** 

 Ireland         

AR1 2.3736 8.8063 1 -  
AR2 2.1515 6.8913 1.2779  - 

BMA (λ=α=1) 1.8324 4.7660 1.8477 4.2624*** 3.2692*** 

 Euro Area         

AR1 0.3894 0.2325 1 -  
AR2 0.3715 0.2086 1.1149  - 

DMA (λ=α=0.99) 0.3871 0.2207 1.0534 2.0189***       1.9343** 

 United States         

AR1 0.7391 0.9763 1 -  
AR2 0.7453 0.9232 1.0576  - 

DMS (λ=α=0.97) 0.6699 0.7069 1.3810 2.3621*** 2.7102*** 
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Table 5.a Forecasting performance (all models). 

Forecasting method MAFE MSFE Rel. MSFE CW AR1 CW AR2 

 Portugal         

AR1 1.1550 2.1690 1 -  

AR2 1.1304 2.0742 1.0457  - 

DMA (λ=α=0.95) 1.0908 2.2319 0.9718 2.3074*** 2.1185*** 

DMA (λ=α=0.97) 1.0900 2.2083 0.9822 0.6698 0.0690 

DMA (λ=α=0.99) 1.0997 2.2167 0.9785 0.5531 0.0053 

BMA (λ=α=1) 1.1119 2.2287 0.9732 0.5367 0.1078 

DMS (λ=α=0.95) 1.0714 2.2952 0.9450 2.1407*** 2.0407*** 

DMS (λ=α=0.97) 1.1214 2.3696 0.9153 0.3898 -0.1481 

DMS (λ=α=0.99) 1.1702 2.4636 0.8804 0.0833 -0.4341 

BMS (λ=α=1) 1.1354 2.3540 0.9214 0.4462 0.0448 

 Spain         

AR1 1.1995 2.2989 1 -  

AR2 1.0668 1.8589 1.2367  - 

DMA (λ=α=0.95) 1.0345 1.7803 1.2913 3.7039*** 3.7108*** 

DMA (λ=α=0.97) 1.0346 1.7795 1.2919 3.6860*** 3.6974*** 

DMA (λ=α=0.99) 1.0213 1.7662 1.3016 3.6387*** 3.6308*** 

BMA (λ=α=1) 1.0290 1.7798 1.2916 3.5309*** 3.5240*** 

DMS (λ=α=0.95) 0.9965 1.7596 1.3065 3.6157*** 3.5451*** 

DMS (λ=α=0.97) 0.9991 1.7632 1.3038 3.6314*** 3.5517*** 

DMS (λ=α=0.99) 1.0282 1.7849 1.2880 3.4967*** 3.4952*** 

BMS (λ=α=1) 1.0282 1.7849 1.2880 3.5077*** 3.5066*** 

 Italy         

AR1 0.5193 0.4699 1 -  

AR2 0.6614 0.7208 0.6520  - 

DMA (λ=α=0.95) 0.4653 0.3776 1.2444 3.8966*** 5.3754*** 

DMA (λ=α=0.97) 0.4653 0.3775 1.2447 3.8941*** 5.3937*** 

DMA (λ=α=0.99) 0.4736 0.3884 1.2099 3.6015*** 5.4095*** 

BMA (λ=α=1) 0.4734 0.3919 1.1991 3.4379*** 5.3895*** 

DMS (λ=α=0.95) 0.4670 0.3719 1.2636 4.1849*** 5.5104*** 

DMS (λ=α=0.97) 0.4819 0.4025 1.1675 3.6140*** 5.5101*** 

DMS (λ=α=0.99) 0.4723 0.3907 1.2028 3.4384*** 5.3911*** 

BMS (λ=α=1) 0.4723 0.3907 1.2028 3.4384*** 5.3911*** 

Note: The significance levels for the null hypothesis’ rejection are represented as follows: 10% ‘*’, 5% ‘**’ and 1% 
‘***’ 
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Table 5.b Forecasting performance (all models). 

Forecasting method MAFE MSFE Rel. MSFE CW AR1 CW AR2 

 Ireland         

AR1 2.3736 8.8063 1 -  

AR2 2.1515 6.8913 1.2779  - 

DMA (λ=α=0.95) 1.8050 4.8469 1.8169 3.4653*** 3.3375*** 

DMA (λ=α=0.97) 1.8333 4.9638 1.7741 3.1409*** 2.6876*** 

DMA (λ=α=0.99) 1.9656 5.4493 1.6160 3.3439*** 2.4607*** 

BMA (λ=α=1) 1.9562 5.5372 1.5904 3.6414*** 2.6122*** 

DMS (λ=α=0.95) 2.0697 6.8086 1.2934 2.6624*** 2.5394*** 

DMS (λ=α=0.97) 2.1879 7.0763 1.2445 2.3038***     1.9318** 

DMS (λ=α=0.99) 2.2802 9.3070 0.9462     1.6979*  0.5653 

BMS (λ=α=1) 1.9337 5.7863 1.5219 3.7146*** 2.8781*** 

 Euro Area         

AR1 0.3894 0.2325 1 -  

AR2 0.3715 0.2086 1.1149  - 

DMA (λ=α=0.95) 0.3569 0.1996 1.1652 2.5580*** 2.8758*** 

DMA (λ=α=0.97) 0.3589 0.1991 1.1679 2.5829*** 2.9004*** 

DMA (λ=α=0.99) 0.3575 0.1967 1.1822 2.6389*** 2.9405*** 

BMA (λ=α=1) 0.3561 0.1958 1.1874 2.6545*** 2.9504*** 

DMS (λ=α=0.95) 0.3544 0.1952 1.1913 2.6722*** 2.9729*** 

DMS (λ=α=0.97) 0.3559 0.1957 1.1880 2.6582*** 2.9541*** 

DMS (λ=α=0.99) 0.3559 0.1957 1.1880 2.6555*** 2.9506*** 

BMS (λ=α=1) 0.3559 0.1957 1.1880 2.6555*** 2.9506*** 

 United States         

AR1 0.7391 0.9763 1 -  

AR2 0.7453 0.9232 1.0576  - 

DMA (λ=α=0.95) 0.6830 0.7326 1.3327 3.4114*** 3.3298*** 

DMA (λ=α=0.97) 0.6795 0.7274 1.3422 2.2692*** 2.5480*** 

DMA (λ=α=0.99) 0.6818 0.7517 1.2988 2.2192*** 2.3037*** 

BMA (λ=α=1) 0.6975 0.8134 1.2003 1.9875***     1.8453** 

DMS (λ=α=0.95) 0.6739 0.7188 1.3582 3.4851*** 3.1733*** 

DMS (λ=α=0.97) 0.6699 0.7069 1.3810 2.3621*** 2.7102*** 

DMS (λ=α=0.99) 0.6896 0.7855 1.2429 2.1059*** 2.0668*** 

BMS (λ=α=1) 0.7110 0.8268 1.1809 2.0038***     1.8091** 

Note: The significance levels for the null hypothesis’ rejection are represented as follows: 10% ‘*’, 5% ‘**’ and 1% 
‘***’ 

 

 

 

 

 

 

 

 

 


