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Abstract 

Massive archives of earth observation data are now available and the size of this data 

is increasing at a tremendous rate. This data is a very important resource and has a 

variety of applications including monitoring change, forestry application, agricultural 

application and urban planning. At the same time, they also possess challenge of 

storage, management, and high computational needs.  

In this study SciDB, an array-based database is used to store, manage and process 

multitemporal satellite imagery. The major aim of this study is to investigate the 

performance of SciDB based scalable solution to run arithmetic operation, simple 

time series analysis and complex time series analysis on multitemporal satellite 

imagery. 

This study provides better insight of SciDB architecture and provides suggestions for 

better performance in SciDB for remote sensing jobs. The research also compared the 

performance of time series analysis on SciDB array with file-based analysis using 

multicore parallelization (Using „Parallel‟ Package of R).  It is found that SciDB 

provides a faster solution for time series analysis. However, SciDB might not be the 

best solution if the data size is smaller. Also, relative immaturity of SciDB and limited 

inherent support of remote sensing operations increases effort for the scientist to 

develop SciDB based solution. Nevertheless, SciDB has the potential to meet the ever 

increasing storage, management and computational need of big remote sensing data.  
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 Introduction Chapter 1:

 Background and Motivation 1.1.

The massive amount of earth observation data is now available in the archives which 

have been collected by different sensors for a long time. Currently, this data is 

increasing at an exceptionally fast rate with the advent of the new sensor with varied 

spectral, spatial and temporal resolutions.  National imagery archives are storing 

terabytes of data every day and total stored imagery volume will grow to the order of 

Exabyte (OGC, 1999). These remote sensing data of large part of the world is big 

wealth to model the earth. It can be used to monitor environmental events, monitor 

natural disasters and study climate change. Other application area includes forestry, 

urban planning, land management, food security. However, these Big Remote Sensing 

(RS) data also poses the significant challenge of management, processing, and 

interpretation (Ma, et al., 2015). Recent research trends show the development of 

processing techniques for these data, such as time series processing methods to detect 

change (Verbesselt, Zeileis, & Herold, 2012), identify land cover (Clark, et al., 2010). 

However, there is the big challenge in managing these data and fulfill high 

computation requirement to process them. 

Generally, these RS big data are stored in files and most scientific data analysis 

methods for these data are file-based. But as the volume of the data increases, arises 

the problem of not only data management but also of computational resource. 

Scientific community demands for the development of novel way in order to manage 

these enormous data and support distributed computation. 

Relational database management systems (RDBMS) have been successful in 

addressing storage and analysis requirement of the varied business world from a long 

time. However, RDBMS are showing limitation when there is need of horizontal 

scalability and distributed computation (Jacobs, 2009), which is an essential 

requirement for RS data.  Moreover, RS data has an array like structure and it is 

advantageous to store the data in an array structure, to perform many RS operations. 
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Cudre-Mauroux et al. (2010) demonstrate that the array-based database outperforms 
mature MySQL database for analysis array like Astronomical data. Thus array-based 

database with distributed storage and distributed computation has potentialities to 

manage and process big RS data.  

SciDB is an open source multidimensional array based database and supports 

distributed storage, parallel processing, sparse array storage and user defined function 

and data types (Stonebraker, Brown, Poliakov, & Raman, 2016). Some of the recent 

studies suggest prospective of SciDB in RS applications. Planthaber et al.  (2012) 

successfully tested SciDB to store and perform basic analysis on Modis Level 1 data. 

Appel & Pebesma (2016) have demonstrated an approach to remote sensing analysis 

using SciDB in an easy and reproducible way. 

In this context, in this research, we intend to store and process multitemporal remote 

sensing data in SciDB and run a benchmark to analyze its performance.  

 Aims and Objectives 1.2.

Processing large volume of multitemporal satellite imagery is a computationally 

intensive process. In this study, a scalable solution shall be designed and implemented 

using SciDB array-based database to meet the high computational requirement of 

such data. The performance of the solution shall be explored and compared with a 

file-based image processing technique. Thus the primary aim of this research is to 

investigate the performance of SciDB based scalable solution for analysis of 

multitemporal satellite imagery. 

The major objectives are to: 

 Demonstrate applicability of SciDB to store, manage  and  analyze  

multitemporal remote sensing imagery 

 Investigate the performance of SciDB in a different number of server 

instances, CPU cores, and data window. 

 Compare the performance of time series analysis on SciDB array with the 

analysis in raster file parallelized by the multi-core support using „Parallel‟ 

package of R. 
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 Thesis Organization/ Structure 1.3.

This thesis is organized into 6 chapters. This (Introduction) chapter provides 

background, motivation aims and objectives for this study.  Chapter 2 reviews 

existing work in the field and provide a theoretical base for the study. Chapter 3 

describes the methodological approach and provides design decisions and 

implementation in details. Chapter 4 provides findings of the experiment. Chapter 5 

tries to infer the result and discuss reason and meaning of different results obtained. 

Finally, chapter 6 summarizes the finding of the research, concludes thesis and 

provides suggestions for further research in the similar direction. There are also three 

appendices: Appendix A: Server Specification, Appendix B: SciDB Configuration 

and Appendix C: Code. 
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 Literature Review Chapter 2:

This chapter aims to present the theoretical basis for the study. Remote sensing big 

data is explained in the subsection 2.1. Existing works in High Performance 

Computing (HPC) techniques to meet the computational requirement of such big RS 

data is summarized next. Then we explain about R, an analytical programming 

language and its application as HPC technique in RS. Then in section 2.4, we describe 

in brief about SciDB which is the array database used in this study. Different kind of 

analysis can be performed in RS data. Time series analysis is a widely used method to 

get meaningful information from multitemporal imagery. Finally, different time series 

analysis for multitemporal RS data is described in brief in the last subsection.  

 Big Earth Observation Data  2.1.

Laney (2001) defined big data for the first time as data characterized by the 3Vs: 

Volume, Velocity, and Variety. The big data are shifting research paradigm to data-

driven research (Kitchin, 2014). They are a source of innovation and productivity. 

Remote Sensing data can be indisputably termed as big data. The size of the image in 

archives is of multiple petabytes and these data are increasing at a rapid rate with the 

addition of sensors with a frequent revisit. Also, these data varies in terms of their 

spatial, spectral and radiometric resolution, coordinate system, format, and 

information they store. There is the great potential of using remote sensing big data in 

a variety of field. The data is the archived models of earth of different time. Some of 

the applications are monitoring of natural events, tracking of environmental changes, 

agricultural study, forestry etc. 

The major challenges of any big data include building the storage system, running 

computation, visualizing the data and validating it (Li, et al., 2016). Research are 

increasingly being focused on addressing those challenges. Among those challenges, 

we are interested in massive storage need and high computing requirements of RS big 

data in this study.   
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 High Performance Computing in RS 2.2.

High Performance Computing is the use of computing power in such a way that it 

provides higher performance than a traditional desktop for running 

advanced application programs efficiently, reliably and quickly. One of the major 

applications of future-generation HPC is big data analytics (Kambatla, et al., 2014). 

Lee et al. (2011) summarized recent HPC techniques for RS into mainly three classes, 

i.e. programmable hardware, multi-processor systems and distributed networks. 

Use of a graphics processing unit (GPU) together with a CPU to accelerate processing 

falls in the first category. Lately, GPUs have developed into highly parallel, 

multithreaded, many-core processors with huge computational capacity and high 

memory bandwidth (Nickolls & Dally, 2010). Ma et al. (2014) and Liu et al. (2011) 

have adopted multi-core cluster based HPC in a number of remote sensing 

applications.  This kind of scaling up uses multi-core architecture in the context of a 

single application and is often done through multi-threading and in-process message 

passing. The third class of HPC is distributed computing, which is done by 

distributing jobs across machines over the network.  

 R for HPC in Remote Sensing 2.3.

R (R Core Team, 2016) is an open source data analysis programming language.  It is 

also one of the most popular languages for data analytics. (Piatetsky, 2017) . R is 

highly extensible through the use of packages. A package is a library of functions of a 

specific field of study. 

To support big data paradigm, research during the last decade has explored using HPC 

techniques with R. The packages that support parallel computing and HPC technique 

with R are listed in HPC Task View page (Eddelbuettel, 2017). 

Parallel package of R is built upon work of the packages multicore and snow and is 

available inside r-core ( R Core Team(b), 2016). It provides functions for parallel 

execution of R code on machines with multiple cores or CPUs. The computation in 

this package starts with setting up a collection of “workers” that will be doing the job. 

The number of workers should ideally be one per core. Then the function in this 

http://searchsoftwarequality.techtarget.com/definition/application-program
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package divides work into equally sized chunks and sends the chunk to the worker. 

Principally different chunks of computation are unrelated and do not need to 

communicate in any way. 

Raster package is a very powerful tool for remote sensing analysis in R and is 

extensively being used.  Many other packages are also available for remote sensing 

analysis which are built over raster packages. For time-consuming remote sensing 

operation, it is efficient to run them in parallel. To parallelize work in multiple cores 

remote sensing job has to be divided into multiple independent chunks and then 

process them in each core. RStoolbox (Leutner & Horning, 2017), BfastSpatial 

(Dutrieux, 2016) , Modis (Mattiuzzi, et al., 2017)  are some of the remote sensing 

packages that use the parallel package to parallelize work in multiple cores. This 

technique can be categorized as multi-processor systems HPC in Lee et al. (2011) „s 

classification.  

 SciDB 2.4.

SciDB is an open-source, array-based database, tailored towards the management 

needs of scientists. (Stonebraker, Brown, Poliakov, & Raman, 2016).  Data in SciDB 

are stored in an n-dimensional sparse array. SciDB array is created by specifying its 

dimensions and attributes of the array. For example a 3-dimensional SciDB array may 

have x, y and z dimensions with values (0,1,2,…,20),(1,2,3,…,50) and (alfa,beta,…) 

respectively. Each combination of dimension values defines a cell .Cells in the array 

contain tuple of values, each of which is called as an attribute. For example 

a1,a2,a3,a4 can be name for four different attributes for each cell. 

SciDB arrays are stored in one or more instances which can reside on a single server 

or distributed along the clusters allowing distributed storage and parallel processing. 

SciDB runs on a grid of computers and follows shared nothing architecture. Each 

SciDB instance and is responsible for local storage and processing and has sole access 

to the respective data. Thus scalability for big data is possible in SciDB because of its 

shared-nothing engine. SciDB array-based computing can be categorized as 

distributed network HPC in Lee et al. (2011) „s classification.  
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. The basic architecture of SciDB is shown in figure 1. 

 

 

Figure 1 Basic SciDB architecture (SciDB User's Guide, 2013) 

 

While all the available SciDB instance in cluster participate in storage and query 

processing; only one instance is used to connect and communicate to an external 

application. One of the instances is the coordinator instance and is responsible for 

facilitating all interaction between the SciDB external client and the entire SciDB 

database. The rest of the system instances work for the coordinator for query 

processing. 

SciDB divides the data into smaller portions called chunk and each SciDB instance is 

responsible for storing and running queries on chunk (SciDB User's Guide, 2013). 

Because of this uniform distribution of storage and workload SciDB is able to deliver 

scalable performance on very large data sets. The user only has to specify chunk size 

for chunking. Each dimension of an array is divided into chunks of specified length. 

SciDB also follows vertical portioning to store multiple attributes in an array. That 

mean each attribute is stored in different chunks. It is recommended to select chunk 

size such that each chunk contains roughly 10 to 20 MB of data. It is necessary to 

consider vertical partitioning when selecting the chunk size. The number of attributes 
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of the array does not determine the chunk size rather the number of cells determines 

it. 

SciDB is currently supported only on Linux operating system. Interaction with SciDB 

server is done through iquery which is default SciDB client or by language binding 

using R or python. Two languages are available in SciDB: Array Query Language 

(AQL) and Array Functional Language (AFL). AQL is SQL-like query language 

whereas AFL is a functional language for SciDB. AQL is compiled into AFL.  

SciDB has limited analysis capability but it can be extended using plugins that allow 

running script of powerful analytic language R and python inside SciDB array. 

R_exec (Lewis, 2016) plugin of SciDB provides a way to run R script inside SciDB 

queries. The script can run in all SciDB chunks independently allowing parallel 

processing. It is necessary to adjust the chunk shape and size based on the analysis for 

using the r_exec function for analysis.  The r_exec function only takes double data as 

input and the output of the r script should be list data type. This list can then be saved 

as a SciDB array.  

The multitemporal image in SciDB can be stored along three dimensions representing 

longitude, latitude and time. Its attributes can be different bands of the image. It is 

analogous to stacking up multitemporal images one above other. The data retrieved by 

keeping longitude and latitude constant is the time series of that location. Figure 2 

presents a schema for storage of multitemporal images in SciDB and figure 3 shows 

it‟s analogous in the file system. 

 

Figure 2 Multitemporal Images as SciDB Array 
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Figure 3 Multitemporal Images stack (Source: mdpi.com) 

 

An array-based database provides better flexibility for managing and analyzing 

remote sensing images than the traditional relational database solutions (Tan & Yue, 

2016). An array is the natural model for remote sensing data and simulating array data 

on top of tables is an unnatural act and usually results in poor performance 

(Stonebraker, Brown, Zhang, & Becla, 2013). Most of the operation in RS data like 

machine learning, k-nearest neighbors, spatial smoothing, Fourier transforms, 

regridding are operations over the array and run faster in array implementation but 

need relational data to be cast into arrays for processing. Further array database allows 

to subset the data and perform complex analysis without changing the data model.  

SciDB has been found better than SQL database to retrieve data from multiple 

overlapping images as in the case of time series image or hyperspectral image 

(Hausen, 2016). 

         Time Series Analysis 2.5.

Time series analysis on remote sensing can be done for various purposes such as to 

detect change, identify land cover and study crop growth.  Break for Additive 

Seasonal and Trend (BFAST) allow “detection and characterization” of change in 

time series (Verbesselt, Hyndman, Newnham, & Culvenor, 2010). Other methods for 

change analysis include Principal Component Analysis (PCA) (Crist & Cicone, 1984), 
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wavelet decomposition (Anyamba & Eastman, 1996) and Fourier analysis (Azzali and 

Menenti, 2000).   

Jan Verbesselt et al. in 2012 introduces BFAST monitor, an approach for monitoring 

time series data based on a BFAST-type season-trend model (Verbesselt, Zeileis, & 

Herold, 2012), that is applicable to different types of time.  The BFAST monitoring 

splits time series data into history and monitoring period. From the data of historical 

period, it detects and models the stable history in order to detect disturbances within 

newly acquired data. Different models are available for modeling the stable historical 

behavior. Also to determine the size of the stable history period, different methods are 

available. It can be set based on subject-matter knowledge, data-driven methods or 

Reverse-ordered CUSUM test (ROC). 

The simpler statistical method of time series analysis includes the mean, median, 

maximum, minimum value of some indices. The maximum, minimum or median 

value of time series Normalized difference vegetation index (NDVI) are also input to 

other indices which state vegetation condition at a particular time such as Vegetation 

Condition Index(VCI), Mean Referenced Vegetation Condition Index (MVCI), NDVI 

Change Ratio etc. VCI relates the present NDVI to the range of values observed in the 

same period in previous years. MVCI is NDVI percent change ratio to historical time 

series mean NDVI.  Similarly, NDVI Change Ratio to Median can also be computed. 

These indices give an idea where the observed value is situated compared to central 

value or range of observed value. 

The problem with implementing time series analysis methods is some of them are 

very computationally intensive. For example running BFAST in a normal computer in 

serial over a Landsat scene of 10 years can even take around a week. When the data 

size increases it becomes impossible to process them in desktop or even in high 

performing single servers. Thus it is crucial to use such processing methods inside 

high performance computing environment. 
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 Methodology Chapter 3:

 Design Consideration 3.1.

In this research, we implemented analysis technique for big RS data inside array-

based database environment and analyzed how the system performs. This research is 

designed to qualitatively demonstrate an approach for management and analysis of 

multitemporal images and quantitatively highlight performance and scalability of 

SciDB for analysis of the multitemporal image. 

We designed the benchmark that includes queries to perform arithmetical operations, 

simple time series analysis and complex time series analysis on the image within 

SciDB. The benchmark was designed to test the performance of the system with 

changing data load, SciDB instances and CPU cores. The performance of the system 

was assessed based on the response time for a fixed task. 

Furthermore, we also compared the result of the complex time series analysis in 

SciDB with time to do the same operation in raster file with parallel processing in 

multiple cores. The later technology is being used for quite some time for high 

performance computing in remote sensing, so this provides a good reference for the 

performance of SciDB.  

 Data Used 3.2.

Image acquired by the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor 

onboard the Landsat 7 satellite is used in this research study. This is a moderate 

resolution sensor built and operated by National Aeronautics and Space 

Administration (NASA). Landsat 7 was launched in 1999 and is continuously 

providing global data with 16-Day repeat cycle (USGS, 2016). Landsat 7 data 

collected after May 2003 have data gaps due to the failure of the Scan Line Corrector 

(SLC). This data is called SLC-off data. The data used in this study is SLC-off and has 

some missing scanned lines due to this hardware failure. 

https://landsat.usgs.gov/landsat-missions-timeline
https://landsat.usgs.gov/landsat-7-history


12 

 

 Image of the area between Nepal and India was used in the study. 148 image scene 

for different dates was used for the study. The figure below presents the location of 

the data. 

 

Figure 4 Location of the Data 

Image captured from 7th July 2006 to 9th July 2016 and having cloud cover less than 

80% was used for the experiment.  The specification of the image is specified in table 

1. 

 

Specification Characteristics 

Spatial Resolution 30 meters 

Radiometric Resolution 8 bit 
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Temporal Resolution 16 Days 

Date 7th July 2006 - 9th July 2016 

Total number of Scene 148 

Swath width: 185 kilometers 

Image Location 

WRS Path 144 

WRS Row  040 

 

Table 1 Specification of Image Used. Source: USGS 

   Benchmark Structure 3.3.

The experiment in SciDB was conducted in varying data size, varying number of 

SciDB instances and a varying number of CPU cores. The various benchmark 

parameters were selected to explore how the system performs with different variables. 

The size of data window and an actual number of cells is shown in table 2. The table 

also presents the size of image array and computed NDVI array in megabytes (MB) 

for that window. The image was stored as an unsigned 8-bit integer and NDVI was 

stored as a double-precision decimal. The actual number of cells is less than the value 

obtained by multiplying row, column and time of data windows because of missing 

cell values and missing scanned lines in the images.  Biggest data window was about 

100 times bigger than the smallest. 

Row*Column*Time Actual Number of Cells 

Size of NDVI array 

in MB 

Size of Image Array 

in MB 

300*300*148 9283527 74.3 18.6 

600*600*148 38259970 306 76.5 

850*900*148 83741253 669.9 167.5 

1450*1450*148 243187286 1945.49 486.4 

2100*2100*148 578152493 4625.2 1156.3 

3000*3000*148 1165204506 9321.6 2330.4 

 

https://lta.cr.usgs.gov/landsat_dictionary.html#wrs_path
https://lta.cr.usgs.gov/landsat_dictionary.html#wrs_row
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Table 2 Size of Data Window 

We conducted the experiment with 4, 8 and 16 number of SciDB instances running on 

the same physical machine. All the experiment was conducted using 8 CPU cores of 

the server. Furthermore, we also tested the performance by changing the number of 

CPU cores to 16 for 16 SciDB instances. This information is summarized in table 3. 

Number of SciDB 

Instance 

Number of CPU 

cores 

4 8 

8 8 

16 
8 

16 

 

Table 3 Number of SciDB instances and CPU cores 

Experiment in raster file with parallel support was also conducted in same data 

window as mentioned in table 2. This experiment was conducted using 8 CPU cores 

and 16 CPU cores. 

All the experiments were conducted at least three times and average response time 

was recorded. It is the time interval between the request and the system finishes the 

processing and response. The time was measured using “time” command in Linux 

shell. 

 Operations 3.4.

First hardware and software were set up on the server. After that, Landsat data was 

uploaded to the SciDB server. Then we conducted benchmark study with different 

parameters. We created NDVI array from our original data in SciDB. Afterward, we 

computed the maximum value of NDVI for each time series. Next, we also performed 

BFAST monitoring to detect the change from NDVI in both SciDB arrays as well as 

raster files. These operations were not conducted only once but repeated for different 

benchmark parameters. Figure 5 presents the workflow of operations. First two 
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operations were conducted once for each 4, 8 and 16 SciDB instances. NDVI 

computation, maximum NDVI computation and BFAST monitoring in SciDB were 

repeated for different data window and different numbers of CPU cores in each 

SciDB configuration. BFAST monitoring in raster file was also done on different data 

window and different numbers of CPU cores. The operations are explained in the 

following subsections. 

 

Figure 5 Workflow of operations 

 System Setup 3.4.1.

A single server with Ubuntu Operating System was used to perform all the 

experiments. Detailed specification of the server is provided in appendix A.  
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SciDB and other necessary plugins were installed using docker image of SciDB. 

(Appel, scidb-eo, 2016). The images contain SciDB, Shim, the scidb4geo extension 

for space-time arrays, a GDAL driver to upload and download Earth Observation 

datasets and r_exec plugin. The configuration file of SciDB is in the appendix. 

Shim is a web service which exposes simple API for the client to interact with SciDB 

through HTTP connection. Scidb4gdal and Scidb4geo plugins were installed in order 

to facilitate conversion between time-service imagery to the multidimensional SciDB 

array and SciDB array to raster. Particularly Scidb4geo plugin (reference) stores 

spatial and temporal reference information of the time series satellite imagery to 

SciDB's system catalog. Scidb4gdal is a GDAL driver implements read and write 

access to SciDB array.  R_exec plugin was used to run R scripts inside SciDB chunks.   

Communication to the server was done by either by Secure Shell (SSH) protocol or 

using R client.  The scidb package of R uses shim to connect to SciDB database and 

execute the query.     

 Loading Data to SciDB and Restructuring it 3.4.2.

The data was uploaded in SciDB using the gda_translate function of the gdalUtils 

library in R interface. The date of the image scene was extracted from its name and 

the image was placed in multidimensional array accordingly. The code to upload data 

is provided in appendix C.  

Only two bands from the available image were loaded in SciDB separately and they 

were joined later to make a single array. The AFL query to join band 3 and band 4 is: 

store(join(LS3,LS4),LS) 

 

Though smaller subsets of data were used for benchmark study, the whole scene was 

uploaded and restructured initially. The schema of data after the data upload was as 

follows 

<band3:uint8,band4:uint8> [y=0:7023,4322,0,x=0:7857,4322,0,t=0:*,1,0] 
 

The schema suggests array has two attributes viz. band 3 and band 4 both with data 

type unsigned 8-bit integer. It is a 3-dimensional array. The dimensions where x, y, 

http://www.paradigm4.com/
https://github.com/Paradigm4/shim
https://github.com/appelmar/scidb4geo
https://github.com/appelmar/scidb4gdal
https://github.com/Paradigm4/r_exec
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and t, where x and y represented horizontal coordinates while t represents time 

dimension. The value of y dimensions varies from 0 to 7023, x from 0 to 7857 and t 

starts at 0 and is unbounded. The 4322 value in the schema is the chunk size. 

After that, the repart operator in AFL was used to restructure data in chunk size of 

60*60*256. It means each chunk stores complete time series of 60 rows and 60 

columns. To run change monitoring (Section 3.5.4) using the r_exec plugin it is 

necessary that each chunk contains complete time series. Thus it is necessary to set t 

dimension as 256 to encompass all the time series in a single chunk. It is 

recommended to store roughly 10 to 20 MB of data in each chunk to optimize the 

performance of the SciDB array (SciDB User's Guide, 2013). Considering this, the 

value of row and columns was selected as 60. 

Also, the queries to compute NDVI (Section 3.5.2) and find maximum NDVI (Section 

3.5.3) can be run in any chunk configuration. But, we conducted an experiment and 

found out that maximum NDVI computation is highly efficient when chunk contains 

all the data of time series.  

Based on this appropriate chunk size was selected. AFL query to repart Image array is 

: 

store(repart(LS,<band1:uint8,band1_2:uint8>[y=0:7023,60,0,x=0:

7857,60,0,t=0:*,257,0]),LS_repart) 

 

The data schema looks as follows after repart operation:   

<band3:uint8,band4:uint8> [y=0:7023,60,0,x=0:7857,60,0,t=0:256,1,0] 
 

Uploading data, joining different array and changing chunk size are very time-

consuming operations. The total time for this operation in different SciDB 

configuration is presented in table  

4 instances 8 instances 16 instances 

28 hours 02 minutes 23 hours 25 minutes 20 hours 58 minutes 

Table 4 Time for upload and restructuring data in SciDB 
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After storing and restructuring data we can conduct any time series analysis on it. So 

this can be considered as a one-time operation. Thus we haven‟t accounted this time 

in computation time presented in the result section.  

 Normalized Difference Vegetation Index Computation 3.4.3.

Normalized difference vegetation index is the most frequently used index for 

vegetation studies. NDVI is calculated from the visible and near-infrared light 

reflected by vegetation. Chlorophyll pigment present in plant leaf absorbs a major 

portion of the visible spectrum of light for photosynthesis. However, it does not 

absorb NIR and some portion of it is transmitted and rest is reflected. This reflected 

NIR is captured in remote sensing and used for the study of vegetation. NDVI can be 

calculated as 

NDVI=
         

        
  

NIR = Near Infra Red Radiation ; Red = Visible Red Radiation 

NDVI values range from +1.0 to -1.0. Very low values of NDVI (0.1 and below) 

correspond to barren areas of rock, sand, or snow. Moderate values represent shrub 

and grassland (0.2 to 0.3), while high values indicate temperate and tropical 

rainforests (0.6 to 0.8).  

AFL was used to subset array into the desired size, compute NDVI and store the file. 

NDVI was calculated for different array size and using a different number of SciDB 

instances. The code for the query is: 

store(apply(between(landsat_array_repart,2150,2050,0,4250,4150,226),n

dvi,(double(band1_2)double(band1))/(double(band1_2)+double(band1))),n

dvi_windowSize) 

 Maximum NDVI Computation 3.4.4.

Maximum NDVI is derived from the time series NDVI array. AFL was used to subset 

array into the desired size, compute maximum NDVI. AFL query to compute 

maximum NDVI array is: 

store(aggregate(between(NDVI_array,2150,2050,0,4250,4150,226),max(ndv

i),x,y),ndvi_max_windowSize) 
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 Change Monitoring  3.4.5.

BFAST monitor function was used to monitor change in from the time series data. 

This function was applied on both SciDB array and raster file. Because of too much 

cloud on some day, Landsat data was not available at every 16-days interval within 

our study period. So we have to first create regular time series objects using the 

bfastts function in the BFAST package. This function link data with the date 

information and convert data of irregular date to daily time series. The start of 

monitoring period was chosen as 1st Jan 2012. A season-trend model with the 

harmonic seasonal pattern was used as a regression modeling to detect and models the 

stable history. Reverse-ordered CUSUM test (ROC) was used to determine the size of 

the stable history period. All other default parameters were used for the processing. 

BFAST monitor function was run in SciDB using the r_exec plugin. The input for this 

operation was a SciDB array of NDVI values. R_exec works in each chunk and give 

the result for the chunk.  For each chunk, we first split data apart. There are many 

options available for it, like the plyr package, data table package or tapply function in 

the basic package. We experimented with above three and found data table was fastest 

so used it. We then apply bfastmonitor function on the split data. Finally, we 

combined the output of the bfastmonitor function performed on split data together. 

The output of the operation is a 1-dimensional array with its row, column, breakpoint 

and magnitude value as attributes. We subsequently re-dimensioned the array into a 

two-dimensional array using row and column value. Iquery command to run 

bfastmonitor in SciDB is presented in appendix C. 

BfastSpatial package in R (Dutrieux, 2016) provides a function to run BFAST 

monitor with parallel support and we used this package to process raster files. This 

function uses the mclapply function of the Parallel package in R to parallelize work in 

multiple processors. The code is provided in appendix C. 
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 Results Chapter 4:

This section presents the findings of the experiment conducted. 

 NDVI Computation 4.1.

The primary output of the study was a three-dimensional array of NDVI value. NDVI 

not only detects vegetated area from non-vegetated but also can be used to derive 

vegetation health and other ecosystem dynamics. In this research, NDVI was also an 

input for subsequent experiments. SciDB automatically ignores cells in the array 

where values are missing and assign it as „NA‟.  

The figure 6 shows part of NDVI array visualized in R. The strips in the image are the 

missing scan lines. 

 

Figure 6 Subset of NDVI array visualized 
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Data Size 

Row*Column*

Time 

4 SciDB Instances 8 

Core 

8 SciDB Instances 8 

Core 

16 SciDB Instances 

8 Core 

16 SciDB Instances 

16 Core 

Proc

essin

g 

Time 

in 

Seco

nd 

Cells /sec 

Proces

sing 

Time 

in 

Secon

d 

Cells /sec 

Proce

ssing 

Time 

in 

Secon

d 

Cells /sec 

Proc

essin

g 

Time 

in 

Seco

nd 

Cells /sec 

300*300*148 9 1031503 6.2 1497343.1 5 1856705.4 4 2320881.8 

600*600*148 32 1195624.1 19.7 1942130.5 17 2250586.5 11 3478179.1 

850*900*148 71 1179454.3 40.9 2047463.4 37 2263277.1 21 3987678.7 

1450*1450*148 184.5 1318088.3 113.2 2148297.6 101.3 2400664.2 58 4192884.2 

2100*2100*148 398 1452644.5 246.9 2341646.4 211 2740059.2 143 4043024.4 

3000*3000*14

8 
810 1438524.1 518.4 

2247693.

9 
428 2722440.4 296 3936501.7 

 

Table 5 Performance metric for NDVI computation 
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Figure 7 Cells processed per second for NDVI computation 

Table 5 presents the processing time to compute NDVI by using a different number of 

instances and CPU cores for the different subsets of the array chosen for testing. We 

also normalized values to a common time basis to provide a speed metric. I.e. we 

computed cells processed per second. The graph in figure 7 plots number of cells 

processed in unit second against data size. The data in the x-axis is plotted in log scale 

to incorporate a large range of value in this graph. 

It is very vivid in the graph that the performance of the system increases when we 

increase the number of instances from 4 to 8 and then to 16.  However, we can also 

notice that incremental benefit of increasing number of instances to the cluster 

decrease with added instances.  

Another interesting thing to note from the metrics data is when we increased the cores 

available for SciDB container from 8 to 16 the system is able to incorporate it in the 

computation. The system speeds up by the median value of 1.5 when we used 16 

instances with 8 cores to 16 instances with 16 cores. 

We can also see that performance of the computation also varies with data size. 

Generally, increasing data sized showed an increase in performance until some 

saturation point with some variations.   
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 Maximum NDVI Computation 4.2.

Finding the maximum value of NDVI at a particular location is the simplest form of 

time series analysis yet very useful to summarize the time series. It is also an input for 

other analysis such as to compute Vegetation Condition Index (VCI). This time series 

analysis gives a 2-dimensional array of maximum NDVI value observed over the 

chosen time period. This 2-dimensional array visualized using R is presented in figure 

8. In this image, there are no strips of missing scanned line as seen in NDVI image 

because missing lines do not overlap in all image and are removed while taking 

maximum value. 

 

Figure 8 Maximum NDVI array visualized 
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Data Size 

Row*Colum

n*Time 

4 SciDB Instances 

8 Core 

8 SciDB Instances 8 

Core 

 

16 SciDB Instances 8 

Core 

16 SciDB Instances 16 

Core 

Proce

ssing 

Time 

in 

Secon

d 

Time 

Series 

/sec 

Proce

ssing 

Time 

in 

Secon

d 

Time Series 

/sec 

Proces

sing 

Time 

in 

Secon

d 

Time 

Series /sec 

Processin

g Time in 

Second 

Time 

Series 

/sec 

300*300* 

148 
1.7 53294.71 1.1 82364.55 1 90601 0.8 113251.3 

600*600* 

148 
5.1 70823.73 2.51 143904.8 2.12 170377.8 1.5 240800.7 

850*900* 

148 
10.3 74441.84 5.4 141990.9 4.4 174261.6 2.75 278818.5 

1450*1450

*148 
17.4 121000.1 13.8 152565.3 11.2 187982.2 7.6 277026.4 

2100*2100

*148 
42 105100 28.6 154342.7 23.6 187042.4 15 

294280.1 

3000*3000

*148 
90 100066.7 60 150100 49 183795.9 31.4 

286815.3 

 

Table 6 Performance metrics for max NDVI computation 
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Figure 9 Time series processed per second for maximum NDVI computation 

The table 6 and figure 9 present the performance of SciDB for maximum NDVI 

benchmark. Table 6 shows response time for different data size and a varied number 

of SciDB instances and CPU cores. The x-axis in figure 10 is data size represented by 

the number of cells. It is plotted in log scale. Y-axis shows the number of time series 

processed per second obtained by normalizing computation time with the total 

number of time series. The result shows similar characteristic with that of computing 

NDVI. However, the time taken for computation varies from a fraction of seconds to 

few minutes. From the graph, it can be observed that the influence of an increase in 

the number of instances and cores is lesser for smallest data. We can also see slightly 

better performance for third data window for 4 SciDB instances.  

 Change Monitoring  4.3.

Analysis to detect changes in SciDB array and in Raster file with multicore 

parallelization was performed using bfastmonitor function. Bfastmonitor monitors 

change in time series by detecting disturbances in the end of time series. The output 

for this analysis was raster while processing raster file and array in case of SciDB 

with two values: the breakpoint detected with the date when this breakpoint is 
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detected and magnitude of the median difference between the observed value and the 

value predicted by in the monitoring period. All the cells are assigned a value for 

magnitude regardless of whether the change is detected or not but no breakpoint date 

is assigned for the cells for which breakpoint is not detected. 

Since the parameters used, preprocessing done and resampling method selected was 

similar, the output (cell values) of applying bfastmonitor in raster file was similar to 

the output of same analysis in SciDB. The figure below presents the output of this 

experiment.  

 

Figure 10 Change Magnitude from BFAST monitoring 
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Figure 11 Breakpoint detected by BFAST Monitor with year 

The red area in figure 10 represents the area where change magnitude is higher and 

green area of the figure suggest lower change magnitude. Figure 11 shows the 

location of breakpoint detected with the year in which breakpoint is detected. It is 

important to note that all these changes might not be due to an actual change in the 

ground, which could be due to noise such as cloud in data of monitoring period. So 

further post processing is necessary but that is not the scope of our study. 

The following two subsections describe the performance measured for running this 

experiment in SciDB and file system with parallel support. 

 In SciDB 4.3.1.

This experiment gives result in a 1-dimensional array with change value which was 

subsequently into a two-dimensional array with x and y dimension. The time to 

redimension the array was far less compared to the time to run bfastmonitor, and for 

this benchmark study, we did not consider the time to redimension the array. Time to 

repart array (change chunk size) is also not included in the time presented in the 

result. 
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Table 7 presents time taken to run bfastmonitor for different experiment conditions. 

To get a better insight into the performance we also computed time series processed 

per second for all experiment conditions. The graph in figure 12 plots number of time 

series processed per second against different data window. A log scale is used in x-

axis to show the large range of value in our graph without smaller values being 

compressed at the left of the graph. 

The graph is not different than graph obtained in previous benchmarks. However, 

time elapsed to during this computation ranges from around few minutes to more than 

21 hours. 

The performance of the system increases for all data size when the number of SciDB 

instances is changed from 4 to 8 and then 8 to 16. Though the rate at which the system 

scale up decreases with increasing number of instances. When the CPU core of the 

system is increased from 8 to 16 for 16 SciDB instances the performance increase 

significantly for all array subsets.  

In this experiment also the performance of the system varies slightly with the data 

size. 

Data Size 

Row*Colum

n*Time 

4 SciDB 

Instances 8 

Core 

8 SciDB 

Instances 8 

Core 

 

16 SciDB 

Instances 8 

Core 

16 SciDB 

Instances 16 

Core 

Processin

g Time in 

Second 

Time 

Series 

/sec 

Processi

ng 

Time in 

Second 

Time 

Series 

/sec 

Process

ing 

Time 

in 

Second 

Time 

Series 

/sec 

Processin

g Time in 

Second 

Time 

Series /sec 

300*300*1

48 
847 107 584 155.1 562 161.2 403 224.8 

600*600*1

48 
3285 110 2026 178.3 1874 192.7 1184 305.1 
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850*900*1

48 
6643 115.4 4277 179.3 3821 200.7 2200 348.5 

1450*1450

*148 
18141 116.1 11154 188.8 10446 201.6 5831 361.1 

2100*2100

*148 
37593 117.4 24165 182.7 21285 207.4 12403 355.9 

3000*3000

*148 
76438 117.8 49948 180.3 44870 200.7 25290.5 356.1 

 

Table 7 Performance Metrics for BFAST monitoring function in SciDB 

 

 

Figure 12 Time series processed per second for BFAST monitor query in SciDB 

 In Raster file with parallel support 4.3.2.

BFAST monitor with parallel support was run using 8 and 16 CPU cores. The result is 

tabulated below. 
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Figure 13 shows the bar graph of time series processed per second using 8 cores and 

16 cores. To compare the performance with SciDB we have also plotted the 

performance of SciDB with 8 core and 8 instances and SciDB with 16 core and 16 

instances. 

 

Data Size 

Row*Column*Time 

R Parallel with 8 core R Parallel with 16 core 

Processing Time 

In Seconds 

Time series 

per sec 

Processing 

Time In 

Seconds 

Time series 

per sec 

300*300*148 617 146.8 559 162.1 

600*600*148 2130 169.6 1900 190.1 

850*900*148 5483 139.8 4042 189.7 

1450*1450*148 12089 144 10928 192.7 

2100*2100*148 26728 165.2 24150 182.8 

3000*3000*148 68099 132.2 45548 197.7 

 

Table 8 Performance Metrics for BFAST monitoring function in Raster file 
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Figure 13 Comparison of processing time in raster file and SciDB array 

It is clear from above graph that SciDB performs better than running BFAST monitor 

in raster file with multi-core parallelization. We can also notice that difference of 

performance is higher for 16 core processor than 8 core processor. 

To better understand this incremental performance we computed speed up obtained by 

using SciDB in 8 core machine and 16 core machines. Here speedup is the ratio of the 

processing time of raster file to SciDB array. Speed up in a different number of CPU 

cores is presented in table 8 and also plotted in figure 14. 

Data Size 

Row*Column*Time 

Speed up of SciDB over File system 

8 Core Processor 16 Core Processor 

300*300*148 1.06 1.39 

600*600*148 1.05 1.6 

850*900*148 1.28 1.84 

1450*1450*148 1.31 1.87 

2100*2100*148 1.11 1.95 

3000*3000*148 1.36 1.8 

 

Table 9 Metrics of Speed up of SciDB over File system 
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Figure 14 Speed up of SciDB over file system 

From the figure, we can see that processing in SciDB Array is faster than file-based 

processing for all data size in both 8 core machine and 16 core machine. But the 

Speedup is not significant in 8 core machine and it is up to 1.3. However, the speedup 

in 16 core machine is substantial with the value up to 1.95.  
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 Discussion Chapter 5:

 Discussions of the Study 5.1.

This study shows qualitatively how multitemporal images can be managed and 

analyzed in SciDB and quantitatively performance to run such query. 

We demonstrated storage of multitemporal image as SciDB array and approach for 

indices computation and simple and complex time series analysis on SciDB array. We 

observed that product obtained by running process in the file system and in SciDB 

were exactly identical. This was expected because we selected similar parameters for 

processing and did similar preprocessing. 

 Benchmark Study 5.1.1.

Regarding the benchmark testing, the graph of performance for three analysis done in 

the SciDB arrays is rather similar, though the order of response time is different. 

Computing NDVI and maximum NDVI took up to few minutes while change 

monitoring took hours. The reason for this is the different complexity of computation. 

Ideally, the number of cells processed per second or number of time series processed 

per second should be same irrespective of the data size. But we can see the variation 

in performance for different data window. The reason can be found by understanding 

the storage and computation architecture of SciDB. 

The data in SciDB is partitioned and stored in chunks of predefined size. These 

chunks are stored and processed in different SciDB instances and one instance cannot 

share processing with other SciDB instance. Hence due to unequal distribution of 

chunk across SciDB instances in the different data window, we can see the variation 

in performance for different data size. Another factor contributing to that is uneven 

cell density within the chunks. Because of missing cells and missing scanned lines in 

Landsat image, a number of cells in each chunk is different, this uneven distribution 

of workload in different chunks also contribute to the variation in performance.  

The variation is higher for smaller array size when 8 or 16 SciDB instances were 

used. The reason for this is in our experiment smaller data cannot make use of all 
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added instances. For example, the smallest data was stored in 5 chunks. So when the 

number of instances increased from 4 to 8 it could not make the use of additional 3 

instances. Variation is lesser for bigger data because the difference in the amount of 

data in different instances is small relative to whole data. Therefore, all the SciDB 

instances can contribute more or less equally for the computation. Still, optimal 

performance is obtained when we consider data size and available instances in 

addition to recommended volume of data(10MB to 20MB) when selecting chunk size.  

All the processes showed an increase in performance when the numbers of instances 

were increased for all data size. This justifies SciDB‟s ability to run the process in 

parallel in different instances. However, increasing the number of the instance from 8 

to 16 does not increase the performance in the same rate as it was increased when we 

changed the number of SciDB instances from 4 to 8. This is not surprising because 

when we increase the number of the instance without increasing processing resource, 

the additional instance has to share the same processing resource and the relative 

contribution of each additional instances get smaller.  

However, when we increase the number of processors, the performance of the system 

increases significantly. For instance, running BFAST monitor operation in 16 SciDB 

instances in 16 core machine is about 1.7 times faster than running with 16 SciDB 

instances in 8 core machine and about 1.9 faster than running with 8 SciDB instances 

in 8 core machine. This suggests that SciDB scales out with additional SciDB 

instances. But it is also important to consider that the computing resources available 

for SciDB are adequate. This computing resource can be provided either by increasing 

computing capacity of the machine or adding new SciDB instances to a new machine 

connected by a network. When storage and computation requirement of the system 

increases with the increasing amount of imagery, SciDB system can still be used by 

adding more SciDB instances either on the same server by increasing its storage and 

computing capacity or in other machines in the grid.  
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 Comparison of SciDB and file-based Processing 5.1.2.

The major differences found  between SciDB based solution and file-based solution 

for multitemporal images are summarized in points below 

Time and effort for Data Preparation: It can be seen that there are few time-

consuming steps in SciDB before the data can be actually processed. Data has to be 

uploaded to the database and it should be restructured for processing. So SciDB might 

not be a better solution when data size is tiny. The intermediate steps not only 

increases total computation time but also the complexity of the solution. 

Speed: From a comparison of SciDB with multi-core processor based parallelization 

of time series, it is apparent that SciDB performs better for all data size if we do not 

consider the time to upload data and restructure it. Serial operations at the beginning 

and end of the process can partly explain the higher processing time in multi-core 

processor based parallelization. It is also found that this Speedup of SciDB over file 

system is further increasing with increasing number of processors. So when the data 

size is very big so is the computing resources, the difference in processing time 

between using file system and using SciDB will be highly magnified. 

Ease of data management: Data management operations are easier in the case of 

SciDB then in raster file. In file system, date and other metadata have to be stored in 

the file name. Thus searching of metadata is challenging while it is quite easy in the 

database. In SciDB it is easier to select Multidimensional window and retrieve or 

subset the array and save as a new array based on requirement. However, it is more 

difficult to crop and retrieve required data from raster stack.  

Ease of computation: SciDB is not a matured system and there are very few 

documents and manuals and user community is also smaller. Library of SciDB is 

basic and limited. Further SciDB does not have good support for remote sensing 

operations. Running analysis using r_exec was also not straightforward. The function 

can take only specific input and give some specific output. There was not any 

document that describes how the function works. Further, debugging is very difficult 

while running script using r_exec. 
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Scalability: The most important distinction is SciDB‟s ability to provide horizontal 

scalability. SciDB instances can be installed in distributed machine within a cluster. 

So data can be stored in different nodes and can be processed there. Thus SciDB can 

be scaled out to any big data. On the contrary, multicore-based processing provides 

vertical scaling. That is we can scale by adding more CPU and memory to an existing 

machine. This scaling is often limited by the capacity of a single machine. This 

system might not work when the very big data size and extremely high computational 

requirements. Thus in the case of really big Remote sensing data file based processing 

(Using multicore parallelization) might not be applicable but SciDB has potential to 

provide the solution for any big RS data. 

 Limitations of the Study 5.2.

The study has following limitations: 

1. Because of the limitation of time and resource, the data size used in the study 

has a moderate size and cannot be considered really big RS data. Though some 

of the computations were not possible to run using the serial code and some 

query took more than 21 hours to complete in our system even with parallel 

processing. However, the image size was less than 40 gigabyte and it is very 

tiny portion compared to all the available image of Landsat. Nevertheless, we 

discussed how SciDB can be scaled out to a number of distributed servers in 

case of really big RS data. 

2. We performed the experiment only for simple arithmetic computation and 

time series analysis in this study. Similarly, the methodology can also be 

applied for other analysis like clustering. The major difference will be the 

different storage schema in the chunks. However further study is needed to run 

some of the analysis which needs user interactions. 

3. Experiments were conducted in a single server cluster and not in multiple 

machines. Actually, multi-core based processing is possible only on a single 

server, whereas SciDB instances can be installed either on distributed machine 

or same server as long as computational and storage resource is sufficient.  
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4. The speed of query in SciDB also depends on in the function used within the 

r_exec. The query can also be optimized using less for loops and fewer 

condition checks.  
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 Conclusion and Future Work Chapter 6:

System having distributed storage and horizontal scalability is the solution to ever 

increasing need of storage and computational requirement of remote sensing big data. 

In this experiment, we demonstrated a scalable solution for the management and the 

processing of multitemporal satellite imagery using SciDB.  

Analysis of multitemporal imagery was run in parallel, in more than one SciDB 

instances, in this study. We found out that the performance of the system increase 

when the number of SciDB instance increases provided that there is enough 

computational resource (processor) for the added instance. 

It is also important to better understand SciDB architecture for optimal performance. 

It is essential to select an appropriate number of chunk size based on our data window 

and number of SciDB instances for better performance. Chunk shape and size also 

depends on the type of analysis we are performing inside SciDB. 

 SciDB provides faster and flexible solution compared to multicore-based parallel 

processing of raster file for multitemporal images. The multi-core based 

parallelization cannot meet the high computational requirements in many remote 

sensing applications. 

However, it is important to mention that SciDB might not be the best solution for 

analyzing small data. Also, relative immaturity of SciDB and limited in-built support 

of remote sensing increase the complexity for the scientist to develop SciDB based 

solution. 

Nevertheless, it can be concluded from the study that SciDB provides the high 

performance scalable solution for management and time series analysis of the 

multitemporal image and it has the potential to meet the ever increasing storage, 

management and computational need of big remote sensing data.  

Further research can be conducted in the same research direction. In this study, we 

demonstrated the use of SciDB for time series analysis of satellite imagery. We also 

discussed how it can be applied for analysis like clustering. However, it is necessary 
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to investigate further for applications which require more user interactions such as 

Supervised Classification. Similarly distributed processing framework like Hadoop, 

Google MapReduce can also be used for processing of Big RS data. Comparing this 

with SciDB in terms of ease of data management and speed of processing can also be 

useful to direct the future of HPC. Another interesting area of study is the use of 

SciDB as the backend for web-based image processing system. The Web allows the 

wider user community to access remote sensing resource and SciDB can act as a tool 

to manage and process such data.
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Appendix A: Server Specification 

This section provides details of the server used for the study.  

Architecture x86_64 

CPU op-mode(s) 32-bit, 64-bit 

Byte Order Little Endian 

CPU(s) 64 

On-line CPU(s) list 0-63 

Thread(s) per core 2 

Core(s) per socket 8 

Socket(s) 4 

NUMA node(s) 8 

Vendor ID AuthenticAMD 

CPU family 21 

Model 2 

Stepping 0 

CPU MHz 2300.057 

BogoMIPS 4599.96 

Virtualization AMD-V 

L1d cache 16K 

L1i cache 64K 

L2 cache 2048K 

L3 cache 6144K 

NUMA node0 CPU(s) 0-7 

NUMA node1 CPU(s) 8-15 

NUMA node2 CPU(s) 32-39 

NUMA node3 CPU(s) 40-47 

NUMA node4 CPU(s) 48-55 

NUMA node5 CPU(s) 56-63 

NUMA node6 CPU(s) 16-23 

NUMA node7 CPU(s) 24-31 

 

  



45 

 

Appendix B: SciDB Configuration 

 SciDB configuration is achieved through the config.in the file. This section presents 

the content of this file. This section presents the content of that file. The only 

difference in the configuration file while using different numbers of instances is a 

number after the comma in the second line. This number varies between 3, 7 and 15. 

This number is the (zero-based ) index of the last instance to launch on the server.  

  
[scidb_docker] 

server-0=scidb-students-1507,15 

install_root=/opt/scidb/15.7 

pluginsdir=/opt/scidb/15.7/lib/scidb/plugins 

logconf=/opt/scidb/15.7/share/scidb/log4cxx.properties 

db_user=scidb 

#db_passwd 

base-port=1239 

base-path=/home/scidb/data 

redundancy=0 

#interface=eth0 

 

### Threading: max_concurrent_queries=2, threads_per_query=4 

# max_concurrent_queries + 2: 

execution-threads=4 

# max_concurrent_queries * threads_per_query: 

result-prefetch-threads=8 

# threads_per_query: 

operator-threads=4 

result-prefetch-queue-size=2 

 

### Memory: 4000MB per instance, 3000MB reserved 

# network: 1200MB per instance assuming 5MB average chunks 

# in units of chunks per query: 

sg-send-queue-size=16 

sg-receive-queue-size=16 

# caches: 1200MB per instance 

smgr-cache-size=256 

mem-array-threshold=256 

# sort: 600MB per instance (specified per thread) 

merge-sort-buffer=32 

# NOTE: Uncomment the following line to set a hard memory limit; 

# NOTE: queries exceeding this cap will fail: 

#max-memory-limit=4352 

#ssh-port=49901 

#pg-port=49903 

db_passwd=aux2hnrd5uey9hba37tspe2w 
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Appendix C: Code 

R script to upload image to SciDB 

library(gdalUtils) 

 

file<- list.files(imagedir, pattern=glob2rx('*.tif'), full.names = 

TRUE) 

 

n<-length(file) 

 

Sys.setenv(SCIDB4GDAL_HOST="https://localhost", 

       SCIDB4GDAL_PORT=8083, 

       SCIDB4GDAL_USER="scidb", 

       SCIDB4GDAL_PASSWD="aux2hnrd5uey9hba37tspe2w") 

 

gdalmanage(mode = "delete", datasetname = "SCIDB:array=LS3 

confirmDelete=Y" ) 

print(Sys.time()) 

 

gdal_translate(src_dataset = file[1], 

           dst_dataset = "SCIDB:array=LS3", of = "SciDB", 

           projwin=c(381504.841,3299400.326,617210.109,3088724.643), 

           co = list("bbox=381504.841 3088724.643 617210.109 

3299400.326", "srs=EPSG:32644","t=2006-07-07", "dt=P16D", 

"type=STS")) 

 

print(Sys.time()) 

c<-0 

time_up<-c(0) 

for (i in 2:n){ 

 a=Sys.time() 

 tt<-substr(file[i],10,16) 

 d=strptime(tt,format = "%Y%j") 

  gdal_translate(src_dataset = file[i], 

             dst_dataset = "SCIDB:array=LS3", of = "SciDB", 

            

 projwin=c(381504.841,3299400.326,617210.109,3088724.643), 

             co = list(paste("t=",format(d,"%Y-%m-%d"),sep=""), 

"dt=P16D", "type=ST")) 

 b=Sys.time() 

 c=c+b-a 

 time_up[i]<-b-a 

} 

 

print(Sys.time()) 

print(time_up) 

 

Iquery to run BFAST monitor in SciDB 
store(unpack(r_exec(ndvi_windowSize,'output_attrs=4','expr= 

require(data.table) 

ndvi.dt=data.table(X=X,Y=Y,T=T,ndvi=ndvi) 

setkey(ndvi.dt,X,Y) 

f<-function(x,y){ 

 library(bfast) 

 ndvi.date = as.Date(\"2006-07-07\") + y*16 
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 ndvi<-bfastts(x,dates =ndvi.date,  type = \"irregular\") 

 chngpt<-bfastmonitor(data = ndvi,start = 

c(2012,1),history=\"all\") 

 return(list(time=as.double(chngpt$breakpoint),magnitude=as.doub

le(chngpt$magnitude))) 

 } 

ndvi.result=ndvi.dt[,tryCatch(f(ndvi,T),error=function(e) 

{return(list(time=as.double(NA),magnitude=as.double(NA)))}),by=c(\"X\

",\"Y\")] 

list(as.double(ndvi.result$Y), 

as.double(ndvi.result$X),ndvi.result$time,ndvi.result$magnitude) 

'),i),bfastm_windowSize) 

 

 

R script to run Bfastmonitor in Raster file with parallel 
 

library(bfastSpatial) 

 

dirout <- file.path('path to output directory’) 

 

imagedir <-file.path(''path to image directory’) 

ndviList <- list.files(imagedir, pattern=glob2rx('ndvi*.tif'), 

full.names = TRUE) 

 

# Generate a file name for the output stack 

stackName <- file.path(dirout, 

paste('stackNDVI_',imagesize,'.tif',sep ='')) 

 

# Stack the layers 

ndmiStack <- timeStack(x=ndviList) 

 

#Define output path 

out <- file.path(dirout, paste('bfmSpatial',imagesize,'.grd',sep='')) 

 

#Run bfmSpatial 

system.time(bfmSpatial(ndmiStack, start = c(2012, 1), order = 1, 

history = 'all', filename = out,returnLayers = c("breakpoint", 

"magnitude", "error"),mc.cores = 8)) 

 

 

SciDB R code to redimension 
b=transform(scidb('bfastm_550M'),y="int64(expr_value_0)",x="int64(exp
r_value_1)") 

 

scidbeval(expr 

=redimension(b,'<expr_value_2:double,expr_value_3:double>[y=0:7358,80

00,0,x=0:8301,9000,0]'),name = "Bfast_result") 

 

Iquery to set reference system 
eo_setsrs(LS_ndvi1,LS) 

 

R code to download image 
gdal_translate(src_dataset = "SCIDB:array= LS_ndvi[t,2006-07-07]",of 

= "GTiff", dst_dataset = "ndvi_060707.tif") 


