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Abstract 

This project was developed with the purpose to achieve innovative solutions of UV light down 

conversion. Such was accomplished through the synthesis of photoluminescent glasses doped with 

tin oxide and copper oxide, also preliminary studies on the development of photoluminescent thin 

films based on the same elements was approached. Photoluminescent quantum yields and Stokes 

shift were taken as guidelines to evaluate the photoluminescent behaviour of the produced samples.  

The synthetic strategy applied for photoluminescent glass samples was systematic, it consisted 

on the insertion of a variable doping amount of each element over an alumina-borosilicate glass 

matrix which were prepared at high temperatures of 1400 ºC and 1550 ºC. Structural features were 

evaluated through SSNMR for 29Si, 11B, 23Na, and Raman spectroscopy, which showed that doping 

does not affect the network structural matrix. Dilatometry measurements were performed showing 

a negligible variation of the thermomechanical properties of the samples.  

Doping concentrations have revealed to be a key factor for the achievement of high quantum 

performances, where we have observed triplet state light emission derived from three emissive 

species. Its origin resides in Sn2+, Sn2+ aggregates and Cu+ species in the glass matrix. Tin oxide 

doped samples shown quantum efficiencies of 50% and 1.7 eV Stokes shift for 1.4% molar tin oxide 

concentration, while copper oxide doped samples present 58% quantum efficiency and large 3 eV 

Stokes shift for 0.14% molar concentration. 

Thin film deposition strategy was based on the identification of optimal conditions for the 

formation of copper and tin oxide crystalline phases. Results were evaluated through X-ray 

diffraction and Raman spectroscopy showing the formation of both crystalline phases over variable 

oxygen flow. A multi-layer thin film deposition was performed and diffusion was attempted through 

thermal treatment. Results indicate the formation of a protective SnO2 layer over the formation of 

Cu2O phase, increasing its thermal stability to 400 ºC.  

 

 

 

 

 

 

 

 

Keywords: Tin Oxide, Copper Oxide, UV-Downconversion, Luminescent solar concentrators, 

Alumina-borosilicate glass matrix, Thin-Films. 
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Resumo 

 

A investigação realizada teve como objectivo o desenvolvimento de soluções inovadoras 

conversão de luz UV em luz visível. O trabalho foi realizado através da síntese de vidros 

fotoluminescentes dopados com óxido de estanho e óxido de cobre, além de estudos preliminares 

de desenvolvimento de filmes finos fotoluminescentes baseados nos mesmos elementos. 

Eficiências quanticas de luminescencia e desvios de Stokes foram avaliados de modo a caracterizar 

o comportamento fotoquímico das amostras produzidas. 

A estratégia de síntese aplicada no desenvolvimento dos vidros fotoluminescentes foi 

sistemática, consistiu na variação de concentração de dopagem de cada elemento sobre uma 

matriz vitrea de aluminoborosilicato preparada a altas temperaturas, 1400 ºC e 1550 ºC. A avaliação 

estrutural foi realizada através de ressonancia magnética nuclear dos isótopos 29Si, 11B, 23Na, e 

através de espectroscopia de Raman. Os resultados indicam que o processo de dopagem não 

influencia a matriz estrutural do vidro. As propriedades termo-mecânicas dos vidros foram avaliadas 

através da técnica de dilatometria, corroborando a observação estrutural.  

As concentrações de dopagem revelaram-se um fator determinante para alcançar altas 

eficiências quânticas para a dopagem mista, onde foi possível observar uma natureza de emissão 

de luz proveniente do estado tripleto de três estruturas emissivas. A sua origem provém de Sn2+, 

agregados de Sn2+ e de Cu+ presentes na matriz vítrea. As amostras dopadas com óxido de estanho 

apresentam uma eficiência quântica de 50% com um desvio de Stokes de 1.7eV para 

concentrações de 1.4% mol de óxido de estanho. As amostras dopadas com oxide de cobre 

apresentam uma eficiência quântica de 58% e um desvio de Stokes de 3 eV para a concentração 

de 0.14% mol de cobre. 

A estratégia de deposição de filmes finos baseou-se na identificação de condições optimizadas 

para a formação de fases cristalinas de óxido de cobre e óxido de estanho. Os resultados foram 

avaliados através de técnicas de difracção de raios-x e espectroscopia de Raman que 

demonstraram a formação de ambas as fases cristalinas através da variação de fluxo de oxigénio. 

Realizou-se uma deposição mista sobre a qual foi aplicado tratamento térmico com o intuito de 

difundir os elementos sobre o substrato. Os resultados indicam a formação de uma camada 

protetora de óxido de estanho sobre óxido de cobre que permitem aumentar a sua estabilidade 

térmica até aos 400 ºC. 

 

 

 

Palavras-chave: Óxido de estanho, Óxido de cobre, Conversão de Luz UV em visível, 

Concentradores de luz solar, Matrizes vítreas de alumina-borosilicato, Filmes finos. 
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1. State of the Art  

Luminescent materials have been used in a broad range of technological appliances such as 

fluorescent tubes of coloured televisions, x-ray photography or lasers. Historically, these 

technologies are commonly based on the characteristic sharp emission and very high quantum 

efficiencies of lanthanide ions(1). Technological development based on rare earths has to a large 

extent placed society on a dependent position regarding its availability. Such represents a major 

concern since scarceness and availability are drastically interfering with its market value. 

Countermeasures have been placed in form of incentives given to provide alternative solutions, by, 

among others, the European Commission which has expressed a strong recommendation on the 

development and technological optimization of non-toxic raw materials whose supply is not at risk(2).  

The interest in UV to visible light down conversion from raw materials has pulled greater 

attention from the scientific community ever since the development of nanocrystalline structures(3)(4), 

quantum dots(5) and perovskites (6) which show a sharp emissive profile. The great challenge is in 

fact the usage of elements whose structural optimization process trigger high quantum 

performances(1).  

Tin and copper have appeared as a suitable candidates for efficient photonic conversion in solar 

cells as luminescent solar concentrators (LSC)(7), solid state lighting applications (LED)(8-10) and 

lasers(11). Stability of tin or copper doping of multicomponent glasses has been verified in distinct 

glass matrixes(12-15), where the use of multicomponent base glass, i.e. which include more than one 

network former (such as Si or B) and intermediate role elements (as Al), have shown to allow 

segregation and consequentially allow crystallite formation(16). The interest of these materials in 

photovoltaic technology is allied to the optimization use of the light spectrum, energy harvesting in 

photovoltaic cells is more effective if absorbed closer to the band gap of the cells(18). Moreover, 

alumina-borosilicate glasses present high chemical durability and are extremely resistant to thermal 

shock(17), making them excellent candidates to the development of LSC’s.  

Large area LSC’s production might become extremely efficient through the sputtering deposition 

technique. Thin film deposition is performed over a host material that may be developed as rigid or 

flexible substrate, either transparent or opaque, suitable to the design and development of variable 

applications from which we highlight building applications or electronic integration use.  

The major challenge in the field resides in the development of new materials or alloys in the 

form of thin films that could support these luminescent properties, Thin films of copper or tin oxide 

may possess semiconductor properties, which provide unique possibilities as active layers in solar 

cells, Cu2O has a direct band gap of 2.1 eV while tin oxide has a wide and direct band gap of 3.6 

eV, making them excellent candidates for large band energy conversion(19-20). It is also possible that 

the confinement of small Cu2O nanoparticles into SnO2 may originate photoluminescent behaviour 

which can be incorporated onto its host substrate(8), making them up- or down-converters, which 

would improve the actual efficiency of solar cells(21). 

The main purpose of this thesis resides on the development of innovative solutions regarding 

UV-light conversion through the usage of tin and copper oxide embedded in a glass matrix and 

deposited as a thin film.  
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2. Fundamentals 

2.1. Glass fundamentals 

Glass is an amorphous solid which completely lacks long range periodic atomic structure, and 

exhibits a region of glass transformation behaviour.  James E. Shelby (22) 

A glass matrix is created across short and intermediate-range 

bonding, constituted by distinct packing environments through a 

non-crystalline tri-dimensional network matrix. Such was 

demonstrated from radial distribution function analysis (figure 2.1), 

which describes how density varies as a function of distance. 

Crystals exhibit a sharp radial distribution with periodic density, 

gas show a linear-shape distribution and liquids or glasses 

distribution oscillate in the short radial region, converging towards 

a linear distribution shape in the long radial distance.  

The structural formation of glass is dependent, as pointed by 

Turnbull(23), from the kinetics of its formation. The cooling rate 

required to avoid that a given volume fraction of the matrix is 

crystallized depends on its quenching rate. This phenomena 

derives from the competing driving force for crystallization (which 

increases with decreasing temperature), and the atomic mobility 

(which decreases with decreasing temperature). High 

temperature decreases the viscosity of the glass allowing atoms 

to rearrange and establish bonds to a more stable form of the 

matrix. As heat is taken away from the fluid, the rate of vibrational 

cooling is reduced and free volume is diminished. This causes a fundamental change; the fluid 

contracts reducing mobility (β) and increasing its density and viscosity () as stated by the Stokes-

Einstein relation: 

𝛽 =
1 

6πr
  (r = atomic radius) (1) 

Further cooling fixes a definite structure, but in order to obtain a glass it is necessary to cool the 

liquid to a temperature below the limit of the crystallization (Tm). Such must be done at a rate higher 

than crystallization limits, otherwise we obtain crystalline phases in the glass structural matrix. The 

classic two variable diagram, enthalpy or volume, and temperature (Figure 2.2.) relates the cooling 

rate of a glass and the formation of a crystal structure. 

The glass transformation range describes a metastable thermodynamic region of the material 

where phase transformation is reversible. This phenomena, known as hysteresis, allows the 

determination of the glass transition temperature (Tg) through the intersection of the extrapolated 

liquid and glass state lines. When the viscosity of a glass reaches a limit value at which it is still 

capable to prevent deformation derived from its own weight, it is also possible to identify the 

softening temperature (Ts)(22). 

By applying heat to the material we induce variation of amplitude of the anharmonic vibration of 

the atomic constituents of the matrix. Its interatomic distance relation to the lattice is affected and 

Figure 2.1 - Radial distribution 

function of a hypothetical material in 

a gas, liquid, glass, and crystalline 

state. Adapted from reference (24). 



3 

 

dependent on temperature, enabling its analysis through the determination of the coefficient of 

thermal expansion (CTE).(24)   

 

2.2.  Structural Role of Elements  

The choice of starting materials used to produce a specific glass is broad. Each set of elements 

attain specific properties as a glass with distinct mechanical, optical, or functional capabilities. Study 

of the individual abilities of each element is crucial for a clear assessment of the luminescent centres 

in the matrix and its enhancement. 

The elements role in the glass matrix is dependent on atomic structure and individual glass 

forming abilities. A simple structural glass can be produced solely through the insertion of one 

primary glass former, for example silica oxide (SiO2) or boric oxide (B2O3). SiO2 assumes a 

predominant tetrahedric unit arrangement in a glass matrix(27), while boric oxide, B2O3, assumes two 

predominant geometries in glass, either four-coordinated tetrahedral (BO4) or a tri-coordinated (BO3) 

trigonal planar unit(28). The energy necessary to melt a pure silica glass (~1700ºC), is however 

extremely high which justifies the insertion of modifiers or flux elements which reduce the glass 

melting temperature.  

In a borosilicate glass two separate phases emerge due to the immiscibility of the boron and 

silica network. Network modifier elements, such as lithium (Li+), sodium (Na+) and potassium (K+) 

act as disrupting agents whose ionic strength is sufficiently high to cleave network structural bonds 

(Si-O-Si or B-O-B), creating anionic non-bridging oxygen throughout the matrix (Figure 2.3). The 

broader effect through flux addition is the change of thermo-mechanical properties of the glass since 

a loosen structure has lower viscosity and glass melting range.(24)  

The amount of non-bonding oxygen in the matrix can, to a certain extent, be controlled through 

the addition of intermediate elements. Alumina, for example, is known to add chemical and thermo-

mechanical stability to a glass host(29), it will form Si-O-Al and B-O-Al bonds restoring network 

Figure 2.2 – Glass transformation range dependence on enthalpy and temperature Adapted 

from reference (22) 
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connectivity and supressing phase separation(30). Although an intermediate element is unable to 

form a glass by itself, it acts as a glass former when combined with other primary network formers. 

 

The concept of element role of on a glass matrix was studied by Dietzel(32), who pursuit a clear 

definition of the empirical role of specific elements. Based on the cation-oxygen bond energy criteria, 

Dietzel analysed coloumbic attractions between ionic species and correlated ionic size and 

polarizability in the matrix. The concept of cation field strength (F) relates the ratio between the ionic 

valence (Z), and the squared ionic distance for oxides (a=rcation+rO
2-). Further elucidation of the 

concept was developed by Sun(24) who analysed this classification based on atomic bond-strength.  

Both approaches are intimately related, glass formers present high field strength (FS), and high 

single bond energy (SB), FS>1.3 and SB>80 kcal/mol. Glass modifiers show low field strength, 

F<0.4 and low single bond energy SB<60 kcal/mol. Intermediate values found for some elements 

present an intermediate field strength value, and intermediate single bond strength, 0.4<FS<1.3, 

SB=60-80 kcal/mol. Classification of basis set of cations that will be applied in the glass development 

procedure can be found on table 2.1. 

Other features are attributed to elements due to their role in the glass matrix. Take the example 

regarding a problem associated with the most common form of insertion of a modifier element in the 

glass mixture:  

Na2CO3  
Δ
→ Na2O + CO2 ↑ (2) 

Usually prepared from its carbonate form, the molecule decomposes at high temperatures into 

sodium oxide and carbon dioxide. The gaseous rate of diffusion depends on the viscosity of the 

melt, physical trapping of the gas can be opposed through the residual addition of fining agents who 

enable viscosity reduction of the glass melt(22). 

It is also of interest to refer the colorant elements, in most cases transition metals with a 3d 

electron valence shell or rare earths with a 4f valence shell are used, copper for example, is a well-

known colorant to obtain a red ruby colour when in the oxidation state Cu0, or green and blue colour 

tones when in oxidation state Cu2+ (23). 

The oxidation state of the elements is of great importance, our interest resides in observing the 

luminescent properties of stannous Sn2+ and cuprous Cu+ ions, for which it is of relevance to evaluate 

the redox ambient of the melt. 

Figure 2.3 - (1) Origin of NBO ions by introducing Na2O into the SiO2 network (2) Alumina restores network 

bridging in presence of Na+. Adapted from reference (31) 
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Table 2.1 - Classification of basis set of cations used in this study. Adapted from reference (32). 

Element Valence (Z) 
Ionic Radii, Å, 

(CN=6) (a) 
Coordination 
number (CN) 

Ionic distance for 
oxides, Å, (a) (b) 

Field Strength 
(F) 

Function 

Si4+ 4 0.4 4 1.80 1.23  

B3+ 3 0.27 3 1.67 1.07 
Glass 

Formers 

B3+ 3 0.11 4 1.50 1.31  

Al3+ 3 0.535 6 1.89 0.80 Intermediate 

K+ 1 1.38 6 2.78 0.13  

Na+ 1 1.02 6 2.42 0.17 
Glass 

Modifier 

Li+ 1 0.76 6 2.16 0.21  

Sn2+ 2 1.18 6 2.58 0.3 Modifier 

Sn4+ 4 0.69 6 2.09 0.9 Intermediate 

Cu+ 1 0.77 6 2.17 0.21 Modifier 

Cu2+ 2 0.73 6 2.13 0.44 Intermediate 
(a) Shannon, R. D.; Acta Cryst. (1976). A32, 751. 
(b) rO

2- = 1.4 Å when CN=6. 

 

Electron exchange reactions between oxygen and the multivalent components of the melt are 

relevant for structural definition of the glass matrix. Oxygen activity is subject to thermodynamic 

constraints which determine its incorporation or release from the structure. Such affects the glass 

basicity and consequently the redox potentials. It is important to retain the idea that the inherent 

ability of an element to reduce a species is the overriding factor in controlling its reduction potential. 

Our goal is to create Cu+ luminescent centres which are dependent, on a great extent, of electron 

transfer between SnO and CuO. This reaction will take place during the melting procedure and can 

be described through equation 3: 

SnO + 2CuO  ⇌ SnO2 + Cu2O (3) 

While reduction potentials are typically determined in water at standard conditions (25°C, 1 atm), 

in a glass melt, subject to a distinct solvent at very high temperature values, the observation of 

experimental values is limited. Schreiber was able to derive from silicate glass experimental data a 

mathematical expression with limited maximum temperature constraints (maximum of 1150ºC) 

which relates the ratio of the concentrations of the element between its reduced state and oxidized 

state (x), the number of electrons transferred in the redox couple (n), and the imposed oxygen 

fugacity (fo2) (33).  

𝑙𝑜𝑔 𝑥 =
𝑛

4
× (− 𝑙𝑜𝑔 𝑓𝑂2

) + 𝐸.  (4) 

Comparison of the standard reference values and Schreiber values, applied for the reaction 

Cu2+ + Sn2+  Cu+ + Sn4  are shown in table 2.2. Nernst equation allows the calculation of the redox 

potential in both solvents, in water at standard conditions the reaction is spontaneous, although 

presenting a very low driving force: ΔGR = -0.02 eV. The increase in spontaneity of the reaction 

when subject to temperature in the silica solvent is immense, with a ΔGR = -9.4 eV. These values 

indicate that when in the right proportion Cu2+ will be fully reduced to Cu+ whereas the luminescent 

Sn2+ will act as a sacrificial agent whenever the redox reaction takes place. 
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Table 2.2 - Standard reference redox-couple potentials values in water (rt), Schreiber values for silica glass 

melt at 1150°C, calculated values for the for the reaction Cu2+ + Sn2+  Cu+ + Sn4+, in water at room 

temperature (rt), and in silica at 1150ºC  

 

 

 

 

 

 

 

2.3. Photoluminescence in glass 

The study of photoluminescence describes the phenomena in which, after photon absorption, 

an element or molecule emits light. Photon absorption from an electron in a lower energy state, 

promotes it to a high energy excited state, a transition that corresponds to a change in the electronic 

configuration of the excited state in relation to its ground state. The excited state nature is transient, 

i.e., it loses energy after a specific amount of time. Generically speaking radiative lifetime presents 

two types of energy decay: (i) When the radiative decay of emission presents a short lifetime, in the 

order of nano-seconds, it is termed fluorescence. (ii) When the radiative decay has a long lifetime, 

from microseconds to seconds, it is termed phosphorescence. 

Both types of energy decay derive from the Pauli principle which states that two particles must 

have opposite half-integer spins within the quantum system. The excited state may assume a distinct 

spin multiplicity in relation to its ground state. If the electronic transition presents a distinct multiplicity 

between ground state and excited state, it represents a forbidden transition according to the spin 

selection rule, and it usually exhibits a long lifetime (s to s). When the ground state and the excited 

state present the same spin multiplicity, luminescence decay is allowed according to the spin 

selection rule, and it exhibits a short lifetime (ns). 

Comparison between the electronic nature of both excited and ground state allow the evaluation 

of the reorganization energy, or the Stokes-shift. However, not only through light emission can the 

excited state relaxation proceed, its deactivation may also be accomplished through thermal energy 

release to the surrounding medium. This competitive mechanism of luminescence deactivation has 

distinct origins: (i) thermal vibrational processes, (ii) excited state redox reactions or (iii) non-

radiative energy transfer(58). 

If a kinetic rate constant (k) is associated with each radiative and non-radiative process, the 

following Jablonski diagram may be presented in order to describe the above-mentioned 

phenomena, figure 2.4. 

Reaction 
E0 (V)  

Water, rt 

E0 (V) Silica, 

1150ºC 

Sn4+  Sn2+ +0.14 -5.5 

Cu2+  Cu+ +0.16 -0.8 

Cu+  Cu0 +0.52 -3.3 

   

Reaction Calculated E0 (V) 

Sn2++Cu2+   Sn4++Cu+ 
-0.02 (water, rt) 

-9.4 (Silica,1150 ºC) 
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The Jablonski diagram represents the fate of the excited states. Hund’s rule states that two 

electrons placed in distinct orbitals with parallel spin configuration, have an energetic favourable 

configuration than a paired spin configuration. For this reason energy of the triplet state is smaller 

than the energy of the singlet excited state. Singlet or triplet states light emission cover an important 

energy region whose efficiency describes the amount of photons that intervene in the photophysical 

process. Quantum efficiency, or quantum yield, (
𝐿
), is defined as the fraction of photons emitted 

per photons absorbed.  

 


𝐿

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 (𝑝𝑒𝑟 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 (𝑝𝑒𝑟 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒)
 (5) 

 

2.3.1.  Tin and copper oxide photoluminescence 

Tin is a post-transition metal, the fourth member of the group 14 of the periodic table. The same 

group which accommodates carbon, silicon, germanium and lead. Tin has an electronic 

configuration of [Kr] 4d10 5s2 5p2, with two main oxidation states, stannous Sn2+ and stannic Sn4+.  

Tin oxide (SnO2) is a semi-conductor material with a wide and direct band gap of 3.6 eV which 

makes it an excellent candidate for large band energy conversion(34). Regarding its 

photoluminescent behaviour in glass, it has been reported that tin oxide doped glasses exhibit light 

emission via the absorption of UV light(10). Tin oxide has an ns2-type emissive center (with n ≥ 4), 

common to Sb3+, Hg0, TI+, and Pb2+ which exhibit photoluminescence derived from the the parity 

allowed transition from the singlet ground state 5s1 5p1 5s2, and from the partially forbidden 

transition between singlet state and the first excited triplet state 5s1 5d1  5s2 (13). 

Copper is a transition metal the first member of group 11 of the periodic table, the same group 

which accommodates silver and gold. With an electronic configuration of [Ar] 3d10 4s1, copper has 

two common oxidation states, cuprous ion Cu+ and cupric ion Cu2+ (35). Cu2O is a conductive material 

with a direct band gap of 2.1 eV (34). Its photoluminescent behaviour in glass has shown visible light 

Figure 2.4 - Jablonski diagram and kinetic constants of decays. Radiative kinetic constants are presented 

with the r subscript, and non-radiative processes with nr. 
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emission derived from UV light absorption through the allowed transition between singlet states 3d10
 

3d9 4p and the partially forbidden triplet transition 3d10    3d94s(36) . 

2.4. Thin Film sputtering  

Preliminary studies regarding copper and tin thin film 

deposition will also be approached. A common fabrication 

method for thin films is the radio-frequency magnetron 

sputtering (rRF-MS) a physical vapour deposition (PVD) 

technique extremely capable of fast and precise control 

over deposition process parameters on large areas.  

Sputtering describes the deposition technique in which 

positively ionized particles of sufficient kinetic energy are 

used to sputter material from a solid target without the need 

of heat. The creation of these positive ions depend on the 

formation of a plasma induced by a strong electric field, 

applied between a target (cathode) and a substrate 

(anode), and the introduction of an inert noble gas species (commonly argon). In order to create a 

plasma a vacuum chamber is also required, where a high vacuum base pressure must be reached 

before the deposition process. When an efficient process is developed it enables a controlled particle 

transfer from a target source onto a solid substrate where a thin film is formed. 

The oxidation state of the deposited film can be modified through the introduction of reactive 

gas species to the process; the reactive gas may induce a chemical reaction in the plasma altering 

the composition of the deposited film. The reactive gas also becomes partially ionized by the plasma, 

and the ejected metal particles react either with charged or neutral ions. Partial pressure control 

over the ratio of volumetric reactive component gas flow rate is a key factor to induce the desired 

stoichiometry of the final compound (26). 

With the objective of developing photoluminescent thin-films through usage of tin and copper 

oxides, preliminary studies will be attempted in order to characterize the oxide formation due to 

variable oxygen flow. Afterwards, thermal treatment will be applied to the samples in order to 

evaluate possible copper and tin diffusion into the glass substrate.  

2.5. Luminescent solar concentrator  

 

Figure 2.5 - Radio-frequency magnetron 

sputtering simplified scheme. 

Figure 2.6 - Schematic example of the waveguide function of a luminescent solar concentrator. 
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Samples produced during this study are expected to behave as luminescent solar concentrators 

(LSC), specific devices able to down-convert solar harvested energy. The doped glass behaves as 

an insulator and it is able to harvest and concentrate energy in its interior. Through the internal 

reflection of the glass matrix a waveguide function arises, directing light towards a specific 

geometrically dependent location where it may be converted into electricity by photovoltaic (PV) 

cells installed along the edges of the material. Efficiency of this process is of major relevance to the 

development of PV cells since high energy photons are not as efficiently absorbed by PV cells as 

low energy photons(5). 

A LSC has the potential of integration use in photovoltaics who require high quantum efficiencies 

and large Stokes shifts, both are necessary features for efficient UV light conversion and 

suppressing light reabsorption in large-area devices. Despite the huge promise, the use of LSCs 

has been slow due to absence of suitable light emitters, the commonly used organic chromophores 

are necessarily applied in polymers whose estimated lifetime is of 25 years when subject to constant 

solar radiation and atmospheric conditions(54). The extreme durability of glass present an opportunity 

to develop highly stable and efficient semi-transparent photovoltaic windows fundamental for the net 

zero energy consumption buildings of the future(5). 
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3. Tin doped alumina-borosilicate glass 

The introduction of tin oxide to a glass matrix has been performed (10-13), to the best of our 

knowledge no systematic variation in concentration amounts of doping was found. From this study 

we intend to determine an optimum amount of doping which determines the highest quantum 

efficiency. Such objective is intended to ascribe the optimized properties of these samples in order 

to evaluate the individual behaviour of the elements, and possible photoluminescence interaction 

between tin and copper oxide. 

 

3.1. Synthetic procedure  

Taking into account the synthetic strategy presented in the selected work(16), a similar approach 

was adopted. The same set of elements were used in order to obtain a multicomponent alumina-

borosilicate glass, however barium oxide was removed as well as the luminescent element lead 

oxide. With the purpose of maintain the structural features of the matrix, batch preparation was 

accomplished through maintenance of the molar ratio between B2O3/SiO2 = 0.256; Al2O3/SiO2 = 

0.099, AlkaliOxide/SiO2= 0.156, and SnO/SiO2=0.021. Seven samples were produced by variation 

of the amount of tin, whose composition can be consulted in table 3.1. Sample names are expressed 

in mol % Sn during the text. 

Table 3.1 - Nominal composition of samples, in molar percentage, of tin doped alumina-borosilicate glasses, 

BG stands for base glass, Tin sample number (Tx).  

Sample SiO2 B2O3 Al2O3 SnO Li2O Na2O K2O 

BG 66.2 16.9 6.6 0.0 5.7 3.6 1.1 

T1 65.9 16.9 6.5 0.4 5.6 3.6 1.1 

T2 65.7 16.8 6.5 0.7 5.6 3.5 1.1 

T3 65.4 16.7 6.5 1.1 5.6 3.5 1.1 

T4 65.3 16.7 6.5 1.4 5.6 3.5 1.1 

T5 64.4 16.5 6.4 2.8 5.5 3.5 1.1 

T6 63.9 16.3 6.3 3.4 5.5 3.4 1.1 

 

The following chemical reagents were used as starting materials, purity grade is described as 

follows: SiO2 (p.a., Sigma-Aldrich), B2O3 (99%, AlfaAesar), Al2O3 (p.a., Fluka Analytical), Li2CO3 

(98%, Fluka Analytical), Na2CO3 (99.5%, Panreac), K2CO3 (99%, Sigma-Aldrich), and SnO (99%, 

AlfaAesar). 

Approximately 50g batches were mixed in a shaker powder mixer for one hour (Turbula T2F), 

and melted in a platinum crucible. An electrical furnace was used for melting at 1400 ºC for 2.50 

hours, at regular atmosphere. The melt was quenched onto a metal sheet at room temperature, and 

annealed at a temperature of 540 ºC for one hour. Glass samples were cut and polished, 

approximately 6 mm thick, for optical and Raman measurements. For dilatometry analysis, samples 

were prepared with approximately 2.5 cm wide and 5 mm diameter. For solid state NMR (SSNMR), 
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samples were crushed for 15 min in a ball mill at 500 rpm and sieved for ≤120 μm particles. Sample 

analysis was performed through several techniques whose conditions may be accessed in 

supplementary information. 

 

3.2.  Results and discussion 

Glasses samples obtained are completely transparent, the increase of tin oxide concentration 

shown an increase in melt viscosity which characterized a difficult sample quenching procedure. It 

is possible to observe trapped gas on the samples interior. In figure 3.1 all tin oxide doped samples 

were photographed under a 5.16 eV UV lamp light showing the luminescent Sn2+ light emission, 

through a characteristic white-blue light.  

Figure 3.1 - Tin oxide doped samples under 5.16 eV excitation wavelength, from left to right: BG-0%Sn, T1-

0.4%Sn, T2-0.7%Sn, T3-1.1%Sn,T4-1.4%Sn, T5-2.7%Sn, T6-3.4%Sn. 

 

3.2.1.  Solid state nuclear magnetic resonance (SSNMR) 

To evaluate tin oxide doping interference with the global structure of the glass SSNMR was 

performed using single pulse magic angle spinning (MAS) technique, where 29Si (spin -1/2 nuclei) 

was studied. Spectra (figure 3.2) shows the presence of a convolution of at least 2 distinct peaks, a 

feature which becomes evident with tin oxide doping, a broad Gaussian peak, at -102 ppm, which 

Figure 3.2 - Single pulse MAS technique, 29Si (spin - 1⁄2 nuclei) normalized spectra, 

study was performed over the base glass, 1.4% Sn and 3.4% Sn. 
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is due to the 29Si present in the glass framework(37) and a sharp peak, at -107 ppm , due to the 29Si 

presence in crystalline quartz(38). Spectra for all samples present consistency, suggesting that 

doping is not inducing variation of the silicate structure. We have also attempted to study 119Sn (spin 

-1/2 nuclei), however the small molar percentage of tin oxide doping in addition to the small isotope 

percentage (8.6%) of 119Sn made this study impossible.  

 

3.2.2.  Raman spectroscopy  

Raman spectroscopy was performed on three samples, base glass, 1.4%Sn and 3.4%Sn, figure 

3.3. A high degree of similarity is found between the spectra of these samples, although some 

variation is introduced with tin oxide doping, specifically a distinct peak at ~350 cm-1 which is 

inhibited and shape change from 850-1250 cm-1. 

The first region of interest, the 300-500 cm-1 window, has been associated to the overall 

connectivity of the silica network, specifically regarding stretching or bending modes of Si−O−Si 

bonds and also to the extent of polymerization of the borosilicate network (16). Mixed modes related 

to bending or rocking vibrations of the network borosilicate linkage can also be identified through 

the medium-range vibrational modes, from 400 to 850 cm-1, associated to the formation of ordered 

superstructures reedmergnerite [BSi3O8]- and danburite [B2Si2O8]2- (39). It is observable for all 

samples that a peak located at ~800 cm-1 is persistent both in shape and position. The concerning 

region has been associated with the boron network, where Raman modes have been assigned to 

the formation of triborate, tetraborate or pentaborate groups, through splitting of boroxol ring 

oxygens (800 cm-1) (B3O6, appendix, figure 8.6) in the presence of a suitable modifier ion(40). 

Characteristic Raman bands in the high frequency interval of 850-1250 cm-1 are associated with 

the asymmetric vibration of SiOx structures, specifically related to 𝑄2
𝑆𝑖 at 850 and 950 cm-1, 𝑄3

𝑆𝑖 at 

1000, 1050 and 1080 cm-1, and 𝑄4
𝑆𝑖 at 1150 cm-1 (40). 𝑄𝑆𝑖 represents the silicate tetrahedral unit and 

𝑄𝑛  represents the number of bridging oxygens (BO) per tetrahedron. The observation of a broad 

Figure 3.3 – Raman Spectra for Base Glass (BG), 1.4% Sn and 3.4% Sn. 
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band suggests that coupling between these mixed modes of vibration may exist, therefore Raman 

spectra deconvolution was performed for the analysed samples. (See appendix: Figure 8.1)  Three 

gaussian (equation 6) bands correspondent to the structural evolution of 𝑸𝟐
𝑺𝒊, 𝑸𝟑

𝑺𝒊, 𝑸𝟒
𝑺𝒊  units with tin 

oxide doping were identified. Results are constant, only varying when tin concentration is 3.4% Sn, 

through a 5% increase of area value for 𝑄4
𝑆𝑖 structural units in detriment of  𝑸𝟑

𝑺𝒊 units, while  𝑸𝟐
𝑺𝒊 

structural units are reduced by a 0.5% value. 

𝐹(𝑥) =
1

√2𝜋𝜎2
 ×   𝑒

−(𝑥−𝜇)2

2𝜎2   (6) 

Table 3.2 - Raman shift of 𝑸𝟐
𝑺𝒊, 𝑸𝟑

𝑺𝒊, 𝑸𝟒
𝑺𝒊 structural units obtained in the deconvolution of Raman spectra in the 

850-1250 cm-1 region for tin oxide doped samples. 

  𝑸𝟐
𝑺𝒊 𝑸𝟑

𝑺𝒊 𝑸𝟒
𝑺𝒊 

Base cm-1) 20.3 55.5 41.4 

Glass cm-1) 915.5 1054.7 1151.9 

 A% 3.2 69.4 27.4 

 cm-1) 19.4 57.8 41.3 

1.4% Sn cm-1) 918.7 1044.1 1150.3 

 A% 3.2 69.3 27.6 

 cm-1) 20.6 54.7 44.7 

3.4% Sn cm-1) 921.9 1027.4 1138.6 

 A% 2.6 64.1 33.3 

 

3.2.3.  Dilatometry 

The thermomechanical behaviour of glass is directly correlated to the density and organization 

of the structural matrix, where elasticity and viscosity are directly affected. The use of dilatometry 

technique permits to obtain three parameters that characterize glass thermomechanical properties 

(see representation in appendix, figure 9.1): 

 1. The coefficient of thermal expansion (CTE) represents the temperature dependent expansion 

ability of a material, it is mathematically represented through value of the slope of the first linear 

interval of the thermal expansion data;  

2. The glass transition temperature (Tg) indicates value for the glass phase transition of a 

material, it is determined through the intersection of the linear expansion phase transition data;  

3. The softening temperature (Ts) is the temperature at which glass viscosity reaches a limit 

value where the material is still capable to prevent deformation due to its own weight. Its value is 

determined from the maximum value of the data. 

Thermal expansion coefficient analysis show that base glass CTE value is increased with tin 

oxide doping. Sample 0.7% Sn onward shows a decreasing trend of the value. The working 

temperature variation is apparently stable throughout the doping procedure. These values are 

slightly higher than a common borosilicate glass (pyrex), 3.3x10-6 K-1, but lower than a soda lime 

glass 8.6x10-6 K-1. 
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Table 3.3 - Dilatometry analysis results for tin oxide doped samples. Glass Transition Temperature (Tg), 

Softening temperature (Ts), and Coefficient of Thermal Expansion (CTE). 

Sample CTE 25-350ºC *10-6 (K-1) Tg (ºC) Ts (ºC) 

BG 6.58 478.8 537.3 

0.35% Sn 6.82 482.7 542.3 

0.7% Sn 7.29 486.0 540.0 

1.1% Sn 7.0 477.3 530.6 

1.4% Sn 6.18 471.3 539.8 

2.7% Sn 6.49 467.8 534.7 

3.4% Sn 6.03 470.0 533.1 

 

Glass transition temperature increases with the addition of tin oxide, however for concentrations 

larger than 0.7% Sn Tg values decrease trending to a value of ~470 ºC. These values show that 

there is no significant variation of temperature from the doping procedure. These values are 

considerably lower than common pyrex glass transition temperature, 560 ºC.  

Results for the softening temperature (Ts) show that small amount of doping originate a 5º C 

increase of the softening temperature, while further doping follows a decreasing trend, with a lower 

value than the base glass, and significantly lower than the extremely resistant pyrex glass, 820 ºC.  

 

3.2.4.  UV/Vis Spectroscopy  

The optical transmittance spectra obtained for Sn doped samples is shown with the base glass 

as reference, figure 3.4. A characteristic UV-cut off edge is represented for all samples. The 

importance of the cut-off value resides in determining the inherent capacity of a glass matrix to 

absorb light. Its values wil interfere with the doping species absorbing ability affecting the samples 

quantum efficiency. Cut-off values can be obtained by extrapolation of the linear segment of the 

transmittance edge, forcing the ordinate value to zero. Table 3.4 shows the obtained values, 

reflecting the bathochromic variation of the cut-off edge due to tin oxide doping.  

Table 3.4 - Optical cut-off values for tin oxide sample glasses, values in eV. 

Sample BG 0.35% Sn 0.7% Sn 1.1% Sn 1.4% Sn 2.7% Sn 3.4% Sn 

Cutoff (eV) 4.03 3.96 3.91 3.88 3.82 3.70 3.65 

 

Variations in the optical absorption edge can be dependent on the glass network change effect 

induced by SnO addition or substitution of Si atoms in the coordinated matrix, being directly related 

to the deep-UV light absorption from heterogeneous tin oxide structures, possibly aggregates of two 

or three fold coordinated tin oxide centres(41)(42). The observed values reflect a high degree of 

transparency, take in mind that pure quartz cuvettes used for spectroscopic analysis have a UV cut-

off edge of 6.1eV.  
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3.2.5.  Excitation Spectroscopy  

Photoluminescent excitation spectra profile (figure 3.5) was performed by monitoring light 

emission at 3.5 eV. Two excitation bands are observable as dominant spectral features, for each 

sample we find a high energy band at 5 eV and a lower energy band located at approximately 4.3 

eV. A gradual intensity growth is shown for small doping concentrations, for sample 1.1% Sn and 

larger concentrations excitation intensity is inhibited, with the low energy maximum suffering a slight 

red-shift trend. The amount of doping in the samples shows a similar excitation profile for the 

samples. The low energy band, associated with the triplet emission of tin oxide, shows a more 

intense nature than the high energy band, correspondent to the singlet emission, such is due to its 

Figure 3.4 – Normalized optical transmittance spectra of tin doped samples with base glass as reference. 

Figure 3.5 - PLE spectra of tin doped samples, light emission monitored at  3.4 eV. 
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proximity to the cut-off region, enabling a more efficient light absorption through this radiative 

channel. 

3.2.6.  Emission spectroscopy 

Emission spectra is shown in figure 3.6, it was obtained through sample excitation at 4.2 and 4 

eV. The emissive spectra shows a broad light emission which surpass the analysis limits, this is 

related to heterogeneous formation of tin oxide emissive centres. Figure 3.6 (a) show a constant 

high energy emissive peak at 3.8 eV which derives from the triplet state emission. A second emissive 

low energy band is seen to arise for concentrations larger than 1.4 % Sn. This low energy band 

redshifts with doping, from 2.8 to 2.5 eV surpassing the intensity of the high energy band for sample 

2.7% Sn, becoming the dominant emissive maximum. These observations suggest the existence of 

two major emissive species whose emissive behaviour is dependent on doping concentration. 

Similar features are also observed with sample excitation at 4 eV, concentration quenching of the 

first emissive maximum is observed, and also the emissive maximum is progressively redshifted 

with doping, from 3.5 eV to 2.5 eV. Tin oxide doping determines as a general trend spectral 

broadening and red-shifting of the low energy emissive peak.  

 

3.2.7.  Photoluminescence Kinetic Decay 

Electronic nature of the Sn2+ luminescent centres was evaluated through its photoluminescence 

kinetic decay, figure 3.7. Through excitation at 3.5 eV and light emission monitoring at 3.2 eV, results 

show a bi-exponential profile with slight variation of the short component decay time ~9.8 s, and of 

the longer component decay time 16.8, 17.2 and 17.6 s, for samples 0.7%, 1.4% and 3.4% Sn 

respectively. 

 

 

Figure 3.6 - PL spectra for the batch of tin samples excited at (a) 4.4 eV and (b) 4 eV. 

(a) (b) 
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Table 3.5 - Photoluminescence kinetics decay time for tin oxide doped samples (s). 

 0.7% Sn 1.4% Sn 3.4% Sn 

1 9.76 9.84 9.84 

2 16.85 17.18 17.58 

 

 The observed long lifetime values of the two emissions suggest that both are triplet states, the 

shorter time values are in good agreement with what literature reports for the triplet transition of a 

Sn2+ luminescent centre in glass, 11 s (13).The origin of the larger decay time can be rationalized 

through the formation of tin oxide aggregates where the bonding interaction of the empty 5p atomic 

orbitals of tin oxide originates orbital splitting into two emissive triplet states, a faster less energetic 

state and a slower more energetic state. 

 

3.2.8.  Quantum yields  

Luminescent quantum yields (L were obtained from the absolute emission method, with 

samples being measured at different excitation energies, at 4.1 eV, 3.8 eV and at 3.4 eV. Figure 

3.8. show that quantum yields are higher for excitation at 4.1 eV, at this energy value we are near 

the cut-off region, which enables a more efficient light absorption process. A clear pattern is 

observed from the doping results, quantum efficiency is higher for intermediate concentrations of tin 

oxide, specifically for samples 0.7% Sn, 1.1% Sn and 1.4% Sn which show 48% efficient photon 

conversion. Larger doping concentrations show a decrease tendency of quantum efficiency, 

reflecting how larger doping amounts increase the non-radiative constant of the photophysical 

pathway. 

Figure 3.7 - Photoluminescence kinetic decay fit for sample 1.4%Sn, excitation at 3.5 eV, emission 

monitored at 3.18 eV. 
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3.3. Conclusions 

The obtained tin oxide doped samples show white-blue emissive light under all concentrations 

(figure 3.9). Solid state NMR analysis revealed that no structural change was induced by doping the 

silicate network. This observation is corroborated with Raman spectroscopy which revealed that 

doping had a low impact over the silicate structure, with for 𝑄4
𝑆𝑖 structural units being increased by 

5% with doping, in detriment of  𝑸𝟑
𝑺𝒊 units, while  𝑸𝟐

𝑺𝒊 structural units are reduced by a 0.5% value. 

Further information was revealed regarding the development of interaction between both 

primary structural networks, two ordered macrostructures reedmergnerite [BSi3O8]- and danburite 

[B2Si2O8]2- were formed, and also the formation of boroxol rings and associated structures are 

features which are not dependent on doping.  

Figure 3.9 - Colour coordinates of tin doped samples, excitation at 4.4 eV. 

Figure 3.8 - Luminescence quantum yields of tin doped samples, excitation at 4.13, 3.76 and 3.44 eV. 
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Samples thermomechanical properties reveal that glass transition temperature, melting 

temperature or thermal expansion coefficient results present a small degree of variance with tin 

oxide doping, with no particular trend being observed. 

UV/Vis light absorption show how doping induces a UV cut-off edge bathochromic shift, while 

the host glass cut-off edge is located at 4 eV for the host glass, 3.4% Sn sample shows a 3.65 eV 

value for the cut-off edge. Taking into account the two excitation sites identified for the samples, the 

high energy peak responds to excitation in the deep-UV at 5 eV, and the low energy band is found 

at lower energies, 4.3 eV, a significant part of UV light absorption is accomplished through the host 

matrix.  

Variation of Sn2+ doping concentration clearly shows the development of heterogeneous 

emissive centres, which result in a characteristic broad light emission spectrum, from 5 eV to 1.4 

eV, notorious for all concentrations. The new emissive maximum formed with high doping 

concentration is a solid evidence of the heterogeneous formation of luminescent tin oxide centres.  

Two distinct emissive species were identified, the kinetic decay profile was adjusted through a 

bi-exponential expression with a faster constant value of 9.8 s, associated with the emission of tin 

oxide, and slight variation of the slower component with an average value of 17 s associated with 

the formation of tin oxide dimers. The nature of these values indicate we are observing partially 

forbidden transitions correspondent to triplet to singlet electronic states. 

 Both excitation bands show light emission at approximately 3.5 eV, which represent a large 

Stokes shift of 1.7 eV for the high energy excitation band and a smaller 0.8 eV Stokes shift for the 

low energy excitation band. This means that we have a negligible overlap between the absorption 

and emission profiles, inhibiting the reabsorption capability of Sn2+ luminescent centres.  

Quantum efficiency reached a peak value of 48% for intermediate tin oxide concentration, 0.7% 

Sn, 1.1% Sn and 1.4% Sn, revealing the luminescence quenching effect induced through the 

formation of tin oxide aggregates, reflecting the increase of the non-radiative constant for sample 

concentrations larger than 1.4% Sn. 

Taking into account the obtained results, the observed photoluminescent pathways may be 

schematically represented as in figure 3.10. 

 

 

Figure 3.10 - Proposed scheme of electronic levels and related radiative (full-line) and non-radiative (dashed 

line) processes accounted for the analysis of PL emission of Sn doped samples.  
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4. Tin and Copper oxide doped alumina-borosilicate glass  

Introduction of both tin and copper oxide into the glass structure has a subjacent interest to the 

study which is to evaluate if any structural or photoluminescent interaction between both species 

occurs. With this purpose, tin oxide will be inserted with a fixed concentration of 1.4%, an amount 

which is sufficient to fully reduce Cu2O, while also showing to induce no change to the matrix 

structure and presented the maximum value of quantum efficiency.  

 

4.1. Synthetic procedure  

To optimize the synthetic procedure, especially to guarantee sample homogenization, melting 

temperature was increased from 1400 º C to 1550 ºC since at higher temperature viscosity of the 

melt is reduced, such enables a more effective dispersion of the elements in the matrix and an 

optimized glass structure. Mechanical homogenization procedures were also performed to the melt 

with swirling and crushing of the glass being performed during the melt procedure for each sample. 

Taking into account the Tg values obtained for tin oxide doped samples, and in order to reduce ionic 

mobility over the thermal treatment procedure, the annealing temperature was decreased, from 540º 

C to 420 ºC. 

Batch preparation was accomplished as previously reported, the ratio between elements was 

maintained B2O3/SiO2 = 0.256; Al2O3/SiO2 = 0.099 and AlkaliOxide/SiO2= 0.156, with variation of 

the amount of CuO between [0-0.14] % mol. An undoped glass sample was produced as well as a 

tin oxide doped (1.4% Sn) sample for reference purposes, adding to a total of 7 samples produced. 

Sample names are expressed in mol % Cu during the text. 

Table 4.1 - Nominal composition of samples, in molar percentage, of tin and copper doped alumina-

borosilicate glasses, BG stands for base glass, Copper sample number (Cx). 

Sample SiO2 B2O3 Al2O3 SnO Li2O Na2O K2O CuO 

BG 66.2 16.9 6.6 0.0 5.7 3.6 1.1 0.00 

C1 65.3 16.7 6.5 1.4 5.6 3.5 1.1 0.00 

C2 65.2 16.7 6.5 1.4 5.6 3.5 1.1 0.01 

C3 65.2 16.7 6.5 1.4 5.6 3.5 1.1 0.03 

C4 65.2 16.7 6.5 1.4 5.6 3.5 1.1 0.05 

C5 65.1 16.6 6.5 1.4 5.6 3.5 1.1 0.08 

C6 64.9 16.6 6.4 1.4 5.6 3.5 1.1 0.14 

 

Batch materials were reagent grade. Their origin and purity grade are described as follows: SiO2 

(p.a., Sigma-Aldrich), B2O3 (99%, AlfaAesar), Al2O3 (p.a., Fluka Analytical), Li2CO3 (98%, Fluka 

Analytical), Na2CO3 (99.5%, Panreac), K2CO3 (99%, Sigma-Aldrich), and SnO (99%, AlfaAesar). 

Approximately 50 g batches were mixed in a shaker powder mixer for one hour (Turbula T2F), 

and melted in an electrical furnace at 1550 ºC for 2.50 hours, in a platinum crucible at regular 

atmosphere. Each sample was stirred, cooled and crushed manually for 3 times after 30, 60 and 90 
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minutes of melting. The melt was quenched onto a metal sheet at room temperature, and annealed 

at a temperature of 420 ºC for one hour. Glass samples were cut and polished, with approximately 

1 cm wide and 0.6 cm thick, for optical and Raman measurements. For dilatometry analysis samples 

were prepared with approximately 2.5 cm wide and a diameter of 5 mm. For SSNMR and XRD 

samples were crushed for 15 min in a ball mill at 500 rpm and sieved for ≤120 μm particles. Sample 

analysis was performed through several techniques whose conditions may be accessed in 

supplementary information. 

 

4.2. Results and discussion 

Figure 4.1 shows the obtained samples under a 3.4 eV UV light. Glass samples are transparent 

and it is possible to observe trapped gas on the inside. Melt viscosity was evidently reduced with all 

samples showing great fluidity for quenching. A three colour gradient was obtained, tin oxide doping 

showed its blue emissive colour, small addition of copper induces a blue-white tone while larger 

amounts of copper doping originate a yellow light emission.  

 

Figure 4.1 - Tin and copper oxide doped samples melted at 1550 ºC light emission when excited at 3.4 eV. 

From left to right: C1 - 0% Cu, C2 - 0.01% Cu, C3 - 0.03% Cu, C4 - 0.05% Cu, C5 - 0.08% Cu, C6 - 0.14% Cu, 

(%mol). 

 

4.2.1. X Ray-Diffraction (XRD) 

Structural change of the host matrix was evaluated through XRD, figure 4.2 shows the 

normalized spectra of the samples. Copper doped glass samples show the characteristic amorphous 

profile of glass which can be identified through a broad peak at 22º 2. The presence of crystalline 

peaks are also found at 20.7º 2 and 26.8º 2 which are related to residual formation of quartz (43). 
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4.2.2.  SS NMR 

Solid­state NMR was used to probe the local environment and coordination mode of a range of 

nuclei, including 29Si (spin­1⁄2 nuclei), 11B, 27Al, and 23Na (quadrupolar nuclei, with spin 5/2, 3/2 and 

3/2 respectively). The 29Si spectra, figure 4.3, shows two 2 coincident peaks: a broad Gaussian 

peak, at -102 ppm, due to the 29Si present in the glass framework(37); and a sharp peak, at -107 ppm, 

associated with 29Si formation of crystalline quartz(38). 

Figure 4.2 - X-Ray diffraction spectra of copper and tin doped samples at 1550 ºC. 

Figure 4.3 - 29Si NMR spectra for whole batch of copper doped samples 
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The 11B spectra (figure 4.4) shows two peaks at 12 ppm and 0 ppm for single-pulse and Hahn-

echo experiment, respectively. The peak at 0 ppm is originated from tetra coordinated boron, BO4, 

while the peak at 12 ppm is associated with tri-coordinated boron, BO3. The relative intensity of 

these peaks seems to change from sample to sample, but no obvious trend is found(57). 

 

The 23Na spectra (figure 4.5) showed a single broad peak at -15 ppm. This value for the chemical 

shift of 23Na is associated with non-bridging oxygen atoms in the structure and the sodium acting as 

charge compensator, it is a characteristic peak which demonstrates sodium’s modifier role in the 

glass matrix. For sample 0.05% Cu, a clear hump at -6 ppm is observed, associated with the 

formation of NaAlSi3O8.(44). 

 

Figure 4.5 - 23Na NMR spectra for whole batch of copper doped samples. 

Figure 4.4 - 11B NMR spectra for whole batch of copper doped samples. 
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We have also attempted to study 119Sn (spin -1/2 nuclei). However the small molar percentage 

of tin oxide doping in addition to the small isotope percentage (8.6%) of 119Sn made this study 

impossible.  

 

4.2.3. Raman spectroscopy 

Raman spectroscopy was performed on base glass, 1.4% Sn, 0.014% Cu, 0.05% Cu and 0.14% 

Cu, figure 4.6. The general structure of the spectra is similar with tin oxide doped samples analysed. 

From 300-500 cm-1 the overall connectivity of the silica network is analysed, specifically regarding 

stretching or bending modes of Si−O−Si bonds, being also related to the extent of polymerization of 

the borosilicate network(16). The left shoulder at 350 cm-1 shows intensity fluctuation due to tin and 

copper oxide doping. Intensity of this peak is reduced with tin oxide and increased for higher copper 

concentrations but no definite trend can be identified.  

Raman modes from 400 to 850 cm-1 were already associated with the two ordered 

superstructures reedmergnerite [BSi3O8]- and danburite [B2Si2O8]2- (39),as well as tri-,tetra- or penta-

borate structures that arise from splitting of boroxol rings (B3O6) whose vibrational mode is found at 

800 cm-1 (40). 

Deconvolution of the Raman bands in the high frequency interval of 850-1250 cm-1, associated 

with the asymmetric vibration of SiOX structures(40), specifically related to 𝑄2
𝑆𝑖 at 850 and 950 cm-1, 

𝑄3
𝑆𝑖 at 1000, 1050 and 1080 cm-1, and 𝑄4

𝑆𝑖 at 1150 cm-1, was also performed (table 4.2; figure 8.4). 

Three gaussian bands were obtained for each sample correspondent to the structural identification 

of 𝑸𝟐
𝑺𝒊, 𝑸𝟑

𝑺𝒊, 𝑸𝟒
𝑺𝒊  structural units, whose peaks show Raman shifts at approximately 920, 1050 and 

1150 cm-1. Analysis of the value of the area peak of each of the deconvoluted gaussian bands shows 

that tin and copper doping induce a variation which indicates formation of 𝑸𝟒
𝑺𝒊 structural units, 

Figure 4.6 - Raman Spectra for Base Glass (base), 1.4% Sn, 0.014% Cu, 0.05% Cu and 0.14% Cu. 
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through increase of 8% of area value in detriment of 𝑸𝟑
𝑺𝒊 units. Although tin oxide doping shows the 

slight decrease in 𝑸𝟐
𝑺𝒊 structural units, this change is not observed with copper doping. 

 

Table 4.2 - Raman shift of 𝑸𝟐
𝑺𝒊, 𝑸𝟑

𝑺𝒊, 𝑸𝟒
𝑺𝒊 structural units obtained in the deconvolution of Raman spectra in the 

850-1250 cm-1 region for tin oxide doped samples. 

  𝑸𝟐
𝑺𝒊 𝑸𝟑

𝑺𝒊 𝑸𝟒
𝑺𝒊 

Base  (cm-1) 19.3 57.7 38.5 

Glass (cm-1) 921.8 1058.9 1155.3 

 A% 4.0 72.6 23.4 

 (cm-1) 17.7 55.2 41.2 

1.4% Sn (cm-1) 921.3 1049.0 1150.8 

 A% 3.3 67.3 29.4 

 (cm-1) 19.4 55.2 43.4 

0.14% Cu (cm-1) 920.1 1045.6 1149.2 

 A% 3.9 64.3 31.7 

 

4.2.4. Dilatometry 

Thermal analysis was performed through dilatometry measurements (table 4.3). Thermal 

expansion coefficient analysis show a similar behaviour to what was previously found for tin oxide 

doped samples, values show great magnitude similarities, and a similar tendency, the value rises 

up to 7.4 x 10-6 for 0.05% Cu concentration, followed by a decrease trend correlated with copper 

doping. The working temperature is apparently stable throughout the doping procedure. 

 

Table 4.3 - Dilatometry analysis results for tin oxide and copper doped samples. Glass 

Transition Temperature (Tg), Softening temperature (Ts), and Coefficient of Thermal Expansion 

(CET). 

Sample CTE 25-350ºC x10-6 (K-1) Tg (ºC) Ts (ºC) 

BG 6.91 493 533.3 

1.4%Sn 6.85 492.4 - 

0.014%Cu 7.35 488.3 526.5 

0.03%Cu 7.05 489.2 549.3 

0.05%Cu 7.40 493.8 536 

0.08%Cu 6.94 493.2 529.7 

0.14%Cu 6.64 496.5 526.4 

 

Taking the base glass (BG) as reference, glass transition temperature results show how tin and 

copper oxide originate a slight value decrease, from 493 ºC to 488.3 ºC. Further copper doping 

induce an increasing tendency with the higher doped copper sample presenting a value of 496.5 ºC, 
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a value whose magnitude Is quite similar to the base glass analysis. Comparison between the base 

glass preparation at 1400 ºC and at 1550 ºC show a higher value for 1550 ºC which may be 

correlated to a higher degree of matrix organization.  

Regarding the softening temperature values (Ts), results follow a similar trend, where the value 

is reduced for low copper concentrations and subsequently increased as seen for sample 0.03% 

Cu, further amounts of doping present a decreasing trend of the value. The results demonstrate that 

doping is not affecting the global hardness of the glass. 

 

4.2.5. UV / Vis spectroscopy 

The optical transmittance spectra obtained for copper doped samples with the base glass as 

reference is shown in figure 4.7. As previously analysed a bathochromic shift effect derives from 

doping, associated with the deep-UV light absorption from Sn2+ and and Cu+ in the near-UV.(45). 

Optical cut-off values were calculated for all samples, calculation was performed as described in 

previous chapter, table 4.4.  

Results show a significant reduction of the cut-off edge from of the host glass and 1.4% Sn 

sample when compared to glasses melt at 1400ºC, the optimization procedure is apparently inducing 

a reduction of light scattering in the glass matrix.  

Table 4.4 - Optical cut-off values for tin and copper oxide doped sample glasses, melted at 1550 ºC values in 

eV. 

Sample BG 1.4%Sn 0.014%Cu 0.03%Cu 0.05%Cu 0.08%Cu 0.14%Cu 

Cutoff (eV) 4.25 3.92 3.95 3.89 3.85 3.84 3.77 

 

 

Figure 4.7 - Optical transmittance spectra of tin and copper doped samples melted at 1550 ºC with base glass 

as reference.. 
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4.2.6. Excitation spectra 

Figure 4.8 shows the excitation spectra profile for all samples while monitoring light emission at 

3.2 eV.  Excitation spectra of the samples show a broad excitation profile, tin oxide doping show the 

already observed high and low energy bands of excitation at approximately 5 eV and 3.9 eV. The 

excitation spectra profile show that both high and low energy bands are influenced by copper doping, 

revealing that the high energy peak becomes more intense than the low energy peak. Spectra 

deconvolution of the high energy peak show in fact the presence of two superimposed gaussian 

bands with 0.1 eV difference, at 5 eV and 5.1 eV, associated with tin oxide and copper oxide, 

respectively. Copper doping not only affects the spectra by varying its intensity, but also by varying 

the low energy peak position, it originates a blueshift of the low energy peak to higher energies, a 

phenomena related to the formation of Cu+. 

 

4.2.7. Emission spectra 

Photoluminescence emission spectra (PL) of copper doped samples excited at 3.5 eV is seen 

in figure 4.9, with tin oxide doped glass shown as reference. It is observable how copper doping 

reduces the intensity of the high energy peak, and also how it influences the development of a broad 

lower energy peak at 2.1 eV, whose intensity increase is correlated with copper doping.  An 

interesting feature of the system is the broad spectral range which surpasses the analysis technical 

limits, such behaviour is observed for both the emissive profile of tin oxide doped sample, but also 

to the copper doped system samples, with copper doping further extending these limits.  

Figure 4.8 - PLE spectra of tin and copper doped samples, light emission monitored at 3.2 eV. 
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The nature of light emission of the system can be evaluated by varying the excitation energy 

and analysing the profile of light emission. Such has been performed for sample 0.08% Cu, whose 

results are found in figure 4.10. With excitation at 4.8 eV the emission band displays a maximum 

around 2.8 eV and a wing peaking at higher energies, showing that we have a predominant emissive 

contribution from Sn2+ and Cu+ ions. By lowering excitation energy a notorious trend is found, the 

emissive maximum is gradually redshifted. For lower energies, 3.4 eV, the emissive peak is located 

at 2.1 eV, while the high energy wing is gradually less intense. This indicates a gradual change of 

the emissive centres light emission, while higher energy excite both Sn2+ and Cu+, lower energy 

enable the observation of a predominant Cu+ light emission.  

Figure 4.9 - PL spectra of tin and copper doped samples excited at 3.5 eV. 

Figure 4.10 - Emissive profile dependence on excitation spectra for sample 0.08% Cu. 
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For high excitation energy the observed luminescence towards the blue contains a significant 

contribution from tin oxide owing to triplet to singlet (T1 → S0) transitions, whereas emission to the 

red arises from 3d9 4s1 → 3d10 transitions in Cu+ ions, whose nature will be later evaluated.  

Area normalization of the emissive spectra, figure 4.11, allows the analysis of the luminescent 

concentration quenching effect, doping induce a progressive inhibition of Sn2+ emission, while Cu+ 

emission is seen to progressively increase its intensity. The spectra clearly identifies tin and copper 

oxide independent emission and the observation of an isoemissive point relating the total intensity 

of light emission. 

4.2.8. Photoluminescence Kinetic Decay 

Photoluminescent kinetic decays were performed for all samples through a global analysis fit 

achieved with a tri-exponential function, table 4.5. Results show consistent values over distinct 

doping amounts, where it is possible to distinguish three average values according to their order of 

magnitude. A short decay time is found with an average value of 7.7 s representing the short decay 

triplet state of Sn2+, and a second intermediate average decay time of 16 s correspondent to the 

emission of tin oxide aggregates. 

Table 4.5 - Photoluminescence kinetics decay time for tin and copper oxide doped samples (s). 

 1.4% Sn 0.014% Cu 0.03% Cu 0.05% Cu 0.08% Cu 0.14% Cu 

1 7.9 6.0 7.3 7.0 9.8 8.2 

2 16.2 15.7 14.9 15.8 17.7 15.7 

3 - 43.5 38.0 52.7 62.4 54.0 

Figure 4.11 – Area normalized PL spectra of tin and copper doped samples excited at 3.5 eV. 

%Cu 

%Sn 
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The longer decay time with an average value of 50 s is correspondent to Cu+ forbidden triplet 

state emission, a value which is in good accordance with the slow decay time obtained by Debnath 

for copper emission in a glass matrix(46).  

The pre-exponential factors obtained from the global fitting process, and their relation with the 

luminescence decay time can be evaluated for sample 0.14% Cu, figure 4.12. Here one can observe 

the energy dependence of each of the decay times obtained and their overall weight, clearly showing 

a structured emissive profile whose origin derives from three sources of light emission. 

Sn2+ emission is responsible for the shorter decay times seen at higher energies, the faster 

luminescence light emission decay is found between 3.5 and 2.8 eV. Two-fold coordinated tin oxide 

centres show a slower luminescence profile, and its emission is responsible for a broad tail between 

3.5 eV and 2 eV, reflecting the heterogeneous coordination of these structures. The longer time 

decay constants origin is Cu+ ions, for which a large tail arises in spectral domains of lower energies, 

from 3 eV to 1.7 eV. 

 

4.2.9. Quantum Yield 

Luminescent quantum efficiency measurements were obtained through the absolute method 

and measured at different excitation energies, 4.1 eV, 3.8 eV and 3.4 eV. Results, figure 4.13, show 

the increase of quantum efficiencies to 58% for concentrations larger than 0.03% Cu. When excited 

at 4.1 eV, SnO and CuO are the main light absorbers, while at lower energies the glass matrix 

responsibility over light absorption is increased. 

 

Figure 4.12 - 0.14% Copper sample global population decay analysis. 
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4.3. Conclusions 

The obtained tin and copper oxide doped glasses show a colour gradient from blue to white and 

yellow colour, figure 4.14, whose colour variation depends on the amount of copper doping inserted 

into the sample. The amorphous profile of the samples is seen through X-ray diffraction analysis 

which also introduce the observation of quartz formation. A feature which is also revealed through 

solid state NMR analysis, the study of  29Si 11B and 23Na.which did not reveal any structural induced 

changes from tin or copper oxide doping.  

Raman spectroscopy reveals a similar profile to what was previously obtained with tin oxide 

doped samples. Development of interaction between both primary structural networks is revealed 

through the formation of the ordered macrostructures reedmergnerite [BSi3O8]- and danburite 

[B2Si2O8]2-, and the formation of boroxol rings (B3O6). Minor interactions are observed over the 

Figure 4.13 - Quantum yields for copper doped samples, with excitation energy at 4.1 eV, 3.8 eV and 3.4 eV. 

Figure 4.14 - Colour coordinates of tin and copper doped samples, excitation at 4 eV. 
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silicate network, where copper doping induce the formation of 8% more 𝑸𝟒
𝑺𝒊 structural units over 𝑸𝟑

𝑺𝒊 

structural units, and a residual negative variation of 0.1% for 𝑸𝟐
𝑺𝒊 structural units. 

Thermomechanical properties of tin and copper oxide doped samples analysis reveal that 

neither glass transition temperature nor melting temperature show a high degree of variance, the 

thermal expansion coefficients results are also stable and of a similar magnitude.  

Light absorption show a UV cut-off edge of 4.25 eV for the host glass, a value which is shown 

to increase with doping by 0.48 eV, for the larger amount of copper. These values suggest that the 

temperature increase procedure was effective in reducing absorption heterogeneities in the 

samples, as the host glass UV cut-off edge is shifted to higher energy values. Tin oxide doping 

reveals that inhomogeneous emissive centres are still developed, which is confirmed through time 

resolved photoluminescence. A broad emissive profile due to the formation of tin oxide aggregates 

is shown to extend due to the insertion of copper oxide, from 5 eV to 1.4 eV. 

Copper doping excitation peak is superimposed with the high energy excitation peak of Sn2+ 

located in the deep-uv region at 5.1 eV and 5 eV, respectively. A third excitation channel 

correspondent to the low energy tin oxide excitation band is found at lower energies, 4.3 eV, a peak 

which is progressively inhibited with copper doping.  

The nature of the systems light emission is characterized through a tri-exponential decay profile, 

correspondent to forbidden triplet to singlet electronic transitions. Three structural luminescent 

centres are unveiled, tin oxide (Sn2+), tin oxide aggregates and Copper oxide (Cu+), with kinetic 

decay values of approximately 8.2 s, 15.7 s and 50 s, respectively.  

Reorganization energy of the emissive and ground state was evaluated for sample 0.14% Cu. 

Excitation at 5 eV develops a maximum light emission at approximately 2.8 eV. This represent a 

large Stokes shift of 2.2 eV a value which clearly shows the potential of these samples to LSC 

development, with negligible photon reabsorption for Cu+. Quantum efficiencies reached a peak 

value of 57% for copper concentrations of 0.03% and higher, with no luminescence quenching being 

detected  

Taking into account the observed results, the photoluminescent pathways may be schematically 

represented as in figure 4.15. 

Figure 4.15 - Proposed scheme of electronic levels and related radiative (full-line) and non-radiative (dashed 

line) processes accounted for the analysis of PL emission of Sn and CuO doped samples. 
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5. Thin Film sputtering 

 

Primary studies on thin film sputtering will be attempted in order to achieve photoluminescence. 

Copper and tin were sputtered through variation of the oxygen flow which will allow the identification 

of optimum conditions that induce the formation of Cu2O and SnO, these will be later used for an 

alternate layer deposition. To evaluate if these elements diffuse through the substrate glass matrix, 

thermal treatment of the obtained samples was also performed. Development of thin films was 

monitored through Perfilometry, Raman spectroscopy and X-ray diffraction. 

5.1. Deposition procedure 

Plasma was always ignited in an atmosphere composed of 60% argon and variable oxygen flow, 

with chamber base pressure set to 10-3 mbar. Distinct gas channels were directed towards the 

chamber with gas flow being measured by mass flow controllers. Two different magnetron shutters 

were used to hold metallic copper and tin targets in order to avoid cross-contamination between the 

sources, since the target surface can adsorve contaminants from the air each time the chamber is 

open to change the substrate The substrate was top-mounted and the substrate sizes were uniform, 

100x100x1 mm.  

Each deposition process was run at room temperature, with a 5 minute pre-sputtering 

conditioning step performed with a closed shutter, to avoid contamination, allowing the target to 

stabilize with the deposition conditions being used. Oxygen flow will be expressed relative to the 

total gas flow, in units of standard cubic centimetres per minute (sccm). With the purpose to evaluate 

if diffusion is achieved toward the glass matrix the behaviour of copper and tin films under thermal 

treatment will be analysed. 

5.2. Copper/Tin sputtering with variable oxygen flow 

With a total of six samples being prepared, table 5.1, deposition time was of 30 min with 60% 

Argon flow and oxygen flow between 10% - 15% sccm, and 45 min for oxygen flow between 20% - 

30% sccm. Deposition height was evaluated by perfilometry. Thermal treatment will be performed 

for one hour, in air, at constant temperature, in 100 ºC steps.  

 

Figure 5.1 - Thin film metallic layer sputtering deposition example scheme. 
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Table 5.1 – Copper (CFx) and tin (TFx) thin film samples, deposition time and height. 

Sample 
Cu 

x%O2 

(sccm) 

deposition  
time (min) 

deposition 
height 
(nm) 

 sample 
Sn 

x%O2 
(sccm) 

deposition 
time (min) 

Height 
(nm) 

CF1 10% 30 min 207.9  TF1 0% 30 min 78.6 

CF2 12.5% 30 min 195.5  TF2 2% 30 min 73.8 

CF3 15% 30 min 238.5  TF3 4% 30 min 76.3 

CF4 20% 45 min 343.3  TF4 6% 30 min 80.9 

CF5 25% 45 min 361.5  TF5 8% 30 min 76.0 

CF6 30% 45 min 314.8  

 

5.2.1. Results 

5.2.2.  Oxygen flow variation for copper and tin thin films 

XRD analysis (figure 5.2) of sample deposition show for all samples the amorphous profile of 

the substrate through a large band at 22º 2, and the evolution of copper oxide formation dependent 

on oxygen flow. Tin oxide sample 4% O2 is shown since no crystalline diffraction pattern was 

observed for the whole batch of tin sputtered samples. Regarding the development of copper oxides, 

XRD analysis reveal crystalline patterns for the development of metallic copper (47)at 43.3º 2  for 

higher values of oxygen flow, 20% O2 and 25% O2, and low values of 5% O2. Intermediate flow of 

oxygen, 12.5%, reveal the absence of metallic copper diffraction pattern, instead a distinct diffracting 

peak at 42.3º 2, associated with the crystalline structure of Cu2O, and a second diffracting peak at 

Figure 5.2 - XRD spectra of copper and tin samples with variable oxygen flow. 
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33º 2 associated with the peak overlap of Cu2O and CuO, being found for oxygen flow greater than 

or 12.5% O2. (48) 

Figure 5.3 shows the Raman spectra of copper (a) and tin oxide (b) thin films with deposition 

performed at different partial oxygen pressures. Both spectra show at 1100 cm-1 a broad peak 

formation which is unrelated to copper or tin oxide formation due to its large Raman shift, this peak 

was previously associated with the asymmetric vibration of SiOx structures (40), we are observing 

the substrate glass.  Figure 5.3 (a) shows the influence of oxygen over development of a copper 

oxide crystalline phase, characterized through the formation of two well defined peaks at 530 and 

625 cm-1 as for example in sample Cu 20% O2. These peaks are present in the majority of samples, 

exception made for Cu 30%O2. Analogous peaks are found with the Raman spectra of crystalline 

and amorphous-crystalline Cu2O(49), where the 530 cm-1 peak is an allowed Raman mode according 

to the selection rules, and the 625 cm-1 peak represents a forbidden transition, it arises from 

frequency resonance with other excitons due to imperfections of the crystalline structure of copper 

oxide (50). 

 

Sample Cu 20% O2 spectra show several features to analyse, a copper related Raman shift can 

be found at 147 cm-1 where a forbidden mode is observed, it results from the selection-rule violation 

due to the imperfect crystalline structure of Cu2O. Raman modes at 186 and 217 cm-1 are also 

associated with Cu2O , representing second order overtones. At 288 cm-1 and 337 cm-1 two residual 

peaks are found to gain intensity with higher percentage of oxygen flux, these are analogous Raman 

modes for CuO identified elsewhere (51). The two Raman modes at 530 and 625 cm-1 had already 

been identified as Cu2O active modes.  

(a) (b) 

Figure 5.3 - Raman spectra of copper thin films (a), and tin thin films (b), obtained with variable oxygen fluxes. 
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While it is noticeable that Cu2O is formed with increasing oxygen flow, until 12.5% O2, further 

oxygen flux induce the coexistence of two crystalline phases of both Cu2O and CuO, as seen  for 

sample Cu 20% O2. The inhibition of Cu2O allowed transitions for higher oxygen fluxes show that 

the crystalline structure of CuO plays a major role of formation under greater oxygen flow conditions.  

Tin thin films show similar Raman features for all samples, figure 5.3 (b), with two broad peaks 

at 560 and 1100 cm-1 dominating spectra appearance. While the peak as 1100 cm-1 was already 

accessed, the broad peak at 560 cm-1 is representative of spectral overlap of three Raman bands 

at 472, 630 and 560 cm-1 (52).The first two peaks are analogous to single-crystal or polycrystalline 

SnO2, and results show that their intensity is reduced with oxygen flow, while the third peak, 

associated to the formation of nanometric SnO2 powder, is further intensified with increasing oxygen 

flow. These results reflect the stability of SnO2 crystalline structure, which is being formed 

independently of oxygen flow, which, when subject to higher oxygen flow tend to deteriorate into 

small grain sized SnO2. 

5.2.3. Thermal treatment of Copper Oxide thin films 

Temperature influence on the development of the crystalline structures of sample Cu 10% O2 

was evaluated with Raman spectroscopy, figure 5.4 (a) and X-Ray diffraction, figure 5.4 (b). The 

Raman modes at 125 cm-1, 147 cm-1 and 625 cm-1 are forbidden from the selection rules, its 

development with temperature indicate deformation of Cu2O crystalline structure. Such assessment 

is corroborated from the development of the second order overtone mode at 216 cm-1 and the fourth 

order overtone at 420 cm-1, which are intensified with temperature. The allowed mode at 530 cm-1 

is persistent and sharper with temperature increase, indicating the stability of crystalline Cu2O 

phase.  

Figure 5.4 – (a) Raman spectra of Cu 10% O2 sample, annealed at distinct temperatures and (b) XRD Maximum 

Normalized Copper 10% O2 sample, annealed at distinct temperatures, (rt) room temperature. 

(a) (b) 
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Such observations are corroborated from XRD analysis where Cu2O diffraction peak is found to 

steadily develop from until 300 ºC temperature is reached, after this temperature only CuO 

crystalline diffraction peaks are displayed. 

 

5.3. Sn / Cu sandwich thin film 

Having in mind the possibility to develop luminescence at the interface of both tin and copper 

oxides, a multilayer thin film was development.  Identification of an optimum value of oxygen flow 

for copper deposition (12.5% O2), and the realization of its thermal stability defined the copper 

sputtering procedure. Since Sn2+ crystalline structure has shown to firmly develop for intermediate 

values of oxygen flux, the argument used to decide an optimum oxygen flow was based on the 

greater transparency the $%O2 sample presented.  

With the purpose of stabilizing copper oxide, tin oxide layers were deposited beneath and on 

top of each copper layer; two copper layers were deposited in total, thus creating a total of five 

alternate layer with deposition time of 10 min each. Deposition height was evaluated by perfilometry. 

Thermal treatment will be performed for one hour, in air, at constant temperature, in 100 ºC steps. 

Table 5.2 – Copper and tin (CTF) multilayer thin film samples, deposition time, layer order and height (nm). 

Sample 
Cu 

x%O2 

(sccm) 

Sn 
x%O2 

(sccm) 

deposition  
(min) 

Layer order 
deposition 

height 
(nm) 

CTF1 12.5% 4% 
10 min 

per layer 
SnxCuxSnxCuxSn 374.94 

 

5.3.1. Results  

XRD analysis, figure 5.5 (a) of the multilayer thin film show the amorphous profile of the 

substrate, characterized by a large band at 22º 2, and the evolution pattern of diffraction obtained. 

At room temperature a characteristic peak is identified at 36.4 2, and a small lump at 42.3º 2 

relative to the development of Cu2O crystalline phase. The development of these peaks when 

subject to temperature is observable until 300ºC where the lower angle peak appears between two 

new features, at 35.5º and 38.7º 2, both correspondent to the crystalline phase of CuO (48). Metallic 

copper is found to form at 400ºC through the appearance of a crystalline peak at 43.3º 2 (53). A 

relevant result at this temperature is the identification of peaks related to the development of Cu2O 

crystalline phase, identified at 36.4 2 and 42.3º 2. At 500 ºC Cu2O isn’t detected, two features are 

however observed which indicate further oxidation of copper, at 38.7º 2 and 35.5º 2 the diffracting 

peaks are analogous to crystalline CuO(48). 

Raman spectroscopy, figure 5.5 (b) show two Raman modes at 530 cm-1 and 625 cm-1 already 

identified as analogous to Cu2O crystalline phase active modes. The results corroborate the 

formation of Cu2O for temperatures until 300 ºC, where, although the amount of noise in the spectra, 

the allowed Raman peak at 625 cm-1 is identified, while the forbidden transition peak at 530 cm-1 

has disappeared.  

Associated with the formation of CuO, the vibrational Raman mode at 276 cm-1 is also 

identified(51).Temperature dictates the stability of the crystalline structure, with its increase, other 
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spectral features arise, associated with Cu2O, such as the 147 cm-1 forbidden mode and the second 

order overtone at 216 cm-1.  

 

 

 

5.4. Conclusions 

Development of thin film sputtering show the development of Cu+ crystalline structure for 

optimum oxygen flow of 12.5%, while Sn2+ crystalline structure has shown to firmly develop for 

intermediate flux values, 4%O2 with samples showing a high transparency degree. Having achieved 

the development of a Cu+ thin film protected with a SnO layer, we have increased the stability of 

copper oxide to temperature, the 300 ºC barrier that arose as a generic value for stability of a 

crystalline Cu2O was surpassed by at least 100 ºC, with Cu2O being identified at 400 ºC.   

Attempted diffusion of the crystalline structures onto the glass matrix did not reveal 

photoluminescence in the visible region, although it has been reported that Cu2O crystals exhibit 

photoluminescent in the near infrared region. Although Cu+ and Sn2+ have been formed, the 

phenomena may require requires quantum confinement conditions which were not obtained in 

sample preparation. We have observed a multitude of forbidden Raman modes and overtones which 

reveal that the development of thin films with heterogeneous layer overlap disturbs the oxide 

(a) 

 

(a) 

(b) 

 

(b) 

Figure 5.5 - (a) XRD Maximum Normalized Cu/Sn multilayer, annealed at distinct temperatures, (rt) room temperature. 

(b) Raman spectra 5x Copper 12.5% O2 and Sn 4%O2 sandwich samples annealed at distinct temperatures. 
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structural arrangement. Optimization of the crystalline structure of the oxide might originate the 

quantum confinement conditions required for photoluminescence to take place. 
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6. Future views 

We were able to develop luminescent glass prototypes extremely capable of UV-light down 

conversion. Tuning the concentration of the doping elements revealed three distinct colour tones to 

the visible red region characterized by high quantum efficiencies and large Stokes shift. These 

samples can be immediately tested for large area production and assembly in traditional photovoltaic 

cells or directed to new building blocks with integrated architecture for future net-zero consumption 

buildings. Moreover, the applicability of these materials is not restricted to solar harvesting, they may 

be applied as lasers, displays, LED lightening or other simple common end user applications as a 

warm light. 

The perspectives on a future work for the development of photoluminescent thin films could be 

settled on the development of studies regarding the oxides ability to diffuse into the substrate matrix 

and posterior evaluation of the films properties. Also, the development of specific sputtering targets 

where the prepared copper and tin doped glass is assembled might develop the above mentioned 

confinement conditions which enable the photoluminescent phenomena.  If this preparation is 

successful the development of photoluminescent thin films can suffer a major breakthrough with a 

fast, reliable and effective means to achieve a large area photoluminescent solar converter. 
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8. Appendix   

8.1. Raman spectra deconvolution for tin oxide doped samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 

Figure 8.1 - Deconvolution of Raman spectra in the 850-1250 cm-1 

region for tin doped samples (a) Base glass (b) 1.4% Sn (c) 3.4%Sn. 
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8.2. Dilatometry results  

 

Figure 8.2 - Dilatometry analysis for sample 3.4% Sn. 
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8.3. PLE/PL spectra of tin oxide doped glass samples  
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Figure 8.3 - Photoluminescence spectra as function of 

excitation spectra of tin doped samples: Sample (a) Base Glass 

(b) 0.35% Sn, (c) 1.1% Sn (d) 1.4% Sn and (e) 3.4% Sn, variable 

intensity scale. 
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8.4. Raman spectra deconvolution for tin and copper oxide doped 

samples 
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Figure 8.4 - Deconvolution of Raman spectra in the 850-1250 cm-1 region for tin and copper doped samples 

(a) Base glass (b) 1.4% Sn (c) 0.14% Cu. 
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8.5. PLE/PL spectra of tin and copper oxide doped glass samples  

 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 8.5 - Two dimensional Photoluminescence spectra as function of excitation spectra of tin and copper doped samples (a) 

1.4%Sn, (b) 0.014%Cu, (c) 0.03%Cu, and (d) 0.05%Cu, (e) 0.08%Cu, (f) 0.14%Cu. 
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8.6.  Boron macrostructures 

 

Figure 8.6 - Boroxol structures. 
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9. Supplementary information  

Solid State NMR 

29Si NMR spectra were acquired on Bruker Avance III 400 spectrometer operating at B0 fields 

of 9.4 T, with Larmor frequency of 79.5 MHz. 

27Al, 11B and 23Na NMR spectra were acquired on Bruker Avance III 700 spectrometer operating 

at B0 fields of 16.4 T, with 27Al/11B/23Na Larmor frequencies of 182,1/224,1/184,8 MHz. 27Al magic 

angle spinning (MAS) experiments were performed on double-resonance 2,5 mm Bruker MAS probe 

Raman spectroscopy 

Glass doped samples: A Labram 300 Jobin Yvon spectrometer, equipped with a solid-state laser 

operating at 532 nm, was used. 

Thin-Films:  A Raman Microscope – Renishaw Qontor, equipped with 532 nm laser, was used.  

X-ray diffraction 

Glass doped samples: A Philips X’Pert MPD X-ray powder diffractometer using Cu Kα radiation, 

λ = 1.540598 Å, with step width 0.02°, was used.  

Thin film samples: An X’Pert PRO MPD Multi-Purpose Diffractometer in a Theta-Theta 

configuration was used, with step width of 0.02° 

Dilatometry  

A Netvcshe Dil402PC dilatometer was used from 25 to 700 °C with a heating rate of 5 K·min−1. 

Samples were cut and polished with 2.5 cm wide and a diameter of 5 mm. 

Dilatometry measurements analyse the change of volume of a material when it is subject to a 

temperature ramp, its results are usually obtained in the form of a thermal expansion spectra (figure 

2.6), where enthalpy or volume are temperature dependent values.  

Analysis of the results data allow the determination of three thermal constants of particular 

interest to investigate:  

1. The thermal expansion coefficient (TEC) represents the temperature dependent expansion 

ability of a material, it is mathematically represented through the slope of the first linear portion of 

the thermal expansion data;  

2. The glass transition temperature (Tg) represents the characteristic glass phase transition of a 

material, it is determined through the intersection of two straight lines extrapolated from the data;  
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3. The softening temperature (Ts) represents the temperature at which the viscosity of a glass 

reaches a limit value where it is still capable to prevent deformation of its own weight, it is determined 

from calculation of the maximum value of the data. 

   

UV-Vis absorption 

A lambda 35 UV/Vis spectrophotometer by perkin-elmer was used, with 2 nm slits. 

Steady-State Luminescence 

Luminescence spectra were measured using a SPEX Fluorolog-3 Model FL3-22 

spectrofluorimeter. 5 nm slits were used for the two dimensional spectra. Experiments were 

performed at room temperature 293 K, in a front face geometry  

Time-Resolved Luminescence Spectra  

The flash photolysis equipment used was an LKS.60 ns laser photolysis spectrometer from 

Applied Photophysics, with a Brilliant QSwitch Nd:YAG laser from Quantel, using the third harmonics 

(λex = 355 nm, laser pulse half-width equal to 6 ns). 

 

 

 

 

 

 

 

Figure 9.1 - Example of a dilatometric result. 
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