
BOOK SPINE

ii

Sentiment Classification Using Tree‐Based Gated
Recurrent Units

Vasileios Tsakalos

Dissertation presented as partial requirement for obtaining
the Master’s degree in Information Management

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157640852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sentiment Classification Using Tree-Based Gated Recurrent Units

Copyright © Vasileios Tsakalos, NOVA Information Management School, NOVA Uni-

versity of Lisbon.

The NOVA Information Management School and the NOVA University of Lisbon have

the right, perpetual and without geographical boundaries, to file and publish this dis-

sertation through printed copies reproduced on paper or on digital form, or by any

other means known or that may be invented, and to disseminate through scientific

repositories and admit its copying and distribution for non-commercial, educational

or research purposes, as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Acknowledgements

I would like to thank my supervisor professor, Dr. Roberto Henriques, for helping me

structure the report, advising me with regards to the mathematically complexity re-

quired. Moreover I would like to thank my brother, Evangelos Tsakalos, for providing

me with the computational power to run the experiments and advising me regarding

the subject of my master thesis.

v

Abstract

Natural Language Processing is one of the most challenging fields of Artificial Intelli-

gence. The past 10 years, this field has witnessed a fascinating progress due to Deep

Learning. Despite that, we haven’t achieved to build an architecture of models that

can understand natural language as humans do. Many architectures have been pro-

posed, each of them having its own strengths and weaknesses. In this report, we will

cover the tree based architectures and in particular we will propose a different tree

based architecture that is very similar to the Tree-Based LSTM, proposed by Tai(2015).

In this work, we aim to make a critical comparison between the proposed architec-

ture -Tree-Based GRU- with Tree-based LSTM for sentiment classification tasks, both

binary and fine-grained.

Keywords: Deep Learning, Natural Language Processing, Recursive Neural Networks,

Sentiment Classification

vii

Resumo

ix

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.2 Overview of Thesis . 1

1.3 Background . 2

1.3.1 Sentiment Classification and Sequences 2

1.3.2 Syntactic Structure . 2

1.3.3 Neural Networks . 3

2 Word Embeddings 7

2.1 Latent Semantic Analysis . 8

2.2 Word2Vec . 9

2.3 GloVe . 11

3 Feedback Neural Networks 13

3.1 Recurrent Neural Networks . 13

3.1.1 Simple Recurrent Neural Networks 13

3.1.2 Long-Short Term Memory . 15

3.1.3 Gated Recurrent Unit . 17

3.2 Recursive Neural Networks . 18

3.2.1 Simple Recursive Neural Network 19

3.2.2 Syntactically Untied SU-RNN 20

3.2.3 Matrix-Vector Recursive Neural Networks 21

3.2.4 Recursive Neural Tensor Network 23

3.2.5 Tree-Based Long-Short Term Memory Networks 24

3.2.6 Tree-Based Gated Recurrent Unit 27

4 Neural Network Training 29

4.1 Gradient Descent Variants . 29

4.1.1 Batch Gradient Descent . 30

xi

CONTENTS

4.1.2 Stochastic Gradient Descent . 30

4.1.3 Mini-Batch Gradient Descent 30

4.2 Gradient Descent Extensions . 31

4.2.1 Vanilla update . 31

4.2.2 Momentum update . 31

4.2.3 Nesterov Momentum update 31

4.2.4 AdaGrad . 32

4.2.5 AdaDelta . 33

4.2.6 RMSprop . 34

4.3 Hyperparameters . 34

4.3.1 Learning Rate . 34

4.3.2 Regularization . 34

5 Experiments 37

5.1 Model comparison . 37

5.1.1 Classification model . 37

5.1.2 Binary Classification . 38

5.1.3 Fine-grained Classification . 39

5.1.4 Hyperparameters and Training Details 39

5.2 Results . 40

5.3 Conclusions and Future Work . 41

Bibliography 43

A Appendix 1 51

B Appendix 2 53

xii

List of Figures

1.1 Constituency Tree . 3

1.2 Dependency Tree . 3

1.3 Feed-forward neural network . 4

2.1 CBOW . 10

2.2 Skip-Gram . 10

2.3 Weighting function f with = 3/4. 11

2.4 GloVe vs Skip-gram . 12

2.5 GloVe vs CBOW . 12

3.1 Recurrent Neural Network . 14

3.2 Long-Short Term Memory . 16

3.3 Gated Recurrent Unit . 17

3.4 Recursive Neural Network . 20

3.5 Simple Recursive Neural Network . 21

3.6 Syntactically Untied Recursive Neural Network 21

3.7 Matrix-Vector Recursive Neural Networks 22

3.8 Negated positives . 22

3.9 Negated Negative . 23

3.10 X but Y conjunction . 23

3.11 Recursive Neural Tensor Network . 24

3.12 Tree-Based LSTM Memory Cell Composition 25

3.13 Tree-Based GRU Hidden State Composition 27

4.1 Vanilla vs Momentum . 32

4.2 Momentum vs Nesterov Momentum . 32

4.3 Standard Feed-forward Neural Network 36

4.4 After applying Dropout . 36

5.1 Binary Classification Average Training Time 38

5.2 Binary Classification Average Training Loss 38

5.3 Binary Classification Training Process . 39

5.4 Fine Grained ClassificationAverage Training Time 39

xiii

List of Figures

5.5 Fine Grained Classification Average Loss 39

5.6 Fine Grained Classification Training Process 40

xiv

List of Tables

3.1 Negations . 24

5.1 Sentiment Classification Accuracy . 40

5.2 Sentiment Classification Standard Deviation 41

xv

C
h
a
p
t
e
r

1
Introduction

1.1 Motivation

This paper aims to contribute to the Artificial Intelligence community by proposing

a different architecture(Tree-based GRU 3.2.6) and presenting its results in compar-

ison to Tree-Based LSTM [77](3.2.5). The conduction of this experiment is done as

GRU architecture is less complicated and has less parameters to compute than LSTM.

Therefore, we hypothesize that it is faster to train. GRU is a new approach, it is not

determined whether it is better than LSTM or not [10], so far it is assumed that the

comparison between those two models is like a comparison betweem non-linear acti-

vation functions, there is no "best"function but some non-linearities suit better some

problems.

1.2 Overview of Thesis

This thesis consists of 5 chapters. The first chapter, the introduction, provides the

reader with the necessary background to be able to read this report. The second chap-

ter(2), word embeddings, is about the representation of the words on the vector space.

On the second chapter we will go through the word embeddings benefits and the

most efficient algorithms that are used to achieve this transformation (from words, to

vectors). It is important for the reader to be aware of the fact that word embeddings

are the input for the Tree-based GRU (and every other language model that we cover

in this report). The third chapter(3), feedback neural networks, makes an in depth

commentary of the feedback neural networks and its most common architectures. The

forth chapter(4), network training, goes through the gradient descent algorithm, its

different variants and extensions but also covers the properties of the neural network’s

1

CHAPTER 1. INTRODUCTION

hyperparameters. Finally, the fifth chapter(5), experiments, demonstrates the com-

parison between Tree-based GRU and Tree-based LSTM, it also describes the gradient

descent variants and the hyperparameters that were selected for the training of the

model.

1.3 Background

This section provides the essential background on sentiment classification, sequences,

syntactic structures, and neural networks.

1.3.1 Sentiment Classification and Sequences

Sentiment analysis/classification [59] (also known as opinion mining) is the classifica-

tion on whether a piece of text is positive, negative or neutral using NLP, statistics, or

machine learning methods.

A sequence is a string of objects. Each sequence is a row of item sets.The individual

elements in a sequence are also called terms. In the case of the word sequences, a word

corresponds to an item. In the case of the health care data, a test value is an item.

Treating data as sequential (when they are sequences) improve the prediction accuracy

of the classifiers [50].

1.3.2 Syntactic Structure

The sentences can be described with two ways for a machine to make sense out of

them, the first one is by breaking up the sentence to phrases(constituents), which is

known as constituent structure, and the second is by connecting the words with links,

which is known as dependency structure. Those structures are constructed by parsing

algorithms. The parsers for constructing a constituent tree are called phrase structured

parsers and the parsers for dependency structures are called dependency parsers.

1.3.2.1 Constituency Structure

The phrase structure was introduced by Noam Chomsky, the idea behind constituency

phrase structure is to organize the words into nested constituents[58] [46](Figure

1.1). Meaning that each nested constituent (word phrase) is a word unit. There has

been different criteria for determining the constituents. The most popular is the one

that claims that a constituent behaves as a unit no matter the place that is located in

the sentence. Regarding to the construction of this structure, one great parser is the

constituent parser from Zhu[83].

2

1.3. BACKGROUND

Figure 1.1: Constituency Tree
Source :“A Generative Constituent-Context Model for Improved Grammar

Induction.”, D.Klein, 2002

1.3.2.2 Dependency Structure

The idea behind dependency structure is having words connected with a dependency

relation (Figure 1.2),where one of them is the head and the other is the dependent and

there is a link connecting them. In more detail, the dependent is the modifier, object,

or complement while the head determines the behavior of the pair. The dependent

requires the presence of the head; the head on the other hand doesn’t require the

presence of the dependent. [17]. In general, the dependency structure is a tree with

the main verb as its root (head of the whole structure). It is worth mentioning that a

dependency structure can be constructed from constituent trees as well [19]. The idea

behind dependency structure is to directly show for the words of a sentence which are

the words depend on (modify or are arguments of) which other words. [45]

Figure 1.2: Dependency Tree
Source :“A Generative Constituent-Context Model for Improved Grammar

Induction.”, D.Klein, 2002

1.3.3 Neural Networks

Neural networks are models of computation that were inspired by the way (we assume)

our brain works [52], [65],[66]. The structure of artificial neural networks (ANN) is a

network of small processing units (neurons) that are connected with weighted joints.

Over the years many variants of ANN has been proposed. One important distinction is

the way they are connected,with cycles or without. The former case of neural networks

3

CHAPTER 1. INTRODUCTION

are called feedback or recursive neural networks and will be examined at chapter 3,

the latter case of neural networks are the Feedforward networks that will be examined

at the next subsection.

1.3.3.1 Feedforward Networks

Given the absence of cycles, all nodes can be arranged into layers, and the outputs in

each layer can be calculated given the outputs from the lower layers. The input i to a

feedforward network is provided by setting the values of the lowest layer. Each higher

layer is then successively computed until output is generated at the output layer o

(Figure 1.3).

Figure 1.3: Feed-forward neural network
Source :

https://www.linkedin.com/pulse/learning-scale-end-then-logic-ishtiaq-rahman

Let wljk be the weight for the connection from the kth neuron in the layer l −1 to

the jth neuron in the lth layer, blj the bias of node j at layer l and αlj for the activation

of neuron j at lth layer. The equation below is using the sigmoid function.

αlj = σ (
∑

limit=k

wljkα
l−1
k + blj) (1.1)

Having the equation above in mind, we can rewrite it in a more compact and vectorized

form:

αl = σ (wlαl−1 + bl) (1.2)

Let zl =
∑
limit=kw

l
jkα

l−1
k + blj be the weighted input to the neurons in layer l.

αl = σ (zl) (1.3)

The most popular choices of activation function are the hyperbolic tangent (1.4),

sigmoid (1.5), rectified linear unit(1.6), softmax (generalization of sigmoid for K classes)(1.7)

.

4

1.3. BACKGROUND

tanh(x) =
e2x1
e2x + 1

(1.4)

σ (x) =
1

1 + ex
(1.5)

f (x) =max(0,x) (1.6)

sof tmax(x)j =
exj

K∑
k=1

exk

, f orj = 1,,K (1.7)

The most popular FNNs are perceptrons[65], Kohonen maps[63] and Hopfield

nets[41] and multilayer perceptron (MLP)[66],[80], [6].

1.3.3.2 Backpropagation

The most successful algorithm for training neural networks is backpropagation, it

was introduced for this purpose by Rumelhart, Hinton, Williams[66] and some alter-

ations were suggested by Zipser[84], and Werbos [80]. Backpropagation uses the chain

rule to calculate the derivative of the loss function L with respect to each parame-

ter(weights and biases) in the network. The weights are then adjusted by gradient

descent algorithm (which we will go into detail at chapter 4). While it is not certain

that backpropagation will reach a global minimum (unless the loss surface is convex1)

,many researchers have worked on heuristic pre-training and optimization techniques

that make them practically good enough for supervised learning tasks.

To calculate the gradient in a feedforward neural network, backpropagation pro-

ceeds as follows. First,proceeds to the forward pass, an example is propagated forward

through the network to produce a value αlj , at each node j at layer l and outputs αL at

the output layer L. Then, a loss function value L(αLk , yk) is computed at each output

node k. Subsequently, for each output node j, we calculate the error where the first

expression
θL(αLj , yj)

θαLj
corresponds to the rate of change in respect to the output neuron

j, and the second term measures how fast the activation function σ is changing at zLj :

δLj =
θL(αLj , yj)

θαLj
σ ′(zLj) (1.8)

1convex surface:when the local optima is equal to the global optima

5

CHAPTER 1. INTRODUCTION

The equation above could be written in a more compact and matrix-based form, where

∇αL corresponds to the he rate of change of L with respect to the output activations,

as:

δL = ∇αL� σ ′(zL) (1.9)

Having computed the error of the output layer, we go to compute the error of the prior

layer. The equation for computing the layer before is:

δl = ((wl+1)T δl+1)� σ ′(zl) (1.10)

By combining the equations 1.9 and 1.10, we can compute the error at any layer. The

backpropagation algorithm starts from the output layer L calculating the δL with

equation 1.9 and moves to the previous layers with equation 1.10.

The equation for the rate of change of the cost in respect to the bias of node j in

layer l is:

θL

θblj
= δlj (1.11)

A more clean and vectorized form of the equation above can be written as:

θL
θb

= δ (1.12)

The equation for the rate of change of the cost in respect to the weight that connects

the node k and node j in layer l is:

θL

θwljk
= αl−1

k δlj (1.13)

where α is the activation of the neuron input to the weight w and δ is the error of the

neuron output from the weight w.

θL
θw

= αINδOUT (1.14)

6

C
h
a
p
t
e
r

2
Word Embeddings

Word embedding is a representation of a word in vector space where semantically

similar words are mapped to nearby points. Word embeddings can be trained and

used to derive similarities between words. They are an arrangement of numbers rep-

resenting the semantic and syntactic information of words in a format that computers

can understand. For many years, NLP systems and techniques would represent mean-

ing of words using WordNet (George A. Miller, Princeton University, 1985) which

is basically a very large graph that defines different relationships between words. In

vector space terms, every word is a vector with one 1 and a lot of zeros (vocabulary

size -1). This is a so called one-hot that describes words in the simplest way. However,

this discrete representation had many issues, such as missing nuances, missing new

words, the requirement of human labor to create and adapt, it was hard to compute ac-

curate word similarity and most importantly when the vocabulary is large, the vector

represantation is gigantic.

The new approach of representing words was inspired by the quote "You shall

know a word by the company it keeps"[27]. Instead of representing a word by its own

index, represent a word by means of its words. This approach of representing words

is by creating a dense embedding vector (word embedding). The word embeddings

are derived by Vector Space Models (VSM) [67] which are divided in two categories

which have been critically compared by Baron [2]. The first type of models is the

count-based method (aka full document method) that compute the statistics of how

often some words co-occur with its neighbor words in a large text corpus and then

map those statistics to a low dimensional, dense vector. Some worth mentioning

examples of this methodology are Hyperspace Analogue to Language [9], COALS

method [21], Hellinger PCA [13]. The most popular model of the count-based method

is the Latent Semantic Analysis [20] which we will cover at the section (2.1). The second

7

CHAPTER 2. WORD EMBEDDINGS

type of VSM models are the predictive models which try to predict directly the word

from its neighbors in terms of learned low dimensional, dense embedding vectors.

Some models worth mentioning of this category are Semantic Role Labeling(SRL) [15],

Mnih and Kavukcuoglu vLBL and ivLBL[55],[54],Levy [48] proposed explicit word

embeddings based on a PPMI metric. At sections 2.2 and 2.3 we will cover the most

popular models of the VSM predictive models , named Word2Vec and GloVe. The 2.1

and 2.2 are covered just to demonstrate way that GloVe 2.3 was conceived, therefore

they are covered with not much details.

The new approach of word representation tackles the problems of high dimension-

ality, the scalability of the vocabulary and the semantic relatedness of the words.

2.1 Latent Semantic Analysis

Latent semantic analysis (LSA) is a methodology in natural language processing of

analyzing relationships between a set of documents and the terms they contain by pro-

ducing a set of concepts related to the documents and terms. LSA assumes that words

that are close in meaning will occur in similar pieces of text. The term-document ma-

trix that is created, is quite sparse. Therefore a mathematical technique called singular

value decomposition (SVD) is used to reduce the number of rows while preserving the

similarity structure among columns. Singular Value Decomposition [31] is a method

for identifying and ordering the dimensions of the observation that exhibit the most

variation. Once we have found where the most variation lies, we can find the best

approximation of the original observation using fewer dimensions. Therefore, it can

be used for dimensionality reduction tasks.

Let X be a matrix with m terms and n documents where element (i, j) describes the

occurrence of term i in document j co-occurrence matrix. According to SVD, there

is a decomposition of X so that U and V are orthogonal matrices and Σ is a diagonal

matrix.The values s1, . . . , sl are called the singular values, and u1, . . . ,ul and v1,. . . ,vl the

left and right singular vectors.

X
x11 · · · x1n
...

. . .
...

xm1 · · · xmn

=
U

u11 · · · u1r
...

. . .
...

um1 · · · umr

Σ

s11 · · · 0
...

. . .
...

0 · · · srr

V T

u11 · · · u1r
...

. . .
...

un1 · · · urn

Moreover the The matrix product XXT gives us the the correlation between the

terms over the set of documents and the XTX gives us the correlation between the

documents over the set of terms.
XXT = (UΣV T)(UΣV T)T = (UΣV T)(V T

T
ΣTUT) =UΣV TVΣTUT =UΣΣTUT =UΣ2UT

XTX = (UΣV T)T (UΣV T) = (V T
T
ΣTUT)(UΣV T) = VΣTUTUΣV T = VΣTΣV T = VΣ2V T

Since ΣΣT and ΣTΣ are diagonal we can safely conclude thatU are the eigenvectors

of XXT , V are the eigenvectors of XTX and both products have the same eigenvalues,

8

2.2. WORD2VEC

given by the entries of ΣΣT or ΣTΣ . From Frobenius norm1[32] we can derive that by

taking the k largest singular values (express the importance of every word), and their

corresponding singular vectors, we get the rank k approximation to X with the lowest

error. The word vectors of the corpus will be the k columns of the matrix .
X

x11 · · · x1n
...

. . .
...

xm1 · · · xmn

≈
Û

u11 · · · u1k
...

. . .
...

um1 · · · umk

Ŝ

s11 · · · 0
...

. . .
...

0 · · · skk

V̂ T

u11 · · · u1k
...

. . .
...

un1 · · · xkn

While this method solves the problem of dimensionality, it underlies some prob-

lems as well. First of all, the computational cost increases quadratically as the size of

the matrix increases. Moreover when new words appear SVD has to be run again from

scratch. Finally, it is able to find similarities between words, but it cannot represent

relationships.

2.2 Word2Vec

Word2Vec (Mikolov, 2013) is a predictive model that learns word embeddings on an

online way. The main idea behind Word2Vec is to predict the surrounding words

of every word in a window of length m, instead of capturing all the co-occurrence

counts directly. It is simpler and faster than LSA and can easily add a new word to the

vocabulary.

The objective function of predictive VSMs (aka Neural probabilistic language mod-

els) aim to maximize the average log probability of any context word given the current

center word where t is the number of tokens, m the co-occurrence window and θ all

the variables we optimize using stochastic gradient descent.

J(θ) =
1
T

T∑
i=1

∑
−m≤j≤m,j,0

logp(wt+j |wt) (2.1)

For p(wt+j |wt) :

p(o|c) =
exp(uTo vc)
W∑
w=1

exp(uTwvc)
(2.2)

where o is the output word id, c is the center word id, u is the center word vector

and v is the output vector. This objective function is not scalable and it takes much

time to train when the vocabulary is large.

Those two models are great at constructing word vectors, but when the vocabulary

becomes too large the updates at each iteration take too much time. This problem is
1Frobenius norm: is matrix norm of an m×n matrix A defined as the square root of the sum of the

absolute squares of its elements

9

CHAPTER 2. WORD EMBEDDINGS

solved by a method called Negative Sampling [53]. This idea suggests to take random

samples from the vocabulary that do not appear on the context and minimizing their

probability of occurring 2.3.

J(θ) =
1
T

T∑
t=1

Jt(θ) (2.3)

where:

Jt(θ) = logσ (uTo vc) +
k∑
i=1

Ej∼P (w)[logσ (-uTj vc)] (2.4)

This objective function maximizes the probability of uTo vc co-occur and minimizes the

probability the words randomly selected co-occur.

The most popular Word2Vec variants are CBOW [54], which stands for continuous

bag of words, and Skip-gram [53]. CBOW (Figure 2.1) predicts the current word based

on the context.More precisely, it predicts the current word based on the n neighbours

that occur before and n neighbours that occur after than this word.The (window size)

inputs share the weights that connect them with the hidden layer, what happens to the

hidden layer, is to take the mean of the input words and it passes along to the output.

Skip-gram (Figure2.2) is the opposite of CBOW, while CBOW uses the context to pre-

dict the middle words Skip-gram uses the middle word to predict the context (window

size). For the most part, CBOW tends to be a useful technique for smaller datasets.

On the other hand, skip-gram treats each context-target pair as a new observation,

therefore it tends to perform better with larger datasets.

Figure 2.1: CBOW Figure 2.2: Skip-Gram

Source:
http://www.cs.nthu.edu.tw/ shwu/courses/ml/labs/10KerasW ord2V ec/10KerasW ord2V ec.html

Finally according to Mikolov, Skip-gram works well with small amount of train-

ing data, and CBOW performs better in bigger amount of training data. All in all,

Word2Vec models generate improved performance and are capable of capturing com-

plex patterns beyond word similarity but they scale with corpus size and make ineffi-

cient usage of statistics.

10

2.3. GLOVE

2.3 GloVe

GloVe, which stands for global vectors, is an unsupervised learning algorithm for

obtaining vector representations for words. Training is performed on aggregated global

word-word co-occurrence statistics from a corpus, and the resulting representations

are linear substructures of the word vector space [60].

GloVe combines the advantages of SVD and Word2Vec, it trains fast, it is scalable to

huge corporas and performs well even with small corpus and small vectors. The main

idea is, instead of going over one window at a time, it collects the whole corpus and is

trained on the non-zero entries of the matrix. The weighted least squares regression

model of GloVe is presented below 2.5,where W is the size of the vocabulary, Pi,j is the

probability that word j appear in the context of word i ,f () is the weighting function,

uTi is the center vector of word i and vj is the neighbor word j.

J(θ) =
1
2

W∑
i,j=1

f (Pij)(u
T
i vj − logPij)

2 (2.5)

The weighting function (Figure 2.3) should obey the following properties:

• f (0) = 0, If f is viewed as a continuous function, it should vanish as x→ 0 fast

enough that the lim
x→0

f (x)log2x is finite.

• f (x) should be non-decreasing so that rare co-occurrences are not overweighted.

• f (x) should be relatively small for large values of x, so that frequent co-occurrences

are not overweighted.

• f (x) =

(x/xmax)a if x < xmax

1 otherwise

Figure 2.3: Weighting function f with = 3/4.
Source:

https://blog.acolyer.org/2016/04/22/glove-global-vectors-for-word-representation/

The goal of the objective funtion 2.5 is to learn word vectors such that their inner

product (uTi vj) , which corresponding to the prediction of those words co-occurring,

equals to the logarithm of the word’s probability of co-occurrence (logPij). The reason

11

CHAPTER 2. WORD EMBEDDINGS

behind using the logarithms of word’s probability is the fact that the logarithm of a

ratio equals the difference of logarithms, so it makes it feasible to illustrate probability

of co-occurrence of two words as vector differences in the word vector space. For this

reason, the resulting word vectors perform very well on word analogy tasks. (e.g. King

- Man ≈ Queen - Woman)

Finally, the GloVe model compared to the two most popular Word2Vec models

,Skip-Gram (Figure 2.4) and CBOW (Figure 2.5),the plots illustrate the overall per-

formance on the analogy task as a function of training time. Under the very same

conditions GloVe outperforms word2vec. It trains faster and better irrespective of

speed.

Figure 2.4: GloVe vs Skip-gram Figure 2.5: GloVe vs CBOW Source:
https://blog.acolyer.org/2016/04/22/glove-global-vectors-for-word-representation/

12

C
h
a
p
t
e
r

3
Feedback Neural Networks

This chapter aims to provide the reader with the background of feedback neural net-

works. In more detail, at section 3.1 we will review recurrent neural networks (sim-

plistic subset of recursive neural networks) and at section 3.2 we will review recursive

neural networks (also known as Tree-based recurrent neural networks).

3.1 Recurrent Neural Networks

A special case of recursive neural networks are the Recurrent Neural Networks (Figure

3.1) whose structure corresponds to a linear chain. The idea behind Recurrent Neural

Networks is to make use of the sequential nature of the data. While in traditional

neural networks we assume that input are independent to each other, in RNN we

consider the importance of time. The reason that they are selected for sequential

problems, is that they capture the information from each time-step, in practice though,

they capture only a few steps but we will see the RNN variants that tackle this problem

at subsections 3.1.2 and 3.1.3. Recurrent neural networks, has been under extensive

research for quite some time now, so many variants of RNN have been proposed, such

as Elman networks[25], Jordan networks[44], time delay neural networks[47], Long-

Short Term Memory networks[39], echo state networks[42], Gated Recurrent Units[11].

In this section we will present Elman’s networks(3.1.1, aka Simple recurrent networks),

Long-Short Term networks(3.1.2), and Gated Recurrent Units(3.1.3).

3.1.1 Simple Recurrent Neural Networks

3.1.1.1 Forward Pass

The forward pass of an RNN is the same as that of an FNN, apart from the fact that the

activations arrive at the hidden layer from the input layer (from the same time-step)

13

CHAPTER 3. FEEDBACK NEURAL NETWORKS

and from the hidden layer activations one time step before.

Figure 3.1: Recurrent Neural Network
Source: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-
introduction-to-rnns/

In more detail,(See Figure 3.1) xt is the input at time step t, ht is the hidden state at

time step t 3.1(this is what differentiates FNN from RNN, ht is the network’s memory)

,and ot is the output at time step t 3.2 .

(3.1)

(3.2)

Note that this requires initial values h0 to be chosen , which correspond to the

network’s state before having any inputs. The initialization of the previous state can

set the values to zero or initialize with a non zero initial values that are adjusted over

the training process [24] which in some cases can improve the robustness and stability

of the network.

3.1.1.2 Backward Pass

Regarding the RNN’s training, the Backpropagation Through Time algorithm is ap-

plied [84][80]. BPTT is very similar to the Backprogation (1.3.3) algorithm. The reason

BPTT is used, is because it is more efficient in computating time. Moreover it is an

algorithm under active research, one example is the new state of art way of computing

BPTT has been published [34] which uses dynamic programming to balance a trade-off
between caching of intermediate results and recomputation.

Just like Backpropagation (1.3.3) BPTT is consisted of repeated application of the

chain rule. The only difference is that the objective function depends on the activation

of the hidden layer not only because of its influence at output layer (ot), but also on

the hidden layer at the next time-step (ht+1 , which means that it affects the next steps

to come as well). It is important to notice that the weights between time steps share

the same values and that we sum over the whole sequence to get the derivatives with

respect to each of the network weights. Mathematically:

14

3.1. RECURRENT NEURAL NETWORKS

δt,h = θ′(vt,h)(
K∑
k=1

δt,kuhk +
H∑
l=1

δt+1,luhl) (3.3)

where,

δt,j =
θO
θvt,j

(3.4)

The complete sequence of δ terms can be calculated by starting at last time step and

recursively applying 3.3, decrementing t at each step. Finally to take the derivatives

with respect to the network’s weights, we sum over the whole sequence (since a single

training instance is the full sequence).

θO
θuij

=
T∑
t=1

θO
θvtj

θvtj
θuij

=
T∑
t=1

δt,jbt,i (3.5)

where, bt,i is the activation of unit i at time t

While RNNs work well with sequences, they have a major drawback which is the

vanishing/exploding gradient problem[38],[3]. One approach to deal with it is called

the truncated BPTT [38] which is to set a limit on the time steps that you consider.

Other approaches have been taken in order to tackle this problem .The most important

were discrete error propagation [3], time delays [47], hierarchical sequence compres-

sion [68],Hessian Free Optimization [51], and Echo State Networks [43]. However,

the most effective approach was a whole different architecture, the Long Short Term

Memory (LSTM) architecture [39]. Moreover, RNNs have no control on "how many

items/time steps to remember". The context needed for each classification task varies

significantly, it may need 3 time steps (words) or 20. This problem is also solved with

the LSTM architecture.

3.1.2 Long-Short Term Memory

Long-Short Term Memory (Figure 3.2) is the most popular architecture for sequential

data, it is almost a subject under active research and constant improvement. LSTM

networks have been applied to a variety of sequence modelling and prediction tasks

with state-of-art performance, notably machine translation [1],[75], speech recogni-

tion [33], image caption generation [79],and program execution [81]. In its original

form, LSTM contained only input and output gates. The forget gates [28], along with

additional peephole weights [29] connecting the gates to the memory cell were added

later. LSTMs are designed to be able to keep the important information and forget the

noise. The default behavior of LSTM is to remember long periods and after training it

remembers only the important information.

15

CHAPTER 3. FEEDBACK NEURAL NETWORKS

3.1.2.1 Architecture

Long-Short Term Memory networks’ structure is like Simple RNN’s, with only differ-

ence on the hidden layer structure. While RNNs have a single layer, the LSTMs have

four hidden layers. The LSTM is consisted of cells and gates, cells contain the infor-

mation and gates regulate "how much"of information to let go, gates are composed of

a sigmoid layer that outputs an interval from 0 to 1 where 0 stands for "pass no infor-

mation"and 1 for "pass everything". In more detail, it is consisted of the forget gate

(ft) which decides how much information (current and past) to pass to the network,

the input gate (it) which decides what information to store at the cell, the cell state(Ct)

which is the updated state, and finally the output gate.

Figure 3.2: Long-Short Term Memory
Source : https://deeplearning4j.org/lstm.html

3.1.2.2 Forward Pass

The first step is to decide what to input to the network, here is where forget gate comes

in (3.7) where takes as input the previous state (ht−1) and the current input (xt) and it

outputs an interval between 0 to 1 to the candidate cell state(C̃t)(3.8). Then we decide

what values to update (3.9) at the input gate(it. After having computed candidate cell

and the input gate we combine them with the previous cell state(Ct−1) to derive the

current cell state (Ct)(3.10). Finally we feed the cell state to the output gate in order to

decide how much of the cell state to output(3.11) as well as to a tanh layer so to squash

the values between -1 and 1(A.1).

it = σ (W (i)xt +U (i)ht−1) (3.6)

ft = σ (W (f)xt +U (f)ht−1) (3.7)

ot = σ (W (o)xt +U (o)ht−1) (3.8)

C̃t = tanh(W (C)xt +U (C)ht−1) (3.9)

Ct = ft �Ct−1 + it � C̃t (3.10)

ht = ot � tanh(Ct) (3.11)

16

3.1. RECURRENT NEURAL NETWORKS

3.1.2.3 Backward Pass

The original LSTM training algorithm [39] used an approximate error gradient calcu-

lated with a combination of Real Time Recurrent Learning [64] and Backpropagation

Through Time (BPTT) [84].The BPTT part was truncated after one time-step, since

memory blocks would deal with the longer dependencies.The truncating method has

the benefit of making the algorithm online, meaning that weight updates can be made

after every time-step.However in this report we will the extract the LSTM gradient

with BPTT[Graves2005a], for further details look at appendix A.

3.1.3 Gated Recurrent Unit

Gated recurrent unit (Figure 3.3) is another variant of recurrent units proposed by

KyungHyun Cho[10]. It is closely related Long-Short Term Memory. The GRU also

controls the flow of information like the LSTM, but without using a memory unit. It

exposes the full hidden content without any control.

3.1.3.1 Architecture

A GRU has two gates, a reset gate r, and an update gate z. The reset gate indicates

how to combine the new input with the previous memory. The update gate defines

how much of the previous state to keep.The basic idea of using a gating mechanism to

learn long-term dependencies is the same as in a LSTM, but there are a few differences

in terms of architecture. First of all, it doesn’t have an output gate so it has fewer

parameters (two gates, instead of three). Secondly the input and forget gates are

substituted by an update gate z and the reset gate r is applied directly to the previous

hidden state. Thus, the responsibility of the reset gate in a LSTM is really split up

into both r and z. Finally we don’t apply a second nonlinearity when we compute the

output.

Figure 3.3: Gated Recurrent Unit
Source : https://deeplearning4j.org/lstm.html

3.1.3.2 Forward Pass

The first step is to determine the input values, this is update gate’s task it will decide

how much of the previous hidden state and how much of the candidate hidden state

17

CHAPTER 3. FEEDBACK NEURAL NETWORKS

combines to get the new hidden state (3.12). After the update gate, the reset gate while

it has the exact same functional form (3.13) as the update gate and all the weights are

at the same size, what makes it different is its position at the model. The reset gate

is multiplied by the previous hidden state it controls how much from the previous

hidden state we will consider when we create the new candidate hidden state. In other

words, it has the ability to reset the hidden state , if we set the reset gate to 0 from

(3.14) we start over from a new sequence as if ht is the beginning of a new sequence.

However this is not the full picture since h̃t is just a candidate for the hidden state,

the actual hidden state will be a combination of previous hidden state ht−1 and the

candidate hidden state h̃t controlled by the update gate zt (3.15) .

zt = σ (W (z)xt +U (z)ht−1) (3.12)

rt = σ (W (r)xt +U (r)ht−1) (3.13)

h̃t = tanh(W (h)xt +U (h)(ht−1 � r)) (3.14)

ht = (1− z)� h̃t + z� ht−1 (3.15)

3.1.3.3 Backward Pass

Gated Recurrent Units also use the BPTT algorithm in order to be trained. We will

derive the gradients for E (error),W,U and by hand using the chain rule, for further

details look at appendix B

3.2 Recursive Neural Networks

Recursive Neural Networks (RNNs) [71], [61], [30], [16], [36] are perfect for settings

that have nested hierarchy and an intrinsic recursive structure [73]. The syntactic rules

of language are highly recursive, therefore we use that recursive structure with a model

that complies with that property. It is important to notice that RNN don’t comprehend

sentences as sequences but as hierarchies which makes them ideal for semantic rep-

resentation tasks (paraphrase detection [71], relation classification, sentiment analy-

sis, phrase similarity) but they can’t predict future items from a sequence(next word

from a given sentence),something that Recurrent Neural Networks are very good at

due to their linear structure.Recurrent Neural Networks represent sentences as parse

trees(Figure 3.4).

18

3.2. RECURSIVE NEURAL NETWORKS

What RNNs are very good at, is handling negation. Due to their hierarchical struc-

ture, when negation is spotted,the meaning is just being reversed. You have a label at

every node of the tree, and the leaves of the tree represent words.

Moreover another reason that RNN are so popular for natural language processing

tasks, is that the input sequence length (sentence in our case) is not a restriction, it

can take inputs of arbitrary lengths. The latter benefit is accomplished by making

the input vector of sentence a predefined size no matter the length of the sentence.

([4],[35], [14]. Essentially what RNNs do is to merge the semantic understanding1

of the words, then the grammatic understanding2 of the phrase or sentence,which

results to a parse tree representation of a phrase or a sentence. Having understood the

words, and knowing the way words are put together we can retrieve the meaning of

the sentence. Even though grammatical understanding is an assumption and it is not

proven that it improves the accuracy, it is still under debate but we will assume that it

helps the model.

In short, it extracts from the sentence the syntactic structure, which indicates the

relationship between phrases, and it identifies the meaningful phrases within the sen-

tences and the relationship between them. In order to extract the vector representation

of the sentence, the idea is to recursively merge pairs of representations of smaller seg-

ments to get representation that covers bigger senteces.

The Recursive Neural Networks are trained with the Backpropagation Through

Structure algorithm[30] which is very similar to the standard Backpropagation, we

use the 1.10 and the 1.14, that was discussed at subsection 1.3.3 with three minor

differences. Firstly we sum up the derivatives of W from all the nodes, secondly we

split the derivatives at each node and finally we add different error messages from

parent node and self node.

Finally, it is assumed that the tree structured is given, which indicates that some

preprocessing is required if it is not given. In our experiment we will use the Stanford

Sentiment Treebank(SST) that was trained with the Stanford Parser[70],which is simi-

lar to max-margin parsing [78], to derive the tree structure is for every sentence. We

will not go through the way that the sentence trees were constructed because we will

add unnecessary complexity that is beyond the scope of this report, but at a high level

explanation the parser that is used, have a loss term that penalizes the not plausible

phrases.

3.2.1 Simple Recursive Neural Network

This model (Figure 3.5) is the standard recursive neural network. The first step to

take is to take a sentence parse tree and the sentence word vectors and begin from

the bottom leaves to the top root of the tree. The mathematical formula to merge

1semantic understanding: understanding of the meaning of a sentence, represent accurately the
phrase as a vector in a structured semantic space

2grammatical understanding: it is identified the underlying grammatical structure of the sentence

19

CHAPTER 3. FEEDBACK NEURAL NETWORKS

Figure 3.4: Recursive Neural Network
Source : https://stats.stackexchange.com/questions/153599/recurrent-vs-recursive-

neural-networks-which-is-better-for-nlp

those two vectors (aka children) and create a new "word phrase"vector (parent) can be

illustrated below (3.16). The h vector now represent the "this assignment"phrase. Hav-

ing computed the vector representations of the sentences, we compute a s score 3.17

which represents the quality of the merge and decides which pair of representations to

merge first. In oder to derive some meaning of the word vector, we feed it to a softmax

layer (3.18)to compute the score over a set of sentiment classes, a discrete set of known

classes that represent some meaning. This process happens till the model reach the

root of the tree. Moreover it is important to note that the W parameters is the same for

all the nodes of the trees. It is obvious that this is quite a naive approach and linguistic

complexity is higher than that. It is too much to ask from a simple function like this

to capture the language complexity.

h1 = tanh(W

c1

c2

+ b) (3.16)

s1 =W scorep (3.17)

ŷ = sof tmax(Wh1 + b) (3.18)

3.2.2 Syntactically Untied SU-RNN

One extension to the Simple RNN, the Syntactically Untied RNN model [73](Figure

3.6) was introduced to solve the problem mentioned at the previous subsection. What

this model does, is to have unique weight matrices for every syntactic category. The

syntactic categories are identified from the parser that determined the structure of the

20

3.2. RECURSIVE NEURAL NETWORKS

Figure 3.5: Simple Recursive Neural Network
Source: https://www.slideshare.net/jiessiecao/parsing-natural-scenes-and-natural-

language-with-recursive-neural-networks

tree. This has proven to increases the weight matrices to learn and outperforms the

methods that were mentioned till that point,but the performance boost we gained is

not significant.

One impressive accomplishment of this model is that the trained weight matrices

are capable of learning the semantics of the phrases. For example a determiner fol-

lowed by a noun phrase (e.g. "an elephant") emphasizes more on the noun phrase than

on the determiner. The architecture of the SU-RNN model compared to the Simple

RNN is illustrated at Figure 3.6.

Figure 3.6: Syntactically Untied Recursive Neural Network
Source:

https://wugh.github.io/posts/2016/05/cs224d-notes5-recusive-neural-networks/

3.2.3 Matrix-Vector Recursive Neural Networks

Another alteration of Recursive Neural networks is the Matrix-Vector Recursive Neural

Networks [72] (Figure ??)which improves the semantic representation of the sentences.

The major difference is that not only we include a word vector (d-dimensional), but

also a word matrix (dXd)(Figure 3.7).

21

CHAPTER 3. FEEDBACK NEURAL NETWORKS

h1 = tanh(W

C2c1

C1c2

+ b) (3.19)

This approach not only represents the meaning of each word but also the effect

that it has on the neighboring words. Suppose we feed two words to the model, a and

b, the parent vector is the concatenation of the word vector of the former multiplied

with the word matrix of the latter and the word vector of the later is multiplied by the

word matrix of the former (Ab and Ba). In the figure’s example, the word matrix of

"very"could also be the identity3multiplied by a scalar (above one) which indicates the

impact it has to the word "bad".

Figure 3.7: Matrix-Vector Recursive Neural Networks
Source:

https://wugh.github.io/posts/2016/05/cs224d-notes5-recusive-neural-networks/

Despite the fact that this is the most expressive model we have explored till now,

it is still not good enough. It fails to capture the semantics of some relations. There

have been observed three types of errors. [73] The first type (Figure 3.8)is the negated

positives, this case occurs when something is classified as positive but one word turns

it negative, the model can not capture the importance of that one word strong enough

to flip the sentiment of the entire sentence.

Figure 3.8: Negated positives
Source: https://cs224d.stanford.edu/lecturenotes/LectureNotes5.pdf

The second type (Figure 3.9) is the negated negative, where we say something is not

3identity matrix: square matrix with ones on the main diagonal and zeros elsewhere

22

3.2. RECURSIVE NEURAL NETWORKS

bad. The MVRNN can not recognize that the word ”not” because it turns sentiment

from negative to neutral.

Figure 3.9: Negated Negative
Source: https://cs224d.stanford.edu/lecturenotes/LectureNotes5.pdf

The final type of errors (Figure 3.10) we observe is the ”X but Y conjunction”. In

our example, X is negative but the Y is positive and the sentiment is positive. The

MV-RNNs have some issues with such cases.

Figure 3.10: X but Y conjunction
Source: https://cs224d.stanford.edu/lecturenotes/LectureNotes5.pdf

Thus, we must look for an even more expressive composition algorithm that will

be able to fully capture these types of high level compositions.

3.2.4 Recursive Neural Tensor Network

The third Recursive Neural Network variant that will be covered is the Recursive Neu-

ral Tensor Network(Figure 3.11). RNTN was conceived by Richard Socher [73] in order

to solve the three types of errors we left of with at the subsection 3.2.3. Moreover it

is famously quite sucessful for dealing with double negations. The Recursive Neural

Tensor Network gets rid of the concept of a word matrix as well as the affine trans-

formation 4 pre-tanh /σ concept that we saw before. To combine two word vectors or

phrase vectors, we again concatenate them to form a vector ∈ 2d but instead of putting

it through an affine function then a nonlinear, we put it through a quadratic first, then

a nonlinear, such as:

4affine transformation: is a transformation composed of a linear function+ a constant

23

CHAPTER 3. FEEDBACK NEURAL NETWORKS

h(1) =tanh(xTV x+Wx) (3.20)

Where V is a 3rd order tensor ∈2d×2d×d . The quadratic shows that we can indeed allow

for the multiplicative type of interaction between the word vectors without needing

to maintain and learn word matrices. Figure 3.11: One slice of a RNTN. Note there

would be d of these slices.

Figure 3.11: Recursive Neural Tensor Network
Source:

https://wugh.github.io/posts/2016/05/cs224d-notes5-recusive-neural-networks/

A major problem of the models we covered before is their inability to handle nega-

tion[69]. The table 3.1 below shows how the RNTN handles negations.

Table 3.1: Negations

Model Negated Positive Negated Negative

RNN 33.3 45.5
MV-RNN 52.4 54.6

RNTN 71.4 81.8

3.2.5 Tree-Based Long-Short Term Memory Networks

Tree-Based LSTM (Figure 3.12) was recently conceived by Kai Sheng Tai [77]. This is a

hybrid model that combines LSTMs and Recursive neural network. It is important to

notice that LSTMs were used for linear chained structured recursive neural networks

(recurrent neural networks). The main difference that this model has with the standard

LSTMs is that it is required the average of the child vectors and a special forget gate

for each child. The idea behind this architecture is mostly to handle negation, by keep-

ing in memory the semantically important words and forgetting the non significant.

This process happens as the model goes through the tree structure. The Figure3.12

illustrates how the new memory cell c1 and hidden state h1 are composed with two

children.

24

3.2. RECURSIVE NEURAL NETWORKS

Figure 3.12: Tree-Based LSTM Memory Cell Composition
Source: https://arxiv.org/pdf/1503.00075.pdf

The Tree-LSTM behaves very similar to the standard LSTM, it takes as input vector

xj with only difference that the input vector depends on the tree structure (1.3.2). If the

tree is a constituency tree, the leaf nodes take the corresponding word vectors as input,

if the tree is a dependency tree each node in the tree takes the vector corresponding

to the head word as input. The two extensions that Tai(2015) proposed are the Child

Tree-LSTM and N-ary Tree-LSTM.

3.2.5.1 Child-Sum Tree-LSTM

Sum Tree-LSTM unit conditions its components on the sum of child hidden states hk ,

this model performs well with high branching factor tree structures or with structures

that its children are not ordered. Dependency trees is a good choice of structure for

that model since the number of dependents of a head can be quite variant. Let C(j)

the set of children of node j and k ∈ C(j), the equations of the model are the following:

h̃j =
∑
k

hk (3.21)

ij = σ (W ixj +U i h̃j + bi) (3.22)

fjk = σ (W f xj +U f hk + bf) (3.23)

oj = σ (W oxj +U oh̃j + bo) (3.24)

C̃j = tanh(W uxj +Uu h̃j + bu) (3.25)

25

CHAPTER 3. FEEDBACK NEURAL NETWORKS

Cj = ij � C̃j +
∑
k∈C(j)

fjk �Ck (3.26)

hj = oj � tanh(Cj) (3.27)

The matrix parameters on the equations above can be interpreted as encoding cor-

relations between the input xj , the hidden states hk of the children and the component

vectors of the Tree-LSTM. A natural extension of this model is the Dependency Tree-

LSTM which is the application of the Child-Sum Tree-LSTM to a dependency tree.

This model has proven not to perform that well, I assume that this can be a result of

its simplistic architecture and its lack of use of the sentiment contained at the leaves.

3.2.5.2 N-ary Tree-LSTM

On the other hand, the N-ary Tree-LSTM perform well where the branching factor

is less or equal to N and the children are ordered (constituent). For any j node, the

hidden state is hjk and its memory cell is cjk . The equations of the model are the

following :

ij = σ (W ixj +
N∑
l=1

U i
l hjl + bi) (3.28)

fjk = σ (W f xj +
N∑
l=1

U
f
klhjl + bf) (3.29)

oj = σ (W oxj +
N∑
l=1

U o
l hjl + bo) (3.30)

C̃j = tanh(W uxj +
N∑
l=1

Uu
l hjl + bu) (3.31)

Cj = ij � C̃j +
N∑
l=1

fjl � cjl (3.32)

hj = oj � tanh(Cj) (3.33)

26

3.2. RECURSIVE NEURAL NETWORKS

It is important to notice that the N-ary Tree-LSTM model have separate parameter

matrices for each child, which results in better learning of fine-grained conditioning

on the states of a unit’s children than the ChildSum Tree-LSTM. It can be considered

as a case of trade-off of performance and computational cost. Suppose that an example

of a constituent tree that its left child of a node is a noun phrase, and the right child a

verb phrase. It is beneficial for this case to magnify the verb phrase. N-ary tree is able

to do that by training the U f
kl parameters so that the components of fjl are close to 0

("forget") while the components of fj2 are close to 1 ("remember").

A natural extension to N-ary LSTM model is the Constituency Tree-LSTM which is

an application of Binary Tree-LSTM. This is the model that we will compared on the

later section.

3.2.6 Tree-Based Gated Recurrent Unit

Tree-Based Gated Recurrent Unit (Figure 3.13) is a model that was inspired by the

Tree-Based LSTM architecture. As far as I know it hasn’t formally been published

anywhere so I can’t give the credentials to someone. The idea is almost the same with

the Tree-based LSTM. However instead of having two forgetting gates, we will have

two reset gates.

3.2.6.1 N-ary Tree-GRU

In this report, I have developed the alteration of N-ary Tree-LSTM named N-ary Tree-

GRU. In our experiment, the tree-structure of the inputs is contituency trees the inputs

will be word vectors. It is important for the reader to note that both architectures (Tree-

LSTM and Tree-GRU) have an affect only on the composition of the parent node. Other

than that, they are like the simple recursive neural network. In more detail, the N-ary

Tree-GRU takes as input word vectors and it creates the candidate hidden state h̃j with

the combination of the child nodes, its child has its own reset gate. After having the

candidate hidden state h̃j , we calculate the actual hidden state hj .

Figure 3.13: Tree-Based GRU Hidden State Composition

27

CHAPTER 3. FEEDBACK NEURAL NETWORKS

zj = σ (W zxj +
N∑
l=1

U z
l hjl + bz) (3.34)

rjk = σ (W rxj +
N∑
l=1

U r
klhjl + br) (3.35)

h̃j = tanh(W hxj +
N∑
l=1

Uh
l (hjl � rjl) + bh) (3.36)

hj = (1− zj)� h̃j +
N∑
l=1

zj
N
� hjk (3.37)

28

C
h
a
p
t
e
r

4
Neural Network Training

This chapter is devoted to the training process of a neural network which is consisted

of the backpropagation and gradient descent algorithms[8]. We have discussed in

great detail regarding the backpropagation algorithm at the subsection 1.3.3 and sec-

tions 3.1, 3.2 (BPTT and BPTS). However we haven’t covered the gradient descent

algorithm and its different extensions. Gradient descent algorithm is an algorithm

under active research. In this chapter it will be covered the process of updating the

network parameters and the impact of selecting the right hyperparameters. This chap-

ter will be divided into three sections, the first section will cover the different variants

of gradient descent algorithm data selection4.1, the second section will go through the

most common gradient descent extensions4.2 and the third section will be about the

neural network’s hyperparameters4.2 which are vital to the neural network’s adequate

training.

4.1 Gradient Descent Variants

On this section, there will be covered three different variants of the gradient descent

algorithms with regards to the amount of data they take to compute the gradient of

the objective function. On the subsection 4.1.1 will be covered the Batch Gradient

Descent which is the maximization of the likelihood over the entire training set, which

is quite slow for big data sets. The second alternative is the Stochastic Gradient Descent

(4.1.2) which depends on the error of one particular sample, this variant makes the

computation much faster but it has to proceed through many iterations in order to

show indications of improvement. The mini-batch Gradient Descent (4.1.3) is the

compromise between the two variants discussed before. [57]

29

CHAPTER 4. NEURAL NETWORK TRAINING

4.1.1 Batch Gradient Descent

The Batch Gradient Descent calculates the gradient of the objective function with

regards to the parameters θ of the entire training set(4.1). Since each update is per-

formed after having calculated the whole training dataset, it is easy to conclude that

it is a quite slow way of training in cases that data sets are large. Moreover another

disadvantage of this method is that it doesn’t allow to update the model on an online

way.

θ = θ − η ∗ ∇θJ(θ) (4.1)

4.1.2 Stochastic Gradient Descent

On the other hand, Stochastic Gradient Descent performs a parameter update for each

sample i (4.2)[7]. This variant much faster that the Batch Gradient Descent and it

is able to learn in an online way. However, this approach has a few flaws as well.

During the first steps of the training, the objective function fluctuates heavily because

the updates have high variance. This characteristic has strengths and weaknesses

as well, because it can land to a potentially better local minima, or it can make the

minimization process too complicated. Despite its high variance at the beginning of

the training, on the long run it will become more stable.

θ = θ − η ∗ ∇θJi(θ) (4.2)

4.1.3 Mini-Batch Gradient Descent

Mini-Batch Gradient Descent[49] is the happy medium between the two contradictory

variants discussed above(4.1.1,4.1.2). This approach performs the parameter updates

based on the gradient of the parameter from n samples (batch size) of the training set

(4.3). It tackles the problem of update’s high variance which leads to a more stable

convergence and it trains faster than the vanilla gradient descent.

θ = θ − η ∗ ∇θJi:i+n(θ) (4.3)

Despite its advantages, Mini-Batch Gradient Descent underlies some flaws. A

key challenge of minimizing highly non-convex error functions common for neural

networks is avoiding getting trapped in their numerous suboptimal local minima.

Dauphin[18] arguesw that the difficulty arises in fact not from local minima but from

saddle points, i.e. points where one dimension slopes up and another slopes down.

These saddle points are usually surrounded by a plateau of the same error, which

makes it notoriously hard for SGD to escape, as the gradient is close to zero in all

dimensions.

30

4.2. GRADIENT DESCENT EXTENSIONS

4.2 Gradient Descent Extensions

There are several approaches for performing the parameter update. In this section it

will be covered the most popular gradient descent optimization algorithms that are

used to tackle the challenges that were mentioned at section4.1. Those techniques

are used to solve some of the problems that the vanilla gradient descent algorithm

underlies. Namely, the challenge of finding a right learning rate (4.3.1), the learning

rate is the same for each parameter which can be a problem if the data is sparse, being

trapped to a suboptimal local minima (4.1.3). The techniques that will be discussed are

focused on the learning rate manipulation and its impact on the parameters’ update.

4.2.1 Vanilla update

Vanilla update is the simplest form of update, it performs the updates of the parame-

ters towards the negative gradient direction. So far, when gradient descent algorithm

was mentioned we were referring to the vanilla gradient descent(4.1,4.2,4.3).

4.2.2 Momentum update

Momentum update [76] speeds up when the parameter has a consistent gradient and

slows down when the gradient changes directions. This approach was inspired by the

physical perspective of the problem. Just like a ball rolling down a hill, the steepest

the slope the faster the ball roles, based on the same idea the momentum update was

conceived. The property of velocity is integrated by adding a fraction γ(momentum

term) of the past update vector from the previous time step to the current update vec-

tor(4.4). After having calculated the update vector we integrate it into the parameter

(4.5).

vt = γvt−1 + η∇θJ(θ) (4.4)

θ = θ − vt (4.5)

The outcome of using momentum is faster convergence and reduced oscillation[62].

At figure 4.1we can see the difference between the valilla gradient descent updates(on

the left side) and the momentum updates(on the right side).

4.2.3 Nesterov Momentum update

Nesterov Momentum update is a smarter alteration of vanilla momentum update.

The main idea of Nesterov Momentum is for the update to has a notion of where the

gradient is heading therefore it slows down before the gradient changes direction. This

technique is also known as Nesterov Accelerated Gradient (NAG) [56],[74] it makes

31

CHAPTER 4. NEURAL NETWORK TRAINING

Figure 4.1: Vanilla vs Momentum
Source :

’http://dsdeepdive.blogspot.com/2016/03/optimizations-of-gradient-descent.html’

a rough approximation of where the parameter will be, so now it can effectively look

ahead by calculating the gradient with regards to the approximation of the future

position and not the current one (4.6). According to Bengio[5] the estimated update

prevents us from going too fast and results in increased responsiveness.

vt = γvt−1 + η∇θJ(θ −γvt−1) (4.6)

θ = θ − vtSource : http : //dsdeepdive.blogspot.com/2016/03/optimizations − of − gradient − descent.html
(4.7)

The difference between the two approaches can be illustrated below at Figure 4.2.

Figure 4.2: Momentum vs Nesterov Momentum
Source: https://www.slideshare.net/cfregly/gradient-descent-back-propagation-and-

auto-differentiation-advanced-spark-and-tensorflow-meetup-08042016

4.2.4 AdaGrad

AdaGrad[23] adapts the learning rate for every feature which eliminates the need

of manually tuning the learning rate. It adapts the learning rate to the parameters,

performing larger updates for infrequent and smaller updates for frequent parameters.

For this reason, it is well-suited for dealing with sparse data.[12] Moreover, Pennington

[60] used Adagrad to train GloVe(section 2.3) word embeddings that we use at our

32

4.2. GRADIENT DESCENT EXTENSIONS

experiment on the next chapter. The reason he used AdaGrad, is because infrequent

words require much larger updates than frequent ones.

Since AdaGrad uses different learning rate for every parameter θi at every time

step t for the sake of convenience we assume gt,i (4.8) to be the gradient of the objective

function of parameter i and gt(4.9) be the vector of all the parameters at time step t .

Apart from the element-wise property of this approach, Duchi makes use of a diagonal

matrixG ∈ Rdxd that is consisted of the sum of the squares of the gradients with respect

to the parameter up to time step t, while it also has a smoothing term ε that prevents

it from being divided with 0. It is adapting the learning rate by caching the sum of

squared gradients with respect to each parameter at each time step. The reason that we

use the squared sums is not specified, but it performs way better than taking the matrix

without the square root operation. Finally the formula for computing the parameter

can be seen below.

gt,i = ∇θJ(θi (4.8)

θt+1 = θt −
η

√
Gt + ε

� gt (4.9)

Despite its high performance, Adagrad has a serious drawback which stems from

the fact that the learning rate shrinks after some point due to its accumulation of

the squared gradients in the denominator. This is the reason that it is notoriously

aggressive at the machine learning community.

4.2.5 AdaDelta

In order to tackle the learning rate shrinking problem Zeiler came up with a different

way of adapting the learning rate. Adadelta [82] comes to rescue. Adadelta is an

extension of Adagrad that alleviates its aggressively monotonically decreasing learning

rate. It was suggested that instead of accumulating all the previous gradients it would

be better to set a fixed window of size w and take the accumulated gradients of size w.

Moreover, another alteration of Adagrad is the way it treats the past gradients. Instead

of storing the past squared gradients, the sum of gradients is defined as a decaying

average of all past squared gradients. The average of time step t depends only on the

previous average and the current gradient. It is also used the momentum term ,that

was covered at subsection 4.2.2, which determines how much off the past average will

affect the current average.

E[g2]t = γE[g2]t−1 + (1−γ)g2
t (4.10)

The parameter update is defined similar to the AdaGrad but instead of the diagonal

matrix Gt we use the decaying average of the past squared gradients E[g2]t.

33

CHAPTER 4. NEURAL NETWORK TRAINING

∆θt = −
η√

E[g2]t + ε
gt (4.11)

Moreover the denominator of (4.11) is the root mean squared(RMS) error of crite-

rion of the gradient, having noticed that Ziegel defined the decaying average of the

squared parameter updates. However the RMS[∆θ]t is not known so it is approxi-

mated with the RMS of the parameter updates from the previous time step. Therefore

the updates of the parameters can be computed as :

∆θt =
RMS[∆θ]t−1

RMS[g]t
gt (4.12)

Something interesting about this approach is that the learning rate is irrelevant, as

it is nowhere in the update rule.

4.2.6 RMSprop

RMSprop is an unpublished adaptive learning method from Hinton at his coursera

Machine Learning course that is commonly used from the deeop learning community

(it is even a built-in function at tensorflow). RMSprop is very similar with AdaDelta, in

fact is is just like the first part of AdaDelta but instead of γ there is a default value of

0.9 while its suggested initial learning rate is 0.001. Even though they were established

the same period they were conceived independently.

E[g2]t = 0.9E[g2]t−1 + 0.1g2
t (4.13)

∆θt = −
η√

E[g2]t + ε
gt (4.14)

4.3 Hyperparameters

4.3.1 Learning Rate

Learning rate can be thought as the rate that the parameter update based on its gradi-

ent. Choosing a proper learning rate can be difficult. A learning rate that is too small

leads to slow convergence, while a learning rate that is too large can make the loss

function fluctuate around the minimum or even diverge.

4.3.2 Regularization

It is a method for preventing overfitting. It essentially works by setting a penalty a

complexity penalty to the loss function. In practice, this means that it penalizes a

34

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer

4.3. HYPERPARAMETERS

function that is too non-linear and learns by heart the information that is contained in

the training set and is not able to generalize well to new examples. In this paper we

will mention the most popular regularizers that we will also use at the experiments.

Let those be L2 regularizer and dropout regularizer. But why do we really need regu-

larization? It doesn’t help the model perform well at the training set but perform well

at the new examples(test set), which means that it minimizes the generalization error.

The generalization error is the sum of the squared bias and variance of the trained

model. The variance of the model indicates how much the model varies if we change

the training set, the bias of the model is how close is the model to the true solution

(the model that generated those instances).

4.3.2.1 L2 Regularization

The L2 regularization method [40] adds a regularization term in order to prevent the

coefficients to fit so perfectly to overfit. When it comes to neural networks it only

regularizes the connection weights the hidden layers. In more detail, what we do is to

penalize the square of the weight value for each hidden layer k and for each connection

i, j. Notice that the sum of i, j from equation (4.15) corresponds to the Frobenius Norm

therefore it can be written as (4.16)

Ω(θ) =
∑
k

∑
i

∑
j

(W (k)
i,j)2 (4.15)

Ω(θ) =
∑
k

‖W (k)‖F (4.16)

The gradient to the regularizer with respect to the kth layer is two times the weight

matrix :

∇w(k)Ω(θ) = 2W (k) (4.17)

It is important to notice that this is applied only at the weights, because we don’t

expect to overfit the training set by changing the biases a lot but more by changing the

weights that really determine how the function can become more or less non-linear.

4.3.2.2 Dropout Regularization

In deep neural networks have been proposed two ways of dealing with over-fitting ,

the first one is the unsupervised pre-training [26](which we will not discuss because

it will not be used in this experiment therefore it is beyond the scope of this paper),

the second is dropout [37]. Dropout was proposed by Geoffrey Hinton as a technique

for performing regularization. It works by randomly dropping nodes in a neural

network and it emulates ensembles1 of neural networks. The application can be seen

1train a group of prediction models, then average their prediction or take the majority vote

35

CHAPTER 4. NEURAL NETWORK TRAINING

at figures 4.3, 4.4 where Figure 4.3 illustrates a standard neural network while Figure

4.4 illustrates the very same neural network after having applied dropout. In practice,

for each hidden unit once it have been computed we will independently set it to 0

(dropping out the value derived from the training) with a probability ,usually of 0.5.

This process continues till we reach the output layer. Therefore as a result of the

whole process the hidden units can’t collaborate with each other in order to generate

complex patterns that might be useful to fit the training data so they are forced to

extract a feature that is useful in general.

Figure 4.3: Standard Feed-forward
Neural Network

Figure 4.4: After applying
Dropout

Source: http://cs231n.github.io/neural-networks-2/

The dropout regularization technique, it has an impact on both the forward and

backward propagation algorithm for training a neural network. In more detail, re-

garding the forward propagation, we set a random binary mask m(k) with values 0

(dropout the weight of the unit) or 1(retains the value), when it comes to the backward

propagation, when we backpropagate the gradient till the preactivation(z1.3) we also

need to multiply it by the mask vector, due to the chain rule. This practically means

that many gradients will be set to zero so the backpropagation won’t flow through the

hidden units that were dropped out.

36

C
h
a
p
t
e
r

5
Experiments

This chapter is dedicated to the practical comparison between the Constituent LSTM,

with the Tree-Based GRU or Constituent GRU. It is important to notice that the ex-

periments have been conducted 5 times and the results are the product of the av-

eraged results of all the trials. We use the Stanford Sentiment Treebank(SST), and

we use the standard train/dev/test splits of 6920/872/1821 for the binary classifica-

tion subtask and 8544/1101/ 2210 for the fine-grained classification subtask (there

are fewer examples for the binary subtask since the neutral instances have been ex-

cluded). The sentiment label at each node is predicted using the classifier covered

at the next subsection 5.1.1. Moreover the SST have each sentence structured as con-

stituent parse trees, therefore we will use the Constituent LSTM as a comparison to

our model. Please find the code necessary for running those experiments to the next

url: https://github.com/VasTsak/master_thesis.

5.1 Model comparison

Before proceeding to the experiments we made the assumption that the Tree-based

GRU will be faster to be trained because of its fewer parameters. The experiments

proved us right. But training speed is just a factor (not even that critical) to select a

model, what we really care about is its capability of being able to identify the under-

lying pattern just right, not learn the training set by heart (overfitting) nor ignoring

some important features(underfitting).

5.1.1 Classification model

The goal of the paper is to compare the performance of the Tree-GRU architecture

against the Tree-LSTM architecture on sentiment classification tasks. In practice, the

37

https://github.com/VasTsak/master_thesis

CHAPTER 5. EXPERIMENTS

model predicts a label ŷ from a set of classes (2 for binary, 5 for fine grained) for some

subset of nodes in a tree. The classifier and the objective function are exactly the same

for both architectures. Let {x}j be the inputs observed at nodes in the subtree with root

the node j.

p̂θ(y | {x}j) = sof tmax(W phj + bp), (5.1)

ŷj = argmax
y

p̂θ(y | {x}j). (5.2)

Let m be the number of labeled nodes in the training set and the superscript k be

the kth labeled node, the cost function is:

J(θ) = − 1
m

m∑
k=1

log p̂θ(y(k) | {x}(k)) +
λ
2
‖θ‖22 (5.3)

5.1.2 Binary Classification

The binary classification is a problem that classifies whether the sentiment of the

sentence is positive or negative. The process of the training can be seen at the Figures

5.1 , 5.2, and 5.3 where at Figure 5.1 it is plotted the average training time of each

iteration and at Figures 5.2 are plotted the average loss of each iteration and at Figure

5.3 the training process1 of Tree-GRU and Tree-LSTM.

Figure 5.1: Binary Classification
Average Training Time

Figure 5.2: Binary Classification
Average Training Loss

All the plots have as their x-axis the number of epochs. The metrics that we plot

are computed till the 12th epoch and in cases of early stopping2 we wouldn’t take into

account the 0 or "Non Assigned Number"of the trial that its training stopped earlier

but we would just skip it and calculate the results based on the rest trials that had a

full training process.
1training process: the training and validation scores at each epoch.
2early stopping: when the validation error increases for a specified number of iterations, the training

process stops

38

5.1. MODEL COMPARISON

Figure 5.3: Binary Classification Training Process

5.1.3 Fine-grained Classification

The Fine-grained classification is a 5-class sentiment classification(1-Very Negative,2-

Negative,3-Neutral,4-Positive,5-Very Positive). The experiment for the Fine-grained

classification is under the same circumstances. The average time that each iteration

lasted during the training process can be illustrated at Figure 5.4, the average loss that

occured during the training process is illustrated at Figure 5.5 and the training process

of the fine grained classification can be seen at Figure 5.6.

Figure 5.4: Fine Grained Classifi-
cationAverage Training Time

Figure 5.5: Fine Grained Classifi-
cation Average Loss

5.1.4 Hyperparameters and Training Details

We have initialized the word representations using the pre-trained 300-dimensional

GloVe vectors[60].The training of the model was done with AdaGrad[23] and a learning

rate of 0.05 also we used the mini-batch gradient descent algorithm with batch size of

25. The model parameters were regularized with L2 regularization strength of 0.0001

and dropout rate of 0.5. For the training process we have applied the early stopping

technique in order to avoid overfitting. The goal of this paper is not to achieve a state-

of-art accuracy but to make a critical comparison between the two models therefore we

39

CHAPTER 5. EXPERIMENTS

Figure 5.6: Fine Grained Classification Training Process

won’t update the word representations during the training which boosts the accuracy

approximately 0.05 (that is the accuracy boost gave to the Tree-LSTM).

5.2 Results

The results of both the binary and fine grained classification can be seen in Table 5.1

we can see that Tree-based GRU have slightly better performance with the tree-based

LSTM, but it is important to notice from Table 5.2 the standard deviation of the indi-

vidual predictions that the prediction from Tree-GRU seem to be more fluctuate than

the ones from Tree-LSTM therefore it is possible that this difference of performance

can be random, because the standard deviation is quite high for the case of Tree-GRU.

Something important to notice about the training process of fine grained classi-

fication is that, the Tree-based GRU would stop at the 8thiteration while the LSTM

would go all the way till the 12th iteration. Moreover something else to notice is that

the Tree-LSTM for fine-grained classification seems like it has some more training to

do before it overfits, in contrast with the Tree-GRU which would overfit before having

executed twelve iterations, which can be observed above (Figures 5.6). This may have

to do with the hyperparameters that we have chosen. We have set the early stopping at

2 iterations(as the Tree-based LSTM paper had), if we would set it to 3 the Tree-GRU

may keep on training till the 12th iteration.

MoreoverTree-GRU’s training and validation scores seem to fluctuate more in the

fine-grained classification 5.6 which may underlies unstable prediction and the need

to train more.

Table 5.1: Sentiment Classification Accuracy

Model Binary Fine-grained

Tree-LSTM 84.43 45.71
Tree-GRU 85.61 46.43

40

5.3. CONCLUSIONS AND FUTURE WORK

Table 5.2: Sentiment Classification Standard Deviation

Model Binary Fine-grained

Tree-LSTM 0.35 0.55
Tree-GRU 0.93 0.98

5.3 Conclusions and Future Work

We can conclude that there is a difference in terms of performance ,not that significant

though, between the tree-based LSTM and tree-based GRU. Moreover, Tree-based

GRUs are trained faster -computationally- and Tree-based GRUs seem to converge

faster so, the training process can stop earlier.Therefore it is a good alternative,if not

a substitute. The area of Natural Language Processing is very active area of research,

tree-based architectures proved to be very powerful for Natural Language Processing

tasks, mostly because of their capability of handling negations. Many potential projects

can be developed around Tree-Based GRUs, namely a Child-Sum approach,or the of

use unique reset and update gate for each child, or even try different GRU architectures

[22]).

For the end, one philosophical thought. Can you imagine an entire system of neural

networks performing different tasks, so that the end result is something actionable.

Like building a brain, the language processing system would be just a small part, but

you may have a neural network to do part of speech tagging another neural network

to do name entity recognition and another network to parse sentences into trees. Even

a more challenging problem might be to figure out what is the general architecture we

can use so that we don’t even have to tell the system to learn these things. In other

words, a network of neural networks where each neural network can figure out what

it should do on its own and be useful for the overall system in a gloal manner.

41

Bibliography

[1] D. Bahdanau, K. Cho, and Y. Bengio. “Neural Machine Translation by Jointly

Learning to Align and Translate.” In: CoRR abs/1409.0473 (2014). url: http:

//arxiv.org/abs/1409.0473.

[2] M. Baroni, G. Dinu, and G. Kruszewski. “Don’t count , predict ! A systematic

comparison of context-counting vs . context-predicting semantic vectors.” In:

Proceedings of the 52nd Annual Meeting of the Association for Computational Lin-
guistics. (2014), pp. 238–247. issn: 1529-1898. doi: 10.3115/v1/P14-1023.

arXiv: arXiv:1011.1669v3.

[3] Y Bengio. Learning long-term dependencies with gradient descent is difficult. 1994.

doi: 10.1109/72.279181. arXiv: arXiv:1211.5063v2.

[4] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. “A Neural Probabilistic Lan-

guage Model.” In: The Journal of Machine Learning Research 3 (2003), pp. 1137–

1155. issn: 15324435. doi: 10.1162/153244303322533223. arXiv: arXiv:

1301.3781v3.

[5] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu. “Advances in Optimiz-

ing Recurrent Networks.” In: CoRR abs/1212.0901 (2012). url: http://arxiv.

org/abs/1212.0901.

[6] C. M. Bishop. “Neural Networks for Pattern Recognition.” In: (1995).

[7] L. Bottou. “Large-Scale Machine Learning with Stochastic Gradient Descent.”

In: Proceedings of COMPSTAT’2010 (2010), pp. 177–186. issn: 0269-2155. doi:

10.1007/978-3-7908-2604-3_16.

[8] L. Bottou. “Stochastic Gradient Tricks.” In: Neural Networks, Tricks of the Trade,
Reloaded. Vol. 7700. Springer, 2012, 430–445. url: https://www.microsoft.

com/en-us/research/publication/stochastic-gradient-tricks/.

[9] C. Burgess and K. Lund. “The dynamics of meaning in memory.” In: In Cognitive
Dynamics: Conceptual Change in Humans and Machines. Dietrich & Markman
(Eds.), Psychology Press (2000), pp. 117–156. doi: 10.1016/j.cognition.2007.

07.015. url: papers3://publication/uuid/A6D7A23A-974A-4B5A-B501-

8EA77A9306F2.

43

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://dx.doi.org/10.3115/v1/P14-1023
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1109/72.279181
http://arxiv.org/abs/arXiv:1211.5063v2
http://dx.doi.org/10.1162/153244303322533223
http://arxiv.org/abs/arXiv:1301.3781v3
http://arxiv.org/abs/arXiv:1301.3781v3
http://arxiv.org/abs/1212.0901
http://arxiv.org/abs/1212.0901
http://dx.doi.org/10.1007/978-3-7908-2604-3_16
https://www.microsoft.com/en-us/research/publication/stochastic-gradient-tricks/
https://www.microsoft.com/en-us/research/publication/stochastic-gradient-tricks/
http://dx.doi.org/10.1016/j.cognition.2007.07.015
http://dx.doi.org/10.1016/j.cognition.2007.07.015
papers3://publication/uuid/A6D7A23A-974A-4B5A-B501-8EA77A9306F2
papers3://publication/uuid/A6D7A23A-974A-4B5A-B501-8EA77A9306F2

BIBLIOGRAPHY

[10] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. “Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling.” In: arXiv (2014), pp. 1–9.

arXiv: 1412.3555v1.

[11] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. “Gated feedback recurrent neural

networks.” In: Proceedings of the 32nd International Conference on Machine Learn-
ing, {ICML} 2015 37 (2015), pp. 2067–2075. issn: 18792782. doi: 10.1145/

2661829.2661935. arXiv: 1502.02367. url: http://arxiv.org/abs/1502.

02367.

[12] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang, D. J. Wu,

and A. Y. Ng. “Text Detection and Character Recognition in Scene Images with

Unsupervised Feature Learning.” In: 2011 International Conference on Document
Analysis and Recognition. 2011, pp. 440–445. doi: 10.1109/ICDAR.2011.95.

[13] R. Collobert. “Rehabilitation of Count-based Models for Word Vector Represen-

tations.” In: (2014). arXiv: arXiv:1412.4930v2.

[14] R. Collobert and J. Weston. “A unified architecture for natural language pro-

cessing.” In: Proceedings of the 25th international conference on Machine learning
- ICML ’08 20.1 (2008), pp. 160–167. issn: 07224028. doi: 10.1145/1390156.

1390177. url: http://portal.acm.org/citation.cfm?id=1390177{\%

}5Cnhttp://portal.acm.org/citation.cfm?doid=1390156.1390177.

[15] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.

“Natural Language Processing (Almost) from Scratch.” In: Journal of Machine
Learning Research 12 (2011), pp. 2493–2537. issn: 0891-2017. doi: 10.1.1.

231.4614. arXiv: 1103.0398.

[16] F Costa, P. Frasconi, V Lombardo, and G Soda. “Towards incremental pars-

ing of natural language using recursive neural networks.” In: Applied Intelli-
gence 19.1-2 (2003), pp. 9–25. url: http://www.springerlink.com/index/

WN8Q665MQ3462760.pdf.

[17] M. a. Covington. “A Fundamental Algorithm for Dependency Parsing.” In: Pro-
ceedings of the 39th Annual ACM Southeast Conference (2001), pp. 95–102.

[18] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. “Identi-

fying and attacking the saddle point problem in high-dimensional non-convex

optimization.” In: arXiv (2014), pp. 1–14. issn: 10495258. arXiv: 1406.2572.

url: http://arxiv.org/abs/1406.2572.

[19] M.-C. De Marneffe, B. MacCartney, and C. D. Manning. “Generating typed

dependency parses from phrase structure parses.” In: Proceedings of the 5th In-
ternational Conference on Language Resources and Evaluation (LREC 2006) (2006),

pp. 449–454. doi: 10.1.1.74.3875. url: http://nlp.stanford.edu/pubs/

LREC06{_}dependencies.pdf.

44

http://arxiv.org/abs/1412.3555v1
http://dx.doi.org/10.1145/2661829.2661935
http://dx.doi.org/10.1145/2661829.2661935
http://arxiv.org/abs/1502.02367
http://arxiv.org/abs/1502.02367
http://arxiv.org/abs/1502.02367
http://dx.doi.org/10.1109/ICDAR.2011.95
http://arxiv.org/abs/arXiv:1412.4930v2
http://dx.doi.org/10.1145/1390156.1390177
http://dx.doi.org/10.1145/1390156.1390177
http://portal.acm.org/citation.cfm?id=1390177{\%}5Cnhttp://portal.acm.org/citation.cfm?doid=1390156.1390177
http://portal.acm.org/citation.cfm?id=1390177{\%}5Cnhttp://portal.acm.org/citation.cfm?doid=1390156.1390177
http://dx.doi.org/10.1.1.231.4614
http://dx.doi.org/10.1.1.231.4614
http://arxiv.org/abs/1103.0398
http://www.springerlink.com/index/WN8Q665MQ3462760.pdf
http://www.springerlink.com/index/WN8Q665MQ3462760.pdf
http://arxiv.org/abs/1406.2572
http://arxiv.org/abs/1406.2572
http://dx.doi.org/10.1.1.74.3875
http://nlp.stanford.edu/pubs/LREC06{_}dependencies.pdf
http://nlp.stanford.edu/pubs/LREC06{_}dependencies.pdf

BIBLIOGRAPHY

[20] S. Deerwester, S. T. Dumais, G. W. Furnas, and T. K. Landauer. “Indexing by

Latent Semantic Analysis.” In: Society 41.6 (1990), pp. 391–407.

[21] S. Diego, L. Papers, and H. Rohde. “Rhetorical questions as redundant interrog-

atives.” In: San Diego Linguistics Papers 2.2 (2006).

[22] A. Dosovitskiy, J. T. Springenberg, and T. Brox. “Learning to generate chairs

with convolutional neural networks.” In: Proceedings of the IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition 07-12-June (2015),

pp. 1538–1546. issn: 10636919. doi: 10.1109/CVPR.2015.7298761. arXiv:

1512.03385.

[23] J. Duchi. “Adaptive Subgradient Methods for Online Learning and Stochastic

Optimization.” In: 12 (2011), pp. 2121–2159.

[24] J. Elith, C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J.

Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A.

Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. McC. M. Overton,

A. Townsend Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E.

Schapire, J. Soberón, S. Williams, M. S. Wisz, and N. E. Zimmermann. “Novel

methods improve prediction of species’ distributions from occurrence data.” In:

Ecography 29.2 (2006), pp. 129–151. issn: 09067590. doi: 10.1111/j.2006.

0906-7590.04596.x.

[25] J. L. Elman. “Finding structure in time.” In: Cognitive Science 14.2 (1990),

pp. 179–211. doi: 10.1016/0364-0213(90)90002-E. url: http://groups.

lis.illinois.edu/amag/langev/paper/elman90findingStructure.html.

[26] D. Erhan, A. Courville, and P. Vincent. “Why Does Unsupervised Pre-training

Help Deep Learning ?” In: Journal of Machine Learning Research 11 (2010),

pp. 625–660. issn: 15324435. doi: 10.1145/1756006.1756025. arXiv: arXiv:

1206.5538v1. url: http://portal.acm.org/citation.cfm?id=1756025.

[27] J. Firth. Papers in linguistics, 1934-1951. Oxford University Press, 1957. url:

https://books.google.pt/books?id=yxZZAAAAMAAJ.

[28] F. Gers and J. Schmidhuber. “Recurrent nets that time and count.” In: Proceed-
ings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks.
IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Mil-
lennium 1 (2000), 189–194 vol.3. issn: 1098-6596. doi: 10.1109/IJCNN.2000.

861302. arXiv: arXiv:1011.1669v3. url: http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=861302.

[29] F. a. Gers, N. N. Schraudolph, and J. Schmidhuber. “Learning Precise Timing

with LSTM Recurrent Networks.” In: Journal of Machine Learning Research 3.1

(2002), pp. 115–143. issn: 15324435. doi: 10.1162/153244303768966139.

url: http://www.crossref.org/jmlr{_}DOI.html.

45

http://dx.doi.org/10.1109/CVPR.2015.7298761
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x
http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x
http://dx.doi.org/10.1016/0364-0213(90)90002-E
http://groups.lis.illinois.edu/amag/langev/paper/elman90findingStructure.html
http://groups.lis.illinois.edu/amag/langev/paper/elman90findingStructure.html
http://dx.doi.org/10.1145/1756006.1756025
http://arxiv.org/abs/arXiv:1206.5538v1
http://arxiv.org/abs/arXiv:1206.5538v1
http://portal.acm.org/citation.cfm?id=1756025
https://books.google.pt/books?id=yxZZAAAAMAAJ
http://dx.doi.org/10.1109/IJCNN.2000.861302
http://dx.doi.org/10.1109/IJCNN.2000.861302
http://arxiv.org/abs/arXiv:1011.1669v3
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=861302
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=861302
http://dx.doi.org/10.1162/153244303768966139
http://www.crossref.org/jmlr{_}DOI.html

BIBLIOGRAPHY

[30] C. Goller and A. Kuchler. “Learning task-dependent distributed representations

by backpropagation through structure.” In: Neural Networks, 1996., IEEE Inter-
national Conference on. Vol. 1. 1996, 347–352 vol.1. doi: 10.1109/ICNN.1996.

548916.

[31] G. H. Golub and C. Reinsch. “Singular value decomposition and least squares so-

lutions.” In: Numerische Mathematik 14.5 (1970), pp. 403–420. issn: 0029599X.

doi: 10.1007/BF02163027.

[32] G. H. Golub and C. F. Van Loan. Matrix Computations. 1996. doi: 10.1063/1.

3060478. arXiv: arXiv:1011.1669v3.

[33] A. Graves, A.-r. Mohamed, and G. Hinton. “Speech Recognition With Deep

Recurrent Neural Networks.” In: Icassp 3 (2013), pp. 6645–6649. issn: 1520-

6149. doi: 10.1109/ICASSP.2013.6638947. arXiv: arXiv:1303.5778v1.

[34] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves. “Memory-

Efficient Backpropagation Through Time.” In: CoRR abs/1606.03401 (2016).

url: http://arxiv.org/abs/1606.03401.

[35] J. Henderson. “Neural network probability estimation for broad coverage pars-

ing.” In: Proceedings of the tenth conference on European chapter of the Associa-
tion for Computational Linguistics - EACL ’03 1.March (2003), pp. 131–138. doi:

10.3115/1067807.1067826. url: http://portal.acm.org/citation.cfm?

doid=1067807.1067826.

[36] G Hinton. “Mapping Part-Whole Hierachies into Connectionist Networks.” In:

Connectionist Symbol Processing 46.1990 (1990), pp. 47–75.

[37] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

“Improving neural networks by preventing co-adaptation of feature detectors.”

In: CoRR abs/1207.0580 (2012). url: http://arxiv.org/abs/1207.0580.

[38] S. Hochreiter. “Gradient Flow in Recurrent Nets: The Difficulty of Learning

LongTerm Dependencies.” In: (2001). doi: 10.1109/9780470544037.ch14.

url: http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=

5264952.

[39] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory.” In: Neural Com-
put. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.

1997.9.8.1735. url: http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[40] A. E. Hoerl and R. W. Kennard. “Ridge Regression: Application to nonorthogo-

nal problems.” In: Technometrics 12.1 (1970), pp. 69–82. issn: 0040-1706. doi:

10.1080/00401706.1970.10488634.

[41] J. J. Hopfield. Neural Networks and Physical Systems with Emergent Collective
Computational Abilities. 1982.

46

http://dx.doi.org/10.1109/ICNN.1996.548916
http://dx.doi.org/10.1109/ICNN.1996.548916
http://dx.doi.org/10.1007/BF02163027
http://dx.doi.org/10.1063/1.3060478
http://dx.doi.org/10.1063/1.3060478
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1109/ICASSP.2013.6638947
http://arxiv.org/abs/arXiv:1303.5778v1
http://arxiv.org/abs/1606.03401
http://dx.doi.org/10.3115/1067807.1067826
http://portal.acm.org/citation.cfm?doid=1067807.1067826
http://portal.acm.org/citation.cfm?doid=1067807.1067826
http://arxiv.org/abs/1207.0580
http://dx.doi.org/10.1109/9780470544037.ch14
http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=5264952
http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=5264952
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1080/00401706.1970.10488634

BIBLIOGRAPHY

[42] H. Jaeger. “The “ echo state ” approach to analysing and training recurrent

neural networks – with an Erratum note 1.” In: GMD Report 148 (2010), pp. 1–

47. issn: 18735223. doi: citeulike-article-id:9635932.

[43] H. Jaeger, W. Maass, and J. Principe. Special issue on echo state networks and liquid
state machines. 2007.

[44] M. I. Jordan. Serial order: A parallel distributed processing approach. 1986. url:

http://linkinghub.elsevier.com/retrieve/pii/S0166411597801112{\%

}5Cnhttp://www.sciencedirect.com/science/article/pii/S0166411597801112.

[45] D. Klein and C. Manning. “Corpus-based induction of syntactic structure: mod-

els of dependency and constituency.” In: ACL ’04: Proceedings of the 42nd Annual
Meeting on Association for Computational Linguistics 1 (2004), pp. 478–485. doi:

10.3115/1218955.1219016. url: http://portal.acm.org/citation.cfm?

id=1218955.1219016{\%}5Cnpapers2://publication/uuid/3CEA60B9-E382-

45DA-A4B5-F2771DFFC591.

[46] D. Klein and C. D. Manning. “A Generative Constituent-Context Model for

Improved Grammar Induction.” In: Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL) July (2002), pp. 128–135. doi:

10.3115/1073083.1073106.

[47] K. J. Lang. “A Time Delay Neural Network Architecture for Speech Recognition.”

AAI9011852. Doctoral dissertation. Pittsburgh, PA, USA, 1989.

[48] O. Levy, Y. Goldberg, and I. Dagan. “Improving Distributional Similarity with

Lessons Learned from Word Embeddings.” In: Transactions of the Association
for Computational Linguistics 3 (2015), pp. 211–225. issn: 2307-387X. doi: 10.

1186/1472-6947-15-S2-S2. arXiv: 1103.0398. url: https://tacl2013.cs.

columbia.edu/ojs/index.php/tacl/article/view/570.

[49] M. Li, T. Zhang, Y. Chen, and A. J. Smola. “Efficient Mini-batch Training for

Stochastic Optimization.” In: Kdd (2014), pp. 661–670. issn: 03029743. doi:

10.1145/2623330.2623612. arXiv: 1206.5533.

[50] Z. C. Lipton. “A Critical Review of Recurrent Neural Networks for Sequence

Learning.” In: CoRR abs/1506.0 (2015), pp. 1–38. issn: 9781450330633. doi:

10.1145/2647868.2654889. arXiv: 1506.00019v2. url: http://arxiv.org/

abs/1506.00019.

[51] J. Martens. “Deep learning via Hessian-free optimization.” In: Proceedings of
the 27th International Conference on Machine Learning (ICML-10) 951 (2010),

pp. 735–742. issn: 20901283. doi: 10.1155/2011/176802. url: http://www.

cs.toronto.edu/{~}asamir/cifar/HFO{_}James.pdf.

47

http://dx.doi.org/citeulike-article-id:9635932
http://linkinghub.elsevier.com/retrieve/pii/S0166411597801112{\%}5Cnhttp://www.sciencedirect.com/science/article/pii/S0166411597801112
http://linkinghub.elsevier.com/retrieve/pii/S0166411597801112{\%}5Cnhttp://www.sciencedirect.com/science/article/pii/S0166411597801112
http://dx.doi.org/10.3115/1218955.1219016
http://portal.acm.org/citation.cfm?id=1218955.1219016{\%}5Cnpapers2://publication/uuid/3CEA60B9-E382-45DA-A4B5-F2771DFFC591
http://portal.acm.org/citation.cfm?id=1218955.1219016{\%}5Cnpapers2://publication/uuid/3CEA60B9-E382-45DA-A4B5-F2771DFFC591
http://portal.acm.org/citation.cfm?id=1218955.1219016{\%}5Cnpapers2://publication/uuid/3CEA60B9-E382-45DA-A4B5-F2771DFFC591
http://dx.doi.org/10.3115/1073083.1073106
http://dx.doi.org/10.1186/1472-6947-15-S2-S2
http://dx.doi.org/10.1186/1472-6947-15-S2-S2
http://arxiv.org/abs/1103.0398
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/570
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/570
http://dx.doi.org/10.1145/2623330.2623612
http://arxiv.org/abs/1206.5533
http://dx.doi.org/10.1145/2647868.2654889
http://arxiv.org/abs/1506.00019v2
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019
http://dx.doi.org/10.1155/2011/176802
http://www.cs.toronto.edu/{~}asamir/cifar/HFO{_}James.pdf
http://www.cs.toronto.edu/{~}asamir/cifar/HFO{_}James.pdf

BIBLIOGRAPHY

[52] W. S. Mcculloch and W. Pitts. “A logical calculus nervous activity.” In: Bulletin
of Mathematical Biology 52.l (1990), pp. 99–115. issn: 00074985. doi: 10.1007/

BF02478259.

[53] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Distributed Representations of

Words and Phrases and their Compositionality.” In: Nips (2013), pp. 1–9. issn:

10495258. doi: 10.1162/jmlr.2003.3.4-5.951. arXiv: 1310.4546.

[54] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient Estimation of Word

Representations in Vector Space.” In: CoRR abs/1301.3781 (2013). url: http:

//arxiv.org/abs/1301.3781.

[55] A. Mnih. “Learning word embeddings efficiently with noise-contrastive estima-

tion.” In: Nips (2013), pp. 1–9. issn: 10495258. doi: 10.3115/v1/P14-1023.

arXiv: arXiv:1011.1669v3.

[56] Y. Nesterov. “A method of solving a convex programming problem with conver-

gence rate O (1/k2).” In: Soviet Mathematics Doklady. Vol. 27. 2. 1983, pp. 372–

376.

[57] A. Ng. “1. Supervised learning.” In: Machine Learning (2012), pp. 1–30.

[58] C. Noam. “Syntactic Structures.” In: (1958). doi: 10.1515/9783110218329.

url: http://www.degruyter.com/view/product/41408.

[59] B. Pang, L. Lee, and S. Vaithyanathan. “Thumbs up?: sentiment classification

using machine learning techniques.” In: Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing (2002), pp. 79–86. issn: 1554-

0669. doi: 10.3115/1118693.1118704. arXiv: 0205070 [cs]. url: http:

//portal.acm.org/citation.cfm?id=1118693.1118704.

[60] J. Pennington, R. Socher, and C. D. Manning. “GloVe : Global Vectors for Word

Representation.” In: (2014), pp. 1532–1543.

[61] J. B. Pollack. “Recursive Distributed Representations.” In: Artif. Intell. 46.1-2

(Nov. 1990), pp. 77–105. issn: 0004-3702. doi: 10.1016/0004- 3702(90)

90005-K. url: http://dx.doi.org/10.1016/0004-3702(90)90005-K.

[62] N. Qian. “On the momentum term in gradient descent learning algorithms.”

In: Neural Networks 12.1 (1999), pp. 145 –151. issn: 0893-6080. doi: http:

/ / dx . doi . org / 10 . 1016 / S0893 - 6080(98) 00116 - 6. url: http : / / www .

sciencedirect.com/science/article/pii/S0893608098001166.

[63] H. Ritter and T. Kohonen. “Self-organizing semantic maps.” In: Biological Cyber-
netics 61.4 (1989), pp. 241–254. issn: 03401200. doi: 10.1007/BF00203171.

[64] F. Robinson A. J. Fallside. “The utility driven dynamic error propagation net-

work.” In: (1987).

48

http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1162/jmlr.2003.3.4-5.951
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://dx.doi.org/10.3115/v1/P14-1023
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1515/9783110218329
http://www.degruyter.com/view/product/41408
http://dx.doi.org/10.3115/1118693.1118704
http://arxiv.org/abs/0205070
http://portal.acm.org/citation.cfm?id=1118693.1118704
http://portal.acm.org/citation.cfm?id=1118693.1118704
http://dx.doi.org/10.1016/0004-3702(90)90005-K
http://dx.doi.org/10.1016/0004-3702(90)90005-K
http://dx.doi.org/10.1016/0004-3702(90)90005-K
http://dx.doi.org/http://dx.doi.org/10.1016/S0893-6080(98)00116-6
http://dx.doi.org/http://dx.doi.org/10.1016/S0893-6080(98)00116-6
http://www.sciencedirect.com/science/article/pii/S0893608098001166
http://www.sciencedirect.com/science/article/pii/S0893608098001166
http://dx.doi.org/10.1007/BF00203171

BIBLIOGRAPHY

[65] F. Rosenblatt. “Principles of Neurodynamics. Perceptrons and the Theory of

Brain Mechanisms.” In: Archives of General Psychiatry 7 (1962), pp. 218–219.

issn: 0003-990X. doi: 10.1001/archpsyc.1962.01720030064010.

[66] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representatons by back-
propagating errors. 1986. doi: 10.1038/323533a0. arXiv: arXiv:1011.1669v3.

[67] G. Salton, A. Wong, and C. S. Yang. “A Vector Space Model for Automatic

Indexing.” In: Commun. ACM 18.11 (Nov. 1975), pp. 613–620. issn: 0001-0782.

doi: 10.1145/361219.361220. url: http://doi.acm.org/10.1145/361219.

361220.

[68] J. J. Schmidhuber. “Learning Complex, Extended Sequences Using the Principle

of History Compression.” In: Neural Comput. 4.2 (1992), pp. 234–242. issn:

0899-7667. doi: 10.1162/neco.1992.4.2.234. arXiv: 1103.0398. url:

http://dx.doi.org/10.1162/neco.1992.4.2.234.

[69] R. Socher. “Recursive Deep Learning for Natural Language Processing and

Computer Vision.” In: PhD thesis August (2014).

[70] R. Socher, C. D. C. Manning, and A. Y. A. Ng. “Learning continuous phrase rep-

resentations and syntactic parsing with recursive neural networks.” In: Proceed-
ings of the NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop
(2010), pp. 1–9. issn: 0302-9743. doi: 10.1007/978-3-540-87479-9. url:

http://wuawua.googlecode.com/files/LearningContinuousPhraseRepresentationsandSyntacticParsingwithRecursiveNeuralNetworks.

pdf.

[71] R. Socher, E. Huang, and J. Pennington. “Dynamic Pooling and Unfolding Re-

cursive Autoencoders for Paraphrase Detection.” In: Advances in Neural Informa-
tion Processing Systems (2011), pp. 801–809. issn: 9781618395993. url: http:

//machinelearning.wustl.edu/mlpapers/paper{_}files/NIPS2011{_

}0538.pdf{\%}5Cnhttps://papers.nips.cc/paper/4204-dynamic-pooling-

and - unfolding - recursive - autoencoders - for - paraphrase - detection .

pdf.

[72] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. “Semantic Compositionality

through Recursive Matrix-Vector Spaces.” In: Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning Mv (2012), pp. 1201–1211. issn: 9781937284435.

doi: 10.1162/153244303322533223. arXiv: arXiv:1301.3781v3.

[73] R. Socher, A. Perelygin, and J. Wu. “Recursive deep models for semantic compo-

sitionality over a sentiment treebank.” In: Proceedings of the . . . (2013), pp. 1631–

1642. issn: 1932-6203. doi: 10.1371/journal.pone.0073791. arXiv: 1512.

03385. url: http://nlp.stanford.edu/{~}socherr/EMNLP2013{_}RNTN.

pdf{\%}5Cnhttp://www.aclweb.org/anthology/D13-1170{\%}5Cnhttp://

49

http://dx.doi.org/10.1001/archpsyc.1962.01720030064010
http://dx.doi.org/10.1038/323533a0
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1145/361219.361220
http://doi.acm.org/10.1145/361219.361220
http://doi.acm.org/10.1145/361219.361220
http://dx.doi.org/10.1162/neco.1992.4.2.234
http://arxiv.org/abs/1103.0398
http://dx.doi.org/10.1162/neco.1992.4.2.234
http://dx.doi.org/10.1007/978-3-540-87479-9
http://wuawua.googlecode.com/files/Learning Continuous Phrase Representations and Syntactic Parsing with Recursive Neural Networks.pdf
http://wuawua.googlecode.com/files/Learning Continuous Phrase Representations and Syntactic Parsing with Recursive Neural Networks.pdf
http://machinelearning.wustl.edu/mlpapers/paper{_}files/NIPS2011{_}0538.pdf{\%}5Cnhttps://papers.nips.cc/paper/4204-dynamic-pooling-and-unfolding-recursive-autoencoders-for-paraphrase-detection.pdf
http://machinelearning.wustl.edu/mlpapers/paper{_}files/NIPS2011{_}0538.pdf{\%}5Cnhttps://papers.nips.cc/paper/4204-dynamic-pooling-and-unfolding-recursive-autoencoders-for-paraphrase-detection.pdf
http://machinelearning.wustl.edu/mlpapers/paper{_}files/NIPS2011{_}0538.pdf{\%}5Cnhttps://papers.nips.cc/paper/4204-dynamic-pooling-and-unfolding-recursive-autoencoders-for-paraphrase-detection.pdf
http://machinelearning.wustl.edu/mlpapers/paper{_}files/NIPS2011{_}0538.pdf{\%}5Cnhttps://papers.nips.cc/paper/4204-dynamic-pooling-and-unfolding-recursive-autoencoders-for-paraphrase-detection.pdf
http://machinelearning.wustl.edu/mlpapers/paper{_}files/NIPS2011{_}0538.pdf{\%}5Cnhttps://papers.nips.cc/paper/4204-dynamic-pooling-and-unfolding-recursive-autoencoders-for-paraphrase-detection.pdf
http://dx.doi.org/10.1162/153244303322533223
http://arxiv.org/abs/arXiv:1301.3781v3
http://dx.doi.org/10.1371/journal.pone.0073791
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://nlp.stanford.edu/{~}socherr/EMNLP2013{_}RNTN.pdf{\%}5Cnhttp://www.aclweb.org/anthology/D13-1170{\%}5Cnhttp://aclweb.org/supplementals/D/D13/D13-1170.Attachment.pdf{\%}5Cnhttp://oldsite.aclweb.org/anthology-new/D/D13/D13-1170.pdf
http://nlp.stanford.edu/{~}socherr/EMNLP2013{_}RNTN.pdf{\%}5Cnhttp://www.aclweb.org/anthology/D13-1170{\%}5Cnhttp://aclweb.org/supplementals/D/D13/D13-1170.Attachment.pdf{\%}5Cnhttp://oldsite.aclweb.org/anthology-new/D/D13/D13-1170.pdf
http://nlp.stanford.edu/{~}socherr/EMNLP2013{_}RNTN.pdf{\%}5Cnhttp://www.aclweb.org/anthology/D13-1170{\%}5Cnhttp://aclweb.org/supplementals/D/D13/D13-1170.Attachment.pdf{\%}5Cnhttp://oldsite.aclweb.org/anthology-new/D/D13/D13-1170.pdf
http://nlp.stanford.edu/{~}socherr/EMNLP2013{_}RNTN.pdf{\%}5Cnhttp://www.aclweb.org/anthology/D13-1170{\%}5Cnhttp://aclweb.org/supplementals/D/D13/D13-1170.Attachment.pdf{\%}5Cnhttp://oldsite.aclweb.org/anthology-new/D/D13/D13-1170.pdf

BIBLIOGRAPHY

aclweb.org/supplementals/D/D13/D13-1170.Attachment.pdf{\%}5Cnhttp:

//oldsite.aclweb.org/anthology-new/D/D13/D13-1170.pdf.

[74] I. Sutskever. “Training Recurrent neural Networks.” In: PhD thesis (2013), p. 101.

arXiv: 1456339 [arXiv:submit].

[75] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to Sequence Learning with

Neural Networks.” In: CoRR abs/1409.3215 (2014). url: http://arxiv.org/

abs/1409.3215.

[76] R. S. Sutton. “Learning to Predict by the Method of Temporal Differences.”

In: Machine Learning 3.1 (1988), pp. 9–44. issn: 08856125. doi: 10.1023/A:

1018056104778. url: citeseer.ist.psu.edu/sutton88learning.html.

[77] K. S. Tai, R. Socher, and C. D. Manning. “Improved Semantic Representations

From Tree-Structured Long Short-Term Memory Networks.” In: Acl (1) (2015),

pp. 1556–1566. issn: 9781941643723. doi: 10.1515/popets- 2015- 0023.

arXiv: 1503.0075. url: http://aclweb.org/anthology/P/P15/.

[78] B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. “Max-Margin Pars-

ing.” In: Proc. EMNLP (2004), pp. 1–8.

[79] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. “Show and Tell: A Neural Image

Caption Generator.” In: CoRR abs/1411.4555 (2014). url: http://arxiv.org/

abs/1411.4555.

[80] P. J. Werbos. “Backwards Differentiation in AD and Neural Nets: Past Links and

New Opportunities.” In: Lecture Notes in Computational Science and Engineering
50 (2006), pp. 15–34. issn: 14397358. doi: 10.1007/3-540-28438-9_2.

[81] W. Zaremba and I. Sutskever. “Learning to Execute.” In: CoRR abs/1410.4615

(2014). url: http://arxiv.org/abs/1410.4615.

[82] M. D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method.” In: CoRR
abs/1212.5701 (2012). url: http://arxiv.org/abs/1212.5701.

[83] M. Zhu, Y. Zhang, W. Chen, M. Zhang, and J. Zhu. “Fast and Accurate Shift-

Reduce Constituent Parsing.” In: Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers) (2013), pp. 434–

443. url: http://www.aclweb.org/anthology/P/P13/P13-1043.pdf{\%

}5Cnhttp://www.aclweb.org/anthology/P13-1043.

[84] D. Zipser and R. J. Williams. “Gradient-Based Learning Algorithms for Recur-

rent Networks and Thei r Computational Complexity.” In: Back-propagation:
Theory, Architectures and Applications (1995), pp. 433–486.

50

http://nlp.stanford.edu/{~}socherr/EMNLP2013{_}RNTN.pdf{\%}5Cnhttp://www.aclweb.org/anthology/D13-1170{\%}5Cnhttp://aclweb.org/supplementals/D/D13/D13-1170.Attachment.pdf{\%}5Cnhttp://oldsite.aclweb.org/anthology-new/D/D13/D13-1170.pdf
http://nlp.stanford.edu/{~}socherr/EMNLP2013{_}RNTN.pdf{\%}5Cnhttp://www.aclweb.org/anthology/D13-1170{\%}5Cnhttp://aclweb.org/supplementals/D/D13/D13-1170.Attachment.pdf{\%}5Cnhttp://oldsite.aclweb.org/anthology-new/D/D13/D13-1170.pdf
http://nlp.stanford.edu/{~}socherr/EMNLP2013{_}RNTN.pdf{\%}5Cnhttp://www.aclweb.org/anthology/D13-1170{\%}5Cnhttp://aclweb.org/supplementals/D/D13/D13-1170.Attachment.pdf{\%}5Cnhttp://oldsite.aclweb.org/anthology-new/D/D13/D13-1170.pdf
http://nlp.stanford.edu/{~}socherr/EMNLP2013{_}RNTN.pdf{\%}5Cnhttp://www.aclweb.org/anthology/D13-1170{\%}5Cnhttp://aclweb.org/supplementals/D/D13/D13-1170.Attachment.pdf{\%}5Cnhttp://oldsite.aclweb.org/anthology-new/D/D13/D13-1170.pdf
http://arxiv.org/abs/1456339
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://dx.doi.org/10.1023/A:1018056104778
http://dx.doi.org/10.1023/A:1018056104778
citeseer.ist.psu.edu/sutton88learning.html
http://dx.doi.org/10.1515/popets-2015-0023
http://arxiv.org/abs/1503.0075
http://aclweb.org/anthology/P/P15/
http://arxiv.org/abs/1411.4555
http://arxiv.org/abs/1411.4555
http://dx.doi.org/10.1007/3-540-28438-9_2
http://arxiv.org/abs/1410.4615
http://arxiv.org/abs/1212.5701
http://www.aclweb.org/anthology/P/P13/P13-1043.pdf{\%}5Cnhttp://www.aclweb.org/anthology/P13-1043
http://www.aclweb.org/anthology/P/P13/P13-1043.pdf{\%}5Cnhttp://www.aclweb.org/anthology/P13-1043

A
p
p
e
n
d
i
x

A
Appendix 1

Let E is the error ,δht =
θE
θht

, we seek to find δot , δCt, δit , δC̃t, δft, , δCt−1.

δot =
θE
θot

=
θE
θht

θht
θot

= δht � tanh(Ct) (A.1)

δCt =
θE
θCt

=
θE
θht

θht
θCt

= δht � ot � (1− tanh2(Ct)) (A.2)

δit =
θE
θit

=
θE
θCt

θCt
θit

= δCt � C̃t (A.3)

δC̃t =
θE

θC̃t
=
θE
θCt

θCt
θC̃t

= δCt � it (A.4)

δft =
θE
θft

=
θE
θCt

θCt
θft

= δCt �Ct−1 (A.5)

δCt−1 =
θE
θCt−1

=
θE
θCt

θCt
θCt−1

= δCt � ft (A.6)

51

A
p
p
e
n
d
i
x

B
Appendix 2

Given δht =
θE
θht

we seek to find δh̃tht, δrt and δzt

δh̃t =
θE

θh̃t
=
θE
θht

θht
θh̃t

= δht(1− z) (B.1)

δrt =
θE
θrt

=
θE

θh̃t

θh̃t
θrt

= δh̃t � ht−1U
h � (1− h̃2

t) (B.2)

δzt =
θE
θzt

=
θE
θht

θht
θzt

= δht(ht−1 − h̃t) (B.3)

53

	List of Figures
	List of Tables
	Introduction
	Motivation
	Overview of Thesis
	Background
	Sentiment Classification and Sequences
	Syntactic Structure
	Neural Networks

	Word Embeddings
	Latent Semantic Analysis
	Word2Vec
	GloVe

	Feedback Neural Networks
	Recurrent Neural Networks
	Simple Recurrent Neural Networks
	Long-Short Term Memory
	Gated Recurrent Unit

	Recursive Neural Networks
	Simple Recursive Neural Network
	Syntactically Untied SU-RNN
	Matrix-Vector Recursive Neural Networks
	Recursive Neural Tensor Network
	Tree-Based Long-Short Term Memory Networks
	Tree-Based Gated Recurrent Unit

	Neural Network Training
	Gradient Descent Variants
	Batch Gradient Descent
	Stochastic Gradient Descent
	Mini-Batch Gradient Descent

	Gradient Descent Extensions
	Vanilla update
	Momentum update
	Nesterov Momentum update
	AdaGrad
	AdaDelta
	RMSprop

	Hyperparameters
	Learning Rate
	Regularization

	Experiments
	Model comparison
	Classification model
	Binary Classification
	Fine-grained Classification
	Hyperparameters and Training Details

	Results
	Conclusions and Future Work

	Bibliography
	Appendix 1
	Appendix 2

