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ABSTRACT 

March Madness describes the final tournament of the college basketball championship, considered by many as 

the biggest sporting event in the United States - moving every year tons of dollars in both bets and television. 

Besides that, there are 60 million Americans who fill out their tournament bracket every year, and anything is more 

likely than hit all 68 games. 

After collecting and transforming data from Sports-Reference.com, the experimental part consists of preprocess 

the data, evaluate the features to consider in the models and train the data.  In this study, based on tournament 

data over the last 20 years, Machine Learning algorithms like Decision Trees Classifier, K-Nearest Neighbors 

Classifier, Stochastic Gradient Descent Classifier and others were applied to measure the accuracy of the predictions 

and to be compared with some benchmarks. 

Despite of the most important variables seemed to be those related to seeds, shooting and the number of 

participations in the tournament, it was not possible to define exactly which ones should be used in the modeling 

and all ended up being used. 

Regarding the results, when training the entire dataset, the accuracy ranges from 65 to 70%, where Support 

Vector Classification yields the best results. When compared with picking the highest seed, these results are slightly 

lower. On the other hand, when predicting the Tournament of 2017, the Support Vector Classification and the 

Multi-Layer Perceptron Classifier reach 85 and 79% of accuracy, respectively. In this sense, they surpass the 

previous benchmark and the most respected websites and statistics in the field. 

Given some existing constraints, it is quite possible that these results could be improved and deepened in other 

ways. Meanwhile, this project can be referenced and serve as a basis for the future work. 

 

KEYWORDS 

March Madness; NCAAB; basketball; prediction; classification problem; Machine Learning 

https://www.sports-reference.com/cbb/
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 INTRODUCTION 

For this thesis, it was decided to do a work project. Something that would not be boring, but fun, interesting 

and, if possible, that is able to produce some monetary return. Two fields that I particularly like were joined: sports 

and data analysis. After some research about possible projects, it appeared to be interesting to come up with a way 

to predict basketball results, which is a sport so connected to statistics. Since college basketball in the United States 

is so mediatic, it seemed to me an excellent challenge. 

1.1 BACKGROUND 

The object of the study will be the March Madness. Every year since 1939, at the end of the NCAA basketball 

season, the final phase is played in March by the best American college teams in a country-wide tournament to 

determine the NCAA champion. As the tournament has grown, so has its national reputation and March Madness 

has become one of the most famous annual sporting events in the United States, partially because of its enormous 

television contracts with TV broadcasters, but mainly because of the popularity of the tournament pools.  

Originally, the tournament was composed of 8 teams. The last enlargement took place in 2011, when the 

number of participants rose from 65 to 68 and, instead of one play-in game (to determine whether the 64th or 65th 

team plays in the first round) there are four play-in games before all 64 teams compete in the first round. It is 

speculated that the number of teams be likely to increase. 

The selection of the teams is quite complex, and it includes a committee who endeavors to select the most 

deserving teams and to achieve fair competitive balance in each of the four (East, West, Midwest and South) regions 

of the bracket. The process consists of three 

phases: 

i. Select the 36 best at-large teams, who did 

not automatically qualify for the tournament 

(the remaining 32 teams guarantee the right 

to participate by having won the conference 

championship); 

ii. Seed all 68 teams (from 1 to 68); 

iii. Place the teams into the championship 

bracket. The matchups are determined after 

the 1 to 16 seeding by region (#1 seed plays #16 

seed, #2 seed plays #15 seed, and so on). 

The initial bracket looks like the one reported in Figure 1 and it is announced on a Sunday, known as selection 

Sunday. March Madness is a single-elimination tournament where the losers are eliminated, and the winners move 

Figure 1 – 2017 March Madness bracket 
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on to the next phase. Once the 64 teams that make up the tournament are known, the First Round is played, 

followed by the Second Round, Regional Semifinals (or Sweet 16), Regional Final (or Elite 8), National Semifinals (or 

Final 4) and, finally, the National Final where the champion is crowned. Throughout all 6 rounds of the tournament, 

each game is played at a neutral site rather than on the home court of one team. 

1.2 RESEARCH PROBLEM 

This project is a clear challenge against all odds. Ignoring the opening round games, which are not considered in 

most contests, there is a 64-team pool with 63 games to predict. Given the sporting nature of a basketball game, it 

also becomes interesting to identify and measure the importance that certain characteristics have on the success 

of participating in the tournament. Despite being very difficult to reach great accuracies, people continue to 

research and try their best. Mathematically speaking, perfectly fill a March Madness bracket is one of the most 

unlikely things on earth: 

𝐶63
63

232 ∗ 216 ∗ 28 ∗ 24 ∗ 22 ∗ 21
=

1

9 223 372 036 854 775 808
≈ 0.00000000000000000010842021724855044 

Typically, the goal in these pools is to predict the winners of as many games as possible before the beginning of 

the tournament. More sophisticated contests incorporate point schemes that award different numbers of points 

to correct predictions depending on which teams and games are involved: usually, to each round are assigned 32 

points. In this sense, picking the teams that play the latest rounds is far more important than picking correctly all 

first-round results. 

Besides this, there is Kaggle: a data science community that has been hosting prediction contests since its 

inception in 2010. Kaggle contests involve building prediction models or algorithms for specific data questions, 

often posed by companies that reward the best forecasts. The March Madness contest, called March Machine 

Learning Mania, started in 2014 and it is divided into two independent stages. The provided data is the same for all 

participants, but in the course of the contest, many competitors help each other with data sharing, coding, and 

ideas. In the first stage, Kagglers will rely on results of past tournaments to build and test models, trying to achieve 

maximum accuracy. The second stage is the real contest where competitors forecast outcomes of all possible 

match-ups in the tournaments. Contrary to what happens with most tournament pools, in which the winning 

bracket is the one which successfully predicts the largest number of possible game winners, the goal is to have a 

greater sum of probabilities for the winners. In the literature review chapter, beyond the results achieved, the 

methods used by the last winners will also be analyzed. 

Another big issue about this topic is the selection of the variables. Pool participants use several sources like 

specialists’ opinions, Rating Percentage Index1 (a combination of a team and opponent’s winning percentage), 

                                                           
1 Available at http://www.ncaa.com/rankings/basketball-men/d1/ncaa-mens-basketball-rpi 

 

http://www.ncaa.com/rankings/basketball-men/d1/ncaa-mens-basketball-rpi
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Sagarin’s ratings2 published in USA Today, Massey’s ratings3, Las Vegas betting odds, and the tournament selection 

committee’s seedings. Many researchers are not apologists of these metric and try to fight the subjectivity of the 

win record and seeding evaluation that are key factors in choosing who receives the at-large bids (Zimmer & Kuethe, 

2008; Fearnhead & Taylor, 2010). 

1.3 RESEARCH OBJECTIVES 

The main focus of this project is to use several ML algorithms to predict the result of basketball games. Hence, 

the accuracy of the prediction is a crucial point. Another important part focuses on getting a better insight about 

variables, trying to overcome results of previous studies by including this knowledge in the formalization of the 

problem. 

 To achieve a model with great accuracy is essential to find the best possible combination of variables. Every 

year, bettors, researchers and pools enthusiasts tend to look at specific metrics such as seeds, team records, and 

several rankings. In this project, it was tried to build models with a large historical dataset, using previous year’s 

tournament results as input to determine future outcomes of NCAA Tournament. 

Decisions must be made as quickly as possible and this challenge of collecting data right after the selection, build 

solid predictive models and fill brackets must be made by the time of the first first-round game, usually on Thursday, 

the deadline for most of the tournament challenges. Once the amount of data collected is increasing, another aim 

must be to find more practical and autonomous methods to extract the raw data and run the algorithms. 

 

Figure 2 – 2016 March Madness filled bracket 

                                                           
2 Available at http://www.usatoday.com/sports/ncaab/sagarin/ 
3 Available at http://www.masseyratings.com/cb/ncaa-d1/ratings 

http://www.usatoday.com/sports/ncaab/sagarin/
http://www.masseyratings.com/cb/ncaa-d1/ratings
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 LITERATURE REVIEW 

This chapter will review some research and experiments related to the topic. The review is divided in Machine 

Learning, general basketball predictions and former predictions of the NCAA Basketball Tournament. 

2.1 MACHINE LEARNING 

CONCEPT 

Machine Learning is the subgroup of computer science and artificial intelligence that provides computers the 

ability to learn, without being explicitly programmed, and perform specific tasks. ML was born in the 50s and 60s 

from pattern recognition and its focus was the development of computer programs that can change when exposed 

to new data. The earliest computer scientists like Alan Turing - who invented the Turing Machine, the foundation 

of the modern theory of computation and computability, and John von Neumann - who defined the architectural 

principles of a general purpose "stored program computer" on which all succeeding computers were based, had 

the intention of imbuing computer programs with intelligence, with the human ability to self−replicate and the 

adaptive capability to learn and to control their environments (Mitchell, 1996). 

Ever since computers were invented, there has always been a desire to computers to learn like humans, but 

  Algorithms began to be effective for certain types of learning tasks and many practical computer programs have 

been developed to exhibit useful types of learning like making accurate predictions, and significant commercial 

applications have begun to appear on automatic method, without human intervention or assistance. In the field 

known as Data Mining, ML algorithms, allied to other disciplines such as Probability and Statistics or Computational 

Complexity, are being used routinely to discover valuable knowledge from large databases (Mitchell, 1997; 

Schapire, 2008). 

A well-defined learning problem requires a well-specified task, performance metric, and source of training 

experience. Designing a ML approach involves many design choices, including choosing the type of training 

experience, the target function to be learned, a representation for this target function, and a sequence of 

computational steps that takes inputs and produces output, usually called algorithms, for learning the target 

function from training examples (Mitchell, 1997; Cormen, 2009). 

With the evolution of IT - cheaper data storage, distributed processing, more powerful computers, and the 

analytical opportunities available the interest in ML systems that can now be applied to huge quantities of data 

have dramatically increased (Bucheli & Thompson, 2014). 

OBJECTIVES 

The primary goal of ML research is to develop general purpose efficient algorithms of practical value and solve 

a certain problem. The best would be to look for models that can be easily applied to a broad class of learning issue. 

ML focuses on the construction and study of systems that can learn from data (data driven) and analyze massive 

datasets (Bucheli & Thompson, 2014).  
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To a ML algorithm is given a “teaching set” of collected data for a concrete problem, then asked to use that data 

to answer a question or solve a specific task. For instance, you might provide a computer a teaching set of 

photographs, some of which say “this is a cat”, some of which say “this is not a cat” and then show the computer a 

series of unseen photos and it would be able to identify which photos were of cats (Marr, 2016). 

The accuracy of the prediction is extremely important, especially in fields like sciences and medicine. Every 

researcher wants his model to be as accurate as possible, since there are no infallible models. Other relevant 

concerns are about the amount of data that is required by the learning algorithm and the interpretability of the 

results: in some contexts, it is essential to find outcomes that are easily understandable in order to support 

decisions. Briefly, the goal of ML is to develop deep insights from data assets faster, extract knowledge with greater 

precision, improve the bottom line and reduce risk (Bucheli & Thompson, 2014; Schapire, 2008). 

APPLICATIONS 

ML algorithms have proven to be of great practical value in a variety of application domains. They are especially 

useful in automatically discover patterns, explore poorly understood domains where humans might not have the 

knowledge needed to develop effective algorithms and develop dynamic programs adaptable to changing 

conditions (Mitchell, 1997). Following are some examples of studies and research carried out in the ML field: 

▪ Customer segmentation and consumer behavior 

Faced with constant changes, the market becomes increasingly competitive. In this sense, companies are more 

and more concerned about customers, mainly on the quality of services provided and their satisfaction, trying to 

attract, retain and cultivate consumers. Early in 2004, with the support of SVMs, was shown that in the very noisy 

domain of customer feedback, it is nevertheless possible to perform sentiment classification (Gamon, 2004). 

Dynamic pricing and ML techniques were also studied. Facilitated by statistical, DM methods and ML models the 

study sought to predict the purchase decisions based on adaptive or dynamic pricing of a product. The results were 

encouraging enough to implement the framework completely (Gupta & Pathak, 2014); 

▪ Drive autonomously a vehicle.  

Autonomous driving systems which can help decrease fatalities caused by traffic accidents and this kind of 

everyday tasks are the major challenges in modern computer science. Back in the 90s, ALVINN, a backpropagation 

network, was developed to autonomously control a Chevy van by watching a human driver’s reactions in several 

circumstances including single-lane paved and unpaved roads, and multilane lined and unlined roads, at speeds of 

up to 20 miles per hour (Pomerleau, 1991). More recently, computer vision was combined with deep learning to 

bring about a relatively inexpensive, robust solution to autonomous driving. Using a large data set of highway data 

and apply deep learning and computer vision algorithms it was proved that convolutional NN algorithms are capable 

of reliable performance in highway lane and vehicle detection (Huval et al., 2015); 

▪ Financial sector issues 
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An overview study (Husain & Vohra, 2017) shown existing applications of ML in the financial sector as loan 

approvals, asset management, risk profiling, trading or market predictions. Particularly in the fraud detection, ML 

techniques are useful to identify irregular transactions and some experiments tested ML algorithms and meta-

learning strategies on real-world data (Stolfo et al., 1997). This topic was analyzed by Fawcett and Provost (1996) 

and they combined DM and ML techniques to design methods for detect fraudulent usage of cellular telephones 

based on profiling customer behavior. Specifically, they used a rule learning program to uncover indicators of 

fraudulent behavior from a large database of cellular calls and subsequently generate alarms; 

▪ Recognize spoken words. 

All of the most successful speech recognition systems employ ML in some form. For example, some Silicon Valley 

researchers have presented an end-to-end deep learning-based speech system capable of outperforming existing 

state-of-the-art recognition pipelines in two challenging scenarios: clear, conversational speech and speech in noisy 

environments (Hannun et al., 2014). In another study, it was shown that the combination of deep, bidirectional 

Long Short-term Memory RNNs with end-to-end training and weight noise gives state-of-the-art results in phoneme 

recognition on a specific database (Graves et al., 2013). Using the same database, it was also used a new type of 

deep NN that uses an SVM at the top layer (Zhang et al., 2015). Both deep recurrent NN and SVM are two ML 

features; 

Besides all these topics, there are many other fields where ML techniques are used such as spam filtering, 

weather forecast, medical diagnosing and topic spotting (categorize news articles as to whether they are about 

politics, sports, entertainment). This project is part of one the ML field, called task-oriented studies, that consists 

of the development and analysis of learning systems oriented toward solving a predetermined set of tasks, also 

known as the “engineering approach” (Carbonell et al., 1983). 

2.2 PREDICTIONS 

INTUITION AND DATA-BASED DECISIONS 

In any sport, people always like to bet and predict who will win a certain event or a particular game. Often, when 

presented with a decision like filling a March Madness bracket it is usual to have an instinctive sense that one 

alternative is better than others. Intuition is hard to define, but feelings, experience and the ability to detect 

patterns, even unconsciously, are definitely part of it. Some top executives are the first to admit that statistical 

models based on rules typically outperform and are more consistent than human experts’ gut. For them, the major 

problems leading to bad decisions are:  

• The tendency to identify inexistent patterns, what statisticians call overfitting of the data; 

• The abundance or paucity of emotion; 

• Lack of feedback – without knowing about the mistakes, it is impossible to learn from them. 

Despite the abundance of data and analytics at their disposal, experienced managers occasionally opt to rely on 

gut instinct to make complex decisions (Hayashi, 2001; Matzler et al., 2007; Seo & Barrett, 2007). 
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On the other hand, this trend tends to reverse and there are good reasons to believe in data-based decision-

making. Buzzwords like Big Data, Data Mining or Data Science have more and more importance in business world. 

Retail systems are increasingly computerized and merchandising decisions were automated. Famous examples 

include Harrah’s casinos’ reward programs and the automated recommendations of Amazon and Netflix (Provost 

& Fawcett, 2013). Its benefits were demonstrated conclusively by Brynjolfsson et al. (2011) who conducted a study 

of how data-based decision-making affects firms’ performance. They showed statistically that the more data-driven 

a firm is, the much more productive it is and there is a positive association with the return on assets. 

In the NBA, in the mid 90’s, coaches started to use a PC-based Data Mining application called Advanced Scout. 

This tool helped staff to discover interesting patterns in their strategies such as shooting performance or possession 

analysis to determine optimal line-up combinations. These types of analyses could be more enriched and more 

valuable through by inference rules and the combination with coaches’ expertise (Bhandari et al., 1997). 

PREDICTIONS IN BASKETBALL 

Many studies and experiments have been made to counter decisions based on intuition. Basketball is full of 

statistics and, specifically in this sport, data are increasingly important and massive amounts of them are collected 

for every team. There are individual and collective, offensive and defensive stats and entire teams all have an 

immensity of data that attempt to quantify how any part of their game is performing. 

In the early days of sport, the analyses were limited to basic operations such as averages, counts and sums 

calculations. Over time, statistics experts have begun to deepen and refine this type of analysis. In a period when 

access to information was still limited, one of the first studies (Zak et al., 1979) approached the topic in an 

econometric way on a statistical basis. The objects of study were games played by teams from the Pacific Division 

during the 1976-77 season. Although the sample is based on this five teams (Boston Celtics, Buffalo Braves, New 

York Knicks, New York Nets and Philadelphia 76ers), the schedule granted the representation of all teams in the 

league. 

The statistical methods used, Cobb-Douglas production functions and the Ordinary Least Squares method, are 

easy to interpret due to elasticities and it is simple to understand the input variables’ impact on the output despite 

admitting some randomness from match to match, being thus possible to identify game features where the team 

should improve. 

The features used were the ratio of the final scores as output and ratios of shooting (FG% and FT%), offensive 

and defensive rebounds, ball handling (assists), defense (steals and the difference in number of blocked shots) and 

negative aspects of the game like personal fouls and turnovers, in addition to a binary variable for location as inputs. 

The adoption of ratios makes sense because the main goal of sports is to have a better relative performance than 

the other team. The results of this experiment can be found in the table below: 
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Variables League Boston Buffalo N. Y. Knicks N. Y. Nets Philadelphia 

Constant -.0016 -.0064 -.0040 -.0084 .0011 -.0001 

Log (FG%) 
.6136 * 
(20.395) 

.5511 * 
(8.158) 

.6562 * 
(10.437) 

.5500 * 
(8.494) 

.5839 * 
(8.872) 

.6634 * 
(8.958) 

Log (FT%) 
.1137 * 
(8.581) 

.0760 * 
(2.466) 

.1677 * 
(6.295) 

.0979 * 
(3.269) 

.1308 * 
(4.378) 

.1260 * 
(4.378) 

Log (Offensive rebounds) 
.0812 * 
(13.144) 

.0847 * 
(6.828) 

.0900 * 
(7.518) 

.0554 * 
(4.174) 

.0873 * 
(6.370) 

.0829 * 
(4.836) 

Log (Defensive rebounds) 
.0610 * 
(3.103) 

.0839 * 
(1.958) 

.0438 
(1.150) 

.1182 * 
(2.571) 

-.0034 
(-.082) 

.0354 
(.681) 

Log (Assists) 
.0116 

(1.289) 
.0364 * 
(1.727) 

-.0092 
(-.509) 

.0204 
(.087) 

.0333 * 
(1.723) 

.0053 
(.250) 

Log (Personal fouls) 
-.1175 * 
(-12.013) 

-.1706 * 
(-7.179) 

-.0952 * 
(-5.890) 

-.1212 * 
(-4.658) 

-.1418 * 
(-5.773) 

-.1196 * 
(-4.486) 

Log (Steals) 
.0165 * 
(3.181) 

.0138 
(1.441) 

.0114 
(1.234) 

.0400 * 
(2.710) 

.0268 * 
(1.879) 

.0254 * 
(2.199) 

Log (Turnovers) 
-.1216 * 
(-11.018) 

-.0908 * 
(-4.540) 

-.1287 * 
(-6.380) 

-.1434 * 
(-5.149) 

-.0752 * 
(-2.842) 

-.1231 * 
(-4.448) 

Home court (=1) 
.0067 

(1.276) 
.0075 
(.690) 

.0038 
(.379) 

.0150 
(1.113) 

-.0013 
(-.117) 

.0418 
(1.304) 

Blocked shots a 
-.0003 
(-.388) 

-.0024 
(-1.357) 

.0003 
(.310) 

-.0015 
(-.745) 

-.0006 
(-.360) 

.00004 
(.028) 

R^2 87,37 % 86,40 % 90,41 % 85,08 % 85,50 % 87,52 % 

Number of games 357 77 79 81 78 79 

a Difference in blocked shots in a game; * Significant at the 5% level (one-tailed test) 

Table 1 – Zak et al.’s production function estimates 

At the 5% level, most of the coefficients are statistically significant. The largest output elasticities are associated 

with shooting percentages, particularly FG%, being the elasticity of FT% comparatively lower while rebounds and, 

in several cases, contribute substantially to output. On the other hand, personal fouls and turnovers reduce output 

and the difference in blocked shots and the ratio of assists proved to be insignificant. The coefficient on the 

locational variable is consistently insignificant which may mean that, therefore, this variable does not have an 

impact on its own, but may have an impact on the remaining inputs. 

The study also allowed to develop an estimate of the performance of the team according to its resources, like a 

power ranking. Taking the logarithm of the production function, equation yields: 

ln 𝑌 = ln 𝐹(𝑥) + ln 𝑢 = [ln 𝐹(𝑥) −  𝜆] + [𝜆 −  𝑣]. 

 

The team frontier (a limit based on team stats), was calculated using the mean values for all inputs and estimated 

coefficients. For the investigators, a team’s actual performance is a combination of its potential (the frontier output) 

and its efficiency. Multiplying the frontier output by the level of efficiency yields expected output, and teams can 

be ranked on this basis. 
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 Variables League Boston Buffalo N. Y. Knicks N. Y. Nets Philadelphia 

Frontier output 1.0025 1.0049 .9804 1.0190 .9589 1.0486 

Variance (λ) .00185 .00177 .00127 .00219 .00201 .00154 

Efficiency (2-λ) .99872 .99877 .99912 .99849 .99861 .99893 

Frontier output x efficiency 1.0012 1.0037 .9795 1.0175 .9576 1.0475 

Estimated rank - 3 4 2 5 1 

Actual rank - 3 4 2 5 1 

Table 2 – Zak et al.’s estimated production output 

The results were identical to the league standings for that season. The next step was to find the marginal 

productivity of each input, given by: 

(𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦)𝑖 =  𝛼𝑖

𝑌̅

𝑋𝑖̅

 

Variables League Boston Buffalo N. Y. Knicks N. Y. Nets Philadelphia 

FG% .6245 .5445 .6637 .5262 .5858 .6449 

FT% .1132 .0733 .1600 .0943 .1238 .1307 

Offensive rebounds .0737 .0636 .0792 .0565 .0734 .0879 

Defensive rebounds .0553 .0753 .0428 .1169 -.0036 .0318 

Assists .0121 .0326 -.0100 .0185 .0398 .0054 

Personal fouls -.1178 -.1590 -.1033 -.1182 -.1182 -.1330 

Steals .0160 .0156 .0093 .0408 .0211 .0244 

Turnovers -.1094 -.0702 -.1129 -.1329 -.0739 -.1140 

Home court .0135 .0147 .0071 .0298 -.0025 .0300 

Blocked shots .0008 77 79 .0011 .0009 .0002 

Table 3 – Zak et al.’s estimated marginal products of inputs 

In most of the cases, a higher output elasticity implies a larger marginal product.  

The last step of the research was to find if a host factor exists. By performing Chow test, the conclusion was that 

all teams, except the New York Knicks, performed significantly better playing home that away, mainly in shooting 

and rebounding elements. This research is interesting because it is possible to see that the same combination of 

factors can have different worth to different teams and by using this logic a team could evaluate players based on 

their contribution to output and choose those players that increase output.  

Outside the NBA world, Ivanković et al. (2010) studied the Serbian basketball league from 2005-06 to 2009-10 

seasons, the equivalent of 890 games. In Serbia, the basketball court is divided into eleven positions: six from 2-

point shots and five from 3-point shots, and the main goal was to analyze the influence of shooting from different 

field positions and, after that, the influence of regular basketball parameters on winning. 

In the first analysis, the model was composed of variables that cover the type of throw and the area (i.e., 

p21_percent stood for 2-point shots percentage from position 1) and an output parameter for the final result. The 

algorithm used was a feed-forward NN with one hidden layer fully connected to all nodes. The results were the 

following: 



 

10 

Variable Influence (%) 

p1_percent 12.1 

p21_percent 2.2 

p22_percent 3.5 

p23_percent 3.7 

p24_percent 2.3 

p25_percent 31.4 

p26_percent 2.7 

p31_percent 8.9 

p32_percent 5.8 

p33_percent 11.3 

p34_percent 6.7 

p36_percent 9.6 

Table 4 – Results of Ivanković et al.’s 1st experiment 

It was visible that the two-points shot from position five, underneath the basket, had the highest influence on 

winning the game, followed by one-point shots (free throws) and then three-point shots. Midrange shots from 

other positions had the least influence. The model obtained a 66.4% accuracy, possibly due to lack of other 

important variables. In the next experiment the regular box-score stats were evaluated: 

Variable Influence (%) 

FT% 7.96 

2P% 15.58 

3P% 15.35 

DRB 15.88 

ORB 12.14 

AST 2.23 

STL 12.53 

TO 12.39 

BLK 5.94 

Table 5 – Results Ivanković et al. 2nd experiment 

The conclusions are that shooting, and rebounding are the main factors and steals and turnovers could also have 

a vital role. The accuracy of this model reached almost 81%. 

Recently, the evolution of technology, the growing popularity of the NBA and the accessibility of data allowed 

more complex experiments, particularly in the ML, DM and Data Analysis fields. Loeffelholz et al. (2009) used 2007-

2008 season team statistics, box score lines as inputs and a binary variable (0, 1) as output. The researchers used 4 

types of NN (feed-forward NN, RBF, probabilistic NN and generalized NN) and two fusions that can help NN to 

complement themselves: a Bayesian Belief Network (BBN) and a Probabilistic NN Fusion.  

In a second phase, a reduction of dimensionality was made. One approach used the Signal-to-Noise-Ratio 

method that examines the lower level weights of Feed-Forward NN and withdraws the less important features of 

the dataset. The other was based on using shooting statistics (FG, 3P, and FT), as suggested by different experts 



 

11 

which infer a good offense wins basketball games (and good defense championships). A factor analysis showed a 

high correlation between FG and 3P and that is why the last feature has only 4 variables. 

These experiments used a 10-fold CV to provide accurate estimates of the NN performance having 10 different 

validation sets. The first one is notably important because it contains game played after the rest. The results are 

given in Table 6 and are compared to experts’ predictions: 

 Accuracy (%) 

Technique V1 Baseline Baseline 
V1 SNR 

(TO & PTS) 

SNR 

(TO & PTS) 

V1 Shooting 

(FG, 3P & FT) 

Shooting 

(FG, 3P & FT) 

V1 Shooting 

(FG & FT) 

Shooting 

(FG & FT) 

Feed-forward NN 70 71.67 70 70.67 80 72.67 83.33 74.33 

RBF 66.67 68.67 70 69 73.33 68 70 72 

Probabilistic NN 70 71.33 70 69 80 72.33 83.33 73.34 

Generalized NN 70 71.33 70 69 80 72.33 83.33 73.34 

PNN fusion 70 71.67 70 70.67 80 72.67 76.67 72.67 

Bayes fusion 70 71.67 70 70.67 80 72.67 80 74 

Experts 70 68.67 70 70 70 68.67 70 68.67 

Table 6 – Loeffelholz et al.’s research results 

In NBA Oracle, Beckler et al. (2013) applied ML methods for predicting game outcomes, infer optimal player 

positions and create metrics to identify outstanding players. Teams’ dataset had 30 features each season and 

players’ dataset had 14 basic individual player statistics. Additionally, it was possible to create per game and per 

minutes derived statistics. When comparing two teams, investigators normalized teams’ stats by taking the ratio of 

each team’s numbers for an easier understanding of relative advantage. 

Focusing on the first task, there were applied 4 different ML classification techniques: Linear Regression, SVM, 

Logistic Regression and Artificial NN with a 100-fold CV and, for each one, a classification performed with previous 

season stats (P) and previous plus current season stats (P+C). Below is the test sets classification accuracy: 

 Accuracy (%) 

Techniques 1992 1993 1994 1995 1996 Average 

Linear (P) 69.45 71.10 67.09 68.82 73.09 69.91 

Linear (P+C) 69.55 70.70 68.36 69.82 72 70.09 

Logistic (P) 67.36 69.10 65.27 67.73 67.73 67.44 

Logistic (P+C) 68 70 67.36 68.91 69.55 68.76 

SVM (P) 64.45 66.80 65.27 65 68.27 65.96 

SVM (P+C) 65.27 69.80 66.55 68.64 69.27 67.91 

ANN (P) 64.73 66.01 62.36 64.15 66.64 64.78 

ANN (P+C) 63.09 66.20 64 67.54 65.95 65.36 

Table 7 – NBA Oracle’s results 

The main conclusions are that the simplest Linear Regression outperformed other ML algorithms and the 

inclusion of data from the current year in the models can improve accuracy. The NBA Oracle obtained results show 

percentages of accuracy similar to previous studies and, in some years, are even better than the experts.  
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To better understand the importance of each feature in this implementation, researchers tried single feature 

models at a time. The most dominant feature in the dataset was the win record in the previous season (65.9%), 

being possible to notice a correlation between the past and future results. Furthermore, in order of decreasing 

importance: defensive rebounds, points made by opposing team, number of blocks and assists made by opposing 

team are also noteworthy features that reveal the importance of defense in order to win a game. 

Lin et al. (2014) used NBA data from 1991 to 1998 to predict the winners of matchups and determine the most 

key factors to the outcome of a game without looking at individual player statistics. They began by setting 

benchmarks to compare with the research’s results. The accuracy of the expert predictions is inflated thus should 

not be considered as a goal. 

Method Accuracy (%) 

Team with greater difference between points per game and points allowed 63.5 

Team with greater win rate  60.8 

Expert prediction (not include games deemed too close to call) 71 

Table 8 – Lin et al.’s benchmarks 

The variables used were the differences in the teams’ stats: win-loss record, PTS scored, PTS allowed, FGM and 

FGA, 3PM and 3PA, FTM and FTA, ORB and DRB, TO, AST, STL, BLK, PF and, additionally, the recent performance of 

a team. The discussion about the impact of the recent performance on future results is long and it is usually called 

Hot Hand Fallacy. Beside some literature who support this theory (Bocskocsky et al., 2014), researchers tried to 

explain future results based only on the recent performance (between 1 and 20 games) and they achieve an 

accuracy peak of around 66%. 

Generally, all ML models suffered from overfitting and poor accuracy, so it was tried to find a better set of 

variables using three separate feature selection algorithms: forward and backward search with a 10-fold CV, adding 

or removing features one by one in order to determine which features result in the highest prediction accuracies, 

apart from a heuristic feature selection algorithm. 

Feature selection algorithms Forward Search Backward Search Heuristic 

Variables 

Points Scored Points Scored Points Scored 

Points Allowed FGA FGA 

FGA DRB FTM 

DRB AST DRB 

AST TO AST 

BLK Overall record Overall record 

Overall record Recent record Recent record 

Table 9 – Lin et al.’s feature selection algorithms results 

Backward search variables are very similar to the heuristic approach and it is in line with the experts’ view of the 

game, that takes into consideration the offensive, team possessions and scoring potential of a team compared to 

its opponent. 
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All experiments used 1997-98 season data as test set and the remaining as training set. Teams for different years 

were considered independent from each other due to trades, staff changes, retirements or players’ development 

and decline that can cause high variance in the strength of a team from year to year. Therefore, the feature vectors 

on the team’s performance only considered the current season and, consequently, the evaluation of a team’s 

strength would be less accurate at the start of the seasons. The ML techniques used were Logistic Regression, SVM, 

Adaptive Boost, RF and Gaussian Naive Bayes, all with a 10-fold CV. The first experiment used selected features to 

pick a winner and the results were: 

 Accuracy (%) 

Technique Training Test 

Logistic Regression 66.1 64.7 

SVM (RBF Kernel, Cost = 10) 65.8 65.1 

AdaBoost (65 iterations) 66.4 64.1 

Random Forest (500 trees, Depth = 11) 80.9 65.2 

Gaussian Naïve Bayes 63.1 63.3 

Benchmark 63.5 

Table 10 – Results of Lin et al.’s 1st experiment 

It is possible to see that the techniques’ accuracy outperformed the baseline benchmark by a small margin and 

some of the algorithms, especially RF, overfitted data. The second experiment tried to explore how the accuracy of 

win classifications performed over time. Seasons were partitioned into 4 quarters and the algorithms were tested 

on games occurring within each of these 4 parts. 

 Accuracy (%) 

Technique Quarter 1 Quarter 2 Quarter 3 Quarter 4 

Logistic Regression 58.8 64.1 66.2 68.8 

SVM (RBF Kernel, Cost = 10) 58.8 64.5 65.7 67.8 

AdaBoost (65 iterations) 55.9 61.8 62.4 67.8 

Random Forest (500 trees, Depth = 11) 55.9 67.3 63.8 64.4 

Table 11 – Results of Lin et al.’s 2nd experiment 

As expected, accuracy has a trend of improvement over time, reaching nearly 70% in the final part of the season, 

much higher than the baseline utilizing simply the win-loss record. In the last experiment, it was tested the impact 

of the win-loss record in the accuracy of the model. Unlike the first experiment, the variable was not applied here. 

 Accuracy (%) 

Technique Training Test 

Logistic Regression 66.3 64.5 

SVM (RBF Kernel, Cost = 10) 66.1 63.7 

AdaBoost (65 iterations) 67.2 61.8 

Random Forest (500 trees, Depth = 11) 88.6 62.8 

Gaussian Naïve Bayes 56.0 59.9 

Benchmark 63.5 

Table 12 – Results of Lin et al.’s 3rd experiment 
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Results show that the accuracies obtained from using only box score performs reasonably well, but fall short of 

the benchmark for some models. This indicates that advanced statistics that go beyond the box score are needed 

to increase accuracy and win record represents a significant role in this kind of exercise. 

Richardson, et al. (2014) tried a different approach to make NBA predictions with the use of Regularized Plus-

Minus (RPM). This concept was introduced by Engelmann, and it shares a family resemblance with the Plus-Minus 

stat, which registers the net change in score (plus or minus) while a player is on the court. The problem here is that 

each player's rating is deeply affected by his teammates’ performance. RPM isolates the unique impact of each 

player by adjusting for the effects of each teammate and opposing player apart from being able to divide in the 

offensive (ORPM) and defensive (DRPM) impact (Illardi, 2014). 

Using several data sources, investigators built a database containing players, teams and games details. To create 

the model features, they merged the player’s stats from the previous season with the results in the matches of the 

current season and formed home and away, offensive and defensive statistics, using as weights the players’ average 

minutes per game from the previous year. Moreover, a label was added indicating whether or not the home team 

won the game. In the experimental phase, researchers used previous seasons as training set and that particular 

year as test set. To predict games, algorithms such as Linear Regression, Logistic Regression, Naïve Bayes, SVM and 

DT were used. The results, where it is possible to see the best accuracy of the linear regression, were the following: 

 
Figure 3 – Richardson et al.’s 1st experiment 

All these models used 44 variables and a feature selection was performed to prevent overfitting and thus 

improve prediction accuracy. For the linear regression model, researchers used Lasso regularization (to minimize 

the generalized CV error) and a stepwise AIC procedure (where variables are included or dropped according to the 

upgrading of the model). The results were the following: 
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 Accuracy (%) 

Techniques 2009 2010 2011 2012 2013 Average 

Full model (linear) 65.48 67.4 66.77 67.86 66.02 66.71 

Lasso 66.59 68.54 66.26 67.13 66.34 66.97 

AIC 66.18 67.89 67.17 68.19 66.02 67.09 

Table 13 – Richardson et al.’s 2nd experiment 

The stepwise AIC found a model with higher accuracy, although there are no big differences to the original. 

Another conclusion is the identification of the overall team weighted RPM as the most important predictive feature 

because the AIC procedure started with the inclusion of home and away RPM to the model. For the investigators, 

it was clear that home court advantage and the quality of each team are preponderant factors and RPM stats have 

a greater predictive power because they contain more information. On the other hand, new methodologies like the 

use of cameras that reveal detailed information every second can make this type of approach outdated. 

More recently, Cheng et al. (2016), tried to forecast NBA playoffs using the concept of entropy. The first step 

was collecting the main statistics of 10 271 games from 2007-08 to 2014-15 seasons and labelling it with a win or 

loss for the home team. This dataset was used to train the NBA Maximum Entropy (NBAME) model, also known as 

Log-Linear model, by the principle of Maximum Entropy and predict the probability of the NBA playoffs game home 

team’s win for each season based on probabilities. 

Maximum Entropy models are designed to solve the problems with insufficient data like predicting the NBA 

playoffs. The principle points out the best approximation to the unknown probability distribution, making no 

subjective assumptions and decreasing the risk of making wrong predictions. It has been widely used for Natural 

Language Processing tasks, especially for tagging sequential data. 

Researchers applied 28 basic technical features (FGM, FGA, 3PM, 3PA, FTM, FTA, ORB, DRB, AST, STL, BLK, TO, 

PF and PTS for both teams) of the coming game to the NBAME model and calculated the probability of the home 

team’s victory in the game, p(y|x). Since p(y|x) is a continuous value, the model makes a prediction based on a 

defined 0.5 threshold: 

𝑓𝑘(𝑥, 𝑦) = {
1 (𝑤𝑖𝑛), 𝑝(𝑦|𝑥) ≥ 0.5,

0 (𝑙𝑜𝑠𝑒), 𝑝(𝑦|𝑥) < 0.5.
 

Assuming that the probability of the home team winning is higher, 0.6 and 0.7 thresholds were also used. In 

these cases, increasing the level of confidence, there is a decrease in the number of games to predict. The accuracy 

of the NBAME model was calculated by the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

In the following table is possible to see the prediction accuracy of the NBAME model and the number of 

predicted games: 
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 Accuracy (%) & number of predicted games 

Thresholds 2007-08 2008-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 Average 

0.5 74.4 (86)  68.2 (85) 68.3 (82) 66.7 (81) 69 (84) 67.1 (85) 65.2 (89) 62.5 (80) 67.71 

0.6 77.1 (48) 74.5 (55) 75 (44) 69.8 (53) 73 (26) 71.4 (42) 66.7 (36) 70.4 (27) 72.5 

0.7 100 (3) 80 (5) 100 (2) - (0) 100 (1) 75 (4) 100 (1) 100 (6) 90.91 

Table 14 – Cheng et al. 1st experiment 

When compared to other ML algorithms in WEKA, the results were the following: 

 Accuracy (%) 

Technique 2007-08 2008-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 Average 

Back Propagation NN 59.3 60.4 52.4 67.9 56 63.5 57.1 57.5 59.25 

Logistic Regression 61.6 57.1 61 61.7 60.7 64.7 62.6 60 61.19 

Naïve Bayes 54.7 61.5 56.1 59.3 53.6 58.8 59.3 55 57.3 

Random Forest 64 60.4 64.6 64.2 58.3 70.6 62.6 56.3 62.66 

NBAME model 74.4 68.2 68.3 66.7 69 67.1 65.2 62.5 67.71 

Table 15 – Comparison of Cheng et al. 1st experiment with other models 

Overall, the NBAME model is able to match or perform better than other ML algorithms. 

FiveThirtyEight is established as one of the most reputable informative websites. It has covered a broad 

spectrum of subjects including politics, sports, science, economics, and popular culture. In addition to its much-

recognized data visualization and electoral forecasts, the site also held forecasts under the NBA scope, both at the 

level of games, chances of reaching the playoffs or winning the NBA championship as well as daily power rankings.  

The website has two ratings: the Elo Rating and CARMELO. Elo Ratings, created by Arpad Elo, was originally used 

for calculating the relative skill levels of chess players. FiveThirtyEight (Silver & Fischer-Baum, 2015) recreated it 

(538 Elo Rating) for many other sports and used it in NBA to find the best teams of all time and visualize the 

complete history of the league. The essential features of Elo Rating are: 

• The ratings depend only on the final score of each game and where it was played (home-court advantage) 

and it includes both regular-season and playoff games. 

• Teams’ Elo points increase after wins and decrease after defeats. They gain more points for upset wins and 

for winning by wider margins. 

• The system is zero-sum: the gains of a team are balanced with the losses of the opponent. 

• Ratings are established on a game-by-game basis. 

The long-term average Elo rating is 1500, although it can differ slightly in any particular year based on how 

recently the league has expanded and only historically teams fall outside the 1300 (pretty awful)-1700 (really good) 

range. This method has a few NBA-specific parameters to set: The K-factor, home court advantage, margin of victory 

and year-to-year carry-over. 
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Elo’s K-factor determines how quickly the rating reacts to new game results. It should be set so as to efficiently 

account for new data but not overreact to it, minimizing autocorrelation. The defined K for the NBA to is 20, 

implying a relatively high weight to an NBA team’s recent performance. 

Home-court advantage is set as equivalent to 100 Elo Rating points, the equivalent of about 3.5 NBA points, so 

home team would be favored if teams were otherwise evenly matched. Some teams (especially Denver and Utah 

that play at high altitudes) have historically had slightly larger home-court advantages. 

Elo strikes a nice balance between rating systems that account for margin of victory and those that don’t. This 

works by assigning a multiplier to each game based on the final score and dividing it by a team’s projected margin 

of victory conditional upon having won the game. The formula accounts for diminishing returns; going from a 5-

point win to a 10-point win matters more than going from a 25-point win to a 30-point win. 

Instead of resetting each team’s rating when a new season begins, Elo carries over three-quarters of a team’s 

rating from one season to the next. Compared to other sports, the higher fraction reflects the fact that NBA teams 

tend to be consistent. Although having some nice properties, this method doesn’t consider offseason trades and 

drafted players’ impact on a team’s performance. In the past, the solution was to revert the season before Elo 

Ratings toward the mean for the preseason ratings, but with FiveThirtyEight’s CARMELO projections it is possible 

to have better priors to account for offseason moves. 

The CARMELO (Career-Arc Regression Model Estimator with Local Optimization) algorithm (Silver, 2015), 

inspired on PECOTA (Silver, 2003), forecasts NBA players’ performance identifying historical similar careers 

(CARMELO Card). Three steps constitute this process: 

1. Define each player’s skills and attributes statistically. Primary, biographical aspects such as height, weight 

and draft position, being the most vital age. Then some basketball stats that reflect the weighted average of a 

player’s performance over his past three seasons, considering the minutes played in each season too. 

2. Identify comparable players. CARMELO runs a profile for past NBA players since 1976 with the same age and 

identifies the most similar ones from 100 (perfect similarity) to negative values. By CARMELO standards, many NBA 

players don’t have any comparison with a similarity score above 50. For this calculation, each of the 19 categories 

has its weight which is as follows: 

Statistic Weight Notes 

Position 3.0 Positions are translated to 1 (Point Guard) to 5 (Center) scale. 

Height 3.5 - 

Weight 1.0 - 

Draft Position 2.5 Taken as a natural logarithm. Undrafted players are treated as 90th pick 

Career NBA minutes played 1.5 - 

Minutes per game 3.5 Overall record 

Minutes played 6.0 For historical players, minutes for seasons shortened are prorated to 82 games 

TS% 5.0 - 

Usage % 5.0 - 
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FT % 2.5 - 

FT frequency 1.5 - 

3P frequency 2.5 The league-average 3P frequency is subtracted from the player’s frequency 

AST % 4.0 - 

TO % 1.5 - 

REB % 4.0 - 

BLK % 2.0 - 

STL % 2.5 - 

Defensive plus-minus 2.0 Calculated as a 50-50 split between BPM and RPM 

Overall plus-minus 5.0 Calculated as a 50-50 split between BPM and RPM 

Table 16 – CARMELO’s variables weights 

3. Make a projection. CARMELO uses all historical players with a positive similarity score to make its forecasts, 

usually hundreds of players, each with its contribution, according to the similarity score: a player with a similarity 

score of 50 will have twice as much influence on the forecast as one with a score of 25, for example. For rookies, 

the projection is based on college and rely heavily on a player’s age and draft position. Projections tend to be more 

flexible. The unit measure used in these projections is the wins above replacement WAR, that reflects a combination 

of a player’s projected playing time and his projected productivity while on the court. WAR is calculated as follows:  

𝑊𝐴𝑅 =
[𝑝𝑙𝑢𝑠 𝑚𝑖𝑛𝑢𝑠] ∗ [𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑝𝑙𝑎𝑦𝑒𝑑] ∗ 2.18

(48 ∗ 82)
 

The first version of CARMELO reflected a 50-50 blend of Box Plus/Minus and Real Plus-Minus (RPM). In the 

second version, CARMELO projections are now based on BPM only due to the lack of data in more distant years 

which poses a problem for a system that relies heavily on making historical comparisons. In addition to running 

player forecasts, FiveThirtyEight also released projections for win-loss totals for each franchise, based on a version 

of the Pythagorean expectation where: 

𝑊𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 =
[𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑜𝑟]𝑥

[𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑜𝑟]𝑥 +  [𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑔𝑎𝑖𝑛𝑠𝑡]𝑥
 

After some back testing, the conclusion was that a Pythagorean exponent of 11.5 would produce the most accurate 

team forecasts when dealing with RPM and BPM based projections. Team projections involve some human 

intervention, so injuries and other news are considered. Its performance was great in the initial experiment, edging 

out Vegas along with most other projection systems4. 

Also from FiveThirtyEight, CARM-Elo Ratings can be used to calculate win probabilities and point spreads for 

every NBA game and determine which teams have the best shot to make the playoffs or win the finals (538 

Projections). In this rating system, home team has a standard bonus of 92 CARM-Elo points, and the margin of 

victory is considered when adjusting team ratings after each game. In addition to these standard adjustments, there 

are a few other factors such as: 

                                                           
4 Results available at http://apbr.org/metrics/viewtopic.php?f=2&t=8633&start=255  

http://apbr.org/metrics/viewtopic.php?f=2&t=8633&start=255
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• Fatigue: teams that played the previous day are given a penalty of about 46 CARM-Elo points (5-percentage 

point in win probability); 

• Travel: teams are penalized based on the distance they travel from their previous game. For a long leg, the 

traveling team loses about 16 CARM-Elo points (2-percentage points in win probability); 

• Altitude: In addition to the general home-court advantage, teams that play at higher altitudes are given an 

extra bonus when they play at home. Similar to the travel adjustment, this bonus is a linear function of the 

home-court altitude. 

Once the adjustments are made, FiveThirtyEight simulates the regular season 10,000 times to find the average 

final record of each team and the percentage of simulations that each team makes the playoffs. They use NBA 

tiebreaking rules to seed teams in the playoffs and then simulate the playoffs 10,000 times to find the winner of 

the finals. Back tests found them to beat the spread about 51 percent of the time. 

MARCH MADNESS PREDICTIONS 

NCAAB matches might be a predictive challenge even bigger comparing to NBA. Despite all the differences in 

terms of money, facilities, and national exposure and lopsided results, many upsets happen during the season. Such 

as in basketball, these predictions have also started based on statistics. Several authors considered the use of 

Markov models, where the probabilities are evaluated having into account each round individually to predict the 

winner of the game and the calibration is made based on teams’ seeds (Edwards 1998; Schwertman et al. 1991, 

1996). Despite seeding may well measure the potential of the teams at the beginning of the championship, this 

structure of favoritism is unchanged during the course of the tournament, forcing a seed to have an equal relative 

strength to that same seeds in other regions, and can thus mislead models. 

Carlin (1994) extend this approach by considering external information available at the 1994 NCAAB 

tournament’s outset. Some rankings like Rating Percentage Index, Massey’s and Sagarin’s rating, typically linear 

functions of several variables (team record, home record, strength of conference, etc.) are updated during the 

season, providing more refined information about relative team strengths than seeds and enable differentiation 

between identically seeded teams in different regions. 

For the first round of games, point spreads offered (predicted difference of points between the favorite and the 

underdog) by casinos and sports wagering were collected. In spite of potentially being so valuable by considering 

specific information as injuries, there is no possibility of having these values beyond the first round. For each first-

round match, it was analyzed the differences between teams’ seeds (i - j), differences between teams’ Sagarin rating 

(S[i]-S[j]) and the expected point spreads (Yij) obtained prior to the beginning of tournament from a highly-regarded 

Las Vegas odds maker. These measures were compared with the actual margin of victory, R. 

Carlin started to develop some regression based on that data. The first fitted regression line used seeds and 

achieved a good R2 value of 88,3% and was defined as:  

𝑌̂𝑖𝑗 = 2.312 +  .1 (𝑗 − 𝑖)2, 𝑤ℎ𝑒𝑟𝑒 𝑖 < 𝑗. 
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The second obtain fitted model was:  

𝑌̂𝑖𝑗 = 1.165 [𝑆(𝑖) − 𝑆(𝑗)], 𝑤ℎ𝑒𝑟𝑒 𝑖 < 𝑗 

and had a R2 of 98,1% which suggests that the Sagarin method is a better predictor of point spread than seeds. 

 The main goal of this study it was to compare these methods with Schwertman methods and assign a probability 

to each team to win the regional tournament. In order to calculate that probability, Carlin based in some 

professional football literature that showed that the favored team’s actual margin of victory was reasonably 

approximated by a normal distribution with mean equal to the point spread and standard deviation of 13.86.  

P (R > 0) ≈ 𝛷 (
𝑌 

𝜎
) , 𝑤ℎ𝑒𝑟𝑒 𝛷(•) 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  

Due to the whole context, this value has been reduced to 10. 

The table below compares the ability of five methods regarding all 60 games of 1994 NCAA’s regional 

tournaments. The reference point for the scores is the assumption of every game as a toss-up, where a 50% chance 

would have a score of -0.693 according to logarithmic scoring rule.  

 Scores 

Region Schwertman method Seed reg. Sagarin diffs. Sagarin reg. Sagarin reg. + R1 Spreads 

East -0.116 -0.111 -0.106 -0.101 -0.102 

Midwest -0.134 -0.147 -0.134 -0.134 -0.127 

East -0.154 -0.148 -0.149 -0.152 -0.145 

Southeast -0.114 -0.103 -0.116 -0.114 -0.111 

Total -0.517 -0.508 -0.505 -0.502 -0.485 

Table 17 – Carlin’s scores compared with Schwertman method 

In conclusion, all tested methods had a better performance than Schwertman’s approach, particularly Sagarin 

Regression combined with Point Spreads for the first round. In this sense, it is possible to notice that Point Spreads 

are useful and good predictors. 

Kaplan and Garstka (2001) focused on the study of office pools, namely types of pools and optimal prediction 

strategies. This topic was also studied by Niemi (2005) and Wright and Wiens (2016). The first compared the use of 

Return on Investment over strategies that maximize expected scores and he believed that these contrarian 

strategies provide high potential, particularly in years when the heaviest favorites do lose. The group of 

investigators analyzed 200 000 brackets from 2015 and 2016 and found that is vital to correctly pick the champion 

in order to win a large pool. 

For NCAA Tournament prediction, Kaplan and Garstka used three Markov models that do not rely on seeding 

information.  The Regular Season Model was based on regular season records and looks to the tournament as a 

regular season’s extension. This simple model tried to maximize the log-likelihood function assuming the existence 

of a strength coefficient si ≥ 0 and was used to develop a probability of a team i defeat a team j. The parameter nij 

stands for the number of wins of i over j: 
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log 𝐿 =  ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗)

𝑖,𝑗 ∈ 𝑁𝐶𝐴𝐴

, 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖𝑗 =
𝑠𝑖

𝑠𝑖 +  𝑠𝑗
 

The second one – Expert Rating Model, was based on the already known Sagarin ratings and assumes that the 

points scored by competing teams in the same game are uncorrelated random variables. In this method, λi denotes 

the Sagarin rating on team I and pij the probability of team i defeats team j in any game (or simply the probability 

of positive point spread):  

𝑝𝑖𝑗 = 𝑃{𝑋𝑖𝑗 > 0} = 𝛷 (
𝜆𝑖 − 𝜆𝑗 

√𝜆𝑖 + 𝜆𝑗

) , 𝑤ℎ𝑒𝑟𝑒 𝛷(•) 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  

 

The last one used two Las Vegas popular bets (point spreads and point scored by both teams). The parameters 

of this method were λi represented the average scoring rates per game of team i, and xij and yij the point spreads 

and point totals posted before the tournament, respectively. From there, were assumed that 

𝑥𝑖𝑗 =  𝜆𝑖 −  𝜆𝑗 , 𝑦𝑖𝑗 =  𝜆𝑖 + 𝜆𝑗 and the equations solved to yield 𝜆𝑖 =
𝑥𝑖𝑗+ 𝑦𝑖𝑗 

2
, 𝜆𝑖 =

𝑦𝑖𝑗 − 𝑥𝑖𝑗 

2
 . In order to estimate the 

probability of a team to beat the other, researchers used the probability function applied in the second model.  

These approaches were illustrated using the 1998 and 1999 NCAA and NIT men’s basketball tournaments. The 

results from all 188 games were compared to predictions based on the tournament seedings.   

 Identical picks for winners and Accuracy (both %) 

Methods Regular Season Expert Rating Las Vegas Odds Actual Results 

Pick highest seeds 78 78 83 56 

Regular Season  81 71 59 

Expert Rating   75 57 

Las Vegas Odds    59 

Table 18 – Kaplan and Garstka’s results 

Overall, there is not a great increase in the accuracy of these models against the choice of the highest pick and 

there are cases where they cannot overcome. It is also possible to detect that Las Vegas odds agreed with picking 

the highest seeds on 156 out of 188 games and Sagarin models agreed with Regular Season Model on 152 out of 

188 games. This may mean that Las Vegas rely heavily on seeds, while the expert Sagarin ratings and the regular 

season method are also closely connected. 

Years later this became a hot topic. Zimmermann et al. (2013) identified the problem of data relativity which 

limits their expressiveness: for instance, collecting 30 rebounds could be a good be a nice stat in a 40-rebounds 

game but not so nice in a 60-rebounds game. In this sense, investigators normalized advanced statistics regarding 

pace, opponent’s level, and national average, deriving adjusted (offensive and defensive) efficiencies: 

𝐴𝑑𝑗𝑂𝐸 =
𝑂𝐸 ∗ 𝑎𝑣𝑔𝑎𝑙𝑙 𝑡𝑒𝑎𝑚𝑠(𝑂𝐸)

𝐴𝑑𝑗𝐷𝐸𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡
;  𝐴𝑑𝑗𝐷𝐸 =

𝐷𝐸 ∗ 𝑎𝑣𝑔𝑎𝑙𝑙 𝑡𝑒𝑎𝑚𝑠(𝐷𝐸)

𝐴𝑑𝑗𝑂𝐸𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡
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Several ML techniques were used: DT, Artificial NN (represented by a MLP), a Naïve Bayes and an Ensemble 

learner. For each experiment run, one season was used as test set and the preceding seasons from 2008 onward as 

training data, leading to the training and test set sizes shown: 

Season 2009 2010 2011 2012 2013 

Training 5265 10601 15990 21373 26772 

Test 5336 5389 5383 5399 5464 

Table 19 – Shi’s training and test set sizes per season 

In the first set of experiments, the investigators aimed to identify which attributes out of the full set were most 

useful in predicting match outcomes. Using a Weka’s feature selection methods to examine the attribute set down, 

the results were location first, followed by adjusted efficiencies and the Four Factors. 

The Four Factors of Basketball Success theory, introduced by Dean Oliver (2004), one of the most relevant 

researchers in basketball world, identify four offensive and defensive statistics (and their weights) as being of 

particular meaning for a team’s success:  shooting (40%), measured by the eFG%; turnovers (25%), measured by 

the TO%; rebounding (20%), measured by ORB% and DRB%; and, finally, free throws (15%), measured by the FT 

factor.

 Accuracy (%) 

Technique 2009 2010 2011 2012 2013 

J48 68.39 68.39 69.05 70.42 68.98 

Random Forest 68.85 69.42 67.79 71.37 68.81 

Naïve Bayes 71.01 71.72 70.28 72.76 71.93 

MLP 70.77 72.51 71.6 74.46 72.15 

Table 20 – Accuracy using adjusted efficiencies 

 Accuracy (%) 

Technique 2009 2010 2011 2012 2013 

J48 66.47 66.45 66.22 67.88 65.08 

Random Forest 68.01 69.31 69.83 70.2 68.92 

Naïve Bayes 71.21 72.02 72.06 73.05 70.81 

MLP 70.11 71.65 71.21 73.11 70.92 

Table 21 – Accuracy using adjusted four factors

The main conclusions were that MLP and Naïve Bayes gave consistently best results and more training data does 

not translate into better models. Although it has not been possible to overcome the state-of-the-art, some lessons 

were learned such as that picking a more complex technique does not guarantee satisfactory results (the simplest 

classifiers, like Naïve Bayes or Ken Pomeroy’s straight-forward Pythagorean Expectation, could perform better than 

Brown et al.’s LRMC model (2012) but the essence of having good models relies on the choice and quality of 

variables. Besides this, the researchers thought they had discovered a ceiling for accuracy in NCAA games around 

75%, like those for football (77%), American football (79%), NCAA football (76%) and NBA (74%). This 

unpredictability may be due to intangibles attributes such as experience, leadership or luck and to the non-

separation of games by conferences. 

Motivated by Kaggle’s “March Machine Learning Mania” competition, there are hundreds of participants with 

different models every year. The next three reviews will be on the winners of the contests in 2014, 2015 and 2016. 

The first place in 2014 was for Gregory Matthews and Michael Lopez. Their submission was the combination of 

two models, a margin-of-victory (MOV) based model and an efficiency model using Ken Pomeroy’s data (KP). For 
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first round games, the MOV model used the spread posted in Las Vegas for each game; for the following rounds, 

they used previous game results to predict a margin of victory. For the KP model, different regression models using 

different team-wide efficiency metrics were tested and choose the one that minimized the loss function in the 

training set. At the end, the outcomes were converted into a probability using logistic regression and the final 

submission used a weighted average of those probabilities. 

For most important insights of this participation were the “absolutely incredible” predictive power of Las Vegas 

line, the good performance of simple models, the importance of having the right data and “a decent amount of 

luck”. The recommendation made was to train models along with regular season data due to a short sample of 

NCAA Tournament games. 

The winner of 2015 competition, Zach Bradshaw was a sports analytics specialist at ESPN and a former analyst 

in two NBA teams and made use of his previous experience, particularly in data pre-processing and knowing the 

techniques to apply. Using a Bayesian framework allowed for the incorporation of prior knowledge or intuition that 

was not accounted for in the data. However, with the winning entry, Zach manually tweaked a game and 

successfully predicted the upset. His experience in sports analytics taught him that there are no perfect models and 

also it takes luck to succeed. 

In 2016, Miguel Alomar used logarithmic regression and RF and even tried ADA Boost but did not get very results. 

For this winner, the key factors were offensive and defensive efficiency, the weight of strength of schedule and 

penalize teams with easier games throughout the season. After testing these issues, he ended up with two models: 

one more conservative and another that surprised him by discovering most of the upsets, which eventually won 

the competition. 

The score of each submission follow a log loss function: 

𝐿𝑜𝑔𝐿𝑜𝑠𝑠 = −
1

𝑛
∑[𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖)log (1 − 𝑦̂𝑖)]

𝑁

𝑖=1

 

where 𝑛 is the number of games played, 𝑦̂𝑖  is the predicted probability of A beating B, 𝑦𝑖  is 1 if A wins, 0 if B wins 

and log is the natural base e logarithm. The results achieved by the winners are: 

Year Log Loss Score 

2014 .52951 

2015  .438933 

2016 .48131 

2017 .438576 

Table 22 – Best scores of Kaggle’s March Madness contests 

In addition to the work already reviewed, FiveThirtyEight has also developed some effort on this topic. For the 

2017 March Madness, FiveThirtyEight.com (Boice & Silver) had permanently a dashboard containing game scores 

and the probabilities of each team to win that game given by logistic regression analysis. Specifically, play-by-play 

data from the past five seasons of Division I NCAA basketball is used to fit a model that incorporates: 

http://fivethirtyeight.com/
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• Time remaining in the game; 

• Score difference; 

• Pre-game win probabilities; 

• Which team has possession, with a special adjustment if the team is shooting free throws. 

These in-game win probabilities won’t account, for instance, a key player fouling out but are reasonably good 

showing which games are competitive and which are not. 

The Excitement Index is a measure of how much each team’s chances of winning changed during a game and is 

a good reference for expecting an upset or an exciting game. It is calculated using the average change in win 

probability per basket scored, weighted by the amount of time remaining in the game (a late-game basket has more 

influence on a game’s rating than a basket near the beginning of the game). Normally, ratings range from 0 to 10. 

Like NBA’s Elo rating, it relies on the final score, home-court advantage and the location of each game. They also 

account for a team’s conference and whether the game was an NCAA Tournament game.  Elo is one of six computer 

rankings used for predictions. The other five are ESPN’s BPI5, Sagarin’s ratings, Pomeroy’s ratings6, Sokol’s LRMC 

ratings7 and Moore’s computer power ratings8. In addition, the selection committee’s 68-team “S-Curve” and 

preseason ratings from coaches and media polls compose the eight systems that are weighted equally in coming 

up with a team’s overall rating and tournament predictions. Like in NBA, ratings are adjusted for travel distance 

and player injuries. 

                                                           
5 Available at http://www.espn.com/mens-college-basketball/bpi 
6 Available at http://kenpom.com 
7 Available at http://www2.isye.gatech.edu/~jsokol/lrmc/ 
8 Available at http://sonnymoorepowerratings.com/m-basket.htm 

http://www.espn.com/mens-college-basketball/bpi
http://kenpom.com/
http://www2.isye.gatech.edu/~jsokol/lrmc/
http://sonnymoorepowerratings.com/m-basket.htm
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 DATA COLLECTION AND DATA MANAGEMENT 

3.1 DATA SOURCES 

The main source of data for this project was the website Sports-Reference.com. It was launched in 2000 and has 

data from several sports including baseball, basketball, football or hockey both professional and university level. As 

for college basketball, it is possible to find a wide amount of records, including some residual statistics from the last 

decade of the 19th century. Using Sports-Reference.com was possible to collect data from teams (both historical 

and current year) and coaches’ stats. Below, there are examples of the collected data that was served as the basis 

for the data set. 

 Team and Opponent Stats 

G FG FGA 2P 2PA 3P 3PA FT FTA ORB DRB TRB AST STL BLK TOV PF PTS 

Team 34 912 1856 730 1340 182 516 608 916 358 928 1286 456 227 142 444 614 2614 

Opponent 34 818 2006 602 1351 216 655 439 677 377 757 1134 416 224 98 442 724 2291 

Table 23 – 2009/10 Gonzaga Bulldogs stats 

  Coach Record 

Season School (seasons) G W L NCAA Tournament Final Four Champion W - L 

2007-08 Butler 34  30 4 x   1-1 

2008-09 Butler 32 26 6 x   0-1 

2009-10 Butler 38 33 5 x x  5-1 

2010-11 Butler 38 28 10 x x  5-1 

2011-12 Butler 37 22 15     

2012-13 Butler 36 27 9 x   1-1 

Career Butler (6) 215 166 49 5 2 0 12-5 

Table 24 – 2012/13 Brad Stevens record 

 School History 

Season W L NCAA Tournament Final Four Champion W - L 

2016-17 26 8 x   0-1 

2015-16 21 14 x   1-1 

2014-15 22 11     

2013-14 22 13     

2012-13 26 11 x   2-1 

2011-12 15 17     

2010-11 10 20     

Table 25 – 2016/17 Florida Gulf Coast Eagles history 

Unfortunately, during the study period (1999-2017), such comprehensive information was not always available. 

Only after 2009 all data above was available, which turned out to be the biggest limitation of the project. 

The NBA’s website was also used for search from alternative basketball metrics. 

https://www.sports-reference.com/cbb/
https://www.sports-reference.com/cbb/
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3.2 DATA COLLECTION 

The collected data was saved is an excel file. The observations include several variables that go from the 1999 

to the 2017 season. The constitution of the dataset is the following: 

Record ID Team A Team B Team A stats Team B stats Ratio between teams’ stats Output 
 

The ID part is composed by the year, round and a ID number (for instance, 2013SR1 refers to the 1st second 

round game of the 2013 tournament). The dataset is sorted according to the bracket. The games in the upper left 

corner correspond to the first observations and the games in the lower right corner correspond to the last 

observations. The team above in the bracket corresponds to team A in each observation. 

For each team, there were collected:

• Seed 

• # W 

• # L 

• PPG 

• OPPG 

• FGM 

• FGA 

• 3PM 

• 3PA 

• FTM 

• FTA 

• RPG 

• APG 

• SPG 

• BPG 

And get, for predefined formulas (could be seen in the Appendix A):

• W % 

• FG % 

• 2PM 

• 2PA 

• 2P% 

• 3P% 

• 3PAr 

• FT % 

• FTf 

• eFG % 

• TS % 

Besides all basic and advanced team stats, it was decided to also include coaches’ features and teams’ historical 

NCAA data. For coaches, the features included are:

• # Seasons 

• # Games (W & L) 

• W % 

• # NCAA Games (W & L) 

• # NCAA Tournaments 

• # Final Fours 

• # Championships 

• Same from previous year 

The features for teams are:

• Previous year # W 

• Previous year # L 

• Previous year W % 

• Previous year NCAA 

• # NCAA 

• # Final Four 

• # Championships 

• Team from First Four or 

Opening Round

3.3 DATA TRANSFORMATION 

A major problem of collecting data from Sports-Reference.com is the data contamination. When selecting 

archival data to feed into predictive models of sport events, it is critical to ensure that “the past” doesn’t contain 

its own future. As a result, a seemingly successful prediction will, in fact, rely heavily upon anachronous metrics – 

rendering such models inept for true future prediction.  

https://www.sports-reference.com/cbb/
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Yuan et al. (2015) refer to data contamination as being input features that already know the result of what they 

are aiming to predict and will give much weight to these variables that contain the future: number of games and 

number of wins are clear examples of this, because a team is not supposed to have much more games than the 

others during the season, unless it reaches the final stages of the NCAA tournament.  

In this sense, to ensure the quality of data, some transformation had to be made, like in the examples below. 

 
Team Stats 

G FG FGA 3P 3PA FT FTA TRB AST STL BLK PTS OPTS 

Season 37 (29-8)  960 2012 200 555 531 759 1302 566 265 157 2651 2195 

Vs. LIU -1 (-1 W) -40 -68 -3 -9 -6 -9 -42 -21 -6 0 -89 -67 

Vs. St. Louis -1 (-1 W) -25 -46 -4 -10 -11 -17 -29 -12 -2 -1 -65 -61 

Vs. Louisville -1 (-1 L) -14 -49 -5 -21 -11 -12 -32 -12 -8 -7 -44 -57 

Regular Season 34 (27-7) 881 1849 188 515 503 721 1199 521 249 149 2453 2010 

Table 26 – 2011/12 Michigan State Spartans stats 

  Coach Stats 

Season School (seasons) G W L NCAA 
Tournaments 

NCAA 
W 

NCAA 
L 

Final Four Championships 
Coach 

previous year 2011-12 Michigan State 37 (-3) 29 (-2) 9 (-1) 

Career Michigan State (17) 578 412 (-2) 169 (-1) 14 (+1) 37 (-2) 14 (-1) 6 1 X 

Table 27 – 2011/12 Tom Izzo pre-NCAA Tournament Stats 

Team Stats 

Previous year W Previous year L NCAA Tournaments Final Four Championships NCAA previous year 

19 15 25 (+1) 8 2 X 

Table 28 – 2011/12 Michigan State Spartan stats 

From 2017 on, in future tournament predictions, this issue will no longer be a problem because, by collecting 

data right after the selection Sunday, it makes the data collection process simpler, faster, without compromising 

data quality. 

 

The last step regarding data treatment was to duplicate the dataset, making it symmetric. Besides increasing the 

number of records, this was a great solution to prevent any impact from teams’ position in the output. This was 

due to the fact that the first team of each observation had a higher chance of winning once. In approximately 65% 

of the observations (798 of 1235) this happened, making the dataset unbalanced. 

To the original dataset were added the same observations where, this time, the teams were changed, and the 

output changed to their respective (0 to 1 and 1 to 0): 

Record ID Team B Team A Team B stats Team A stats Ratio between teams’ stats Output 
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 EXPERIMENT DESIGN 

Within the experimentation there is a need to perform some fundamental steps, such as: pre-processing the 

data, realizing which variables are most important for the problem, defining the algorithms to be used and tuning 

their parameters, and select metrics to evaluate the results. 

To implement all these steps there was a need to resort to Anaconda. The world's most popular Python data 

science platform9, was used to support the experiment part of the project. This product of Continuum Analytics, is 

a virtually complete scientific stack for Python that includes the standard libraries, like Scikit, NumPy or Pandas. 

For the experimental part, the ratios among team statistics were used. As analyzed in the bibliographic review, 

in this type of problems the most import challenge is to understand which team has a relative advantage over the 

other.  

4.1 DATA STANDARDIZATION 

Standardization of datasets is a common requirement for many ML estimators. For example, in Artificial NN and 

other Data Mining approaches there is the need of normalizing the inputs, otherwise the network will be ill-

conditioned. In essence, normalization is performed to have the same range of values for each of the inputs to the 

ANN model. This can guarantee stable convergence of weight and biases. 

Data standardization was done using the Python’s preprocessing function StandardScaler. It was possible to 

standardize each input variable with center equals to 0 and standard deviation equals to 1. 

4.2 MACHINE LEARNING TECHNIQUES 

Machine Learning is a buzzword in the technology world right now. ML has several techniques that can be 

divided in Unsupervised and Supervised Learning. In the first one, algorithms operate on unlabeled examples where 

the target output associated with each input, is not known by the system and it tries to find a hidden structure. The 

goal of this type of learning is to explore the data to find intrinsic structures within it using methods like clustering 

or dimensional reduction. Supervised learning algorithms are trained using labelled examples where the desired 

output is known. Supervised learning is commonly used in applications that use historical data to predict likely 

future events, as in this project. Below, there is a review of the used supervised learning algorithms. The definitions 

below were based on the SciKit-Learn website10. 

DECISION TREES 

This "divide and conquer" technique creates tree structures where leaves stand for labels and branches for 

combinations of features. At each step, the algorithm chooses the best variable to split the dataset with respect to 

the values of the target according its discriminative power. The goal is to have a model that predicts the value of a 

                                                           
9 https://www.anaconda.com/what-is-anaconda 
10 Available at http://scikit-learn.org 

https://www.anaconda.com/what-is-anaconda
http://scikit-learn.org/
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target variable by learning simple decision rules inferred from the data. As advantages, DT requires little data 

preparation, can handle both numerical and categorical data and it is a very simple model to understand. As 

disadvantages, DT learners can create over-complex trees that do not generalize the data well (creating overfitting) 

and can be unstable because small variations in the data might result in completely different trees. 

LOGISTIC REGRESSION 

Despite its name, this is a linear model for classification rather than regression. It shares some similarities with 

linear regression, but uses a sigmoid function instead of a linear one. Logistic regression is also known in the 

literature as logit regression, maximum-entropy classification or the log-linear classifier. In this model, the 

probabilities describing the possible outcomes of a single trial are modeled using a logistic function. 

MULTI-LAYER PERCEPTRON 

MLP belongs to the NN type of algorithms. NN are non-linear statistical data modelling tools, able to model 

complex relationships between inputs and outputs, or to find interesting patterns. These techniques consist of 

three main components: the structure of the network, the training method, and the activation function. The main 

advantage of this method is that it can learn a non-linear function approximator for either classification or 

regression. It is different from logistic regression, in that between the input and the output layer, there can be one 

or more non-linear layers, called hidden layers. As disadvantages, MLP requires hyper parameterization and has 

more than one solution, depending on the initial weights. 

NEAREST NEIGHBORS 

Nearest Neighbors classification is a type of instance-based learning that stores instances of the training data, 

known as examples. In the K-Nearest Neighbors model, classification is computed from a simple majority vote of 

the K-nearest neighbors of each point. The optimal choice of the value K is highly data-dependent: a smaller K could 

lead to noisy decision boundaries, while a larger K will lead to over-smoothed ones. 

RANDOM FOREST 

RF is a meta estimator that fits different DT and average outputs to improve the predictive accuracy. Besides 

accounting for particularly complex decision boundaries, it is a fast-to-train method that minimizes the 

generalization error, proven not to overfit, and computationally effective. These merits make RF a potential tool 

suited for classification problems (Osman, 2009). 

STOCHASTIC GRADIENT DESCENT 

SGD is a simple yet very efficient approach to fit linear models often applied in problem like text classification 

and Natural Language Processing. It is particularly useful when the number of samples (and the number of features) 

is very large. The advantages of SGD are the efficiency and the ease of implementation. Like other algorithms, it 

requires hyper parameterization and it is sensitive to feature scaling. 
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SUPPORT VECTOR MACHINE 

SVM is a set of supervised learning methods used for classification, regression and outliers’ detection. SVM 

attempts to find a hyperplane that separate different outputs based on the feature vectors. The major advantages 

are the effectiveness in high dimensional spaces and the versatility (different Kernel functions can be specified for 

the decision function). As disadvantage, SVM is likely to give poor performances if the number of features is much 

greater than the number of samples.  

4.3 MODEL EVALUATION 

ACCURACY 

Accuracy is the most intuitive performance measure and it is simply a ratio of correctly predicted observation to 

the total observations. Despite its simplicity, it can be misleading when in imbalanced datasets. In imbalanced 

datasets, it may be desirable to consider selecting a model with a lower accuracy because it might have a greater 

predictive power on the problem. On the other hand, when evaluated in symmetric datasets where values of false 

positive and false negatives are identical, like in this case, could be a useful measure. 

F-MEASURE 

F-Measure (also known as F1-Score or F-Score) is the weighted average of Precision and Recall. Intuitively it is 

not as easy to understand as Accuracy, but it is usually more useful than accuracy, especially in uneven class distribution 

datasets.  

F − Measure = 2 ∗
Recall ∗ Precision

Recall + Precision
  

Precision (also known as Positive Predictive value) is the ratio of correctly predicted positive observations to the 

total predicted positive observations. High precision relates to the low false positive rate. 

Precision =
TP

TP + FP
  

Recall (also known as Sensitivity or True Positive rate) is the ratio of correctly predicted positive observations to 

the all observations in actual class - yes. High recall relates to the low false negative rate. 

Recall =
TP

TP + FN
  

HOLDOUT METHOD 

Hold-out cross-validation is a widely-used CV technique popular for its efficiency and easiness. When evaluating 

a model, it is important to do it on held-out observations that were not seen during the grid search process. In this 

method, the data is split into two mutually exclusive subsets: a training set (that could be trained using a Grid Search 

CV) and an unseen test set to compute performance metrics. The major problem of this technique is that the chosen 

split heavily affects the quality of the final model. If the dataset is split poorly, the data subsets will not sufficiently 
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cover the data and especially the variance will increase (Reitermanová, 2010). The application of this method in the 

experiment was possible using the SciKit’s Train_Test_Split function. 

CROSS VALIDATION 

CV is a model evaluation method. In the approach used in this project, called k-fold CV, data is split into k subsets 

of matching size. At each iteration, one of the k subsets is used as the test set, while the other k-1 subsets form a 

training set. The performance measure reported by k-fold CV is the computed average error across all k-trials in the 

loop. Compared to the simplest holdout method, this approach is much more efficient in terms of lowering the 

variance value of the resulting estimate when k increases.  While the main advantage is that all observations are 

used for both training and testing, the disadvantage of this method is that the training algorithm must be rerun 

from k times, which means more computational effort to make an evaluation. 

4.4 FEATURE SELECTION 

When examining a dataset with a large number of variable it is a good practice to reduce the dimensionality of 

the dataset without sacrificing useful information. The curse of dimensionality describes the problem caused by the 

exponential increase in volume associated with adding extra dimensions to Euclidean space (Bellman, 1957). 

Feature selection methods can be useful regarding this kind of problem, automatically selecting variable that 

contribute most to the output and eliminating those that are redundant. The main benefits of performing a feature 

selection are: improving the prediction performance of the predictors, providing faster and more cost-effective 

predictors, and providing a better understanding of the underlying process that generated the data (Guyon & 

Elisseeff, 2003). 

This task of was completed using Recursive Feature Elimination, available at SciKit’s library. This method is used 

for ranking feature with recursive elimination: iteratively, it ranks all variables and the less important for the model 

is not included in the train dataset. This procedure was tested using five different ML techniques (NN, Logistic 

Regression, SVC, SGD and DT) and the metric used to evaluate the impact of each reduction was the f-measure.   

 

Figure 4 – Evolution of Recursive Feature Selection 
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According to the results, it is not evident that the elimination of variables improves the performance of the 

methods. Analyzing in more detail the iterative cycle of the elimination of variables it is possible to draw the 

following conclusions. 

• Coach stats have not proved to be very important once the algorithm removed them in the first third of the 

process.  

• The same thing happened with team statistics. The only variable that proved to be relevant was the ratio of 

the number of participations in the championship. 

• The variables considered most important refer mainly to points ratio, scoring ratios and teams' records. 

4.5 GRID SEARCH 

Grid Search is an exhaustive examination over parameter values for an algorithm through a manually defined 

subset of candidates. For each of the combinations, the models are trained and evaluated using a CV. The main 

purpose is to find the best possible combination of parameters. For being exhaustive, this choice is very time-

consuming, and it is not assured that the solution is the best global one. In this sense, many researchers prefer an 

alternative method called Random Search (Bergstra & Bengio, 2012; El Deeb, 2015). Below it possible to find all the 

information about the process of parameter tuning for each technique. 

Parameters Definition Values Grid Search 

criterion 
The function to measure the quality of a split. Supported 
criteria are Gini impurity and information gain. 

[‘entropy’, ‘gini’] ‘entropy’ 

max_features 

The number of features to consider when looking for the 
best split: 

Sqrt: max_features = sqrt(n_features); 

Log2: max_features = log2(n_features); 

None: max_features = n_features. 

[‘log2’, ‘none’, ‘sqrt’] ‘none' 

min_samples_leaf 
The minimum number of samples required to be at a leaf 
node. 

list (range (1,200)) 194 

splitter 
The strategy used to choose the split at each node. 
Supported strategies are best split and best random 
split. 

[‘best’, ‘random’] ‘best’ 

Table 29 – Decision Tree Classifier’s Grid Search parameters 

Parameters Definition Values Grid Search 

c Inverse of regularization strength list (range (1,300)) 10 

penalty Used to specify the norm used in the penalization.  [‘l1’, ‘l2’] ‘l1’ 

solver 

Algorithm to use in the optimization problem. For small 
datasets, ‘liblinear’ is a good choice, whereas ‘sag’ is 
faster for large ones. For multiclass problems, only 
‘newton-cg’, ‘sag’ and ‘lbfgs’ handle multinomial loss. 
The ‘newton-cg’, ‘sag’ and ‘lbfgs’ solvers support only L2 
penalties. 

[‘liblinear’, 'newton-cg', 'lbfgs', 'sag'] ‘liblinear’ 

Table 30 – Logistic Regression’s Grid Search parameters 
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Parameters Definition Values Grid Search 

n_neighbors Number of neighbors to use list (range (1, 200)) 92 

algorithm 

Algorithm for the choice of neighbors’ search. Brute: The 
naivest implementation uses brute-force computation 
of distances between all pairs of points in the dataset. 
KD tree: This is a more efficient approach and its 
constructions is very fast. Ball tree: This method can 
surpass inefficiencies of KD Tree in higher dimensions. 

[‘ball_tree’, ‘brute’, ‘kd_tree] ‘ball tree’ 

leaf_size 
Leaf size passed to BallTree or KDTree. This can affect 
the speed of the construction and query, as well as the 
memory required to store the tree. 

[10, 20, 30, 40, 50] 10 

weights 
Uniform: All points is each neighborhood are weighted 
equally; Distance: Closer neighbors will have a greater 
influence than neighbors which are further away. 

[‘uniform’, ‘distance’] ‘distance’ 

Table 31 – K-Nearest Neighbors’ Grid Search parameters 

Parameters Definition Values Grid Search 

activation Activation function for the hidden layer [‘identity’, ‘logistic’, ‘tanh’, ‘relu’] ‘tanh’ 

solver The solver for weight optimization [‘lbfgs’, ‘sgd’, ‘adam] ‘lbfgs’ 

alpha L2 penalty (regularization term) parameter [0.1, 0.01, 0.001, 0.0001] 0.1 

learning_rate 

Learning rate schedule for weight updates. Constant: 
constant learning rate given. Invscaling: gradually 
decreases the learning rate. Adaptive: keeps the 
learning rate constant as long as training loss keep 
decreasing. 

[‘constant’, ‘invscaling’, ‘adaptive’] ‘constant’ 

momentum Momentum for gradient descent update. Only for 'sgd' [0, 0.25, 0.5, 0.75, 1} n/a 

power_t 
The exponent for inverse scaling learning rate. Used in 
updating effective learning rate when learning_rate = 
‘invscaling’. Only for 'sgd'. 

[0.1, 0.25, 0.5, 0.75, 1] n/a 

Table 32 – Multi-Layer Perceptron Classifier’s Grid Search parameters 

Parameters Definition Values Grid Search 

n_estimators Number of trees built. [100,200, 300, 400, 500, 700, 1000] 700 

max_features 

The number of features to consider when looking for the 
best split: 

Sqrt: max_features = sqrt(n_features); 

Log2: max_features = log2(n_features); 

None: max_features = n_features. 

[‘log2’, ‘sqrt’, None] ‘log2’ 

min_samples_leaf 
The minimum number of samples required to be at a leaf 
node. 

list (range (1,200)) 100 

criterion 

Uniform: All points is each neighborhood are weighted 
equally 

Distance: Closer neighbors will have a greater influence 
than neighbors which are further away. 

[‘gini’, ‘entropy] ‘entropy’ 

Table 33 – Random Forest Classifier’s Grid Search parameters 
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Parameters Definition Values Grid Search 

c Penalty parameter C of the error term. [10, 20, 30, 40, 50]  30 

kernel 
Specifies the kernel type to be used in the 
algorithm. 

[‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’] Poly 

degree Degree of polynomial kernel function. [1, 2, 3, 4] 3 

gamma 
Kernel coefficient for RBF, Poly and 
Sigmoid. 

[0.1, 0.01, 0.001, 0.0001] 0.01 

Table 34 – C-Support Vector Classification’s Grid Search parameters 

Parameters Definition Values Grid Search 

alpha L2 penalty parameter [0.1, 0.01, 0.001, 0.0001] 0.001 

eta0 
The initial learning rate for the ‘constant’ 
or ‘invscaling’ schedules. 

[0, 0.1, 0.25, 0.5, 0.75, 1] 0.75 

learning_rate Learning rate for weight updates. ['constant', 'optimal', 'invscaling'] 'invscaling' 

loss 
The loss function to be used. ['hinge', 'log', 'modified_huber', 

'squared_hinge', 'perceptron'] 
‘modified_huber’ 

penalty 

The regularization term to be used. ‘L2’ is 
the standard regularizer for linear SVM 
models. ‘L1’ and ‘elasticnet’ might bring 
sparsity to the model not achievable with 
‘L2’. 

['l2', 'l1', 'elasticnet'] ‘l1’ 

power_t 

The exponent for inverse scaling learning 
rate. Used in updating effective learning 
rate when learning_rate = ‘invscaling’. 
Only for 'sgd'. 

[0.1, 0.25, 0.5, 0.75, 1] 0.75 

Table 35 – Stochastic Gradient Descent Classifier’s Grid Search parameters 
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 RESULTS AND EVALUATION 

After a well-structured experiment, the next step consists of evaluate the results. As seen in the experiment 

design chapter, the models were trained using a 10-fold CV, while the sets where divided using a holdout method. 

In this chapter, the predictive power of the algorithms will be assessed and compared with more basic approach 

and with some reference sites. 

In the first experiment, the objective was to get an overall overview of the different algorithms’ performance. 

Here, the allocation of the observations was randomly made by the Scikit’s function train_test_split. The data was 

partitioned into 75% of the observation for training and the remaining 25% for test. Below, it is possible to see the 

results for the first experiment. 

 Accuracy (%) & F-Measure 

Technique Training Set Test Set 

Decision Tree Classifier 67.9 (.679) 65.9 (.658) 

Logistic Regression 69.1 (.691) 68.9 (.689) 

K-Nearest Neighborhood Classifier 68.2 (.680) 68.6 (.678) 

Multi-Layer Perceptron Classifier 72.2 (.722) 66.7 (.667) 

Random Forest Classifier 69.6 (.695) 69.2 (.691) 

Stochastic Gradient Descent Classifier 69.6 (.695) 68.7 (.686) 

Support Vector Classification 70.8 (.708) 70.2 (.701) 

Table 36 – Results from the overall experiment 

As the result shown, SVM is the only method that surpasses the 70% accuracy boundary, while the rest have a 

score between 66% and 69%. In general, the results from the training and test sets were similar. 

In the second approach, all data from 1999 to 2016 was used for training the models. The goal of this experiment 

was to check how good historical data would be in terms of predicting the NCAA Tournament of 2017. Below, it is 

possible to see the results for each of the techniques. 

 Accuracy (%) & F-Measure 

Technique 1999-2016 2017 

Decision Tree Classifier 67.2 (.673) 50.0 (.333) 

Logistic Regression 70.0 (.700) 73.1 (.731) 

K-Nearest Neighborhood Classifier 67.1 (.671) 64.9 (.637) 

Multi-Layer Perceptron Classifier 78.7 (.787) 78.8 (.788) 

Random Forest Classifier 68.2 (.682) 50.0 (.487) 

Stochastic Gradient Descent Classifier 69.0 (.690) 69.1 (.691) 

Support Vector Classification 71.5 (.715) 85.1 (.851) 

Table 37 – Results from the experiment for predicting 2017 Tournament   

These results were more encouraging than those from the first experiment. In general, this tryout has led to a 

greater breadth of model performance. On one hand, the performance of the MLP Classifier and SVM Classifier 

were the ones that stand out the most (with 79% and 85%, respectively). On the other hand, DT and RF have proved 
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to be the method with worst predictive power, with only 50% of accuracy. In this experimentation, a greater 

variation in the outcomes of the training and test set was noticed. 

Another well-known technique to pick winning teams is considering the seed, selecting the best one. Despite all 

the limitations already seen in the literature review, many people use this approach when filling out the March 

Madness brackets. Below, it is possible to see the results of picking the highest seed in each game. This analysis 

only considers game where teams had different seeds (1181 out of 1235). 

 Accuracy (% of games) 

Technique From 1999 to 2017 Only 2017 

Pick the highest seed 71% (95,6%) 77,1% (91%) 

Table 38 – Pick the highest seed method results 

Considering the games where the teams' seeds are equal as a toss coin the results would decrease to 70.1% for 

the games from 1999 to 2017 and 74.7% for the games from the 2017 NCAA Tournament. This method is capable 

of making bold predictions, being almost as good as the ML algorithms used in the 2nd experiment. 

Another suitable manner to evaluate the outcome’s quality is to compare the accuracy of predictions with some 

reputed websites and statisticians. Below there are the accuracies of several predictors considering the 2017 

Tournament. 

Predictor Accuracy (%) 

Massey 74.6% 

Pomeroy  74.6% 

ESPN BPI 73.1% 

538.com 68.7% 

Table 39 – Results for 2017 Tournament for comparable predictors 

With respect to the tournament of 2017, the algorithms tested in the 2nd experiment showed to have a better 

predictive power than those of the specialists. 

Unfortunately, it was not possible to get the accuracy outcomes from competitors of Kaggle’s contest. It would 

be very interesting to check if the scores of these models are close to the best competitors. 
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 CONCLUSIONS 

This project explores the application of ML techniques in the field of college basketball. With the increasing 

collection of data about the topic, associated with the appeal that is predicting the outcomes of sporting events, 

this is a perfect project for data enthusiasts. For many, March Madness is considered the greatest sports event in 

the United States of America, able to move billions of dollars in betting and put millions of people trying to hit the 

winners of the 68 games in the tournament. The madness comes with all the hype fans feel in every basket, every 

buzzer-beater, the win-or-go-home feeling and the unpredictable upsets that spoil any bet. 

In the literature review is possible to read an overview about ML: how it was born, the importance it has 

nowadays, the various applications and everything that can be developed in the near future. Still within this chapter, 

it was possible to verify that, both individuals and organizations, are betting more and more on decisions that are 

based on data. The most important part, about basketball predictions, allowed to understand that there are a long 

history and different points of view on which this topic can be approached. Besides that, from the various sources 

it was possible to gain significant insight to develop the project.  

The source of the data used in this project was the website Sports-Reference.com, that collects college 

basketball stats for a long time. For this project, data from 1999 to 2017 were used. The dataset contains data on 

the teams' regular season, coaches and teams’ stats. After the quality of the dataset was guaranteed, it was possible 

to proceed to the experimental part. 

The experiment was made using the Python language’s Scikit library, and began with ensuring one of the main 

assumptions of the algorithms - the standardization of the data. Also in this section, an overview of the ML 

techniques to be implemented and the ways in which the results would be evaluated was made. The remaining 

subjects covered were the feature selection (where it was possible to perceive the importance and insignificance 

of some variables) and the hyper-parameterization (find the best parameters for each algorithm). An interesting 

remark about this study is the historical weight of the teams may have, that should be something to consider. Teams 

like UNC, UCL or Kentucky are more likely to have better players and reach later stages of the competition. On the 

contrary, for rookie teams there is no such expectation. 

In what concerns the results, despite all the limitations (that could be seen in the next chapter), the outcomes 

achieved can be considered as quite satisfactory. Though the problem of predicting March Madness tournaments 

seems to be too random for ML to perform extremely well, these models can definitely provide insights into how a 

tournament will progress. More specifically in the first experiment, where observations were randomly grouped in 

training set and test, all models achieved an accuracy between 66% and 70%. In the second experiment, whose goal 

was to make a forecast for the 2017 tournament, training data from previous years, the results were broader: the 

worst outcomes were obtained from DT and RF classifiers (with an accuracy of 50%), and the best were from SVM 

(with an accuracy of 85%), MLP Classifier (with an accuracy of 79%) and Logistic Regression (with an accuracy of 

70%). 

https://www.sports-reference.com/cbb/
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In this sense, the majority of the methods had a better accuracy than the most rudimentary benchmark – flipping 

a coin, associated with an accuracy of 50%. The best have succeeded in overcoming what is probably the best 

predictor, the seed of a team, which consists of the knowledge of the experts. When comparing these results with 

some of the most reputed websites in the forecast area, which usually have an accuracy in the 70 / 75 %, it can be 

settled that it is possible to achieve and surpass them. The main conclusion drawn from this whole project is that 

the greatest challenge is to realize what will be the upsets that no one is waiting for them to happen. 
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 LIMITATIONS AND FUTURE WORK 

Like in any other sports, the outcomes of games usually have a close relationship with the players’ ability but, 

besides all tactics and statistics, there is also a lot of uncertain factors like injuries, unexpected errors from players 

and referees, the distance traveled, rest and, of course, the luck and the physics of a shot to go in or go out. These 

immeasurable elements are hard to quantify in a way that cannot be put into a mathematical model, so that no 

prediction can be fully accurate. 

Regarding this project, there is a major issue about unavailable data in the most distant years, which has more 

focus on the data collection chapter. This limitation makes the models to not consider much of the defensive 

aspects of a team which, for many basketball experts, is fundamental: most of NBA and NCAA Tournament 

champions were, at least, fair defensive teams (Williams, 2016; Boozell, 2017). Allied to this, it is proven that good 

defensive tends to lead to easy offense opportunities and it is easier to practice. Once this limitation was exceeded, 

it would be expected an increase in the predictive power of the methods. 

A notable feature that could improve the efficiency of the data collection would be to create some programming 

languages scripts, using Ruby, PHP or some Python's specific libraries, following what Cao (2012) did. Ahead of this, 

it would be interesting to create a software that could automatize all the process and display the evolution of the 

tournament. Another additional aspect, which could be work if there was no limitation of the data, would be to 

compare the results of this project with the famed Dan Oliver’s theory of the Four Factors. 

A challenging approach to March Madness would be to view this problem from the underdog’s side and 

understand what are the main characteristics of the upsets. A project like this would be very relevant because it is 

quite easy to achieve great accuracies using just the seed to predict the winner of a game. An alternative way to 

address this challenge could be to consider a different granularity level and verify the impact of some characteristics 

of the player in the outcomes: age or seniority, physical aspect like weight, height or wingspan, the player efficiency 

rating and matchups between players are some examples of useful data. It would be also interesting to analyze if 

there is any kind of influence regarding the history of a team, like the number of participations in the NCAA 

Tournament which, according to the feature selection made, could be a good predictor.  

For any person interested in this topic, it is recommended to follow Kaggle’s contests, both from March Madness 

and other competitions that often appear. There also are some websites that allow anyone to create his own 

bracket, like Yahoo, ESPN or CBS Sports. 

In the future, it is intended that the data be kept up to date so there will be a better basis to train the models 

and hopefully improve their performance. All project, as well as the dataset and the scripts, can be used for future 

references in the area of predictive analysis in sport and reused for further research. 
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 ANNEXES 

 

Figure 5 – FiveThirtyEight’s Golden State Warriors Elo Rating11  

 

                                                           
11 Available at https://projects.fivethirtyeight.com/complete-history-of-the-nba/#warriors  

https://projects.fivethirtyeight.com/complete-history-of-the-nba/#warriors
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Figure 6 – FiveThirtyEight’s NBA Projections12  

                                                           
12 Available at https://projects.fivethirtyeight.com/2017-nba-predictions/ 

https://projects.fivethirtyeight.com/2017-nba-predictions/
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Figure 7 – FiveThirtyEight’s Carmelo Card13 

 

                                                           
13 Available at https://projects.fivethirtyeight.com/carmelo/ 

https://projects.fivethirtyeight.com/carmelo/
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Figure 8 – FiveThirtyEight’s March Madness Predictions (1) 

 

 

Figure 9 – FiveThirtyEight’s March Madness Predictions (2)14 

  

                                                           
14 Available at https://projects.fivethirtyeight.com/carmelo/ 

https://projects.fivethirtyeight.com/carmelo/
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9.1 APPENDIX A - DATASET 

Variable Type Formula Team Notes 

ID ID   Record ID (Year + Round + ID) 

Year Year   Year of the game 

Round Nominal   NCAA Tournament Round 

IDRound Nominal   Round of the match:  0: Opening Round / First Four, 1: First Round,  
2: Second Round, 3: Sweet 16, 4: Elite 8, 5: Final 4, 6: Final 

Team1 Nominal  A Name of team A 

Team2 Nominal  B Name of team B 

Coach1 Nominal  A Coach of team A 

Coach2 Nominal  B Coach of team B 

Seed1 Numeric  A Assigned seed for that NCAA Tournament 

W1 Numeric  A Number of wins in the season (W) 

L1 Numeric  A Number of losses in the season (L) 

Wp1 Numeric W1 / (W1 + L1) A Win percentage in the season (W%) 

PF1 Numeric  A Team points per game (PPG) 

PA1 Numeric  A Opponent team points per game (OPPG) 

FGM1 Numeric  A Field goals made per game (FGM) 

FGA1 Numeric  A Field goals attempted per game (FGA) 

FGp1 Numeric FGM1 / FGA1 A Field goal percentage (FG%) 

2PM1 Numeric  A 2-point field goals made per game (2P - FGM) 

2PA1 Numeric  A 2-point field goals attempted per game (2P - FGA) 

2Pp1 Numeric 2PM1 / 2PA1 A 2-point field goal percentage (2P - FG%) 

3PM1 Numeric  A 3-point field goals made per game (3P - FGM) 

3PA1 Numeric  A 3-point field goals attempted per game (3P - FGA) 

3Pp1 Numeric  A 3-point field goal percentage (3P - FG%) 

3PAr1 Numeric 3PA1 / FGA1 A Percentage of field goal attempts from 3-point range (3P-FGA Rate) 

FTM1 Numeric  A Free throws made per game (FTM) 

FTA1 Numeric  A Free throws attempted per game (FTA) 

FTp1 Numeric FTM1 / FTA1 A Free throw percentage (FT%) 

FTf1 Numeric FTA1 / FGA1 A Number of free throw attempts per field goal attempt (FTA Rate) 

eFGp1 Numeric  A 
Effective field goal percentage (eFG%). This statistic adjusts for the fact that a 
3-point field goal is worth one more point than a 2-point field goal. 

TSp1 Numeric  A 
True shooting percentage (TS%). A measure of shooting efficiency that 
considers 2-point field goals, 3-point field goals and free throws. 

RPG1 Numeric  A Rebounds per game (RPG) 

APG1 Numeric  A Assists per game (APG) 

SPG1 Numeric  A Steals per game (SPG) 

BPG1 Numeric  A Blocks per game (BPG) 

coachnseasons1 Numeric  A Coach number of seasons 

coachW1 Numeric  A Coach total number of wins 

coachL1 Numeric  A Coach total number of losses 

coachgames1 Numeric coachW1 + coachL1 A Coach total number of games 

coachWp1 Numeric coachW1 / coachgames1 A Coach winning percentage 

coachncaagames1 Numeric  A Coach number of NCAA Tournament games 

coachnncaa1 Numeric  A Coach number of NCAA Tournaments 

coachncaaW1 Numeric  A Coach number of NCAA Tournament wins 

coachncaaL1 Numeric  A Coach number of NCAA Tournament losses 

coachfinal41 Numeric  A Coach number of NCAA Tournament Final 4's 

coachchamps1 Numeric  A Coach number of NCAA Tournament Championships 

nfinal41 Numeric  A Team number of NCAA Tournament Final 4's 
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Variable Type Formula Team Notes 

nchamps1 Numeric  A Team number of NCAA Tournament Championships 

Seed2 Numeric  B Assigned seed for that NCAA Tournament 

W2 Numeric  B Number of wins in the season (W) 

L2 Numeric  B Number of losses in the season (L) 

Wp2 Numeric W2 / (W2 + L2) B Win percentage in the season (W%) 

PF2 Numeric  B Team points per game (PPG) 

PA2 Numeric  B Opponent team points per game (OPPG) 

FGM2 Numeric  B Field goals made per game (FGM) 

FGA2 Numeric  B Field goals attempted per game (FGA) 

FGp2 Numeric FGM2 / FGA2 B Field goal percentage (FG%) 

2PM2 Numeric  B 2-point field goals made per game (2P - FGM) 

2PA2 Numeric  B 2-point field goals attempted per game (2P - FGA) 

2Pp2 Numeric 2PM2 / 2PA2 B 2-point field goal percentage (2P - FG%) 

3PM2 Numeric  B 3-point field goals made per game (3P - FGM) 

3PA2 Numeric  B 3-point field goals attempted per game (3P - FGA) 

3Pp2 Numeric  B 3-point field goal percentage (3P - FG%) 

3PAr2 Numeric 3PA2 / FGA2 B Percentage of field goal attempts from 3-point range (3P-FGA Rate) 

FTM2 Numeric  B Free throws made per game (FTM) 

FTA2 Numeric  B Free throws attempted per game (FTA) 

FTp2 Numeric FTM2 / FTA2 B Free throw percentage (FT%) 

FTf2 Numeric FTA2 / FGA2 B Number of free throw attempts per field goal attempt (FTA Rate) 

eFGp2 Numeric  B Effective field goal percentage (eFG%) 

TSp2 Numeric  B True shooting percentage (TS%) 

RPG2 Numeric  B Rebounds per game (RPG) 

APG2 Numeric  B Assists per game (APG) 

SPG2 Numeric  B Steals per game (SPG) 

BPG2 Numeric  B Blocks per game (BPG) 

coachnseasons2 Numeric  B Coach number of seasons 

coachW2 Numeric  B Coach total number of wins 

coachL2 Numeric  B Coach total number of losses 

coachgames2 Numeric coachW2 + coachL2 B Coach total number of games 

coachWp2 Numeric coachW2 / coachgames2 B Coach winning percentage 

coachncaagames2 Numeric  B Coach number of NCAA Tournament games 

coachnncaa2 Numeric  B Coach number of NCAA Tournaments 

coachncaaW2 Numeric  B Coach number of NCAA Tournament wins 

coachncaaL2 Numeric  B Coach number of NCAA Tournament losses 

coachfinal42 Numeric  B Coach number of NCAA Tournament Final 4's 

coachchamps2 Numeric  B Coach number of NCAA Tournament Championships 

nncaa2 Numeric  B Team number of NCAA Tournaments 

nfinal42 Numeric  B Team number of NCAA Tournament Final 4's 

nchamps2 Numeric  B Team number of NCAA Tournament Championships 

RatioSeed Numeric Seed1 / Seed2  Ratio of seeds between teams 

RatioW Numeric W1 / W2  Ratio of wins between teams 

RatioL Numeric L1 / L2  Ratio of losses between teams 

RatioWp Numeric Wp1 / Wp2  Ratio of win percentage between teams 

RatioPF Numeric PF1 / PF2  Ratio of points per game between teams 

RatioPA Numeric PA1 / PA2  Ratio of opponent points per game between teams 

RatioPF1PA2 Numeric PF1 / PA2  Ratio between team A's points per game and B's opponent points per game 

RatioPF2PA1 Numeric PA1 / PF2  Ratio between team A's opponent points per game and B's points per game 

RatioFGM Numeric FGM1 / FGM2  Ratio between teams' FGM 
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Variable Type Formula Team Notes 

RatioFGA Numeric FGA1 / FGA2  Ratio between teams' FGA 

RatioFGp Numeric FGp1 / FGp2  Ratio between teams' FG% 

Ratio2PM Numeric 2PM1 / 2PM2  Ratio between teams' PM 

Ratio2PA Numeric 2PA1 / 2PA2  Ratio between teams' PA 

Ratio2Pp Numeric 2Pp1 / 2Pp2  Ratio between teams' PP% 

Ratio3PM Numeric 3PM1 / 3PM2  Ratio between teams' 3PM 

Ratio3PA Numeric 3PA1 / 3PA2  Ratio between teams' 3PA 

Ratio3Pp Numeric 3Pp1 / 3Pp2  Ratio between teams' 3P% 

Ratio3PAr Numeric 3PAr1 / 3PAr2  Ratio between teams' 3PAr% 

RatioFTM Numeric FTM1 / FTM2  Ratio between teams' FTM 

RatioFTA Numeric FTA1 / FTM2  Ratio between teams' FTA 

RatioFTp Numeric FTp1 / FTp2  Ratio between teams' FTP% 

RatioFTf Numeric FTf1 / FTf2  Ratio between teams' FTf 

RatioeFGp Numeric eFGp1 / eFGp2  Ratio between teams' FG% 

RatioTSp Numeric TSp1 / TSp2  Ratio between teams' TS% 

RatioRPG Numeric RPG1 / RPG2  Ratio between teams' RPG 

RatioAPG Numeric APG1 / APG2  Ratio between teams' APG 

RatioSPG Numeric SPG1 / SPG2  Ratio between teams' SPG 

RatioBPG Numeric BPG1 / BPG2  Ratio between teams' BPG 

Ratiocoachnseasons Numeric coachnseasons1 / coachnseasons2  Ratio between coaches' number of seasons 

RatiocoachW Numeric coachW1 / coachW2  Ratio between coaches' number of wins 

RatiocoachL Numeric coachL1 / coachL2  Ratio between coaches' number of losses 

Ratiocoachgames Numeric coachgames1 / coachgames2  Ratio between coaches' number of games 

RatiocoachWp Numeric coachWp1 - coachWp2  Ratio between coaches' win percentage 

Difcoachncaagames Numeric coachncaagames1 - coachncaagames2  Difference between coaches' number of NCAA Tournament games 

Ratiocoachnncaa Numeric coachnncaa1 / coachnncaa2  Ratio between coaches' number of NCAA Tournaments 

DifcoachncaaW Numeric coachncaaW1 - coachncaaW2  Difference between coaches' number of NCAA Tournament wins 

DifcoachncaaL Numeric coachncaaL1 - coachncaaL2  Difference between coaches' number of NCAA Tournament losses 

Difcoachfinal4 Numeric coachfinal41 - coachfinal42  Difference between coaches' number of NCAA Tournament Final 4's 

Difcoachchamps Numeric coachchamps1 - coachchamps2  Difference between coaches' number of NCAA Tournament Championships 

Rationncaa Numeric nncaa1 / nncaa2  Ratio between teams' number of NCAA Tournaments 

Difnfinal4 Numeric nfinal41 - nfinal42  Difference between teams' number of NCAA Tournament Final 4's 

Difnchamps Numeric nchamps1 - nchamps2  Difference between teams' number of NCAA Tournament Championships 

Output Binary 0 or 1  Result of the game: 1 for A to win, 0 for B to win 

 


