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Abstract 

Forests of the world provide an important ecosystem service in the fight against climate change 

by sequestering carbon from the atmosphere and storing them as biomass. However, cloud 

cover and terrain inaccessibility hamper studies of forest biomass using satellites, especially in 

the dense jungles of the tropics. This study investigated the use of UAS to complement existing 

satellite based approaches by exploring what information can be derived from UAS sensors 

and how their biomass estimates can be applied to satellite sensors to improve their accuracies. 

A biomass estimation model was built using on the ground measurements while GIS was used 

to generate biomass maps. The results from the model show that NDVI and tree heights were 

statistically significant explanatory variables for biomass in the Mixed Oak Forests of Davert, 

Germany. Estimates from UAS were the most accurate in terms of R2, compared to other sensor 

estimates from Sentinel 2, World View 3 and Orthophotos. Hence, two adjustment factors were 

proposed to improve the accuracy of World View 3 and Sentinel 2 estimates. UAS are thus a 

versatile sensor platform for biomass studies that complements satellite sensors to improve 

studies of global biomass of forests. 

Keywords: biomass, drones, modelling, Sentinel 2, UAS, vegetation indices, World View 3 

 

1 Introduction 

Forests of the world are sentinel ecosystems that contain a rich variety of flora and fauna 

(Steffan-Dewenter et al., 2007). Although there are many different types of forest biomes, a 

common ecosystem service they provide to humans, on a global scale, is their ability to 

sequester carbon from the atmosphere to produce biomass via photosynthesis (Lal, 2004), 

which is stored in trees’ stem, branches, leaves, and roots (Goulden et al., 1996). This 

ecosystem service of forests is important to regulate carbon and its gaseous compounds, which 

are potent greenhouse gases, in the earth’s atmosphere. Unfortunately, carbon release into the 

atmosphere is far outpacing carbon absorption by forests that results in the present human-

induced climate change (Oreskes, 2004). Therefore, the estimation of forest biomass on the 

earth’s surface is important in understanding how much carbon is stored within and, when 
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combined with studies related to primary productivity of trees (Scurlock et al., 2002), the 

carbon fluxes between them and the earth’s atmosphere. 

The most accurate estimate of forest biomass comes from field measurements of trees’ 

volume and density of their wood (Catchpole & Wheeler, 1992). Volume can be estimated by 

species (seldom forests) specific allometric equations that take into account a tree’s diameter-

at-breast height (DBH) and sometimes its height to model its volume (Yang et al., 2017). 

Density is estimated by destructive sampling techniques ranging from falling an entire tree or 

obtaining a core of its wood to be processed in a laboratory and obtaining density estimates 

from them (Brown et al., 1989). Thus, the product of a tree’s volume and density would be its 

biomass. However, field sampling of biomass across large areas of forest is impractical due to 

the costs in terms of time and resources. This is impossible in some situations due to terrain 

inaccessibility and dense forests that make fieldwork dangerous (Cárdenas et al., 2017). To 

overcome these limitations and estimate biomass for large areas, albeit at the expense of 

estimation accuracies, researchers have turned to remote sensing techniques used for studies of 

the earth’s surface. 

To estimate forest cover and therefore biomass, existing remote sensing approaches 

rely heavily on spectral imagery captured by spaceborne satellites (Eckert, 2012). These 

sensors detect the spectral reflectance of sunlight from trees, for example, and maps of forest 

cover can be generated from this data. However, the spatial resolution of images from 

spaceborne sensors are coarse, especially in studies of forests on regional and global scales 

(Avitabile et al., 2012). Furthermore, validation of classified land cover maps with on the 

ground measurements is vital to evaluate the accuracy of maps (Congalton, 1991), and such 

measurements are sometimes difficult to obtain. Another difficulty of capturing satellite images 

in the tropics is the problem of cloud cover that obscures the earth’s surface below it, especially 

near the equator. One solution to this is to fill in the gaps to the data because of cloud cover by 

mosaicking images of the same area but captured on a different date (for example in Pettorelli 

et al., 2005). This is not ideal if the study has a temporal element in its analysis. Thus, a new 

sensor platform is needed to not only operate under cloud cover and in challenging terrain, but 

also produce more accurate biomass estimates compared to satellite estimates to validate them 

as a replacement to on the ground measurements. 

Unmanned aerial systems (UAS) are increasingly used in geographical research, 

especially in the fields of land cover and forest ecology (Yue et al., 2017). Sensors, more often 

an image capturing device, are attached to UAS (also known as drones), and are flown over a 
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study area to capture geotagged images or videos. Thereafter, the geotagged data are processed 

in a geographic information system (GIS) to create maps of the study area. The use of UAS 

makes acquisition of geographical data convenient as they can be flown at low costs anytime 

and anywhere, subject to the weather and prevailing rules and regulations of the study locale 

(Clarke & Moses, 2014). An added benefit of UAS is that they can be flown below the cloud 

line to capture images of the earth’s surface that makes them an ideal solution to cloud obscurity 

to satellites, particularly in the tropics. 

UAS can not only capture high resolution multispectral imagery, but also generate point 

clouds based on imagery overlap that can be translated into three-dimensional (3D) objects of, 

for example, trees, using image processing software (Rosskopf et al., 2017). This combination 

of multispectral imagery, useful in calculating vegetation indices, and 3D models of forests, 

useful in calculating heights and volumes, are key in estimating forest biomass. Before the use 

UAS, point clouds were captured using Light Detection and Ranging (LiDAR) sensors 

mounted on board airplanes. Such flights are not only expensive (Popescu, 2007), but also 

limits the area of interest as there are restrictions to the flight paths of airplanes, especially in 

urban areas. UAS have thus emerged as a convenient solution to airborne flight limitations as 

their ability to capture and derive point clouds based on imagery to generate 3D models makes 

them useful in biomass estimation that requires volume estimates of trees in a study area. 

From the context and literature introduced, this study aims to investigate the role of 

UAS in improving the quality of existing satellite-based approaches. Two main research 

questions guide the aim of this study: 

1. How are UAS of use in biomass studies? 

2. How can UAS improve satellite biomass estimates quantitatively? 

 

2 Methods 

This section describes how data collected in the Davert, a temperate forest in Germany, was 

translated into the results of a biomass estimation model for the UAS and maps of biomass in 

the study area. Two methods were employed to estimate biomass, first using satellite sensors 

and published biomass equations. Second, a biomass model was built specifically for the UAS 

in the context of Davert as no published biomass models suited the radiometry of the sensors 

flown on the UAS. 
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Figure 1: Map of Davert south of Münster city where this study is situated. The dashed yellow line 

outlines the study area measuring 78 by 135 m where data was collected. 

2.1 Study area 

Davert is a forested area in central Münsterland and it lies between the city of Münster (to its 

north), the municipalities of Senden (to its west), and Ascheberg (to its south). The total area 

of Davert is more than 2,500 ha (NABU, 2017) and spread throughout the Münsterland, with 

forest pockets linked together by parks and green corridors. The forest biome of Davert is 

considered a Mixed Oak Forest (Lehmann, pers. comm., 2017), typical of the Münsterland, 

made up of species like Oak (Quercus robur), Ash (Fraxinus excelsior), Elm (Ulmus laevis), 

Hazel (Corylus avellana), and Hornbeam (Carpinus betulus) (NABU, 2017). The study area 

was a 1.06 ha rectangular patch of forest, measuring 78 by 135 m, with the centroid located at 

Easting 403,001.42 and Northing 5,745,539.74 (UTM Zone 32U), in the northern reaches of 

Davert (Figure 1). 

 

2.2 Remote sensing data and processing 

Data for this study were all downloaded from secondary sources. Since the study began in the 

autumnal month of September, the foliage of trees were beginning to decrease and UAS flights 

then would not show maximum green foliage of trees (used for photosynthesis) that was 

important for investigating their biomass. 
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 Sentinel 2 World View 3 Orthophotos UAS 

Spectral 

(CIR) 

    

 ASTER GDEM (v2) LiDAR UAS 

Elevation 

(DEM) 

   

Figure 2: A comparison of the spatial resolution of sensors used for biomass estimation from the lowest 

on the left to the highest on the right for spectral and elevation data. 

 

Table 1: Technical specifications of the sensors used in this study. Source: ESA (2017), DigitalGlobe 

(2014), Vexcel Imaging (2016), Tetracam Inc. (2017). 

Platform Sensor 
Spectral 

Bands 

Spatial 

Resolution 

(m) 

Temporal 

Resolution 

(days) 

Spectral 

Range 

(µm) 

Date 

Acquired 

Sentinel 2 

(Satellite) 

Multi Spectral 

Instrument (MSI) 
4 10 16 0.40–0.98 25092016 

World View 3 

(Satellite) 
Multi Spectral 8 1.2 <1 0.40–1.04 16062015 

Aircraft 

(Airborne) 
Ultra Cam Eagle 4 0.2 

Flight 

dependent 
0.41–1.00 08032016 

Microdrones 

MD 4-1000 

(UAS) 

Tetracam Mini-

MCA 
5 0.2 

Flight 

dependent 
0.53–0.92 18082016 

 

The four sources of remotely sensed spectral images of the study area were from, in 

ascending order of spatial resolution, Sentinel 2 (Copernicus, 2016), World View 3 (provided 

courtesy of the DigitalGlobe Foundation), Orthophotos (Geoportal NRW, 2017a), and UAS 

(Figure 2). The specifications of each sensor system are described in table 1. In addition to 

spectral images, elevation data used to supplement biomass estimates from the spectral sensors 

were from ASTER Global Digital Elevation Model (GDEM) version 2 (NASA LP DAAC, 

2015) for the satellite sensors, and airborne LiDAR (Geoportal NRW, 2017b) flown separately 

from the Orthophotos flight.  
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Figure 3: Flowchart illustrating the methods described for (from top to bottom) remote sensing 

processing, biomass modelling and UAS processing. The final product are biomass maps derived from 

the four different sensors.  
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To estimate forest biomass with remote sensing, researchers have used a combination 

of vegetation indices and elevation data (Castillo et al., 2017; Yue et al., 2017; Jachowski et 

al., 2013). In the context of this study, the equation published by Castillo et al. (2017) to 

estimate biomass with vegetation indices and elevation was most suited to the spectral 

signatures that Sentinel 2, World View 3, and Orthophotos detect. This was because they three 

captured the spectral bands of Blue, Red and Near Infrared (NIR) used in deriving vegetation 

indices related to biomass (Table 2). The model is represented by the equation (Castillo et al., 

2017): 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 7.47 ∗ 𝐿𝐴𝐼 + 9.30 ∗ 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 − 16.07 

In the equation, the vegetation index used was the Leaf Area Index (LAI) (Boegh et al., 

2002) derived from the Blue, Red and NIR pixel values of the three different sensors that first 

calculated the Enhanced Vegetation Index (EVI) (Huete et al., 2002) before the LAI. The 

elevation data used for Sentinel 2 and World View 3 calculations was from ASTER GDEM 

while the Orthophotos were paired with LiDAR point clouds. The pixel size of ASTER GDEM 

(15 m) was resampled to the pixel size of 10 m for Sentinel 2 and 1.2 m for World View 3 

using cubic interpolation. The elevation recorded by point clouds from the LiDAR flight was 

interpolated using Inverse Distance Weighting (IDW) to obtain the DEM from LiDAR with a 

pixel size of 0.2 m. The methods described in this section (2.2) can be summarised in the top 

third of the flowchart in figure 3, which also details the methods described in sections 2.3 and 

2.4. 

 

2.3 UAS data and processing 

The UAS used to survey the study area was the Microdrones MD 4-1000. Two separate flights 

were flown, one to capture multispectral images of the study area using a Tetracam Mini-MCA 

fitted with five spectral sensors (Table 1); and the other to capture RGB images of the study 

site using a Canon PowerShot SD780 camera. AgiSoft Photoscan software (AgiSoft, 2016) 

was used to mosaic the images to of the study site. Thereafter, a composite layer of five bands 

was created for the multispectral images, while point clouds of heights in the study area was 

generated using RGB images. Although point clouds could be generated from the mosaicked 

multispectral images, the RGB image was preferred for point cloud generation since the Canon 

camera has a global shutter mechanism that captures better quality images, which when 

mosaicked together, renders a smoother image of the entire study area and hence, more accurate 

point clouds of heights. 

(1) 
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The outputs of AgiSoft Photoscan were a composite raster of five multispectral images, 

and a DEM of the study area created from RGB images. These two rasters were projected to 

the coordinate system of ETRS 1989 (UTM Zone 32N) so that length and area measurements 

can be made. Finally, the rasters were exported as a tagged image file format (tif) to ArcGIS 

Desktop 10.5 (ESRI, 2016) for processing with GIS. 

 

2.4 Biomass estimation models with stepwise regression 

To estimate forest biomass from the multispectral images and DEM of the UAS, a 

model specific to the use of the UAS in Davert was built using a stepwise linear regression 

(suggested by Jachowski et al., 2013). Data used to train this model was obtained from 

NABU’s field survey of Davert (Area AU3) in 2014 that recorded trees’ genus, species, DBH, 

and height (Table A1). These data were sufficient in generating biomass estimates based on 

the forest specific allometric equation from (Wang, 2006) (instead of species-specific ones) 

that was applicable to the temperate forest of Davert. Only trees with heights of the study area’s 

median of 20 m and above were used to train the model, as the assumption was that only trees 

of such heights were captured by a UAS flown above. Hence, 157 tree measurements were 

reduced to 56 for model building. The allometric model that uses DBH to estimate biomass is 

represented by the equation (Wang, 2006): 

log
10

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 1.95 + 2.47 ∗ log
10

𝐷𝐵𝐻 

The pixel values of the five multispectral bands and DEM from the two mosaicked 

raster files were extracted from locations of the 56 tree measurement points. Thereafter, 

vegetation indices calculated from the five spectral signatures available were derived using the 

equations listed in table 2. 

Before running the stepwise regression model, correlations amongst variables were 

checked using a correlation matrix generated by Microsoft’s Data Analysis Tool Pack. From 

this matrix, variables were checked for correlation strengths with biomass, and whether the 

direction of correlations makes sense in relation to biomass. Next, a stepwise regression using 

the said Tool Pack was ran where explanatory variables of biomass were selected based on the 

directions of their coefficients and their statistical significance. The overall model’s 

performance was evaluated by its coefficient of determination (R2), a measure of the proportion 

of variance in biomass estimated that can be predicted by the explanatory variables.  

(2) 
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Table 2: Selected vegetation indices derived from spectral sensors in biomass model building plus tree 

height. Indices beginning with ‘M’ mean that the reflectance of the Green band was used in calculating 

indices instead of Blue as suggested by their respective reference. 

Variable name Variable definition References 

Tree Height From DEM Yang et al., 2017 

Vegetation Indices   

M*(Modified)ARVI 
𝑁𝐼𝑅 − 2 ∗ 𝑅𝑒𝑑 + 𝑮𝒓𝒆𝒆𝒏

𝑁𝐼𝑅 + 2 ∗ 𝑅𝑒𝑑 − 𝑮𝒓𝒆𝒆𝒏
 Kaufman & Tanré, 1992 

M*EVI 2.5 ∗  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 6 ∗ 𝑅𝑒𝑑 − 7.5 ∗ 𝑮𝒓𝒆𝒆𝒏 + 1
  Huete et al., 2002 

IPVI 
𝑁𝐼𝑅

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 Crippen, 1990 

LAI 3.6 ∗ 𝐸𝑉𝐼 − 0.1 Boegh et al., 2002 

NDVI 
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 Rouse et al., 1973 

M*OSAVI 
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝑮𝒓𝒆𝒆𝒏
 Rondeaux, 1996 

Simple Ratios   

RVI 
𝑁𝐼𝑅

𝑅𝑒𝑑
 Jordan, 1969 

NIR over Green 
𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
  

GRVI 
𝐺𝑟𝑒𝑒𝑛

𝑅𝑒𝑑
 Kanemasu, 1974 

Note: Red in the equations above might be from the Red or Red Edge band. Similarly, NIR can be from 

NIR 1 or NIR 2 of the Tetracam Mini-MCA. 

 

3 Results 

This section describes the results of the biomass estimation model developed specifically for 

the UAS in the context of Davert and the resultant biomass maps produced from UAS data and 

the three other sensors. The comparisons show that there are not just differences in the accuracy 

of the estimates measured by models’ R2, but also the spatial variations of the estimates shown 

in the maps. 

3.1 Biomass model for UAS data 

From the correlation matrix (Table 3), vegetation indices calculated with the Red Edge and 

NIR 1 spectral band of the UAS have the highest positive correlation with biomass compared 

to indices from other combinations of Red and NIR 2. For an iteration of the model that used 

the latter two bands, please see supplementary figure A2. 
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Table 3: Correlation matrix of explanatory variables and biomass. Values indicating high correlations 

with one another are italicised while variables in the second column marked with an asterisk are those 

used in the stepwise regression. 

 Biomass Height MARVI MEVI IPVI NDVI MOSAVI RVI N/G GRVI 

Biomass 1          
Height 0.39* 1         

MARVI 0.26* 0.02 1        
MEVI -0.20 -0.03 0.05 1       

IPVI 0.23 0.06 0.59 -0.05 1      
NDVI 0.23* 0.06 0.59 -0.05 1 1     

MOSAVI 0.17 0.07 0.38 -0.07 0.97 0.97 1    
RVI 0.15 0.13 0.35 0.00 0.81 0.81 0.85 1   
N/G 0.01 0.07 -0.05 -0.07 0.70 0.70 0.85 0.79 1  

GRVI 0.27* 0.09 0.89 0.08 0.57 0.57 0.39 0.54 0.00 1 

 

 

Model equation 

 

 

 
𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 100.12 ∗ 𝑁𝐷𝑉𝐼 + 1.57 ∗ 𝐻𝑒𝑖𝑔ℎ𝑡 − 38.62 

 

p value of:  

Model <0.01 

Tree Height <0.01 

NDVI 0.01 

  

multiple R 0.49 

R2 0.24 

Adjusted R2 0.21 

  

VIF 1.32 

Figure 4: Generated model and statistics for biomass with chart output. NDVI, a measure of vegetation 

greenness and Tree Height were selected by the stepwise regression as explanatory variables for 

biomass. 

 

Tree height, estimated by the DEM has the highest positive correlation with biomass. 

The correlation matrix also helps identify explanatory variables that were highly correlated 

with each other, defined in this study as those with an absolute correlation value of more than 

0.8. With confounding explanatory variables that had little correlation with biomass removed, 

the remainder of the explanatory variables were used in the stepwise regression and the formula 

of the resultant biomass estimation model was a function of tree height and the Normalised 

Differentiated Vegetation Index (NDVI). The model had a statistically significant F value with 

the p value of it being less than 0.01, while the two explanatory variables were also statistically 

significant, both having p values of less than 0.05. However, the R2 statistic of the regression 
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model was low at 0.24 (Figure 4). Its Variance Inflation Factor was low at 1.32 that showed 

low multicollinearity in the model. Hence, this model generated was the most suitable from the 

training data available to create a biomass estimation map of the study area based on UAS data. 

 

3.2 Relative biomass maps 

The following description focuses on the results shown in figures 5 and 6. Overall, the biomass 

estimates produced by the model in figure 4 using UAS data produced the highest accuracy 

(measured by the R2) in biomass estimates in kg m-2. Additionally, the resampled UAS data to 

the satellites’ resolution of 10 m and 1.2 m for Sentinel 2 and World View 3, respectively, still 

shows higher accuracies compared to measurements from only satellites. The following 

paragraphs provides a more detailed comparison of UAS estimates to the three other sensor 

systems used in this study. 

UAS vs Orthophotos: Before UAS, images of forests at sub-meter resolutions were 

acquired from aerial photography like Orthophotos. Hence, this comparison serves to 

benchmark UAS biomass estimates with Orthophotos (plus LiDAR for elevation). The 

Orthophotos produced a more even spread of biomass estimates across the study area while the 

estimates from the UAS show more biomass in the south and less in the north. The contrasts 

amongst pixels of biomass estimates from the UAS were also sharper where tree canopies show 

high biomass and the adjacent forest floor showing low biomass. The scatterplots show that 

biomass estimates from the Orthophotos under-estimated biomass of the study area since most 

of the points fell below the line of perfect correlation, an indication that measured biomass 

were more often higher than modelled biomass. 

UAS vs World View 3: The second comparison is of UAS to high-resolution satellite 

data from World View 3. The biomass estimates from World View 3 were made in conjunction 

with a separate ASTER GDEM elevation data that had a coarser pixel size than World View 3 

(15 m compared to 1.2 m). After resampling, the patterns of biomass in the study area still 

appeared similar to the original UAS image. The World View 3 biomass estimates were more 

pocketed with gaps in the canopy versus the resampled UAS estimates. Moreover, the low 

estimates of biomass in the north was shown in the World View 3 map as with the resampled 

UAS map. The R2 of the scatterplot showed that the biomass estimated by World View 3 was 

the least accurate at 0.07 amongst the six maps and there was no discernible correlation between 

the modelled and measured biomass. 



14 

 

Figure 5: Maps of biomass estimates from the different sensors. The comparison here focuses on the 

spatial variations of estimates. 
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Figure 6: Scatterplots of biomass estimates from the four different sensors. The comparison here 

focuses on the accuracy of relative (high-low) biomass by this study’s biomass model applied to the 

UAS and Castillo et al.’s (2017) model applied to the other three sensors.  
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UAS vs Sentinel 2: The third comparison is of UAS to the medium resolution satellite 

of Sentinel 2 used for areal studies from regional to global scales. Elevation data was also 

obtained separately from ASTER GDEM. The resampled UAS image to the resolution of 

Sentinel 2 looked the most similar to Sentinel 2’s estimate amongst the three comparisons. In 

the maps, both show that the areas with low biomass were found in the north of the study area 

while high biomass in the south. Pockets of low biomass were also found in similar locations 

in the centre. Even though both scatterplots show low R2 values of 0.13 for the resampled UAS 

map and 0.09 for the Sentinel 2 map, their patterns of scatter look similar with mostly under-

estimation of measured biomass by the models. 

 

4 Discussion 

The results presented were both expected and surprising given the knowledge from previous 

research on biomass with remote sensing, particularly with UAS and how much details they 

uncovered. Even so, the findings provided fresh insights that warranted further discussion on 

biomass studies using UAS together with different remote sensing platforms. Before analysing 

the biomass estimates, it must be stated that the estimates in maps and scatterplots presented 

before were a representation of the presence (high) or absence (low) of biomass based on 

Wang’s (2006) estimate of maximum and minimum values of biomass in a temperate forest 

biome of up to 60 kg m-2. This did not represent accurately the absolute values of biomass of 

the study area in Davert. Nonetheless, the analysis will focus on applying the more accurate 

UAS estimates to improving satellite estimates. 

 

4.1 UAS as a versatile sensor platform for biomass 

The first point of the discussion seeks to answer the first research question posed of the use of 

UAS in biomass studies. This study has demonstrated that UAS are a versatile sensor platform 

for biomass studies chiefly because they are able to capture two important components of 

biomass remotely, which are vegetation indices and elevation on the same day and flight. 

In the stepwise regression, the explanatory variables selected of NDVI and Tree Height 

were satisfactory as they made sense in a botanical context. First, tree height, estimated by the 

DEM generated from point clouds of the UAS data, had a positive coefficient in the model 

equation. This means that as tree height increases, so does above ground biomass because the 

volume of trees increases accordingly, allowing the tree to store more biomass in its stem, 
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branches, roots and leaves (Goulden et al., 1996). This leads to the second variable selected 

that was NDVI. The NDVI is a measure of green vegetation intensity (Stow et al., 2007), and 

since the UAS images acquired were in the summer month of August, this study assumed that 

the NDVI recorded was when the maximum foliage grew on trees. In relation to biomass, this 

also made sense as the higher the NDVI, the higher the presence of green vegetation and hence, 

higher biomass. 

A key aspect of the model was that it showed that tree heights are an important 

explanatory variable for biomass in all iterations of it (Figure 4 and A2). This is in contrast to 

previous research that showed including height in biomass estimations does not improve it 

(Ketterings et al., 2001; Soares & Schaeffer-Novelli, 2005). Additionally, the other published 

equation of biomass estimation with Sentinel 2 by Castillo et al. (2017) used in this study also 

incorporated elevation data from ASTER GDEM. However, the estimates with Sentinel 2 plus 

ASTER GDEM had a limitation in that the data came from two different sensors where the 

images captured were not at the same time and resolution. 

Thus, the benefits of using UAS in biomass studies, compared to existing satellite based 

approaches, are that they are versatile, flexible and low cost. This is because they are not only 

able to capture high-resolution multispectral data from the earth’s surface with optical 

instruments. With the same optical instruments on the same flight, they are also able to capture 

point cloud data if their flight plans’ provide sufficient overlap in images. Nevertheless, data 

captured by the UAS at high resolutions can be very large to store (nearly 5 GB of raw data 

were collected for this study area alone) and processing them can be computationally intensive. 

Hence, using UAS alone to estimate the biomass of a large forest is not practical (Beaumont, 

et al., 2017) and the next discussion point deals with using UAS technology to improve 

estimates solely by satellites. 

 

4.2 Improving satellite estimates with an adjustment factor 

The second point of the discussion seeks to answer the second research question posed of the 

ways UAS can improve satellite-based estimates. This point is valid since it was shown that 

the UAS’ biomass estimates were the most accurate amongst the four sensors. To improve 

satellite estimates with UAS requires an adjustment factor applied to the satellite estimates; 

and one each for World View 3 and Sentinel 2 will be presented. 
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Figure 7: Scatterplots of satellite estimates against UAS estimates of biomass showing the linearity of 

the models. The adjustment factor for World View 3 (left) and Sentinel 2 (right) are highlighted above. 

 

Studies of biomass involving large areas still rely on satellites to cover large swaths of 

forests for practical reasons mentioned by Shao et al. (2017). The alternative of airborne 

approaches such as Orthophotos and LiDAR flights are expensive to operate (Popescu, 2007) 

and are not always possible everywhere. Hence, this study argues for the use of UAS to replace 

on the ground measurements, sometimes referred to as ground truth points, as UAS’ estimates 

are more accurate than satellite estimates and easier to obtain. From the UAS estimates, an 

accuracy assessment of the satellite estimates can be conducted. Moreover, a satellite specific 

adjustment factor can be applied to satellite estimates that scales the pixel values of the satellite 

biomass maps to one that resembles more accurate pixel values from UAS biomass maps. 

Two adjustment factors were calculated, one for World View 3 estimates and the other 

for Sentinel 2 estimates. To calculate the adjustment factors, a simple linear model (Figure 7) 

was fitted to the explanatory variable of satellite estimates and the response variable of UAS 

estimates resampled to the respective satellite’s resolution. The pixel points sampled were the 

same 56 points of on the ground measurements. The two equations displayed in figure 7 for 

World View 3 and Sentinel 2 were the adjustment factors recommended to improve the 

biomass estimates from the two satellites. To apply this in the context of biomass studies, for 

example, a patch of forest’s biomass estimated by Sentinel 2 can be supplemented by one or 

more UAS flights over smaller parts of the forest. From the biomass estimates of the more 

accurate UAS flight, an average of them can be calculated and from the results of the averaged 

UAS estimates, the adjustment factor for Sentinel 2 can be applied using data from Sentinel 2 

and the UAS to improve the overall accuracy of biomass estimates for the entire forest. 
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4.3 Limitations and further research 

First, in terms of data acquired, they were all downloaded from secondary sources and there 

was no control on what information was collected and how so. This was an important 

consideration in the formulation of the aims of this research, as work had to be done with what 

data was available. Nonetheless, studies involving remote sensing of remote areas have relied 

solely on secondary data sources with visual interpretation of images for accuracy assessments. 

In this study, data was downloaded not only from remote sensing images but also on the ground 

measurement of trees collected by NABU. These on the ground measurements (Table A1) were 

key in building the biomass model and validating estimates. 

Second, sensors that capture images in the multispectral range of up to NIR were used 

in this study. However, there is a growing use of other non-spectral sensor types like Radar 

(that uses microwave) for vegetation studies (Butnor et al., 2003). Radar measurements, 

especially on airborne platforms, can generate images of high spatial resolution. Moreover, 

Radar signals are able to penetrate cloud cover, especially for research done in the tropics near 

the equator where cloud cover constantly obscures satellite images. 

Third, in terms of model specificity, the biomass estimation model built was suited for 

the data collected by the five sensors on the UAS in the context of Davert only. Context specific 

biomass models was also apparent in the model by Castillo et al. (2017) when applied to the 

Orthophotos, World View 3, and Sentinel 2 sensors even though the sensors had similar 

radiometry used in their study. This resulted in the low accuracies of the biomass estimates in 

all the three sensors. This limitation was not address in this study since it is beyond the scope 

of it, but this problem is common in most biomass studies reviewed. A specific model was built 

using one sensor in one study area and the model will only be accurate in the context of that 

study and less so elsewhere. Further research should focus on developing more general biomass 

estimation models from data acquired from previous research since biomass is found 

everywhere in the world and research about it is important in mitigating the effects of climate 

change. 

 

5 Conclusions 

In conclusion, this study has achieved its aim and answered the two research questions set forth 

in the introduction. First, it has demonstrated the use of UAS as a versatile and multi-functional 

sensor in biomass studies since they are able to capture vegetation indices and elevation data, 

both important predictors of biomass using remote sensing, in one flight. UAS produced very 
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high-resolution data that increased the accuracy of biomass estimates, and is not affected by 

temporal mismatches of spectral and elevation data, a limitation in previous studies. Next, to 

improve existing satellite-based approaches for biomass estimates, two adjustment factors were 

suggested, one for World View 3 and the other for Sentinel 2. These adjustments uses relatively 

accurate UAS estimates of biomass to improve satellite estimates, which covers a larger area 

that UAS cannot. Nonetheless, caution must be exercised in the interpretation of the values of 

biomass estimated from this study, as the estimates from UAS are inaccurate in terms of 

absolute values of biomass per unit area. Rather, they should be regarded as the relative 

amounts of biomass found in the study site of a typical temperate forest. Future work has been 

suggested to expand this research to inform studies of biomass estimates using remote sensing 

techniques and improving biomass estimation models. This study has important implications 

for research in global biomass estimates and forestry research. Estimations of biomass in 

inaccessible regions, especially for large areas of forests, still require the use of space or 

airborne remote sensing techniques, depending on the resources and computational power 

available. Validation of estimates are also important, and on the ground measurements are not 

always possible due to forest inaccessibility and researchers should look beyond traditional on 

the ground measurements of diameter at breast height of trees. The use of UAS should be 

incorporated in remote sensing studies of biomass not as a wholesale replacement of satellite 

systems, but rather as a complementary tool for accuracy assessment and improvement of 

satellite estimates because of UAS’ ease of operation anytime, anywhere. 
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Appendix 

 

Figure A1: Histograms of biomass estimates from the different sensors. The comparison here focuses 

on the distribution of estimates from low to high. 
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Model equation 

 

 

 
𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 13.07 ∗ 𝑀𝐴𝑅𝑉𝐼 + 1.57 ∗ 𝐻𝑒𝑖𝑔ℎ𝑡 − 27.43 

 

p value of:  

Model <0.01 

Tree Height <0.01 

MARVI <0.01 

  

multiple R 0.48 

R2 0.23 

Adjusted R2 0.22 

  

VIF 1.3 

Figure A2: Biomass estimation model with Red and NIR 2 bands of the UAS (Tetracam Mini-MCA). 

MARVI was selected instead of NDVI but Tree Height was still an important predictor variable for 

biomass. 

 

Table A1: An example of the field measurements collected by NABU. Important to biomass studies 

area measurements of Genus, Species, DBH and Height. 

Area Year 

Tree 

No. Genus Species 

DBH 

(cm) 

Height 

(dm) 

UTM 

Zone Easting Northing 

AU3a 2014 1902 Carpinus betulus 365 205 32 402968 5745576 

AU3a 2014 1870 Ulmus laevis 327 207 32 402987 5745565 

AU3a 2014 1861 Fraxinus excelsior 400 232 32 402983 5745585 

AU3a 2014 1864 Fraxinus excelsior 403 233 32 402984 5745580 

AU3a 2014 1906 Fraxinus excelsior 425 237 32 402970 5745579 

AU3b 2014 1823 Fraxinus excelsior 496 275 32 403038 5745566 

AU3b 2014 1812 Fraxinus excelsior 511 277 32 403029 5745580 

AU3b 2014 1849 Fraxinus excelsior 532 280 32 403023 5745571 

AU3b 2014 1807 Fraxinus excelsior 519 291 32 403026 5745588 

AU3b 2014 1819 Quercus robur 496 292 32 403035 5745574 

AU3c 2014 1913 Quercus robur 358 263 32 403014 5745549 

AU3c 2014 1942 Carpinus betulus 540 271 32 403011 5745520 

AU3c 2014 1920 Fraxinus excelsior 549 275 32 403021 5745546 

AU3c 2014 1939 Quercus robur 433 279 32 403015 5745523 

AU3c 2014 1944 Quercus robur 475 281 32 403012 5745528 

AU3d 2014 1767 Fraxinus excelsior 403 273 32 403058 5745524 

AU3d 2014 1797 Fagus sylvatica 513 273 32 403039 5745519 

AU3d 2014 1783 Quercus robur 527 282 32 403055 5745503 

AU3d 2014 1768 Quercus robur 514 283 32 403063 5745529 

AU3d 2014 1774 Quercus robur 572 288 32 403062 5745516 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
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