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Abstract

Breast cancer is the second leading cause of death by cancer and is the second type of

cancer that is the most common among women, causing the death of 1500 women, every

year, in Portugal. Over the past decades, with the improvement of imaging techniques

and therapeutics, breast cancer mortality rate has been decreasing substantially. One of

the imaging techniques used is diffusion-weighted imaging (DWI), which is the magnetic

resonance imaging method that is the most sensitive in detecting invasive breast cancer.

There are several extensions of this technique that can be based on the premise that the

environment is not homogeneous (non-Gaussian models).

The non-Gaussian models, take into account the presence of barriers and compart-

ments that restrict the water molecules movement in the biological tissues, allowing the

distinction between malignant and benign lesions in DWI. Taking into account that

diffusion-weighted imaging is a non invasive method, the diagnosis through the applica-

tion of these models can become an alternative to biopsy.

The main goal of this dissertation was the development of a OsiriX plug-in that

performs the non-Gaussian diffusion analysis of DWI in magnetic resonance imaging

data. Five non-Gaussian diffusion models were implemented in the application: diffu-

sion kurtosis imaging, intravoxel incoherent motion, gamma distribution, truncated and

stretched-exponential. Parametric maps and region-of interest (ROI) parametric values

were obtained for each model. In order to fit the various non-Gaussian diffusion mod-

els, the Levenberg-Marquardt algorithm was used. This algorithm finds coefficients x to

best fit the nonlinear function to the data. The x coefficients results in parametric maps

that are able to identify the tumour and also distinguish between malignant and benign

lesions provided a comparison with the literature. During the application development,

these functionalities were also used to study the dependence of fitted parameters on the

number of b-values used and on the image noise.

An interface was developed with Objective-C on Xcode for OsiriX where the user gets

to choose from five diffusion models in order to obtain parameric maps or values. It also

informs on the goodness of fit and it provides fitting plots of the data. The references of

the models and extra information are also available in an help button.

Finally, the application was tested successfully with breast DWI images of benign and
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malignant tumors.

Keywords: Diffusion Kurtosis Imaging, Intravoxel Incoherent Motion, Gamma Distribu-

tion, Truncated, Stretched-Exponential, Plug-in, OsiriX
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Resumo

O cancro da mama é a segunda causa de morte por cancro e é o segundo tipo de

cancro mais comum entre as mulheres, matando todos os anos 1500 mulheres só em

Portugal. Nos últimos anos, com a melhoria das técnicas de imagem e terapêutica, a

taxa de mortalidade do cancro da mama tem diminuido substancialmente. Uma das

técnicas de imagem usadas é a imagem ponderada em difusão (DWI), que é o método da

imagem por ressonância magnética mais sensível na detecção de cancro damama invasivo.

Existem várias extensões desta técnica que se baseiam na premissa que o ambiente não é

homogéneo (modelos não-Gaussianos).

Os modelos não-Gaussianos, têm em conta a presença de barreiras e compartimentos

que restringem o movimento das moléculas de água nos tecidos biológicos, permitindo

assim a distinção entre lesões malignas e benignas numa imagem ponderada em difusão.

Sendo a imagem ponderada em difusão um método não invasivo de imagem por resso-

nância magnética, o diagnóstico através da aplicação destes modelos pode se tornar uma

alternativa à biópsia.

O principal objectivo desta dissertação foi o desenvolvimento de um plug-in para o

OsiriX que efectue a análise da difusão não-Gaussiana em dados de imagens de resso-

nância magnética. Foram implementados cinco modelos de difusão não-Gaussianos na

aplicação: imagem por curtose de difusão, movimento incoerente intravoxel, distribuição

gama, truncado e “stretched-exponential”. Foram obtidos mapas paramétricos e valores

paramétricos correspondentes à região de interesse (ROI). De forma a fazer o ajuste dos

vários modelos de difusão não Gaussianos, foi aplicado o algoritmo Levenberg-Marquardt.

Este algoritmo procura coeficientes de x de forma a fazer o melhor ajuste da função não

linear aos dados. Os coeficientes de x resultam em mapas paramétricos que conseguem

identificar o tumor e também distinguir lesões mailgnas de benignas, fornecendo compa-

ração com a literatura. Durante o desenvolvimento da aplicação, estas funcionalidades

foram testadas de forma a estudar a dependência dos parâmetros ajustados aos valores

de b usados e relação sinal-ruído.

Foi desenvolvida uma interface com a linguagem de programção Objective-C no

Xcode para o OsiriX, onde o utilizador tem a oportunidade de escolher obter os valo-

res ou mapas paramétricos de cinco modelos de difusão diferentes. Também informa
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acerca da qualidade de ajuste e fornece as curvas de ajuste aos dados. No botão de ajuda

aparecem as referências aos modelos utilizados e informação extra.

Em conclusão, o plug-in permite a visualização do tumor e a distinção entre lesões

malignas e benignas.

Palavras-chave: Imagem por Curtose de Difusão, Movimento Incoerente Intravoxel, Dis-

tribuição Gama, Truncado, “stretched-exponential”, Plug-in, OsiriX, Modelos Não Gaus-

sianos
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1
Introduction

1.1 Context and motivation

Breast cancer is the second most common type of cancer that affects women and is the

second cause of death by cancer [1]. In Portugal only, there are 1500 women dying from

this disease [2]. Pacients with history of benign breast tumors, early menarche, late

menopause, use of oral contraceptives, hormone replacement therapy, high breast density

and obesity have a higher risk of contracting the disease [3, 4].

With improved therapeutic and imaging techniques, in the last decades the breast

cancer mortality rate has decreased substantially [5].

TheMagnetic Ressonance Imaging (Magnetic Ressonance Imaging (MRI)) of the breast

is an important medical imaging technique since it is the most sensitive method to detect

invasive breast cancer in comparison with mammography and ultrasound [6]. It is based

on the magnetic properties of the hydrogen nucleus in biological tissues and it provides

multiplanar images of the breast [7]. It is used to detect breast cancer in high-risk patients

for example, patients with mutations on the BRCA1 and BRCA2 genes. These genes are

both tumor suppressing genes and their proteins are evolved in fundamental cellular

processes, including the repair of double strands ruptures of Deoxyribonucleic Acid

(DNA) [6]. In spite of only being responsible for 2% of all breast cancers, in case of the

person having those gene mutations, the chances of someday contracting the disease are

between 45% and 65% [6][8].

"American Cancer society" has guidelines of how a mamography should be performed

and also about the usage of MRI [9]. For example, MRI should be performed when the

person in question has a first degree relative with mutations in BRCA 1 and 2 and also

has more than 20% risk of contracting breast cancer based on their family history. An-

other possible situation to use MRI is when the imaging diagnostic is performed through
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conventional methods. It is proven that, in this case, are detected malignant tumors that

were hidden in mammography in approximately 3% to 9% of those women [10]. It is

important to highlight that MRI can’t be performed on its own, but in conjuction with

mammography since 12% of breast cancers, like carcinomas, can’t be detected by this

imaging technique[11].

Diffusion Weighted Imaging (DWI) is a MRI technique based on the movement of

water molecules in tissues. The main goals of this technique are the study of lesion

characterization and better detection of small size lesions [12]. There are several exten-

sions of DWI, like for example diffusion kurtosis imaging (DKI). This extension assumes

that the water molecules movement doesn’t follow a Gaussian Probability Distribution

Function (PDF). Biological tissues have natural barriers that are going to restrict the

water molecules movement, thus diverting the PDF form from Gaussian. Kurtosis has

the ability to identify how much the PDF diverts from the Gaussian shape, which gives

information about the complexity of the tissues helping in lesion characterization [13].

Apart from the DKI, other non-Gaussian models have been studied for breast, like the

Intravoxel Incoherent Motion (IVIM), and the Gamma distribution model [14, 15]. Other

models like the Truncated Gaussian distribution and Stretched-Exponential model have

also been studied for DWI, however only for prostate and brain tissues [16, 17, 18]. All

of these models have been proven to differentiate between malignant and benign lesions

or normal tissue and lesions.

1.2 Objectives

This dissertation aims to develop a plug-in for OsiriX, which is a medical imaging clinical

software. The purpose of the plug-in is to identify in a magnetic diffusion weighted image

whether a tumor is benign or malignant through the non-Gaussian models of diffusion

already existing and apply them to real images of the breast. The development of the

plug-in was accomplished at Instituto de Biofísica e Engenharia Biomédica (IBEB).

1.3 Dissertation plan

The present dissertation has been structured so as to first cover relevant theoretic under-

pinnings of diffusion MRI and non-Gaussian models. It also includes the state-of-the-art.

Secondly, there will be mentioned the materials and methods used to perform this study,

like dataset usage and image processing steps. Thirdly, the results and their discussion

will be presented to the reader according to each non-Gaussian model and outcomes of

the plug-in. In the end, there will be a conclusion and future work chapter that summa-

rizes the dissertation outcomes and informs the reader on what can be improved in the

plug-in in the future.
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1.4. DISSERTATION OUTPUTS

1.4 Dissertation outputs

Throughout the development of this dissertation, an abstract of the work that was being

developed was submitted and accepted in 8th Workshop on Biomedical Engineering

(WBME) and in NOVA BiomedicalWorkshop. In both of these workshops it was displayed

a poster shown in appendix A.
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2
Theoretic Underpinnings

In this chapter, the theoretic concepts are being introduced that are needed to better

understand the state-of-the-art and remaining chapters of this dissertation. Firstly there

is a small section about the breasts anatomy and the differences between malignant and

benign lesions. Then there is a brief introduction to MRI and DWI. The models that differ

from DWI are presented next and are divided in two sections, the Non-Gaussian models

and the Statistical distribution models. The Non-Gaussian models explain the DKI and

IVIM models and the Statistical distribution models explain the Gamma, Truncated and

Stretched models. Afterwords, there is the State-of-the-art with the investigation done

with each model applied to breast, with the exception of Truncated and Stretched which

have not been applied to breast yet.

2.1 Breast anatomy

Macroscopically, the breast can be divided in twomain parts. The first one is the glandular

tissue, which is responsible for the production of milk. The second part are all of the

other tissues that form and support the breast, which include adipose tissue (fat), fascia

(connective tissue) and muscles, as shown in Figure 2.1 [19].

From the microscopic point of view, the breast is focused on the Terminal Ductal Lob-

ular Unit (TDLU), which is the functional unit of the breast. It is composed of two ducts,

an intralobular terminal duct and an extralobular duct, and of acini (functional epithelial

cells that produce milk). Benign breast diseases and breast carcinomas have more than

90% of probability of originating in those units. They have three layers, the basement

membrane, the myoepithelial layer and the epithelial lining. The epithelial layer has,

normally, the thickness of only one cell. Hyperplasia happens when this thickness in-

creases to two or three cells. If the thickness keeps increasing, the proliferation becomes
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Figure 2.1: Anatomy of the breast. The female breast is constituted mainly of lobules
(milk-producing glands), ducts (tubes that carry the milk from the lobules to the nipple),
and stroma (fatty tissue and connective tissue surrounding the ducts and lobules, blood
vessels, and lymphatic vessels). Adapted from [20]

categorized according to how many layers of cells are present and how atypical the cells

appear. That way, it can range from atypical ductal hyperplasia to ductal carcinoma in

situ. One barrier that prevents the spread of cancer is the epithelial layer. When this layer

is breached, a carcinoma is labeled as invasive [19].

2.1.1 Benign vs Malignant lesions

Benign breast tumors tend to have a soft consistency and are mobile. Since they are slow-

growing masses with a clear delimited margin or may be encapsulated their removal is

easy and they rarely recur after removal. On the other hand, malignant tumors have

irregular margins and are fast growing. They have an abnormal cell growth and can

invade or spread to other parts of the body which defines them as cancer [21].

Although most benign tumors are not life-threatening, they have the potential to

become malignant through tumor progression which is when there is an increase of the

growth speed and invasiveness of the tumor cells [21].

2.2 MRI

2.2.1 Diffusion and MRI

MRI is a non invasive diagnostic technique that takes advantage of the natural magnetic

properties of the human body. It uses hydrogen nuclei, which are present in water and
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fat, to produce detailed anatomic images. A hydrogen nucleus is formed by only one

proton which the axis, in the presence of a strong magnetic field, are forced to align either

with or against the direction of the applied field. These two directions of alignment are a

result of the existence of two possible energy levels that the protons can occupy inside a

magnetic field. Since one of the levels has less energy than the other, the level with the

lowest energy is going to have a number of protons higher than the level with the highest

energy; this difference causes the net magnetization to be different from zero [22]. The

frequency at which protons precess when a magnetic field is applied is determined by

ω0 = γB0 (2.1)

where ω0 is the Larmor frequency, γ is the gyromagnetic ratio of the atom and B0 is

the magnitude of the applied magnetic field [23]. When radiofrequency energy at the

Larmor frequency is applied, in a direction perpendicular to B0, the magnetic vector is

deflected causing the hydrogen nuclei to resonate. Subsequently, the magnetic vector is

going to release the energy that was absorbed and returns to its resting state at a rate

defined by the T1 and T2 relaxation times. As shown in Figure 2.2, a radiofrequency

pulse of 90◦ is going to make the longitudinal magnetization in the tissue (vertical vector)

become transverse (horizontal vector). Several radiofrequency pulses can be applied in

order to emphasize the signal in the images, which happens as result of different tissues

relaxing at different relaxation rates. Therefore, T1 will represent the amount of time

that it takes for the magnetization to recover and align in the direction of the magnetic

field, depending on the tissue in question, and T2 will be the duration of the transverse

magnetization as protons wobble around the field. Due to heterogeneities of the local

field, the protons wobble at different rates and the magnetic moment vectors of individual

proton magnetic resonance signals begin to cancel each outher out. The intensity of the

signal will diminish as the transverse magnetization disappears [22].

Figure 2.2: Application of a 90º radiofrequency pulse that will cause magnetization
to flip and the spins to align with the higher energy state. The resting longitudinal
magnetization will become transversal [22].
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2.2.1.1 MRI and the Breast

MRI was proposed as a method to detect breast cancer in 1970. This discovery showed

that T1 and T2 relaxation times of abnormal breast tissue were considerably different

from normal tissue [5]. The contrast between tissues like fat, glandular tissue, lesions,

etc, depends on the mobility and magnetic environment of the hydrogen atoms in the

water and fat. These aspects define the intensity of the tissue signal in the image, which

makes the parenchima, fat and lesion, in case of being present, even more evident [9].

Later, it was demonstrated that most breast cancers show a higher signal on T1- weighted

images after the administration of gadolinium-based contrast [5]. This technique is highly

sensitive (sensitivity between 71% and 100%). However, it is not enough to predict with

precision which are the malign tumors, which means that it is necessary to resort to

an invasive method called biopsy. Therefore, it became necessary to develop new non-

invasive methods capable of predicting the histologic nature of the lesions [24].

2.2.1.2 Ultrasound and Mammography

The ultrasound imaging is the standard reference for differentiating between cysts and

solid masses. However, this examination may lead to false results, specially in the absence

of discrete mass. Since is difficult to distinguish between malignant and benign lesions

due to ultrasound overlapping, biopsies are necessary, which in 70 % to 90 % of the cases

have been proven to be unnecessary due to being benign tumors [7].

Mamography is the primary diagnostic tool for detection of breast cancer. However,

its biggest disadvantage is that the produced image is two-dimensional, being the third

dimension the thickness of the breast. This is projected onto a single plane, which can

cause cancers to be obscured by overlying tissue, particularly in high-density breasts. The

mammography in conjunction with the ultrasound imaging can increase the success rate

in cancer detection by 50% [7].

It has been shown that MRI has higher sensitivity than 2D mammography which

made it into a screening tool that can contribute in the early detection of cancer, specially

in high-risk patients. However, it can’t be performed by its own, but in conjuction with

mammography since 12% of breast cancers, like carcinomas, can’t be detected by this

imaging technique[11].

2.2.2 Diffusion

In order to better understand how diffusion MRI works, it is useful to understand the

physical principles of water diffusion. This phenomenon was seen for the first time by

Robert Brown. He found that a big amount of molecules, in an environment without

obstacles, have a random motion with a change of direction after a collision. This phe-

nomenon is called Brownian movement, and was later theoretically proven by Einstein.
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He showed that this randommotion of the water molecules could be described by a Proba-

bility Distribution Function (PDF) which, in the absence of flow or barriers, is a Gaussian

distribution centered around zero [25]. This means that the probability for a molecule

to travel a short distance, or even not to move, is higher than the probability to travel a

longer distance [26]. Therefore, the higher the mobility of the water molecules, the wider

the Gaussian distribution will be [25].

2.2.3 Diffusion Weighted Imaging

DWI is a MRI technique that is non invasive and that allows the characterization and

quantification of the molecular water diffusion in tissues [27]. It is typically performed

using a T2 weighted spin-echo prepared Echo planar imaging (EPI) sequence, that is

used due to its short acquisition times, which minimizes movement artifacts [28]. The

diffusion preparation module uses two gradients that allow to measure diffusion. The

first gradient pulse changes the magnetization of every water molecule, while the second

gradient pulse completely removes this alteration, which will only happen as long as the

water molecule remains at its original location. However, if moving spins experience an

incomplete rephasing between diffusion gradients, it will lead to a diffusion-dependent

signal attenuation. This means that if the water molecule makes any movement when

these pulses are applied, it will lead to incomplete restoration of the water magnetization

causing a decrease of the MR image signal. The loss of diffusion signal is controlled by

the b value. The greater the mobility implies less MRI signal [29].

The b value parameter is given by Equation 2.2:

b = γ2G2δ2(∆− δ/3) (2.2)

where γ is the proton gyromagnetic ratio, G is the gradient strength, δ is the duration

of the gradient and ∆ is the time between the application of the two diffusion gradients,

as indicated in Figure 2.3 [30].

The magnetic resonance signal is reduced in intensity proportionally to watermobility.

This is described by the Equation 2.3. Where S(b) is the intensity of the signal for different

b values and S(0) is the intensity of the signal for a zero b value, or in other words, when

there isn’t a diffusion gradient applied [28].

ln[S(b)] = ln[S(0)]− bADC (2.3)

The b value is then used to estimate the for each voxel of the image [31]. In general,

the Apparent Diffusion Coefficient (ADC) is defined as the surface area that delimits

the volume that the water molecules can occupy, having into account the displacement

during a certain period of time (∆). It depends strongly on the interaction of the water

molecules with its adjacent structures, rather on intrinsic diffusion properties [30].

The standard diffusion sequence can generate two types of images (Figure 2.4). The

first are T2 weighted images that are obtained without any diffusion gradients (S(0))
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Figure 2.3: Pulse sequence diagram of a spin eco sequence. There are two diffusion-
sensitizing gradients inserted before and after a 180º radiofrequency refocusing pulse.
The important factors that define the degree of diffusion-sensitization are the gradient
amplitude (G), duration (δ), and the time between the two sensitizing gradients (∆)[28].

and the second are images that reflect the water mobility, which are diffusion weighted

obtained with diffusion gradients (S(b)). Diagnostic information can be disguised by long

T2 signal, that is an artifact also known as "T2 shine through". The parametric ADC map

is created in order to facilitate diffusion quantification, since it doesn’t have the T2 shine

through effects. In Figure 2.4 it is also possible to deduce that an area with restricted

diffusion is more intense in a weighted image than in an ADC map [28]. Therefore, the

ADC value decreases in the presence of malign tumors, since the bigger cellular density

that exists in the tumoral tissue, in comparison with normal tissue, restricts the diffusion

of the water molecules, which means that the ADC value can be used to detect and

monitor the tumor [31].

Previous studies have shown a decrease on the number of false positive results with

the DWI technique, having a sensitivity of 84% and a specificity of 79% [5]. However,

this model is based on the assumption that the environment is homogeneous and since

sometimes the benign and malign lesions can’t be distinguished due to the overlap of

their diffusion coefficients, there is a need to develop techniques that offer a better char-

acterization of breast cancer tissues in a way to assist the classification and differential

diagnosis of breast lesions [27].
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Figure 2.4: Examples of images obtained with DWI. A is S0 with b = 0s/mm2 and B is Sb
with b = 800s/mm2. Image C is an ADC map. The arrow points towards a tumor that in A
and B appears hyperintense and in C appears hypointense, exhibiting low diffusion [28].

2.3 Non-Gaussian Models

2.3.1 Diffusion Kurtosis Imaging

The DWI model is able to characterize the average diffusion displacement of the water

molecules in a three-dimensional space. However, it is not capable to provide specific

information about the environment in which the water spins are located. That means that

it is able to evince the shortness of the water diffusion distance, but it can’t substantiate if

the short distance is due to a more viscous environment or due to the presence of biologi-

cal barriers like cellular membranes [32]. Thus, these techniques have some limitations,

such as assuming that water diffusion follows a Gaussian distribution. It has already

been proven that these models are not enough to characterize biological tissues because

of barriers and compartments that restrict the water movement. This deviation from

the Gaussian behavior can be quantified through the use of a non-dimensional metric

called excess kurtosis, or kurtosis. Because the deviation from the Gaussian movement

changes with the complexity of the tissue, kurtosis is a direct measure of the degree of

tissue complexity [13, 33, 34, 35].

As is shown in Fig 2.5, if the kurtosis K has a positive value, the distribution is

more concentrated around the mean value, making it more peaked than the Gaussian

distribution. This means that in terms of diffusion it has a higher probability of occuring
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small displacements than hindered diffusion. On the other hand, if K has a negative value,

the tails of the distribution are wider and its peak lower, which means that the probability

of small displacements would be lower than Gaussian diffusion, which is not expected

in biological tissues since there isn’t fully restricted diffusion. In spite of K being able

to be positive or negative, in biological tissues K has been shown to have only positive

values since one rather expects the imaged volume to consist of a mixture of hindered

and restricted compartments [25].

Figure 2.5: Probability distributions with the variation of kurtosis values [25].

The Diffusion Kurtosis Imaging (DKI) is an extension of the DWI model introduced by

Jensen and Helpern in 2005 [13, 34, 36]. This model includes the kurtosis and diffusion

coefficients and their estimation requires the use of high b values, that increase the dura-

tion of the exam in order to observe the non-Gaussian behavior of the water molecules

diffusion[13, 36].

ln[S(b)] = ln[S(0)]− bMD +
1

6
b2MD2MK +O(b3) (2.4)

In order to obtain the kurtosis diffusion parameters, the equation (2.4) is used, where

MD is the average diffusion, MK the average kurtosis and O(b3) the error associated with

the measurement. Both equations ((2.3) and (2.4)) are identical when MK is similar to

zero and the ADC is similar to MD [13]. It should be noticed that unlike what occurs in

equation 2.3, the kurtosis variable in equation 2.4 appears as part of a term depending

on b2, which means that the signal won’t decay linearly with the b value [25]. When MK

has a positive value, the PDF has a sharper peak, which means that lesions with a more

complex micro-structure (malign) manifest higher MK values, unlike benign lesions [13,

27].
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2.3.2 Intravoxel Incoherent Motion

An important aspect of diffusion MRI is its sensitivity to perfusion since the flow of blood

water in randomly oriented capillaries is similar to diffusion – named intravoxel incoher-

ent motion (IVIM) effect [37]. IVIM is a technique that uses low b-values (i.e., 0–1000

s/mm2) DWI to separate the estimation of tissue perfusion and diffusivity, followed by

biexponential curve fitting [14]. At low b values (e.g., 100 s/mm2), the measured signal

attenuation comes from not only the water diffusion in tissues, but also from microcircu-

lation in capillaries [38].

This type of diffusion depends on the displacement speed of the flowing blood, the

vascular architecture and the b values, which affect the signal attenuation in each imaging

voxel. However, the amount of signal attenuation from pseudo-diffusion (microcircula-

tory perfusion of blood within capillaries with no specific orientation) is bigger than

tissue diffusion due to the large distances of proton displacement while motion-probing

gradients are being applied. This means that at low b values, pseudo-diffusion has a

relatively high contribution to the DW-MRI signal and at high b values it accounts for

only a small proportion [38].

Figure 2.6 shows a plot of signal attenuation of a well-perfused tissue (liver parenchyma)

with increasing b values from a healthy person. It is possible to see in the figure that there

is a steeper slope of signal attenuation when the b values are low. Since protons in flowing

blood have larger diffusion distances and the signal is attenuated by small weightings (e.g.,

<100 s/mm2), the steep slope can be justified by microcapillary perfusion. When larger b

values (e.g., >100 s/mm2) are being applied, the signal attenuation of the perfusing pro-

tons is almost complete, hence microcapillary perfusion will have a lower contribution

to the signal. Therefore, in figure 2.6, at larger b values the slope of signal attenuation is

less steep and is more reflective of tissue diffusity [38].

Consequently, from the IVIM model is possible to obtain the following parameters:

pure diffusion coefficient (D), perfusion-related incoherent microcirculation (D∗), which

is considered proportional to the mean capillary segment length and average blood veloc-

ity, and microvascular volume fraction (f ) as it is shown in Equation (2.5) [14].

S(b)

S(0)
= (1− f )exp(−bD) + f exp[−b(D∗ +D)] (2.5)
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Figure 2.6: The plot shows the logarithm of relative signal intensity versus b value from
normal liver parenchyma from an healthy 30-year-old man. Within the A box there
is a decrease in plotted signal values at low b values in comparison with a more grad-
ual attenuation of signal at higher b values (box B). By applying intravoxel incoherent
motion (IVIM) analysis, it is possible to obtain the signal attenuation biexponential behav-
ior (solid line), while by using a simple monoexponential apparent diffusion coefficient
(ADC) line fitted to the data (dotted line), a suboptimal characterization of the signal is
obtained[38].

2.3.2.1 Intravoxel Incoherent Motion and Diffusion Kurtosis Imaging

Iima et al. [37] explored the potential of non-Gaussian diffusion and perfusionMRI. Since

IVIM is used with low b values and DKI with high b values, both models were taken into

account, creating an updated quantitative imaging framework.

When both models are joined, the final equation (Equation 2.6) is:

S(b) = S(0)fIV IMexp(−bD∗) + (1− fIV IM )exp[−bADC0 + (bADC0)
2K/6] (2.6)

where, as it was referred before in 2.3.2, S(0) is theoretical signal when b is equal to

zero; fIV IM the (T1-,T2- weighted) volume fraction of incoherently flowing blood in the

tissue; D∗ perfusion-related incoherent microcirculation associated to the IVIM effect;

ADC0 which is the ADC value when the b value approaches zero. K is the dimensionless

kurtosis coefficient which characterizes the deviation from the Gaussian behavior and,

consequently making it a direct measure of the tissues heterogeneity [37]. It is possible

to see the similarities between equation (2.4), equation (2.5) and equation (2.6) [37].
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2.4 Statistical distribution models

2.4.1 Gamma Distribution

The Gamma distribution model is based on a statistical approach that can be related to

heterogeneous tissues considering that tumor tissue is a mixture of different tissues and

perfusion components. It works by assuming that each tissue component has a certain

ADC that matches a part of the ADC distribution [15, 39].

Figure 2.7: Gamma distribution of five curves, each with different parameters values.
When the shape parameter κ and the scale parameter θ changes, the distribution shape
varies significantly [39].

This model has two main parameters that define the distribution: the θ parameter,

which shows the statistical dispersion of the distribution, and the κ parameter, that is

responsible for the probability distribution shape [15, 39]. In Figure 2.7, the effect of the

parameters on the distribution curves is clear. The distribution is given by Equation 2.7:

ρ(D) =
1

Γ(κ)θκ
Dκ−1exp

(

−
D

θ

)

(2.7)

where Γ is the gamma function and D, the diffusion coefficient. When the diffusion

coefficient is distributed according to this function, we obtain the following equation:

S(b) = S(0)

∫ ∞

0
ρ(D)exp(−bD)dD = S(0)

1

(1 +θb)κ
(2.8)
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where b is the b value. The θ and κ can be estimated by curve-fitting of magnetic

resonance diffusion data that is obtained by using multiple b values [39].

2.4.2 Truncated Gaussian Distribution

The truncated Gaussian distribution is a statistical model that reflects the consequences of

a distribution of length scales for restrictions and hindrances to water diffusion, through

a diffusion coefficient probability distribution which is defined by a mean value and a

distribution width. This model assumes that a given voxel containing several cells, and

intercellular and extracellular spaces, can be described as a sum of different spin packets.

These packets have different ADC values since they originate from different positions,

went through different trajectories and faced different restrictions and hindrances to

displacement [40]. Under these assumptions, the signal can be described by Eq (2.9):

S = S0 exp
(

− bADC +
1

2
σ2b2

)

(2.9)

where σ is the width of the distribution. This model is able to fit the data with only

two free parameters (ADC and σ) that can quantify the diffusion heterogeneity by the

width of the distribution of diffusion rates [18]. This model has not yet been applied to

breast MRI.

2.4.3 Stretched-Exponential Model

The stretched-exponential model was first described by Bennet et al. [41] for brain imag-

ing. It was presented as an alternative to the biexponential model of water diffusion

that assumed the existence of two different proton pools inside of each voxel, which had

different diffusion rates resulting in signal relaxation. The stretched-exponential model

makes no assumption on the number of intravoxel proton pools, proposing that the signal

attenuation came from a collection of uncoupled exponential decay processes, resulting

in the following equation (2.10) :

S(b)

S(0)
=

∫ ∞

0
ρ(D)e−bDdD (2.10)

which when described as a function of b results in equation (2.11):

S(b)

S(0)
= exp{−(b×DDC)α} (2.11)

where α is the stretching parameter, which relates to intravoxel water diffusion het-

erogeneity, and DDC is the distributed diffusion coefficient, which represents the mean

intravoxel diffusion rates [41, 42]. The α parameter varies from zero to one. When it

is close to one, it indicates that the apparent diffusion has high homogeneity, or mono-

exponential diffusion-weighted signal decay. Inversely, if it is close to zero, it indicates

non-exponential behavior due to high intravoxel diffusion heterogeneity. (It is important
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to refer that when heterogeneity is mentioned in this model, it refers to intravoxel hetero-

geneity of exponential decay and not to intervoxel heterogeneity of diffusion coefficients).

The DDC can be considered to be an individual ADC approximation weighted by the

volume fraction of water in each part of the continuous distribution of ADCs [17, 41, 42].

This model has the ability to give an accurate description of the water diffusion in tis-

sues since it is able to fit a variety of observed decay shapes using only two fit parameters

[42].

2.5 State-of-the-art

Several studies have been made on the non gaussian models mentioned previously. In

spite most of the models having been applied to breast, two of them have only been

applied to the brain and the prostate (truncated and stretched models). In this section

the reader will be able to see the results from the studies applied to these models. All of

these models have proven to successfully detect malignant tumors being the reason for

why they were adapted to produce parametric maps in this plugin.

2.5.1 State-of-the-art of Diffusion Kurtosis Imaging

Nogueira et al. [13] concluded in their study that there are significant differences between

the MD and MK lesion types when the DKI model is applied. As is seen in Figure 2.10

and in Table 2.1, MK values are lower for benign lesions than for malignant lesions and

MD values are higher for benign lesions than for malignant lesions [13]. This decrease

of MD and increase of MK can be explained by the increase of cellularity observed

in malignant tumors. If there are less barriers, like in the case of benign tumors, the

diffusion of water molecules will be easier, thus MD values will be higher and the MK

values will be lower, since it is approaching a Gaussian profile which is a characteristic of

homogeneous environment. According to a study directed byWu et al. [27] the sensitivity

for MD and MK is respectively 79,3% and 84,2%. As for the specificity is 92,9% for both

parameters. Wu also compared the results through parametric maps seen in Figure 2.8 of

a patient with malignant carcinoma – infiltrating ductal carcinoma. In (a) and (b) shows a

T2- weighted TSE image and a DW image when b is equal to zero where the lesion is easily

seen. In (c) the lesion is seen darker, meaning that the MD values are lower and in (d)

the lesion is seen lighter, which means that it has higher values of MK . These results are

consistent with a malignant tumor. In Figure 2.9 shows also in a) and (b) a T2- weighted

TSE image and a DWI image when b is equal to zero where the lesion is easily seen. In (c)

the lesion is seen lighter, meaning that the MD values are higher, and in (d) the lesion is

seen darker, which means that it has lower values ofMK . Therefore, the same conclusion

is reached as in Figure 2.8, that these results are consistent with a benign tumor.

However, the use of the kurtosis model requires long acquisition times, since it implies

using high b-values with increased TE and complex post processing [13, 43] [33].
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Table 2.1: ADC (apparent diffusion coefficient), MD (mean diffusity) and MK (mean
kurtosis) parameters obtained by the twomodels of DWI (mono-exponential and diffusion
kurtosis), and differences by lesion type [13]

Mean Benign (n=13) Malignant (n=31) p*

ADCa 1.96±0.41 1.33±0.43 0.017
MDa 2.17±0.42 1.52±0.50 0.028

MKb 0.37±0.18 0.61±0.27 0.017

a ADC and MD (×10−3mm2/s)
b MK is a dimensionless metric
*Statistical differences

Figure 2.8: The white arrow indicates a malignant carcinoma (infiltrating ductal carci-
noma) of a 51 year-in-old woman: a) T2-weighted Turbo spin echo (TSE) image; b) DW
image at b=0; c) MD - mean diffusion map; d) MK - mean kurtosis map [27].

2.5.2 State-of-the-art of Intravoxel Incoherent Motion

Liu et al. [14] found that D values of malignant tumors were significantly smaller that

those of benign lesions, cysts and normal breast tissues, as seen on Table 2.2 and on

Figure 2.11. Also, the ADC values and D values between malign and benign tumors were

different, concluding that the microperfusion effect did add information to theADC value.

The f values were higher in malignant tumors which supported the theory that malignant

tumors have higher vascularity. This observation, in combination with the low D value,

strongly suggests the presence of a malign lesion. In the mean time, (D∗) did not show any

significant differences betweenmalignant and benign lesions, whichmay be caused by the

varying vascularity among different tumor types. In Figure 2.11 there is also a comparison

of the parameter values between malignant, benign, cyst and normal tissue. However,

cyst, malignant, benign and normal tissue do not show significant differences. While

in the malignant, benign and normal tissue, the parameters had significantly different

values (except D∗ as it was referred before). Liu also produced parametric maps (Figure
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Figure 2.9: The white arrow indicates a benign lesion (fibroadenoma) of a 56 year-in-old
woman: a) T2-weighted Turbo spin echo (TSE) image; b) DW image at b=0; c)MD - mean
diffusion map; d) MK - mean kurtosis map [27].

Table 2.2: Values of pure diffusion coefficient (D), microvascular volume fraction (f ),
perfusion-related incoherent microcirculation (D∗) and apparent diffusion coefficient
ADC of malignant and benign breast lesions [14].

Malignant tumors (n = 40)
Median (quartiles)

Benign lesions (n = 41)
Median (quartiles)

p

D (×10−3mm2/s) 0.85 (0.77, 0.98) 1.35 (1.26, 1.44) 0.000
f (%) 10.34 (7.68, 11.88) 6.83 (4.72, 10.33) 0.000
D∗ (×10−3mm2/s) 94.71 (70.33, 113.23) 107.49 (83.20, 131.19) 0.000
ADC (×10−3mm2/s) 0.95 (0.83, 1.06) 1.39 (1.32, 1.50) 0.000

Table 2.3: Sensitivity and specificity of IVIM parameters [14].

Sensitivity (%) Specificity (%)

D (×10−3mm2/s) 90 92.68
f (%) 87.50 53.66
D∗ (×10−3mm2/s) 85.00 41.46
ADC (×10−3mm2/s) 92.50 90.24

2.12 and Figure 2.13) which were in agreement with the results already mentioned. In

the figures, the D, ADC and f maps, are darker for the malignant lesion, which means

that it has low values, and brighter for the benign lesion, which means that it corresponds

to higher values. The specificity and sensibility of the models are shown in Table 2.3.

According to a study for prostate cancer, the f values were significantly increased

in tumors with b values below 800 s/mm2. However, the f values became lower or

indistinguishable from normal tissues with high b values [44]. Meaning that to obtain

good parametric values, the images used can’t have a bigger b value than 800 s/mm2.

Liu et al. [14] in agreement with Sigmund et al. [45] concluded that avoiding vascular
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Figure 2.10: Box plot distribution of the parameters by lesion type of ADC (a) parameter
using the mono-exponental model, andMD (b) andMK (c) parameters using the kurtosis
model. MK is a dimensionless metric [13]

contributions made the differentiation between normal and malignant lesions more effec-

tive than with only ADC values. However, both works presented limitations. They had

a small population of patients to examine which made the comparison between results

more challenging. Another important limitation is the unknown suitable number of b

values for breast IVIM (varying from six to ten in previous studies) making the selection

of b values and reduction of their number crucial for an optimal procedure.

2.5.2.1 State-of-the-art of Intravoxel Incoherent Motion Diffusion Kurtosis Imaging

The results obtained by Iima et al. [37] are shown in Table 2.4. In order to show differences

from non-Gaussian models and Gaussian models, the authors also compared the values

obtained from the IVIM/DKImodels with the ones from standardmono-exponentialmod-

els (ADCmono and f IV IMmono). In malignant lesions, the K (dimensionless parameter)

was significantly higher and ADC0 lower than that in benign lesions. Although ADCmono

also showed differences between malignant and benign tumors or normal tissue, they

were always smaller than ADCmono values. f IV IM had higher values in malignant tu-

mors than that in benign tumors andD∗ and f IV IMmono showed no significant difference

between malignant and benign tumors. The specificity and sensitivity of the models are

shown in Table 2.3.
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Figure 2.11: Box plots in breast lesions and normal tissue of D (a), f (b), D∗ (c) and ADC
(d). The line in a box represents median value [14].

In conclusion, both diffusion and perfusion parameters from this model were able to

differentiate between malignant and benign tumors with high sensitivity and specificity.

Which means that this study was able to estimate diffusion and perfusion parameters

in one step [37]. However, the fitting approaches (such as the Marquardt-Levenberg

algorithm) used to estimate the parameters, are very sensitive to noise. In order to resolve

this issue, the equation is often divided in two steps. First estimating the diffusion

parameters and then the perfusion parameters from the residual signal. Nonetheless,

it assumes that the IVIM perfusion effects don’t contribute to signal for b values above

a certain cutoff value, which is not the case in spite of having a smaller contribution.

Another drawback, is sensitivity of the algorithm towards the set of initial parameters that

are required for the fitting process to begin. And like the other models, the population

size in which the tests were made was very small [37].

2.5.3 State-of-the-art of Gamma Distribution

Borlinhas et al. [15] confirmed that both θ and κ parameters can distinguish between

malign and benign tumors. As shown in Table 2.5, in case of a malignant tumor, θ will
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Figure 2.12: Parametric maps of a 25-year-old woman with a fibroadenoma(thin arrow)
and a simple cyst in her left breast (thick arrow): pure diffusion coefficient (D), mi-
crovascular volume fraction (f ), perfusion-related incoherent microcirculation (D∗) and
apparent diffusion coefficient ADC [14].

Table 2.4: Values of apparent diffusion coefficient when the b values approaches zero
ADC0, kurtosis K , a dimensionless parameter, apparent diffusion coefficient of a mono-
exponential model ADCmono, the volume fraction of incoherently flowing blood f IV IM ,
perfusion-related incoherent microcirculationD∗ and the volume fraction of incoherently
flowing blood using a mono-exponential model f IV IMmono [37].

Parameter Malignant Benign p

ADC0(×10
−3mm2/s) 1.05 (0.94–1.17) 1.73 (1.51–1.94) <0.001

K 0.82 (0.70–0.94) 0.55 (0.42–0.68) <0.05
ADCmono(×10

−3mm2/s) 1.00 (0.88–1.11) 1.50 (1.35–1.66) <0.001
f IV IM% 12.3 (8.86–15.7) 5.00 (0.60–9.40) <0.05
D ∗ (×10−3mm2/s) 10.9 (5.95–15.9) 13.9 (5.96–21.9) 0.52
f IV IMmono% 8.63 (7.39–9.86) 8.66 (6.97–10.4) 1.00

have high values, the distribution will be more expanded; when κ is smaller, the shape

of the distribution will be more altered. For benign tumors it would be the other way

around, θ will be lower, the distribution will be more compressed, and κ will be higher

and the shape of the distribution will be less altered [39].

Oshio et al. [39] considered tumor tissue to include relatively small tumor cells, larger

nomal cells, extracellular fluid, and microcirculating blood within capillaries. He also

argued that when ADC values are smaller than 1.0 mm2/s it can happen due to the
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Figure 2.13: Parametric maps of a 30-year-old woman with invasive ductal carcinoma: b:
IVIM parametric maps of pure diffusion coefficient (D), microvascular volume fraction
(f ), perfusion-related incoherent microcirculation (D∗) and apparent diffusion coefficient
(ADC) maps [14].

Table 2.5: Values of the Gamma distribution parameters: the statistical dispersion of the
distribution theta and the probability distribution shape κ [15]

Parameters Malignant Benign

θ(×10−3mm2/s) 1.23±0.52 4.29±1.90
κ 0.97±0.50 0.65±0.43

presence of tumor cells with restricted diffusion. Also, if the ADC values are larger than

3.0 mm2/s it can happen due to perfusion and if they are between those two values, it is

attributed to water diffusion in the other components. This way, for clinical evaluation,

two fractional areas were evaluated. With frac < 1 (D < 1.0 mm2/s) and frac > 3 (D > 3.0

mm2/s) like is shown in Figure 2.14.

The results that were obtained and shown in Figure 2.15 were from prostate DWI

images. In Image a), the cancer group (ca) and non cancer group (PZ) are distinct and

separated. Unlike Image b) which the separation is not clearly visible [39].

This model has several advantages like: having a simple mathematical equation that

is easy to handle; and the stability of the fitting process [39].
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Figure 2.14: Evaluation of two fractional areas corresponding to frac < 1 (D < 1.0 mm2/s)
and frac > 3 (D > 3.0 mm2/s) that are considered to reflect the small cell component and
perfusion, respectively [39].

a b

Figure 2.15: a) Scatter plot of frac>3 vs frac<1; b) Scatter plot of θ vs κ; for the cancer
and not cancer group [39].

2.5.4 State-of-the-art of Truncated Gaussian Distribution

In a study done by Shinmoto et al. [16], the Truncated Gaussian distribution model was

tested in prostate DW images. Shinmoto concluded that there are significant differences

between a benign and malignant tumor on the parameters σ and ADC values. For a

malignat tumor, σ and ADC have lower values than for a benign tumor.

Lee et al. [18] suggested that other models like Gamma and DKI may be used together

with the truncated one, since they have different sensitivities, in order to study and further

identify the underlying pathological mechanisms.
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2.5.5 State-of-the-art of Stretched-Exponential

A study done by Liu et al. [17], where the stretched model was used to analyze DWI

signals from prostate tissue, reveals that DDC and α have characteristic values that help

distinguish between normal and cancer tissues, with both parameters being significantly

lower in prostate cancer in comparison with normal prostate tissue. As the truncated

gaussian model, it has not yet been applied to breast MRI.
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3
Materials and Methods

Themain focus of this dissertation is to program an OsiriX plug-in that creates parametric

maps based on non-Gaussian models of water diffusion. There are other plug-ins that

produce parametric maps. However, they are not non-Gaussian and are only based on one

model. This plug-in produces parametric maps of five different non-Gaussian models. In

spite of the objective of the plug-in being to produce parametric maps, it was also added

the ability to draw a Region Of Interest (ROI) around a tumor to obtain the parametric

values of each model. Further it was also made available how many b-values and amount

of noise alters the images, in order to inform the user on how to obtain better maps.

In this chapter the materials and methods to accomplish the dissertation’s objective

are presented .

3.1 Dataset and Acquisitions

The diffusion dataset used in this study for demonstrating the plug-in functionalities is

made up of acquisitions of four different women with ages from 40 to 68 years old. The

women of which the images were obtained had fibroadenomas, invasive ductal carcino-

mas or invasive ductal carcinomas in situ.

The images used in this study were obtained using an unilateral sagittal with single-

shot spin-echo echo planar imaging (SS-SE-EPI) sequence and eight b values (50, 200, 400,

600, 800, 1000, 2000 and 3000 s/mm2), with a a 3-T system (Tim Trio; Siemens, Erlangen,

Germany) and a four-channel bilateral breast coil. Patients positioned in the prone posi-

tion. In order to generate three-scan-trace images, diffusion sensitizing gradients were

applied in the x, y and z directions. Because the sequence had higher b-values (2,000 and

3,000 s/mm2) than normally used in the clinical practice, resulted in a longer TE of 106

ms.
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Table 3.1: Sequence details for acquisition of the DWI images that were tested.

Parameters DWI-SPAIR

Sequence Single-shot EPI
Orientation Sagittal
TR/TE (ms) 4900/106
Fat suppression SPAIR
FOV (mm2) 250×250
Matrix 84×128
Slice thickness (mm) 5
Number of slices 16
NEX 3
Bandwidth (Hz/pixel) 1628
Scan time (min) 5:58
b-values (s/mm2) 50, 200, 400, 600, 800, 1000, 2000 and 3000

In Table 3.1 are all of the protocol details for acquisition. These images were on Digital

Imaging and Communications in Medicine (DICOM) format, which comprises an image

header with several attributes, such as name, series description, b-values, etc.

3.2 Image Processing Tools

The main tools used to build the plug-in were the Matlab software (Mathworks, Cam-

bridge, UK.), OsiriX (Pixmeo SARL, Geneva, Switzerland) and Xcode. OsiriX i is the most

widely used DICOM viewer in the world and has the big advantage to have an intuitive

interactive user interface. Matlab is a software with very complete function libraries,

which in was used to receive data and to produce the parametric maps. Xcode was used

to program the interface of the OsiriX plug-in and to be the bridge between Matlab and

OsiriX. Another tool that was crucial for the development of the plug-in was OsiriX

Plugin Generator that creates a new OsiriX plug-in template.

3.2.1 Producing parametric maps

The DWI was processed in Matlab as follows:

• Matlab has functions that are able to read DICOM images and obtain information

about them. They are called dicomread and dicominf o and were used to load the

images and organize them according to their slice location.

• In order for the plug-in to work with images acquired with Phillips or Siemens sys-

tems, it was what implemented a confirmatory check in the attribute manufacturer

of the DICOM image. If it was written "SIEMENS", then the b-values would be in

info.Private_0019_100c. However if it was a Phillips system, the b-values would be

in info.Private_2001_1003.
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• Because DWI images of the breast generally have low signal-to-noise ratio. In order

to improve the quality of the obtained maps a smoothing filter (Wiener) with a

neighborhood of 5x5 was used.

• The Levenberg-Marquardt algorithm was used with the Matlab function lsqcurvefit

to fit the various non-Gaussin diffusion models. It starts at x0, which are the initial

guesses, and finds coefficients x to best fit the nonlinear function(x,xdata) to the

data ydata (in the least-squares sense). In this case, xdata are the b values and ydata

are the images with the Wiener filter already applied.

• In order to evaluate if the curve fitting is being made successfully, the calculation

of the goodness of fit was added. Goodness of fit describes how well a statistical

model fits data. It was used the model R-square that is the square of the correlation

between the response values and the predicted response values. R-square can only

have values ranging from 0 to 1, being 1 the indication that the model explains

all the variability of the response data. This way, the goodness of fit is evaluated

through a parametric map which if it is mainly white, the R-squared values are

proximate to 1 and if not, are close to 0.

InMatlab there is a option to obtain the residual ydata at the solution x in lsqcurvef it.

The residual values are then used to obtain the goodness of fit with the R-squared

model (Equation 3.1 used in Matlab)

GF = 1− resnorm/norm(ydata−mean(ydata))2 (3.1)

• It was also given the user the opportunity to obtain these maps. This way a variable

GFvalue will be given by the interface to matlab that will check if it is zero or one.

If it is one it will produce the goodness of fit maps. Otherwise it will do nothing.

• After diffusion curve fitting, the parametric maps are saved in the OsiriX incoming

folder through the Matlab function dicomwrite. Since OsiriX only reads integers

values, information could be lost as the software will round up or down to unity

whereas values are normally in the order of 10−3mm2/s. Because of this, the maps

were converted to 16 bit integers plus a suitable amount, for example, for MK it

was plus 1000. All of the maps were tested in order to check the suitable amount of

scaling factors in order to best see the image and its lesions. For the goodness of fit

maps it was multiplied by 1000 to all of them. All the amounts that were multiplied

are in Table 3.2.

• This process was then repeated for all of the five non-Gaussian models.

• In the Gammamodel there was a step added in order to evaluate fractional areas for

clinical evaluations like it was mentioned. It was used the makedist method which

creates a probability distribution object with parameters k and θ. Afterwords it was
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Table 3.2: Scaling factors for each map on matlab in order for the maps to be correctly
read by OsiriX. The units are also presented.

Parametric maps Scaling factors Units

MD 1×106 (×10−3mm2/s)
MK 1×103 dimensionless
D∗ 1×106 (×10−3mm2/s)
Dint 1×106 (×10−3mm2/s)
PF 1×104 %
θ 1×104 (×10−3mm2/s)
κ 1×101 dimensionless
S1 1×103 %
S2 1×103 %
S3 1×103 %
σ 1×105 (×10−3mm2/s)
ADC 1×104 (×10−3mm2/s)
α 1×104 (×10−3mm2/s)
DDC 1×107 (×10−3mm2/s)

used the pdf method that returns the probability density function for the gamma

distribution evaluated at the values in x, which according to what was mentioned

goes from 0 to 6 in intervals of 0.1.

• Because all of this processes are very time consuming, specially the lsqcurvefit, there

was a need to shorten the running time of them. The solution that came across was

parallel computing. Matlab has a toolbox that allows the user to create parallel for-

loops in order to use the full processing power of multicore desktops by executing

applications on workers that run locally [46]. The use of the parfor reduced the time

for processing in half. The computer where the applications were tested was a Mac

with a processor of 2.7 Ghz and an Intel Core i5.

Since Matlab isn’t a free software, in order for the plug-in to work on every computer

the Matlab compiler was used to create a standalone application. This means that the user

only needs to install Matlab Runtime, which is free, to make the standalone application

run on the users computer.

The rest of the plug-in was programmed in Objective-C, which is the language used

on Xcode. It was written as follows:

• In the first place, the standalone application needs the path to the images. To do this

it was created a class called pathForRunning . It uses the V iewerController class to

detect which image of the series is being displayed in order to apply the sourceFile

method that returns the path of every single image series. This information is then

saved in a NSMutableArray. It is important to reference that when images are

uploaded to OsiriX, the program automatically copies the images to its own folders,

so the original images are never altered.
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• In order for the user to have the chance of deciding if he wants a goodness of fit

parametric map or not, a variable GFvalue was added that will connect with the

respective checkbox.

• To call the standalone applications, the runSystemCommand class was used which

was created with the purpose to execute a terminal command. This class receives

a string cmd that contains the mutable array previously mentioned, the GFvalue

variable and the command to execute the application.

• When the applications are done running, the images are uploaded to OsiriX through

the INCOMING folder like it was mentioned before, and full dynamic palette is

automatically applied. This is accomplished through an alert that warns the user

that the process has finished. The alert has an OK button with an action that applies

full dynamic to all of the images in every single series. The function that runs after

the OK button is pressed is called applyDynamic and uses an OsiriX command

called setWLWW .

3.2.2 Obtaining parametric values with a ROI

Processing the ROI values on Matlab:

• In this case, Matlab has the same methods as in 3.2.1. However there is a small

change, instead of using the images, it uses the median values of the drawn ROI.

This means that in the lsqcurvefit function, instead if ydata being the images with

the Wiener filter, it is the ROI mean values of each slice. Since it cuts steps out, like

applying the Wiener filter and saving maps, the time for processing each model was

reduced drastically.

• After all of the parameters are obtained, they are going to be saved in a .txt file

with the help of the function f printf . This file will be saved in the TEMP folder

of OsiriX, that as the name suggests, is for temporary files that are deleted after

closing the program.

• In this case there is also the chance to obtain the goodness of fit of the data. Since

the user chooses the area on which the models will run, there won’t be a parametric

map with the goodness of fit. Instead, the user will obtain a value from 0 to 1 and

also a plot on which he will evaluate how well the data is fitted.

Like it was mentioned in 3.2.1, these functions were all made into standalone appli-

cations with the help of Matlab Compiler.

In this case, the part that was programmed in Objective-C had more steps because it

was dealing with ROIs. These steps are:

• Firstly, the user only has to draw one ROI around the tumor area. However, in order

to do the curve fitting on Matlab, it needs the values of the ROI from the same slice
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in every b value. This means that the plug-in has to know in which slice the ROI was

drawn. In order to do this, it was created a class called sliceLoc which detects the

slice location of where the ROI was drawn with the help of the V iewerController

class and DCMObject that offers a way to access the data for a given DICOM tag.

• Afterwords, the ROIs were copied to the images with the same slice. For this func-

tionality it was created a class called ROIS which copied the ROIs but also pre-

vented them from being pasted in an image that already had the same ROI, which

would happen if the userwould like to run themodels more than once with the exact

same ROI. In all of the classes and methods that were used, NSRegularExpression

and computeROI stand out. NSRegularExpression has a method called numberOf-

MatchesInString that counts the number of matches in a given range of a string. It

was used to check if the image already had the ROI and it works with every single

ROI that can be drawn in OsiriX (oval, rectangle, etc). It also doesn’t mix up with

other ROIs that the image can have. The method computeROI obtains all of the

information about the ROI, but the only information needed was the rmean which

is the mean value of a ROI.

• The next step was very similar to 3.2.1 to call the applications. The only difference

is that in this case it also had to pass a string with the mean values.

• After the application is done running, the information on the .txt file on the TEMP

folder is inserted into the text fields that are on the plug-in interface. The class

that does this is called showTEXT and it reads the .txt files with the method

stringWithContentsOf File. It then saves the information to a string that is then

placed on the respective text fields.

• In the end, the user gets to save the data acquired or delete everything includ-

ing the ROI. This was made with two classes, the writeUsingSavePanel and resetpi.

writeUsingSavePanel uses the writeT oFile method to save the data into a txt file

in the location that user chooses through an open dialog box. resetpi uses the

NSFileManager class to remove the files from the TEMP file with the method re-

moveItemAtPath and also erases the text fields by changing the labels to an empty

string.

3.3 Testing the plug-in in images with different b-values and

noise

3.3.1 Different b values

This was an important task since the amount of b-values can change a map drastically

and depends on the acquisition protocol used. It is evident that various different b-values

gives a more precise map [12]. However, which b-values are used alter the image even
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NOISE

more than having low numbers of b-values. This happens because certain models work

best with higher b-values and others the other way around. For example, IVIM requires

lower b-values than while DKI requires larger b values. Because the IVIM model is tested

with a smaller amount of b values, the combinations of tested b values is different from

the other models.

Therefore, in order to test how the b-values and their amount affects the efficiency of

the models, the following combination of b values was tested:

1. It was removed one b-value, which was 600 s/mm2. Making a total of 7 b-values,

50, 200, 400, 800, 1000, 2000 and 3000 s/mm2.

2. The 2000 s/mm2 was removed. Making a total of 6 b-values, 50, 200, 400, 800, 1000

and 3000 s/mm2.

3. The 200 s/mm2 was removed. Making a total of 5 b-values, 50, 400, 800, 1000 and

3000 s/mm2.

4. The 800 s/mm2 was removed. Making a total of 4 b-values, 50, 400, 1000 and 3000

s/mm2.

5. The 1000 s/mm2 was removed. Making a total of 3 b-values, 50, 400 and 3000

s/mm2.

In case of the IVIM model, the following b values were tested. Because the IVIM

model has four free parameters, it was only one b values removed for each test.

1. It was removed one b-value, which was 600 s/mm2. Making a total of 4 b-values,

50, 200, 400, 800 s/mm2.

2. The 400 s/mm2 was removed. Making a total of 4 b-values, 50, 200, 600, 800 s/mm2.

3. The 200 s/mm2 was removed. Making a total of 4 b-values, 50, 400, 600, 800, 1000

and 3000 s/mm2.

4. The 800 s/mm2 was removed. Making a total of 4 b-values, 50, 200, 400, 800 s/mm2.

5. The 50 s/mm2 was removed. Making a total of 4 b-values, 200, 400, 600, 800s/mm2.

In order to test with the different amount of b-values, the images were selected before

being uploaded to OsiriX. Afterwords, the plug-in was applied and the images were

exported in order to be compared.
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3.3.2 Different amount of noise

Noise is one of the biggest concerns in image processing. If there is a big amount of noise,

the image can loose valuable information. In 3.2.1 was referred that a filter is applied to

the images before being processed. However, this filter can’t be of value if the images are

noisy. In order to inform the user about the amount of noise that still produces a good

map, several amounts were added to the images.

In order to better evaluate how the noise affects the images, the parameters of the DKI

model were used in the equation 2.4 to obtain images that had no noise and with known

fitting values. The method to add the noise was called randn and is a matlab function

that produces random normally distributed matrices . After these matrices were created,

they were added to the image, creating the noise. The amount that was added was in

increments of 5%. Which means that firstly 5% of noise was added, then 10% of noise

and so on. In the end, after reaching 35% of noise, it was stopped since the image had

lost so much information that the tumor was no longer visible.
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4
Results and Discussion

The results will be presented in this chapter as for the discussion as well. At first will be

presented and discussed the interface and results of the plugin for the parametric maps

and then, also, of the parametric values obtained with ROIs. In order to better inform the

user about what kind of images he is advised to use in order to obtain the best results as

possible, it was also tested for how many b values and from how much noise the resulting

maps will start to loose quality.

In the parametric maps, are always two images shown, greyscale and color ("jet"

CLUT). "Jet" Color Look Up Table ( Color Look Up Table (CLUT)) assigns colors and

opacity values based upon the images greyscale values.

The analysis made to the parametric maps was qualitative and to the parametric

values was quantitative. One advantage of producing a great amount of maps is that a

ROI can be drawn in a map where the lesion is clearly seen and be placed in a map where

it isn’t as clear. This can help in the study of these images since the user will know the

location of the tumor.

4.1 Parametric maps

4.1.1 Interface

The final look of the plug-in is shown in Figure 4.1. On the left side of the plugin are the

check boxes to obtain the parametric maps for non-Gaussian models (DKI, IVIM, Gamma,

Truncated and Stretched). The user gets a chance to obtain all of the maps or only a few of

them. He also gets the choice to decide if he wants maps of goodness-of-fit for the models

or not. If he selects the "OK" button without selecting any model a warning will appear

for him to choose one, like it is shown on Figure 4.2. In case the user is trying to run

the models on parametric maps and not on DWI images, the Figure 4.3 of the warning
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appears. While, the applications are running and the images aren’t uploaded to OsiriX, a

"Please wait..." window appears (Figure 4.4).

In Figure 4.5 there is a help button with a question mark. When the user presses this

window it will appear the scaling factor that was used for which parametric map like it

was mentioned in section 3.2.1 and also the references of the models that were used.

Figure 4.1: Interface of the plug-in.

Figure 4.2: Warning that appears when the user presses the "OK" button, next to the
parametric maps check boxes, and doesn’t select which model to run.

After the applications are done running, an alert window appears warning the user

that the process is completed (Figure 4.6). The OK button of the warning has an action

which applies the full dynamic to all of the series of maps that are now being uploaded

to OsiriX. This action was created because the upload of the maps to OsiriX occurs by

saving the images on the programs INCOMING folder. And because full dynamic is a

crucial step (it adapts the grayscale of the image with the help of the image upper and
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Figure 4.3: Warning that appears when the user trys to run the models on a parametric
map and not a DWI image.

Figure 4.4: Window that alerts the user to wait while the program is running.

lower range), it’s easier if it is applied to all of the images at once. In case the user presses

the "Cancel" button, the images will not be uploaded.
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Figure 4.5: Window that informs the user on the amount that was multiplied to which
image and also the references of the models that were used.

Figure 4.6: Window that alerts the user that the process to produce parametric maps
is complete. If the "OK" button is pressed, the images are uploaded to OisriX and full
dynamic is automatically applied.

4.1.2 DKI parametric maps

As it was mentioned in 4.1.1, the plugin gives the user the opportunity to obtain different

maps from five different models. The first model returns two different parametric maps,

the "MD" and the "MK".

In the MD map, the tumor appears darker and in the MK map lighter, as it was

predicted to happen since MD values are lower and MK values are higher in malignant
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lesions than in benign lesions and healthy parenchyma, as it was mentioned in 2.5.1.

Therefore, a high MK value demonstrates a deviation from the Gaussian curve, meaning

that the tumoral tissue has a complex architecture and is rich in barriers such as cellular

membranes. In the MK map is also easily seen tumor heterogeneity.

The average amount of time that it took to process the DKI parametric maps was 115

seconds without parallel computing and 50 seconds with parallel computing.

4.1.2.1 Malignant lesions

The diffusion-weighted image and the diffusion-weighted image with the "Wiener" filter

applied, with the b value of 50 s/mm2, of a breast with malignant tumor (invasive ductal

carcinoma) are represented in Figure 4.7 (these images are not obtained through the plug-

in). In all three images, the detection of the tumor is relatively difficult. However, when

the DKI model is applied, the tumor is clearly seen (Figures 4.8 and 4.9).

Figure 4.7: Images of a breast with malignant tumor (invasive ductal carcinoma): a) DWI
image with the b value 50 s/mm2; b) DWI image with the Wiener filter applied.
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a b

Figure 4.8: MD parametric maps (scalling factor of 1×106 and in mm2/s) with an arrow
indicating a malignant lesion (invasive ductal carcinoma) in dark blue with "jet" CLUT
applied (a) and in grayscale (b).

a b

Figure 4.9: MK parametric maps (scalling factor of 1×103 with no units since it is dimen-
sionless) with an arrow indicating a malignant lesion (invasive ductal carcinoma) in light
blue with "jet" CLUT applied (a) and in grayscale (b).

4.1.2.2 Benign lesions

In Figure 4.10 and 4.11 the MD and MK maps of a breast with a benign tumor (fibroade-

noma) are shown. The dark red that appears on Figure a) of the MD map (4.10) are

actually the lighter areas on the image as you can see when you compare both of them.

And the dark blue that appears on Figure b) of the MK map (4.11) is the darkest area of
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the image. These two images are in agreement with the literature since in a benign lesion,

the MD values are higher and MK values are lower than in malignant tissues. Because

MK is a low value, it becomes very similar to the Gaussian shape, meaning more diffusion

which concludes that it is a benign lesion.

a b

Figure 4.10: MD parametric maps (scalling factor of 1×106 and in mm2/s) with an arrow
indicating a benign lesion (fibroadenoma) in dark red with "jet" CLUT applied (a) and in
grayscale (b).

a b

Figure 4.11: MK parametric maps (scalling factor of 1×103 and with no units since it
is dimensionless) with an arrow indicating a benign lesion (fibroadenoma) in dark blue
with "jet" CLUT applied (a) and in grayscale (b).
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4.1.3 IVIM parametric maps

The second model on the interface is the IVIM model. With this model the user gets

three different parametric maps, the D∗ map, Dint map and PF map. Because, as it was

mentioned in 2.3.2, this technique uses low b-values and the images that were tested

started at the b-value 50 s/mm2, which can explain the low quality of some maps, like

the D∗ map. Since the b values aren’t the most appropriate for testing the IVIM model,

the IVIM/DKI model didn’t show a good enough curve fitting of the data, so it was not

added to the plug-in.

The maps that were obtained are in agreement with literature since, the parametric

values for the benign lesions are higher than for the malignant lesions, which explains

why the benign lesion appears lighter and the malignant lesion darker.

The average amount of time that it took to process the IVIM parametric maps was 240

seconds without parallel computing and 140 seconds with parallel computing.

4.1.3.1 Malignant lesions

In Figures 4.12, 4.13 and 4.14 the D∗, D and f maps are shown. In the D map the lesion

is very clear. However, the PF and D∗ maps weren’t able to show the lesion as perfectly

as D, which could be expected since its specificity and sensibility are significantly lower.

In the D map is also easily seen tumor heterogeneity. In the f maps the higher values

are around the tumor area which can mean that is high vascularized which is typical in

neogenesis process [47].

a b

Figure 4.12: D∗ parametric maps (scalling factor of 1×106 and in mm2/s) with an arrow
indicating a malignant lesion (invasive ductal carcinoma) in dark blue with "jet" CLUT
applied (a) and in grayscale (b).
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a b

Figure 4.13: D parametric maps (scalling factor of 1×106 and in mm2/s) with an arrow
indicating a malignant lesion (invasive ductal carcinoma) in blue with "jet" CLUT applied
(a) and in grayscale (b).

a b

Figure 4.14: f parametric maps (scalling factor of 1×104 and in %) that show higher
values of perfusion around the tumor area with "jet" CLUT applied (a) and in grayscale
(b).
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4.1.3.2 Benign lesions

In Figures 4.15, 4.16 and 4.17 the D∗, D and f maps are shown. On the D map the lesion

is very clear. However, the f and D∗ maps weren’t able to show the lesion as perfectly as

D, as it was also seen in the malignant images. Also, the f map shows a lighter area that

does not correspond to the tumor which could be justified by high perfusion.

a b

Figure 4.15: D∗ parametric maps (scalling factor of 1×106 and in mm2/s) with an arrow
indicating a benign lesion (fibroadenoma) in dark red with "jet" CLUT applied (a) and in
grayscale (b).

a b

Figure 4.16: D parametric maps (scalling factor of 1×106 and in mm2/s) with an arrow
indicating a benign lesion (fibroadenoma) in dark red with "jet" CLUT applied (a) and in
grayscale (b).
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a b

Figure 4.17: f parametric maps (scalling factor of 1×104 and in %) that show high diffu-
sion near the tumor area with "jet" CLUT applied (a) and in grayscale (b).

4.1.4 Gamma parametric maps

The third model is the Gamma model. With it, the user obtains five different parametric

maps the θ map, κmap, S1 map, S2 map e S3 map. According to literature, the malignant

lesions have higher θ values and lower κ values, which is verified in the following images.

The average amount of time that it took to process the Gamma parametric maps was

240 seconds without parallel computing and 210 seconds with parallel computing.

4.1.4.1 Malignant lesions

On the θ maps (Figure 4.18) and κ maps (Figure 4.19), the typical values for a tumor

match the ones on the parametric map (the tumor area has lower values in θ than in

κ). In case of the S1, S2 and S3 maps, the values for the first map are supposed to be

significantly higher than the ones for the S3 map, which is confirmed in the Figures 4.20,

4.21 and 4.22. According to literature mentioned in 2.5.3, the S1 map is the one that

better shows the tumor area which can be seen in the Figures. Also, the S1 map shows

tumoral heterogeneity.
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a b

Figure 4.18: θ parametric maps (scalling factor of 1×104 and in mm2/s) with an arrow
indicating a malignant lesion (invasive ductal carcinoma) with "jet" CLUT applied (a) and
in grayscale (b).

a b

Figure 4.19: κ parametric maps (scalling factor of 10 and with no units since it is dimen-
sionless) with an arrow indicating a malignant lesion (invasive ductal carcinoma) with
"jet" CLUT applied (a) and in grayscale (b).
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a b

Figure 4.20: S1 parametric maps (scalling factor of 1×103 and in %) with an arrow indi-
cating a malignant lesion (invasive ductal carcinoma) with "jet" CLUT applied (a) and in
grayscale (b).

a b

Figure 4.21: S2 parametric maps (scalling factor of 1×103 and in %) with an arrow indi-
cating a malignant lesion (invasive ductal carcinoma) with "jet" CLUT applied (a) and in
grayscale (b).
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a b

Figure 4.22: S3 parametric maps (scalling factor of 1×103 and in %) with an arrow indi-
cating a malignant lesion (invasive ductal carcinoma) with "jet" CLUT applied (a) and in
grayscale (b).

48



4.1. PARAMETRIC MAPS

4.1.4.2 Benign lesions

On the θ maps (Figure 4.23) and κ maps (Figure 4.24), the typical values for a tumor

match the ones on the parametric map (the tumor area has lower values in θ than in κ).

In case of the S1, S2 and S3 maps, the first two maps show lower values than the S3 map,

which means that there is a low restriction to diffusion confirming that it is a benign

tumor. The high values on the S3 map indicate that the lesion has high perfusion.

a b

Figure 4.23: θ parametric maps (scalling factor of 1×104 and in mm2/s) with an arrow
indicating a benign lesion (fibroadenoma) with "jet" CLUT applied (a) and in grayscale
(b).

a b

Figure 4.24: κ parametric maps (scalling factor of 10 and with no units since it is di-
mensionless) with an arrow indicating a benign lesion (fibroadenoma) with "jet" CLUT
applied (a) and in grayscale (b).

49



CHAPTER 4. RESULTS AND DISCUSSION

a b

Figure 4.25: S1 parametric maps (scalling factor of 1×103 and in %) with an arrow in-
dicating a benign lesion (fibroadenoma) with "jet" CLUT applied (a) and in grayscale
(b).

a b

Figure 4.26: S2 parametric maps (scalling factor of 1×103 and in %) with an arrow in-
dicating a benign lesion (fibroadenoma) with "jet" CLUT applied (a) and in grayscale
(b).
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a b

Figure 4.27: S3 parametric maps (scalling factor of 1×103 and in %) with an arrow in-
dicating a benign lesion (fibroadenoma) with "jet" CLUT applied (a) and in grayscale
(b).
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4.1.5 Truncated parametric maps

The fourth model is the Truncated model. With it, the user obtains two different maps,

the σ map and the ADC map. Since there still aren’t any studies of this model applied

to the breast, the standard values of a malignant tumor are still unknown. However, it

has been applied to prostate and in that study, both the ADC and σ values were higher

in benign lesions than in malignant lesions, which is also seen in the following images,

meaning that the model was able to distinguish between malignant and benign lesions.

The average amount of time that it took to process the Truncated parametric maps

was 105 seconds without parallel computing and 74 seconds with parallel computing.

4.1.5.1 Malignant lesions

In both of the maps, σ (Figure 4.28) andADC (Figure 4.29), the malignant lesion (invasive

ductal carcinoma) is clearly seen.

a b

Figure 4.28: σ parametric maps (scalling factor of 1×105 and in mm2/s) with an arrow
indicating a malignant lesion (invasive ductal carcinoma) with "jet" CLUT applied (a) and
in grayscale (b).
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a b

Figure 4.29: ADC parametric maps (scalling factor of 1×104 and in mm2/s) with an arrow
indicating a malignant lesion (invasive ductal carcinoma) with "jet" CLUT applied (a) and
in grayscale (b).

4.1.5.2 Benign lesions

In both of the maps, σ (Figure 4.30) and ADC (Figure 4.31), the benign lesion is clearly

seen.

a b

Figure 4.30: σ parametric maps (scalling factor of 1×105 and in mm2/s) with an arrow
indicating a benign lesion (fibroadenoma) with "jet" CLUT applied (a) and in grayscale
(b).
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a b

Figure 4.31: ADC parametric maps (scalling factor of 1×104 and in mm2/s) with an arrow
indicating a benign lesion (fibroadenoma) with "jet" CLUT applied (a) and in grayscale
(b).

4.1.6 Stretched parametric maps

The fifth model is the Stretched model. With it, the user obtains two different maps,

the DDC map and the α map. As it was mentioned in subsection 2.5.5, there aren’t any

studies of this model applied to the breast. However, when both maps of the malignant

lesion and benign lesion are compared, the values of the maps for the benign lesions are

higher than the ones for the malignant lesion.

The average amount of time that it took to process the Truncated parametric maps

was 139 seconds without parallel computing and 110 seconds with parallel computing.

4.1.6.1 Malignant lesions

In the DDC map (Figure 4.32) the malignant is clearly seen, unlike the α map (Figure

4.33). According to the literature, the DDC and σ values are lower in malignant lesions

in comparison with normal tissue. In spite of it only being tested in prostate, the same in

observed in the obtained images, since the tumor is the darkest area of the image. Also,

in the DDC map it is possible to see tumoral heterogeneity.
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a b

Figure 4.32: DDC parametric maps (scalling factor of 1×107 and in mm2/s) with an arrow
indicating a malignant lesion (invasive ductal carcinoma) with "jet" CLUT applied (a) and
in grayscale (b).

a b

Figure 4.33: α parametric maps (scalling factor of 1×104 and with no units since it is
dimensionless) with an arrow indicating a malignant lesion (invasive ductal carcinoma)
with "jet" CLUT applied (a) and in grayscale (b).
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4.1.6.2 Benign lesions

In the DDC map (Figure 4.34) the benign lesion is clearly seen, unlike the α map (Figure

4.35). Since there wasn’t found any study that compares benign lesions with normal

tissue for this model, it is not possible to compare the obtained results with literature.

However, looking at theDDC map, it is possible to conclude that the model has the ability

to distinguish between benign lesions and normal tissue.

a b

Figure 4.34: DDC parametric maps (scalling factor of 1×107 and in mm2/s) with an arrow
indicating a benign lesion (fibroadenoma) with "jet" CLUT applied (a) and in grayscale
(b).

a b

Figure 4.35: α parametric maps (scalling factor of 1×104 and with no units since it is
dimensionless) with an arrow indicating a benign lesion (fibroadenoma) with "jet" CLUT
applied (a) and in grayscale (b).
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4.1.7 Goodness-of-fit maps

In order to better evaluate the goodness-of-fit between all of the five models, the obtained

parametric maps were compared. Since we are only working with eight images for the

fitting process, the goodness-of-fit doesn’t vary much for each model (between 0.8 and

1.0).

Another conclusion that is reached is that the fitting worked better for the malignant

lesions than for the benign lesions as is shown in the following Figures 4.36 ans 4.37 since

the values of the goodness-of-fit vary from 0.7 to 1. The maps also appear to have lost

information since they show black spots in the middle of breast image.

The maps of the IVIM models aren’t compared with the other models because they

have a smaller amount of images tested since it only works for b values lower than 1000

s/mm2. The IVIM model also has three free parameters to be determined which can

provide a less reliable parameter estimation in spite of having good goodness-of-fit val-

ues [16]. The Figure 4.38 shows goodness of fit values lower for the benign lesion in

comparison with the malignant lesion.

a DKI b Gamma

c Truncated d Stretched

Figure 4.36: Goodness-of-fit maps (scaling factor of 1×103) for DKI, Gamma, Truncated
and Stretched models applied to a breast with a malignant lesion (invasive ductal carci-
noma).
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a DKI b Gamma

c Truncated d Stretched

Figure 4.37: Goodness-of-fit map (scaling factor of 1×103) for DKI, Gamma, Truncated
and Stretched models applied to a breast with a benign lesion (fibroadenoma).

a IVIM map of the malignant lesion b IVIM map of the benign lesion

Figure 4.38: Goodness-of-fit maps (scaling factor of 1×103) for the IVIM models applied
to a breast with a malignant lesion (invasive ductal carcinoma) and benign lesion (fi-
broadenoma). The range of greyscale shows that fitting wasn’t as good for the malignant
lesions as it was for benign lesions.
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4.2 Parametric values obtained through ROIs

4.2.1 Interface to obtain the parametric values

The interface to obtain the parametric maps consists of check boxes to select whichmodels

to run, and text fields where the results are shown. Firstly the user will need to draw a

ROI in the tumor area like shown in Figure 4.39, which is normally drawn in a high b

value image since it is when the malignant tumors are most visible (in this case it was only

to show where it was drawn since the higher b value image is too dark). When the "OK"

button is pressed and the models are chosen, the same warning mentioned in subsection

4.1.1 (Figure 4.2) appears. Also, if the window on OsiriX isn’t the one where the user

draws the ROI, then the program won’t be able to run and it will appear the warning

shown on Figure 4.40. While the program is executing, the same window mentioned in

subsection 4.1.1 (Figure 4.4) will appear. Also, if the user tries to run the model on the

parametric maps, the same warning as mentioned in 4.1.1(Figure 4.3) will appear.

Figure 4.39: DWI image of a breast with a malignant lesion (invasive ductal carcinoma)
with b value of 1000 s/mm2 exemplifying a drawn ROI in order to then run the program.

After the program is done running, the window shown on Figure 4.41 appears. The

user then gets the opportunity to save the results by pressing the button "Save the results"

which will open a window that lets the user choose where to save them (defaulted to be

saved in the .txt format). In case the user hasn’t run a model yet, the warning in Figure

4.42 will appear. The user gets to delete the drawn ROI and the results that are on the

text field boxes with the "Reset" button, however, the window displayed must also be the

one where he draws the ROI, or else appears the warning on Figure 4.40. In case the user

doesn’t press the "Reset" button or draws another ROI, then all of the results will be from

the initially drawn ROI.
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Figure 4.40: Alert that warns the user that the program can only run if on the displayed
window is the image where the user draws the ROI.

Figure 4.41: Warning that alerts the user that the process to obtain the parametric values
is done running.

4.2.2 Obtained parametric values

The outcomes from running a model are the parametric values that are displayed in

the text fields (Figure 4.43) and also a plot with the goodness-of-fit. In the case of the

malignant tumor tested, all of the parametric values obtained were in agreement with

the literature. For the truncated and stretched models it wasn’t possible to compare the

results with the ones from literature since they don’t exist yet. The same happened when

the models were applied to a benign tumor, where the results of the parametric values

(Figure 4.44) are in agreement with the literature.
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Figure 4.42: Warning that appears when the user is trying to save the results obtained
but without running a model first.

Figure 4.43: Results for the parametric values obtained through ROIS around the malig-
nant tumor (invasive ductal carcinoma) area.
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Figure 4.44: Results for the parametric values obtained through ROIS around the benign
tumor (fibroadenoma) area.
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4.2.2.1 Results from the DKI model of the malignant lesion

The parametric values obtained for DKI in an image with a malignant tumor (invasive

ductal carcinoma) were the ones seen on Figure 4.43. MD has the value 1.08×10−3mm2/s

and MK 0.70 (dimensionless metric). Since a malignant tumor typically has MD values

between 1.02 and 2.02×10−3mm2/s andMK values between 0.34 and 0.88, and the results

obtained were between those intervals, it is possible to affirm that the model is working

correctly.

The user also obtains a plot of the fitting of the b values versus the median values of

the ROI where it is possible to observe the good fitting of the model (Figure 4.45).

Figure 4.45: Fitting plot for the DKI model of a DWI image of the breast with a malignant
lesion (invasive ductal carcinoma) where is possible to see how well the fitting process
was done.

4.2.2.2 Results from the DKI model of the benign lesion

The parametric values obtained for the DKI applied in an image with a benign tumor

(fibroadenoma) were the ones seen on Image 4.44. MD has the value 2.94×10−3mm2/s

andMK 0.53 (dimensionless metric). Since a benign tumor is suppose to haveMD values

between 1.75 and 2.59×10−3mm2/s andMK values between 0.19 and 0.55. The results for

the MD parameters that were obtained are higher than the ones referenced in literature,

which can be expected since the fitting wasn’t as good as it was for the malignant lesions.

The user also obtains a plot of the fitting of the b values versus the median values of

the ROI where it is possible to observe the fitting of the model (Figure 4.46). In this case

the fitting wasn’t as successful as the malignant lesion.

Since the fitting wasn’t good in a few points, for example at the b values 1000 s/mm2

and 2000 s/mm2 it can justify when the obtained parametric values were slightly higher

than expected.
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Figure 4.46: Fitting plot for the DKI model of a DWI image of the breast with a benign
lesion (fibroadenoma) where is possible to see that the fitting wasn’t well performed in
the last b values.
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4.2.2.3 Results from the IVIMmodel of the malignant lesion

The parametric values obtained for the IVIM model applied in an image with a malig-

nant tumor (invasive ductal carcinoma) were the ones seen on Figure 4.43. D shows the

value 0.95×10−3mm2/s, f 2.81 % and D∗ 5.98×10−3mm2/s. According to the literature,

a malignant tumor has D values between 0.77 and 0.98×10−3mm2/s, f values between

7.68 % and 11.88 % and D∗ values between 70.33 and 113.23×10−3mm2/s. In spite of

the SI units being on the same order of magnitude, the values obtained were different

from the ones expected for malignant lesions with the exception of the D parameter. A

possible reason for this to happen is the b values of the used images, which started ate 50

s/mm2. According to literature, a good amount of b values would be the same as of free

parameters and they would start at 0 s/mm2 until 750 s/mm2.

In Figures 4.43 and 4.44 Dint corresponds to D, Dast to D∗ and PF to f .

Figure 4.47: Fitting plot for the IVIMmodel of a DWI image of the breast with a malignant
lesion (invasive ductal carcinoma), where is possible to see how the IVIM model doesn’t
do the fitting as good for higher b values than it does for lower ones.

4.2.2.4 Results from the IVIMmodel of the benign lesion

The parametric values obtained for the IVIM model applied in an image with a benign tu-

mor (fibroadenoma) were the ones seen on Figure 4.44. D has the value 2.33 ×10−3mm2/s,

PF 13.7 % and D∗ 8.07×10−3mm2/s. According to the literature, a benign tumor has D

values between 1.26 and 1.44×10−3mm2/s, f values between 4.72 % and 10.33 % and

D∗ values between 83.20 and 113.19×10−3mm2/s. The reason for this discrepancy is also

explained in the malignant lesions section 4.2.2.3.
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Figure 4.48: Fitting plot for the IVIM model of a DWI image of the breast with a benign
lesion (fibroadenoma), where is possible to see that the fitting isn’t as good for higher b
values than it does for lower ones.
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4.2.2.5 Results from the Gamma model of the malignant lesion

The parametric values obtained for the Gamma model applied in an image with a ma-

lignant tumor (invasive ductal carcinoma) were the ones seen on Figure 4.43. θ has the

value 0.50×10−3mm2/s and κ 2.28 (dimensionless metric). Since a malignant tumor is

suppose to have θ values between 0.71 and 1.75×10−3mm2/s and κ values between 0.47

and 1.47, it is possible to say that the model is working correctly for the θ values, but

has a slight deviation for the κ values. However, it was mentioned in 2.5.3 that those two

parameters aren’t the best to locate the tumor, unlike the S1 parameter.

S1 has the value 0.54, S2 0.43 and S3 0.03. According to what was mentioned in

2.5.3 a malignant tumor would have S1 values higher than 0.30 and S3 values lower than

0.50, which is the case. However, it is important to notice that those values are from tests

performed to prostate and not breast.

The plot with the fitting of the b values versus the median values of the ROI shows a

good fitting of the values (Figure 4.49).

Figure 4.49: Fitting plot for the Gamma model of a DWI image of the breast with a
malignant lesion (invasive ductal carcinoma), where is possible to see how well the fitting
process was done.

4.2.2.6 Results from the Gamma model of the benign lesion

The parametric values obtained for the Gamma model applied in an image with a benign

tumor (fibroadenoma) were the ones seen on Figure 4.44. θ has the value 3.46×10−3mm2/s

and κ 1.21 (dimensionless metric). Since a benign tumor is suppose to have θ values be-

tween 2.39 and 6.19 ×10−3mm2/s and κ values between 0.22 and 1.08, it is possible to

say that the model is working correctly for the θ values, but has a slight deviation for the

κ values. According to literature, the benign lesions have higher θ values and lower κ

values in comparison with malignant lesions which is also seen in the obtained results.
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However, it was mentioned in 2.5.3 that those two parameters aren’t the best to locate the

tumor, unlike the S1 parameter.

S1 has the value 0.23, S2 0.39 and S3 0.38. There is a difference between the S1 values

and the S2 and S3 values, which can mean that the tumor is benign. The tests that were

performed with these parameters were only applied in prostate and comparing between

malignant and peripheric tissue, which means that it doesn’t provide information to

compare with the obtained results.

The plot with the fitting of the b values versus the median values of the ROI shows a

fitting of the values (Figure 4.50). The incorrect fitting in some b values can explain why

the results of θ and κ differ from the ones expected.

Figure 4.50: Fitting plot for the Gammamodel of a DWI image of the breast with a benign
lesion (fibroadenoma), where is possible to see that some points don’t have a good fitting.
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4.2.2.7 Results from the Truncated model of the malignant lesion

The parametric values obtained for the Truncated model applied in an image with a

malignant tumor (invasive ductal carcinoma) were the ones seen on Figure 4.43. σ has

the value 0.44×10−3mm2/s and ADC 1.00×10−3mm2/s . The fitting plot of the b values

versus the median values of the ROI shows how well the fitting process was performed

(Figure 4.51).

Figure 4.51: Fitting plot for the Truncated model of a DWI image of the breast with a
malignant lesion (invasive ductal carcinoma), where is possible to see how well the fitting
process was performed.

4.2.2.8 Results from the Truncated model of the benign lesion

The parametric values obtained for the Truncated model applied in an image with a be-

nign tumor (fibroadenoma) were the ones seen on Figure 4.44. σ has the value 1.17×10−3mm2/s

and ADC 2.73×10−3mm2/s . The fitting plot of the b values versus the median values

of the ROI shows how for higher b values the fitting isn’t as good as for lower b values

(Figure 4.52).

When the benign and malignant values for this model are compared it is possible

to observe a difference between the values of σ and ADC, the σ and ADC values are

higher in the benign lesion than in the malignant lesion, which means that it was able to

distinguish between the two lesions.
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Figure 4.52: Fitting plot for the Truncated model of a DWI image of the breast with a
benign lesion (fibroadenoma), where is possible to see that some points don’t have a good
fitting.

70



4.2. PARAMETRIC VALUES OBTAINED THROUGH ROIS

4.2.2.9 Results from the Stretched model of the malignant lesion

The parametric values obtained for the Stretched model applied in an image with a malig-

nant tumor (invasive ductal carcinoma) were the ones seen on Figure 4.43. DDC has the

value 0.88×10−3mm2/s and α 0.84 (dimensionless metric). The fitting plot of the b values

versus the median values of the ROI shows how well the fitting process was performed

(Figure 4.53).

Figure 4.53: Fitting plot for the Stretched model of a DWI image of the breast with a
malignant lesion (invasive ductal carcinoma), where is possible to see that some points
don’t have a good fitting.

4.2.2.10 Results from the Stretched model of the benign lesion

The parametric values obtained for the Stretched model applied in an image with a

benign tumor (fibroadenoma) were the ones seen on Figure 4.43. DDC has the value

2.53×10−3mm2/s and α 0.76 (dimensionless metric). The values for the The fitting plot

of the b values versus the median values of the ROI shows how for higher b values the

fitting isn’t as good as for lower b values (Figure 4.54).

When the benign and malignant values for this model are compared it is possible

to observe a difference between the values of DDC, which can mean that it can detect

between malignant and benign lesions. However. the same doesn’t happen with the α

values that are very similar in both lesions.

4.2.2.11 Results of the goodness-of-fit for all of the models

Since the values of goodness-of-fit obtained are always between 0.9 and 1.0, the better

way to evaluate them is to compare them with each model. The models that are compared
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Figure 4.54: Fitting plot for the Stretched model of a DWI image of the breast with a
benign lesion (fibroadenoma), where is possible to see that some points don’t have a good
fitting.

are the ones that were tested with the same amount of b values like it was explained in

4.1.7.

For the malignant lesions, the goodness-of-fit was 0.9993 for the DKI model, 0.9938

for the Gamma model, 0.9972 for the Truncated model and 0.9962 for the Stretched

model.

For the benign lesions, the goodness-of-fit was 0.9734 for the DKI model, 0.9631 for

the Gamma model, 0.9686 for the Truncated model and 0.9276 for the Stretched model.

In case of the IVIM model, the goodness-of-fit value for the malignant lesions was

0.9918 and for the benign lesions, 0.9166.

When both lesions are compared, it is concluded that the goodness of fit for the ma-

lignant lesion had higher values which goes in agreement with the previous results, the

curve fitting performed better in the malignant lesions.
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4.3 Number of b values and noise tests

4.3.1 b values test

As it was explained in 3.3.1, in order to better inform the user on which images he should

use the plug-in, several different combinations of images with different b values were

tested. The combination that is going to be mentioned in this section is the one which the

b values were removed in the order: 600 s/mm2, 2000 s/mm2, 200 s/mm2, 800 s/mm2

and 1000 s/mm2.

The conclusions that can be taken after evaluating how all of the models reacted to a

small number of b values is that the models work best with a bigger amount, except for

the IVIM, and the minimum of recommended b values for a map should be of 3 b values.

4.3.1.1 DKI

The images that were obtained with the mentioned combination of b values for the DKI

model are shown in Figures 4.55 (MD map) and 4.56 (MK map). In both maps, the tumor

was visible until the image with the b value 800 s/mm2 is removed, then the outlines of

the lesion become less detectable.

Figure 4.55: MD maps (scalling factor of 1×106 and in mm2/s) of a breast with a ma-
lignant lesion (invasive ductal carcinoma) which show the quality decrease when are
applied with images with less b values. The b values were removed in the order: 600
s/mm2, 2000 s/mm2, 200 s/mm2, 800 s/mm2 and 1000 s/mm2, respectively.
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Figure 4.56: MK maps (scalling factor of 1×103 with no units since it is dimensionless) of
a breast with a malignant lesion (invasive ductal carcinoma) which show the quality de-
crease when are applied with images with less b values. The b values were removed in the
order: 600 s/mm2, 2000 s/mm2, 200 s/mm2, 800 s/mm2 and 1000 s/mm2, respectively.
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4.3.1.2 IVIM

The images that were obtained with the mentioned combination of b values for the IVIM

model are shown in Figures 4.57 (D∗ map), 4.58 (D map) and 4.59 (f map). In the D map,

the tumor is always visible. However, both the D∗ and f maps had bad quality and the

tumor is hardly seen.

Figure 4.57: D∗ maps (scalling factor of 1×106 and in mm2/s) of a breast with a malignant
lesion (invasive ductal carcinoma) which show the quality increase when are applied with
images with less b values. The b values that was removed was 50 s/mm2. Then it was 200
, 400, 600 and 800 s/mm2, respectively. In all of the tests, the amount of b values for each
image was 4.
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Figure 4.58: D maps (scalling factor of 1×106 and in mm2/s) of a breast with a malignant
lesion (invasive ductal carcinoma) which show the quality decrease when are applied
with images with less b values. The b values that was removed was 50 s/mm2. Then it
was 200 , 400, 600 and 800 s/mm2, respectively. In all of the tests, the amount of b values
for each image was 4.
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Figure 4.59: f maps (scalling factor of 1×104 and in %) of a breast with a malignant
lesion (invasive ductal carcinoma) which show the quality increase when are applied
with images with less b values. The b values that was removed was 50 s/mm2. Then it
was 200 , 400, 600 and 800 s/mm2, respectively. In all of the tests, the amount of b values
for each image was 4.
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4.3.1.3 Gamma distribution

The images that were obtained with the mentioned combination of b values for the

Gamma model are shown in Figures 4.60 (θ map), 4.61 (κ map), 4.62 (S1 map), 4.63

(S2 map) and 4.64 (S3 map). In all of the maps, the tumor is visible until the image with

the b value 800 s/mm2 is removed, then the outlines of the lesion become less detectable.

Figure 4.60: θ maps (scalling factor of 1×104 and in mm2/s) of a breast with a malignant
lesion (invasive ductal carcinoma) which show the quality decrease when are applied
with images with less b values. The b values were removed in the order: 600 s/mm2, 2000
s/mm2, 200 s/mm2, 800 s/mm2 and 1000 s/mm2, respectively.
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Figure 4.61: κ maps (scalling factor of 10 and with no units since it is dimensionless) of
a breast with a malignant lesion (invasive ductal carcinoma) which show the quality de-
crease when are applied with images with less b values. The b values were removed in the
order: 600 s/mm2, 2000 s/mm2, 200 s/mm2, 800 s/mm2 and 1000 s/mm2, respectively.
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Figure 4.62: S1 maps (scalling factor of 1×103 and in %) of a breast with a malignant
lesion (invasive ductal carcinoma) which show the quality decrease when are applied
with images with less b values.The b values were removed in the order: 600 s/mm2, 2000
s/mm2, 200 s/mm2, 800 s/mm2 and 1000 s/mm2, respectively.
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Figure 4.63: S2 maps (scalling factor of 1×103 and in %) of a breast with a malignant
lesion (invasive ductal carcinoma) which show the quality decrease when are applied
with images with less b values. The b values were removed in the order: 600 s/mm2, 2000
s/mm2, 200 s/mm2, 800 s/mm2 and 1000 s/mm2, respectively.
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Figure 4.64: S3 maps (scalling factor of 1×103 and in %) of a breast with a malignant
lesion (invasive ductal carcinoma) which show the quality decrease when are applied
with images with less b values. The b values were removed in the order: 600 s/mm2, 2000
s/mm2, 200 s/mm2, 800 s/mm2 and 1000 s/mm2, respectively.
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4.3.1.4 Truncated Gaussian distribution

The images that were obtained with the mentioned combination of b values for the Trun-

cated model are shown in Figures 4.65 (σ map) and 4.66 (ADC map). In the map, the

tumor is visible until the image with the b value 800 s/mm2 is removed, then the outlines

of the lesion become less detectable. However, the σ map didn’t worked as well after the

800 s/mm2 is removed. The tumor is still visible, but barely and the last image lost much

more information than the ADC map.

Figure 4.65: σ maps (scalling factor of 1×105 and in mm2/s) of a breast with a malignant
lesion (invasive ductal carcinoma) which show the quality decrease when are applied
with images with less b values. The b values were removed in the order: 600 s/mm2, 2000
s/mm2, 200 s/mm2, 800 s/mm2 and 1000 s/mm2, respectively.
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Figure 4.66: ADC maps (scalling factor of 1×104 and in mm2/s) of a breast with a ma-
lignant lesion (invasive ductal carcinoma) which show the quality decrease when are
applied with images with less b values. The b values were removed in the order: 600
s/mm2, 2000 s/mm2, 200 s/mm2, 800 s/mm2 and 1000 s/mm2, respectively.
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4.3.1.5 Stretched-Exponential distribution

The images that were obtained with the mentioned combination of b values for the

Stretched model are shown in Figures 4.67 (DDC map) and 4.68 (α map). In the map, the

tumor is visible until the image with the b value 800 s/mm2 is removed, then the outlines

of the lesion become less detectable.

Figure 4.67: DDC maps (scalling factor of 1×107 and in mm2/s) of a breast with a ma-
lignant lesion (invasive ductal carcinoma) which show the quality decrease when are
applied with images with less b values. The b values were removed in the order: 600
s/mm2, 2000 s/mm2, 200 s/mm2, 800 s/mm2 and 1000 s/mm2, respectively.
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Figure 4.68: α maps (scalling factor of 1×104 and with no units since it is dimensionless)
of a breast with a malignant lesion (invasive ductal carcinoma) which show the quality de-
crease when are applied with images with less b values. The b values were removed in the
order: 600 s/mm2, 2000 s/mm2, 200 s/mm2, 800 s/mm2 and 1000 s/mm2, respectively.
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4.3.1.6 Goodness-of-fit maps

In order to evaluate how well the fitting process was performed, the goodness of fit maps

were compared for each model. The maps are in agreement with the previous results

which conclude that when the models that are tested with only three b values the quality

decreases. The following images are of 3 b values. The previous studied amount are in

appendix A.

The goodness-of-fit maps that were obtained with the IVIM model, don’t show a big

difference between each other, which goes in agreement with the results in 4.3.1.2.

a DKI b Gamma

c Truncated d Stretched

Figure 4.69: Goodness-of-fit map (scaling factor of 1×103) for DKI, Gamma, Truncated
and Stretched models applied to a breast with a malignant lesion (invasive ductal carci-
noma) when the image with the b value 1000 s/mm2 was removed. The range of greyscale
shows that fitting wasn’t as good for IVIM as it was for DKI and Gamma.
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4.3.2 Noise tests

In order to see how the noise affects the obtained parametric maps, several amounts of

noise were added (10%, 15%, 20%, 25%, 30% and 35%) like it was mentioned in 3.3.2.

Afterwords it was tested how all of the models handled the noise. Looking at the images

it is possible to conclude that the quality of the images decreases and when the noise is

already at 35% it is difficult to clearly identify the tumor in the image.

The conclusion that is reached after evaluating all of the following images is that

when the amount of noise is over 15% too much information is lost, which mean that the

suggestion to give the user would be to use images of amounts of noise lower than 15%.

The goodness-of-fit maps for all the models are in the Appendix A.

4.3.2.1 DKI

The images that were obtained with the different amounts of noise for the DKI model are

shown in Figures 4.70 (MD map) and 4.71(MK map). The maps that were obtained with

images with 10% and 15% of noise show the lesion very clearly. However, as the noise

increases beyond 15% the lesion starts getting difficult to locate in the image, specially in

the MK maps. Because of this, the suggestion for the user would be to not use the DKI

model in images with an amount of noise bigger than 15%.
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Figure 4.70: MD maps (scalling factor of 1×106 and in mm2/s) of a breast with a malig-
nant lesion (invasive ductal carcinoma) which show the quality decrease when are applied
to images with 10%, 15%, 20%, 25%, 30% and 35% amount of noise, respectively..
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Figure 4.71: MK maps (scalling factor of 1×103 with no units since it is dimensionless)
of a breast with a malignant lesion (invasive ductal carcinoma) which show the quality
decrease when are applied to images with 10%, 15%, 20%, 25%, 30% and 35% amount
of noise, respectively.
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4.3.2.2 IVIM

The images that were obtained with the different amounts of noise for the IVIM model

are shown in Images 4.72 (D∗ map), 4.73 (D map) and 4.74 (f map). D∗ and f have

already been mentioned by not having enough quality since the lesion is very difficult to

detect. When these maps are applied in Figures with noise, the quality decreases even

more drastically than any other maps. When the noise of the image is over 15% it is

impossible to detect the lesion. However, the same does not happen with theD map. This

map handles the noise better in the sense that the lesion can be detected in images with

higher amount of noise. At 20% the lesion is still visible but poorly, so the user would be

advised to use images with an amount of noise lower than 20%.

Figure 4.72: D∗ maps (scalling factor of 1×106 and in mm2/s) of a breast with a malignant
lesion (invasive ductal carcinoma) which show the quality increase when are applied to
images with 10%, 15%, 20%, 25%, 30% and 35% amount of noise, respectively.
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Figure 4.73: D maps (scalling factor of 1×106 and in mm2/s) of a breast with a malignant
lesion (invasive ductal carcinoma) which show the quality decrease when are applied to
images with 10%, 15%, 20%, 25%, 30% and 35% amount of noise, respectively.
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Figure 4.74: f maps (scalling factor of 1×104 and in %) of a breast with a malignant lesion
(invasive ductal carcinoma) which show the quality increase when are applied to images
with 10%, 15%, 20%, 25%, 30% and 35% amount of noise, respectively.
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4.3.2.3 Gamma distribution

The images that were obtained with the different amounts of noise for the Gamma model

are shown in Figures 4.75 (θ map), 4.76 (κ map), 4.77 (S1 map), 4.78 (S2 map) and 4.79

(S3 map). In all five maps that were obtained, the same conclusion was reached, when

the image used has a higher amount of noise than 15% the quality of the map decreases

to a point where the detection of the tumor location become difficult. The S3 map was

the only map that even at higher values of noise, the tumor was still detectable.

Figure 4.75: θ maps (scalling factor of 1×104 and in mm2/s) of a breast with a malig-
nant lesion (invasive ductal carcinoma) which show the quality increase when applied to
images with 10%, 15%, 20%, 25%, 30% and 35% amount of noise, respectively.
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Figure 4.76: κ maps (scalling factor of 10 and with no units since it is dimensionless)
of a breast with a malignant lesion (invasive ductal carcinoma) which show the quality
increase when applied to images with 10%, 15%, 20%, 25%, 30% and 35% amount of
noise, respectively.

Figure 4.77: S1 maps (scalling factor of 1×103 and in %) of a breast with a malignant
lesion (invasive ductal carcinoma) which show the quality decrease when are applied to
images with 10%, 15%, 20%, 25%, 30% and 35% amount of noise, respectively.
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Figure 4.78: S2 maps (scalling factor of 1×103 and in %) of a breast with a malignant
lesion (invasive ductal carcinoma) which show the quality increase when are applied to
images with 10%, 15%, 20%, 25%, 30% and 35% amount of noise, respectively.

Figure 4.79: S3 maps (scalling factor of 1×103 and in %) of a breast with a malignant
lesion (invasive ductal carcinoma) which show the quality increase when are applied to
images with 10%, 15%, 20%, 25%, 30% and 35% amount of noise, respectively.
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4.3.2.4 Truncated Gaussian distribution

The images that were obtained with the mentioned combination for the Truncated model

are shown in Figures 4.80 (σ map) and 4.81 (ADC map). When the amount of noise of

the images tested was higher than 15%, the quality of the maps decreases to point where

is difficult to detect the tumor. However, the tumor is still detectable at images with 20%

of noise, which means that the user would be advised to use images with an amount of

noise lower than 20%.

Figure 4.80: σ maps (scalling factor of 1×105 and in mm2/s) of a breast with a malig-
nant lesion (invasive ductal carcinoma) which show the quality increase when applied to
images with 10%, 15%, 20%, 25%, 30% and 35% amount of noise, respectively.
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Figure 4.81: ADC maps (scalling factor of 1×104 and in mm2/s) of a breast with a malig-
nant lesion (invasive ductal carcinoma) which show the quality increase when are applied
to images with 10%, 15%, 20%, 25%, 30% and 35% amount of noise, respectively.
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4.3.2.5 Stretched-Exponential distribution

The images that were obtained with the mentioned combination for the Stretched model

are shown in Figures 4.82 (DDC map) and 4.83 (α map). This was model that better

handled the noise because when the amount of noise is at 35% the lesion is still detectable.

However, in the case of theDDC map, a lot of information of the image is lost as the noise

increases which is noticeable around the tumor area.

Figure 4.82: DDC maps (scalling factor of 1×107 and in mm2/s) of a breast with a malig-
nant lesion (invasive ductal carcinoma) which show the quality increase when are applied
to images with 10%, 15%, 20%, 25%, 30% and 35% amount of noise, respectively.
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Figure 4.83: α maps (scalling factor of 1×104 and with no units since it is dimensionless)
of a breast with a malignant lesion (invasive ductal carcinoma) which show the quality
increase when applied to images with 10%, 15%, 20%, 25%, 30% and 35% amount of
noise, respectively.

100



C
h
a
p
t
e
r

5
Conclusions and Future Work

In this chapter are the conclusion of the the dissertation along with final considerations

and possible future work.

In this work it was proposed the development of an OsiriX plug-in, using non-Gaussian

models in order to characterize lesions. In spite of existing other plug-ins for image pro-

cessing, to our knowledge there hasn’t been developed a plug-in for these particular

models. Besides, the developed plug-in has the advantage to not only process one non-

Gaussian model, but also four more, giving the user a more wider spectrum of choices

and also the chance to compare between parametric maps.

In the beginning the plug-in only had to produce parametric maps, however, it was

found useful to be able to obtain the parametric values of the models from a ROI drawn

around the tumor area. Because of this, it was added a new section in order to obtain

these values, which can also be an alternative for when the images that are being tested

don’t have the most appropriate protocol to produce parametric maps. For example, few

b−values or a big amount of noise.

The resulting plug-in can detect successfully the difference between malignant and

benign lesions through parametric maps and values. The goodness of fit and the plots

with the curve fitting, show that the fitting of the models was correct and well done. The

only model that didn’t detect the difference as well was the IVIM model and this can be

justified by not testing it with the most correct b-values.

In order to better inform the user on how to obtain the best images possible with the

plug-in, it was tested with several different amounts of b values and added noise. The

conclusions of this research will help the user to choose which images to use and also

warn him that the quality of the maps can decrease if not payed attention them.

One of the biggest challenges on working on the plug-in was the lack of knowledge

in Objective-C language and how to work with OsiriX methods and classes. It was a
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challenge to learn a new language, however, it was very rewarding to see the ending

result. The most difficult part was how to access the methods and classes of OsiriX in

order to make the program work. For example, the plug-in applies full dynamic after the

images are uploaded and to find the method to do it, it was needed to check the OsiriX

source code. Almost every methods that were worked with were found in the source code

since there isn’t that many information online.

For future work, it would begin with getting IVIM images that are more suitable to

test the IVIM and IVIM/DKI models on the plug-in. It would also be important to reduce

the time of processing, in spite of already been tried in this work with parallel computing.

Another step that can be added to the plug-in, would be to give the user the opportunity

to choose which b values, that the series of images have, to run the models on. Also, the

application of this plug-in on a bigger spectrum of images would be imperative in order

to check if it really works on every single image with the right protocol.

Overall, the objectives of this dissertation were met. The application of the IVIM

model wasn’t as successful as for the other models, however, it showed potential to work.

As a final conclusion, I really enjoyed working on this dissertation and found the work

very rewarding, specially when the main goals of it were all met.
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Testing b values and noise

A.0.3 Goodness of fit maps for the first combination of b values removal

a DKI b Gamma c Truncated

d Stretched

Figure A.1: Goodness-of-fit map (Goodness-of-fit maps (scaling factor of 1×103) for DKI,
Gamma, Truncated and Stretched models applied to a breast with a malignant lesion
(invasive ductal carcinoma) when the image with the b value 600 s/mm2 was removed.
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APPENDIX A. TESTING b VALUES AND NOISE

a DKI b Gamma c Truncated

d Stretched

Figure A.2: Goodness-of-fit map (Goodness-of-fit maps (scaling factor of 1×103) for DKI,
Gamma, Truncated and Stretched models applied to a breast with a malignant lesion
(invasive ductal carcinoma) when the image with the b value 2000 s/mm2 was removed.

A.0.4 Goodness of fit maps of the maps with the noise added
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a DKI b Gamma

c Truncated d Stretched

Figure A.3: Goodness-of-fit map (Goodness-of-fit maps (scaling factor of 1×103) for DKI,
Gamma, Truncated and Stretched models applied to a breast with a malignant lesion
(invasive ductal carcinoma) when the image with the b value 200 s/mm2 was removed.
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APPENDIX A. TESTING b VALUES AND NOISE

a DKI b Gamma c Truncated

d Stretched

Figure A.4: Goodness-of-fit map (Goodness-of-fit maps (scaling factor of 1×103) for DKI,
Gamma, Truncated and Stretched models applied to a breast with a malignant lesion
(invasive ductal carcinoma) when the image with the b value 800 s/mm2 was removed.
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a DKI b Gamma c Truncated

d Stretched

Figure A.5: Goodness-of-fit map (Goodness-of-fit maps (scaling factor of 1×103) for DKI,
Gamma, Truncated and Stretched models applied to a breast with a malignant lesion
(invasive ductal carcinoma) when noise (10%) is added to the image.
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APPENDIX A. TESTING b VALUES AND NOISE

a DKI b Gamma

c Truncated d Stretched

Figure A.6: Goodness-of-fit map (Goodness-of-fit maps (scaling factor of 1×103) for DKI,
Gamma, Truncated and Stretched models applied to a breast with a malignant lesion
(invasive ductal carcinoma) when noise (15%) is added to the image.
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a DKI b Gamma

c Truncated d Stretched

Figure A.7: Goodness-of-fit map (Goodness-of-fit maps (scaling factor of 1×103) for DKI,
Gamma, Truncated and Stretched models applied to a breast with a malignant lesion
(invasive ductal carcinoma) when noise (20%) is added to the image.
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APPENDIX A. TESTING b VALUES AND NOISE

a DKI b Gamma

c Truncated d Stretched

Figure A.8: Goodness-of-fit map (Goodness-of-fit maps (scaling factor of 1×103) for DKI,
Gamma, Truncated and Stretched models applied to a breast with a malignant lesion
(invasive ductal carcinoma) when noise (25%) is added to the image.
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a DKI b Gamma

c Truncated d Stretched

Figure A.9: Goodness-of-fit map (Goodness-of-fit maps (scaling factor of 1×103) for DKI,
Gamma, Truncated and Stretched models applied to a breast with a malignant lesion
(invasive ductal carcinoma) when noise (30%) is added to the image.
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APPENDIX A. TESTING b VALUES AND NOISE

a DKI b Gamma

c Truncated d Stretched

Figure A.10: Goodness-of-fit map (Goodness-of-fit maps (scaling factor of 1×103) for DKI,
Gamma, Truncated and Stretched models applied to a breast with a malignant lesion
(invasive ductal carcinoma) when noise (35%) is added to the image.
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a 10% of noise b 15% of noise

c 20% of noise d 25% of noise

e 30% of noise f 35% of noise

Figure A.11: Goodness-of-fit map (Goodness-of-fit maps (scaling factor of 1×103) for
IVIM applied to a breast with a malignant lesion (invasive ductal carcinoma) when several
amounts of noise (10%, 15%, 20%, 25%, 30% and 35%) is added to the image.
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Poster

This appendix contains the poster that was displayed in the 8th Workshop on Biomed-

ical Engineering (WBME) and in the 1st NOVA Biomedical Workshop. This poster was

developed in an early stage of the work which explains why the Truncated and Stretched

models aren’t mentioned.
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Development of an Osirix plug-in for fitting non-gaussian models to diffusion MRI 

data: application to Breast imaging. 	



㻽㼡㼑㼟㼠㼕㼛㼚


Can we distinguish between malignant and benign tumors using non-

gaussian models for diffusion MRI?  

㻮a㼏㼗㼓㼞㼛㼡㼚㼐


M㼑㼠㼔㼛㼐


•  Diffusion-weighted imaging (DWI) has become an important tool for 

breast cancer diagnosis [1].  

•  Diffusion parameters have been shown to help distinguish between 

normal fibroglandular tissue and lesions. The standard mono-

exponential model is based on the premise that the water molecule 

displacement in the  microenvironment follows a Gaussian distribution. 

However, biological tissues present compartmentalization that restricts 

the free displacement of water molecules. As non-Gaussian models can 

describe the deviation from free diffusion, the study of these models 

becomes crucial for in vivo DWI [2].  

•  This work aims to develop a plugin for OsiriX, a well-known clinical 

medical imaging software, to allow the analysis of non-Gaussian 

diffusion magnetic resonance imaging (MRI) data [3].  

•  Based on non-gaussian models, the plugin is capable of 

calculating various parametric maps that help identify lesions and 

quantify differences between benign and malignant breast lesions. 

 

•  Both the kurtosis and gamma distribution models are detecting the 

malignant lesion in the images that were tested. Additionally, the gamma 

distribution of ADC values in each voxel was used to estimate three 

maps (Figure 5). The first one represents the intracellular diffusion 

fraction, the second one represents the extracellular diffusion fraction 

and the last one represents the perfusion fraction.  

•  Because the IVIM model takes into account tissue micro-perfusion, the b 

values of the MRI images should be lower than the ones that were used 

here. Nevertheless, the D* map and the perfusion fraction map were still 

able to identify the lesion. 

•  In order to determine quantitatively whether the model fits were 

adequate, we resorted to the R squared measure of goodness of fit. 

This method returns a value from 0 to 1 of the goodness of fit per pixel. 

Resulting matrices were observed to hold values no smaller than 0.50. 

㻾㼑㼟㼡㼘㼠㼟
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•  The non-Gaussian models that will be tested are: diffusional kurtosis 

imaging (DKI), which is based on the kurtosis excess index which is 

used to quantify the deviation of the probability displacement function 

(PDF) from the Gaussian shape (this deviation is directly proportional to 

tissue microstructure complexity) [4]; intravoxel incoherent motion 

(IVIM), which is a model which includes the contribution from tissue 

micro-perfusion and diffusivity requiring multiple diffusion-weighting 

levels to perform a bi-exponential curve fit [5]; and gamma distribution 

models, which takes into account the statistical dispersion of the 

distribution, and the probability distribution shape [6]; among others.  

•  The models were adapted for Matlab which will work as a standalone 

application that will be called by the OsiriX plug-in. At first a Wiener filter 

is applied to help reduce the noise in the image. Then, by applying the 

Levenberg-Marquardt algorithm to the same image slice with several 

different b-values, [50,200,400,600,800,1000,2000,3000 s/mm2], several 

parameters can be obtained. These parameters can than be visualized 

in a parametric map. Parametric maps visually emphasize breast lesions 

and enable lesion quantitative characterization. 
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Figure 1: Breast MRI images with the application of a Wiener filter to reduce noise. a) b=50 s/mm2 
b) b=1000 s/mm2 c) b=3000 s/mm2   

Figure 2: Maps of the parameters of the kurtosis model. d) 
MD map e) MK map  

Figure 3: Maps of the parameters of the gamma distribution 
model. f) theta (scale) map g) k (shape) map  

Figure 4: Maps of the parameters of the IVIM model. h) D map i) D* map j) perfusion fraction map  Figure 5: Gamma distribution-derived maps. k) intracellular diffusion, l) extracellular diffusion, and 
m) perfusion fractional maps.    

Conclusions 

a) b) c) d) e) f) g) 

h) i) j) k) l) m) 
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