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ABSTRACT 

In recent years, data mining algorithms are increasingly applied to optimise the 

classification process of remotely sensed imagery. Random Forest algorithms have 

shown high potential for land cover mapping problems yet have not been sufficiently 

tested on their ability to process and classify multi-temporal data within one 

classification process. Additionally, a growing amount of geospatial data is freely 

available online without having their usability assessed, such as EUROSTAT´s 

LUCAS land use land cover dataset. 

This study provides a comparative analysis of two land cover classification 

approaches using Random Forest on open-access multi-spectral, multi-temporal 

Sentinel-2A/B data. A classification system composed of six classes (sealed surfaces, 

non-vegetated unsealed surfaces, water, woody, herbaceous permanent, herbaceous 

periodic) was designed for this study. Ten images of ten bands plus NDVI each, taken 

between November 2016 and October 2017 in Central Portugal, were processed in R 

using a pixel-based approach. Ten maps based on single month data were produced. 

These were then used as input data for the classifier to create a final map. This map 

was compared with a map using all 100 bands at once as training for the classifier. 

This study concluded that the approach using all bands produced maps with 11% 

higher, yet overall low accuracy of 58%. It was also less time-consuming with about 5 

hours to over 15 hours of work for the multi-temporal predictions. The main causes 

for the low accuracy identified by this thesis are uncertainties with EUROSTAT´s 

Land Use/Cover Area Statistical Survey (LUCAS) training data and issues with the 

accompanying nomenclature definition. Additional to the comparison of the 

classification approaches, the usability of LUCAS (2015) is tested by comparing four 

different variations of it as training data for the classification based on 100 bands. 

This research indicates high potential of using Sentinel-2 imagery and multi-

temporal stacks of bands to achieve an averaged land cover classification of the 

investigated time span. Moreover, the research points out lower potential of the multi-

map approach and issues regarding the suitability of using LUCAS open-access data 

as sole input for training a classifier for this study. Issues include inaccurate surveying 

and a partially long distance between the marked point and the actual observation 

point reached by the surveyors of up to 1.5 km. Review of the database, additional 

sampling and ancillary data appears to be necessary for achieving accurate results.
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1. INTRODUCTION 

 

This chapter will introduce the theoretical framework and motivation of the thesis 

in Chapter 1.1, state the objectives and aims in Chapter 1.2, and gives a general 

outline of the work in Chapter 1.3. 

 

1.1. Theoretical Framework and Motivation 

 

Remotely sensed imagery has established itself as the main source of information 

to determine land use and land cover. Simultaneously, satellite-based sensors continue 

to deliver data products of increasing temporal, spatial, and spectral resolutions. This 

allows for the development of new, more effective approaches to conduct remote 

pattern recognition in remotely sensed imagery. A wide variety of machine learning 

algorithms are now supporting and conducting classifications (e.g. Jia et al., 2014; 

Schmidt et al., 2014; Neves et al., 2015). Random Forest (RF) has established itself as 

a popular machine learning algorithm in the field (e.g. Gislason et al., 2006; Pal, 

2005; Stepper et al., 2015). This is based on its high accuracy and speed, non-

parametric approach to classification, and its ability to handle high data 

dimensionality while being insensitive to overfitting (Belgiu and Dra, 2016). 

Furthermore, it can be used with categorical, unbalanced, and incomplete data while 

still achieving high classification accuracy, which is not possible with other classifiers 

such as support vector machines (Pal, 2005).  

Random Forest algorithms have shown high potential for land cover land use 

(LULC) mapping problems on multi-temporal, multi-spectral satellite data for LULC 

classification and change detection (e.g. Pelletier et al., 2016; Schneider, 2012; Yin et 

al., 2014). Nonetheless, the classifier has not been sufficiently tested on its ability to 

process and classify multi-temporal data within one classification process on a large 

scale by comparing different approaches. 

This study provides a comparative analysis of two land cover classification 

approaches at pixel level. It aims at testing alternatives for processing multi-temporal 

data within one classification process. Specifically, it is using RF on open-access 
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multi-spectral, multi-temporal Sentinel-2A/B imagery of Central Portugal. The 

predictions made, their accuracies and the computational effort will be compared. For 

that, ten images of ten bands each were used. The images were taken between 

November 2016 and October 2017. A classification system composed of six land 

cover classes was designed (sealed surfaces, non-vegetated unsealed surfaces, water, 

woody, herbaceous permanent, herbaceous periodic). The first approach consisted of 

using all input variables from the 10 images plus NDVI at the same time in the 

classification process. The second approach consisted first of the production of ten 

land cover maps (one for each month) and then of the classification of these ten maps 

to generate a single map. All classifications were conducted with Random Forest.  

The Normalised Difference Vegetation Index (NDVI) was calculated to estimate 

the vegetation´s photosynthetic activity in the area based on the single month data. 

This approach is common in optical time series analysis (Alcantara et al., 2012; Esch 

et al., 2014; Zhang et al., 2003). The index was subsequently used as an additional 

band in the single month land cover classification process to improve classification 

accuracy by differentiating classes with different types of vegetation (Steidl, 2017). 

The aforementioned approach has been successfully applied using MODIS and 

Landsat data and improved classification accuracy (Jia et al., 2014; Nitze et al., 2015).     

This study is using Sentinel-2A/B (S2) data as imagery for the analysis. Sentinel-2 

is provided online by the European Space Agency as an open-access product since 

2015, providing imagery of high spatial and temporal resolution (imagery of 10m 

resolution and a temporal resolution of 5 days). Many studies available thus worked 

with simulated S2 data to assess its potential and uniformly came to positive 

conclusions of its potential (Clark, 2017; Dong et al., 2015; Drusch et al., 2012; 

Malenovský et al., 2012; Ramoelo et al., 2015; Van der Meer et al., 2014). Since the 

data is available, studies with S2 data cover a vast range of geographic issues. They 

include the assessment of burn severity (Fernández-Manso et al., 2016), classification 

exercises to map crop types and tree species (Immitzer et al., 2016), mapping water 

bodies (Du et al., 2016), monitoring fine-scale habitats (Stratoulias et al., 2015), 

discriminating forest types (Vaglio Laurin et al., 2016), and forest fire evaluation 

(Navarro et al., 2017). All studies see high potential in S2 data. 

Additional to the assessment of the classification approaches, the usability of 

EUROSTAT´s Land Use/Cover Area Statistical Survey (LUCAS) database from 2015 
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is tested. This database contains land cover land use information of the EU member 

states as point data. It is aimed to find out if LUCAS is an alternative to selecting 

training areas for RF by photointerpretation and identify uncertainties and limitations. 

This is done by running the classification based on 100 bands on 4 different 

modifications of LUCAS: An unmodified version, one with added samples to balance 

unbalanced training data, and two with added samples and modifications of the class 

representing woodlands. The difference between the latter two is in the inclusion of a 

specific set of points manually added to help the classifier distinguishing dark forest 

canopy and water. The modifications on the class representing woodlands are based 

on results and issues found during the comparison of classifications approaches, yet 

are also designed to identify potential difficulties caused by the composition of the 

nomenclature. The rationale behind the dataset comparison is to assess the usability of 

LUCAS and to which extend it can be used to reduce the time usually associated with 

selecting training areas by photointerpretation while still achieving acceptable 

accuracies. It is hypothesized that additional sampling and extensive data pre-

processing is needed in order to obtain results with high accuracy with LUCAS in this 

specific study. 

 Esch et al. (2014) is an exemplary study using RF with LUCAS point data 

both for training and evaluation of their classifier. The study aimed to differentiate 

cropland and grassland. Other studies using LUCAS data include soil erosion 

modelling (Panagos, et al., 2014), soil pH mapping (Gardi and Yigini, 2012) and land 

use land cover mapping (Mack et al., 2017). All aforementioned studies support their 

use of the LUCAS database with ancillary data from specialised databases or 

conducted extensive additional sampling. 

For testing, a set of equalised stratified random points produced in ArcGIS was 

used. It is composed of 50 accuracy assessment samples per class. The samples are 

based on corresponding classes in the CORINE Land Cover Map 2012. To ensure the 

land cover has not changed since then, the 300 samples were controlled using visual 

inspection of 2017 EO imagery. The accuracy of the results is assessed using 

reference data bases consisting of samples (e.g. Gong et al., 2013; Inglada et al., 2015; 

Novelli et al., 2016) and visual inspection (e.g. Chen et al., 2005; Im et al., 2007; Van 

der Meer et al., 2014; Li et al., 2016). 
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1.2.  Objectives and Aims 

 

This study aims at answering two research questions:  

1. How do the classification approaches perform on multi-temporal, multi-

spectral data in general and compared to each other? 

2. How usable is LUCAS data as training data for Random Forest and is it an 

alternative to selecting training areas by photointerpretation? 

For answering the questions, the accuracy of the predictions of both 

classification approaches and four training data variations all outcomes are assessed. 

Uncertainties and limitations are identified and discussed, and suggestions to 

counterbalance these uncertainties are given. 

The study is almost entirely based on open-source (OS) software and data with 

a focus on processing Sentinel-2 (S2) data products in R. The objectives and 

methodology used to answer the research questions can be summarised as follows: 

Basic objective Related basic process and tools Optimised process 

Process Sentinel 2 imagery to 

usable product 

Process Level-1C to Level-2A data 

products using Sentinel´s Sen2Cor in 

Sentinel Application Platform 

Process Level-1C to Level-2A data 

products using Sen2Cor as batch in 

Windows Command Prompt 

 Conversion of JP2 to GeoTIFF Conversion of JP2 to GeoTIFF with 

GDAL Scripts using USGS Raster 

Conversion Scripts  

Process LUCAS data to train 

classifier 

Process LUCAS 2015 point data in R 

(cropping and outlier removal) and 

ArcGIS (additional sampling and 

cleaning) 

 

Use additional indices or 

index to contribute to 

classification accuracy 

Calculate NDVI in R for extra 

information for the classifier 

 

Calculate NDVI band as additional 

information for the classifier and use 

it as threshold to assign classes in 

nomenclature 

Design transferable 

nomenclature 

Identify transferable classes in the 

nomenclatures 

 

Classification of land cover 

map based on monthly maps 

Creating code for RF classification 

based on single month maps in R 
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Classification of land cover 

map based on all bands 

Creating code for RF classification 

based on all bands in R 

 

Comparison and evaluation of 

classification approaches 

Creation of random stratified 

sampling points in ArcGIS 

 

 Accuracy assessment of the final 

maps in R using statistics 

 

 Identification of differences in class 

size and pixel distribution and 

identifying causes 

 

Evaluation of LUCAS data 

suitability 

Statistical evaluation of database 

products 

 

 

 

Table 1 shows the basic objectives in the left column. The related basic processes 

are displayed in the middle column. The optimisation of the process, if available, is 

described in the right column. Otherwise it is left blank. 

 

1.3.  Outline 

 
The structure of the remainder of the document is as follows: Chapter 2 contains 

the literature review. It describes the related work previously done in the field, 

providing background knowledge to this thesis. Chapter 3 presents the data and the 

study area. Chapter 4 discusses the approach, tools and the methodology that has 

been used. Chapter 5 presents and discusses results obtained in the thesis. Chapter 6 

concludes the project, highlights its contributions and then provides suggestions for 

further research in the area. 

 

 

 

 

 

 

 

Table 1. Basic objectives and basic and optimised processes 
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2. LITERATURE REVIEW 
 

This Chapter will provide an overview on the literature relevant for the study. The 

topics covered are land cover classification (multi-spectral and multi-temporal) in 

Chapter 2.1, Sentinel-2 Multispectral Instrument (MSI) data products in Chapter 

2.2, the use of LUCAS data in present literature in Chapter 2.3, the use of Random 

Forest for land cover classification in Chapter 2.4 and definition and review of the 

accuracy assessment tools in Chapter 2.5. 

 

2.1.  Introduction to Land Cover Classification 

 

A main application in terrestrial remote sensing data is the analysis and 

classification of land cover. Land cover is always dependent on the study area and 

includes different classes, such as water, urban areas, and different types of forests 

and crops. It is a basic variable with high significance for assessing the environment 

(Foody, 2002). Therefore, accurate and relevant information on land cover are 

increasingly in demand in many areas of government, economy and science (Homer et 

al., 2007). Due to the range of applications, thematic maps are thus needed in a variety 

of temporal and spatial resolutions. Applications include change detection (Singh, 

1989), habitat mapping (Schuster et al., 2015; Stow et al., 2008), agriculture 

(Blaschke, 2010; Deren et al., 2003; Lu et al., 2013), disaster risk management (van 

der Sande et al., 2003), and vegetation mapping (Karlson et al., 2015; Vaglio Laurin 

et al., 2016). 

 

Multi-temporal classification is one approach for land cover classification (LCC). 

It is based on using imagery acquired over a specific time period ranging from several 

weeks to multiple years for classification. With the steady increase in spatial, spectral 

and temporal resolution, these classifications now include a multitude of bands on a 

high spatial resolution of a few meters. This leads to a high dimensionality of data and 

new challenges in the field. 

 Pelletier et al. (2016) (which will also be discussed in Chapter 2.4) 

successfully used Random Forest as a classifier on multi-temporal, multi-spectral 

satellite imagery. The study is using different tiles of Landsat-8 and SPOT-4 images 
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to simulate S2 data with an average temporal resolution of 13 days from April 2013 

until November 2013. An overall accuracy of over 80% was documented. The study 

concludes that the classifier is able to identify both static land cover types, such as 

forestry, and dynamic land cover types, such as agriculture.  

The study states that RF was able to sufficiently discriminate land cover types by 

exploiting the temporal information of the spectral signatures alone, though a slight 

increase in the classification accuracy of dynamic land cover types is indicated. The 

reportedly small increase in accuracy when using ancillary data is outweighed with a 

significantly increased computational time.  

 

 Yin et al. (2014) ran a similar study of mapping annual land use and land 

cover changes using a MODIS time series. This particular study also uses RF as the 

classifier on a pixel-based approach. Based on MODIS VI data, a 16-day product of 

250m spatial resolution, they used all available imagery between mid-February of 

2000 and December 2001 of a region in Inner Mongolia. The nomenclature used for 

this study was very similar to the one used in this study, consisting of six land use and 

land cover classes. These include cropland, forest, grassland, constructed area, water, 

and bare lands. The study achieved an overall mapping accuracy of 92%. The main 

uncertainties stated were the confusion between very low vegetated grassland and 

permanent non-vegetated areas and the confusion between croplands and grasslands. 

The first uncertainty is explained by the high temporal variance of rainfall and 

similarities in spectral values. The second uncertainty is caused by similar spectral 

and temporal patterns of the land cover classes, which makes it difficult to 

differentiate them solely based on remote sensing data. To achieve high accuracy, the 

study used both homogenous and heterogenous testing samples to suggest mixed-land 

cover. The study is concluded highlighting the potential of trajectory-based methods 

for LULC mapping, specifically to detect land use changes.  

 

Multi-temporal, multi-spectral imagery is also used by Schneider (2012). The 

study used a variety of machine learning algorithms, one being RF, on 35 to 50 

Landsat scenes and NDVI as input bands for three study areas in China for urban 

change detection. Though achieving good results of 74.6% to 89.4% overall accuracy 

with RF, the study points out the importance of seasonal information since classes 

such as bareland, uncultivated or fallow agriculture and new construction sites can 
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easily be confused by the classifier. Other limitations discussed are the computational 

effort needed to process these large quantities of data and the availability of cloud-free 

data. 

 A topic repeatedly discussed for multitemporal studies is the question how 

single or multiple data acquisition dates affect the classification accuracy (Schmidt et 

al., 2014; Schuster et al., 2015). Esch et al., 2014 successfully attempted in his study 

to reduce the effect of specific weather and soil conditions by approximating a general 

class description for agricultural crops using multi-temporal satellite data. Also Nitze 

et al. (2015) recognised the positive effect multi-temporal classification can have on 

classification accuracies. 

 

In conclusion, multi-spectral and multi-temporal data as input for land cover 

classifications showed high potential, yet are subject to a variety of limitations. These 

range from financial to the need of large amounts of imagery taken under good 

atmospheric conditions. The need of remotely sensed time series imagery to cover 

large areas at high spatial and temporal resolution without becoming too costly was 

difficult to meet in many studies discussed (e.g. Wardlow and Egbert, 2008). A 

common trade-off in remote sensing studies is to either chose high spatial or high 

temporal resolution data (Lambin and Linderman, 2006). Nevertheless, the use of 

multi-temporal satellite data, especially to classify vegetation, has increased with the 

improvement of spatial and temporal resolutions of satellite capabilities (Atzberger 

and Eilers, 2011; Justice and Hiernaux, 1986; Zhang et al., 2003). A recent 

development in this field was the shift from using relatively spatial coarse data 

products (250 m to 1 km) from optical sensors such as, TERRA MODIS, ENVISAT 

MERIS or SPOT VEGETATION (Atzberger and Eilers, 2011; Gu et al., 2010; Jia et 

al., 2014; Lu et al., 2013; Neves et al., 2015; Nitze et al., 2015; Zhang et al., 2003) to 

using data products obtained by multi-sensor satellite systems such as RapidEye or 

Sentinel-2A/B, who provide data products of strongly increased resolutions (Schuster 

et al., 2015). 
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2.2.  Sentinel-2 Data in Present Literature 

 

Not only the technology to acquire the data and its resolutions have been steadily 

improving, but also its availability. Institutions such as the European Union have 

committed to an open-access agenda to make data freely available to the public. This 

development is part of the Big Free Data movement in remote sensing. Sentinel-1A/B 

as part of the European Copernicus program and Landsat-8 as part of the Landsat 

project were especially contributing to create freely available data on a regular basis 

(Kussul et al., 2017). 

Two of the most recent additions to sensors creating freely available Earth 

Observation (EO) data in high resolution were the launches of Sentinel-2A in June 

2015 and Sentinel-2B in March 2017 (ESA, 2017a). The twin satellites will share the 

orbit 180° apart from each other, thus increasing the temporal resolution of products 

available. With both satellites orbiting, the temporal resolution reached five days 

(Wang et al., 2016). The Sentinel-2 satellite imagery has been made freely available 

by the European Commission’s Copernicus program to further research and 

monitoring. The Multispectral Instrument (MSI) with a swath width of 290 km 

produces high-resolution imagery with 13 spectral bands (443 nm–2190 nm) available 

every five days. The spatial resolutions available are 10m (4 visible and near-infrared 

bands), 20m (6 red-edge/shortwave-infrared bands) and 60m (3 atmospheric 

correction bands) (Drusch et al., 2012).  

Three types of data products are offered on the homepage of the European Space 

Agency (ESA), which is hosting the Sentinel-2 data: Level-1B products which consist 

of sensor geometry of top-of-atmosphere radiances. Level-1C products which consist 

of top-of-atmosphere (TOA) reflectances in a combined UTM projection and WGS84 

ellipsoid. And lastly Level-2A products which are bottom-of-atmosphere (BOA) 

reflectances in a cartographic geometry (ESA, 2017). The product used for this thesis 

are Level-2AC and Level-1C data products. The latter needs to be processed and 

formatted to L2A with Sen2Cor (ESA, 2017c; ESA, 2017d), a processor correcting 

atmospheric effects to produce L2A surface reflectance data (Louis et al., 2016). 

All studies based on Sentinel-2 are fairly new since the satellite has only been in 

orbit since 2015. Therefore, many studies available are based on simulated MSI data 

to assess the potential of S2 data. Applications range from geological mapping to 
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water body modelling (Clark, 2017; Dong et al., 2015; Drusch et al., 2012; 

Malenovský et al., 2012; Ramoelo et al., 2015; Van der Meer et al., 2014). For 

example, Clevers and Gitelson (2013) positively assessed the usability of the red-edge 

bands of Sentinel-2 as the basis for calculating vegetation. All studies concluded to 

see high potential in the data derived from the sensor due to its high spatial and 

temporal resolution.  

The selection of scientific papers using actual S2 MSI data in their studies is 

relatively limited. Fernández-Manso et al. (2016) successfully used S2 data for burn 

severity, calling the data adequate for this type of study. Classification exercises to 

map crop types and tree species with Sentinel-2 data by Immitzer et al. (2016) 

supported this outcome. Other applications include mapping water bodies (Du et al., 

2016), monitoring fine-scale habitats (Stratoulias et al., 2015), discriminating forest 

types (Vaglio Laurin et al., 2016), and forest fire evaluation (Navarro et al., 2017). All 

studies see high potential in S2 MSI data. 

On the subject of whether S2 data differs in usability from other high-resolution 

sensor products such as Landsat 8, results of studies differ. In a study of 2016, Novelli 

et al. conducted a performance evaluation test comparing S2 data and Landsat 8 

Operational Land Imager data based on their ability to perform object-based 

greenhouse detection. Both Kappa Index of Agreement and Overall Accuracy of the 

study indicated that S2 predictions performed consistently better than the 

corresponding Landsat 8 predictions. This result was attributed to the better 

performance of S2 features in the RF classification training process. It was concluded 

that these results indicate S2 as the more stable data source to efficiently extract 

greenhouses irrespective of atmospheric conditions. On the other hand, Korhonen et 

al. (2017) found no systematic differences between Landsat 8 and Sentinel-2 in their 

study on estimating boreal forest canopy cover and leaf area index. 

 

In conclusion, Sentinel-2 data provides high usability for a multitude of 

applications in the remote sensing field by providing data products of global coverage, 

fine spatial resolution and relatively fine temporal resolution (Wang et al., 2016). 
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2.3.  LUCAS Data in Present Literature 

 

The data used as ground truth was extracted from LUCAS micro-data for 

Portugal, an OA spatial database1. LUCAS is a geographical in-situ survey conducted 

every three years since 2000 by the Statistical Office of the European Commission 

(EUROSTAT) to detect land cover and land use (LULC) changes in the European 

Union-28 territory (EC, 2017). The point database consists of detailed land cover and 

land use attributes for large parts of Europe accompanied by respective ground truth 

photographs (Karydas et al., 2015). 

Its primary goal is to provide multi-temporal, comparable statistical information 

about the participating countries (Karydas et al., 2015). Moreover, it is used to 

monitor the implementation of the Europe 2020 strategy by providing the data used to 

calculate agro-environmental indicators, sustainable development indicators and land 

take. Additionally, it is used for production, verification and validation of land cover 

mapping initiatives such as Copernicus’ CORINE Land Cover (EUROSTAT, 2016).  

LUCAS classification is composed of eight main categories indicated by capital 

letters: A: Artificial land; B: Cropland; C: Woodland; D: Shrubland; E: Grassland; F: 

Bare land; G: Water areas; H: Wetlands. These main categories are further divided 

into a total of 76 subclasses. These classes are defined by the combination of the letter 

of the main class and two to three digits (Karydas et al., 2015). 

The sampling process of LUCAS data is conducted in two phases. In the first 

phase, the territory is covered with a 2x2 km grid to obtain the LUCAS master, 

containing around 1.100.000 points in Europe. These points are then categorised by 

photointerpretation of aerial imagery. In the second phase, n out of N points are 

selected per class and visited in-situ to conduct a more detailed LCLU survey. It is a 

combined approach of photointerpretation and in-situ information collected during 

groundwork (EUROSTAT, 2016).  

Literature of studies based on LUCAS data are not common. Esch et al. (2014) 

used LUCAS data for training and evaluation of their classification. The study used an 

object-based approach to distinguish cropland and grassland in an area of 15km by 

                                                 
1 http://www.eea.europa.eu/data-and-maps/explore-interactive-maps/changing-face-of-europe-

2014#tab-based-on-data  Last access: 20.02.2017 
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15km using multi-spectral, multi-seasonal imagery. It resulted in an overall accuracy 

(OA) of 86% and a Kappa coefficient of 0.79. A land use land cover mapping 

approach by Mack et al. (2017) based on the LUCAS points achieved overall high 

accuracy levels with above 85% for most classes and an overall accuracy of 87%. 

Nonetheless the study´s suggestions for future work include to concentrate on 

efficient ways to minimise the quantity of unsuitable LUCAS data for LCC. Both 

studies also observed imbalanced training data. Other studies using LUCAS data 

include soil erosion modelling (Panagos et al., 2014), and soil pH mapping (Gardi and 

Yigini, 2012). It is important to note that all aforementioned studies support their use 

of the LUCAS database with ancillary data to increase classification accuracy.  

 

Another set of studies used the LUCAS data as reference data for validating 

large-scale LULC maps based on remotely sensed imagery (Gallego, 2011; Karydas 

et al., 2015). Karydas et al. (2015) used a comparative approach to determine the 

suitability of LUCAS data as a reference dataset to validate a Land Cover Map of 

Greece for 2007. He compared an “automated” classification process entirely relying 

on the LUCAS main land cover attribute to a “supervised” classification process, 

where the classification was based on photointerpretation of LUCAS imagery. The 

automated classification approach resulted in an accuracy of 61.9% while the 

supervised approach resulted in an accuracy of 51.8%. The study found the database 

to be supportive yet limited in efficiency to verify the Land Cover Map used in the 

study. Two of the main issues raised were misclassifications of samples by LUCAS 

surveyors and that many points were assigned a class from distance and had to be 

removed from the study. In this particular case, 23.7% of all points used were 

excluded from assessment. In conclusion, the study suggested that LUCAS could 

rather be used as a verification than a validation dataset. Similar issues were raised by 

Gallego (2011), whose study validated then-available EU reference data. This study 

resulted in 67.3% estimated overall accuracy before increasing the accuracy to 75% 

by excluding a class from the assessment. Unlike Karydas et al. (2015), this study 

does not advise against using LUCAS as validation data for land cover maps. Still it 

states that automatic processing of this data is often insufficient for validation and 

recommends photointerpretation of the ground truth photography included in the 

database. 
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Nonetheless, little experience exists in using LUCAS data as the sole input for 

large-scale LCC. Mack et al. (2017) stated that a specific issue to investigate is the 

usability of LUCAS data as a training data base for supervised classification 

approaches, which is one of the two aims of this study. 

 

2.4.  The Use of Random Forest for Land Cover Classification 

 

 
In the last two decades, machine learning algorithms for LCC have been 

increasingly used and adapted by the scientific community (Lawrence and Moran, 

2015). One of the most popular and heaviest tested algorithms is RF, a machine 

learning ensemble producing a group of decision tree classifiers based on a 

bootstrapped training set of data (Breiman, 2001; Gislason et al., 2006; Pal, 2005). 

The most popular and thus final class is identified by having decision tree ensemble 

vote to achieve the highest accuracy (Breiman, 2001). Nitze et al. (2015) summed the 

requirements for this classifier up as:  

 

“a reference dataset, containing numerical data (e.g. VI or reflectances) and its 

corresponding class label for the training of the classifier and its internal accuracy 

calculation.” (p.5).  

 

This classifier is widely and successfully used to perform classifications and 

regressions on remotely sensed imagery (e.g. Gislason et al., 2006; Pal, 2005; Stepper 

et al., 2015). It has been widely and successfully applied for regional land cover 

mapping using multi-temporal data (Alcantara et al., 2012; Fagan et al., 2015; 

Rodriguez-Galiano et al., 2012; Zhao et al., 2016) and multi-spectral data (Clark et al., 

2012; Gessner et al., 2015; Lawrence and Moran, 2015; Rodriguez-Galiano et al., 

2012b; Rodriguez-Galiano et al., 2012a; Zhao et al., 2016). 

Advantages for using RF for land cover mapping lay were mentioned in the 

theoretical framework of the thesis (Chapter 1.1), yet can be summed up as follows: 

RF as a classifier provides high accuracy and speed in training and application, non-

parametric approach to classification, and is able to handle high data dimensionality 

while being insensitive to overfitting (Belgiu and Dra, 2016). It can be used with 

categorical, unbalanced, and incomplete data and with little user input while still 
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achieving high classification accuracy, which is not possible with other many 

classifiers (Clark, 2017; Pal, 2005). As it is relatively insensitive to small sample size 

relative to its presence in the feature space, also known as Hughes effect, it is suitable 

for this study. Additionally, RF can be used to detect and rank variables with the 

highest ability to differentiate between targeted classes. This ability can be very useful 

and time-saving when working with highly dimensional data such as remotely sensed 

imagery (Neves et al., 2015). Moreover, by automating the ranking and selection of 

the most important variables, it makes the selection less subjective and error-prone 

(Belgiu and Dra, 2016; Belgiu et al., 2014). 

 

A study which incorporates several elements also used in this study is Novelli et 

al. (2016). The study uses a combination of RF and multi-temporal, multi-spectral S2 

data for greenhouse detection sand achieved overall accuracy values ranging from 

87.9% to 93.4%. 

Pelletier et al. (2016) discusses the use of RF and Support Vector Machines on 

high spectral, temporal and spatial resolution remotely sensed imagery (Landsat-8 and 

SPOT-4) as a time-series. The discussion indicates a set of challenges common when 

using machine learning algorithms for land cover classification: Firstly, to identify the 

correct classifier to handle the high resolutions and dimensionality of the data. 

Secondly, to evaluate how stable the classifiers are. Thirdly, how to select the most 

appropriate feature set for training the classifier while balancing accuracy of the 

classification and computational time needed. And fourthly, how to maintain 

classification accuracy over extensive areas. The study concludes with good results 

for both classifiers, though RF reached a slightly higher overall accuracy. Other 

studies, where RF provides better results than other classifiers  confirm this 

conclusion (e.g. Schneider, 2012).  

Moreover, additional advantages of RF are indicated. These include a small 

training time and easy parametrisation. Another relevant conclusion of the study is 

that the setting of parameters has little influence on the classification accuracy. These 

finding indicate that RF is a suitable algorithm for multi-temporal, multi-spectral 

classifications of large areas based on spectral bands like in this study.  

 

 

 



15 

 

2.5.  Accuracy Assessment Tools 

 

Choosing the most suitable accuracy assessment tools is an extensively researched 

and discussed topic in the field of remote sensing. Not all tools are appropriate for all 

studies, thus this chapter only discusses the ones applied in this thesis. As stated in the 

theoretical framework (Chapter 1.1), the accuracy of the results is assessed using 

reference data bases consisting of samples resulting in kappa coefficient of agreement, 

confusion matrices and overall, user, and producer accuracy (e.g. Gong et al., 2013; 

Inglada et al., 2015; Novelli et al., 2016). Additionally, this thesis relies on visual 

inspection (e.g. Chen et al., 2005; Im et al., 2007; Van der Meer et al., 2014; Li et al., 

2016).  

 

An often used tool in land cover classification assessment is an confusion or 

error matrix. It is describing the pattern of class allocation made by the classifier in 

relation to a reference data set. One of the measures to be derived from confusion 

matrices is the percentage of the samples which were correctly allocated, which is 

indicating the overall accuracy of the prediction. Unlike the kappa coefficient and 

other measures that can be derived from a statistical assessment of a classification, 

confusion matrices also make full use of the information content by giving more 

detailed information on the number of correctly and incorrectly classified samples per 

class (Congalton and Green, 1993; Congalton, 1991; Foody, 2002). It allows for the 

accuracy assessment to focus on individual classes. This is enabled by relating the 

amount of samples which were correctly allocated to the sum of samples in the class. 

Depending on if the calculations are based on the column or row marginals of the 

matrix, this results in the so called producer´s and user´s accuracy (Campbell, 1996). 

The cross-tabulation of observed ground or reference data to a classified label 

has established itself as the foundation of accuracy assessment in remote sensing 

(Canters, 1997). It enables the description of classification accuracy and locate and 

characterise errors. This information can then be used to refine the classification or 

correctly assess the results and what they indicate. An example for this is if there is a 

high rate of confusion between two specific land cover classes in the matrix, ancillary 

data containing information for the classifier to discriminate the two could increase 

correct classifications. Moreover, it can help to identify misclassifications in a map 
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and thus give a more accurate idea of the area extent of land cover types. For 

example, if the confusion matrix helps identifying a class which has a high rate of 

being misclassified as another class, the extent of the first class seen on a map based 

on the same classification can be assumed to be higher than depicted (Hay, 1988; 

Jupp, 1989). 

 

Though using confusion matrices as a tool for accuracy assessment is 

established and informative, the scope of accuracy assessment should not be limited to 

this metric (Congalton and Green, 1993). A major problem discussed in the literature 

is the possibility that the samples were coincidentally assigned to the correct class 

(Pontius, 2000). Cohen´s kappa coefficient is used as a standard metric to compensate 

for this effect. It was introduced by the scientific community into studies in a variety 

of scientific fields. It measures the rate of agreement or disagreement by chance and 

allows the calculation of a variance term. The significance of the difference between a 

set of coefficients can thus be calculated (Foody, 2002). A kappa value of 0 indicates 

an agreement that is equal to complete chance, while a kappa value of 1 indicates 

complete agreement (Viera and Garrett, 2005). This makes it an attractive metric for 

assessing classification accuracy. 

 

Nonetheless, e.g. Foody (2002) discusses the kappa coefficient in a critical way. 

The study is stating that despite its popularity, its ability to compensate for change 

agreement in classifications and its ability to allow the evaluation of the differences in 

accuracy is not unique among the accuracy metrics. This disagrees with calls made in 

literature to establish the kappa coefficient as a standard measure (Smits et al., 1999). 
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3. STUDY AREA AND DATA 
 

This Chapter will introduce the study area (Chapter 3.1) as well as the S2 and 

LUCAS datasets used (Chapter 3.2.1 and Chapter 3.2.2 respectively) to conduct the 

research. Moreover, the composition of the nomenclature will be discussed in 

Chapter 3.2.2. A detailed description of data processing will be provided in Chapter 

4. 

. 

3.1.  Study Area 

 

The selection the study area was conducted by the Direção-Geral do Território 

(DGT- engl. Directorate-General for the Territorial Development) located in Lisbon, 

Portugal. One S2 tile of Portugal was chosen as the area of interest. The study region 

as presented in Figure 1 is a 100km by 100km large area in Central Portugal. Located 

North-West of Lisbon, it includes the city of Santarém and land East of Santarém 

along the Tagus river. It was deemed most suitable for the study, since it is covered by 

a variety of land use and land cover types: According to CORINE Land Cover Map of 

2012, the LC types include artificial surfaces (urban fabric, mineral extraction sites, 

etc.), a variety of types of agricultural areas, forest and semi natural areas, and 

waterbodies2. Especially because of its agriculture, the cyclic changes in the 

vegetation over course of a year were expected to be strongly reflected in the 

reassignment of samples according to their NDVI values. This adds an additional 

dimension to the analysis. 

                                                 
2 CORINE Interactive Land Cover Map. http://www.eea.europa.eu/data-and-maps/explore-interactive-

maps/changing-face-of-europe-2014#tab-based-on-data Last access: 20.01.2018 
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Figure 1. Study Area in Central Portugal (shapefile taken from DGT, 2017a) 
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3.2. Data 

 

Two different data sets are used in this study: The S2 remotely sensed imagery of 

the study area and land cover point data extracted from the Eurostat Land Cover/Use 

Statistics (LUCAS) dataset of 2015 used to build and train the classifier. 

 

3.2.1. Sentinel-2 Imagery 

 

The S2 imagery was obtained free of charge from the Copernicus Open 

Access Hub3, the online system of the ESA on 21.11.2017. The hub was established 

to make Sentinel products accessible to data users (Copernicus, 2017). 

The S2 data products downloaded are 10 sets of 13 bands respectively, each 

representing the 10 000km2 large site defined in Chapter 3.1. An overview of the 

data products used is in Table 2. The parameters to identify the appropriate products 

for the analysis were the following: a sensing period time frame of November 2016 to 

October 2017 and a cloud coverage percentage of up to 10%. Data could both be 

derived from S2A and S2B missions. The initial data format is JP2. 

 

 

 

 

 

 

 

 

 

 

                                                 
3 Copernicus Open Access Hub (2018). Available at: https://scihub.copernicus.eu/dhus/#/home. Last 

access: 25.01.2018 
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The data products selected are eight Level-1C (L1C) and two Level-2A (L2A) 

products. L1C data contains top-of-atmosphere reflectance values in a fixed 

cartographic geometry of combined UTM projection and a WGS84 ellipsoid (Zone 29 

North). The L2A data preserves the cartographic geometry, yet contains bottom-of-

atmosphere reflectance values (ESA, 2017b). 

Unlike data products on lower levels (Level-1A and 1B), these products are 

radiometrically and geometrically corrected (including orthorectifications and spatial 

registrations) (ESA, 2017a). To work with the L1C tiles, an additional processing step 

was required: Through further corrections of atmospheric effects, they were converted 

to L2A products using the Sen2Cor processor (Louis et al., 2016). The Sen2Cor 

processor is a tool available in the S2 Toolbox developed for the ESA in the common 

Sentinel Application Platform (SNAP). It allows analysis, visualisation and 

processing of MSI data derived from the S2 missions. Processing to Level 2A 

products calculates bottom-of-atmosphere reflectances in the same cartographic 

geometry and conducts scene classifications and atmospheric corrections (ESA, 

2017c; ESA, 2017d). Details of this process will be provided in Chapter 4.3.  

 

Image number Sensing date Sensor Downloaded data 

product 

1 16.11.2016 S2A Level-1C 

2 26.12.2016 S2A Level-1C 

3 15.01.2017 S2A Level-1C 

4 05.04.2017 S2A Level-1C 

5 25.05.2017 S2A Level-2A 

6 14.06.2017 S2A Level-1C 

7 14.07.2017 S2A Level-2A 

8 18.08.2017 S2B Level-1C 

9 27.09.2017 S2B Level-1C 

10 27.10.2017 S2B Level-1C 

Table 2. Selected data products in overview 
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The bands used for ground geometry were preselected for the research. Of the 

13 bands available through the MSI on Sentinel-2 the following were used: 10m 

spatial resolution bands B2 (490nm), B3 (560nm), B4 (665nm), and B8 (842nm), and 

the 20 m spatial resolution bands B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a 

(865nm), B11 (1610nm), and B12 (2190nm) (ESA, 2017b). The three bands with 60m 

spatial resolution (B1 (443nm), B9 (940nm), and B10 

(137nm)) were each excluded from the analysis. This was done since their data was 

not useful for this study. Additionally, downscaling them to 10m resolution would 

drastically decrease the quality of data and output. 

The 20m resolution bands were downscaled to 10m using the “raster” package 

in R (Hijmans et al., 2017). Therefore, the Minimum Mapping Unit (MMU) of this 

study is a pixel of 10m x 10m. 

 

3.2.2. LUCAS Data and Nomenclature Composition 

 

964 LUCAS points were available as ground truth in the study area selected. 

The records represented 43 sub-categories according to the LUCAS classification 

which were merged into their eight main land cover categories according to 

EUROSTAT (2017) (Table 3). The locations of the point features are visible in 

Figure 2.  

 

LUCAS 

category 

Artificial 

land 

Cropland Woodland Shrublan

d 

Grassland Bare 

land 

Water Salt 

marshes 

Sample 

size 

50 194 471 79 137 17 14 2 

 

 

 

 

 

Table 3. Original LUCAS nomenclature and sample distribution 
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The point features were reclassified based on nomenclature used by GeoVille 

for their HR Land Cover Map for Austria in 2017 (Steidl, 2017) based on a 

recommendation of Dr. Caetano. The LUCAS technical reference document C3 by 

Eurostat (EUROSTAT, 2017) was used to correctly reassign every LUCAS sub-class 

accordingly. The classes composed and their corresponding sample size are visible in 

Table 4. Definitions of the GeoVille nomenclature class criteria were derived from 

published material and email contact with Ms. Steidl. In the process, two points of the 

class “Salt marshes” (H21) were excluded, since the GeoVille nomenclature did not 

include a comparable class. It was concluded that the removal will not negatively 

impact the training data. This resulted in a final sample size of 962. 

 

 

Figure 2. Spatial distribution of original LUCAS samples 
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Since differentiating permanent from periodic herbaceous is difficult using 

only spectral values of one month, it was decided to use a binary reclassification 

scheme for the “Herbaceous periodic” class for the single month maps. Thus, samples 

of “Herbaceous periodic” were either reassigned to “Non-vegetated unsealed 

surfaces” or “Herbaceous permanent” (only referred to as “Herbaceous” in single 

month maps) according to their NDVI value. The threshold for reassignment was set 

at 0.3, based on recommendations by Dr. Caetano and literature such as Esau et al. 

(2016). Said paper describes the threshold as significant, stating that surfaces with an 

NDVI lower than 0.2 normally corresponds to non-vegetated surfaces while green 

vegetation canopies correspond to an NDVI of >0.3. This process was applied on 

every single month map to take the Land Cover Change (LCC) caused by seasonal 

variability into consideration. 

From the first experimental classifications with the LUCAS data as training set 

for the classifier, it became apparent that the data needed to be modified to obtain 

results with acceptable accuracy. Initial tests on classifying a single month set of 

imagery achieved an accuracy of 38%. As Table 4 shows, the distribution of samples 

on classes is unbalanced with sample sizes ranging from 14 to 650 per class. 

Unbalanced data means an underrepresentation of an important class in the overall 

data set (Cieslak and Chawla, 2008). In this sample distribution, “Non-vegetated 

unsealed surfaces” and “Water” can be described as such.  

Unbalanced training data is a common occurrence in data science (Cieslak and 

Chawla, 2008; Jiménez-Valverde and Lobo, 2006), and it is a phenomenon that 

frequently occurs when studies use LUCAS data (e.g. Karydas et al., 2015; Mack et 

al., 2017). To increase classification accuracy, the same approach as in Nitze et al. 

(2015) and Mack et al. (2017) was taken: Additional samples for the classes two and 

GeoVille  

Category 

1- 

Sealed  

surfaces 

2-  

Non-vegetated 

unsealed surfaces 

3- 

 Water 

4- 

Woody 

5- 

Herbaceous 

permanent 

6- 

Herbaceous 

 periodic 

Total  

samples 

Corresponding 

LUCAS 

Category 

Artificial  

land 

Bare land Water Woodland 

Shrubland 

Cropland 

Grassland Cropland  

Sample size 50 17 14 650 137 94 962 

Table 4. Austrian nomenclature and initial sample distribution 
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three were added to increase information given to the classifier, thus easing the 

identification of said classes. The approach was to visually identify pure pixels 

containing a single type of land cover for each class mentioned and label them 

accordingly. The quantity of added samples was determined by passing the threshold 

of 50 samples to create more balance and compensate for inaccurate classification 

attempts during trials. Moreover, initial classification attempts showed the inability of 

the classifier to distinguish the spectral signatures of water and dense, dark vegetation 

canopy. Thus 21 samples were added to the class “Woody” to provide additional 

information. This resulted in a final total sample size of 1056. In addition to this 

process, some clearly mislabelled sampling points were identified via 

photointerpretation and moved to reflect their respective class. Not all points were 

checked. The results of the modifications are in Figure 3. 

 

 

Table 5 shows the final nomenclature used and how it responds to the input 

LUCAS nomenclature including its subcategories. The final number of samples can 

be seen in the right column. Added samples are indicated by their label. 

Figure 3. Spatial distribution of LUCAS data sets with a limited “Woody” class 
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ID 

Austrian 

nomenclature 

LUCAS main 

category LUCAS  Sample sub-category No. of samples 

1 

 

 

Sealed surfaces 

 

 

Artificial land 

 

 

A 

 

 

A11 - Buildings with one to three 

floors 

A21 - Non built-up area features 

A22 - Non built-up linear features 

17 

 

13 

20 

2 

 

Non-vegetated 

unsealed surfaces 

Bareland 

 

F 

 

F10 - Rocks and stones 

F20 - Sand 

F40 - Other bare soil 

Additional samples 

2 

1 

14 

34 

3 

 

Water 

 

Water 

 

G 

 
G11 - Inland fresh water bodies 

G21 - Inland fresh running water 

Additional samples 

8 

6 

39  

Excluded Snow and ice Excluded Excluded Excluded 0 

4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Woody 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Woodland 

 

 

 

Shrubland 

 

 

 

Cropland  

 

 

 

 

 

 

 

 

C 

 

 

 

D 

 

 

 

B 

 

 

 

 

 

 

 

 

C10 - Broadleaved woodland 

C22 - Pine dominated coniferous 

woodland 

C32 - Pine dominated mixed 

woodland 

C33 - Other mixed woodland 

 

D10 - Shrubland with sparse tree 

cover 

D20 - Shrubland without tree cover 

 

B71 - Apple fruit 

B72 - Pear fruit 

B73 - Cherry fruit 

B74 - Nuts trees 

B75 - Other fruit trees and berries 

B76 - Oranges 

B81 - Olive groves 

B82 - Vineyards 

B83 - Nurseries 

Bx2 - Permanent crops 

Additional samples 

363 

80 

 

25 

 

3 

 

53 

 

26 

 

4 

3 

1 

1 

5 

2 

65 

15 

1 

3 

21 

5 

 

 

 

Herbaceous 

permanent 

Renamed to 

"Herbaceous" in 

single month maps 

 

Grassland 

 

 

 

E 

 

 

 

E10 - Grassland with sparse 

tree/shrub cover 

E20 - Grassland without tree/shrub 

cover 

E30 - Spontaneously re-vegetated 

surfaces 

33 

 

75 

 

29 

 

6 

 

5 or 2 

 

 

 

 

 

 

 

 

 

 

 

Herbaceous 

periodic 

 

Reclassified into 

"Herbaceous" or 

"Non-vegetated 

unsealed surfaces" 

depending on NDVI 

value in single 

month maps 

(Threshold: 0.3) 

 

 

 

 

Cropland 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 

 

 

 

 

 

 

 

 

 

 

 

 

 

B11 - Cereals 

B12 - Durum wheat 

B15 - Oats 

B16 - Maize 

B17 - Rice 

B18 - Triticale 

B19 - Other cereals 

B21 - Potatoes 

B31 - Sunflower 

B42 - Tomatoes 

B43 - Other fresh vegetables 

B53 - Other leguminous and 

mixtures for fodder 

B54 - Mixed cereals for fodder 

B55 - Temporary grasslands 

Bx1 - Arable land 

2 

1 

5 

33 

7 

1  

1 

4 

1 

13 

3 

2 

 

1 

10 

10 

Excluded Reeds Excluded Excluded Excluded 0 

Excluded No match Excluded Excluded H21 - Salt marshes 2 

Table 5. Class definitions according to the Austrian nomenclature and LUCAS nomenclature  
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4. APPROACH, METHODOLOGY AND TOOLS 

 

This section will give an overview over the approach selected as well as the 

methodology used. Chapter 4.1 explains the approach taken and gives an overview 

over the general methodology of the work. It is followed by Chapter 4.2, which gives 

an overview over all tools used in this study. Chapter 4.3 contains detailed 

information on the processing of S2 and LUCAS data, followed by the detailed 

methodology of the analysis conducted in R in Chapter 4.4. Finally, the processing of 

the modified LUCAS data is described in Chapter 4.5. 

 

4.1.  Approach and General Methodology 

 

The general approach to answering the research questions was kept in close co-

operation with the DGT and the co-supervisor of this thesis, Dr. Mário Caetano. 

The mapping approach is raster-based with 10m pixel size as the MMU, using 

categorical values for the land cover classification. For choosing this approach the 

characteristics of the satellite data, such as its spatial and temporal resolution, as well 

as the type of thematic information to be extracted have been considered. The 

characteristics of the geographical area to be mapped, specifically the existing land 

cover types, and the availability of ancillary data have also been taken into 

consideration in the general approach, resulting in the nomenclature introduced in 

Chapter 3.2.2. Regarding the classification algorithm, a hard (crisp) classification 

was used. Unlike with soft (fuzzy) classification, each pixel gets assigned a 

membership in one definite class (De Matteis et al., 2015). RF was selected, since it is 

a non-parametric classifier it does not require any assumption about the statistical 

distribution of the training data while providing good computational efficiency and 

easy understanding of the classification process (Belgiu and Dra, 2016). 

 

The sample selection for the training phase of the classifier was entirely based 

on the LUCAS data. Thus, the basic sample size was pre-determined. Additional 

samples were added to balance underrepresented classes in the training data set as 

discussed in Chapter 3.2.2.  

Equalised stratified random points were created in ArcGIS were used as accuracy 

assessment points of 50 samples per class, following the recommendation of the DGT.  
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The flowchart showing the methodology to conduct the classification 

comparison is provided in Figure 4. The general flowcharts is composed of the 

elements listed: unprocessed input data (grey), processes (blue), interstage products 

(yellow), and final outputs (orange). The grey box indicates the process which had to 

be repeated ten times, once of each set of single month data. 

It consists of six sub-processes necessary to answer the research questions. These sub-

processes will be explained in the Chapter 4.3 and following. All tools used for the 

analysis are detailed in Chapter 4.2.  
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Figure 4. Flowchart showing the methodology of the classification comparison 
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4.2.  Tools 

 
This chapter provides an overview of the tools used in this thesis. Table 6 shows 

the tools and respective versions involved in the processing steps. Due to issues with 

processing capabilities of the author´s computer, the initial computing of the single 

month maps and all predictions for answering the second research question were done 

at the DGT using multicore computing. All codes written are in Appendix C. 

 

 
Process Tool Version 

General processing PC 4-core system 

300 Gigabyte disc space 

Multicore computing PC 8-core system 

1,8 Terabyte disc space 

Processing S2 L1C to L2A 

data 

SNAP and Sentinel 

Toolbox 

6.0.0 

 Sen2Cor 2.4.0 

 Python 2.7.13 

Conversion of S2 data 

from JP2 to TIF 

GDAL 202 MSVC 2010 Win64 

Processing of LUCAS data ArcGIS Desktop 10.5.1 

Creation of accuracy 

assessment points 

 

  

Pixel redistribution 

analysis 

  

Map creation   

Downscaling of 20m 

resolution bands 

R/ RStudio 3.4.2 (64-bit) 

Value conversion/NDVI 

calculation 

  

Reclassification of 

nomenclature 

 

Packages 

 

caret                      

ggplot2 

raster                     

sp                          

lattice                    

rgdal  

randomForest 

e1071  

lulcc 

snow 

Random Forest 

classifications 

  

Accuracy assessment   

Creation of graphs Excel 1712 

Class change analysis    

 

 

 

Table 6. Tools and related processes in overview 

6.0-77 

2.2.1 

2.6-7 

1.2-5 

7.3-47 

1.2-16 

4.6-12 

1.6-8 

1.0.2 

0.4-2 
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4.3.  Processing of S2 and LUCAS Data 

 
This chapter gives an overview on the processing flows of S2 and LUCAS data 

used to create the basic interstage products. All future processing is dependent on the 

execution of those steps. 

 
 

Figure 5 shows the processing steps of the S2 data to create the image stack 

used with the classifier. All 130 bands are processed using SNAP´s Sen2Cor toolbox. 

In this process radiance values are converted into reflectance. This step includes the 

30 bands of 60m resolution, since they need to be included in the batch for the 

processor to function. Additionally, the S2 L2A processing creates L2 ortho-image 

reflectance products (BOA reflectance) from L1C granules in TOA reflectance. The 

L2A-processing can be divided into two parts: The Scene Classification provides a 

pixel classification map (cloud, cloud shadows, vegetation, soils/deserts, water, snow, 

etc.) and the Atmospheric Correction aims at transforming TOA reflectance into BOA 

reflectance (Figure 6) (ESA, 2017e) . 

 

 

The processing starts with the Cloud Detection/Cirrus Correction and Scene 

Classification followed by the retrieval of the Aerosol Optical Thickness (AOT) and 

the Water Vapour content from the L1C product. The final step is conversion from 

Figure 6. Sen2Cor main processing steps (adapted from Louis et al. (2016)) 

Figure 5. Methodology flowchart of S2 data processing 
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TOA to BOA (ESA, 2017e). The L2A products are in JP2 format and need to be 

converted to GeoTIFF for processing in R (2017). For the conversion of all bands, 

batch conversion was advisable. Thus GDAL (GISInternals, 2017) USGS Raster 

Conversion Scripts (USGS, 2017) via Windows Command Prompt was used. 

Subsequently, the bands are divided into monthly batches. The following processing 

step is the division of the bands according to their spatial resolution in R. The 30 

bands of 60m resolution are removed and the 60 bands of 20m resolution are 

disaggregated to 10m resolution and joined with the initial 40 bands of 10m resolution 

to a raster stack consisting of 100 bands. Additionally, the NDVI values are extracted 

from each 10-band single month dataset as a raster using the following equation:  

 

NDVI= (Band 8-Band 4)/(Band 8+Band 4) 

 

This corresponds with the general formula for calculating the NDVI:  

 (Matsushita et al.,2007; Schmidt et al., 2014). 

 

The processing of the LUCAS 2015 data is shown in Figure 7. After a data 

type conversion from CSV to shapefile, the data is processed in ArcGIS. This includes 

removal of unconfident sample points, data cleaning, cropping and additional 

sampling, as explained in Chapter 3.2.2. It is then reclassified in R using the Austrian 

nomenclature and “Herbaceous periodic” values are reassigned to “Non-vegetated 

unsealed surfaces” or “Herbaceous permanent” respectively depending on their NDVI 

value (Chapter 3.2.2). 

 

 

Figure 7. Methodology flowchart of LUCAS data processing 
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4.4.  Analysis in R 

 
All processing and analysis in R is described in this chapter. The ten single month 

prediction maps and the two land cover classification maps are produced based on the 

methodology presented here. Moreover, the process used for accuracy assessment is 

presented. 

 

 
 

 

 

The approach consisted firstly of the production of 10 land cover maps (one for 

each month) based on the respective image stack and the reclassified point data set. 

The accuracy of the maps based on single month data was not assessed. This step is 

followed by the classification of these 10 maps to generate a single map (see Figure 

8).  

The algorithm used is Random Forest in R. For the classification of the single 

month maps the package “caret” was used. It has a training feature that creates a grid 

of tuning parameters for a variety of classification and regression routines, then 

progresses to fit each model, calculates a resampling based performance evaluation 

(Kuhn, 2017). The model with the best evaluation is then automatically selected for 

conducting the classification. 

For the classification of the map based on the 10 maps the “randomForest” package 

(Breiman and Cutler, 2015) is used, since there were problems using “caret”. The only 

manually adjusted parameter is the mtry value, which was set to 10. This parameter 

determines the number of variables that are randomly samples as candidates per split. 

The mtry value giving the best classification result can be determined using the 

“train” function of the same package. 

 

Figure 8. Methodology flowchart of single month map classification to 

map based on all months 
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Because this process demands relatively high computational power to be 

finished in a time span of less than two hours, this part of the classification was 

conducted by Hugo Costa at the DGT using multicore computing. Details can be 

found in Table 6 above. 

 

 

 

 

The following step is to produce an LCC map based on 100 spectral bands. 

The L2A data is separated in R and the bands with 20m spatial resolution are 

downscaled to 10m resolution. All bands are then combined with the pre-processed 

LUCAS data points and classified using the “caret” package in R. All variables are 

left at default except that the number of decision trees to grow, “ntree” was set to 500.  

Like this study, a large amount of scientific papers reviewed for this thesis (e.g. Eisavi 

et al., 2015; Lawrence and Moran, 2015; Ramoelo et al., 2015; Immitzer et al., 2016; 

Cánovas-García et al., 2017) set the “ntree” value to 500 for two reasons: Firstly 

because the errors minimize before the number of classification trees is reached 

(Lawrence et al., 2006). Secondly its popularity could be explained by the fact that 

500 is the default value in the “randomForest” package (Belgiu and Dra, 2016). 

 

The last step of this part of the study was to statistically assess the two main 

maps. For this purpose, a set of equalized stratified random accuracy assessment 

points was created in ArcMap based on the CORINE Land Cover Map of 2012. The 

classes defined in CORINE and represented in the area where redefined according to 

the classification used in this study. From the areas selected for each class, 50 

accuracy assessment points per class were extracted. The quanitiy was based on a 

recommendation of Hugo Costa. All points where then visually inspected based on 

orthoimagery of the area taken in August 2017 and reassigned to their respective 

Figure 9. Methodology flowchart of all band-based map classification 
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classes if the initial classification was inaccurate. This process resulted in an accuracy 

assessment dataset of 300 samples. These samples are then used for calculating a 

confusion matrix using the “caret” package (Figure 10). 

 

  

 

4.5.  Testing Variations of LUCAS data 

 

The comparison of the classifcation approaches was done using LUCAS data 

with the modifications explained in Chapter 3.2.2. These changes were added 

sampling to increase sample size in underrepresented classes and to prevent 

specific misclassifications. It was decided to run three additional classifications to 

further investigate the accuracy of LUCAS data and to be able to correctly assess 

its usability.  

One additional classification was run with the original data as obtained online. 

Two were run with adjusted LUCAS data after removing certain sub-classes from 

the main class “Woody”. This step was added after finishing the initial research to 

test the hypothesis that the classifier should achieve a higher accuracy when 

LUCAS classes connected to spectral signatures of high ambiguity (e.g. orchards 

and vineyards) were removed from the analysis. The classes removed were 

Figure 10. Methodology flowchart of accuracy comparison between 

classification approaches 
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initially classified as “Woody” though they are sparsely vegetated. This was 

thought to decrease the overall accuracy of the classification. Figure 11 shows the 

approach used which is the same as Figure 9, except for the training data.  

 

  

 

The following LUCAS subclasses were removed for the modified variations 

with a limited class definition of “Woody” (176 samples in total): Shrubland with 

sparse tree cover, Shrubland without tree cover, Apple fruit, Pear fruit, Cherry fruit, 

Nuts trees, Other fruit trees and berries, Oranges, Olive groves, Vineyards, Nurseries, 

and Permanent crops. 

For the second variation of the set with a limited definition of classes included in 

“Woody”, the additional set of manually added points was removed that was initially 

created to distinguish between the spectral signatures of high density canopy and 

water. The sample size of the class “Woody” was reduced to 495 and 474 

respectively, therefore reducing the final sample sizes to 880 samples and 859 

samples respectively. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Methodology flowchart of LUCAS variations comparison 
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5. RESULTS AND DISCUSSION 
 

This chapter will present and discuss the results of the analysis. It is divided into 

five subchapters. Firstly, the NDVI results. Chapter 5.1 is discussing the results of 

the redistribution of “Herbaceous periodic” to either the class “Non-vegetated 

unsealed surfaces” or “Herbaceous” when creating the single month maps. Chapter 

5.2 contains the results of the two approaches covering visual inspection with ortho-

imagery, and an analysis of classification differences between the approaches on a 

pixel level. The following Chapter 5.3 contains the accuracy assessment and 

discusses the results of the classifications approaches. Chapter 5.4 presents and 

discusses the results obtained when comparing four different variations of the LUCAS 

dataset as training data for the classifier based on the approach using 100 bands. 

Chapter 5 is then concluded with a discussion of the usability of LUCAS data. 

 

5.1.  NDVI Results 
 

The reassignment of the samples of “Herbaceous periodic” to “Non-vegetated 

unsealed surfaces” and “Herbaceous permanent” respectively was determined whether 

the NDVI value exceeded the threshold of 0.3 in the month currently classified. “Non-

vegetated unsealed surfaces” consisted of 51 samples without the reassigned samples, 

and “Herbaceous (permanent)” consisted of 137 samples. Figure 12 shows the 

development of sample sizes of the two classes. Starting with 90 samples and 192 

samples respectively in November 2016, there are more samples assigned to “Non-

vegetated unsealed surfaces” in the following month. From January to April a sharp 

decline of samples assigned to “Non-vegetated unsealed surfaces” is visible, which 

can be considered anti-cyclic regarding the development of the NDVI values normally 

measured in this vegetation period. A possible explanation for this occurrence is 

rainfall and warm weather, which could cause spontaneous vegetation of the areas. It 

needs to be considered though that no data was available for February and March 

2017. The NDVI value then increases on average in months known for high crop 

production (May to July) (Esch et al., 2014). The months leading to autumn are 

characterised by a decline of sample size classified as “Herbaceous” and thus an 

increase in sample quanity of the class “Non-vegetated unsealed surfaces”, which 
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corresponds with normal variations of NDVI values caused by cyclic changes in 

vegetation (Jia et al., 2014). 

 

These cyclic changes can also be visually identified in the maps based on single 

months, which are available in Appendix A- Single Month Maps. 

 

5.2.  Results of the Classifications Approaches 

 

Regarding computational and preparational effort, the approach based on 100 

bands was considerably quicker with a total of 5 around hours per map (3 hours data 

preparation and 2 hours of RF computing time). The approach based on all maps took 

around 1.5 to 2 hours per map, totalling in around 15h of data preparation and 

computing. 

The author also notes that the classification based on all bands has been conducted 

twice to test its reproducability. Both times “seeds” were set in R, which allow the 

user to select the specific RF ensemble again. Since the results of the two 

classifications only varied minimally, the author will only discuss the approach based 

on seed number five in the following text. Maps and graphs on seed number 17 can be 

found in Appendix B. This chapter continues with a direct comparison of the two 

main approaches, the classification based on all single month maps and the 

classification based on all bands (Seed 5). 

Figure 12. Temporal trajectory of class sizes of “Non-vegetated unsealed 

surfaces” and “Herbaceous” 
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Figure 13 shows a direct comparison of the two maps resulting from the 

different classification approaches. On the left, the map based on the 10 maps is 

shown. It represents what the classifier identified as the most probable average land 

cover of the entire time span covered. On the right, the map based on using all 100 

bands within one classification is shown. Compared to land cover types derived from 

the RS image and the CORINE classification, both classifiers were able to 

approximately correctly identify waterbodies, agricultural areas, herbaceous areas, 

and artificial surfaces such as cities. Visual comparison indicates a higher quantity of 

pixels classified as “Herbaceous periodic” (agriculture) and “Herbaceous permanent” 

using the approach based on the stack of 100 bands. The area bordering the Tagus 

river and its river channels shows a higher density of “Herbaceous periodic”, and the 

North-Eastern and Western part of the study area shows an increased presence of 

“Herbaceous permanent”. Upon visual inspection, the 100 bands-based approach 

seem to be more correct, since agricultural lands normally have continuous surfaces 

and are not mixed with other land cover types within one unit. 

Nonetheless, due to the size of the study area of 10 000km2 in comparison to 

the pixel size of 100m2, it is difficult to visually determine detailed changes, thus a 

Figure 13. Direct comparison of the classification results 
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representative region within the study region was identified for closer examination. 

Figure 14 shows a region of approximately 20km by 20km in the Tagus region where 

change can be identified in greater detail.  

 

 

 

 

The assumptions stated above are confirmed upon visual inspection of Figure 

14. The density of pixels identified as “Herbaceous periodic” is higher using the 100 

bands-based approach. Moreover, a larger continuous area is identified to belong to 

the class. This approach classifies the borders of the agricultural areas crispier and 

shows a lower ratio of the class “Woody” within these areas. Additionally, the class 

“Herbaceous permanent” was identified more often using the 100 bands-based 

approach. To assess which map represents the land cover more accurately, the maps 

are compared to RS imagery in Figure 15 and 16. The 100 bands-based approach 

represents the agricultural areas and their continuous land cover type of crop more 

accurately than the map-based approach. A similarity is that both classifiers were able 

to correctly identify water and artificial surfaces in the area, such as settlements in the 

North and the street in the West of the study area. 

Figure 14. Direct comparison of the classification results enlarged 
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 Figure 16. Land Cover Comparison of orthoimage and 100 bands-based approach 

 

Figure 15. Land Cover Comparison of orthoimage and maps-based approach 



41 

 

 

The statistics in Figure 17 confirms the assumptions about the distribution of 

pixels per class, showing an increase of “Herbaceous periodic” of around 1% and 

“Herbaceous permanent” of more than 5% in the second classification. The 

percentage of change of the classes “Water”, “Non-vegetated unsealed surfaces” and 

“Artificial surfaces” vary between 0.3% and 0.8%. 

Though singular pixels were assigned to different classes when comparing the 

classification approaches, the figures above neither identify the locations of the pixels 

which changed classes, nor the type of change. To contribute this knowledge, a binary 

change map was created using the Raster Calculator Tool in ArcGIS. Figure 18 

shows the output, identifying location and total percentage of change. The areas of 

changes are very similar to the ones visually identified, mainly located in the North-

East of the study area and in areas with agricultural land use along the river, with a 

total of 12.98% of pixels assigned to a different class than in the first classification. 

Figure 17. Direct comparison of ratios of land cover classes per classification 
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Figure 19. Binary map indicating difference in assigned class per pixel - zoom 

 

Figure 18. Binary map indicating difference in assigned class per pixel 
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Figure 19 confirms that the changes in class-to-class pixel distribution occur 

between the Classes 4, 5, and 6 (“Woody”, “Herbaceous permanent”, and 

“Herbaceous periodic”) upon visual inspection. In order to further investigate, the two 

maps were used to tabulate the area to identify the ratio of class-to-class change 

between classification approaches. Table 7 shows which percentage of pixels 

assigned to each class during the classification based on the single month maps were 

assigned to the same class during the classification based on all bands, and if this was 

not the case, which class they got assigned to. It shows a high ratio classes being 

assigned to the same respective class in both maps for the classes “Sealed surfaces”, 

“Non-vegetated unsealed surfaces”, “Water”, and “Woody” (91-98%). A significant 

decrease in overlap is visible in the percentage of pixel re-assignment of “Herbaceous 

permanent” and “Herbaceous periodic”. Only 41.2% and 43.4% respectively were 

identified to belong to the same class by both approaches. 20% to 27% of the pixels 

were reassigned to the other two classes belonging to said group. Why these specific 

classes are so susceptible to misclassification will be discussed in the following 

chapter. 

 

 

 

AllBands  

“Sealed  

surfaces” 

AllBands  

“Non-vegetated  

unsealed surfaces” 

AllBands  

“Water” 

AllBands  

“Woody” 

AllBands  

“Herbaceous 

 permanent”  

AllBands  

“Herbaceous 

periodic”  

AllMaps 

 “Sealed 

surfaces” 90,85 1,42 1,57 4,55 1,42 0,19 

AllMaps  

“Non-vegetated  

unsealed 

surfaces” 2,53 93,39 1,25 1,23 1,09 0,52 

AllMaps  

“Water” 0,92 0,44 97,96 0,55 0,1 0,04 

AllMaps “ 

Woody” 0,41 0,13 0,17 91,32 5,31 2,67 

AllMaps  

“Herbaceous 

 permanent”  4,22 0,17 4,75 26,54 41,17 23,15 

AllMaps  

“Herbaceous  

periodic”  4,68 5,49 1,35 19,94 25,14 43,41 

Table 7. Percentage of class-to-class redistribution of pixels between classification results 
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5.3.  Accuracy Assessments and Discussion of the Classification 

Approaches 

 

Upon evaluating the results of the accuracy assessment in Table 8, the approach using 

all bands in one classification process reached significantly better results than the 

approach based on the single month maps. 

 

  Overall 

Accuracy 

Kappa Accuracy 1- 

Sealed 

surfaces 

2-Non-

vegetated 

unsealed 

surfaces 

3-

Water 

4-

Woody 

5- 

Herbaceous 

permanent 

6-

Herbaceous 

periodic 

Classification 

based on 

single month 
maps 

0.47    0.36 User 

Accuracy 

0.78 0.56 0.9 0.31 0.47 0.44 

   Producer 

Accuracy 

0.14 0.10 0.92 0.96 0.14 0.54 

Classification 
based on 100 

bands 

0.58     0.49     User 
Accuracy 

0.88 0.75 0.94 0.33 0.37 0.94 

   Producer 

Accuracy 

0.42 0.24 0.98 0.94 0.22 0.66 

 

The overall accuracy is 11% higher and the Kappa coefficient increased from 0.36 

to 0.49. Both user and producer accuracies for all classes are higher. This is notable, 

since both approaches are using the same training data and the same classifier. The 

lowest range with the highest accuracies is of the class “Water”, having 90% and 94% 

user accuracy and 92% and 94% producer accuracy respectively. This indicates 

accurate training data for this class and good performance of the classifiers. 

The largest difference between user accuracies of the classification approaches are 

found in “Herbaceous periodic” with a difference of 50%, while the largest difference 

between producer accuracies are found in “Sealed surfaces”, with a difference of 

28%. This class also displayed the largest difference between producer and user 

accuracy within the same classification approach (14% to 78%), indicating strong 

inaccuracies within the classification process. All classes but “Water” show a 

difference in user and producer accuracy of over 5%. This indicates that there is a 

general issue with the training data, since the large range of values is not connected to 

one specific class. 

 

Table 8. Accuracy assessment of the classification approaches  
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The methodology applied in this thesis is not present in current literature thus 

there were no pre-existing hypothesises available to explain the difference. 

Nonetheless, a possible explanation for the difference in overall accuracies can be 

found in the single month classifications. Unlike the map based on the classification 

of 100 bands, the maps-based prediction is exclusively based on the input of the pre-

classified maps for training. Firstly, this is limited information for training compared 

to the extent of training data available to the classifier in the 100 bands-based 

approach. Secondly, every misclassification in the single month maps is transferred 

into the final classification. Due to the limited training data, these misclassifications, 

if consistent enough throughout the single month maps, can negatively impact the 

accuracy of the final land cover prediction map. 

 

For testing the accuracy of the classifications obtained, a reference data base 

consisting of 50 samples per class was used. Table 9 shows the confusions matrices 

of the two classification approaches in comparison. In general, it can be stated that the 

100 bands-based prediction identified the samples of all accuracy assessment more 

accurately by assigning them to the same class they have in the reference data. For the 

class “Sealed surfaces”, the approach correctly predicted 21 of the 50 samples, while 

the maps-based approach only predicted 7 samples correctly. The same tendency can 

be observed in most other classes (12 correctly assigned samples compared to 5 for 

“Non-vegetated unsealed surfaces”, 49 compared to 46 correctly assigned samples for 

“Water”, 11 compared to 7 correctly assigned samples for “Herbaceous permanent”, 

and 33 compared to 27 correctly assigned samples for “Herbaceous periodic”). The 

only exception from this pattern is the class “Woody”, where 48 reference samples 

were correctly predicted by the prediction based on the single month maps, while 47 

reference samples were correctly assigned by the prediction 100 bands-based 

approach. 
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 REFERENCE      

PREDICTION OF THE 

MAPS-BASED 

APPROACH 

1-  

Sealed 

surfaces 

2-Non-

vegetated 

unsealed 

surfaces 

3- 

Water 

4- 

Woody 

5-  

Herbaceous 

permanent 

6- 

Herbaceous 

periodic 

 1- Sealed surfaces 7 2 0 0 0 0 
 2-Non-vegetated 

unsealed surfaces 
4 5 0 0 0 0 

 3-Water 1 3 46 0 0 0 
 4-Woody 22 25 0 48 39 22 
 5- Herbaceous 

permanent 
1 3 2 1 7 1 

 6-Herbaceous 

periodic 
15 12 2 1 4 27 

 

 REFERENCE      

PREDICTION OF THE 100 

BANDS-BASED 

APPROACH 

1- 

 Sealed 

surfaces 

2-Non-

vegetated 

unsealed 

surfaces 

3- 

Water 

4- 

Woody 

5-  

Herbaceous 

permanent 

6- 

Herbaceous 

periodic 

 1- Sealed surfaces 21 3 0 0 0 0 

 2-Non-vegetated 

unsealed surfaces 
4 12 0 0 0 0 

 3-Water 0 3 49 0 0 0 

 4-Woody 22 22 1 47 38 13 

 5- Herbaceous 

permanent 
3 9 0 3 11 4 

 6-Herbaceous 

periodic 
0 1 0 0 1 33 

 

 

The results show high confusion between between the Classes “Woody”, 

“Herbaceous permanent”, and “Herbaceous periodic” for both approaches. The three 

classes had no reference samples predicted as the first three classes, but only as each 

other. Specifically, 39 and 38 reference samples respectively of “Herbaceous 

permanent” were predicted as “Woody”. Moreover, 22 and 13 reference samples 

respectively of “Herbaceous periodic” were predicted as “Woody”. Additionally, 22 

samples respectively of “Sealed surfaces” and 25 and 22 reference samples 

respectively of “Non-vegetated unsealed surfaces” were predicted as “Woody”. 

This indicates that the way the nomenclature was composed can be a source of 

error that negatively impacted the classification if it does not distinguish and reflect 

spectral signatures accordingly. This can have multiple causes. One possible cause is 

the broad composition of the class “Woody”. It was set to include a wide variety of 

greenery and forest types to simplify the nomenclature. Broadleaf forests and orchards 

for example have very different spectral signatures yet were still included into the 

class “Woody”.  

  

Table 9. Confusion matrices of the classification approaches  
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Additionally, in sparsely vegetated areas the spectral signatures can be similar to other 

classes such as “Non-vegetated unsealed surfaces” or “Herbaceous permanent” which 

includes grassland with sparse vegetation. Figure 20 is also an example for this case. 

Figure 21 is an example of differences in spectral signatures in densely vegetated 

areas, yet both land cover types are assigned to the same class. Since “Woody” is by a 

large margin the most dominant sample class in this study and is composed of a wide 

variety of spectral signatures assigned to it, the classifier could assign areas with 

related land cover types to “Woody”. Mack et al. (2017) made a similar observation in 

their study, where grassland and wetland were misclassified in favour of the dominant 

class of agricultural land. 

 

      

  

Figure 20. Direct comparison of two “Woody” land cover classes showing similar  

spectral signatures as “Non-vegetated unsealed surfaces” and “Herbaceous permanent” 
 

 

Orchard 

 

Sparse Forest 

 

Figure 21. Area with naturally grown and artificial canopy 
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    Another issue is closely related to the “Salt and Pepper” effect, which was also 

present in this study. It refers to the fact that depending on the spatial resolution of the 

data, several land cover classes can be mixed within the same unit, in the case of this 

study the 10m by 10m pixel. A common phenomenon in the study area is mixed land 

cover. Figure 24 shows an extract of aerial photography where the classes 

“Herbaceous permanent” (grassland) and “Herbaceous periodic” (crops) are 

overlapping. The overlapping land cover types are difficult to distinguish for a 

classifier and can easily lead to misclassification of the affected pixel. 

 

 

     Moreover, there was a 2% to 8% misclassification of “Herbaceous periodic” and 

“Herbaceous permanent” for each of the two classes with each other. The 

differentiation of grassland (in this study “Herbaceous permanent”) and crops 

(“Herbaceous periodic”) cannot exclusively be based on the interpretation of spectral 

characteristics due to variations of the spectral signatures within the vegetation period 

(Esch et al., 2014). It is also because spectral signatures of different crops and 

grassland are similar in specific periods of the year. This depends on the type of 

cultivation, phenology and growth of the crop (Esch et al., 2014). Again, Figure 22 

provides a good example of this in the study area. Yin et al. (2014) also reported 

difficulties to distinguish grassland and non-irrigated cropland, and provided the 

hypothesis that the confusion is most likely caused by an intensification of agriculture 

on croplands that were previously non-irrigated. 

 

     The characteristics of crops vary highly depending on the season, the region they 

are located, the climate, the weather during vegetation periods and the farming type of 

the farmer (equipment, pesticide use, harvesting time). Since grassland has more 

Figure 22. Area with mixed land cover of crops and grassland 
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stable, continuous characteristics (Figure 23), studies state that crops should be 

distinguishable from grassland when analysing seasonal development (Esch et al., 

2014). According to this statement, the classification approach based the single month 

maps should reflect seasonal development since the maps it is based on reassigned the 

samples of the class reflecting agriculture (“Herbaceous periodic”) based on their 

NDVI. Nevertheless 22 samples (of 50 accuracy assessment samples) of “Herbaceous 

periodic” samples were assigned to “Woody”, and 15 “Sealed surfaces” reference 

samples to “Herbaceous periodic”. 

     Notably the approach using all bands in one classification process scored a higher 

accuracy in detecting agriculture with 66%. The highest misclassification was again 

with “Woody” (26%). The outcome of this study thus does not support the claim 

made in literature, which states that tracking seasonal development leads to higher 

accuracy in identifying cropland. A possible explanation is that misclassifications of 

this land cover type conducted in the single month maps were transferred into the 

final map. This hypothesis will not be assessed yet is a possible topic for future 

studies. 

 

 

 

Figure 23. Variation of the NDVI within a vegetation period  

comparing semi-natural grassland and different crop types (Esch et al., 2014)  
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Another misclassification to be discussed is the incorrect prediction of “Sealed 

surfaces” as “Woody” (44%) using both predictions. Karydas et al. (2015) stated a 

comparable issue when validating a LCC map with LUCAS data, the data all 

classification in this thesis is based on, when using a single-temporal approach. In the 

study, their classification showed an almost 14% confusion of “Agricultural land” as 

“Artificial land” or “Shrubland”. The explanatory hypothesis offered is that mostly 

roads and small buildings correspond to “Artificial land”. Those features are mostly 

located inside agricultural areas. Though their study uses and object-based instead of a 

pixel-based approach, the hypothesis could explain a part of the misclassification due 

to the aforementioned “Salt and Pepper” effect. Nonetheless, it is questionable if 42% 

can be entirely explained by this effect.  

 

The class “Non-vegetated unsealed surfaces” also shows confusion with all 

classes based on incorrect predictions made by the classifiers. A possible explanation 

is given by Schneider (2012), whose study points out that because of similar spectral 

values, this class can be confused by the classifier with bare land, uncultivated or 

fallow agriculture or new construction sites. The highest confusion rate of the “Non-

vegetated unsealed surfaces” in both approaches was with the class “Woody” (44% 

and 50% respectively). Figure 20 discussed at the beginning of this chapter shows 

optical similarities between the two land cover types since features such as orchards 

and vineyards with a high ratio of bare land and comparably little greenery are 

included in “Woody”. 

 

5.4.  Results and Discussion of the LUCAS Training Data 

Comparison 

 

After discussion the results obtained by using the two different classification 

approaches, this chapter will show the results of the four variations in LUCAS 

training data and discuss them.  

 

     Since most classes in the accuracy assessment of the classification approaches 

have the highest misclassification rate with the class “Woody”, it is suggested to 

consider the arguments made at the beginning of the previous chapter. It was stated 
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that “Woody” is not only the most dominant class with more than 500 samples more 

than the second dominant class (“Herbaceous permanent”) and 600 more than the 

smallest class (“Sealed surfaces”), but it also entails a range of spectral values similar 

to those of other classes. This combination is likely to be the main cause of the high 

percentage of class-based and thus overall misclassifications. This hypothesis is tested 

in this chapter by running additional classifications and assessing their accuracy. 

 

For the first attempt, a classification was run using the original, unmodified 

LUCAS data and an extensive definition of “Woody” (including shrubland and 

agricultural woods). The second set used is the one the classification comparison is 

based on. There, the classifier was trained with LUCAS with added samples to 

balance the sample sizes per class and counterbalance issues found in trial predictions. 

Moreover, the extensive class definition of “Woody” was used. In the last two 

variations, a variety of LUCAS subclasses intially assinged to “Woody” were 

removed (176 samples in total): Shrubland with sparse tree cover, Shrubland without 

tree cover, Apple fruit, Pear fruit, Cherry fruit, Nuts trees, Other fruit trees and 

berries, Oranges, Olive groves, Vineyards, Nurseries, and Permanent crops. One 

variations only this composition, while for the second attempt with the limited class 

definition of “Woody” an additional set of manually added points was removed. The 

decision to add these points were based on a particular misclassification between two 

classes at the initial stages of the study was the confusion of water and dark forest 

canopy by the classifier. This error was compensated by adding 21 samples of dark 

forest canopy to give more information about the exact spectral signature to the 

classifier. 

The sample sizes of the class “Woody” was thus reduced to 495 and 474 respectively, 

therefore reducing the final sample sizes to 880 samples and 859 samples 

respectively.  

 

When running the RF classifier based on all bands on the LUCAS data variations 

as training set, the resulting land cover classification showed significant differences in 

the ratios of land cover type. Figure 24 shows the percentage of land cover class per 

classification. There is no significant deviation from the results produced with the 

regular LUCAS in the classes “Sealed Surfaces”, “Non-vegetated unsealed surfaces”, 

“Water”, and “Herbaceous periodic”. Analysing the class size of “Woody” and 
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“Herbaceous permanent”, several things can be observed: Firstly, there is a difference 

of maximum 2% between the original LUCAS data set and the set with added samples 

and extensive class definition of “Woody”. The same can be observed when 

comparing the two training data sets using a limited class definition of “Woody”. 

Secondly, when comparing the four sets, it can be concluded that the classifier 

assigned up to 9% less pixels to “Woody” when using training sets based on a limited 

class definition of “Woody” in comparison to classification based on the extensive 

class definition. Instead, up to 8% more pixels were assigned to “Herbaceous 

permanent”.  

 

 

 

Visual inspection of the maps (Figure 25) confirms this outcome, displaying 

large areas classified as “Herbaceous permanent” in the South-East of the study 

region as well as the entire region west of the river. Similar to the classification using 

all bands, it identified a large area of “Herbaceous permanent” close to the river 

mouth. Moreover, it also shows rather continuous regions identified as “Herbaceous 

periodic”, which is an accurate representation of the real land cover. Notably, the 

classifier using the original LUCAS dataset as training data was unable to identify the 

water feature in the South-Western corner of the study area. This implicated the need 

for the additional samples to increase the sample size of the class, an approach that 

created better results, as visible in the other three classifications. 

 

Figure 24. Percentage of land cover type classified with the variations of LUCAS for training 
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As indicated above, the result based on unaltered LUCAS data appeared to 

have the lowest accuracy. Table 10 confirms this impression. The predictions based 

on the original LUCAS data achieved the lowest overall accuracy of 52% of all 

approaches and a kappa value of 0.42. This is 10% less than the highest overall 

accuracy achieved by the training set composed of adjusted LUCAS data (including 

dark canopy samples) and a limited “Woody” class definition. This data set also has 

the highest kappa value of 0.54.  

While the unmodified LUCAS data as training data achieved the lowest 

accuracy, the training set based on modified LUCAS data and an extensive class 

definition of “Woody” reached a 58% overall accuracy and a kappa coefficient value 

of 0.49. This can be explained by the samples added to support underrepresented 

classes and balance the training data set. An improve of 3% in overall accuracy from 

this classification to the modified data set using a limited class definition of “Woody” 

takes place. This result confirms the hypothesis stated in the previous chapter that the 

land cover types summarized in “Woody” are too broad and possibly confusion for 

the classifier. 

Figure 25. Comparison of map resulting from classifications based on different variations of 

LUCAS based on training data 
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The differences between the two classification approaches based on modified 

LUCAS data and a limited class definition of “Woody” showed a difference of 0.01 

per metric, reaching higher accuracy when the extra samples to distinguish dark forest 

canopy from water are included. This indicates that even though “Woody” is the 

largest and most dominant class in the training set, certain spectral signatures are still 

not represented enough to provide sufficient information to the classifier to 

distinguish them from similar ones. 

 

Dataset Overall Accuracy Kappa 

Original LUCAS data 0.52  0.42       

Extensive "Woody" class definition 

Additional samples  

0.58   0.49     

Limited "Woody" class definition 

Additional samples  

0.61 0.53 

Limited "Woody"  

Additional samples 

With samples for dark canopy/water differentiation 

0.62 0.54  

 

 

 

The user and producer accuracies of the training data variations indicate the same. In 

Table 11, the producer accuracy of “Water” based on the original LUCAS data shows 

a significant drop in accuracy of more than 20% compared to all other accuracies of 

the class. Again, the third and fourth data set achieved higher accuracies than the first 

two training sets, with the original LUCAS data set having lower accuracies in most 

classes. The accuracy assessment shows similar patterns as the one conducted on the 

approach based on all bands in the previous chapter: “Water” has consistently the 

highest user and producer accuracies of all classes, with exception of the case stated 

above. The ratio between user and producer accuracy per class and prediction is 

relatively constant throughout the results (e.g. the difference between user and 

producer accuracy of “Herbaceous periodic” is in every prediction is 0.25 +/- 0.05 or 

0.5 +/- 0.02 for “Non-vegetated unsealed surfaces”). The accuracies of the predictions 

are overall still low, but show a general increase from the first to the fourth data set 

used. 

Table 10. Overall Accuracy and Kappa coefficient of the LUCAS training data variations 

 



55 

 

 

 

The analysis of the confusion matrices derived from the four different 

predictions (Table 12) confirm the statements made above. The prediction based on 

the original LUCAS data shows that 22% of reference samples of “Water” were 

predicted as “Woody”, 2% as “Sealed surfaces”, and 4% as “Herbaceous permanent”. 

After having the samples to distinguish dark forest canopy from water, the following 

three predictions correctly predict 98% of “Water” samples and misclassify only one 

sample as “Woody”. Thus, the hypothesis of underrepresentation of certain spectral 

values even in large sample sizes of LUCAS seems plausible. Again, the confusion 

matrices show similar patterns to the matrices of the classification approaches. There 

is a particular confusion among the classes “Woody”, “Herbaceous permanent”, and 

“Herbaceous periodic”. Moreover, “Sealed surfaces” and “Non-vegetated unsealed 

surfaces” reference samples were wrongly predicted as almost all other classes again. 

All these confusions decrease from the prediction made with the original dataset to the 

one with the heaviest modifications. Reasons for this were discussed in the previous 

chapter.  

 

Dataset Accuracy 1- 

Sealed  

surfaces 

2-Non-

vegetated 

unsealed 

surfaces 

3-Water 4-Woody 5- 

Herbaceous 

permanent 

6-Herbaceous 

periodic 

Original 

LUCAS data 

User  

Accuracy 

0.79 0.64 0.97 0.31 0.28 0.89 

 Producer 
Accuracy 

0.46 0.14 0.72 0.92 0.22 0.64 

Extensive 

"Woody" 
and 

User  

Accuracy 

0.86 0.75 0.94 0.33 0.37 0.94 

Added 

samples  

 

Producer  

Accuracy 

0.42 0.24 0.98 0.94 0.22 0.66 

Limited 
"Woody 

and" 

User  
Accuracy 

0.92 0.8 0.96 0.36 0.38 0.87 

Added 
samples 

 

Producer  
Accuracy 

0.48 0.32 0.98 0.90 0.30 0.66 

Limited 

"Woody",  
Added 

samples 

and 
 

User  

Accuracy 

0.89 0.78 0.92 0.37 0.42 0.92 

Samples for 

dark canopy 

Producer  

Accuracy 

0.50 0.28 0.98 0.90 0.36 0.68 

Table 11. User and producer accuracy of the LUCAS training data variations 
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 REFERENCE      

PREDICTION USING ORIGINAL 

LUCAS DATA 

1- 
Sealed 

surfaces 

2-Non-
vegetated 

unsealed 

surfaces 

3- 
Water 

4-Woody 5- 
Herbaceous 

permanent 

6-
Herbaceous 

periodic 

 1- Sealed surfaces 23 3 1 0 1 1 

 2-Non-vegetated unsealed 

surfaces 
4 7 0 0 0 0 

 3-Water 0 1 36 0 0 0 

 4-Woody 18 24 11 46 37 12 

 5- Herbaceous permanent 5 12 2 4 11 5 

 6-Herbaceous periodic 0 3 0 0 1 32 

 

 REFERENCE      

PREDICTION USING 

EXTENSIVE “WOODY” 

1- 

Sealed 
surfaces 

2-Non-

vegetated 
unsealed 

surfaces 

3-Water 4-

Woody 

5-  

Herbaceous 
permanent 

6- 

Herbaceous 
periodic 

 1- Sealed surfaces 21 3 0 0 0 0 

 2-Non-vegetated unsealed 

surfaces 
4 12 0 0 0 0 

 3-Water 0 3 49 0 0 0 

 4-Woody 22 22 1 47 38 13 

 5- Herbaceous permanent 3 9 0 3 11 4 

 6-Herbaceous periodic 0 1 0 0 1 33 

 

 REFERENCE      

PREDICTION USING LIMITED 

“WOODY” 

1- 

Sealed 
surfaces 

2-Non-

vegetated 
unsealed 

surfaces 

3-Water 4-Woody 5- 

Herbaceous 
permanent 

6-

Herbaceous 
periodic 

 1- Sealed surfaces 24 2 0 0 0 0 

 2-Non-vegetated unsealed 
surfaces 

4 16 0 0 0 0 

 3-Water 0 2 49 0 0 0 

 4-Woody 19 19 1 45 32 10 

 5- Herbaceous permanent 2 10 0 5 15 7 

 6-Herbaceous periodic 1 1 0 0 3 33 

 

 REFERENCE      

PREDICTION USING LIMITED 

“WOODY” AND EXTRA DARK 

CANOPY SAMPLES 

1- 

Sealed 
surfaces 

2-Non-

vegetated 
unsealed 

surfaces 

3-Water 4-Woody 5- 

Herbaceous 
permanent 

6-

Herbaceous 
periodic 

 1- Sealed surfaces 25 3 0 0 0 0 

 2-Non-vegetated 

unsealed surfaces 
4 14 0 0 0 0 

 3-Water 0 3 49 0 0 1 

 4-Woody 18 20 1 45 30 7 

 5- Herbaceous 

permanent 
3 9 0 5 18 8 

 6-Herbaceous periodic 0 1 0 0 2 34 

 

 

Table 12. Confusion matrices of the LUCAS training data variations                           

 



57 

 

Table 13 is showing how the reference database was redistributed to the 

classes in each classification based on a different variation of the LUCAS data for 

training. While the class size of the reference database was 50 per class, all four 

approaches display a similar tendency of having samples of different classes assigned 

to “Woody”. This class size ranges from 121 samples (using the training data with a 

limited “Woody” class and added samples) to 148 (using the original LUCAS data). 

In all four classification approaches, the class of “Herbaceous periodic” contained 35 

to 38 samples. This indicates a misclassification of 15-12 samples, yet also shows that 

variations in the training data had little effect on the classification outcome. A similar 

result was obtained with the class “Sealed surfaces”, displaying a range of 24 to 29 

samples in this class.  

“Herbaceous permanent”, whose class size ranged from 30-43 samples, 

displayed a range of 13. The smallest sample size was achieved when using added 

samples and an extensive class definition of “Woody”. The class “Water” achieved on 

average the amount of samples closest to the initial reference data base class size. 

While the training data sets with added samples resulted in a range of sample sizes of 

51 to 53, the classification based on the original LUCAS data showed a strong 

decrease in class size by 13 samples. This can be caused by the confusion of water 

and dark forest canopy described above. 

 

Classification 1- 

Sealed 

surfaces 

2-Non-

vegetated 

unsealed 

surfaces 

3-

Water 

4-

Woody 

5- 

Herbaceous 

permanent 

6-

Herbaceous 

periodic 

Reference Database 50 50 50 50 50 50 

Original LUCAS data 29 11 37 148 39 36 

Added samples  

Extensive "Woody" 

24 16 52 143 30 35 

Added samples  

Limited "Woody" 

28 18 53 121 43 37 

Added samples  

Limited "Woody"  

Extra samples for dark 

wood 

26 20 51 126 39 38 

 

 

To further assess the impact of removing samples from the class “Woody” 

which correspond to shrubland and agricultural woody plants, it is analyzed to which 

class the removed samples were assigned to in the predictions (Table 14). It is shown 

Table 13. Assigned class of accuracy assessment points per training data variation 
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that in over 70% of the cases, the samples were again assigned to “Woody”. The class 

to which the largest percentage of samples was changing classification to is 

“Herbaceous permanent”. Around 14% and 22% respectively got identified as this 

class after being removed. This shows that by removing samples from the class 

“Woody” and limiting the land cover types included in this class, the classifier 

includes less spectral signatures in it. No sample was assigned to “Non-vegetated 

unsealed surfaces”, only about 0.5-1% got identified as “Sealed surfaces” or “Water”. 

Around 6% of the samples were classified as “Herbaceous periodic” using both 

training sets, which can be explained by similar spectral signatures. 

 

 

 

 

5.5.  Discussion of the Usability of LUCAS Data 

 

     When paying attention to the metadata of the LUCAS points, the issue of remote 

assessment also discussed by Karydas et al. (2015) becomes apparent. Attribute 2.15 

in EUROSTAT (2016) describes the distance in meters between the point planned to 

survey and the reached point when conducting the survey. Figure 26 shows a 

histogram with binned values, excluding the 94 supervised samples added through 

photointerpretation.  

 

Added samples 1- 

Sealed  

surfaces 

2-  

Non-vegetated 

unsealed 

surfaces 

3- 

 Water 

4- 

Woody 

5- 

Herbaceous 

permanent 

6- 

Herbaceous 

 periodic 

Total  

samples 

Sample size  1 0 2 155 27 12 197 

In percentage 0,51% 0% 1,02% 78,68% 13.71% 6,09% 100% 

Added samples, 

Extra samples  

for dark wood 

1- 

Sealed  

surfaces 

2-  

Non-vegetated 

unsealed 

surfaces 

3- 

 Water 

4- 

Woody 

5- 

Herbaceous 

permanent 

6- 

Herbaceous 

 periodic 

Total  

samples 

Sample size  1 0 0 126 38 11 176 

In percentage 0,57% 0% 0% 71,59% 21,59% 6,25% 100% 

Table 14. Classes assigned to removed “Woody” samples in the predictions 
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The histogram shows that 71% of initial 962 LUCAS samples were classified 

within a 0m to 10m distance to the in-situ point. The descriptive statistics show a 

range of 0m to 4124m, the latter being the largest sampling distance in the batch. 

14.45% were sampled between 11m and 100m distance, and the remaining 14.55% 

were sampled between 1001m and 4024m away from the theoretical point. The 

average sample distance for the points used is 100m. 

With about 30% of the data being classified more than 10m away from the planned 

sampling point, a high impact on results is probable since all bands used for the 

project were downscaled to a 10m resolution. Full descriptive statistics for the 

variable are in the Appendix B – Additional Maps and Statistics. 

 

 Similar to this study, Karydas et al. (2015) conducted extensive validation of 

the LUCAS points based on statistics and photo inspections. The study identifies 

several additional possible sources of error and uncertainty: 

According to the LUCAS survey protocol provided by EUROSTAT, if a crop cannot 

be identified the surveyor should record it either as “Bare land” if less than 50% is 

covered in weed or as “Spontaneous re-vegetated surfaces” which corresponds to 

“Herbaceous permanent” in the nomenclature of this thesis. This protocol can cause 

agricultural land to be misclassified by the field surveyors and thus be mislabelled in 

the training database of this study, affecting the final accuracy assessment. 

 

Figure 26. Distance between in-situ point of LUCAS data and observation point 
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Another possible cause of uncertainty raised by this study and Karydas et al. 

(2015) is that part of the LUCAS points were classified inaccurately by the surveyor. 

This issue can be related to the issue of remote assessment and photointerpretation 

discussed earlier in this chapter. Upon interpreting satellite imagery of the area within 

the initial classification process, it became apparent that some points were not 

assigned to the correct class. For example, four of the fourteen samples for the class 

“Water” provided by LUCAS were not located in waterbodies (Figure 27).  

 

 

This does not affect studies using big sample sizes significantly, yet in the case 

of this study and its sample sizes used, it is expected to lower the final accuracy.  

 

The relatively small sample size of multiple classes leads to another 

uncertainty: The newest version of LUCSA data available is from 2015, while the 

classification is based on late 2016 until late 2017 imagery. The class assigned to the 

sample point, though correctly assigned by the field surveyor, may not be accurate 

anymore. Since land cover normally does not change rapidly, only a small amount of 

samples would be affected. Yet when considering the total training data set size per 

class is only 50 to 60 points for three of the six classes, there is a measurable effect.  

Due to the possible causes of uncertainties discussed above Karydas et al. (2015) 

labelled 23.7% of the points used for their study as impossible to be assessed and 

removed them. 

Though many disadvantages of LUCAS data are discussed here, it is one of the 

largest OA datasets for LULC information. The data does have good potential and can 

Figure 27. Original LUCAS sample locations for the class “Water 
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achieve high accuracies, as studies using LUCAS data on soil erosion modelling 

(Panagos et al., 2014), soil pH mapping (Gardi and Yigini, 2012), land cover 

differentiation (Esch et al., 2014) and LULC mapping (Mack et al., 2017) show. To 

achieve high accuracies, LUCAS data should be combined with ancillary data and 

supported by additional sampling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 

 

6. CONCLUSIONS 
 

The study conducted allowed to answer both research questions. Regarding the 

first question of assessing and comparing the two multi-temporal, multi-spectral 

classification approaches with RF, the following can the concluded: The results of this 

study show that the approach based on the simultaneous classification of 100 bands 

generated a map 11% higher in accuracy than the approach based on the classification 

of 10 maps based on single month data, which were subsequently used as training data 

for the RF classifier to make a final prediction. Moreover, the approach was 

considerably quicker with a total of 5 around hours per map (3 hours data preparation 

and 2 hours of RF computing time). The approach based on all maps took around 1.5 

to 2 hours per map, totalling in around 15h of data preparation and computing. Thus, 

of the two approaches tested, the land cover prediction based on a stack of bands 

performed better and required less time and should thus be further explored as an 

alternative for multi-temporal, multi-spectral classification. 

Since the predictions are based on the same training data, the lower accuracy 

should be caused by the methods used. Two possible sources of error in the 

methodology of the classification based on the single month maps are identified: 

Firstly, the limited training data of 10 maps and secondly the possible transfer of 

classification errors from the single month maps to the final map. Moreover, the 

outcome of this study thus does not support the claim made in literature, which is that 

tracking seasonal development leads to higher accuracy in identifying cropland. On 

the contrary, the classifier which is not considering seasonal development of crops by 

including the NDVI achieved a higher accuracy in correctly assigning this land cover 

type.  

Additionally, this study indicates that the composition of the nomenclature 

used had an impact on the classification accuracy. The accuracy assessment and 

discussion indicated that the broad classification of the class “Woody” can be 

identified as a cause of the low accuracy results. It was set to include a wide variety of 

greenery and forest types to simplify the nomenclature. Since “Woody” is by a large 

margin the most dominant sample class in this study and is composed of a wide 

variety of spectral signatures assigned to it, the classifier can assign areas with related 
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land cover types to “Woody”. Thus, it was concluded to test different variations of the 

LUCAS data set. 

 

Therefore, the study compared four different variations of LUCAS data used: 

Firstly, an unmodified version. Secondly a version with added samples to support 

small classes (such as “Water” and “Non-vegetated unsealed surfaces”) and 

counterbalance issues detected within the first stages of the study. Thirdly, two 

versions with a limited class definition of “Woody” class, which means that LUCAS 

subclasses including agriculture and shrubland were removed. One was tested with 

and the other one without additional sampling to better define dark forest canopy. ´ 

 

The unmodified LUCAS dataset resulted in the classification with the lowest 

accuracy of the four approaches with a difference of 10% to the best prediction result 

of 62%. The second lowest accuracy was achieved by the classification with 

additional sampling and a broad “Woody” class. The two highest accuracies were 

achieved by classifications where agricultural related classes such as orchards and 

vineyards from “Woody” were removed. This indicates that misclassifications were 

caused by the nomenclature definition, as explained above.  

 

The comparison between the two classifications with a limited “Woody” class 

definition indicated another source of inaccuracy when conducting a classification 

solely based on LUCAS training data. The data set version including extra samples to 

distinguish dark forest canopy and water reached a 1% higher overall accuracy than 

the one without. It was thus shown that even though “Woody” is the largest and most 

dominant class in the training set, certain spectral signatures are still not represented 

enough to provide sufficient information to the classifier to distinguish between water 

and dark forest canopy. Thus, the class size does not necessarily indicate that all 

relevant spectral signatures and its connected classes are sufficiently represented in 

the LUCAS 2015 data set for Central Portugal.  

 

Regarding the second research question of this study on assessing the usability of 

LUCAS as training data for land cover classifications with classifications algorithms, 

it was concluded that the use of an unmodified training set solely based on LUCAS 



64 

 

results in overall low accuracy of the classification in this study, and it is thus not 

recommended as a sole substitute for selecting training areas by photointerpretation. 

This is caused by an unbalanced training set with a wide range in class size and the 

issues of remote assessment of points by surveyors, uncertainties caused by the 

LUCAS survey protocol, and the problem of misclassifications by the surveyors. The 

accuracy assessment of the data set variations confirmed the need for additional 

samples and ancillary data to produce predictions with high accuracy. 

Considering that using LUCAS data comes with a variety of uncertainties and 

possible sources of error, it is hypothesised that the classifications conducted would 

have resulted in higher accuracy when using a larger, more balanced and more precise 

data set for training the classifier and a more narrowly defined nomenclature. 

 

6.1.  Contributions 

 
The contributions made by this study can be divided into the two research 

questions stated at the beginning of the thesis: Compare and assess the two 

classification approaches, and testing the usability of LUCAS data as training data for 

a classifier.  

Regarding the classification approaches of multi-temporal, multi-spectral 

Sentinel-2 data within one classification process in Random Forest, it can be said that 

this study was an addition to a comparably small amount of literature on the topic. It 

further investigated the ways and abilities of RF as a classifier to handle these types of 

multi-temporal classifications. The results of the study indicate potential for further 

research regarding the approach based on 100 bands, and furthermore a need to 

improve the classification approach based on the single month maps. Regarding the 

usability assessment of the LUCAS data as training data set for land cover 

classification maps, this study is contributing the highlighting of issues in the 

classification caused by issues in data collection process and protocol as defined by 

EUROSTAT. Most of these issues were already discussed within the literature, yet 

were not focussed within one study and tested based on a variety of modified LUCAS 

datasets. Mack et al. (2017) stated that a specific issue to investigate is the usability of 

LUCAS data as a training data base for supervised classification approaches, which is 

one of the core objectives of this study manged to do. 
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6.2.  Limitations and Recommendations 

 
This study highlighted its limitations extensively in the discussion section. The 

limitations include a too broad definition of the “Woody” class, leading to many 

misclassifications within all approaches used. The training data in all variations was 

unbalanced, causing difficulties for the classifier to correctly identify land cover types 

and thus reduced the accuracy. Additionally, the difference of using training data 

collected in 2015 to classify imagery from end of 2016 until end of 2017 could have 

led to a reduction in accuracies of the classifications conducted. It would be of interest 

to repeat the study with a more balanced and bigger dataset for training which was 

collected in the same year as the aerial imagery. An opportunity for this would the 

release of the new LUCAS data set in 2018. 

 

Common issues known in the field of remote sensing should also be taken into 

consideration. These include the “Salt-and-Pepper” effect, which was increased by 

choosing a hard classification approach. This approach does not deal with the mixed-

pixel problem which is caused by the co-existence of different land cover types in the 

same pixel. A study based on a fuzzy classification method is recommended to be 

conducted to further investigate the issue. 

 

     Moreover, it was concluded that the approach based on the single month maps 

achieved a significantly lower accuracy than the approach based on 100 bands. A 

possible explanation for the low accuracy of the map based on the single month maps 

is that misclassifications of land cover types conducted in the single month maps were 

transferred into the final map. A recommended topic for future studies is to analyse 

and assess this possibility by composing testing data sets for each single month map 

to identify and track misclassifications. 

 

Overall, the approach based on the single classification of a stack of multi-

temporal, multi-spectral bands showed potential and should be analysed in further 

studies.  In conclusion, it would be advisable to repeat the study with a larger, more 

balanced and current training data set (possibly LUCAS 2018 with added samples or 

ancillary data) and redefined classes in the nomenclature, which reflects the land 

cover classes more clearly.  
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APPENDIX A -  Single Month Maps 
 

 

Classification of 10 single month maps 
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APPENDIX B – Additional Maps and Statistics 

 

Mean 1114789.1 5642786.8 1786766.9 100672455.5 11343573.8 

Standard Error 52063.76313 509486.5053 72895.03947 1116448.888 1138604.574 

Median 1137679.5 5180783.5 1738949.5 100409421 11221145 

Mode #N/A #N/A #N/A #N/A #N/A 

Standard Deviation 164640.075 1611137.794 230514.3549 3530521.378 3600583.807 

Sample Variance 27106354309 2.59576E+12 53136867793 1.24646E+13 1.29642E+13 

Kurtosis 0.165271752 -0.220014134 0.355498694 -1.188169419 -1.350788958 

Skewness -0.025277284 0.837933649 0.897197485 0.162420981 0.171385625 

Range  548998 4797522 732378 10141381 10482245 

Minimum 858094 3962777 1521855 95689898 6310507 

Maximum 1407092 8760299 2254233 105831279 16792752 

Sum 11147891 56427868 17867669 1006724555 113435738 

Count 10 10 10 10 10 

 

 Nov-16 Dec-16 Jan-17 Apr-17 May-17 Jun-17 Jul-17 Aug-17 Sep-17 Oct-17 AllMaps 

AllBands  

Seed 5 

AllBands  

Seed 17 

Nov-16 1 

            Dec-16 0,9987 1 

           Jan-17 0,9989 0,9953 1 

          Apr-17 0,9992 0,9960 0,9999 1 
         May-17 0,9966 0,9988 0,9930 0,9942 1 

        Jun-17 0,9978 0,9987 0,9952 0,9963 0,9997 1 

       Jul-17 0,9994 0,9978 0,9988 0,9993 0,9974 0,9987 1 

      Aug-17 0,9993 0,9976 0,9990 0,9995 0,9971 0,9985 1 1 
     Sep-17 0,9978 0,9994 0,9945 0,9955 0,9998 0,9998 0,9981 0,9979 1 

    Oct-17 0,9990 0,9998 0,9961 0,9969 0,9992 0,9994 0,9987 0,9985 0,9997 1 

   AllMaps 0,9859 0,9892 0,9817 0,9836 0,9940 0,9935 0,9888 0,9885 0,9929 0,9906 1 

  AllBands Seed 5 0,9924 0,9927 0,9908 0,9921 0,9958 0,9965 0,9950 0,9949 0,9954 0,9943 0,9980 1 
 

AllBands Seed 17 0,9927 0,9925 0,9914 0,9926 0,9954 0,9964 0,9953 0,9952 0,9952 0,9942 0,9975 1 1 

 

 

 

Exploratory analysis of “Sealed surfaces” to “Herbaceous periodic” based on single 

month maps 

 

 

Correlation table of all maps created 
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SURVEY_O_1 

  Mean 99,92708 

Standard Error 10,85272 

Median 2 

Mode 1 

Standard Deviation 352,6715 

Sample Variance 124377,2 

Kurtosis 38,44202 

Skewness 5,581689 

Range 4124 

Minimum 0 

Maximum 4124 

Sum 105523 

Count 1056 

 

 

1- 
Sealed 
surfaces 
 

2-Non-
vegetated 
unsealed 
surfaces 

3- 
Water 
 
 

4-
Woody 
 
 

5- 
Herbaceous 
(permanent) 
 

(6-
Herbaceous 
periodic) 
 

LUCAS original 50 17 14 650 137 94 

LUCAS post-sampling 50 51 53 671 137 94 

Nov-16 50 90 53 671 192   

Dec-16 50 112 53 671 170   

Jan-17 50 72 53 671 210   

Apr-17 50 72 53 671 210   

May-17 50 90 53 671 192   

Jun-17 50 90 53 671 192   

Jul-17 50 84 53 671 198   

Aug-17 50 94 53 671 188   

Sep-17 50 103 53 671 179   

Oct-17 50 112 53 671 170   

 

 

 

Table of Sample Size per Class and Month 

 

 

Descriptive statistics of distance between in-situ point of LUCAS data and 

observation point 
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Land Cover Map using all bands in one classification process with Seed set to 17 
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AllBands 

 “Sealed  

surfaces” 

AllBands  

“Non-vegetated  

unsealed surfaces” 

AllBands 

“Water” 

 

AllBands  

“Woody 

” 

AllBands  

“Herbaceous 

 permanent” 

AllBands  

“Herbaceous 

 periodic”  

AllMaps  

“Sealed surfaces” 91,609 0,696 2,010 3,346 2,134 0,204 

AllMaps  

“Non-vegetated  

unsealed surfaces” 2,774 92,939 1,774 1,113 0,831 0,569 

AllMaps “Water” 0,865 0,345 98,099 0,457 0,173 0,061 

AllMaps “Woody” 0,563 0,252 0,163 90,179 5,999 2,845 

AllMaps “Herbaceous 

 permanent” 4,428 0,366 4,732 24,372 42,223 23,879 

AllMaps “Herbaceous  

periodic”  4,972 6,177 1,353 18,337 25,570 43,591 

 

 

Percentage of class-to-class redistribution of pixels between classification approaches 

“AllMaps” and “AllBands” Seed 17 

 

Binary Change Map using all bands in one classification process with Seed set to 5/ 17 
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APPENDIX C – Codes in R 
 

 

1. Code for Single Month Maps (“1” / “tiff1” are exemplary for one month) 

# settings 
#install.packages() 

library(raster) 
library(rgdal) 
library(caret) 
 
library(randomForest) 
 
setwd("C:/Users/DaLued/Desktop/Thesis/Conversions/1/tiff1") 
 
# import 10m TIFF images 
files10=dir(pattern = "10m.*\\.tif$") 
files10 
image10=stack(files10) 
 
#Downscale 20m resolution bands: Using raster package function 
disaggregate 
files20= dir(pattern = "20m.*\\.tif$") 
files20 
 
image20=stack(files20) 
image20d= disaggregate(image20, fact=2) 
image20d 
 
#import ndvi from arc 
ndvi=raster("ndvi1.tif") 
ndvi 
 
# Or calculate NDVI layer in R: (nir-red)/(nir+red) (B8-B4)/(B8+B4) 
#ndvi2=((image10[[4]]-image10[[3]])/(image10[[4]]+image10[[3]])) 
 
#Join image stacks 
image=stack(image10,image20d) 
image 
 
# import LUCAS data 
p=readOGR("C:/Users/DaLued/Desktop/Thesis/Conversions/1/tiff1","p3") 
p=crop(p,image) 
plot(image[[1]]) 
plot(p,add=T) 
 
p$SURVEY_LC1 
table(p$SURVEY_LC1)  
 
# reclassify LUCAS to Austrian nomenclature 
a=which(p$SURVEY_LC1==c("A11")|p$SURVEY_LC1==c("A21")|p$SURVEY_LC1==
c("A22")) 



85 

 

p@data[a,"austria"]="1" 
 
b=which(p$SURVEY_LC1==c("F10")|p$SURVEY_LC1==c("F20")|p$SURVEY_LC1==
c("F40")) 
p@data[b,"austria"]="2" 
 
c=which(p$SURVEY_LC1==c("G11")|p$SURVEY_LC1==c("G21")) 
p@data[c,"austria"]="3" 
 
d=which(p$SURVEY_LC1==c("C10")|p$SURVEY_LC1==c("C22")|p$SURVEY_LC1==
c("C32")|p$SURVEY_LC1==c("C33")|p$SURVEY_LC1==c("D10")|p$SURVEY_LC1=
=c("D20")|p$SURVEY_LC1==c("B71")|p$SURVEY_LC1==c("B72")|p$SURVEY_LC1
==c("B73")|p$SURVEY_LC1==c("B74")|p$SURVEY_LC1==c("B75")|p$SURVEY_LC
1==c("B76")|p$SURVEY_LC1==c("B81")|p$SURVEY_LC1==c("B82")|p$SURVEY_L
C1==c("B83")|p$SURVEY_LC1==c("Bx2")) 
p@data[d,"austria"]="4" 
 
e=which(p$SURVEY_LC1==c("E10")|p$SURVEY_LC1==c("E20")|p$SURVEY_LC1==
c("E30")) 
p@data[e,"austria"]="5" 
 
f=which(p$SURVEY_LC1==c("B11")|p$SURVEY_LC1==c("B12")|p$SURVEY_LC1==
c("B15")|p$SURVEY_LC1==c("B16")|p$SURVEY_LC1==c("B17")|p$SURVEY_LC1=
=c("B18")|p$SURVEY_LC1==c("B19")|p$SURVEY_LC1==c("B21")|p$SURVEY_LC1
==c("B31")|p$SURVEY_LC1==c("B42")|p$SURVEY_LC1==c("B43")|p$SURVEY_LC
1==c("B53")|p$SURVEY_LC1==c("B54")|p$SURVEY_LC1==c("B55")|p$SURVEY_L
C1==c("Bx1")) 
p@data[f,"austria"]="6" 
 
table(p$austria) 
 
#Split periodic herbaceous with ndvi threshold of 0.3 into bare land 
and herbaceous 
#copy p table 
p$training=p$austria 
 
#extract ndvi 
ndvip=extract(ndvi,p) 
 
p$ndvi=ndvip 
 
#reassign classes to periodic points 
h=which(p$ndvi<0.3& p$austria=="6") 
p@data[h,"training"]="2" 
g=which(p$ndvi>=0.3& p$austria=="6") 
p@data[g,"training"]="5" 
 
# Call new data table 
p$training 
table(p$training) 
names(p) 
 
# Extract pixel values to LUCAS points 
values =extract(image,p) 
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# randomForest 
ctrl = trainControl(method = "repeatedcv",repeats = 2) 
randomForest.fit=train(x=values, y=p$training, method="rf", 
ntree=500,tuneLength=10,trControl=ctrl) 
# see fucntion 'randomForest' in package randomForest 
plot(randomForest.fit) 
 
 
# image classification 
map=predict(image,randomForest.fit) 
plot(map) 
writeRaster(map,"map.tif",datatype="INT1U",overwrite=TRUE) 
save.image("C:/Users/DaLued/Desktop/Thesis/Data/Sentinel/sentinel_en
vironment.RData") 

 

 

2. Code for Map based on Single Month Maps  

 
# settings 
#install.packages() 

library(raster) 
library(rgdal) 
library(caret) 
library(randomForest) 
library(snow) 
 
setwd("C:/Users/DaLued/Desktop/Thesis/Conversions/map1") 
 
# import maps 
maps=list() 
maps[[1]]=raster("C:/Users/DaLued/Desktop/Thesis/Conversions/map1.ti
f") 
maps[[2]]=raster("C:/Users/DaLued/Desktop/Thesis/Conversions/map2.ti
f") 
maps[[3]]=raster("C:/Users/DaLued/Desktop/Thesis/Conversions/map3.ti
f") 
maps[[4]]=raster("C:/Users/DaLued/Desktop/Thesis/Conversions/map4.ti
f") 
maps[[5]]=raster("C:/Users/DaLued/Desktop/Thesis/Conversions/map5.ti
f") 
maps[[6]]=raster("C:/Users/DaLued/Desktop/Thesis/Conversions/map6.ti
f") 
maps[[7]]=raster("C:/Users/DaLued/Desktop/Thesis/Conversions/map7.ti
f") 
maps[[8]]=raster("C:/Users/DaLued/Desktop/Thesis/Conversions/map8.ti
f") 
maps[[9]]=raster("C:/Users/DaLued/Desktop/Thesis/Conversions/map9.ti
f") 
maps[[10]]=raster("C:/Users/DaLued/Desktop/Thesis/Conversions/map10.
tif") 
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# convert raster type to factor 
for(i in 1:length(maps)){ 
  maps[[i]]=as.factor(maps[[i]]) 
} 
 
#stack maps 
maps=stack(maps) 
projection(maps)=CRS("+proj=utm +zone=29 +datum=WGS84 +units=m 
+no_defs +ellps=WGS84 +towgs84=0,0,0") 
 
# import LUCAS data 
p=readOGR("C:/Daria/Data/Sentinel/tiff1","p3") 
 
# reclassify LUCAS to Austrian nomenclature 
a=which(p$SURVEY_LC1==c("A11")|p$SURVEY_LC1==c("A21")|p$SURVEY_LC1==
c("A22")) 
p@data[a,"austria"]="1" 
 
b=which(p$SURVEY_LC1==c("F10")|p$SURVEY_LC1==c("F20")|p$SURVEY_LC1==
c("F40")) 
p@data[b,"austria"]="2" 
 
c=which(p$SURVEY_LC1==c("G11")|p$SURVEY_LC1==c("G21")) 
p@data[c,"austria"]="3" 
 
d=which(p$SURVEY_LC1==c("C10")|p$SURVEY_LC1==c("C22")|p$SURVEY_LC1==
c("C32")|p$SURVEY_LC1==c("C33")|p$SURVEY_LC1==c("D10")|p$SURVEY_LC1=
=c("D20")|p$SURVEY_LC1==c("B71")|p$SURVEY_LC1==c("B72")|p$SURVEY_LC1
==c("B73")|p$SURVEY_LC1==c("B74")|p$SURVEY_LC1==c("B75")|p$SURVEY_LC
1==c("B76")|p$SURVEY_LC1==c("B81")|p$SURVEY_LC1==c("B82")|p$SURVEY_L
C1==c("B83")|p$SURVEY_LC1==c("Bx2")) 
p@data[d,"austria"]="4" 
 
e=which(p$SURVEY_LC1==c("E10")|p$SURVEY_LC1==c("E20")|p$SURVEY_LC1==
c("E30")) 
p@data[e,"austria"]="5" 
 
f=which(p$SURVEY_LC1==c("B11")|p$SURVEY_LC1==c("B12")|p$SURVEY_LC1==
c("B15")|p$SURVEY_LC1==c("B16")|p$SURVEY_LC1==c("B17")|p$SURVEY_LC1=
=c("B18")|p$SURVEY_LC1==c("B19")|p$SURVEY_LC1==c("B21")|p$SURVEY_LC1
==c("B31")|p$SURVEY_LC1==c("B42")|p$SURVEY_LC1==c("B43")|p$SURVEY_LC
1==c("B53")|p$SURVEY_LC1==c("B54")|p$SURVEY_LC1==c("B55")|p$SURVEY_L
C1==c("Bx1")) 
p@data[f,"austria"]="6" 
 
p@data$austria=as.factor(p@data$austria) 
 
 
# extract map values to LUCAS points 
values=extract(maps,p,df=TRUE) 
for (i in 2:ncol(values)){ 
  values[,i]=as.factor(values[,i]) 
} 
values=values[,-1] # delete first column (Points' ID) 
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# fit randomForest with original package 
randomForest.fit=randomForest(values, p$austria,mtry=10) 
 
preds_rf=predict(maps,randomForest.fit) 
writeRaster(preds_rf,"C:/Users/Daria/Desktop/Thesis/Conversions/map_
RF_randomForest_p3.tif",datatype="INT1U",overwrite=TRUE) 
Sys.time()-time1 
 
 
# multinominal classification for comparison 
library(nnet) 
multinom.fit=multinom(p$austria~., data=values) 
 
time1=Sys.time() 
beginCluster() 
preds_rf = clusterR(maps, raster::predict, args = list(model = 
multinom.fit)) 
endCluster() 
writeRaster(preds_rf,"C:/Users/Daria/Desktop/Thesis/Conversions/map_
regression_multinom_p3.tif",datatype="INT1U",overwrite=TRUE) 
Sys.time()-time1 

 

3. Code for Map based on Classification of 100 Bands 

 
# settings 

#install.packages() 
library(raster) 
library(rgdal) 
library(caret) 
library(e1071) 
library(randomForest) 
 
setwd("C:/Users/Daria/Desktop/Thesis/tiffs") 
 
# import 10m TIFF images 
files10=dir(pattern = "10m.*\\.tif$") 
files10 
image10=stack(files10) 
 
#Downscale 20m resolution bands: Using raster package function 
disaggregate 
files20= dir(pattern = "20m.*\\.tif$") 
files20 
 
image20=stack(files20) 
image20d= disaggregate(image20, fact=2) 
image20d 
 
#Join image stacks 
image=stack(image10,image20d) 
image 
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# import LUCAS data 
p=readOGR("C:/Users/Daria/Desktop/Thesis/Points","p3") 
 
p$SURVEY_LC1 
table(p$SURVEY_LC1)  
 
# reclassify LUCAS to Austrian nomenclature 
a=which(p$SURVEY_LC1==c("A11")|p$SURVEY_LC1==c("A21")|p$SURVEY_LC1==
c("A22")) 
p@data[a,"austria"]="1" 
 
b=which(p$SURVEY_LC1==c("F10")|p$SURVEY_LC1==c("F20")|p$SURVEY_LC1==
c("F40")) 
p@data[b,"austria"]="2" 
 
c=which(p$SURVEY_LC1==c("G11")|p$SURVEY_LC1==c("G21")) 
p@data[c,"austria"]="3" 
 
d=which(p$SURVEY_LC1==c("C10")|p$SURVEY_LC1==c("C22")|p$SURVEY_LC1==
c("C32")|p$SURVEY_LC1==c("C33")|p$SURVEY_LC1==c("D10")|p$SURVEY_LC1=
=c("D20")|p$SURVEY_LC1==c("B71")|p$SURVEY_LC1==c("B72")|p$SURVEY_LC1
==c("B73")|p$SURVEY_LC1==c("B74")|p$SURVEY_LC1==c("B75")|p$SURVEY_LC
1==c("B76")|p$SURVEY_LC1==c("B81")|p$SURVEY_LC1==c("B82")|p$SURVEY_L
C1==c("B83")|p$SURVEY_LC1==c("Bx2")) 
p@data[d,"austria"]="4" 
 
e=which(p$SURVEY_LC1==c("E10")|p$SURVEY_LC1==c("E20")|p$SURVEY_LC1==
c("E30")) 
p@data[e,"austria"]="5" 
 
f=which(p$SURVEY_LC1==c("B11")|p$SURVEY_LC1==c("B12")|p$SURVEY_LC1==
c("B15")|p$SURVEY_LC1==c("B16")|p$SURVEY_LC1==c("B17")|p$SURVEY_LC1=
=c("B18")|p$SURVEY_LC1==c("B19")|p$SURVEY_LC1==c("B21")|p$SURVEY_LC1
==c("B31")|p$SURVEY_LC1==c("B42")|p$SURVEY_LC1==c("B43")|p$SURVEY_LC
1==c("B53")|p$SURVEY_LC1==c("B54")|p$SURVEY_LC1==c("B55")|p$SURVEY_L
C1==c("Bx1")) 
p@data[f,"austria"]="6" 
 
table(p$austria) 
 
# Extract pixel values to LUCAS points 
values =extract(image,p) 
 
# randomForest 
ctrl = trainControl(method = "repeatedcv",repeats = 2) 
randomForest.fit=train(x=values, y=p$austria, method="rf", 
ntree=500,tuneLength=10,trControl=ctrl,summaryFunction = TRUE) 
# see fucntion 'randomForest' in package randomForest 
plot(randomForest.fit) 
save.image("C:/Users/Daria/Desktop/Thesis/tiffs/all.RD") 
 
# image classification 
time1=Sys.time() 
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map=predict(image,randomForest.fit) 
Sys.time()-time1 
plot(map) 
writeRaster(map,"map.tif",datatype="INT1U",overwrite=TRUE) 
save.image("C:/Users/Daria/Desktop/Thesis/tiffs/all.RData") 

 

4. Code for Classification based on Original LUCAS Data 

 
# settings 
#install.packages() 
library(raster) 
library(rgdal) 
library(caret) 
library(e1071) 
library(randomForest) 
 
setwd("C:/Users/Daria/Desktop/2.06/tiffs") 
 
getwd() 
 
# import 10m TIFF images 
files10=dir(pattern = "10m.*\\.tif$") 
files10 
image10=stack(files10) 
 
#Downscale 20m resolution bands: Using raster package function 
disaggregate 
files20= dir(pattern = "20m.*\\.tif$") 
files20 
 
image20=stack(files20) 
image20d= disaggregate(image20, fact=2) 
image20d 
 
#Join image stacks 
image=stack(image10,image20d) 
image 
 
# import LUCAS data 
p=readOGR("C:/Users/Daria/Desktop/2.06/tiffs","PT_2015_20160921") 
p=crop(p,image) 
#plot(image[[1]]) 
#plot(p,add=T) 
 
p$SURVEY_LC1 
table(p$SURVEY_LC1)  
 
#eliminate empty classes of land cover class labels- not necessary 
when pre-cropping in Arc 
p$SURVEY_LC1=droplevels(p$SURVEY_LC1) 
table(p$SURVEY_LC1)  
 
#Drop H21 class 
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g=which(!p$SURVEY_LC1==c("H21")) 
p@data[g,"austria"]="0" 
p=p[g,] 
 
# reclassify LUCAS to Austrian nomenclature 
a=which(p$SURVEY_LC1==c("A11")|p$SURVEY_LC1==c("A21")|p$SURVEY_LC1==
c("A22")) 
p@data[a,"austria"]="1" 
 
b=which(p$SURVEY_LC1==c("F10")|p$SURVEY_LC1==c("F20")|p$SURVEY_LC1==
c("F40")) 
p@data[b,"austria"]="2" 
 
c=which(p$SURVEY_LC1==c("G11")|p$SURVEY_LC1==c("G21")) 
p@data[c,"austria"]="3" 
 
d=which(p$SURVEY_LC1==c("C10")|p$SURVEY_LC1==c("C22")|p$SURVEY_LC1==
c("C32")|p$SURVEY_LC1==c("C33")|p$SURVEY_LC1==c("D10")|p$SURVEY_LC1=
=c("D20")|p$SURVEY_LC1==c("B71")|p$SURVEY_LC1==c("B72")|p$SURVEY_LC1
==c("B73")|p$SURVEY_LC1==c("B74")|p$SURVEY_LC1==c("B75")|p$SURVEY_LC
1==c("B76")|p$SURVEY_LC1==c("B81")|p$SURVEY_LC1==c("B82")|p$SURVEY_L
C1==c("B83")|p$SURVEY_LC1==c("Bx2")) 
p@data[d,"austria"]="4" 
 
e=which(p$SURVEY_LC1==c("E10")|p$SURVEY_LC1==c("E20")|p$SURVEY_LC1==
c("E30")) 
p@data[e,"austria"]="5" 
 
f=which(p$SURVEY_LC1==c("B11")|p$SURVEY_LC1==c("B12")|p$SURVEY_LC1==
c("B15")|p$SURVEY_LC1==c("B16")|p$SURVEY_LC1==c("B17")|p$SURVEY_LC1=
=c("B18")|p$SURVEY_LC1==c("B19")|p$SURVEY_LC1==c("B21")|p$SURVEY_LC1
==c("B31")|p$SURVEY_LC1==c("B42")|p$SURVEY_LC1==c("B43")|p$SURVEY_LC
1==c("B53")|p$SURVEY_LC1==c("B54")|p$SURVEY_LC1==c("B55")|p$SURVEY_L
C1==c("Bx1")) 
p@data[f,"austria"]="6" 
 
table(p$austria) 
 
 
# Extract pixel values to LUCAS points 
values =extract(image,p) 
 
# randomForest 
ctrl = trainControl(method = "repeatedcv",repeats = 2) 
randomForest.fit=train(x=values, y=p$austria, method="rf", 
ntree=500,tuneLength=10,trControl=ctrl,summaryFunction = TRUE) 
# see fucntion 'randomForest' in package randomForest 
plot(randomForest.fit) 
 
 
# image classification 
time1=Sys.time() 
map=predict(image,randomForest.fit) 
Sys.time()-time1 
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plot(map) 
writeRaster(map,"mapLUCAS.tif",datatype="INT1U",overwrite=TRUE) 

 

5. Code for Accuracy Assessment 

 
#install.packages() 
library(raster) 
library(rgdal) 
library(caret) 
library(lulcc) 
 
#load maps 
maps=raster("maps.tif") 
maps 
s5=raster("s5.tif") 
s5 
ss859=raster("map859.tif") 
ss859 
ss880=raster("map880.tif") 
ss880 
luc=raster("mapLUCAS.tif") 
luc 
 
#load accuracy assessment points 
p<-readOGR("C:/Users/Daria/Desktop/AA","AAP2lim_corrected") 
p$SURVEY_LC1 
a<-which(p$SURVEY_LC1==c("A11")) 
p@data[a,"austria"]<-"1" 
 
b<-which(p$SURVEY_LC1==c("F40")) 
p@data[b,"austria"]<-"2" 
 
c<-which(p$SURVEY_LC1==c("G11")) 
p@data[c,"austria"]<-"3" 
 
d<-which(p$SURVEY_LC1==c("D10")) 
p@data[d,"austria"]<-"4" 
 
e<-which(p$SURVEY_LC1==c("E10")) 
p@data[e,"austria"]<-"5" 
 
f<-which(p$SURVEY_LC1==c("B11")) 
p@data[f,"austria"]<-"6" 
 
table(p$austria) 
 
 
#extract values for AAP locations 
values <-extract(maps,p) 
table(values) 
 
values2 <-extract(s5,p) 
table(values2) 
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values3 <-extract(ss859,p) 
table(values3) 
 
values4 <-extract(ss880,p) 
table(values4) 
 
values5 <-extract(luc,p) 
table(values5) 
 
#create data frame from values 
 
df=data.frame(values,p$austria) 
 
conf_mat_tab1 <- table(lapply(df, factor, levels = seq(1, 6, 1))) 
confusionMatrix(conf_mat_tab1) 
 
#User Accuracy 
diag(conf_mat_tab1) /rowSums(conf_mat_tab1) 
#Producer Accuracy 
diag(conf_mat_tab1) /colSums(conf_mat_tab1) 
 
df2=data.frame(values2,p$austria) 
 
conf_mat_tab2 <- table(lapply(df2, factor, levels = seq(1, 6, 1))) 
confusionMatrix(conf_mat_tab2) 
 
#User Accuracy 
diag(conf_mat_tab2) /rowSums(conf_mat_tab2) 
#Producer Accuracy 
diag(conf_mat_tab2) /colSums(conf_mat_tab2) 
 
 
df3=data.frame(values3,p$austria) 
 
conf_mat_tab3 <- table(lapply(df3, factor, levels = seq(1, 6, 1))) 
confusionMatrix(conf_mat_tab3) 
 
#User Accuracy 
diag(conf_mat_tab3) /rowSums(conf_mat_tab3) 
#Producer Accuracy 
diag(conf_mat_tab3) /colSums(conf_mat_tab3) 
 
df4=data.frame(values4,p$austria) 
 
conf_mat_tab4 <- table(lapply(df4, factor, levels = seq(1, 6, 1))) 
confusionMatrix(conf_mat_tab4) 
 
#User Accuracy 
diag(conf_mat_tab4) /rowSums(conf_mat_tab4) 
#Producer Accuracy 
diag(conf_mat_tab4) /colSums(conf_mat_tab4) 
 
df5=data.frame(values5,p$austria) 
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conf_mat_tab5 <- table(lapply(df5, factor, levels = seq(1, 6, 1))) 
confusionMatrix(conf_mat_tab5) 
 
#User Accuracy 
diag(conf_mat_tab5) /rowSums(conf_mat_tab5) 
#Producer Accuracy 
diag(conf_mat_tab5) /colSums(conf_mat_tab5) 

 


