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MONITORING AND EVALUATION OF THE BEST MAPPING 

APPROACH OF THE ENVIRONMENTAL IMPACTS AND LAND 

COVER CHANGES CAUSED WITH THE REVEAL OF THE 

QUARRY  USING THE LANDSAT AND UAV IMAGES  

 

 

ABSTRACT 

 

The major incidents caused from mine waste and poor monitoring of the quarry sites in 

Serbia has caused the formation of a large number of contaminated areas that are causing 

environmental and social impacts and land cover changes. Related impacts in the 

European countries has initiated the formation of the environmental legislation for the 

prevention of the quarry risks on the environment. This project evaluates the EU MWD 

Protocol on the real case of the quarry site “Gradinje”.  The protocol is linked with the 

GIS system and showed the presence of the contamination, which later was mapped using 

the most adequate classification approach. Pixel based image analysis approaches for 

classifying land cover classes are compared using three supervised classification 

algorithms: maximum likelihood (ML), support vector machine (SVM) and random forest 

(RF). Concerning the comparison between different classification predictions, the 

McNemar test indicated that the observed difference between the two machine learning 

algorithms (RF and SVM) was not statistically significant (p = 0.2278 > 0.05). However, 

there was not a statistical significant difference (p > 0.05) in classification accuracy 

between map produced using SVM algorithm and RF algorithm. Classification based on 

SVM and RF algorithms produced map that is more visually adequate depiction of land 

cover classes than that produced by ML algorithm. Overall, two machine learning 

algorithms seems superior than ML algorithm in land cover classification using medium 

spatial resolution imagery in term of performance based on classification accuracy.  
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Praćenje uticaja kamenoloma na životnu sredinu i društvo korišćenjem 

različitih metoda mapiranja terena, upotrebom Landsat i slika 

bespilotnih letjelica 

 

 

SAŽETAK 

Značajni incidenti prouzrokovani minskim otpadom i lošim praćenjem nalazišta 

kamenoloma u Srbiji doveli su do stvaranja velikog broja zagađenih površina koje 

izazivaju ekološke i društvene uticaje i promjene zemljišnog pokrivača. Srodni uticaji u 

evropskim zemljama pokrenuli su formiranje ekološkog zakonodavstva za sprečavanje 

rizika kamenoloma na životnu sredinu. Ovaj master rad vrši primjenu unapred definisanog 

protokola o rudnom otpadu na stvarnom slučaju kamenoloma "Gradinje". Protokol je 

povezan sa GIS sistemom i pokazao je prisustvo zagađenosti, koja je naredno mapirana 

koristeći najadekvatniji algoritam klasifikacije. Poređenje pikselskih pristupa za 

klasifikaciju promjena zemljišnog pokrivača izvršeno je koristeći tri izabrana algoritma: 

metodu maksimalne vjerodostojnosti (ML), metodu pridruženih vektora (SVM) i metodu 

nasumične šume (RF). Što se tiče poređenja između različitih rezultata klasifikacije, 

McNemarov test je pokazao da posmatrana razlika između dva mašinska algoritma (RF i 

SVM) nije bila statistički značajna (p = 0,2278> 0,05). Međutim, statistički značajna 

razlika (p> 0.05) nije pronađena u tačnosti klasifikacije između mapa proizvedenih 

korišćenjem SVM algoritma i RF algoritma. Klasifikacija zasnovana na SVM i RF 

algoritmima je formirala mapu koja vizuelno nudi adekvatno prikazivanje različitih klasa 

zemljišnog pokrivača, te koja se veoma razlikuje od one proizvedene algoritmom ML. 

Sve u svemu, dva algoritma koji pripadaju mašinskim algoritmima izgledaju superiorniji 

od algoritma ML u klasifikaciji zemljišnog pokrivača koristeći slike srednje prostorne 

rezolucije u smislu performansi zasnovane na preciznosti klasifikacije.  
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1. INTRODUCTION 

The main environmental effects caused with the discovery of the quarry are affecting the 

agricultural land by modification and pollution of the nearby, pre-existing ecosystems.  

With regards to the prevailing environmental legislation and its enforcement, there is total 

lack of efforts in monitoring, rehabilitation, restoration or post-mining programmes for 

minimization of adverse environmental impacts (Lad R. J. and Samant J. S. 2014). 

Traditional ways of monitoring the quarry using the different surveying data acquisition 

techniques is very time consuming and cost effective. Remote Sensing data and tools have 

been used lately as a new cost-effective technique for mapping and monitoring of the land 

cover changes. The advantage of using this technique is representation of the large areas 

at high level of detail on spectral and spatial level, thus it made easier and increased the 

interest in the monitoring of the environmental effects and risks of the open pit-mine on 

the surrounding area.  Most of the negative environmental impacts are created when the 

quarrying is not performed according to the official legislation. The major environmental 

and socio-economic problems related to quarrying during this study include, landscape 

alteration, hill cutting affecting local biodiversity, generation of unproductive wastelands, 

dust pollution, noise pollution, illegal stone extraction, accidents and in some areas 

lowering of groundwater table (Maponga and Munyanduri, 1998). The reveal of the quarry 

affects the environment through the process of quarrying which involves excavation and 

blasting, transport and disposal of mine waste.  

For successful temporal mapping of the land cover changes, it is important to select the 

appropriate classification technique. Various classification algorithms sub pixel, object 

based, machine learning or traditional algorithms were used for mapping of the open pit 

mine. Previously, classical probabilistic based algorithms (eg: maximum likelihood) were 

used abundantly; but the applicability of these algorithm is not reliable due to its nature to 

deal only on normally distributed data (Belgiu & Drăgu, 2016). Nonparametric machine 

learning algorithms is gaining popularity for classification purposes, as they are not relied 

on arbitrary data distribution (Immitzer et al., 2012). Among others, random forest and 

support vector machine are considered as widely used algorithms for classifying highly 

dimensional data (Li et al., 2013). 
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1.1 Motivation 
 

The motivation for conducting this type of project is relied on several reasons. Firstly, 

environmental effects caused with the quarrying activities have lack of effort in the 

monitoring, post-mining activities, risk assessment and evaluation of the mining activities 

on the surrounding area. Rapid growth of the construction activity  in order to meet the 

modern requirements of construction of the highways and buildings in surrounding cities 

has enormously increased demand for building materials in area of city Dimitrovgrad.  For 

the afore mentioned purposes, building material is mainly taken from the quarries. On the 

other hand it creates changes on the environmental and  social problems when quarry 

becomes revealed (Lad R. J. and Samant J. S. 2014). Major environmental effects are 

destruction of vegetation, disruption of animal habitats, diversion and blockage of natural 

drainage systems, soil erosion and river siltation, noise and vibration; and dust pollution 

(Maponga and Munyanduri, 1998). Existence of the afore mentioned environmental 

effects has led to the conflicts between the mine owners and the locals living near the 

quarry sites. The issue gained media attention but unfortunately no actions have been 

taken regarding to that, therefore my motivation has arisen to perform the quarry reveal 

analysis and to evaluate the environmental risks of the quarry and its impact on the 

population and to put the analysis into action in order to prevent in future the similar 

actions and results. According to the interviews of the inhabitants the excavating activities 

and explosions in the quarries were strong enough to cause the damage of the nearby 

houses and as well as to increase the effects of the environmental noise on the nearby 

inhabitants (Figure 1). 

Figure 1. Damages on the houses caused by quarry excavation activities, 

Resource:http://rs.n1info.com/a210245/Vesti/Vesti/Dimitrovgrad-Mestani-cekaju-

odstetu-Koridora.html 

http://rs.n1info.com/a210245/Vesti/Vesti/Dimitrovgrad-Mestani-cekaju-odstetu-Koridora.html
http://rs.n1info.com/a210245/Vesti/Vesti/Dimitrovgrad-Mestani-cekaju-odstetu-Koridora.html
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Secondly, the classification results may provide sufficient and reliable information for 

developing the quarry monitoring processes, which can be proved substantial on 

prevention of the negative effects of the quarrying on the surrounding area. Finally, the 

outcome of the project could be a significant source of information for other purposes 

(research etc.), estimating the current situation of the land cover changes with the quarry 

reveal as well as the evaluation of environmental effects of the quarry in spatial terms 

through time and the potential essential rehabilitation of some specific but critical areas 

(e.g. natural habitats etc.) for minimization of the environmental effects of the quarry.      

It should be highlighted the fact that even though there are few studies about the 

comparative effectiveness of the different classifying algorithms, most of them are 

focused on purely land cover classification. Thus, it is observed that there is a relatively 

research gap in the classification of the open pit mines.  On the other hand, the benefits of 

this type of project far exceeds its disadvantages providing new and constructive solutions 

to society protecting the valuable resources of the natural environment. To this end, robust 

classifiers are used in a comparative manner, so that we may explore the effectiveness of 

them and adopt the most suitable one in similar projects. The added value of this project 

is reflected on the flexibility of applicability to any study area after the necessary 

adjustment to local peculiarities. 

 

1.2 Goals and objectives 
 

The aim of the thesis is to find out which one of the three selected machine learning 

algorithms gives the most accurate results in the context of land cover changes caused 

with the impact of the quarry reveal. The comparison of the following algorithms: 

maximum likelihood (ML approach) and machine learning algorithms [i.e. support vector 

machine (SVM) and random forest (RF)] was performed in order to classify the study area 

using satellite imagery with spatial resolution of 30 m. Visual inspection and statistical 

assessment of classification outputs; and performance evaluation of the classification 

models are basic guidelines for comparison. The main evaluation parameters used to 

compare afore mentioned classifiers, are overall accuracy, kappa coefficient, MC Nemar 

test and the time of execution of each classifier. The experimentation and execution of the 
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main goal of this thesis is done using the following packages of R software: 

‘randomForest’ package for the execution of the RF algorithm while for the SVM 

classification ‘e1071’ package was retrieved. All classification models were developed 

using the ‘caret’ packages (Kuhn, 2016) for single consistent environment for training and 

parameters tuning. The input data for the software were Landsat images, and output are 

classified images of the land cover for the selected study area.  

Sub objective of this project is to evaluate the impact of the quarrying activities and quarry 

itself on the surrounding environment. For that purpose, tasks were to organize, test and 

evaluate RGB data collection using the UAV that are suitable for the modelling of the 

quarry. Creation of the DSM, orthophoto and point cloud mesh is used for the achieving 

the clearer insight in study area and it characteristics. Basic analysis of the study area were 

perfomed in order to meet the requirements and to perform the analysis of risk assessment 

according to  the local thresholds of EU MWD (Mine Waste Directive) pre-selection 

Protocol. 

 

1.3 Study Area 
 

Considering the need to cover different types of land cover classes and changes in it caused 

with the open pit mine excavations in order to test my mapping approach the study area 

in the southeastern part of Serbia in the district Pirot was chosen (Figure 2.). The study 

area is distanced about 2km from the border with Bulgaria. It covers about 1000 square 

meters.  The prevalent land cover types of the study region primarily constitute of mixed 

forest types, cultivation fields, water bodies, human settlement and quarry sites.  In the 

study area live 178 adult people, with the average age of the population as follows 47.2% 

for the male and 47.3% for the female residents. There are 84 households and the average 

number of the people in the household is 2.43. Population in this area is very 

heterogeneous, with majority of Bulgarian population since the settlement is located very 

close to the border. According to the censuses from the previous years it is slightly in 

decrease.  
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The quarry events affected some types of land cover accompanied with multiple 

environmental and socioeconomic consequences with significant changes at two locations 

in the central and northern part of the study area. The presence of two quarry sites within 

the short distances to the nearby settlements and the water source, makes reasonable the 

exploration and monitoring of the impacts and potential risks of the quarry activities.  

 

             

Figure 2. Study area, Author: Nisic 2018, Resources: https://sr.wikipedia.org/  

 

 

 

 

 

 

https://sr.wikipedia.org/
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2. ENVIRONMENTAL EFFECTS AND POSSIBLE RISKS 

OF THE ACTIVITIES IN QUARRY SITE 
 

2.1 Theoretical framework 
 

The most obvious engineering impact of quarrying is change in geomorphology and 

conversion of land use, with the associated change in visual scene (Langer 2001). Most 

engineering impacts can be controlled, mitigated, kept at tolerable levels and restricted to 

the immediate vicinity of the aggregate operation by employing responsible operational 

practices that use available engineering techniques and technology (Langer 2001). 

Residents near quarry sites have been interviewed in order to get their opinion and views 

regarding the quarry operations in Vellarada panchayat and according to the results the 

shortage of water and pollution were the main negative impacts of quarrying (Chandran 

2015). As well as during the rainy season the wells are flooded, and the water level 

remained in a stagnant position up to several months but after quarry function started even 

in rainy month also water level goes down rapidly. Maximum of the respondents 

complained about the problems related to skin and respiratory diseases (Chandran 2015). 

According to the residents responds in the final conclusion majority of them were against 

quarry operation close to inhabited areas. 

Surface mining activities range from large open-cast coal and base metal mines, too much 

smaller aggregate (rock, gravel and sand), industrial minerals (potash, clay) and building 

materials (granite, stone and marble) quarries. Mapping mining activities and evaluating 

associated environmental concerns are difficult problems because of the extensive area 

affected and the large size of individual mines. Monitoring and controlling these changes 

have been more difficult because of the expense and time in producing reliable and up-to-

date mapping (Saroglu et al. 2005). The purpose of digital land cover classification is to 

link the spectral characteristics of the image to a meaningful information class value, 

which can be displayed as a map so that resource managers or scientists can evaluate the 

landscape in an accurate and cost-effective manner (Weber and Dunno 2001). 
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 For the purpose of detecting the land cover changes caused with the discovery of the 

quarry in the article of Saroglu et al. (2005), unsupervised classification technique 

ISODATA (Iterative Self Organizing Data Analysis Technique) was performed, taking 

into account 4 land cover types: forest, water, stone quarry and others. Among the afore 

mentioned land cover types the drastically change was the loss of the forest and significant 

increase of the stone quarry sites over the period of 14 years. Although mining activities 

should be organized by terms of sustainable development, mining activities have been 

executed illegally. In this concept, the distribution and expansion of these activities should 

be monitored, their environmental damages should be determined; mitigation studies 

against these damages should be performed, and regular inspections should be executed 

to keep these activities under control (Saroglu et al. 2005). 

Line drilling and sawing are modern techniques for quarrying. Line drilling (also called 

slot drilling) consists of drilling a series of overlapping holes using a drill that is mounted 

on a quarry bar or frame that aligns the holes and holds the drill in position. Sawing can 

be accomplished with a variety of saws including wire saws, belt saws, and chain (Langer 

2001). 

Nowadays, the valuation of the impact on the environment represents an integral part of 

the mining activities and, especially, of the surface ones (Latifovic et al., 2005).  

Remote sensing data allow for the identification and monitoring of pollution sources (Ress 

and Williams, 1997) and affected surfaces including abandoned land and the changes in 

using the land and the water courses (Schmidt and Glaesser, 1998). Remote sensing, by 

synoptic cover on synchronized intervals, is very useful in monitoring the perturbations 

caused by mining activities (Irons et al., 1980; Parks et al., 1987; Wier et al., 1973), 

reforesting surfaces exploitations and monitoring regenerated lands (Kandrika and 

Dwivedi, 2003; Legg, 1986).  

In the article of the Vorovencii (2011) it has been analyzed the effects that limestone 

exploitations in the outskirts of Braşov city have on the landscape, using RGB 

combination, vegetation indices and spectrum profiles. A series of Landsat 5 TM satellite 

images taken in 1984, 1989 and 2009 has been used. The results obtained show that the 

most adequate RGB combination for limestone quarries identification on this type of 
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images is the combination that includes NDVI (Vorovencii 2011). In the analysis of 

Vorovencii (2011) of the impact of the limestone quarries on the environment, it has 

suggested  that different NDVI indices such as TSAVI (Transformed Soil Adjusted 

Vegetation Index) and SAVI (Soil Adjusted Vegetation Index) can help with the 

distinction of the concreate and asphalt in the nearby places  from the limestone quarry  

which was the subject of monitoring and mapping. Detailed studies of limestone quarry 

regression analysis together with the spectrum profiles has showed that limestone quarries 

are having more significant reflectance in the red band as compared with the near infrared 

band. 

 The consequences of deforestation on the Plateau region due to mining are diverse with 

various environmental and economic implications. It has led to the loss of forest products, 

flooding and erosion, aggravation of desertification and pollution, high rate of siltation of 

streams, decline of biological diversity and acceleration of extinction of the Plateau region 

flora and Fauna (Oyinloye & Ajayi 2015).  

Based on the article of Oyinloye & Ajayi (2015) regarding the research of the 

environmental impacts of quarry on residents it has been proved that the residents living 

around 1km from the quarry were very exposed to effects of the pollution, cracking of the 

building noise as well as the presence of the some health challenges, where 24.8% of the 

residents living in the buffer zone of 3km (vulnerable area according to the NEA 

Singapore) from the quarry have reported prevalence throat infections, 39% of them had 

cough/catarrh, 14.2% reported the issue of the heart diseases, 17.7% experienced chest 

aches and 4.3% reported the existence of skin infections. According to the 

recommendations of this research the government should act in accordance with the 

pollution control policy and forbid quarrying activities in buffer zone of 3km in order to 

prevent the rate of inhalation of harmful substances by the residents. 

In the study of Koruyan et al. (2012), changes in the natural vegetation as a function of 

production rate were determined using the NDVI. To determine the extent of vegetation 

loss, NDVI images from one year to the next were subtracted from the AOI images. 

According to the author only few studies have been performed in order to assess the 

environmental risks of the quarry using the remote sensing. 
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 Hazard identification and risk assessment of the quarrying is a continual process. The 

main causes of the quarrying hazard might occur from the following mining operations 

such as falling of sides, drilling operation, blasting operation, transportation and  some of 

the natural hazards (Towl 2005). 

2.2 The EU MWD Pre-selection Protocol  
 

Major changes in the land cover as well as increase of the contaminated mine sites 

influenced the development of the EU environmental legislation in order to minimize 

potential risks of such incidents. EU commission has developed the legislation named EU 

MWD (Mine Waste Directive) pre-selection Protocol which consist of the 18 simple 

questions about contamination source, pathways and receptors. Questions of EU 

legislation have been incorporated to the GIS system, together with the crucial elements a 

such as the topographic slope and distance to the nearest surface and groundwater bodies 

to settlements and protected areas are calculated and statistically evaluated in order to 

adjust the Risk Assessment models to local conditions in Hungary (A.Abdal et al 2012). 

The European Union Directive on the Management of Waste from the Extractive 

Industries [Mining Waste Directive (MWD); Directive 2006/21/EC] requires in Article 

20 that “Member States shall ensure that an inventory of closed waste facilities, including 

abandoned waste facilities, which cause serious negative environmental impacts or have 

the potential of becoming in the medium or short term a serious threat to human health or 

the environment is drawn up and periodically updated.” According to Article 21, such 

methodologies shall allow for the establishment of the most appropriate risk assessment 

procedures and remedial actions having regard to the variation of geological, 

hydrogeological and climatological characteristics across Europe. 

Contamination RA is defined as the probability of adverse effects to humans and 

ecosystem resulting from exposure to environmental pollutants (Kolluru et al. 1996; 

Fergusson 1998; US EPA 1989, 1998; Di Sante et al. 2009; Fan et al. 2010) RA includes 

the steps of (1) hazard description, (2) dose/response (toxicity) analysis, (3) contaminant 

transport, (4) exposure assessment, (5) risk characterization and (6) risk management (Van 
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Leuwen and Hermens 1996; U.S. EPA 2002, 2007). The Protocol thresholds are based on 

the Irish regulation for the operation of ponds with respect to quarries (Safe Quarry 2008). 

The EU MWD Pre-selection Protocol (Stanley et al. 2011) is based on a ‘YES-or-NO’ 

questionnaire (Appendix) and consists of 18 questions using simple criteria available in 

existing databases readily enabling the preliminary screening of the mine waste sites for 

environmental risk. This questionnaire is used to eliminate the quarry sites which are not 

dangerous for the environment and population. The questions from the afore mentioned 

Protocol can be answered with ‘YES’, ‘NO’ or in presence of uncertainty ‘UNKNOWN’. 

In case that question is answered with ‘UNKNOWN’ it would follow the same path as 

‘YES’ answer since there is possibility of contamination and it should lead toward the 

further examination. In case that we have answer ‘NO’ for the all question in one section, 

there is no further need for the examination.  

 The EU MWD Pre-selection Protocol, as shown in its flowchart (Appendix 1), consists 

of four sections: (1) Known serious impact, (2) Source, (3) Pathways and (4) Receptors.  

2.2.1 First section of the EU MWD Pre-Selection Protocol 

 

First section seeks to explore if there was any accident regarding the health issues in the 

area around and in the quarry site. It consists of the main question for the all further 

analysis, as following: 

Q1: Is the mine waste facility known to have an incident which had a serious impact on 

human health or environment (Stanley et al. 2011)? 

The first question of the EU MWD Pre-selection Protocol coincides with the base question 

of my master thesis, and one of the aims why I have chosen this topic and research area. 

Since the revelation of the quarry “Gradinje” has gained media attention in Serbia but in 

other Balkan countries, it attracted my attention as well and created a desire to explore 

more about the situation by combining the free data from the internet such as Landsat 

images, Google Earth images, polygons of the area and land cover data and the data 

obtained from the measurements on the field (UAV images). According to the information 

from medias and the sill images from the field, there is evidence of potential risks of the 
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quarry on the environment, as well as the presence of the physical damage of the nearby 

houses caused in opinion of the inhabitants from quarry blasts and excavations. According 

to the interviews of the inhabitants, residents who are living within the circle of 1km from 

the quarry site were exposed to the effects of the pollution, so they experienced the several 

health issues such as throat, cough and skin infections. There was one event of the heart 

disease of the inhabitant who claimed that there was absence of the pre-existing conditions 

of such illness before the excavations 

(http://rs.n1info.com/a210245/Vesti/Vesti/Dimitrovgrad-Mestani-cekaju-odstetu-

Koridora.html). Since the data were not confirmed with the medical documentation of the 

inhabitant, the following examinations of the Protocol were performed. 

2.2.2 Section 2 of the EU MWD Pre-Selection Protocol 

 

Section 2 seeks to explore the contamination of the quarry site taking into the account 

chemical and physical structure of the quarry site (source questions Q2-Q10). It is divided 

in two parts, where the first one tends to give an answer regarding the content of the source 

pollution while the second focuses on the stability of the quarry. List of the questions that 

are involved in this section are represented in the Table 2. Since the data about the 

chemical elements of the quarry structure were not available in the exploration part 

responses regarding the 2A section were entered as a ‘UNKNOWN’, which indirectly 

leads the process to the further examination.  

Regarding the section 2B, exploration of the quarry stability was performed using the 

available UAV images in form of ortho-mosaic and 3D model of terrain. In this section 

there were performed two analyses that involved creation of the 3D model from the sill 

UAV images and the simple measurements of the distances between quarry and facility, 

height of the waste heap, total area of the quarry and the slope of the foundation. The afore 

mentioned analysis is shown on the following map depicted in Figure 3. 

 

http://rs.n1info.com/a210245/Vesti/Vesti/Dimitrovgrad-Mestani-cekaju-odstetu-Koridora.html
http://rs.n1info.com/a210245/Vesti/Vesti/Dimitrovgrad-Mestani-cekaju-odstetu-Koridora.html
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Figure 3. Elevational model of the quarry “Gradinje” 

It was not objective of the report only to take into the account the existing information 

about the quarry site but to perform the analysis of the terrain based on the real data 

obtained on the field.    

Question Issue YES NO UNKNOWN 

                     2A. SOURCE-contents                                                Is the mine waste facility a 

potential source of                                                                                                             pollutants?                              

Q2 

Did the mine work sulphide minerals 

or produce a waste containing sulphide 

minerals? 

    UNKNOWN 
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Q3 

Were any of the following produced 

from the mined mineral-Ag, As, Ba, 

Be, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Se, 

Sn, Te, TL, U, V, Zn or asbestos? 

    UNKNOWN 

Q4 
Did the mine use dangerous chemicals 

to process the mined minerals? 
    UNKNOWN 

2B.  SOURCE-stability                                                      Is the source physically stable?                                                                                                                                                                                                                       

Q5 Is the waste facility a tailings lagoon?  YES     

Q6 
Is the area of the tailings lagoon > 10 

000m2? 
  NO    

Q7 
Is the height of the tailings lagoon > 

4m within 50m of the facility? 
 YES     

Q8 
Is the area of the waste heap >10 

000m2 
  NO    

Q9 Is the height of the waste heap >20m?  YES     

Q10 Is the slope of the foundation >1:12?  YES     

 Table 1. Questions of the second section of the EU MWD Pre-selection Protocol (Q2 to Q10) 

2.2.3 Third section of the EU MWD Pre-Selection Protocol 

 

Third section consist of four questions that are tending to explain the possible pathways 

from which receptors can have negative impact of the mine waste. In order to get 

responses in the section 3, there were used 2 types of data: Google Earth images as well 

as elevational model made from the UAV images.  

From the planar measurements on the Landsat images it has been concluded that the 

surface water body (river) is distanced within the circle of 1km from the quarry sites. 

However, there is no indication of the groundwater beneath the mine waste, thus this 

question was marked as ‘UNKNOWN’. From the sill images of the UAV, there could be 
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noticed that the quarry site is uncovered and on significantly higher altitude, making the 

surrounding agriculture fields and settlement directly exposed to the air transmission of 

the particles of the quarry material.   

Question Issue YES NO UNKNOWN 

3.PATHWAY    Are there potential pathways for possible contamination to reach 

potential receptors?                           

Q11 

SURFACE WATER Is there a water 

course within 1km of the mine waste 

facility? 

YES     

Q12 

GROUNDWATER Is there a high 

permeability layer beneath the mine 

waste facility? 

    UNKNOWN 

Q13 
AIR Is the material within the mine 

waste facility exposed to the wind? 
YES     

Q14 
DIRECT CONTACT Is the mine waste 

facility uncovered? 
YES     

Table 2. Questions of the third section of the EU MWD Pre-selection Protocol (Q11 to Q14) 

2.2.4 Section 4 of the EU Mine Waste Directive – Pre- selection Protocol 

 

The section 4 tends to explore 4 major sensitive human and ecosystem receptors The 

median of the calculated 2 distances is calculated for all threshold limited parameters 

allowing a threshold estimation representing a 50 % probability of the site falling within 

the risk limiting distance (median-based threshold) (Abdaal et al. 2013). The Protocol 

thresholds are based on the Irish regulation for the operation of ponds with respect to 

quarries (Safe Quarry 2008). 

In the final section of the Protocol, the slope of the quarry site was measured using the 

slope function from the ArcMap 10.5.1 software, the measuring of the distances between 

water body, agriculture and facilities was performed using the Landsat images. Data about 

the settlements were obtained via the freely available internet sources.  
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The results were compared with the European thresholds values taking into the account 

geographical location, terrain type and physical factors that provided clearer insight into 

the influence of the mine waste to the environment. Thus, answers on the following 

questions (Q10 - Q18) indicated that the heap foundation slope is not within the allowed 

values with the median value of 25˚, water body is distanced about the 900m which 

regarding the EU legislation marked as an area in danger of contamination from the quarry 

material. The nearby settlements within the very short distances with the number of 187 

inhabitants are a good indicator of the potential contamination risks of the larger 

community, however the tailing lagoons are not within the area of Natura 2000 but within 

the very short distance to the agricultural and arable land and permanent crops.  

 

Figure 4. Slope of the quarry “Gradinje” 
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Question Issue 

EU 

thresholds 

(Irish 

quarry 

regulations) 

Local 

thresholds 

(median 

based) 

Basis 

Q10 
Is the heap foundation greater 

than a specified slope? 
1:12 (5˚) 21˚ -28˚    

Q11 

Is there a water body within a 

specified distance of the 

facility? 

1km 

  

 941m 

500m 
  

Q15 

Is there a settlement with more 

than a specified number of 

people within a specified 

distance of the facility? 

100   187   

     

Q16 

Is the facility within a 

specified distance from a 

water body which is at least a 

specified quality status? 

 1km 757m    

    

Q17 

Is the facility within a 

specified distance of a Natura 

2000 site? 

 1km NO    

Q18 

Is the facility within a 

specified distance of 

agricultural land? 

 1km  YES   

Table 3. Questions with threshold values (Q10, Q11 and Q15–18) of the EU MWD Pre-

selection Protocol, and the rationale behind each local threshold value 
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3. DATA AND METHODOLOGY  
 

3.1 Data acquisition 
 

For the purpose of this master thesis, two Landsat images together with the images of 

Unmanned Aerial Vehicles were used. In order to perform the monitoring of the quarry 

reveal two Landsat images were used one before and one after the quarry reveal to track 

the changes. For this reason, two images from the same season were selected, as following 

the Landsat 7 image (2011, August) and Landsat 8 image (2015, August). Images were 

chosen from the same season in order to reduce the phenological effect of the vegetation.  

Those images were obtained from Landsat Enhanced Thematic Mapper Plus (ETM+) 

which provides images from 2003 and after (based on Landsat 7 satellite), and from 

Landsat 8 which has been launched on February 11, 2013 for the year of 2015. With the 

launch of the new Landsat-8 number of composed bands had increased from 8 (Landsat -

7) to 9 bands in Landsat-8. Landsat-8 carries an improved Operational Land Imager (OLI) 

sensor and the Thermal InfraRed Sensor (TIRS). The OLI sensor provides nine spectral 

bands with a spatial resolution of 30 m, except the panchromatic band, with spectral 

resolution of 15 m. The approximate scene size is 170 km north-south by 183 km east-

west. For the purpose of this project, 6 bands were kept from both sensors (Blue; Green; 

Red; NIR; SWIR1 and SWIR2) except from the thermal infrared and panchromatic band 

which are not essential for my purpose. The spatial resolution amounts to 30 m. The 

minimum mapping unit of the project is the pixel. This is the unit to which the 

classification algorithm will be applied.   

3.2 Preprocessing of the data 
 

The preprocessing stage of acquired images was conducted in QGIS 2.16 (QGIS 

Development Team, 2016). The six bands of Landsat - 7 and Landsat - 8 imagery were 

placed in a single separate data sets for specific years 2011 (before quarry) and 2015 (after 

quarry has been discovered). The SAVI has been calculated from these individual 

measurements as follows: 
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𝑆𝐴𝑉𝐼 =
(1 + 𝐿)(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅 + 𝐿)
 

 

where L is adjustment factor, value of 0.5 was used to minimize the soil brightness; R- 

stands for the spectral reflectance measurements acquired in the visible (red) region and 

NIR - stands for the spectral reflectance measurements acquired in the near-infrared 

region. (https://en.wikipedia.org/wiki/Soil-adjusted_vegetation_index, January 2018) The 

SAVI difference was performed in order to track the changes in the soil over the period 

of 5 years.  Both images were projected to the WGS_1984_UTM_Zone_34N. One of the 

preprocessing tasks included the correction of geometric distortions of the Landsat 

images, for that reason lines were removed using the available options of the QGIS 

software based on the validity masks for each band.  

Secondary, pre-processing of the UAV images was performed using the Agisoft 

PhotoScan software, which belongs to the category of stand-alone photogrammetric 

software that allows us to create georeferenced high resolution orthophotos, dense point 

clouds, and very detailed DSMs/DTMs from the still images. The Agisoft PhotoScan 

application offers a wide range of output formats such as GeoTIFF, XYZ, Google KML, 

OBJ, VRML, COLLADA and PDF. These are very desirable formats as they allowed for 

interoperability with other GIS applications. The obtained UAV images were used as 

inputs to create the DSM, orthophoto mosaic and 3D point mesh.  These products were 

georeferenced using the GPS data provided. Ground Control Points were as well imported 

in order to improve the accuracy of the final model. The images were firstly pre-processed 

by stitching them together and then projecting them using the WGS 84, zone 7 Balkans 

coordinate system. 

3.3 Training assessment 
 

The essential training data for the 6 land cover classes was taken by visual inspection of 

the original Landsat images, since the resolution of the images was not very high it made 

this process a demanding task. In total, 200 training samples for six different classes were 

https://en.wikipedia.org/wiki/Soil-adjusted_vegetation_index
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used. In process of creating the training set, the most appropriate and representative 

polygons (field samples) were selected, based on the spectral reflectance and the geometry 

of certain types of land covers. Specifically and in general terms, I expected the water to 

be presented as black features; the forest to be depicted with deep red color; the agriculture 

fields can be discriminated easily by their geometry and the their general proximity to 

residential areas; rivers, beyond their dark color, they have a unique and very distinct 

geometry (curved lines crossing large parts of the study area) which make them quite 

recognizable; bare soil which mostly consist of the quarry area has been shown in high 

values of DN, since the degree of reflectance is too high; urban areas are shown with 

greyish (light) color – another characteristic;   

 

 

 

 

 

 

 

 

Figure 5. Training samples of the both Landsat images, Author: Nisic, 2018 

For assessing the accuracy of the classified map which derived from remote sensing 

imagery, two techniques are mostly used, namely, overall accuracy and Kappa statistics 

(Congalton, 1991). Overall accuracy is descriptive statistics, interpreted as proportion of 

correctly classified pixels in relation to user and producer accuracy (Duro et al., 2012). 

Kappa statistics is a discrete multivariate technique of accuracy assessment, which 

functions as a measure of agreement between reference data set and classification results. 

This is commonly used in assessing statistical difference for classification purposes as 

well (Congalton, 1991; Duro et al., 2012). Statistical comparison of the classifiers using 
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only kappa coefficient is not significant (Duro et al., 2012; Foody, 2004). In that case, 

McNemar’s test for paired sample nominal scale data is used by many researchers to 

assess if there is a statistically significant difference between two classifiers or not (Duro 

et al., 2012), and is therefore adopted here, so that I could proceed to the appropriate 

comparisons.  

It is crucial to compare the classification algorithm, not only by assessing the accuracy of 

results, but also by the performance of each classifier during the classification. The use of 

Receiver Operating Characteristics (ROC) curve has been used in evaluating and 

comparing algorithms calculating goodness of fit, due to the fact that the simple 

classification accuracy itself is often a poor metric for measuring performance 

(Recognition & Bradley, 1997). As ROC curve is a two-dimensional representation of a 

classifier performance, it is necessary to convert ROC performance to singular scalar 

value representing expected performance. A common method is to calculate the area under 

the ROC curve, abbreviated as AUC (Recognition & Bradley, 1997). Evaluation of each 

classifier’s goodness of fit was done by interpreting AUC value and classifiers with 

highest AUC was considered as high performer.  

A brief display of the methodology used in this section is depicted on the following 

flowchart (Figure 6). 

For each classification, a confusion matrix is presented, along with overall accuracy, 

Kappa statistics, user’s accuracy and producer’s accuracy. The McNemar’s test was 

performed to assess whether or not there exists statistically significant difference between 

different classification algorithms. In terms of performance analysis, each models’ 

goodness of fit was evaluated producing area under ROC curve of each algorithm. The 

ground truth data was used for performing accuracy assessment, statistical comparison, 

and performance evaluation. In addition, classification time was also estimated as part of 

comparison of performance efficacy for each classifier.  
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Figure 6. Main methodology of the project 
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4. EVALUATION OF THE BEST MAPPING APPROACH 

OF THE TEMPORAL MONITORING OPEN PIT MINE  

 

4.1 Model Building and tuning of classification algorithm  
 

Model building, tuning and accuracy assessment is the repetitive and simultaneous 

process, which was performed using version 3.3.2 of the 32-bit version of R (R Core 

Team, 2016) and ArcGIS 10.5.1 software for the case of Maximum likelihood 

classification. Several add-on packages were retrieved for the implementation of different 

classifiers in the study area. The classification model using RF algorithm is based on 

‘randomForest’ package (Liaw and Wiener, 2002). For the classification through SVM 

algorithm, the ‘e1071’ package was retrieved (Meyer et al., 2017). Maximum likelihood 

classification was performed in the ArcGIS 10.5.1 software due to some implementation 

problems in R software.  In order to implement classification based on maximum 

likelihood technique in R, the ‘RStoolbox’ package was exploited (Leutner and Horning, 

2017). Since the suggested package was not giving the results after the long time of 

execution (approximately 5h), the classification results were obtained using the ArcGIS 

10.5.1 software. All classification models performed in R, were developed using the 

‘caret’ packages (Kuhn, 2016) for single consistent environment for training and 

parameters tuning.  

Using the tuning parameters for each algorithm, the classification of the image of the study 

area was conducted, so that the final land cover maps are to be developed. The ‘caret’ 

package was used in order to perform tuning of the parameters for all classification 

algorithms. The 10-fold cross-validation and 3 repeats were used in order to select the 

most suitable parameters with highest accuracy of each classifier. Tuning parameters were 

considered optimal when the algorithms achieve the highest classification accuracy during 

cross validation.  The results were used for accuracy assessment and to compare the 

performance of the adopted algorithms for land cover classification.  

4.2 Maximum Likelihood (ML) based Model  
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ML is a parametric supervised classification technique which relies on the Bayes theorem. 

According to Erdas (1999) the algorithm for computing the weighted distance or 

likelihood D of unknown measurement vector X belong to one of the known classes Mc 

is based on the Bayesian equation.  

𝐷 = ln(𝑎𝑐) − [0.5 ln[|𝑐𝑜𝑣𝑐|)] − [0.5(𝑋 −𝑀𝑐)𝑇(𝑐𝑜𝑣𝑐 − 1)(𝑋 −𝑀𝑐)] 

The unknown measurement vector is assigned to the class in which it has the highest 

probability of belonging (Otukei & Blaschke 2010). The maximum likelihood 

classification assumes that spectral values of training pixels are statistically distributed 

according to a 'multivariate normal probability density function'. For each set of spectral 

input values, the distance is calculated towards each of the classes. If this distance is 

smaller than the user-defined threshold value, the class name with the shortest distance is 

assigned; otherwise, the undefined value is assigned (Toren 2001). 

 

Figure 7. Maximum likelihood classification results for the both years of the 

examination 
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In order to establish the separability boundaries between classes, the Jeffries-Matusita 

(JM) distance can be adopted. This process is more automated without the need of 

intervening in the structural parameters of the classifier.      

The scenario for maximum likelihood algorithm for both years gave quite fuzzy results, 

as it classified classes of agriculture and forest as a water bodies. It seems that 

classification of the quarry material performed in a good way, making it easy to 

distinguish the affected area over the stated period of time.   

4.3 Support Vector Machine (SVM) 
 

The theory of the SVM was originally proposed by Vapnik and Chervonenkis (1971) and 

later discussed in detail by Vapnik (1999). The success of the SVM depends on how well 

the process is trained. The easiest way to train the SVM is by using linearly separable 

classes. According to Osuna et al. (1997) if the training data with k number of samples is 

represented as {Xi, yi}, i = 1, ..., k where X € RN is an N-dimensional space and y €{-1, 

+1} is a class label then these classes are considered linearly separable if there exists a 

vector W perpendicular to the linear hyper-plane (which determines the direction of the 

discriminating plane) and a scalar b showing the offset of the discriminating hyper-plane 

from the origin (Otukei & Blaschke 2010). 

SVM uses kernels functions for establishing the decision rules “to map non-linear decision 

boundaries in the original data space into linear ones in a high dimensional space”. The 

effectiveness of SVM is primarily relied on the kernel types and parameters determining 

the limits of decision rules. In this thesis, there was performed SVM classification of the 

study area using the three types of kernel, as following: linear, radial basis and polynomial. 

According to the literature review and given results the most accurate results of the 

classification were achieved using the linear type of the kernel.  
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Figure 8. SVM classification result performed on the Landsat 7 image using the linear 

type of kernel 

Based on the visual interpretation of the achieved results the linear type of kernel provided 

the most accurate and  realistic results. The results prove to give a good overview of 

classification of the all classes, however there is observed the sparse of water pixels on 

some places, as well as mix of two classes: the quarry sites and roads, but those situations 

were not having the significant influence on the overall accuracy.  
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Figure 9. SVM classification result performed on the Landsat 8 image using the linear 

type of kernel 

4.4 Random Forest (RF)  
 

Random forest classifier is an ensemble classifier which consists of a combination of tree 

classifiers in order to make specific prediction (Rodriguez-Galiano et al., 2012).  A RF 

consists of a combination of classifiers where each classifier contributes with a single vote 

for the assignation of the most frequent class to the input vector (x), Ĉ𝑟𝑓
𝐵 =

𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑣𝑜𝑡𝑒{Ĉ𝑏(𝐱)}1
𝐵

 , where Ĉ𝑏(𝐱)  is the class prediction of the bth random forest 

tree.   

The development of a decision tree in RF algorithm is mainly depended upon the choice 

of attribute selection at each split in the tree building process (mtry) and the number of 

trees (ntree) (Belgiu & Drăgu, 2016; Pal, 2005). Default number of tree (500) in R 

packages was selected because it is reported that the errors are stabilized before this 

number of classification trees and have negligible influence on overall classification 

accuracy (Belgiu & Drăgu, 2016; Duro et al., 2012). Mtry is believed to have “sensitive” 

influence on the performance of RF classifier (Duro et al., 2012). Usually, the value of 

Mtry is set to be the square root of the number of predictor variables used (Belgiu & 

Drăgu, 2016).  

 According to the Breiman’s research and suggestion of the random forest as a innovative 

and efficient approach, here are given some of the advantages for it application in remote 

sensing: 

• It runs efficiently on large data bases. 

• It can handle thousands of input variables without variable deletion. 

• It gives estimates of what variables are important in the classification. 

• It generates an internal unbiased estimate of the generalization error (oob error).  

• It computes proximities between pairs of cases that can be used in locating 

outliers. 

• It is relatively robust to outliers and noise. 
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• It is computationally lighter than other tree ensemble methods (e.g. 

Boosting)(Rodriguez-Galiano et al. 2012). 

 

Figure 10. RF classification result performed on the Landsat 7 image 

In general terms, the results of the random forest classifier seem to be representative with 

the land cover of the study area. Definitely, this argument will be examined in the accuracy 

assessment section. The quarry areas cover a significant part of both dominant land covers, 

namely, the agricultural and forested lands as present in the reality. But, the map of 

changes will delineate the quarry areas in more detail. In the classification result for the 

year 2011 (Figure 8.), there are observed very obvious errors that should be mentioned. 

First of all, there are some urban areas on the extreme northern, central and southern parts 

of the study domain which do not agree with the ones in the reality. From the satellite 

images there could be concluded that the mentioned area consists mainly from the 

agriculture and forest land cover types.  

Moreover, there were observed the errors regarding the classification of the two classes: 

forest and agriculture, in the north eastern part of the study area of Landsat 8 image (Figure 

9.) 
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Figure 11. RF classification result performed on the Landsat 8 image 

 

4.5 Comparison of the classifiers 

 

4.5.1 Theoretical framework 

 

 Machine learning methods have been applied successfully for classification, and their use 

is increasing due to the availability of faster computing capabilities. Two machine learning 

methods which have given good results in previous investigations are Random Forest (RF) 

and Support Vector Machine (SVM) (Piragnolo et al. 2017). The analysis of the 

performance of SVM and RF has been done using three accuracy metrics: Kappa index, 

classification accuracy and classification error. The classification accuracy Ai of an 

individual program i depends on the number of samples correctly classified (true 

positives plus true negatives) and is evaluated by the formula: 

 

where t is the number of sample cases correctly classified, and n is the total number of 

sample cases. The classification error Ei of an individual program i depends on the 

https://www.gepsoft.com/gepsoft/APS3KB/Chapter09/Section2/SS03.htm
https://www.gepsoft.com/gepsoft/APS3KB/Chapter09/Section2/SS03.htm
https://www.gepsoft.com/gepsoft/APS3KB/Chapter09/Section2/SS03.htm
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number of samples incorrectly classified (false positives, plus false negatives) and is 

evaluated by the formula: 

 

where f is the number of sample cases incorrectly classified, and n is the total number of 

sample cases (https://www.gepsoft.com/gepsoft/APS3KB/Chapter09 /Section2 

/SS02.htm). 

 All of them were created using the different ways: with K-fold cross validation, using the 

validation test set. Validation with K-fold and with the validation dataset show SVM give 

better results, but RF prove to be more performing when training size is larger. 

Classification error and classification accuracy follow the trend of Kappa index (Piragnolo 

et al. 2017).  

SVM is intrinsically a contemporary binary machine learning algorithm that has been 

applied extensively in several disciplines. However, applications of binary classification 

are very limited especially in RS land cover classification where most of the classification 

problems involve more than two classes (Melgani and Bruzzone, 2004). According to the 

literature review, machine learning algorithms gave more satisfying results over the 

classical approaches.  

4.5.2 Sensitivity analysis 

 

ML classification model is automated without structural parameter, so there was no need 

for tuning of the parameters.  The overall classification accuracy achieved by ML amounts 

to 61.2% for the year 2011 and 42.8% for 2015. On the other hand, the highest 

classification accuracy value (86.0%) for the year before the discovery of the quarry and 

73.5% was obtained with RF classifier for the image of the year, 2015. SVM classifier 

gave a slightly lower classification accuracy results (82.8%) in case of the Landsat 7 

image, but for the Landsat 8 image it shows to perform better than RF model obtaining 

the overall classification accuracy of 80%. Regarding the SVM model, the combination 

of three critical parameters (cost, gamma and type of kernel) were adjusted accordingly. 

https://www.gepsoft.com/gepsoft/APS3KB/Chapter09/Section2/SS03.htm
https://www.gepsoft.com/gepsoft/APS3KB/Chapter09/Section2/SS03.htm
https://www.gepsoft.com/gepsoft/APS3KB/Chapter09%20/Section2%20/SS02.htm
https://www.gepsoft.com/gepsoft/APS3KB/Chapter09%20/Section2%20/SS02.htm
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The optimal parameters for cost and gamma were (cost = 1, gamma = 1), in case of kernel 

type the highest classification accuracy for both years was obtained using the linear type 

of kernel. Models with optimal parameters were used to produce the classified map, 

associated accuracy assessment and map comparisons. The two machine learning 

algorithms produced a visually more coherent map than ML algorithm. The major 

difference among the three classification algorithms was observed on the southern and 

central part of the study domain. Particularly, RF algorithm classified urban area in the 

central and southern part of the study area; whereas SVM algorithm classified it as 

agriculture.  

The scenario for maximum likelihood algorithm is different, central part of the study area 

as well some parts in the north and south were classified as water and roads area which 

makes it drastically different compared with the SVM and RF classifier. In addition, RF 

and ML algorithm classified the northern part of the area as a urban area whereas SVM 

classified it as agriculture. It is also obvious that ML classifier suffered in a significant 

degree compared with the other two algorithms.   

4.5.3 Accuracy Assessment and statistical comparison  

 

Accuracy assessment consisted one of the last stages for each classification procedure, 

was performed to evaluate the efficiency of each model prediction against the ground truth 

data collected using the Google Earth software. Table 4 shows the detailed confusion 

matrix for the most accurate classifier (RF) based on the training data with overall 

accuracy, user accuracy, producer accuracy and kappa statistics. 

Random Forest classifier (2011) 

Class 1 2 3 4 5 6 Total U_Accuracy Kappa 

1 92.000 5.000 1.000 0.000 1.000 1.000 100.000 0.920 0.000 

2 7.000 80.000 0.000 0.000 0.000 0.000 87.000 0.920 0.000 

3 0.000 2.000 6.000 2.000 0.000 0.000 10.000 0.600 0.000 

4 5.000 1.000 1.000 6.000 0.000 0.000 13.000 0.462 0.000 

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

6 3.000 1.000 0.000 0.000 0.000 1.000 5.000 0.200 0.000 

Total 107.000 89.000 8.000 8.000 1.000 2.000 215.000 0.000 0.000 
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P_Accuracy 0.860 0.899 0.750 0.750 0.000 0.500 0.000 0.860 0.000 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.766 

 Table 4.  Confusion matrix of the RF classification for the year of 2011 

Random Forest classifier (2015) 

Class 1 2 3 4 5 6 Total U_Accuracy Kappa 

1 67.000 2.000 1.000 2.000 0.000 0.000 72.000 0.931 0.000 

2 19.000 69.000 0.000 0.000 0.000 1.000 89.000 0.775 0.000 

3 0.000 0.000 6.000 2.000 1.000 0.000 9.000 0.667 0.000 

4 3.000 0.000 0.000 5.000 1.000 0.000 9.000 0.556 0.000 

5 13.000 6.000 0.000 0.000 0.000 0.000 19.000 0.000 0.000 

6 1.000 0.000 0.000 1.000 0.000 0.000 2.000 0.000 0.000 

Total 103.000 77.000 7.000 10.000 2.000 1.000 200.000 0.000 0.000 

P_Accuracy 0.650 0.896 0.857 0.500 0.000 0.000 0.000 0.735 0.000 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.585 

 Table 5.  Confusion matrix of the RF classification for the year of 2015 

The general trend of overall classification accuracy shows that ML algorithm presented 

the lowest overall classification accuracy (61.4% and 41.0%) respectively for both years 

2011 and 2015, followed by SVM (82.8% and 80.0%) and RF algorithm (86.0% and 

73.5%). Similar trend was observed for kappa statistics, where ML, SVM and RF 

algorithm yielded respectively to 42.8% and 23.8%, 71.2% and 66.7% and 76.6% and 

58.5% respectively the years of 2011 and 2015. At the same time, the respective 

percentages for user’s and producer’s accuracy are high (above 70%) from all 

classification algorithms regarding the agriculture, forest, quarry sites and roads 

(APPENDIX). Discrimination of the urban area and agriculture fields was difficult, since 

the area covered with the urban was relatively small and it influenced stratified random 

sampling of the points that were later used for accuracy assessment.  

Finally, concerning the comparison between different classification predictions, the 

McNemar test indicated that the observed difference between the two machine learning 

algorithms (RF and SVM) was not statistically significant (p = 0.2278 > 0.05). However, 

it should be emphasized that the further examination of the comparison between the 

machine learning algorithms and classical approach of ML was not performed due to 

drastically different classification accuracy.  
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4.5.4 Performance evaluation 

 

A ROC curve along with AUC value for each algorithm was generated to evaluate the 

overall performance in term of goodness of fit of the classifiers, as showed in Figure 2.  

 

 

Figure 12. ROC curve for support vector machine and random forest classifier 

Based on the exploration of the ROC curve, it may be noticed that RF algorithm provided 

very satisfying results in terms of performance, which is presented with the shape of the 

ROC curve. The goodness of fit of SVM classifier is comparable to RF, presenting almost 

similar ROC curve with RF’s. Furthermore, the general trend of AUC value confirms the 

value under the curve for SVM algorithm (AUC = 0.8376) and RF algorithm (AUC = 

0.8716). 

As a last factor/final way for comparison of the classifiers, time needed for algorithm to 

complete the classification process was taken into the account. The results showed a very 

slight difference between two of machine learning algorithms as follows: RF (7seconds, 

CPU time) and SVM (5 seconds, CPU time). 

4.5.5 The impact of the quarry on the environment during the period of 5 years 
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The SAVI index was calculated for each year separately and afterwards the subtraction of 

the unaffected area from the year after the incident (2015) was performed. Creation of the 

SAVI ancillary data has the purpose of distinguishing the areas affected with the quarry 

sites.  With the first identification of the images, there could be observed that agricultural 

and forested area before the quarry reveal has a greater distribution in the central and 

northern part of the study area. On the second image, there is very noticeable presence of 

the two sites where open pit mine excavation took place.    

 

 

 

 

 

 

 

 

 

Figure 13. SAVI index for the both situations, before and after the quarry has been 

revealed 

After the subtraction of the images, map of changes was created from which it can be 

observed that the quarry event has affected a significant amount of the total surface of the 

study area, making a damage to the extensive areas of forested and agricultural land, as 

well as on the urban area. The massive implications of this event are related with: i) the 

human health complication to the residents from the nearby settlements; ii) the huge 

environmental damage destructing a valuable natural resource like forest and the 

respecting flora and fauna; iii) the contamination of many cultivation fields;  iv) extensive 

soil degradation and the resulting escalating of river contamination risk;  
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Figure 14. Map of changes in the land cover (2011-2015) 

The last part of the change detection constitutes the quantification of the area affected with 

quarry reveal.  For the purpose of detecting eventual changes in the landcover over the 

time of 5 years, confusion matrices of both studied years were normalized and compared. 

It was observed that there is decrease of the agriculture and cultivation fields by 10.51%, 

as well as slightly increase of the forest class within the study area by 4.05% which may 

be related with the classification errors. The results seem meaningful and in compliance 

with the SAVI difference map. 
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5. DISCUSSION  
 

Generally, the classification of the land cover maps using the RF and SVM algorithms 

provided comparable and more coherent representation of the land cover maps within the 

study area, while on the other hand ML classification method produced significantly 

different output compared with the other two classifiers, which made its result less 

discernible.  

In terms of the classification accuracy taking into the account overall accuracy and kappa 

statistics between the algorithms, there could be noticed a slight improvement in accuracy 

(1.65%-average value) when comparing the machine learning algorithms (SVM and RF). 

However, a significant difference in improvement of the accuracy was observed when 

choosing the machine learning algorithms over the classical parametric algorithm (ML) 

as follows by 30.2% for SVM and by 28.55% for RF classifier.  McNemar’s test revealed 

that there is no statistical significant difference between classification accuracies achieved 

by applied machine learning algorithms (RF and SVM). Nonetheless, classification 

accuracy achieved with RF and SVM according to the MCNemar’s test was showing 

statistically significant difference (p < 0.05) when compared with ML classifier.   

Other studies have indicated that both RF and SVM can achieve similar classification 

accuracies outperforming the corresponding accuracy of ML. Duro et al. (2012) reported 

that pixel based classification using RF and SVM algorithms produced statistically similar 

overall classification accuracy classifying agricultural landscapes. Otukei & Blaschke 

(2010) found that SVM performed better than classical ML algorithm. In the same context, 

Sesnie et al. (2010) performed classification of rainforest types using SVM and RF 

classifiers and found to perform comparatively well.   

When compared using the ROC curve (AUC) value, it is recorded/noticed that there is 

small change in goodness of fit of the models using the RF model comparatively to SVM; 

a greater difference of goodness in fit was produced by both RF and SVM compared to 

ML.  However, RF and SVM algorithms showed better results in time execution for the 

whole process of image classification (modeling and predicting) than the ML.  
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It is argued that classification accuracy is a critical parameter for selecting the appropriate 

classifier for image classification. But in such circumstances where there is no statistically 

significant difference in classification accuracy between RF and SVM algorithms, other 

preferences may take precedence. RF is too simple in parameter tuning as it only should 

change one parameter for optimizing algorithm; whereas in SVM classifier should be 

supplied with combination of two important parameters for optimization. Moreover, RF 

is preferred for its accessibility to variable importance (Sesnie et al., 2010). The 

performance of RF in term of time execution is also slightly higher than that of SVM’s.   
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6. CONCLUSIONS  
 

The main environmental effects caused with the discovery of the quarry are affecting the 

agricultural land by modification and pollution of the nearby, pre-existing ecosystems. 

With regards to the prevailing environmental legislation and its enforcement, there is total 

lack of efforts in monitoring, rehabilitation, restoration or post-mining programmes for 

minimization of adverse environmental impacts (Lad R. J. and Samant J. S. 2014). The 

most obvious engineering impact of quarrying is change in geomorphology and 

conversion of land use, with the associated change in visual scene (Langer 2001). Most 

engineering impacts can be controlled, mitigated, kept at tolerable levels and restricted to 

the immediate vicinity of the aggregate operation by employing responsible operational 

practices that use available engineering techniques and technology (Langer 2001). Major 

changes in the land cover as well as increase of the contaminated mine sites in Europe has 

influenced the development of the EU environmental legislation in order to minimize 

potential risks of such incidents. EU commission has developed the legislation named EU 

MWD (Mine Waste Directive) pre-selection Protocol which consist of the 18 simple 

questions about contamination source, pathways and receptors. The study area has been 

tested for the contamination and compliance of the quarry sites with the legislation using 

the simple set of questions, and the results obtained show the unexpected outcome of 

unknown parameters regarding the engineering facility. Likewise the accumulated 

number of YES responses has indicated the presence of the contamination sources, 

pathways and receptors, which later was monitored using the appropriate algorithm for 

the classification of the land cover and quarry site. 

Pixel based classification of land cover using classical ML and two machine learning 

algorithms i.e. SVM and RF algorithms was performed. Machine learning algorithms 

provide a lot of potential in pixel-based land cover classification over classical approach, 

as machine learning approach produced classification accuracies that had statistically 

significant difference compared to classical approach. But there is no statistical significant 

difference in classification accuracy between the two adopted machine learning 

algorithms.  The performance of machine learning algorithm-based goodness of fit is also 
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higher than classical approach. Visual inspection of thematic products resulted from the 

three algorithms shows that they are capable of producing land cover map with acceptable 

classification accuracies; however, ML classifier showed quite fuzzy results. So, machine 

learning algorithms seem a bit superior than classical ML for the classification of the open 

pit mines within this study area.  
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SVM polynomial(2011) 

Class 1 2 3 4 5 6 Total U_Accuracy Kappa 

1 83.000 12.000 0.000 2.000 1.000 1.000 99.000 0.838 0.000 

2 4.000 66.000 0.000 0.000 0.000 0.000 70.000 0.943 0.000 

3 0.000 2.000 6.000 2.000 0.000 0.000 10.000 0.600 0.000 

4 5.000 3.000 0.000 4.000 0.000 0.000 12.000 0.333 0.000 

5 13.000 1.000 2.000 0.000 0.000 0.000 16.000 0.000 0.000 

6 2.000 5.000 0.000 0.000 0.000 1.000 8.000 0.125 0.000 

Total 107.000 89.000 8.000 8.000 1.000 2.000 215.000 0.000 0.000 

P_Accuracy 0.776 0.742 0.750 0.500 0.000 0.500 0.000 0.744 0.000 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.595 

 

SVM radial (2011) 

Class 1 2 3 4 5 6 Total U_Accuracy Kappa 

1 73.000 10.000 1.000 1.000 1.000 1.000 87.000 0.839 0.000 

2 16.000 77.000 3.000 2.000 0.000 0.000 98.000 0.786 0.000 

3 0.000 0.000 4.000 1.000 0.000 0.000 5.000 0.800 0.000 

4 7.000 1.000 0.000 4.000 0.000 0.000 12.000 0.333 0.000 

5 11.000 1.000 0.000 0.000 0.000 0.000 12.000 0.000 0.000 

6 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000 

Total 107.000 89.000 8.000 8.000 1.000 2.000 215.000 0.000 0.000 

P_Accuracy 0.682 0.865 0.500 0.500 0.000 0.500 0.000 0.740 0.000 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.571 

 

SVM linear(2011) 

Class 1 2 3 4 5 6 Total U_Accuracy Kappa 

1 87.000 7.000 1.000 0.000 1.000 1.000 97.000 0.897 0.000 

2 12.000 78.000 0.000 0.000 0.000 0.000 90.000 0.867 0.000 

3 0.000 2.000 6.000 2.000 0.000 0.000 10.000 0.600 0.000 

4 5.000 1.000 1.000 6.000 0.000 0.000 13.000 0.462 0.000 

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

6 3.000 1.000 0.000 0.000 0.000 1.000 5.000 0.200 0.000 

Total 107.000 89.000 8.000 8.000 1.000 2.000 215.000 0.000 0.000 

P_Accuracy 0.813 0.876 0.750 0.750 0.000 0.500 0.000 0.828 0.000 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.712 
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SVM polynomial (2015) 

Class 1 2 3 4 5 6 Total U_Accuracy Kappa 

1 73.000 9.000 0.000 2.000 0.000 0.000 84.000 0.869 0.000 

2 11.000 52.000 0.000 0.000 0.000 1.000 64.000 0.813 0.000 

3 0.000 0.000 6.000 2.000 1.000 0.000 9.000 0.667 0.000 

4 4.000 0.000 1.000 5.000 1.000 0.000 11.000 0.455 0.000 

5 11.000 13.000 0.000 1.000 0.000 0.000 25.000 0.000 0.000 

6 2.000 2.000 0.000 0.000 0.000 0.000 4.000 0.000 0.000 

Total 101.000 76.000 7.000 10.000 2.000 1.000 197.000 0.000 0.000 

P_Accuracy 0.723 0.684 0.857 0.500 0.000 0.000 0.000 0.690 0.000 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.524 
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SVM linear (2015) 

Class 1 2 3 4 5 6 Total U_Accuracy Kappa 

1 81.000 9.000 0.000 2.000 0.000 0.000 92.000 0.880 0.000 

2 16.000 65.000 0.000 0.000 0.000 1.000 82.000 0.793 0.000 

3 2.000 0.000 7.000 0.000 1.000 0.000 10.000 0.700 0.000 

4 2.000 0.000 0.000 7.000 1.000 0.000 10.000 0.700 0.000 

5 0.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 

6 2.000 3.000 0.000 0.000 0.000 0.000 5.000 0.000 0.000 

Total 103.000 77.000 7.000 10.000 2.000 1.000 200.000 0.000 0.000 

P_Accuracy 0.786 0.844 1.000 0.700 0.000 0.000 0.000 0.800 0.000 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.667 

          

 

 

  

 

Maximum likelihood classifier (2011) 

Class 1 2 3 4 5 6 Total U_Accuracy Kappa 

1 55.000 15.000 0.000 2.000 0.000 1.000 73.000 0.753 0.000 

2 8.000 71.000 0.000 0.000 0.000 0.000 79.000 0.899 0.000 

3 0.000 2.000 5.000 2.000 0.000 0.000 9.000 0.556 0.000 
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4 7.000 0.000 1.000 0.000 0.000 0.000 8.000 0.000 0.000 

5 11.000 0.000 2.000 4.000 0.000 0.000 17.000 0.000 0.000 

6 26.000 1.000 0.000 0.000 1.000 1.000 29.000 0.034 0.000 

Total 107.000 89.000 8.000 8.000 1.000 2.000 215.000 0.000 0.000 

P_Accuracy 0.514 0.798 0.625 0.000 0.000 0.500 0.000 0.614 0.000 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.428 

 

Maximum likelihood classifier (2015) 

Class 1 2 3 4 5 6 Total U_Accuracy Kappa 

1 43.000 17.000 0.000 0.000 0.000 0.000 60.000 0.717 0.000 

2 3.000 28.000 0.000 0.000 0.000 0.000 31.000 0.903 0.000 

3 10.000 0.000 6.000 4.000 1.000 0.000 21.000 0.286 0.000 

4 13.000 6.000 0.000 4.000 0.000 0.000 23.000 0.174 0.000 

5 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 

6 34.000 26.000 0.000 2.000 1.000 1.000 64.000 0.016 0.000 

Total 103.000 77.000 7.000 10.000 2.000 1.000 200.000 0.000 0.000 

P_Accuracy 0.417 0.364 0.857 0.400 0.000 1.000 0.000 0.410 0.000 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.238 

 

R-codes 

#Data Preparation------------------------------------------------------------------------------------- 

# Reading bands 

band1 <- raster("b1_cl.tif") 

band2 <- raster("b2_cl.tif") 

band3 <- raster("b3_cl.tif") 

band4 <- raster("b4_cl.tif") 

band5 <- raster("b5_cl.tif") 

 

#Preparation of the additional variables 

NDVI1<- (band5 - band4)/(band5 + band4) 

SAVI1<- ((band5 - band4)/(band5 + band4+0.5))*(1+0.5) 

plot(SAVI1) 
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writeRaster(NDVI1, "NDVIL8", format = "GTiff", overwrite=TRUE) 

writeRaster(SAVI1, "SAVIL8", format = "GTiff", overwrite=TRUE) 

#Stitching of the images 

image_stack <- stack(band1, band2, band3, band4, band5, NDVI1) 

plot(image_stack) 

#Training data 

trainData <- readOGR("C:\\dimitrovgrad\\landsat8", layer="training_l8novi") 

content_training8 <- summary(trainData) 

content_training8  

groundtruth <- readOGR("C:\\dimitrovgrad\\landsat8", layer = "points_accuracy15") 

content_groundtruth <- summary(groundtruth) 

content_groundtruth 

#Classification process 

setwd("C:\\dimitrovgrad\\landsat8") 

library(sp) 

library(raster) 

library(rgdal) 

library(rpart) 

library(rasterVis) 

library(caret) 

library(randomForest) 

library(snow) 

library(e1071) 

library(rgeos) 

library(tiff) 

library(raster) 

library(RStoolbox) 

library(caTools) 

 

#Pre-processing 
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img<- brick("study_area_cl8.tif") 

summary(img) 

trainData <- readOGR("C:\\dimitrovgrad\\landsat8", layer="training_l8novi") 

polygon <-SpatialPolygons(trainData) 

summary(trainData) 

plotRGB(img) 

plotRGB(img, r=1, g=2, b=3,maxpixels=500000) 

#Creation of the empty matrix 

dfAll = data.frame(matrix(vector(), nrow = 0, ncol = length(names(img)) + 1))    

responseCol <- "Class" 

 

#Extract raster value based one training data  

for (i in 1:length(unique(trainData[[responseCol]]))){                           

  category <- unique(trainData[[responseCol]])[i] 

  categorymap <- trainData[trainData[[responseCol]] == category,] 

  dataSet <- extract(img, categorymap) 

  dataSet <- dataSet[!unlist(lapply(dataSet, is.null))] 

  dataSet <- lapply(dataSet, function(x){cbind(x, class = as.numeric(rep(category, 

nrow(x))))}) 

  df <- do.call("rbind", dataSet) 

  dfAll <- rbind(dfAll, df) 

} 

 

#SVM radial basis 

model.class <- svm(as.factor(class)~., data =dfAll,gamma=1, cost=1, type=NULL, 

kernel="radial") 

#Visualisation of results 

pr <- predict(img, model.class,type='class',progress = 'text') 

pr <- ratify(pr) 

rat <- levels(pr)[[1]] 
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summary(rat) 

rat$legent <- levels(category) 

levels(pr) <- rat 

levelplot(pr, maxpixels = 1e6, col.regions = 

c("yellow","green","red","black","grey","blue"), 

          scales=list(draw=TRUE), 

          main = "Landsat 8 - SVM classification (radial basis)") 

#export of results 

writeRaster(pr, "SVMclassficationL8radial", format = "GTiff", overwrite=TRUE) 

 

groundtruth <- readOGR("C:\\dimitrovgrad\\landsat8", layer = "svm_radialupdated15") 

content_groundtruth <- summary(groundtruth) 

content_groundtruth 

#ROC Curve 

library(pROC) 

SVM1ROC <- as.numeric(groundtruth$Classified,groundtruth$GrndTruth, type = 

"response") 

summary(RFROC) 

multiclass.roc(groundtruth$GrndTruth, SVM1ROC) 

plotroc<- roc(groundtruth$GrndTruth, SVM1ROC) 

plot.roc(groundtruth$GrndTruth, SVM1ROC, main = "ROC curve for SVM (radial 

basis)", col = 'Red') 

#Kappa statistics 

library(asbio) 

Kappa(groundtruth$RASTERVALU) 

#SVM (linear) 

model.class <- svm(as.factor(class)~., data =dfAll, cost=1, type=NULL, kernel="linear") 

#Visualisation 

pr1 <- predict(img, model.class,type='class',progress = 'text') 

pr1 <- ratify(pr1) 

rat <- levels(pr1)[[1]] 
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summary(rat) 

rat$legent <- levels(category) 

levels(pr1) <- rat 

levelplot(pr1, maxpixels = 1e6, col.regions = 

c("yellow","green","red","black","grey","blue"), 

          scales=list(draw=TRUE), 

          main = "Landsat 8 - SVM classification (linear)") 

#export 

writeRaster(pr1, "SVMclassficationL8l", format = "GTiff", overwrite=TRUE) 

#Groundtruth_linear 

groundtruth <- readOGR("C:\\dimitrovgrad\\landsat8", layer = "svm_linear_updated15") 

content_groundtruth <- summary(groundtruth) 

content_groundtruth 

 

 

 

#ROC Curve 

library(pROC) 

SVM2ROC <- as.numeric(groundtruth$Classified,groundtruth$GrndTruth, type = 

"response") 

summary(RFROC) 

multiclass.roc(groundtruth$GrndTruth, SVM2ROC) 

plotroc<- roc(groundtruth$GrndTruth, SVM2ROC) 

plot.roc(groundtruth$GrndTruth, SVM2ROC, main = "ROC curve for SVM (linear)", 

col = 'Red') 

#SVM polynomial 

model.class <- svm(as.factor(class)~., data =dfAll,gamma=1, cost=1, type=NULL, 

kernel="polynomial") 

#Visualisation 

pr2 <- predict(img, model.class,type='class',progress = 'text') 

pr2 <- ratify(pr2) 
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rat <- levels(pr2)[[1]] 

summary(rat) 

rat$legent <- levels(category) 

levels(pr2) <- rat 

levelplot(pr2, maxpixels = 1e6, col.regions = 

c("yellow","green","red","black","grey","blue"), 

          scales=list(draw=TRUE), 

          main = "Landsat 8 - SVM classification (polynomial)") 

#export 

writeRaster(pr2, "SVMclassficationL8pl", format = "GTiff", overwrite=TRUE) 

#Groundtruth_linear 

groundtruth <- readOGR("C:\\dimitrovgrad\\landsat8", layer = "svm_poly15updated") 

content_groundtruth <- summary(groundtruth) 

content_groundtruth 

 

 

#ROC Curve 

library(pROC) 

SVM3ROC <- as.numeric(groundtruth$Classified,groundtruth$GrndTruth, type = 

"response") 

summary(RFROC) 

multiclass.roc(groundtruth$GrndTruth, SVM3ROC) 

plotroc<- roc(groundtruth$GrndTruth, SVM3ROC) 

plot.roc(groundtruth$GrndTruth, SVM3ROC, main = "ROC curve for SVM 

(polynomial)", col = 'Red') 

#kappa statistics 

library(asbio) 

#Random forest classification 

library(randomForest) 

set.seed(1234) 

# Random Search_tunning of the parameters 
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control <- trainControl(method="repeatedcv", number=10, repeats=3, search="random") 

set.seed(1234) 

mtry <- sqrt(ncol(x)) 

rf_random <- train(Class~., data=dataset, method="rf", metric=metric, tuneLength=15, 

trControl=control) 

print(rf_random) 

plot(rf_random) 

 

rf.md1 <- randomForest(as.factor(class)~., data =dfAll, ntree = 500, mtry = 3, proximity 

= T, importance = T) 

#Visualisation of results 

pr1 <- predict(img, rf.md1,type='class',progress = 'text') 

pr1 <- ratify(pr1) 

rat <- levels(pr1)[[1]] 

summary(rat) 

rat$legent <- levels(category) 

levels(pr1) <- rat 

levelplot(pr1, maxpixels = 1e6, col.regions = 

c("yellow","green","red","black","grey","blue"), 

          scales=list(draw=TRUE), 

          main = "Landsat 8 - RF classification") 

 

writeRaster(pr1, "RandomforestL8", format = "GTiff", overwrite=TRUE) 

 

#Groundtruth_linear 

groundtruth <- readOGR("C:\\dimitrovgrad\\landsat8", layer = "svm_radialupdated15") 

content_groundtruth <- summary(groundtruth) 

content_groundtruth 

#ROC Curve 

library(pROC) 

SVM4ROC <- as.numeric(groundtruth$Classified,groundtruth$GrndTruth, type = 

"response") 

summary(RFROC) 
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multiclass.roc(groundtruth$GrndTruth, SVM4ROC) 

plotroc<- roc(groundtruth$GrndTruth, SVM4ROC) 

plot.roc(groundtruth$GrndTruth, SVM4ROC, main = "ROC curve for Random Forest", 

col = 'Red') 

#preparation of the data for ML classification 

 

writeRaster(img, filename="image_stack.img", format="HFA", overwrite=TRUE) 

 

#Maximum Likelihood image classification 

classifyMLC <- superClass(image_stack,trainData, 

responseCol="Class",nSamples=154,model = "mlc", 

mode="classification",polygonBasedCV=TRUE, verbose=TRUE) 

warnings() 

model.mlc<- system.time(mlc <- predict(classifyMLC, img, 

filename="mlc_classification.img", na.rm=TRUE, overwrite = TRUE, inf.rm=FALSE, 

progress="text")) 

 

#Visualisation of results 

classifiedMLC <- raster("mlc_classification.img") 

par(mar=c(3,3,2,2)) 

my_col <- c("blue", "grey", "black", "red", "green", "yellow") 

image(classifiedMLC, main = "Maximum Likelihood", xlab = 700000, ylab = 480000, 

col = my_col) 
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