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Abstract

The analysis of remotely sensed imagery has become a fundamental task for many

environmental centred activities, not just scientific but also management related. In

particular, the use of land cover maps depicting a particular study site is an integral

part of many research projects, as they are not just a fundamental variable in environ-

mental models but also base information supporting policy decisions.

Land cover mapping assisted by supervised classification is today a staple tool of

any analyst processing remotely sensed data, insomuch as these techniques allow users

to map entire sites of interest in a comprehensive way.

Many remote sensing projects are usually interested in a small number of land

cover classes present in a study area and not in all classes that make-up the landscape.

When focus is on a particular sub-set of classes of interest, conventional supervised

classification may be sub-optimal for the discrimination of these specific target classes.

The process of producing a non-exhaustive map, that is depicting only the classes

of interest for the user, is called specific class mapping.

This is the topic of this dissertation. Here, specific class mapping is examined to

understand its origins, developments, adoption and current limitations. The main

research goal is then to contribute for the understanding and improvement of this

topic, while presenting its main constrains in a clear way and proposing enhanced

methods at the reach of the non-expert user. In detail, this study starts by analysing the

definition of specific class mapping and why the conventional multi-class supervised

classification process may yield sub-optimal outcomes.

Attention then is turn to the previous works that have tackled this problem. From

here a synthesis is made, categorising and characterising previous methodologies. Its

then learnt that the methodologies tackling specific class mapping fall under two

broad categories, the binarisation approaches and the singe-class approaches, and that

both types are not without problems. This is the starting point of the development

component of this dissertation that branches out in three research lines.

First, cost-sensitive learning is utilised to improve specific class mapping. In previ-

ous studies it was shown that it may be susceptible to data imbalance problems present

in the training data set, since the classes of interest are often a small part of the training

set. As a result the classification may be biased towards the largest classes and, thus, be
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sub-optimal for the discrimination of the classes of interest. Here cost-sensitive learn-

ing is used to balance the training data set to minimise the effects of data imbalance.

In this approach errors committed in the minority class are treated as being costlier

than errors committed in the majority class. Cost-sensitive approaches are typically

implemented by weighting training data points accordingly to their importance to the

analysis. By shifting the weight of the data set from the majority class to the minority

class, the user is capable to inform the learning process that training data points in the

minority class are as critical as the points in the majority class. The results of this study

indicate that this simple approach is capable to improve the process of specific class

mapping by increasing the accuracy to which the classes of interest are discriminated.

Second, the combined use single-class classifiers for specific class mapping is ex-

plored. Supervised algorithms for single-class classification are particularly attractive

due to its reduced training requirements. Unlike other methods where all classes

present in the study site regardless of its relevance for the particular objective to the

users, single-class classifiers rely exclusively on the training of the class of interest.

However, these methods can only solve specific classification problems with one class

of interest. If more classes are important, those methods cannot be directly utilised.

Here is proposed three combining methodologies to combine single-class classifiers to

map subsets of land cover classes. The results indicate that an intelligent combination

of single-class classifiers can be used to achieve accurate results, statistically non-

inferior to the standard multi-class classification, without the need of an exhaustive

training set, saving resources that can be allocated to other steps of the data analysis

process

Third, the combined use of cost-sensitive and semi-supervised learning to improve

specific class mapping is explored. A limitation of the specific class binary approaches

is that they still require training data from secondary classes, and that may be costly.

On the other hand, a limitation of the specific class single-class approaches is that,

while requiring only training data from the specific classes of interest, this method tend

to overestimate the extension of the classes of interest. This is because the classifier

is trained without information about the negative part of the classification space. A

way to overcome this is with semi-supervised learning, where the data points for the

negative class are randomly sampled from the classification space. However that may

include false negatives. To overcome this difficult, cost-sensitive learning is utilised

to mitigate the effect of these potentially misclassified data points. Cost weights were

here defined using an exponential model that assign more weight to the negative data

points that are more likely to be correctly labelled and less to the points that are more

likely to be mislabelled. The results show that accuracy achieved with the proposed

method is statistically non-inferior to that achieved with standard binary classification

requiring however much less training effort.

xii



Keywords: Remote sensing; land cover mapping; specific class mapping; cost-sensitive

learning; semi-supervised learning; single-class learning

xiii





Resumo

A analise de imagens de satélite tornaram-se uma peça fundamental em diversas apli-

cações de cariz ambiental, não só científicos, mas também administrativos. Em particu-

lar, a utilização de mapas de ocupação do solo é uma componente integral em muitos

projetos de investigação, devido não só à sua utilização como parâmetro em modelos

ambientais, mas também como informação base ao apoio a decisões politicas.

Contudo, em muitos destes projetos, os utilizadores estão tipicamente interessados

num pequeno subconjunto das classes presentes na sua área de estudo e não numa

completa caracterização. Nestes casos, o uso de métodos convencionais de classificação

assistida podem não ser ótimos para a discriminação dessas classes de interesse. A este

processo de classificação não exaustiva chama-se mapeamento de classes especificas.

Este é o tópico desta dissertação. Nesta analise, o conceito de mapeamento de

classes especificas é examinado de forma a melhor compreender as suas origens, de-

senvolvimentos, adoção e limitações. O objetivo principal desta dissertação é assim

contribuir para o entendimento e melhoramento deste tópico, apresentando as suas

principais condicionantes de uma forma clara, propondo métodos melhorados ao al-

cance do utilizador médio.

Este estudo começa por analisar a definição do conceito de mapeamento de classes

especificas e a razão pela qual os métodos de classificação assistida convencionais

podem não ser apropriados.

Seguidamente, é realizada uma análise aos estudos anteriormente desenvolvidos

que exploraram este tema. Daqui é feita a síntese, caracterizando e categorizados as

metodologias anteriores.

Deste exame resulta que as metodologias de mapeamento de classes especificas

encaixam-se em dois grandes grupos, abordagens de binarização e abordagens mono-

classe, e que ambos têm vantagens e desvantagens. Daqui ramificam-se as linhas de

investigação que se dividem em três.

Na primeira, é utilizada uma metodologia de aprendizagem cost-sensitive para me-

lhorar o mapeamento de classes especificas por binarização. Estudos anteriores de-

monstraram que a abordagem por binarização conduzir a classificadores treinados

com dados desbalanceados uma vez que as classes de interesse são tipicamente apenas

uma pequena componente no conjunto de treino. Como resultado, a classificação pode
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ficar enviesada na direção da classe maioritária, pelo que resulta numa classificação

sub-ótima para a discriminação das classes de interesse. A aprendizagem cost-sensitive
é então utilizada para balançar o conjunto de treino. Com esta abordagem os erros

cometidos na classe minoritária são mais caros que aqueles cometidos na classe maiori-

tária. Estas abordagem são usualmente implementadas fazendo associar a cada ponto

um peso que representa o custo em classificar erroneamente esse ponto. Desta forma

é possível guiar o processo de aprendizagem de forma a não sacrificar os pontos da

classe minoritária para minimizar o erro de classificação global. Os resultados deste

estudo indicam que esta abordagem foi capaz de ultrapassar os problemas de desba-

lanceamento e produzir um mapa com as classes de interesse exato.

Na segunda linha, é explorada a combinação de classificadores monoclasse para o

mapeamento de classes especificas. Os classificadores monoclasse são particularmente

atrativos porque só necessitam de dados da classe para o qual estão a ser treinados.

Contudo, estes classificadores não conseguem classificar problemas com mais que

uma classe. Se houver mais que uma classe de interesse, estes métodos não podem ser

aplicados diretamente. Neste estudo são propostas três formas de combinar múltiplos

classificadores monoclasse para mapear um subconjunto de classes de interesse. Estas

abordagens foram comparadas com a abordagem assistida convencional. Os resultados

indicam que uma combinação inteligente de classificadores monoclasse podem ser

utilizados para mapear diversas classes de interesse sem perda de exatidão, requerendo,

contudo, apenas treino para as classes de interesse.

Na terceira linha de investigação, o uso combinado da aprendizagem cost-sensitive
com aprendizagem semi-assistida é explorado com o objetivo de melhorar o mapea-

mento de classes especificas. Uma limitação com as abordagens de binarização é que

apesar de direcionada para a discriminação de classes de interesse requerem ainda

treino para todas as classes, independentemente de serem ou não de interesse, o que

pode ser dispendioso. Por outro lado, as abordagens monoclasse apesar de necessita-

rem de treino apenas para as classes de interesse tendem sobrestima-las. Isto acontece

porque os classificadores monoclasse são treinados sem acesso a informação da parte

negativa do espaço de classificação. Uma forma de ultrapassar estas dificuldades é

recorrendo à aprendizagem semi-assistida, onde os pontos representando treino das

classes sem interesse são obtidos por meio de uma amostragem e seguidamente são

rotulados como negativos. Contudo, esse processo pode incluir falsos negativos no

conjunto de treino. Para minimizar os efeitos destes potenciais falsos negativos, uma

abordagem cost-sensitive é utilizada. Os pesos associados a estes pontos refletem a

probabilidade de serem um falso negativo, de modo a que pontos com elevada proba-

bilidade recebem menos peso e pontos com baixa probabilidade recebem mais peso.

Os resultados indicam que este método combinado é estatisticamente não inferior ao

benchmark, requerendo, contudo, muito menos treino.
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1
Introduction

1.1 Motivation and research lines

Remote sensing is today an integral part of any Earth science and the information

derived from remotely sensed data is utilised in a multitude of applications. In partic-

ular, the supervised classification of satellite imagery is of upmost importance, since

land cover maps are an important component in many environment research activities,

but also for managerial purposes. Thus the number of different types of users and

applications is vast and so are their requirements. Although land cover maps that

characterise an entire region of analysis are necessary and satisfy particular needs,

often users are only interested in a subset of classes present in the region and not on

its entire characterisation.

Specific class mapping consists in producing a non-exhaustive thematic map. This

contrasts with the conventional mapping process that produces a thematic land cover

map depicting all classes thereof present, and thus exhaustively characterising it. The

goals of specific class mapping is, then, to depict only a subset of land cover classes of

interest present in the study area.

The broad objective of this research is to investigate the usefulness and limita-

tions of specific class mapping processes and explore possible ways to improve it with

machine learning methodologies.

When users are interested in just a subset of classes present in the study area, of-

ten users adopt a conventional supervised classification methodology. In other words,

users produce a map depicting all classes regardless of their interest for their applica-

tion. Indeed, users solve a large problem than that they need to solve. If the specific

class mapping problem is solved by tackling it as a larger problem, that is by mapping
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all classes instead of just those of interest, users may obtain sub-optimal results. Addi-

tionally, this solution may force users to allocate extra time to collect training pixels

to classes of no relevance for theirs objective, thus making the mapping process less

efficient.

However, applying a conventional supervised approach to solve the specific class

mapping problem directly leads to two technical problems. First, most learning algo-

rithms require an exhaustive definition of the study area. In other words, the algo-

rithms of classification assume that the training data set utilised to inform the learning

of the classifier represents an partition of the space to be classified. If this require-

ment is not fulfilled, pixels belonging to untrained classes are allocated to classes

represented in the training set. Second, with conventional classification methods the

aim is to minimise the general misclassification rate but not necessarily to optimally

discriminate the classes of interest. This is because the model that best discriminates

the classes of interest may induce classification errors between classes of no interest

and thus may not minimise the general misclassification rate.

Specific class mapping has been tackled before, essentially in two different ways.

The first way is by binarisation. That is, the multi-class problem is broken down in

smaller binary classification problems. Typically this is done by combining every class

of no interest in one single nominal class, usually called "others". The second way is

by single-class learning. In other words, by developing a classifier utilising only data

from the class of interest and thus focusing the entire process on that particular class.

However, these approaches are not without problems.

The main difficulties with the binarisation approach are essentially four. First, by

agglomerating all classes of no interest in one big nominal class, the resulted class

composition may lead to data imbalanced related issues. As consequence, it may

bias the learning process toward this big class, underestimating the extension of the

classes of interest. Second, if two or more classes are of interest, classifier combination

schemes have to be utilised, which may not always be a trivial matter. Third, the

free parameters definition have to be focused on the discrimination of the classes of

interest. If such is not done, it is not guaranteed that the resulted classifier is optimally

defined for the identification of these classes. Fourth, from the operational point of

view, a user has to collect training data for all classes present in the region of interest.

Thus, in this sense, the training requirements are similar to that of the conventional

multi-class supervised methods.

On the other hand, the main difficulties with the single-class approach are essen-

tially two. First, since the only available training data are points from the class of

interest, it is not possible to compute the classification accuracy to fix the free param-

eters. The only possible metric is sensitivity, which only represents one side of the

problem. Thus, fine tuning such algorithm may be difficult. Second, if focus is in more

than one class of interest, it is necessary the combination of multiple classifiers, which

for this type of classifiers is not clear how and is still an on-going research topic. In
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Chapter	1
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Chapter	3

Chapter	4

Chapter	5

Chapter	6

Chapter	7

Core	research	chapters

You	are	here

Literature	review

Methodological	background

Conclusion

Figure 1.1: Diagram representing this document structure.

general, the difficulties faced by this approach is a consequence of its attractive point,

that is the limited need of training and focused approach to the class of interest.

This the starting point of this research. From here three research lines branch

out. First, the effects of data imbalanced that may occur in specific class mapping

when adopting a binarisation approach is understood and explored and cost-sensitive

learning is utilised to minimise its effects. Second, the combined use single-class

classifiers with the intention to apply to a specific class mapping scenario is examined

and combination schemes are tested for its viability. Third, the combination of semi-

supervised learning and cost-sensitive learning is combined to improve the process of

specific class mapping.

1.2 Document organisation

The dissertation is composed by six chapters.

Chapter 1, the one the reader is presently reading, summarises the research context,

goals and main motivations. Subsection 1.1 Motivation and research lines provides a

brief characterisation of this dissertation.

Chapter 2 presents the literature review in a digested form, since the core chapters,

that is chapters 4, 5, and 6, provide a more specific reviews.

Chapter 3 elaborates, with different degrees of detail, the most important technical

concepts that base this research. In other words, concepts support vector machines,

one-class support vector machines, and the particularities of how to tune and compare

different classifiers are presented in a contained way. This chapter is long and may
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be technically dense. However, the reader will find all the necessary elements to fully

understand the most technically challenge parts of the core chapters.

Chapters 4, 5, and 6 are the core of this research. They are composed by three

standalone manuscripts submitted (at the writing time) in Peer-Reviewed Journals.

Their order is not arbitrary in the sense that they are organised as a progression in the

research process. Chapter 3 for example starts where previous research on specific

class mapping ended, and resumes it tackling its limitations. Chapter 4 learns from

the previous chapter and improves it, and the same happens with chapter 5. These

three documents share the same structure. They first start with an introduction to

the problem and how that work is a follow up of previous analysis. Then a detailed

background analysis is undertaken to inform the reader about the most important

concepts that sustain the methodological approach. However, if the reader has read

chapter 3, this part may be omitted for time saving reasons. Next the data and methods

section, where the data employed in the study is described and the methodological

steps are explained. The chapters end with a result and discussion section, to explain

the most important results of the analysis and with a summary and conclusion.

Chapter 7 presents the overarching final remarks of this work, highlighting the

more important results and possible follow ups of this research thematic.

1.3 Papers originated from this thesis

Three papers were originated from this thesis:

1. Silva, J., Dieng, M., Bacao, F., Foody, G., and Caetano, M. Improving specific class
mapping by cost-sensitive learning, submitted to International Journal of Remote
Sensing.

2. Silva, J., Bacao, and Caetano, M. Combined use one-class classifiers for specific
class mapping: An experiment with forest classification, submitted to International
Journal of Digital Earth.

3. Silva, J., Bacao, and Caetano, M. Specific land cover class mapping by semi-supervised
weighted support vector machines, submitted to Remote Sensing.

1.4 Note about notation

Vectors are represented with bold lowercase letter (latin or greek), for example x. Vec-

tors with subscript, like xi , means the i-th vector and not the i-th element of the vector

x. To represent the i-th element of the vector x it is used xi . Matrices are represented

with bold uppercase letter (latin or greek), for example X . The (i, j) element of X is

represented as Xij . Scalars are represent with normal (i.e. not bold) lowercase letter
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(latin or greek), for example x. For summation notation,
∑
i,j represents the double

summation
∑
i
∑
j .
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2
Literature review

Abstract Remote sensing is an important source of data for the production of land

cover maps. Particularly important is the supervised classification methodology that

allow users to produce maps that meet their specific research goals. In this chapter

specific class mapping is defined and the literature review about this topic is presented.

The purpose here is not to present a technically explicit description of the concepts

and methods, but rather present a short account of these two elements in the remote

sensing context. In other words, how they came to be recognised as relevant, defined

and what are the main advances in the process of remotely sensed data classification,

concerning the classification of specific classes. From the literature, it was possible

to organise the different approaches in two boarder categories: the binarisation meth-

ods and the single-class methods. The main advantages and disadvantages of each

approach are highlighted. It was possible to identify that the process of specific class

mapping also require the incorporation of specific accuracy metrics and that bias, to

and against, the class of interest may occur in the process.

2.1 Introduction

The land cover is the observed biophysical cover on the Earth’s surface, and is key for

environmental information [60]. The information provided associated to land cover is

utilised in many scientific domains, resource management and policy purposes, and

for a range of human activities [107], since it is the manifestation of the local climate,

landforms and of the human use of land [25].

Remote sensing data is an important source of land cover information and has been

extensively used to map and monitor land cover classes over time in order to fulfil a

variety of of scientific and managerial purposes [107]. And supervised classification,
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in particular, has been frequently used to derive thematic maps depicting the land

cover classes present in the study area from remotely sensed data. Indeed, remotely

sensed data classification evolved with the development of the computational domain

typically known as machine learning. In early studies, the most commonly utilised

methods where parametric, like the maximum likelihood classifiers or unsupervised

like K-means and ISODATA [100]. In the 1990s, non-parametric learning algorithms

became an option for remote sensing users and the number of studies utilising decision

trees and neural networks increased [36]. These approaches do not make any assump-

tion about data distribution, unlike the parametric classifiers, where it is required

the data to be normally distributed. Recent studies where different data sources are

utilised also favoured non-parametric methodologies like the support vector machines

and the random forest algorithm [36]. The utilisation of these more sophisticated

methods was facilitated by the adoption of free software solutions and open source

environments such R and Python.

Supervised methods require the user to collect a set of pixels of known class. In

general, a training data set is such that:

1. It should have a sufficient number of independent training data points for each

land-cover class [112];

2. It should be exhaustive, in the sense that it should contain samples describing

all classes and preferably for all apparent classes present in the image [122];

Condition 1 is necessary for a reliable estimation of the classifier parameters. In

other words, insufficient independent training data points may result in the Hughes

phenomenon [112]. This is an important point specially when dealing with hyperspec-

tral data [113]. However, for the purpose of this research, focus is on the second point,

due to its importance in the formulation of the specific class mapping problem.

Note the phrasing of condition 2: all classes of interest and preferably for all appar-

ent classes. In other words, beside including all land cover classes, the training data

set should also include patterns resulted from intraclass variability. For example, their

could be different types of water or different types of pasture in the same image frame.

Failure to fulfil this condition, may result in an unrepresentative training sets [23].

To fulfil this second condition, remote sensing projects require time and expert

image analyst to collect training data, ancillary data and sometimes field work. This

may represent too much effort that organisations and institutions may not be able to

provide. Additionally, the identification of the apparent classes is complicated, since

the definition of the land cover classes and the spectral pattern are often difficult

to an human operator to consistently and accurately identify. This becomes even

more obvious if the image sampling is executed by more than one image analyst.

Nevertheless, collecting training data points is a must for remotely sensed data analysis

with supervised learning algorithms.
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Supervised methods allow users to tailor the mapping process to suit their own

applications, since in each instance the needs can be quite specific [55]. Indeed, users

are often not interested in all classes present in the study area but just on a small

subset [71]. This is evident in studies where major land cover transformations are

object of study, such as deforestation [104] and urbanisation [24, 39], or where specific

classes are of interest, such as abandoned agriculture [3, 99, 119], specific tree species

[5, 54, 59, 68, 131], wetland species and crops [77, 87], mangrove ecosystems [74,

90, 133, 140], to name just a few. In such applications, the use of multi-class image

classification methods can be inappropriate [45, 55, 103]. In other words, building

a classifier capable of handling effectively only a subset of classes may be a better

alternative. In this dissertation, that is called specific class mapping.

The rest of this chapter is organised in the following way: in the section 2.2 a brief

overview of the topic is presented; for example the term "specific class mapping"is de-

fined and it is explained why conventional supervised methods may yield suboptimal

results. In the section 2.3 it is presented an analysis of the previous works where the

specific class mapping was the central issue. The section is mostly descriptive and

tries to cover all the major developments and applications. In section 2.4 the synthesis

is presented and the most important points learnt from analysis of previous works

are highlighted and the most relevant concepts are summarised and categorised. This

chapter ends with the conclusion.

2.2 Specific class mapping

The term "specific class mapping"refers to the process of non-exhaustive supervised

classification of a given region of interest. In other words, it refers the mapping pro-

cess of only a subset of classes present in that region [55]. The term, however, is not

consensual and, thus, often the problem and the process are not mention directly in

research papers. One can find researchers using the phrases like "non-exhaustively de-

fined set of classes"[44, 56], "supervised classification without an exhaustively defined

set of classes"[46], or more closely "mapping a specific class"[47], or less frequently

"targeted classification"[103]. In some cases, the title briefly suggests that the base

problem is that of classifying a specific class or classes of interest, such in "Opera-

tional tree species mapping in a diverse tropical forest with airborne imaging spec-

troscopy"[6], "Tree Species Discrimination in Tropical Forests Using Airborne Imaging

Spectroscopy"[40], "Tree species classification in the Southern Alps"[28], to list just

a few. In this thesis, the term "specific class mapping"was preferred for two reasons:

first, although it was not the term utilised in the first study, like [88], it was used in

early remotely sensed studies tackling the problem, such as [13, 55, 124, 125]. And

second, it clearly associates the process to the land cover mapping process.

In this way, one can defined the problem of specific class mapping in the following

way: the objective of specific class mapping is to map a subset (one or more) of land
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cover classes, named as classes of interest, without considering other classes present

in the region to be mapped [103]. Thus the specific class mapping process ideally

requires the user to exclusively collect data points from those classes of interest, which

represents a non-exhaustive sample of the class composition of the mapping region

[44, 55]. The technical requirement here is to develop processes that are capable of

mapping specific classes without significant decrease in classification accuracy when

compared with conventional supervised classification methods. Note that the classes

of no interest can be ignored by the analysts for different reasons; for example, the

analysts may ignore them to save time and sampling effort or these classes may even

be unknown to them [103]. That is common to many operational scenarios where

gathering an exhaustive data set for the mapping region is difficult, costly, or not even

impossible.

But why are conventional multi-class supervised methods not suitable for specific

class mapping? There are essentially two reasons for that. One problem in using multi-

class approach for specific class mapping is the exhaustive training requirement. That

is the training sample has to contain all classes present in the study area regardless of

its importance for the analysis [71]. If the training set is not exhaustive, the classifier,

will commit pixels of untrained classes into the set of classes in which the classifier

was trained [52, 103, 125]. This may lead to classification errors that are not identified

in the accuracy assessment process [44, 55]. For example, areas of untrained forest

may consistently be committed into a particular crop or shrub. As a result, the resulted

map overestimates the extension of that crop or shrub. Thus the analyst has to ensure

all classes present in the study area are sampled to avoid such errors. This from the op-

erational point of view represents additional sampling effort that could be reallocated

to other processing steps, such as tuning the learning algorithm or sampling data for

accuracy assessment.

Another concern is that a multi-class classifier is often developed to maximise clas-

sification accuracy over all land cover classes present in the training rather than focus

on the specific classes of interest [55, 88]. That is, the classification algorithm seeks

to output a classifier with maximum overall classification accuracy, measured over all

classes. However, the classes of interest are typically only a small part of the overall

training set, and thus the analysis may not be optimal for the discrimination of these

specific classes. Indeed, when fixing the free-parameters of classification algorithm

in a multi-class problem, the analyst searches for the particular parameterisation that

yields the lowest classification error in a series of testing trials, for example 10-fold

cross-validation [9]. At each trial, a classifier is trained and its overall accuracy is

assessed irrespective of classes under analysis. It is possible then to a particular pa-

rameterisation to yield an accurate classifier that omits part or all classes of interests.

For example, if the classes of interest represent only 10% of training set and a particu-

lar parameterisation yields a classifier that omits these 10% but accurately classifies the

remain 90%, the overall accuracy associated to this classifier will be 90% although the
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important areas are completely omitted. This parameterisation, then, may be regarded

as a good parameterisation by the fine-tuning process for that particular classification

problem. Thus, the classifier derived from this particular parameterisation is an ac-

curate classifier for the majority of the classes present in the classification space but

inaccurate in the most relevant classes. Conversely, if a particular parameterisation

renders a classifier that accurately discriminates the classes of interest (10%) but mis-

classifies all others (90%), this classifier will score low and thus its parameterisation is

likely to be rejected.

What is proposed with specific class mapping is to apply the Vapnik’s principle that

is: when solving a problem of interest avoid solving a more general problem as intermediate
step [139]. In other words, if focus is on a particular subset of classes present in the area

of study, the analysis should focus on the discrimination of those classes regardless of

other classes present in the classification space. Indeed, if one is interested on just a

subset of classes, misclassifications between classes of no interest are of no importance

[51]. Therefore, when interest is on a subset of classes present in the study area, it

may be preferable to follow an alternative approach to the conventional multi-class

supervised classification method [125]. In other words, building a classifier capable

of handling effectively only a subset of classes may be a better alternative for specific

class mapping.

2.3 Analysis of previous works

The concept of specific class mapping can be dated back to 1995 with [88], for is cited

in several studies concerning specific class mapping. Although, in [88] the author does

not formulate the need for a more specific driven mapping analysis in the same way as

in the previous section, he argues that the producer (who carries out the mapping pro-

cedure) ultimately has to optimise the mapping process in terms of the requirements

of the user (who commissions the map). This is because the most important aspect of

a map is its utility, which depends on two factors [88]: the usefulness of a particular

class and the quality with which that class was mapped. The responsibility for ensur-

ing that the defined classes are useful lies with the user, which defines the product

requirements. The responsibility for ensuring that that class is well mapped, on the

other hand, lies with the producer. And here is the key point motivating specific class

mapping. In other words, specific needs require specific maps that require specific

mapping processes. The entire work in [88] can then be summarised in three points:

1. Users who require a map to answer a particular question will be interested in

the accuracy of the classes that allow them to answer that question. For example,

when study mangrove systems, the dynamics of particular crops, urban and

semi-natural features may be secondary [90].
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2. The accuracy metrics concerning those classes are then more important to the

producer than others. For example, if users are interested in the class mangrove,

the accuracy of the class mangrove (say the user accuracy and the producer

accuracy) that is of importance. In this way, a user may prefer a map with lower

overall accuracy but high user and producer accuracy for the mangrove class,

since errors between secondary classes are irrelevant.

3. Thus, it is necessary to drive the classification process "to produce a map for a

particular user in which the components of accuracy that concern him or her are

optimized at the expense of components of accuracy that are not of interest"[88].

In [88] it is not argued that a specific driven approach is a must if the conditions do

not allow the analyst to define an exhaustive training set, but simply that better and

useful maps can be produced if the analysts move their classification process to a more

user specific driven process. That is, this study main contribution is to contend that

there are various different errors which characterise the accuracy of a map and that a

particular user will be concerned only with a subset of these. And the classification

process has to take that into account. Thus a classifier optimised on one or a few

components of accuracy, for example overall accuracy, will not necessarily yield the

best possible map for any user.

Perhaps the first reference about non-exhaustively defined training data sets or

untrained classes in remote sensing can be found in [58]. Here a method was developed

to provide an estimation for a posteriori probability vectors and the estimation of the

prior probability of classes. The idea of estimating statistical properties from the

training data to later infer the probability of an unseen pixel to belong to a particular

class was followed by other researchers, such as [1, 102, 103].

In [48] and [45], the main concern were the effects of non-exhaustive training

data sets in the classification and how one could minimise it. The failure to satisfy

the exhaustive composition of the training set was investigated and assessed with

reference to hard and soft land cover classifications using neural network. [48] in

particular evaluates the use of relative and absolute class membership strength under

the presence of untrained classes, fuzzy c-means and possibilistic c-means respectively,

to evaluate the sub-pixel land cover class composition. Here three classes were of

interest, asphalt, grass and tree, using Daedalus 1268 sensor with eleven spectral

wave-bands and 1.5 m geometric resolution. The study main conclusion is that with

the frequent presence of untrained classes in the image, it may be inappropriate the

use of methods that base their decision on relative class membership, such as the

fuzzy c-means, for the estimation of sub-pixel class composition. In contrast, methods

that provided absolute membership metrics may be better suited to derived the class

composition of sub-pixels, such as the possibilistic c-means. This is because relative

methods compute class membership with respect to all defined classes. As result, the
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magnitude of class membership are large or small according to the classes that have

been defined in the training stage.

[45] explores how supervised image classification methods, like the multi-layer

perceptron and radial-basis neural networks, behave with and without the presence of

an exhaustively defined set of classes. Since these two supervised methods are based

on one key assumption, that the set of classes has been defined exhaustively, if this

assumption is unsatisfied, pixels of an untrained class will commissioned into the set

of trained classes. As result some classes will be over-predicted, leading to an over-

estimation of their true extension. Here a data set derived from airborne thematic

mapper (ATM) imagery with a spatial resolution of 5 m acquired with a Daedalus

1268 sensor was utilised. A set of six crops were of interest, namely sugar beet, carrots,

wheat, barley, grass and potatoes. Although the classifications derived each method

differed in the pattern of class allocation, they provided the same high classification

accuracy > 85%. However, when the learning algorithms were trained with a rejection

option, that is they were allowed to classify a pixel or reject to classify by labelling

the pixel as unknown, the classification accuracy decrease significantly, roughly about

12.5%. This is a relevant result and it shows the necessity to identify training data at

least for all classes of interest and preferably for all apparent classes in the segment of

image to be analysed [122].

In [13] explicit interest in focusing the mapping process in a particular class of

interest is mentioned. This differ from previous works in the sense that the authors

followed [88] advice to adapt the mapping process to the user needs. Since most

supervised learning algorithms aim to maximise the overall probability that a pixel

is allocated to a class correctly, rather than focus on the accuracy with which the

specific class of actual interest is classified, may lead to an sub-optimal classifier to

discriminate the class of interest. Indeed, overall accuracy is just one component of

classification accuracy that may not even be the most useful for the user [88]. Here a

Landsat 7 ETM+ image was used and the land cover class fen was considered the class

of interest as opposed to the other seven, salt marsh, grazing marsh, agriculture, forest,

urban, sand and water. These seven classes constituted the others class. Two binary

classifiers, trained with class of interest and others data set, were compared with a

conventional classifier, trained with all the eight classes. The binary approach were

significantly more accurate that the multi-class conventional approach, indicating that

a class specific driven classification approach may be more suitable to discriminate

particular classes of interest than conventional multi-class way. The authors also in-

dicate that the satisfaction of the assumption of an exhaustively defined set of classes

requires that much effort, since part of the process is reserved to classes of little, if

any, direct interest; and thus savings in training could be achieved by focusing on the

specific class of interest.

Indeed, the idea of saving resources in the training stage were taken even further

in [55], where training set size requirement for the classification of a specific class was
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explored. The authors explored four different approaches to reduce training set size

to assess the minimal requirement to an accurate classification: intelligent selection,

selective class exclusion, acceptance of imprecise descriptions for spectrally distinct

classes, and the adoption of a one-class classifier. These approaches were compared

with the often suggested heuristic termed 30p. In other words, each class should be

sampled such that there is at least 30× p where p is the number of bands. The study

site was composed by cotton, local rice, basmati rice, sand and built-up land, but only

cotton was of interest. Experiments were conducted with data acquired from the In-

dian Remote Sensing Satellite LISS-III sensor with three spectral wavebands and 20 m

resolution. The results indicate that all approaches were capable to reduce the training

requirement and yield accurate classifications comparable to that of the conventional

widely used heuristics 30p without significant impact on the discrimination of the

class of interest.

In the sequence of [13], [47] explore the use of ensemble methods to classify a spe-

cific class of interest. The use of an ensemble could be useful since in many classifiers,

such as support vector machines and neural networks, the need to fix free parameters

can be difficult and time consuming. The use of multiple classifiers could in principle

mitigate that need [148]. The study was carried out with various binary classifiers

used to discriminate a specific class of interest from all others. A Landsat ETM+ image

of the test site was acquired and training set for the two classes, fenland and "oth-

ers", were extracted from the imagery using stratified random sampling, as in [13].

The ensemble was composed by five classifiers, commonly utilised by remote sensing

analysts, discriminant analysis, decision trees, support vector machines, multi-layer

perceptron, and radial basis function neural network. The outputs of the classifiers

were combined using a simple voting procedure to determine class allocation. The ac-

curacy of this ensemble was 95.6%, marginally better, but statistically insignificantly,

less accurate than the most accurate individual classifier. However, it is difficult to

specify the most appropriate classifier in advance, and thus the ensemble approach

may represent an operational solution for specific class mapping.

In [124] and [125], it is suggested that a single class classification approach could

be appropriate if interest focuses on a specific class. The authors illustrated this with

the classification of fenland from Landsat 7 ETM+ imagery and evaluated a range of

one-class classifiers, with particular attention to the support-vector data description

algorithm. The overall accuracy yield by the benchmark analysis was 68.8%. This

represents in general a low accurate map, however as supported by [88], analysis

should focus on the classes that best suites the user needs. Here the class is fenland.

This was classified with a commission error of 10.0% and omission error of 28.0%. The

accuracy of this classification is below used map accuracy targets and the map derived

from it may be viewed as being inadequate for use in the monitoring of the class of

interest [125]. In particular, the benchmark classification shows a large degree of

omission error and, as consequence, the extent of the class of interest was substantially
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underestimated. This is relevant since indicates that a map derived from a general

mapping procedure use for specific purposes (here fenland monitoring) may not be

optimal for those purposes. The one-class approach yielded a classification that was

significantly more accurate than that from the benchmark with commission errors of

2.5% and omission errors of 6.4% for the class of interest. The main highlight is that

very accurate land-cover maps of the class of interest can be produced with effort and

resources directed on the class of interest

In the same year, [108] explored the same algorithm, support vector data descrip-

tion algorithm, to classify a specific class with hyperspectral data. This method was

compared with other classification approaches in the discrimination of the class of

interest. The experimental results, obtained on different kinds of data (synthetic, hy-

perspectral, and multisensor images), indicate the effectiveness of the technique to

classify remotely sensed data in the presence of incomplete training data. In partic-

ular, the support vector data description provided good results particularly on the

multisensor data set, with significant improvement of the classification accuracy with

respect to other well-established one-class approaches.

The exploration of single class classifiers for specific class mapping was followed

by a string of works. In [109], two semisupervised one-class support vector machine

approaches were presented for remote sensing data classification to mitigate the need

to heavy fine tuning. Indeed, typically fine tuning is hard because the free parame-

ters of the model need to be finely adjusted, but there is not clear indication on how

to correctly perform it. Here the authors suggest the use of unlabelled data to over-

come that requirement by modelling the data marginal distribution with the graph

Laplacian built with both labeled and unlabelled data points. The testing trials were

conducted with hyperspectral data. In [94] the authors follow the a similar idea of

utilising unlabelled data to improve the learning process of a specific class of interest.

A classifier is developed with training data set from the class of interest and unlabelled

data, and estimates the probability that a positive training data point has been labeled,

and generates binary predictions for testing pixels using an adjusted threshold. The ex-

periments where conducted using aerial imagery and indicated that the new algorithm

provides high classification accuracy. A similar method is presented in [29] to exploit

the information contained in the unlabelled data points to improve the classification

accuracy of a standard binary support vector machines. In [15], the mean and product

combination rules were applied to the probabilistic outputs generated by single class

classifiers, and their performance were evaluated in a urban monitoring application

with multi-sensor (optical and SAR) data and multi-source (spectral and contextual)

features were used. The results obtained by the ensemble show an improvement in

the accuracy despise the high dimensional classification space. And in [101], authors

suggest a user-oriented one-class classification strategy, based on the visualisation and

interpretation of the classifier outcomes during the data processing. They show that
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careful interpretation of the diagnostic plots fosters the understanding of the classifi-

cation outcome, such as the class separability and suitability of a particular threshold,

for the classification of a particular class of interest.

In applicational studies, where the object of analysis is not the method itself,

but rather some application research question, the use of specific class mapping ap-

proaches is not frequent. In the majority of the cases, users commonly apply a conven-

tional multi-class approach. For example, in [87], interest was on four invasive plant

species by a a map with fourteen land cover classes was produced; in [74], interest was

on one class, mangrove forest, but twelve were utilised to obtain the land cover map;

in [99], interest was on abandoned agricultural land (one class) but five classes were

utilised to compute the land cover map random forest and support vector machines;

and in [119], where interest was also on abandoned agricultural land, the thematic

classification was done using twelve land cover classes using support vector machines.

Although rare, there are instances of applicational studies aware of specific class

mapping. For example, in [54] where specific tree species in ancient semi-natural

woodland, sycamore, fir, oak, ash and line, are the classes of interest and a two-phase

classification approach was adopted to map specific species from aerial sensor imagery.

First the prior probabilities were adjusted manually, followed by a sequence of binary

classifications in series, like a decision-tree classifier. In particular, following [88] in-

dication that the accuracy of the classes that allow them to answer that question are of

more importance, the optimisation was performed by adjusting the prior probabilities

of class membership to ensure that no pixels of the selected class were omitted from it

in the correct classification. In other words, the process was undertaken in a manner

that sought to optimise the producer’s accuracy of the class of interest. A consequence

this approach is that the selected class of interest may commission pixels that actually

belong to other classes and hence overestimate its abundance. In the second phase,

the adopted process sought to remove these commissioned pixels through a series of

binary classifications applied to the sample of cases predicted to belong to the class

of interest from the first phase of the analysis, to gradually subdivide the data until

the class of interest have been identified. The first phase of this process is indicates a

relevant point for specific class mapping, that is the classification optimisation process

should be guided by class specific metrics, such as the producer’s accuracy, to drive

the classification process to solve the specific problem instead of global classification

problem. In [5] the same methodology was utilised.

In [6, 28, 59] the binarisation process "classes of interest vs. others" as in [13] was

adopted. [59] in particular, has utilised it to discriminate tree species. Here twenty-one

tree species were of interest and the remain twenty-four were combined in one single

class others with Airborne Taxonomic Mapping Systems sensor package. The authors

used a support vector machine classifier for its ability to handle high dimensional data

with small training sets, and the one-vs-one approach was adopted generating a total

of 210 binary classifiers, one for each pair of classes of interest where one of the classes
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is the nominal class others. Evaluation metrics where specific, similarly to what was

done in [54]. Here precision and recall were utilised. Precision and recall are informa-

tive metrics for multi-class models, that were combined in the F-score metric. However,

is not clear if the free parameter determination was done utilising this metric or the

conventional classification accuracy. Nevertheless, the authors accurately identified

the effects of data imbalance that may occur when utilising the approach indicated

in [13]. To overcome data imbalance problems the authors adopted an weighted ap-

proach, by implementing them when running the support vector algorithm after the

training data had been split into the training and testing groups. The authors quanti-

fied the effect of class imbalance on model accuracy, and verified a trend where species

with more samples were consistently over predicted while species with fewer samples

were under predicted. Additionally it was verified that standardising the sample size

reduced the classifier accuracy but also reduced the level to which the classes were

over- or under-predicted.

In [28], in particular, four data sets were utilised to discriminate specific tree

species utilising hyperspectral data, multispectral and LiDAR. In the first data set,

seven classes were of interest and the eighth consists in the others class. In the second

data set, five classes were of interest and the sixth the nominal class. In the third data

set, there were two classes of interest and the nominal class. And in the final data

set a simple binary classification problem, interest-vs-non-interest was utilised. The

support vector machines and random forest were compared in each data set. Both

methods yield high accuracies > 85%, but indicating that the support vector machine

outperformed the random forest in each data set, regardless of the type of data being

used. Unlike, [59], there is no clear indication if data imbalance related problems were

detected and, if so, how they were tackled.

In [6], the process of specific class mapping is termed focal species mapping, where

focal classes are the classes of interest and non-focal are the classes of no interest. Here

three classes were of interest and the remotely sensed data consisted in data acquired

from the Carnegie Airborne Observatory Airborne Taxonomic Mapping System and

LiDAR. Several approaches were compared, the binary approach and the biased ap-

proach. One-vs-rest binary support vector machine and biased support vector machine

were found to outperform the standard support vector machine for remote species

identification. Additionally, they found that binary support vector machine provided

greater sensitivity but slightly lower specificity than biased support vector machine.

And in particularly, the precision of binary support vector machine would likely im-

prove, if more training data were gathered for the classes of no interest. However,

pursuing this track can be costly, specially with high tree species diversity it becomes

very costly to comprehensively sample the non-focal tree species. The Biased support

vector machine is advantageous here, since it comprehensively samples the spectra of

all vegetation present in the region of interest and uses this information to constrain

the focal classes.
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2.4 Synthesis of the previous works

The analysis to the literature showed that there are essentially two general ways to

implement such a specific class classification process. One is to decompose the multi-

class problem in a series of binary classification problems to separate the classes of

interest from all the rest; and the second is to adopt one-class classifiers that explicitly

focus all processing in one class of interest. The first is the binary, or binarisation,

approach, where the problem is decompose in a series of binary decisions; and the

second is the single-class approach, where single-class classifiers are utilised.

The binary approaches tend to define simpler decision boundaries which reduce

the competence areas of each classifier producing locally specialised models [82]. From

these small binary problems, the original multi-class problem can be solved using

combining strategies such as one-vs-one and one-vs-all [129]. Although studies have

shown that binary decomposition performs well in most multi-class problems, it has

nevertheless limitations such as being dependent of the combination method and being

susceptible to data imbalance and sparse distributions [81]. From the operational point

of view, the binary classification approach still requires the sampling of land cover

classes of no interest at training collection stage, since it is necessary to sample the

classification space outside the classes of interest. And like the multi-class supervised

method, if this space is ill-sampled, that is some classes are omitted from the training

or under-sampled, it is possible for a classifier to commit some of those areas into a

class of interest, over-estimating the true extension of these important classes.

In the binarisation category, one can also include the semi-supervised approaches,

since this type of classifier typically utilises a binary classifier or binary decomposition

approach. Although, like the single-class approaches, only the classes of interest are

sampled by the analyst. But, these tend to be computationally more expensive than the

single-class methods, since additional information is extracted from an typically very

large number of unlabelled samples [95]. However, they can be much more accurate,

specially if significant spectral ambiguities between the classes of interest and the

negative class exist. In such cases, a single-class approach may not perform as accurate

as a semi-supervised approach or binary approach [69, 93].

The binarisation approaches require a form combination scheme. The three most

common schemes are the one-vs-rest (also known as one-vs-all), the one-vs-one and the

decision directed a cyclic graph. The most common form of the three is the one-vs-rest,

use for example in [13]. But the other schemes have been used also, for example [59]

used the one-vs-one, and [54] a form of decision directed a cyclic graph. Which of these

schemes is the best is an open question [9, 30, 123], and one can find different studies

suggesting different answers [57, 138]. For example, one-vs-rest leads to less classifiers,

but may suffer from imbalance related issues. One-vs-one, on the other hand, break

the problem into simpler problems but require much more classifiers. And decision

directed a cyclic graph is the most flexible of the three, but may become too complex.
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Nevertheless, the literature review indicates that the binarisation approaches are the

most commonly used by non-expert researchers. That is, in applicational studies users

tend to use this approach, either by adopting a one-vs-all approach, like [28, 54, 59],

or a semi-supervised approach, like in [6].

With the single-class approach, on the other hand, the user adopts a one-class

learning algorithm to develop a classifier to identify a single class of interest [64, 73].

In this approach only training data belonging to the class of interest is utilised to

develop the classifier, which is its most attractive feature in terms of sampling effort

and resources on the class of interest. In this category are also included the density

estimation based methods, like those present in [1, 58, 102, 103].

The single-class classifier may not always be the best approach, since only data

about one class is available and thus only one side of the discriminative boundary can

be determined [137]. It can then be difficult to determine how tightly the boundary

should fit in all directions around the data in feature space. To overcome this difficulty

some one-class classifiers, like the support vector data description, assume that the

non-interest class has a particular distribution around the class of interest [137]. When

the true distribution deviates from the assumption, the method may underperform.

That deviation however can only be assessed with training points outside of the class

of interest [136].

From literature, the one-class support vector machine and the support vector data

description are well stablished single-class classifiers for remotely sensed data classifi-

cation in methodological studies. As with the conventional support vector machines,

free parameters have to be determined. These typically are the kernel parameters

and a regularisation parameter, also known as penalisation cost. In practice, the pe-

nalisation parameter has been defined via the omission/false negative rate, like in

[109]. Thus the user has to specify the percentage of the positive training data to be

rejected by the classifier. This variable needs to be fix carefully to ensure an accurate

classification result. Values such as 1% or 5% can be suitable when the positive class is

well separable [92]. If not, the classifier may induce a high commission/false positive

rate when a significant class overlap exists. And as consequence the classifier may

over-estimate the area of the class of interest.

Literature also indicates that specific metrics should be utilised as suggested by

[88]. These specific metrics constrain a particular step of the classification process,

like the determination of the free parameters, to the discrimination of the classes of

interest. In [59], the F-score (the harmonic mean between recall and precision) was

utilised but other metrics could be used. For example, another metric often used is

the geometric mean of sensitivity and specificity [145] which is defined as the square

root of the product between sensitivity and specificity. Sensitivity and specificity are

two metric utilised in binary classification. Sensitivity, also known as recall, is also

utilised in the F-score. This metric represents the producer’s accuracy of the class

of interest. Specificity, on the other hand, represents the producer’s accuracy of the
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class of no interest. In contrast with the precision utilised in the F-score, that is the

user’s accuracy of the class of interest, this does not dependent of the geographical

extension of the class of interest [111]. In other words, precision as typically utilised

in binary classification, when applied to image classification, represents a biased es-

timator. There are no references in the literature discussing this point. Thus it is not

clear if there are issues in utilising F-score for geographical data. But if the geometric

mean is used instead, that possible objection does not apply.

A final point of importance derived from the analysis of previous studies where

specific class mapping was the central problem is the bias that the classification pro-

cess may suffer. This bias can be categorised in two types: intended and unintended.

An example of intended bias is in [54], where the optimisation process was purposely

manipulated to created a bias to the class of interest. That is, the process was min-

imising the omission errors and, as result, the classification process would commission

cases that actually belong to other classes (classes of no interest). The consequence is

that the class of interest end up being overestimated. In [54] the effect is then corrected

in further analysis. An example of unintended bias is in [59] where the classification

scheme one-vs-rest led to imbalanced issues and was underestimating the smaller

classes and overestimating the larger ones. Since the classes of interest are typically

small [88], and that is particularly evident when one-vs-rest is utilised, these may end

up being underestimated. This bias is then against the classes of interest, and can be

harmful if user is not aware of it.

2.5 Conclusion

In this chapter, the term specific class mapping was defined as consisting in the process

of producing a non-exhaustive thematic map of a particular region. This contrasts with

the conventional supervised classification that by design output a complete character-

isation of the mapping region. Defining an exhaustive training can be problematic

for time consuming and economical reasons but also because the intrinsic difficulty

of the task. Thus conventional supervised methods may not be the best approach in

these cases, because an exhaustive class composition at the training stage may not be

possible or desirable. Additionally, the conventional supervised methods may not be

fine-tuned for the optimal discrimination of the classes of interest, since these meth-

ods are effectively solving a larger problem. From the analysis to the literature, it was

possible to organise the different approaches in two boarder categories: the binarisa-

tion methods and the single-class methods. Both categories present advantages and

disadvantages. For example, the binarisation approaches have access to a complete

information, that is information about the classes of interest and information about

the classes of no interest, but depend on the combination schemes. The single-class

approaches, on the other hand, require exclusively training data from the classes of

interest and nothing else, but the fixing the free parameters can be a difficult task
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that may lead to classifiers with high number of false positives. It was identified that

specific accuracy metrics may improve the process, for example when determining

free parameters. Examples of those metrics are the F-score and the geometric mean

between sensitivity and specificity. Finally, it was identified that bias in the process

may occur. These can be to or against the class of interest. If to, this may lead to an

overestimation of the class of interest. If against, this may lead to a underestimation.

Bias can also be intended or not. If not, these bias can be harmful if the user is not

aware of them.
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Methodological background

Abstract In this chapter the concepts and methods that support the research in the

core chapters 4, 5, and 6 are presented. The purpose here is not so much to present an

exhaustive account of all topics but rather to clarify and highlight details that may not

be clear or were briefly discussed in the next chapters. In this sense, some details, like

the problem of data imbalance, cost-sensitive learning and the adaptation of support

vector machines to this type of learning, are not discussed here because they were

comprehensively elaborated in further chapters. The chapter starts with the support

vector machines classifier, in particular with the soft margin formulation. Here is also

discussed, the kernel trick, the adaptation of the support vector machines to multi-

class classification problems, one-class support vector machines and model selection.

The chapter ends with a discussion about accuracy metrics for binary classification

assessment and classification comparison.

3.1 Introduction

The Support Vector Machines (SVM) is a supervised non-parametric binary learning

algorithm, which entails that no assumption is made on the underlying data distri-

bution [139]. This is particularly important in remotely sensed data analysis since in

general it is unlikely to know the data distribution of land cover classes beforehand.

Another attractive feature of SVM is its relatively low training requirements. In other

words, a limited quantity of training data points is enough for SVM to yield an accu-

rate classifier. Indeed, some studies, for example [51, 52], indicate that only a quarter

of the recommended number of training data is enough to produce good results.

However, SVM are usually difficult to fine tune [17], which may take considerable

time. This is usually done by cross-validation but there is no guarantee that the result
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is indeed the best possible parameterisation [9]. Another limitation of SVM is its

inability to deal with multi-class classification problems directly. Although there are

SVM formulations that solve multi-class problems these methods have not been widely

adopted in remote sensing community. Typically SVM solve multi-class problems by

decomposing the problem in smaller binary problems. Some studies indicate that these

simple approaches are more suitable for practical use than the more sophisticated

multi-class approaches [91] but there is no definitive answer regarding which one is

the best. The SVM principles can also be adapted to solve single-class problems by

rewriting the SVM optimisation problem, however the main concepts, like support

vectors, are maintained.

Since one overarching theme of this dissertation is binary classification, this chap-

ter also tackles specific accuracy metrics to assess the performance of binary classifiers

and how to interpret them. In particular, sensitivity and specificity since these metrics

are central for the analysis of classifiers in further chapters. Another topic, related with

accuracy metrics, is the classification comparison. It is explained why conventional

statistical hypothesis testing are not always suitable for the purpose of comparison

and it is presented an alternative.

3.2 Support vector machines

3.2.1 Soft margin support vector machines

The soft margin SVM was introduced by [11] and represents an improvement over the

hard margin SVM introduced years before [30]. The soft margin SVM aim is to induce

a linear classifier that "best" discriminates two classes not necessarily separable. Best

here is defined as the linear classifier with maximum margin [86], where margin is

defined as the distance from a training data point to the decision boundary defined

by the classifier [138]. However, since the two classes are not necessarily (linearly)

separable, the maximisation problem has to involve trade-off metrics, unlike the hard

margin SVM [139].

Figure 3.1 represents two hypothetical classes. They are not linearly separable and

thus some points will be misclassified by the linear classifier. The margin, as with

the hard margin classifier, is maximised by minimising the quantity 1
2w

Tw [30, 138],

where w is the normal vector defining the discriminant plane. However, an additional

condition is necessary to accommodate the misclassified data points. Commonly the

soft margin SVM utilises one of these two: linear loss function (also known as hinge

loss),
∑
i ξi , and the quadratic loss function,

∑
i ξ

2
i [30]. The variables ξi are called

slack variables and represent the error committed in the data point xi by missing the

margin. The discussion will focus on soft margin SVM with linear loss function, since

this is the most common implementation [139]. The optimisation problem is then

formulated in the following way [86]:
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Figure 3.1: Soft margin support vector machine. The margin is maximum distance
between the discriminate plane and the training data points. However, some points
not correctly discriminated.

minw,b,ξ
1
2
wTw+C

∑
i

ξi (3.1)

subject to yi(wTxi +b) ≥ 1−ξi and ξi ≥ 0 for all training data points (xi , yi). The optimi-

sation problem is then composed by two terms: the 1
2w

Tw that maximises the margin

and C
∑
i ξi (the regularisation term) that minimises the number of misclassified data

points. The parameter C is called the penalisation cost (for misclassifying a point)

and controls how severe should the optimisation process be with misclassifications. In

other words, for large C the number of misclassifications is small and, as consequence,

the margin is narrow. This leaves less room to accommodate atypical data points. On

the other hand, small values of C, allows the optimisation process to accept solutions

that misclassify some points, which results in a larger margin. The topic of how to

define this parameter is discussed in section 3.2.5.

The soft margin SVM optimisation problem can be solved with quadratic program-

ming by reducing this formulation (typically termed primal form) in its dual form

[86]. This is done by composing the Lagrangian objective function [43]. Concretely,

the Lagrangian objective function of the problem 3.1 is:

L =
1
2
wTw+C

∑
i

ξi −
∑
i

αi[yi(w
Txi + b)− 1 + ξi]−

∑
i

βiξi (3.2)

Applying the Karush-Kuhn-Tucker (KKT) conditions [43] it is possible to infer:
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∇wL = w −
∑
i

αiyixi = 0⇒ w =
∑
i

αiyixi (3.3)

∇bL = −
∑
i

αiyi = 0⇒
∑
i

αiyi = 0 (3.4)

∇ξiL = C −αi − βi ⇒ C = αi + βi (3.5)

∀ i αi[yi(wTxi + b)− 1 + ξi] = 0⇒ αi = 0∨ yi(wTxi + b) = 1− ξi (3.6)

∀ i βiξi = 0⇒ βi = 0∨ ξi = 0 (3.7)

The first observation is that the normal vector w is a linear combination of data points

and its Lagrange multipliers (equation 3.3). This is relevant since some of the Lagrange

multipliers have to be zero (equation 3.6). The data points with non-null Lagrange

multipliers are called support vectors, since only these points are relevant for the

classification [138]. Effectively, if αi , 0, then yi(wTxi + b) = 1 − ξi . Since ξi ≥ 0,

yi(wTxi +b) = 1 if ξi = 0 or yi(wTxi +b) < 1 if ξi > 0. In the first case, the point is on the

margin and in the second case the point is on the wrong side of the plane. Thus the

support vectors are either on the margin or on the wrong side of the plane and thus

misclassified.

The dual form of the problem is obtained by inserting the definition of w in the

Lagrangian (3.2). This yields:

maxα L =
∑
i

αi − 1
2

∑
i,j

αiαjyiyjx
T
i xj (3.8)

subject 0 ≤ αi ≤ C and
∑
i αiyi = 0 for all training data points. This problem is

quadratic and convex and thus the solution is unique [43]. It is important to note

here that, from the KKT conditions, the Lagrange multiplier of the misclassified sup-

port vectors, those with ξi > 0, is such that αi = C. Effectively, these support vectors

have the largest possible contribution for the solution of w [138].

The solution of the dual problem can be used directly to determine the classifica-

tion rule by the soft margin SVM classifier:

f (x) = sign(wTx+ b) = sign(
∑
i

αiyix
T
i x+ b) (3.9)

where only the support vectors are utilised in the computation, and sign(x) = 1 if x ≥ 0,

and −1 otherwise. The variable b can be determined by averaging all possible b with

b = yi −
∑
i αiyix

T
i x [30].

3.2.2 Introducing the kernel trick

Kernel methods are machine learning algorithms that utilise a non-linear function

from the input space to a higher-dimensional space, where linear separation is possi-

ble. This is called the kernel trick. This transformed space can indeed be very large.
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Transformed spaces with 1015 is not uncommon in practice [86]. However, the com-

putational cost to generate such space and to define a linear classifier is negligible.

That is what makes the kernel methods such a powerful machine learning tool. The

mathematics behind the kernel function theory is dense and long. For brevity sake,

only the most important elements will the discussed here.

What is then a kernel? A kernel function is a function K : Rd ×Rd → R such that

for any two data points x and x′ of Rd , K(x,x′) = φT (x)φ(x) where φ is a non-linear

function. This non-linear function φ is such that φ : Rd → RN . Thus effectively what

φ is doing is to project a single point from the classification space to a very high-

dimensional space. The kernel function K is then only the inner-product of two pro-

jected data points. Note that since the inner-product of two vectors is often interpreted

as a similarity measure, the kernel function is measuring the similarity between these

two projected data points. In other words, provided two data points in the feature

space, with the kernel function K is possible to assess how similar are they are in the

projected space. This is important since the SVM learning algorithm tries to find a

small subset of training data points that best discriminant both classes. If two points

are very similar, then only one suffice since the two are reductant. On the other hand,

if two data points are very dissimilar, the two points contain different information

about the classification space and thus both maybe useful for the discrimination of the

classes. The support vectors are typically points that are very dissimilar from the rest

of the class.

Although new kernel functions are frequently presented in research, the most

commonly used kernels are still [19], the linear

K(x,x′) = xTx′ (3.10)

the radial-basis

K(x,x′) = exp(−γd2(x,x′)) (3.11)

where γ is a free-parameter and d2 the squared distance metric, usually the euclidean

distance; the polynomial function:

K(x,x′) = (γxT x′ + a)d (3.12)

where a and d are scalars; and the sigmoid function:

K(x,x′) = tanh(γxT x′ + a) (3.13)

where γ and a are scalars. Which kernel function to apply often depends on the

problem at hand, but further discussion can be found in section 3.2.5.

The kernel function K is incorporated in the SVM learning problem in the follow-

ing way:

27



CHAPTER 3. METHODOLOGICAL BACKGROUND

maxα L =
∑
i

αi − 1
2

∑
i,j

αiαjyiyjK(xi ,xj ) (3.14)

subject 0 ≤ αi ≤ C and
∑
i αiyi = 0 for all training data points. The function K occupies

now the place of xT
i xj in problem (3.8), which is a special case. Since K(xi ,xj) is a

scalar and determined before the optimisation process begins, there is no fundamental

difference between problem (3.8) and problem (3.14), and thus problem (3.14) can be

solved with the same optimisation algorithm then problem (3.8).

The decision rule has now to accommodate the application of the kernel function.

This done in the following way:

f (x) = sign(
∑
i

αiyiK(xi ,x) + b) (3.15)

where only the support vectors are utilised in the computation. The variable b can be

determined in the same way as in the previous cases by b = yj −
∑
i αiyiK(xi ,x). Note

that if x is very similar to the support vector xi , then K(xi ,x) is large, and thus the

contribution of the term αiyi is large in the summation. This pushes the summation

in the direction of the class of the support vector xi .

All development so far was done taking the binary problem as starting point. In

the next section the strategies to apply the SVM learning algorithm to multi-class

classification problem will be described and discussed.

3.2.3 Adapting SVM to multi-class classification problems

The SVM was originally defined as a binary classifier. The adaption of the SVM to a

multi-class context is not direct and is still an on-going research topic [30, 94]. Never-

theless, the multi-class adaptation approaches can be broadly categorised in two ways:

the combination approaches and the "all-together". The combination approaches con-

sist in utilising several binary classifiers to solve the multi-class problem. Essentially,

these approaches represent different ways to break down the multi-class problem into

a sequence of small binary problems. The "all-together" approaches consist in solving

a large optimisation problem, similar to that of the soft margin classifier, but consid-

ering all classes of the problem instead of just two. Examples of these approaches are

the Crammer and Singer SVM [27] and the methods proposed in [143]. Here focus

is on the combination approaches, and this is for two reasons: first, although avail-

able since the beginnings of the use of SVM, the "all-together" have never been fully

adopted by the remote sensing community; second, studies comparing these methods

and the combination approaches indicate that the combination approaches tend to be

more suitable for practical use [94, 123]. Combination approaches, as mention before,

represent different ways to break down a multi-class problem in a set of smaller binary

classification problems. The three more common methods are the One-vs-All (OVA)

[12], the One-vs-One (OVO) [75, 83] and the Directed Acyclic Graph (DAG) [117].
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Let be assumed that the multi-class problem is composed by k classes. The OVA is

perhaps the most intuitive. It consists in picking one class of the set of classes as the

class of interest and reunite all other into one large nominal class, and then develop

a binary classifier. This binary classifier is then an expert identifying that class of

interest. The procedure is repeated for all other classes. The OVA is then an ensemble

of k classifiers. At allocation time, the point being classified is evaluated by each binary

classifier and each one outputs a confidence metric. The confidence metric for SVM

can be defined as [94]:

f (x) = argmaxj=1...k |
∑
i

αiyjiK(xji ,x) + bj | (3.16)

where xji is the i-th support vector of the j-th classifier (expert in the j-th class). Note

that equation 3.16 is the metric utilised in equation 3.15. However this approach is not

without limitations. Firstly, the scale of the confidence values may differ between the

binary classifiers [9]. This can in part be minimised by scaling the confidence metrics

[129]. Secondly, even if the class distribution is balanced in the training set, the binary

classifiers see unbalanced distributions. This is because the class of interest typically

only a small component of the whole, that is the set of negatives is compose by all

other classes. Thirdly, the general decision rule may produce tied cases. Those cases

are often solved randomly.

The OVO tackles the problem differently. Here all possible pairs of classes are

enumerated and a binary classifier is developed for each one of them. Thus each

classifier is sensitive only to two classes, and thus for any point to be classified, the

component classifiers can only be allocated in one of the two. The final decision is

done by voting. The class with more votes is the class to be assigned. However the

OVO can also have tied cases. In those situations there is not clear way to solve it and

the majority of the implementations solve these cases randomly [94]. For a problem of

k classes the number of binary classifiers is 1
2k(k−1). This is considerable; for example,

for a problem consisting in 10 classes the OVO has to compute 45 binary classifiers,

where the OVA has to compute only 10; and for 20 classes the number of classifier for

OVO jumps to 190.

The DAG, like the OVO, breaks down the classification problem in pairs. In fact,

the same pairs of classifier of OVO. Thus, DAG comports as many classifiers as OVO.

However, instead of organising these pairs sequentially, like OVO, DAG organise them

in a tree. Figure 3.2 illustrates the application of DAG for a 3-class problem. The

allocation phase with DAG is like the decision flow in a decision tree. The first classifier

is the root (2 vs. 3). If the decision falls for 2, the flow moves left, otherwise moves

right. The process eventually ends in a leaf node, the final decision. The process is

faster than that of the OVO since OVO is effectively doing a binary search and OVO

a linear search [117]. In fact, for a 10-class problem, both approaches comport 45

classifiers. But at allocation phase, all classifiers of OVO have to operate while only
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2	vs.	3

1	vs.	2 1	vs.	3

2 1 3

Figure 3.2: The directed acyclic graph approach to the application of SVM to multi-
class problems. Here a 3-class problem.

roughly 5 of DAG will operate; and for a 20-class problem, only 8 operate against the

190 of OVO.

3.2.4 One-class support vector machines

As it was shown in section 3.2.1, the SVM was developed to solve binary classification

problems. However, the same principles can be applied to solve one-class problems,

also know as novelty detection problems [30]. This problem consists in detecting

objects from a particular class, often called target class or class of interest. These

problems differ greatly from the standard supervised classification in the sense that the

training set is composed exclusively by data points from the target class and thus there

are no counterexamples to define the classification space outside the class of interest.

One-class classification has been utilised in a variety of applications [30] and has great

potential in remotely sensed data processing. There are two approaches to one-class

classification based on SVM principles, One-Class Support Vector Machines (OCSVM)

[128] and the Support Vector Data Description (SVDD) [137]. In this dissertation,

however, focused in on the use of OCSVM.

The basic idea behind the OCSVM is to determine a function that signals positive

if the given data point belongs to the target class and negative otherwise. To achieve

that the classification space origin is treated as the only available member of the non-

target class (figure 3.3). The problem is then solved by finding a hyperplane with

maximum margin separation from the origin. Non-linear problems are dealt with a

kernel function as in the binary SVM. The OCSVM optimisation problem is formulated

as follows [128]:

min
w,ξ,ρ

1
2
wTw − ρ+

1
νm

∑
i

ξi (3.17)
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Figure 3.3: One class support vector machine. The origin is treated as the only available
member of the non-target class. The vector w is normal to the separating hyperplane.

subject to wTφ(xi) ≥ ρ−ξi and ξi ≥ 0. Here, m is the number of training data points, w

is the vector perpendicular to the hyperplane that defines the target class boundaries

and ρ is the distance to the origin (figure 3.3). The function φ is related with the kernel

function [128]. The use of slack variables ξi used in the OCSVM to allow the presence

of class outliers, similar to binary SVM (figure 3.3). The parameter ν ranges from 0

to 1 and controls the trade-off between the number of data points of the training set

labelled as positive by the OCSVM decision function:

f (x) = sign(wTφ(x)− ρ) (3.18)

Applying the KKT conditions to the original OCSVM problem, this can be rewrit-

ten as depending of the Lagrange multipliers α:

min
α

∑
i,j

αiαjK(xi ,xj ) (3.19)

Subject to
∑
i αi = 1 and 0 ≤ αi ≤ 1

νm for all training data points, where K(xi ,xj) =

φT (xi)φ(xj ) is the kernel matrix defined by the kernel function φ. Note that the algo-

rithm utilised to solve the SVM optimisation problem can also be used the OCSVM

problem. From this, the decision function can be rewritten depending only on the

non-null Lagrange multipliers and on the kernel matrix values:

f (x) = sign(
∑
i

αiK(xi ,x)− ρ) (3.20)

The data points with non-null Lagrange multipliers are effectively the support vectors

of the one-class classifier. The classification rule is based on the signal of the decision
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value, positive if the data point is located inside the target class, negative otherwise.

The absolute value of the decision value is directly related with the distance of the data

point to the separating hyperplane in the transformed classification space [128].

3.2.5 Model selection of support vector machines

In the SVM classification algorithm, there is a set of free parameters that need to be

set. These are the kernel and its parameters and the penalty factor. For example, to

use a SVM with the radial-basis kernel function it is necessary to set the radial factor

γ and the penalty factor C. These parameters can affect considerably the performance

of the resulting classifier, and thus parameter tuning becomes crucial [17]. Indeed,

often tuning is more important than the choice of learning algorithm [89], and the

SVM in particular is harder to tune than other classification algorithms [18]. Choosing

the parameters that yield the classifier with the best performance in terms of the

discrimination of unseen data points is known as model selection problem [61]. This

problem is ill-defined, since the distribution of the unseen data points is unknown

[17]. Hence, most users utilise proxy procedures to estimate the testing error such

as cross-validation [76]. Nevertheless, the first parameter to be defined is the kernel

function which has to be defined prior to the cross-validation process.

As discussed in section 3.2.1 there the most common kernels are the linear, the

radial-basis, the polynomial and the sigmoid function. But, the two most common

functions are the linear and the radial-basis [19, 30]. However, there two good reasons

why the radial-basis kernel function should be the off-the-shelf kernel for most appli-

cational problems. The first reason is that, excluding the linear kernel, the radial-basis

function is the kernel with the least number of parameters to be fixed. This is an ad-

vantage since the more parameters is available in the kernel the harder it is to tune the

learning algorithm. The other reason is that the linear kernel is a special case of the

radial-basis [72]. In other words, for any SVM classifier trained with a linear kernel

and a penalty factor C there is a parameterisation (γ,C′) that yields a classifier with

the same performance of that linear SVM. In this way, discussion will be focused on

the determination of the radial-basis parameters.

As previously mentioned, to train a radial-basis SVM is necessary to fix the penalty

factor C and the radial factor γ , and the is typically done by cross-validation trails.

Here, the training set is divided in two parts. One is used to training and the other is

used to test the classifier. This idea is often implemented in a k-fold process, where

k is an integer number typically 3, 5 or 10. This k-fold cross-validation breaks down

the training set in k equal or approximately equal parts, and uses each part as testing

set and the remain as training set. Then an accuracy metric is estimated for each fold

and the results are averaged. The identification of the particular parameterisations is

commonly done by grid-search. In other words, the range of possible values of each

free-parameters is broken down in small elements and then the Cartesian product is
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determined, resulting in a grid of trail points. [19] suggests to break the range of γ and

C is powers of two. For example, for γ a good breakdown is 2k for k = −15,−14, ...,3,

and for the penalty factor C a good breakdown is 2k for k = −3,−2, ...,15. From this

decomposition, it is derived a 19×19 grid where each point is pair (γ,C). For each one

of these pairs, a k-fold cross-validation is employed and the pairs with highest accuracy

is selected. [19] suggest to start with a coarse grid to identify a “good” region, and finer

grid inside that region to identify more specific values. Typically, the accuracy metric

utilised in the grid-search cross-validation is the classification accuracy. However,

other metrics can be used, and in some cases, such as imbalanced data sets, other

metrics have be used. Examples of such metrics are the sensitivity, the specificity,

G-mean, F-measure, etc [63].

The cross-validation process is a generic method that is staple for any analyst

intending to apply supervised classification algorithms that need fine tuning. Nev-

ertheless, the understanding of how the algorithm parameters inform the induction

process can be useful, since it may guide the analyst to select parameter in an informed

way.

The parameter C controls the penalisation to be assigned to every misclassification,

and as consequence the number of support vectors of the classifier. In detail, if C is

large, the cost of misclassification is large. The optimisation process thus is forced to

search for a solution where the least number of training data points are misclassified.

This is because to minimise the term C
∑
ξi in the SVM optimisation problem, each ξi

has to be small (close to zero) to overcome the influence of the large constant C. This

forces the optimisation process to search for very sparse solutions [43, 144], where only

a small number of ξi are not zero. These points, as it was discussed in 3.2.1, constitute

the support vectors. Thus large C leads to classifiers small number of support vectors.

This may result in an accurate classifier or, in the presence of a noisy training data

set, in a overfitted classifier [86, 138]. On the other hand, when C is small, more data

points are allowed to be misclassified, since the optimisation process does not need

to force the ξi to be small to overcome C. As result, more data points are included

as support vectors. For very small values (close to zero) of C, the number of support

vectors may include the entire training data set.

Figure 3.4 represents a set of examples of SVM trained with different combinations

of γ and C. The two classes are linearly separable and were artificially generated. The

centre of the positive class (1,1) and the centre of the negative class is (5,5). Variance

of both classes is 0.5I where I is the identity matrix. The grey represents the regions

where decision is made with a difference not superior to 5%, that is |p+ − p−| < 0.05

where p+ is the probability of a point to belong to the positive class and p− is the

probability of a point to belong to the negative class. The probability values were infer

from the SVM using the Platt’s scalling technique [116]. The classification problem

was purposely easy to solve and the value 5% was used for illustration purposes only.
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(a) γ = 0.001 C = 0.001 (b) γ = 1 C = 0.001 (c) γ = 1000 C = 0.001

(d) γ = 0.001 C = 1 (e) γ = 1 C = 1 (f) γ = 1000 C = 1

(g) γ = 0.001 C = 1000 (h) γ = 1 C = 1000 (i) γ = 1000 C = 1000

Figure 3.4: Two linearly separable classes, the positives and the negatives, artificially
generated. Full triangles represent the support vectors and circles represent other
data points. The centre of the positive class (1,1) and the centre of the negative class
is (5,5). Variance of both classes is 0.5I where I is the identity matrix. The grey are
represents the region where decision is made with a difference not superior to 5%, that
is |p+ − p−| < 0.05 where p+ is the probability of a point to belong to the positive class
and p− is the probability of a point to belong to the negative class.
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Frames (a), (b), (c) were generated with C = 0.001; frames (d), (e), (f ) were gen-

erated with C = 1; and frames (g), (h), (i) were generated with C = 1000. As it can

be observed the number of support vectors increase when C decreases and decreases

when C increases. Particularly illustrative are frames (a), (b), (c) where C is extremely

small, 0.001. Here the number of support vectors constitute de entire training data set

and the classification decisions are all based on difference inferior to 5%, this indicates

low confidence classifications. In contrast with other cases where the grey area of

ambiguity is much reduced.

The parameter γ is the radial-basis kernel and is responsible to control the simi-

larity between two data points. More concretely, the kernel function, as mention in

section 3.2.1, is a similitude function, and it is utilised in the SVM to find the most

dissimilar data points, which tend to become the support vectors. The γ parameter

then controls how close two data points must be to be considered similar. This is

important, in particular, during the allocation phase, because the weight associated

to a support vector is more influential in the allocation decision of a given point the

more similar that point is to the support vector. The parameter γ is inversely propor-

tional to the variance in the neighbourhood of the support vectors [128]. Indeed, it is

common to use the relation γ = 1
2σ2 in implementations of the radial-basis function,

where σ represents the kernel width, to better represent the control of this parameter

over variance. Thus, for large values of γ , the variance around a given support vector

is small and thus a point has to be very similar (and thus close) to the support vector

to be allocated in the same class of the support vector. For small values of γ , however,

the variance around a support vector is large and dissimilar points (thus futher) are

allowed to be included in the class of the support vector. Although γ is not the main

responsible to control the number of support vectors, it can affected. Indeed, for very

large values of γ , each individual data point becomes important to describe its small

neighbourhood since its neighbour points are also restricted. Smaller values of γ may

entail less support vectors because each point is allowed to expand its neighbourhood

and thus a small number of data points may be enough to describe the training set.

The effect of different magnitudes for γ can be observed in figure 3.4. Frames (a),

(d), (g) were generated with γ = 0.001; frames (b), (e), (h) were generated with γ = 1;

and frames (c), (f ), (i) were generated with γ = 1000. Excluding the top row (frames

(a), (c), (c)), where small value of C overtake the effects of γ , small values of γ tend

to reduce the grey regions indicating the decision with low uncertainty. Note that

for sufficiently small values of γ the decision boundary will resemble a straight line,

although the radial-basis function is not linear [72] (frames d and g), and frames (e)

and (h) represent a quasi-straight line. Indeed, the main difference between frames

(d) and (g) is the number of support vectors due to the different values of C. Frames

(e)and (h) are similar in terms of grey region and number of support vectors despise the

different values of C. Frame (f ) represent an extreme case where γ is extremely large

entailing very low variability around the support vectors. This leads to two results:
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first the increase of support vectors, because each point becomes important to describe

the small region around itself and the domination of one class over the classification

space. In this case the grey regions are around the top class indicating that the regions

of uncertainty are localised around the support vectors of this class, thus restricting

the area of classification of this class to its support vectors. This is expected since in

a binary classification all data points have to fall in one, and only one, of the classes.

Each class will be constrained depends in the way the algorithm was implemented [30].

Frame (i) represent another extreme case where γ and C are both large. This leads to

the definition of a large number of support vectors, despite the value of C, because

each data point is restricted to its small neighbourhood.

In practical terms, how can a user utilise these observations to better guide the

tuning of a SVM and ultimately producer better maps? If the user realises that the

class of interest is being underestimated, this may indicate that the classifier is being

strict and is allocating to the class only those pixels that are very similar to the support

vectors. In this case, the classifier may be lacking variability. That may be improved by

increasing the variability around the support vectors (decrease γ) and/or by increasing

the number of support vectors (decrease C). On the other hand, if the class of interest

is being overestimated, that may indicate that the model has too much variability. That

could be improved by increasing γ and/or increasing C. These are only guidelines and

do not represent an universal solution.

Similar analysis can be applied to OCSVM, to assess the effects of γ and ν. The

parameter γ behaves in the same way with OCSVM and SVM. The ν parameter on

the other hand is particular of OCSVM. This parameter that 0 < ν < 1, is particularly

important, since it defines the upper bound of the fraction of training data points re-

garded as outliers and the lower bound of the fraction of training data points regarded

as support vectors [127]. Thus if ν is increased, the optimisation process is allowed to

exclude more data points and regard them as class outliers. This will lead to smaller

class regions but also to a larger number of support vectors. On the other hand, by re-

ducing ν, the number of data points that can be excluded as outliers is smaller. Figure

3.5 represent the combination of multiple values of γ and ν. Frames (a), (d), (g) show

the region of the class of interest, in grey, for a small γ = 0.001. The shape resembles

that of a circle and the effect of increasing ν is the reduction of the area of that region.

The increase of ν leads to a larger number of data points to be regarded as outliers.

Thus only those innermost points are elements of the class of interest. As a result, the

class variability is expected to be small.

When γ increases (frames (b), (e), (h)), the variability around the training data

points is reduced and the region of the class starts to acquire class specific shapes and

in some cases holes. However, the effect of increasing ν is the same: a reduction of

the overall region of the class of interest. Frames (c), (f ), (i) represent an extreme case

where γ is very large. Here the variance in the neighbourhood of each data points is

extremely small and, independently of the value of ν, the region of the class of interest
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(a) γ = 0.001 ν = 0.05 (b) γ = 1 ν = 0.05 (c) γ = 1000 ν = 0.05

(d) γ = 0.001 ν = 0.25 (e) γ = 1 ν = 0.25 (f) γ = 1000 ν = 0.50

(g) γ = 0.001 ν = 0.50 (h) γ = 1 ν = 0.50 (i) γ = 1000 ν = 0.50

Figure 3.5: An artificially generated class. Circles represent points and full triangles
the support vectors. The centre of the positive class (1,1) and variance is 0.5I where
I is the identity matrix. The grey regions represent the regions classified as class of
interest.
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Table 3.1: A 2× 2 confusion matrix.

Actual positive Actual negative

Predicted positive T P FP
Predicted negative FN TN

is severely reduced.

To fine tune a OCSVM is harder than to fine tune a SVM. The training set of

OCSVM does not contain data points outside the class of interest, and thus it is not

possible to assess the overall accuracy nor the specificity (the proportion of data points

outside the class of interest that were correctly classified) of the classifier in the cross-

validation process [94, 109]. Effectively only sensitivity can be assessed. Using the

sensitivity alone to parameterise a classification algorithm may result in a classifier

with high sensitivity and low specificity, overestimating the extension of the classes of

interest.To minimise the effects of this limitation, the cross-validation process can be

carried out using the ratio between the sensitivity and the number of support vectors

as metric [4, 35]. This ratio enforces high sensibility while limiting model complexity

which usually indicates good model generalisation ability [35].

3.3 Accuracy metrics for binary classification

The design and implementation of a learning algorithm require the use of accuracy

metrics to assess the quality and compare the performance of alternative classifiers.

For example, when fine-tuning a classification algorithm, it is often necessary to com-

pute an accuracy metric to determine the parameterisation that yields the best score.

Although commonly used, the overall classification accuracy (the proportion of cor-

rectly classified data points) may not always be a reliable metric. One such cases is

when the training set is imbalanced. This is because the majority class dominates the

behaviour of this metric, and thus it gives optimistically biased results [145].

Indeed, the definition of the accuracy metric is particular important for binary

classification, since the performance of the classifiers can be particularly sensitive to

the classes’ relative size [16, 145]. In this conditions, the results of the fine-tuning

process may be unreliable not because of the process but rather because of the accu-

racy metric employed in the process. If the training data set is imbalanced and the

classification accuracy is utilised, the outcome of the fine-tuning process will indicate

that a particular parameterisation is the one with the highest classification accuracy.

But may indeed be biased towards the majority class, since that parameterisation may

yield a classifier that identifies very accurately the majority class in detriment of the

minority class [67].

There are however better alternative accuracy metrics to the classification accuracy

specially when the data set is imbalanced, for example sensitivity and specificity [61].
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At the basis of this analysis is the binary confusion matrix (table 3.1).

In table 3.1, True Positive (TP) represents the number of actual positive cases

correctly classified, True Negative (TN) the number of actual negative cases correctly

classified, False Positive (FP) the number of actual negatives predicted as positives,

and False Negative (FN) the number of actual positives predicted as negatives. The

classification accuracy is then the proportion of true positives and true negatives which

is commonly used to metric classification performance in multi-class problems [129,

145]:

accuracy =
T P + TN

T P + TN +FP +FN
(3.21)

But in binary classification, classification accuracy may not be a reliable indicator

particularly due to possible data imbalances in the training set. Alternatively, sensi-

tivity and specificity can be utilised [129, 145]. Sensitivity is the proportion of true

positives correctly classified (true positive rate) and specificity is the proportion of

true negatives correctly classified (true negative rate) [61, 63]:

sensitivity =
T P

T P +FN
(3.22)

specif icity =
TN

TN +FP
(3.23)

Effectively, sensitivity is the producer’s accuracy of the positive class while specificity

is the producer’s class of the negative class. In this way, sensitivity indicates how

good the classifier is recognising positive cases and specificity indicates how good the

classifier is recognising negative cases [145]. Indeed, sensitivity and specificity are the

accuracies metrics associated to the rates of type-I error (also known as false negative

rate) and type-II error (also known as false positive rate), respectively. That is,

sensitivity = 1− f alse negative rate (3.24)

specif icity = 1− f alse positive rate (3.25)

In this sense, sensitivity and specificity are closely related with the receiver op-

erating characteristic (ROC) that displays the relation between sensitivity and false

positive rate (= 1− specif icity) [14].

Although not common, the analyst may rely on the scatter plot with the specificity

depending on the sensitivity, for a better visual comparison between multiple clas-

sifiers. Figure 3.6 illustrates such a plot, where the dashed line represents the 1:1

straight line and the points A, B, C and D represent the hypothetical performances of

four classifiers. Note that specificity and sensitivity range from 0 to 1 and thus this

chart is similar to plot the performance of each classifier in a ROC. However, display-

ing directly sensitivity and specificity is easier for the reader that is not used to the

analysis of binary classifiers.
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Figure 3.6: Graphical representation of sensitivity and specificity. The dashed line
represents the 1:1 line. Note that if a point is located on the 1:1 line, this indicates that
sensitivity is equal to specificity. Points above the 1:1 line indicates that specificity
is larger than sensitivity; and points bellow 1:1 line indicates specificity is smaller
that sensitivity. Points A, B, C and D represent the hypothetical performances of four
classifiers.

The elements of figure 3.6 can be interpreted in the following way: each classifier

is presented by a point characterised by (x,y), where x represents sensitivity and y

represents specificity. Thus a point on the dashed line indicates a classifier with speci-

ficity equal to sensitivity. If the point is bellow the line, this indicates a classifier where

specificity is smaller than sensitivity; but if above the line, indicates a classifier where

specificity is larger than sensitivity. This is relevant and informative since a classifier

bellow the dashed line, like that in point A, represents a classifier with a large number

of false positives. In other words, classifier A may be overestimating the positive class,

which is typically associated with the class of interest. A classifier like B, on the other

hand, represents the opposite. That is, classifier with a large number of false negatives,

and thus may be underestimating the positive class. To compare classifiers, the analyst

can visually assess the proximity of the classifier to the top-right corner. If a classifier

like C is closer to the top-right corner than, say, A, this indicates a "better" classifier

since sensitivity and specificity are simultaneously high. In contrast, a classifier, like

D, closer to the bottom-left corner, indicates a "worst" classifier since at least one of

the components, sensitivity or specificity, is lower. Although, this approach is simple

to interpreter, is difficult to use for computational purposes.

Often sensitivity and specificity are combined in one metric for a better numerical

comparison [135]. In particular, the geometric mean between sensitivity and specificity

[84] is particularly useful since it is based on the multiplication between these two

quantities:
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G =
√
sensitivity × specif icity (3.26)

The geometric mean (G) indicates the balance between classification performances

on the positive and negative class. High misclassification rate in the positive class

will lead to a low geometric mean value, even if all negative data points are correctly

classified [67]. For example, in a binary classification problem, if 10% of training

set is in the minority class and 90% is located in the majority class, a classifier that

simply classifies every data point as belonging to the negative class yields an overall

accuracy of 0.90 [145]. However, its sensitivity is 0.0 and specificity 1.0; thus geometric

mean G is 0.0. In this way, if both sensitivity and specificity are high, the geometric

mean G is also a high value; but if one of the component accuracies, sensitivity or

specificity, is low, the geometric mean G is affected by it. Indeed, the geometric mean

can be an important accuracy metric for class specific mapping, since it is particularly

sensitive to the over-fitting to the negative class (i.e. others class) and to the degree

in which the positive class (i.e. class of interest) is neglected [110]. In others, since

the class of interest is typically a small component (the minority class), the geometric

mean establish then balance between the minority class and the majority class. This

is important to assess how biased to the majority class a particular classifier is. This

aspect is particular important the definition of the SVM algorithm free-parameters

[63].

Note however that sensitivity, specificity and their geometric mean are not the only

alternative metrics to overall accuracy. Indeed, from the binary matrix is possible to

derive other metrics depending on their applicational value. For example, precision is

a commonly utilised metric in binary classification in the area of information retrieval

and is given by [37]:

precision =
T P

T P +FP
(3.27)

Thus in this sense precision is equivalent to the users’ accuracy of the class of interest.

This metric is often combined with sensitivity (equivalent to the producers’ accuracy)

of the class of interest through the harmonic mean; this metric is usually called F-

measure or F-score [37]:

F −measure = 2× precision× sensitivity
precision+ sensitivity

(3.28)

The F-measure thus establish a balance between the precision and sensitivity. And

this is important in information retrieval since only the number of positive in the total

of retrieved elements (that is the predicted elements) is important [115]. In other

words, the number of true negatives is not relevant for that application. However, for

specific class mapping, the rate of true negatives (specificity) is relevant for the goal

since to ignore it may lead to high sensitive classifiers and, as consequence, to the
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overestimation of the class of interest. For this reason, the geometric mean between

sensitivity and specificity may be a better metric than F-measure for specific class

mapping.

3.4 Comparing the accuracy of classifiers

Comparing the classification accuracies of different methods is utilised in remote sens-

ing research as basis of comparative studies, to compare for example classification

methods [50], image processing methods [132], etc. These studies have typically been

done using hypothesis testing approaches based on the statistical significance of the

difference. These testes are commonly the comparison of the kappa coefficients [94],

proportion of correctly allocated cases [6] or the McNemar test [53]. Most studies have

focused on the magnitude of difference in accuracy, regardless of its direction, to show

the inequality between methods. This usually done by testing the method under anal-

ysis and a benchmark showing that the accuracy of the first is larger than that of the

second, and then performing an hypothesis test to show the difference is statistically

significant.

However in some cases the use of this approach is not appropriate. A typical case is

when that purpose of the study is to show that the method under analysis is at least not

worst than the benchmark but it is more convenient in some way. For example, in [114],

where the purpose was to shown that relevance vector machine and multinominal

logistic regression approaches where at least non-inferior to SVM although requiring

less training data points, and thus being more a convenient approaches.

For cases like this, the test for inequality is not useful. The reason why standard

hypothesis testing are not suitable to test non-inferiority or equality is subtle but

relevant, and thus important to make it clear. Conventional statistical hypothesis

testing evaluates two competing hypothesis. The null hypothesis (H0) that states that

there is no difference in accuracy (p1−p0 , 0), where P1 is the classification accuracy (a

proportion) yield by the testing method and P0 is the classification accuracy yield by

the benchmark, and the alternative hypothesis (H1) that negates the null hypothesisH0,

that is p1−p0 , 0. To show that the purposed method and the benchmark are different,

it is necessary to rejectH0. By rejectingH0, the difference between accuracies is viewed

as statistically significant, depending on the statistical parameters of the test. Then H1

has to be accepted, showing the methods are different. However, if H0 is not rejected,

that does not entail the acceptance of H0, but only the failure to reject H0. Within the

scientific principle of falsification [118], it is the rejection of the null hypothesis H0

that is useful for the progress of scientific knowledge. In other words, it is by showing

that there are evidences to reject the hypothesis that the methods are different that one

can conclude that the methods are similar [49], and not by failing to reject.

How then can an analyst compare two proportions with interest focused on the

equivalence or non-inferiority? This is briefly answered in the next paragraphs. But a
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Figure 3.6: Scenarios to illustrate the interpretation of confidence intervals of the
di↵erence between proportions. The grey are represents the region of indi↵erence.

there is no di↵erence in accuracy (P1�P0 = 0), where P1 is the classification accuracy (a

proportion) yield by the testing method and P0 is the classification accuracy yield by

the benchmark, and the alternative hypothesis (H1) that negates the null hypothesis H0,

that is P1 �P0 , 0. To show that the purposed method and the benchmark are di↵erent,

it is necessary to reject H0. By rejecting H0, the di↵erence between accuracies is viewed

as statistically significant, depending on the statistical parameters of the test. Then H1

has to be accepted, showing the methods are di↵erent. However, if H0 is not rejected,

that does not entail the acceptance of H0, but only the failure to reject H0. Within the

scientific principle of falsification [103], it is the rejection of the null hypothesis H0

that is useful for the progress of scientific knowledge. In other words, it is by showing

that there are evidences to reject the hypothesis that the methods are di↵erent that one

can conclude that the methods are similar [40], and not by failing to reject.

How then can an analyst compare two proportions with interest focused on the

equivalence or non-inferiority? This is briefly answered in the next paragraphs. But a

more complete examination of the question can be found in [40], where it is presented

the application of the method to remotely sensed data analysis, and in [34] where an

exhaustive elaboration of all statistical details is discussed.

Important for the non-inferiority and equivalence tests is the definition of the re-

gion of indi↵erence. The region of indi↵erence is the maximum allowed di↵erence

in accuracy to consider the di↵erence negligible [34]. Thus the null hypothesis is not

that the di↵erence is zero, but rather that the di↵erence is no larger that indi↵erence
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Figure 3.7: Scenarios to illustrate the interpretation of confidence intervals of the
difference between proportions. The grey are represents the region of indifference.

more complete examination of the question can be found in [49], where it is presented

the application of the method to remotely sensed data analysis, and in [42] where an

exhaustive elaboration of all statistical details is discussed.

Important for the non-inferiority and equivalence tests is the definition of the

region of indifference. The region of indifference is the maximum allowed difference

in accuracy to consider the difference negligible [42]. Thus the null hypothesis is not

that the difference is zero, but rather that the difference is no larger that indifference

magnitude. In figure 3.7, the region of indifference is represented in grey and is

numerically represented by ]−d,+d[. The amplitude of the region of interest is typically

application dependent. However studies applying this statistical procedure, such as

[50, 113, 114] tend to define the region of interest between d = 1% and d = 2%. In this

way, the null hypothesis is redefined considering this region of indifference.

For the non-inferiority test, if p1 is the accuracy yield by the method under analysis

and p0 the accuracy yield by the benchmark, the null hypothesis H0 claims that p1 ≤
p0 − d. In other words that the method under analysis is inferior to the benchmark.

Clearly, the alternative hypothesis H1 claims the opposite that p1 > p0 − d, that is the

method is not inferior to the benchmark. For the equivalence test, the null hypothesis

H0 claims that |p1 − p0| ≥ d, that is the method is different from the benchmark. Note

that the claim entails nothing about which one has greater accuracy, only that the

difference is outside the region of indifference. Thus the alternative hypothesis H1

claims that |p1 − p0| ≤ d. Note that to test the difference the burden of proof has to

reverse, that is H0 thus claims |p1 − p0| ≤ d and H1 the opposite |p1 − p0| ≥ d.

The confidence interval of the difference between two proportions is given by [42]:

p1 − p0 ± zαSE (3.29)
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Table 3.2: McNemar 2× 2 confusion matrix comparing the results of two classifiers. 0
represents incorrect testing data point and 1 represents correct testing data point. p00
represents the proportions of testing data points where both classifiers made incorrect
predictions, p11 represents the proportions of testing data points where both classifiers
made correct predictions, p01 represents the proportions of testing data points where
the first classifier made an incorrect prediction but the second predicted correctly, and
p10 represents the proportions of testing data points where the second classifier made
an incorrect prediction but the first predicted correctly.

Classifier 2
0 1

Classifier 1
0 p00 p01
1 p10 p11

where SE is the standard error of the difference between the estimated propor-

tions and zα is the Z-table value for α level of significance. The SE is computed using

the standard formula of the variance of the difference between random variables [42].

However, to apply this equation it is necessary to know if the proportions are being es-

timated from dependent samples. Typically in remote sensing studies, users utilise the

same testing data set in comparative studies. For example, in studies comparing clas-

sifiers it is common for the same testing set to be used to aid like-for-like comparison

[49]. In these cases, the assumption of independence is unsatisfied and an alternative

techniques should be used [42]. One approach, appropriate as test inequality of pro-

portions is the McNemar test [85]. This approach has been adopted in remote sensing

studies as a tool for evaluating the significance of the difference in accuracy, when a

single testing data set is utilised, such as [52, 53, 55, 125]. However, the McNemar test

can also be used to test non-inferiority and equivalence, and it is possible estimate the

variance of the difference between two proportion.

The McNemar test utilises a binary confusion matrix of the classifications by the

two classifiers under comparison. The main diagonal of this matrix (table 3.2) shows

the proportion of pixels upon which both classifiers were correct (p11) and on which

both classifiers made an incorrect prediction (p00). The McNemar test focuses on the

proportion of discordant pixels, that is p10 and p01. These are the pixels upon which

one classifier was correct but the other gave an incorrect allocation. In these conditions,

SE can be determined with [42]:

SE =

√
p01 + p10 − (p01 − p10)2

n
(3.30)

Where n is the testing data set size. Thus it is possible to define the confidence

interval for the difference between accuracies with ]p1 − p0 − zSE,p1 − p0 + zSE[ with

confidence level of (1−α)× 100%.

In [49] it is suggested the use of a diagram, like the one in figure 3.29, to facilitate

appreciation of the value of confidence intervals in comparative analyses. Cases 1 and
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2 represent confidence intervals that lies entirely outside the region of indifference.

Thus, the difference is statistically significant and the classifications are not equivalent.

Case 3 and case 4 are more ambiguous than cases 1 and 2, since they partially lie inside

the region of indifference. This suggest that further analysis is necessary, perhaps with

a larger testing data set, to evaluate the difference in accuracy with more precision.

Case 5 is the most clear case, since the interval is contained in the region of indifference,

providing evidence of equivalence between classifications.

3.5 Conclusion

SVM has become a staple tool for data analysts processing remotely sensing data.

However, tuning this algorithm may be difficult. Here, the SVM algorithm was briefly

discussed and the behaviours of its parameters explained to better inform the user

when tuning this type of algorithms. It was also shown how is possible to combine

multiple binary SVM to solve multi-class problems and how to solve single class clas-

sification problems. Finally accuracy assessment metrics for binary classifiers were

addressed, as well how to compare the performance of difference classifiers.
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Improving specific class mapping by

cost-sensitive learning

Abstract In many remote sensing projects one is usually interested in a small number

of land cover classes present in a study area and not in all the land cover classes that

make-up the landscape. Previous studies in supervised classification of satellite im-

ages have tackled specific class mapping problem by isolating the classes of interest

and combining all other classes into one large class, usually called others, and by de-

veloping a binary classifier to discriminate the class of interest from the others. Here,

this approach is called focused approach. The strength of the focused approach is

to decompose the original multi-class supervised classification problem into a binary

classification problem, focusing the process on the discrimination of the class of in-

terest. Previous studies have shown that this method is able to discriminate more

accurately the classes of interest when compared with the standard multi-class super-

vised approach. However, it may be susceptible to data imbalance problems present in

the training data set, since the classes of interest are often a small part of the training

set. A result the classification may be biased towards the largest classes and, thus, be

sub-optimal for the discrimination of the classes of interest. This study presents a way

to minimise the effects of data imbalance problems in specific class mapping using

cost-sensitive learning. In this approach errors committed in the minority class are

treated as being costlier than errors committed in the majority class. Cost-sensitive

approaches are typically implemented by weighting training data points accordingly

to their importance to the analysis. By changing the weight of individual data points,

it is possible to shift the weight from the larger classes to the smaller ones, balanc-

ing the data set. To illustrate the use of the cost-sensitive approach to map specific

classes of interest, a series of experiments with weighted support vector machines clas-

sifier and Landsat Thematic Mapper data were conducted to discriminate two types
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of mangrove forest (high-mangrove and low-mangrove) in Saloum estuary, Senegal,

a United Nations Educational, Scientific and Cultural Organisation World Heritage

site. Results suggest an increase in overall classification accuracy with the use of

cost-sensitive method (97.3%) over the standard multi-class (94.3%) and the focused

approach (91.0%). In particular, cost-sensitive method yielded higher sensitivity and

specificity values on the discrimination of the classes of interest when compared with

the standard multi-class and focused approaches.

4.1 Introduction

Supervised classification has become an important method to derive land cover infor-

mation from remotely sensed imagery [107]. One significant advantage of supervised

classification is that it allows tailoring the classification process in order to obtain a

map depicting only the classes of interest [55]. Indeed, users are often not interested

in a complete characterisation of the landscape but rather on a sub-set of the classes ex-

isting in the study area. For example, the analysis may have to be focused on mapping

urban classes [24, 39], abandoned agriculture [3], specific tree species [5, 54], invasive

wetland species [87], and mangrove ecosystems [90, 140]. Fundamentally, the accurate

discrimination of some classes is more important than the discrimination of others for

some applications.

When users are only interested in a sub-set of the classes present in the study area,

the use of conventional multi-class supervised classification may be sub-optimal for

the purpose [45]. One of the reasons for this situation has to do with the classifica-

tion algorithm fine-tuning process. This procedure, necessary in many classification

algorithms, consists of finding the parameterisation that yields the maximum overall

classification accuracy, that is to find the parameterisation that best discriminates all

classes of the classification problem [61]. The common approach often seeks, by cross-

validation grid-search, to maximise the overall classification accuracy, rather than the

specific accuracy in the classification of particular classes. However, the parameterisa-

tion that yields the highest overall classification accuracy may not be necessarily the

best to discriminate the classes of interest, since these are usually only a small part

of the problem [88]. Indeed, overall accuracy is only one component of classification

quality assessment and may not be suited to the requirements of a particular study

[88]. Thus the conventional multi-class supervised classification algorithm is neither

tuned nor trained to discriminate the classes of interest, since the class composition of

the training set contains all classes regardless of their interest in the analysis and the

tuning process searches for the best parameterisation in that larger problem.

The literature shows that there are essentially two alternatives to the standard

multi-class supervised approach: one-class learning algorithms and the binarisation

strategy [57, 79, 136].
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With the one-class learning algorithms, the user adopts a one-class learning algo-

rithm to develop a classifier to identify a single class of interest [e.g. 101, 125]. In this

approach only training data belonging to the class of interest is utilised to develop the

classifier, which is its most attractive feature in terms of focusing effort and resources

on the class of interest. However, the one-class classifier may not always be the best

approach, since only data about one class is available and thus only one side of the

discriminative boundary can be determined [136]. It can then be difficult to determine

how tightly the boundary should fit in all directions around the data in feature space.

To overcome this difficulty some one-class classifiers (e.g. support vector data descrip-

tion) assume that the non-interest class has a particular distribution around the class

of interest. When the true distribution deviates from the assumption, the method

may underperform. That deviation however can only be assessed with training points

outside of the class of interest [136].

With binarisation strategy, users decompose the multi-class problem in a series

of small binary classification problems where one seeks to separate the classes of

interest from all irrelevant classes [13, 41, 57, 82]. As binary classification is well-

studied, binary decomposition of multi-class classification problems have attracted

significant attention in machine learning research and has been shown to perform well

in most multi-class problem [82]. Indeed, binary decomposition has been widely used

to develop multi-class Support Vector Machines (SVM) showing better generalisation

ability than other multi-class SVM approaches [65]. The possibility to parallelise the

training and testing of the component binary classifiers is also a big advantage in

favour of binarisation apart of their good performance [57]. In particular, binarisation

can be achieved by combining all land cover classes of no interest into a large nominal

class, called for example "others" [47]. In this way the class of interest can be regarded

as the positive class and all others as the negative class in the binary classification

scenario. Previous studies [13, 47, 90] have shown it to be possible to decompose the

multi-class classification problem in a series of small binary classification problems

and achieve results that are more suitable for the particular users’ requests, namely

the improvement of the discrimination of particular land cover classes of interest.

Although specific class mapping can potentially be a better approach compared to

the multi-class supervised classification, it has some particular difficulties, namely

data imbalance in the training set. This is because often the classes of interest are

only on a small component of the study area [88]. In fact, applying directly a binary

decomposition to the classification problem may result in a highly unproportional

allocation of training points to the negative class, leading to imbalance in the training

data set [9].

Learning from imbalanced data sets is an important and challenging problem in

knowledge discovery in many real-world applications [62]. Learning from imbalanced

data means learning from data in which the classes have unequal numbers of train-

ing data points [63]. Although there are several degrees of data imbalance, there is
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no agreement or standard concerning the exact degree of class imbalance required to

have a negative effect in the learning process. The central issue with learning from

imbalanced data sets is the effect of this condition on the performance of most stan-

dard learning algorithms [78]. Indeed, most learning algorithms aim to derive the

simplest classifier that best fits the training data; this can represent a serious challenge

to the development of classifiers with imbalanced data, since such classifier is often

biased towards the majority class [41, 70]. For example, a classifier that omits a large

proportion of the minority class cases can yield high overall accuracy, although it may

underperform in the discrimination of that class. When trained with this type of data

sets, learning algorithms usually fail to accurately learn the distributive characteristics

of the data and, consequently, may provide inaccurate results [98]. A balanced data

set is, therefore, a desirable feature of the training set.

In general, the methods to mitigate the effect of imbalances in data sets consist

of either methods that manipulate data by oversampling the minority class or under-

sampling the majority class, or methods that adapt the algorithm to the imbalance con-

dition [78]. Data manipulating approaches can be problematic, since under-sampling

may remove important data points for the discrimination of the classes [22] and over-

sampling may render longer training time and over-fitted classifiers [62, 121]. The

methods that adapt the learning algorithm to the imbalance condition seek to bias to-

wards the minority class [145]. These methods are commonly known as cost-sensitive

learning [61].

In cost-sensitive learning, misclassifications are not treat equally. Data points are

assigned a weight representing their relative value: more weight accredits more value.

By assigning more weight to a particular data point than to another, the analyst is

highlighting its relative importance, and thus informing the learning algorithm that

an error in the former is costlier than an error in the latter [145]. This additional

information directs the learning process to the under-represented classes and thus

minimises the effect of learning in imbalanced datasets. In this paper a support vector

machine classifier is used to demonstrate the use of cost-sensitive learning to minimise

the effects of data imbalances in specific class mapping.

Although data imbalance in the training set has been recognised as an important

factor in the learning process and is common in natural resource applications using

remotely sensed data [105], little attention has been given to its effects and errors

in land cover mapping. Thus studies reporting its effects, or estimating its effects

from previous studies, are rare in literature. Examples addressing data imbalance in

remote sensing have been reported mostly in tree species classification problems. In

[6] authors explore the use of standard SVM and biased SVM classification of three

tropical tree species using airborne imaging spectroscopy. To mitigate the effects

of data imbalance, the authors carefully tuned the classification algorithm using the

harmonic mean between sensitivity and specificity of the classes of interest, also known

as F-score. In [59] authors examine the effects of data imbalance in the supervised
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classification of tree species in eight reported studies and address the problem in

a twenty-class classification problem. The authors conclude that species with more

training data points were consistently over-predicted while species with fewer data

points were under-predicted. In [131], authors explore the multiple classification

methods for tree species identification in temperate forests using Formosat-2 satellite

image time series, reporting that minority classes were often the most confused. Thus,

data imbalance problems are occurring in application studies where classifications are

being used to infer information about land cover.

In this study to demonstrate the effects of data imbalance in the training set and

how to mitigate them using cost-sensitive learning, two experiments were conducted:

first, artificially generated data set was used to illustrate the effects of data imbalance

in the development of a classifier.

Second, a series of experiments are presented in a study area located in the Sa-

loum estuary, Senegal. Two land cover classes were defined as the classes of interest.

These were classes of mangrove forest that differ in height: high-mangrove and low-

mangrove. The distinction between these two classes is important since the transition

from high-mangrove to low-mangrove is often a symptom of mangrove degradation

[31, 140].

Three classification approaches are explored: a standard multi-class, a focused

and a cost-sensitive approach to classification. In the standard multi-class approach,

a single algorithm is used to solve a multi-class classification problem. The classes

of interest are, in this case, derived after the classification process. In the focused

approach, all classes of no interest are combined in one single nominal class (others).

The classes of interest are derived in the classification process but nothing is done

to mitigate possible class imbalances in the data set. In the cost-sensitive approach,

similarly to the focused approach, all classes of no interest are merged into one large

class “others” but here weights are utilised in each training data point to inform the

learning algorithm of the relative misclassification cost value.

The innovations presented in this article are three-fold: first, cost-sensitive learning

is presented as a way to mitigate problems associated with the use of an imbalanced

training set in specific class mapping. In other words, this applicational study intents

not only to show that imbalance data sets can undermine the mapping process, but

also to show that cost-sensitive learning can minimise its effects. Second, three classes

were used, the two classes of mangrove constituting the classes of interest and the class

“others”. This is relevant since the definition of more than one class of interest requires

a process to combine the different outcomes of several binary classifiers which is not

always trivial and was not fully addressed in previous studies, that have typically

focused on a single class. Third, it is shown that the classifier parameterisation is an

important step in specific class mapping and more accurate classifiers can be obtained

using class specific metrics instead of an overall classification metrics, as is commonly

utilised.
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4.2 Classification with imbalanced data sets

Learning with an imbalanced data set is one of the most challenging problems in many

real-world applications and it has been recognised as a crucial problem in machine

learning and data mining [16, 22]. Class imbalance problems may occur when the

training set is not evenly distributed among the classes [22]. There is no agreement,

or standard, concerning the exact degree of class imbalance required for a dataset

to lead to a biased classifier [63]. This uneven condition is usually quantified by

the ratio between the size of the minority class and the size of the majority class,

usually called balance ratio [141]. Data set balance ratios can vary greatly, for example

from 1:1 (balance data set) to extreme cases such as 1:100 or more [e.g. 141]. In

[142], a 26 binary-class datasets were analysed showing how class imbalance impacts

minority class classification performance. The results suggest that class imbalance

leads to poorer performance when classifying data points belonging to the minority

class. Geometrically, a classifier developed with a imbalanced training set pushes the

discrimination boundary away from the majority class, bring it closer to the minority

class [63]. This happens because by pushing the boundary away from the majority

class toward to minority class, the number of misclassifications on the majority class

are minimised, which is the term that contributes the most for the overall classification

error. This impact can be quite severe, as datasets with class imbalances between 1:5

and 1:10 can have a minority class error rate more than 10 times that of the error rate

on the majority class [142]. This suggests that datasets with even moderate levels of

class imbalance (e.g. 1:2) can suffer from class imbalance issues [63].

Most classifiers assume the classes present in the training set contain the same

or similar number of data points [145]. Since classification algorithms are designed

to generalise from data and output the simplest classifier that best fits the training

data, classifiers will then typically seek to maximise overall accuracy, and thus tend to

underperform on imbalanced data sets [2].

The methods to address the problem of imbalanced training data sets can be

grouped into two categories: methods focusing on the data and methods focusing

on the classification algorithm [78]. The first group of methods attempt to solve the

problem of imbalanced training data sets by purposely manipulating the classes’ dis-

tributions in the training data set either by over-sampling the minority class or by

under-sampling the majority class [120]. In other words, in these methods data points

are added to the minority class or removed from the majority class to balance the train-

ing set. There are however some issues with these procedures. Over-sampling may,

for example, render longer training time and over-fitted classifiers [62, 121]. Since

over-sampling, at its simplest way, appends replicated data to the original data set, the

algorithm may become too specific and may not generalise well [70]. Under-sampling,

on the other hand, may remove important data points for class discrimination [22].

The methods on the second group, on the other hand, adapt a classification algorithm

52



4.2. CLASSIFICATION WITH IMBALANCED DATA SETS

to bias towards the minority class, for example defining a cost function that penalises

more misclassifications committed on data points of the minority class. The training

data set is then balanced by shifting the weight of the training set from the larger

classes to the smallest. These methods are generally named as cost-sensitive learning

methods [145]. A way to implement the cost-sensitive approach is by incorporating

the weight of data points Weighted Support Vector Machines (WSVM) classifier [145].

4.2.1 Weighted support vector machine

The SVM is a popular supervised classification algorithm that has been successfully

applied in many domains [129]. In particular, in the classification of remotely sensed

imagery, the study and application of SVM is extensive and well known [107]. In its

origin, the SVM was developed to solve binary classification problems with linearly

separable classes. However, SVM was extended with the introduction of the kernel

trick and slack variables to solve non-linearly separable classes [30]. The use of kernels

allowed the SVM to solve non-linear problems by mapping the original data points

into a higher dimensional space where a linear classifier is able to discriminate them

[130]. The introduction of slack variables, on the other hand, relaxed the original

SVM optimisation problem; a non-zero slack variable allows a particular data point

to not meet the margin requirement at a cost proportional to its magnitude, allowing

some training data points to be misclassified [145]. This version is usually known as

soft-margin SVM. The corresponding optimisation problem is formulated as follows

[130]:

min
w,ξ

1
2
wTw+CeTξ (4.1)

subject to yi(wTφ(xi) + b) ≥ 1 − ξi for i = 1 . . .m where m is the number of training

data points, w is the hyperplane normal vector, φ is the kernel function, e is the

all 1’s vector and ξ is the vector of slack variables. The parameter C represents the

magnitude of penalisation. If C is a large value, the optimal solution defines narrower

margins in order to accommodate the misclassified training data points; in contrast,

smaller values of C lead to wider margins [127]. Applying the Karush-Kuhn-Tucker

(KKT) conditions, the original soft-margin SVM problem is usually reformulated in its

Lagrangian dual form [130]:

min
α

1
2

∑
i,j

αiαjyiyjK(xi ,xj )−
∑
i

αi (4.2)

subject to
∑
i yiαi = 0 and 0 ≤ αi ≤ C for i = 1 . . .m, where K(xi ,xj) = φT(xi)φ(xj),

quantifies the similarity between two arbitrary training data points, xi and xj in the

kernel space.

Note that under these conditions, the Lagrange multipliers are bounded by the

parameter C and thus all misclassifications of training cases are penalised in the same
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amount. This might not be appropriate especially if the data set is imbalanced. For

example, when trained with imbalanced data sets in which the number of negative

instances outnumbers the positive instances, the performance of SVM may drop sig-

nificantly [146]. Indeed, SVM may end up classifying all testing data set as belonging

to the majority class [147]. The optimisation problem (4.2) tries to minimise first term,

responsible to maximise the margin between the support vectors, and the second term,

responsible to minimise the number of misclassified training cases. The regularisation

parameter C defines the trade-off between maximising the margin and minimising the

classification error in the training set [67]. Thus, if C is not large enough, SVM learns

to classify everything as belonging to the negative class, since that makes the margin

larger with maximum accuracy in the training set [145].

A way to adapt the SVM approach to cost-sensitive learning is by increasing the

trade-off parameter C associated to the minority class [67, 145]. With the WSVM

each data point is assigned a particular weight value; this weight is usually associ-

ated to some class characteristic such as size [67]. The original SVM problem is then

reformulated in the following way:

min
w,ξ

1
2
wTw+CσTξ (4.3)

subject to yi(wTφ(xi) + b) ≥ 1− ξi for i = 1 . . .m, where σ is the vector of weights. The

user can then set different weights to different data points according to a predeter-

mined criterion. Applying the KKT conditions, the original WSVM problem can be

reformulated in its dual form:

min
α

1
2

∑
i,j

αiαjyiyjK(xi ,xj )−
∑
i

αi (4.4)

subject to
∑
i yiαi = 0 and 0 ≤ αi ≤ Cσi for i = 1 . . .m. Note that, unlike problem (4.2),

the Lagrange multipliers are now bounded according to its weight. For imbalanced

classification problems, many studies [e.g. 33, 66, 67, 97, 145] have defined the data

points weight by the inverse of its correspondent class size. In this way, the mis-

classifications of elements belonging to the majority class receive proportionally less

importance than those belonging to the minority class. Note that if data set is balanced,

the number of negative data points equals the number of positive data points. Thus

the WSVM with this weighting rule reduces to non-weighted SVM.

4.2.2 Combining binary classifiers

Like SVM, WSVM is at its core a binary classifier. If one wants to apply the WSVM

to a multi-class problem, the two more common strategies are [20, 57]: One-vs-Rest

(OVR) (figure 4.1 frames (a), (b), (c) and (d)) One-vs-One (OVO) (figure 4.1 frames (e),

(f ), (g) and (h)).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.1: Binary decomposition of multi-class problem. The frames represent the
scatter plot in the feature space of three different classes: circles, stars and crosses. Top
row: OVR strategy. Bottom row: OVO strategy.

The OVR strategy breaks the multi-class classification down into a series of binary

classification problems where each class is in turn compared with all others [129]. In

this way, a N -class classification problem is decomposed into N binary classification

problems. For example, in a three-class classification problem, a first classifier is

developed to discriminate the class in black (frame (a)) from all other classes are

combined into a single class, in grey. The process is then repeated for the other two

classes (frames (b) and (c)). The final step is then performed either by assigning the

class with positive outcome or by selecting the class with the largest decision value

[123] (frame (d)). However, if the label-assigning rule is not based on the decision

value directly, some data points may not be classified, because it is possible for a point

to be rejected from all classes [129]. The OVR strategy is may be susceptible to class

imbalances even if the training set is balanced, since the negative class is effectively

composed by all other classes combined into one large class [9].

The OVO strategy is also known as all-pairs strategy, as it consists in enumerating

all possible pairs of classes (frames (e), (f ) and (g)) and then to develop a binary

classifier for each pair of classes [129]. Classification is then done by inputting the

data point into each particular binary classifier and labelling by majority voting. In

this way, if there are N classes, the number of binary classifiers is then 1
2N (N −1) [129]

(frame (h)). Although the number of binary classification problems is of the order N2

and may represent a significant memory requirement this solution, it may also provide

simpler models (less support vectors), and thus improve generalisation [30]. Which

strategy is the best is a still an on-going debate [20, 57].
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Table 4.1: Binary confusion matrix.

Actual positive Actual negative

Predicted positive T P FP
Predicted negative FN TN

4.2.3 Comparison and evaluation of classifiers

The design and implementation of a learning algorithm require the use of accuracy

metrics to assess the quality and compare the performance of alternative classifiers.

For example, when fine-tuning a classification algorithm, it is often necessary to com-

pute an accuracy metric to determine the parameterisation that yields on average the

highest accuracy value. Although commonly used, the overall classification accuracy

(the proportion of correctly classified data points) may not a reliable metric when the

training set is imbalanced. This is because the majority class dominates the behaviour

of this metric, and thus it gives optimistically biased results [145]. Indeed, the defini-

tion of the accuracy metric is particular important for binary classification, since the

performance of the classifiers can be particularly sensitive to the classes’ relative size

[129, 145]. In this conditions, the results of the fine-tuning process may be unreliable

not because of the process but rather because of the accuracy metric employed in the

process. If the training data set is unbalanced and the classification accuracy is utilised,

the outcome of the fine-tuning process will indicate that a particular parameterisation

is the one with the highest classification accuracy but may indeed biased towards the

majority class, since that parameterisation may yield a classifier that classifies very

accurately the majority class in detriment of the minority class [67]. There are better

alternative accuracy metrics to the classification accuracy specially when the data set

is imbalanced, for example sensitivity and specificity [61]. At the basis of this analysis

is the binary confusion matrix (table 4.1).

In table 4.1, True Positive (TP) represents the number of actual positive cases cor-

rectly classified, True Negative (TN) the number of actual negative cases correctly

classified, False Positive (FP) the number of actual negatives predicted as positives,

and False Negative (FN) the number of actual positives predicted as negatives. The

classification accuracy is then the proportion of true positives and true negatives which

is commonly used to metric classification performance in multi-class problems [145].

But in binary classification, classification accuracy may not be a reliable indicator par-

ticularly if the data set is imbalanced, since the influence of the majority class is much

higher than that of the minority class [67]. Alternatively, other quality metrics can

be used, such as sensitivity and specificity [145]. Sensitivity is the proportion of true

positives correctly classified while specificity is the proportion of true negatives cor-

rectly classified [61]. Effectively, sensitivity is the producer’s accuracy of the positive

class and specificity is the producer’s class of the negative class. In this way, sensitivity
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indicates how good the classifier is recognising positive cases and specificity indicates

how good the classifier is recognising negative cases [145].

Often sensitivity and specificity are combined in one metric for better analysis

and comparison [135]. In particular, the geometric mean between sensitivity (s) and

specificity (S) [84] in Equation 6.6 is particularly useful:

G =
√
sS (4.5)

The geometric mean (G) indicates the balance between classification performances

on the positive and negative class. High misclassification rate in the positive class will

lead to a low geometric mean value, even if all negative data points are correctly clas-

sified [67]. This is a desirable feature specially when the testing sample is asymmetric.

Indeed, it can be prove that, in a binary classification scenario, classification accuracy

is the weighted average between sensitivity and specificity, where the weights are the

proportion of each class in the sample. For example, if 10% of the sample is in the

positive class and 90% is located in the negative class, a classifier that simply classifies

every data point as belonging to the negative class yields an overall accuracy of 0.90.

However, its sensitivity is 0.0 and specificity 1.0, and thus geometric mean G is 0.0.

In this way, if both sensitivity and specificity are high, the geometric mean G is also

a high value; but if one of the component accuracies, sensitivity or specificity, is low,

the geometric mean G is affected by it. Note that in some cases a testing sample has to

be asymmetric, that is, one class has more testing data points than the other, simply

due to its variability. This is the case in a class specific mapping problem, where the

majority of the study area is typically outside the class of interest and thus contains

all other classes. Thus, the geometric mean can be an important accuracy metric for

class specific mapping, since it is particularly sensitive to the over-fitting to the nega-

tive class (i.e. others class) and to the degree in which the positive class (i.e. class of

interest) is neglected [110].

4.3 Data and methods

The study area is located in Saloum river delta in Senegal, Africa (figure 6.1). The area

is predominantly flat with altitudes ranging from below sea level in the estuarine zone

to about 40 m above mean sea level inland. The climate is Sudano-Sahelian type with

a long dry season from November to June and a 4-month rainy season from July to

October [31, 38]. The regional annual precipitation, which is the main source of fresh-

water recharge to the superficial aquifer, increases southward from 600 to 1000 mm.

The hydrologic system of the region is dominated by the river Saloum, its two tribu-

taries (Bandiala and Diomboss), and numerous small streams locally called “bolons”.

Downstream, it forms a large low-lying estuary bearing tidal wetlands, a mangrove

ecosystem, and vast areas of denuded saline soils locally called “tan” [31]. The largest
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Figure 4.2: Saloum river delta in Senegal.

land cover classes present in the study area are water, mangrove species, shrubs, savan-

nah and bare soil. The main crop is millet and the urban settlements are usually small

and sparse. Saltpans develop to the north because of excessive salinity [106]. In this

paper interest is focused on two types of mangrove, High Mangrove (HM) and Low

Mangrove (LM). HM is generally characterised by a dense and tall canopy, while LM

tends to show less dense and decayed canopy. In this study area, HM class is composed

by species like Rhizophora racemose, Rhizophora mangle and Avicennia Africana [32],

and LM by Sesuvium portulacastrum, Sporobolus robustus, Paspalum vaginatum, and

Philoxerus vermicularis [32].

The Saloum river delta was designated a United Nations Educational, Scientific

and Cultural Organization (UNESCO) World Heritage site for its remarkable natural

environment and extensive biodiversity and is listed in the Ramsar List of Wetlands of

International Importance [106]. Particularly important is Saloum’s mangrove system,

occupying roughly 180 000 ha supporting a wide variety of fauna and flora, and the

local economy [106].

Remotely sensed data of the study area were acquired on 26 November 2010 by

Landsat 5 Thematic Mapper (TM) and downloaded from United States Geological Sur-

vey (USGS) Global Visualisation web site. In this study all non-thermal bands (bands

1 to 5 and 7) have been used. Since only one image was utilised for analysis and the

atmosphere may be considered to be homogeneous within the study area, atmospheric

correction was not necessary [132] and, thus, the classification was performed using

the original image digital numbers. In the same year of the image acquisition, field-

work and aerial imagery interpretation were undertaken to derive ground-reference

data. This analysis showed that the study area is composed by six large land cover

classes: water, high-mangrove, low-mangrove, bare soil, savannah and shrubs. The

training set comprised of 180 pixels per class (= 30 times the number of discriminatory
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Table 4.2: Summary of the different experiments: experiments with (*) indicate bench-
mark. Exper. stands for experiment, Imbal. for Imbalanced, Cost-sens. for Cost-
sensitive and Strat. for strategy. SSVM represents the standard use of SVM; FSVM
represents the focused approach with SVM; FOVO represents the focused approach
with cost-sensitive and OVO; and FOVR the focus approach with cost-sensitive and
OVR.

Exper. Training set Fine-tuning Imbal. Cost-sens. Strat.

SSVM(*) All classes General No No OVO
FSVM(*) HM, LM, O Specific Yes No OVR

FOVO HM, LM, O Specific Yes Yes OVO
FOVR HM, LM, O Specific Yes Yes OVR

variables) for each of the six land cover classes.

Four experiments were conducted to demonstrate the effects of data imbalance and

the use of cost-sensitive learning. The first two experiments were used as benchmark.

Table 4.2 summarises the different experiments carried out in this study.

The first benchmark classification constitutes the conventional approach to super-

vised classification, when interest in on a sub-set of classes present in the study area.

In other words, a multi-class supervised classification is performed to obtain a land

cover map with all classes, and then only the classes of interest are used. A Standard

Support Vector Machines (SSVM) was trained using all six classes and fine-tuned for

general class discrimination. The training set was balanced over all six classes and thus

cost-sensitive methodology was not applied. The radial-basis function was chosen as

kernel and it was used in all the tested approaches. The free-parameters C and γ of

the radial-basis function were determined using a 5-fold cross-validation grid-search

with overall accuracy as performance metric. In this way the fine-tuning process is

effectively searching for the parameterisation with the highest overall accuracy regard-

less of the classes. From this analysis the parameters were set as γ = 0.00097 and

C = 64. The experiment was conducted using LibSVM-3.12 [20] software interfaced

with MATLAB®. This software package implements the standard SVM, unweighted

analysis, with the OVO strategy for multi-class problems [20].

The second benchmark constitutes the focused approach to map specific classes

without taking into account the data imbalances present in the training set. This bench-

mark classification used the standard SVM [e.g. 13]. For this reason this approach is

named where as Focused Support Vector Machines (FSVM). All non-mangrove classes

were combined into a large class called "others" for use in the training stage. The

training set in the analysis is thus composed of three classes: HM, LM and others

(O) class. In this way three binary classifiers were developed, each one focusing in

the discrimination of one particular class. The geometric mean between sensitivity

and specificity was applied in 5-fold cross-validation trials for fine-tuning. Table 4.3

summarises the parameterisations derived from the fine-tuning analysis and shows
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Table 4.3: Parameterisation using focused approach.

Positive Negative γ C Balance ratio

HM LM + O 0.03125 4 1:5
LM HM + O 0.00195 0.0625 1:5
O LM + HM 0.00391 0.125 2:1

the balance ratios to quantify the size difference present in each pair of classes. The

balance ratio is the ratio between the sizes of each of the pair. For example, the balance

ratio between high-mangrove (180 data points) class and rest of the training set (900

data points) is 1:5. To combine the different outcomes of each classifier, and to avoid

non-labelled data points, the assigned label was that of the class with maximum deci-

sion value [129]. These experiments were conducted with the same software package

as in previous experiment.

In contrast with the previous experiment, the fine-tuning does not take the overall

classification accuracy as metric but rather the geometric mean between sensitivity

and specificity, which is specific of each target class. In this paper, and for clarity, any

fine-tuning process that takes into account the overall classification accuracy and not

the classification of specific classes will be qualified as general, and specific otherwise.

It is important to note that the two benchmarks have their own specific limitations.

The first benchmark, although widely used, is not optimised for the discrimination

of the classes of interest, since the learning algorithm is evaluated on a different class

composition than that with was tuned and trained. The second benchmark is an im-

provement over the first, suggested in previous studies. But, this leads to an classifier

developed with an imbalanced data set, which may bias the analysis to the larger

classes. Thus the first benchmark, while developed with a balanced training data set,

was neither tuned nor trained to discriminate the classes of interest; and the second

benchmark, while trained and tuned to discriminate the classes of interest, suffers the

effects of training data imbalances. The remain approaches tackle these two problems.

In other words, they tackle the class specific mapping while avoiding possible data

imbalances issues using cost-sensitive learning.

To that end, data point weights were defined as the inverse of its training set

size, similar to what has been applied in other studies, such as [145]. In this way by

assigning more weight to the data points in the smaller classes, the training set weight

distribution shifts from the largest class to the smallest classes minimising the bias

towards larger classes. Two approaches were then analysed, one using OVO strategy

and another using OVR (table 4.4).

The approach using OVO was named Focused One-vs-One (FOVO) and the one

using OVR was named Focused One-vs-Rest (FOVR). In these approaches, all classes

of no interest were combined into a large one, and thus the training set consisted in

only three classes, HM, LM and others class. Fine-tuning was specific to each binary
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Table 4.4: Parameterisation and weights for each pair of classes: using OVO strategy
and using OVR strategy.

Method Positive Negative Weights (+, -) γ C Balance ratio

OVO HM LM 0.0056, 0.0056 0.00012 1024 1:1
LM O 0.0056, 0.0014 0.00012 128 1:4
O HM 0.0014, 0.0056 0.00098 2 4:1

OVR HM LM + O 0.0056, 0.0011 0.06250 256 1:5
LM HM + O 0.0056, 0.0011 0.00391 8 1:5
O HM + LM 0.0014, 0.0028 0.00098 4 2:1

classifier and the training data set was imbalanced and cost-sensitive analysis was

employed.

HM and LM classes have the same amount of data points (table 4.4 – Balance

ratio), thus the weights associated to their data points is equal, 0.0056. The others

class is the majority class, and the weight associated to its data points is thus com-

paratively smaller to those of high-mangrove and low-mangrove, 0.0014. The free

parameters were fine tuned using 5-fold cross-validation trials and the experiments

were conducted with LibSVM-weights-3.12 [20] interfaced with MATLAB®.

Classification accuracy was estimated using an independent testing set of 100 ran-

dom pixels per land cover class comprising a total of 600 pixels. An image analyst

visually classified each pixel in the same year as the image acquisition with support

of Google Earth and fieldwork data. The accuracy of each classification was expressed

in terms of the proportion of correctly classified testing data points. Since a single

testing set was used for each test site, the statistical significance of the difference in

overall accuracy between different classification approaches will be assessed using the

McNemar test [49].

The McNemar test is based on a binary contingency table in which pixels are classi-

fied as correctly or incorrectly allocated by the two classifiers under comparison. The

main diagonal of this table shows the number of pixels on which both classifiers were

correct and on which both classifiers were incorrect. The McNemar test however focus

on proportion of pixels where one classifier was correct but the other was incorrect.

The analysis will be based upon the evaluation of the 100(1−α)% confidence interval,

where α is the level of significance, for the difference between two accuracy values

expressed as proportions (say p1 and p2) expressed as [42]:

p2 − p1 ± zαs (4.6)

where the term s is the standard error derived of the difference between the propor-

tions, which can be determined by [42]:

s =

√
p01 + p10 − (p01 − p10)2

n
(4.7)
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(a) (b) (c) (d)

Figure 4.3: Illustration of the effects of data imbalance in the training data set with dif-
ferent degrees of balance ratios. The data set was generated artificially and represents
a purposely simple classification problem, projected in the feature space. The minority
class represented with crosses and the majority class represented with circles. Straight
line is the discrimination plane generated with the non-weighted approach. Dashed
line is the discrimination plane generated with the weighted approach. In frame (a)
balance ratio is 1:2, in frame (b) is 1:3, in frame (c) is 1:5 and in frame (d) is 1:10.

here p10 the proportion of testing pixels where the first classifier was correct and the

second was incorrect and p01 the proportion of testing pixels where the first classifier

was incorrect and the second was correct. In this way, the statistical assessment of the

differences was conducted to determine if these were significantly different or not [49].

4.4 Results and discussion

A sequence of experiments with synthetic data were performed to illustrate the effects

of data imbalance in the resulted classifiers. For this purpose two normal distributed

classes, the circles and crosses, were artificially generated with the same variability

but different class sizes. The classes are linearly separable and thus a linear SVM clas-

sification algorithm is capable of developing a classifier without errors in the training

data set. That is, it is able to find the optimal discrimination plane. The example is

purposely simple to illustrate the effects of data imbalances in the training set. In

other words, in real-world applications the relative size between classes is not the only

factor contributing to the classification algorithm. The class mean location, variance

and overlapping for example are also important informing the learning algorithm.

In figure 4.3, the effects of data imbalance in the training data set are observed with

different balance ratios. The minority class represented with crosses and the majority

class represented with circles. In frame (a) balance ratio is 1:2, in frame (b) is 1:3, in

frame (c) is 1:5 and in frame (d) is 1:10. Straight line is the discrimination plane gen-

erated with the non-weighted approach and dashed line is the discrimination plane

generated with the weighted approach. When data sets are not balanced, the discrim-

ination boundary (straight line) is pushed away from the majority class. This gives

more room to the majority class to accommodate atypical pixels, that is pixels with low

frequency of occurrence or that were not represented in the training data set. However,
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Table 4.5: Summary of the accuracy results in percentage obtained with each experi-
ment. OA stands for overall accuracy, Ss. for sensitivity and Sp. for specificity for each
class of interest.

High-mangrove Low-mangrove
Method OA (%) Ss (%) Sp (%) Ss (%) Sp (%)

SSVM 94.3 88.0 95.6 85.0 96.2
FSVM 91.0 86.0 92.9 72.0 94.8
FOVO 97.3 95.0 97.8 93.9 98.2
FOVR 96.7 93.0 97.4 91.0 97.8

the decision boundary is closer to the minority class, providing less room to accom-

modate pixels that deviate from the training data set distribution. Thus, the classifier

is overfitted around the minority class. In other words, a point belonging to the mi-

nority class that deviates from the training data set distribution may be misclassified,

because the discrimination boundary is too close to its true class. Thus, a classifier

developed with an imbalanced data set may induce a classification with high number

of false negatives in the minority class. That is, the minority class may be underes-

timated. This explains the findings of previous studies, like [59], that have shown a

trend where classes with more samples were consistently over-predicted while classes

with fewer samples were under-predicted. With the discrimination plane induced by

the weighted approach, the effects of data imbalanced are mitigated. The training data

points were weighted according to its class, using the same rule as presented in section

4.2.1. Here the decision boundary is further from the minority class compared to the

plane induced by the non-weighted approach (straight line). This provides enough

room to include atypical pixels, thus mitigating the effects of the overabundance of

data points belonging to the majority class. In this way, by controlling the weight of

the minority class data points, it is possible to inform the learning algorithm to push

away the decision boundary to avoid over-fitting around the minority class.

The overall accuracy yielded by the two benchmarks was 94.3% and 91.0% for

SSVM and FSVM, respectively (table 4.5). The difference in overall accuracy between

these two approaches can be attributed mainly to the data imbalance present in the

training set used in the FSVM experiment. Indeed, the training set used for SSVM

is balanced since the six classes have precisely the same number of data points, in

contrast with the FSVM where roughly 67% of the training consists in one class (others

class), with the rest being equally distributed by high-mangrove and low-mangrove.

Then when the binarisation process in FSVM is applied, the binary classifiers used

to discriminate the target classes are developed with an imbalanced training set. The

imbalance ratio in the training data set for the classes of interest is 1:9.

FSVM yielded lower sensitivity and specificity values in the classes of interest than

SSVM. For high-mangrove, the difference in sensitivity between SSVM and FSVM is 2%

while specificity differs 3.6%. For low-mangrove, on the other hand, sensitivity differs
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13.0% while specificity differs 1.4%. With lower sensitivity, FSVM omits more positive

cases than SSVM, which are precisely the pixels belonging to the classes of interest. On

the other hand, with lower specificity FSVM commits more negative cases (elements

of the class of non-interest) to the class of interest. These errors led to a decrease of

the geometric mean of 2.8% and 7.8% in the discrimination of high-mangrove and

low-mangrove respectively.

It is also important to notice that, although FSVM was tuned using the geometric

mean, specific for each class of interest, that was not sufficient to overcome the effects

of imbalance data. The determination of the parameters is an important factor in the

sense that provides more sensibility to the learning algorithm about the boundaries of

the classes of interest. However the issue introduced by the data imbalance remains,

since the decision boundary will still be pushed way from the majority class.

The FOVO and FOVR experiments were conducted with the same training set as

that of FSVM, but the data imbalance was mitigated with the use of data point weights.

Overall accuracies were 97.3% and 96.7% for FOVO and FOVR, respectively, 6.3% and

5.7% higher than the FSVM. Sensitivity and specificity were higher in both classes of

interest. The geometric mean yielded by FOVO and FOVR were 7.5% and 6.3% higher,

respectively, for high-mangrove and 13.0% and 11.7% higher for low-mangrove. These

results show how the use of weighted observations can be used to mitigate the effects

of data imbalance in the training set for specific class mapping. In fact, the cost-

sensitive approaches (FOVO and FOVR) yielded the highest geometric mean values in

the discrimination of the classes of interest.

The main difference between SSVM and the cost-sensitive approaches is on the

fine-tuning process, since both data sets are balanced, the first by design and the

second by application of data point weights. The fine-tuning process in SSVM is

generic; in other words, a single set of parameters was determined as the best set of

parameters for the discrimination of each possible pair of classes since the utilised

software implements OVO strategy to deal with multi-class problems. Thus, the fine-

tuning process is effectively estimating the parameterisation yielding the maximum

overall discrimination accuracy for the discrimination of the six land cover classes

and not the best parameterisation for the particular discrimination of the classes of

interest.

On the other hand, in FOVO and FOVR, the fine-tuning process is specific, that is

it was applied to each particular pair of classes, and thus instead of determining the

parameters that best fit the discrimination of all classes, each pair of classes had its

own particular parameterisation. In contrast with SSVM, the training set and the fine-

tuning process applied in FSVM is the same as those utilised in the two cost-sensitive

approaches. In FSVM, although the fine-tuning process was specific to each particular

binary classification problem, and not global as in SSVM, the imbalances present in

the training set were not addressed.

To illustrate how the two best approaches compare regarding mapping the classes
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(b)(a)

Figure 4.4: Binary map showing the areas of high-mangrove (white) and no-high-
mangrove (black) classified by the SSVM frame (a) and the FOVO frame (b).

of interest, in figure 4.4, two binary classifications extracted from SSVM and FOVO are

presented. For brevity sake and simplicity only the classifications of high-mangrove

are presented, since similar observations can be done for low-mangrove. In general,

the classifications show patches with similar geometrical structure, however the FOVO

classification appears to be an expanded version of the SSVM classification. That is,

FOVO classifier appears in general to add positive classifications around the positive

classifications of SSVM. Although, data imbalance cannot be used to explain this effect,

since SSVM was developed with a balanced data set, a similar effect to that observed in

figure 4.3 may occur. That is, the decision boundary being located too close to the class

of interest class. This may be caused by class composition of the training data set and

in the way the learning algorithm parameters were fixed. Concretely, since the class

of interest is only one small class in a larger group of six, a set of parameters inducing

a classifier that correctly predicts the majority of the classes but neglecting the small

class of interest, scores high in fine-tuning process. Such model ultimately defines

a decision boundary closer to the class of interest, which may lead to a model that

under-predicts this class. In other words, the classifier that is less sensitive to the class

of interest. Note that the pixels added by FOVO are located near the interface between

the class of interest and its negative. This suggests that these are pixels localised

on edge of the class distribution, and thus are more likely to be misclassified by a

classifier with low sensitivity to the class of interest, such SSVM. In other words, the

classification errors committed by SSVM tend to be localised in such regions. This led

the FOVO approach to predict roughly 7% more pixels of the classes of interest than

the SSVM.

Table 4.6 summarises the statistical test results based on 95% confidence interval

on the estimated difference in overall accuracy derived from different experiments.

The 95% confidence interval for the estimated difference between the accuracies de-

rived from FOVO and FOVR spanned from 0.3% to 0.9%, with centre at 0.6%, and

lay within zone of indifference, indicating that FOVR classification was non-inferior to

that of FOVO at 5% level of significance. The 95% confidence level for the difference
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Table 4.6: 95% confidence interval (CI) on the estimated difference in overall accuracy
obtained between the approaches. Results are presented in percentage and decision is
done at 5% level of significance

Method Acc. diff. 95% CI for diff. Decision

SSVM vs. FSVM 3.3 [1.7 , 4.9] Different
FOVO vs. SSVM 3.0 [1.5 , 4.5] Different
FOVR vs. SSVM 2.4 [1.2 , 3.6] Different
FOVO vs. FOVR 0.6 [0.3 , 0.9] Equivalent

between the classification accuracies yielded by the cost-sensitive approaches, FOVO

and FOVR, spanned from 1.5% to 4.5% for FOVO and 1.2% to 3.6% for FOVR. The

lower extremes of both intervals did not cross the zone of indifference, thus indicating

that the classifications derived from FOVO and FOVR were significantly different from

those derived from SSVM at 5% level of significance.

4.5 Summary and conclusions

Often users’ interest is on a small sub-set of land cover classes present in the study area

and not in a complete characterisation of the landscape. In these cases, conventional

supervised classification techniques may not be appropriate for the derivation of infor-

mation about these classes. Previous studies have shown that by combining the classes

of no interest into a large single class and by decomposing the multi-class problem

into a series of binary classification problems is sometimes a better approach than the

conventional supervised classification method. However, this approach may suffer

from data imbalance issues, since the classes of interest are usually a small component

of the training set. In this article, cost-sensitive learning was applied to overcome

data imbalances problems present in the training data. Experiments were conducted

with Landsat 5 Thematic Mapper in Saloum, Senegal, where the classes of interest

were high-mangrove and low-mangrove. The cost-sensitive learning outperformed the

conventional multi-class approach and the focused approach in the discrimination of

each class of interest. Classification accuracies derived from cost-sensitive approaches

were significantly different from those derived from the standard multi-class and the

focused approaches. Cost-sensitive approach also improved class specific discrimina-

tion. Indeed, for high-mangrove, the cost-sensitive learning approach yielded sensitiv-

ity and specificity geometric mean of 96.4% against 91.7% yielded by the multi-class

approach and 88.9% yielded by the focused approach. And for low-mangrove, the

cost-sensitive learning approach yielded a geometric mean of 95.6% against 90.4%

yielded by the multi-class approach and 82.6% yielded by the focused approach. The

cost-sensitive approaches as predicted roughly 7% more pixels of the classes of inter-

est than the conventional supervised classification. Since interest was on more that

one class, it is necessary to combine the outcomes of several binary classifiers. The
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two most common approaches, the one-vs-one (OVO) and the one-vs-rest (OVR), were

compared. The differences between the accuracies derived from OVO and OVR were

not statistically significant. Indeed, although OVO show higher classification accuracy

than OVR (97.3% against 96.7%), OVR accuracy was non-inferior to that of OVO at

5% significance level and using a 1% zone of indifference. From an operational point

of view, the effort to apply OVO or OVR was the same, because the number of classes

of interest was small. Since that is the case in most practical cases, the use of OVO

or OVR may then be of little if any relevance. In summary, the study results suggest

that the cost-sensitive learning is an effective solution to overcome data imbalances

present in the training set and thus contribute to improve the classification accuracy

of specific mapping of classes of interest.
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5
Combined use one-class classifiers for

specific class mapping: An experiment with

forest classification

Abstract In land cover mapping with remotely sensed data the interest is often on

a subset of classes present in the study area. The literature describes several super-

vised algorithms for one-class classification that are particularly attractive due to its

reduced training effort. Nevertheless, there is no option if the interest is to identify a

subset of the classes, instead of just one. In this paper it is proposed three combining

methodologies to use one-class classifiers to map subsets of land cover classes. This is

illustrated with the classification of deciduous and coniferous forest from Quickbird

imagery. Three combination approaches were tested to take advantage of the one-

class support vector machines non-exhaustive training set. These approaches were

compared with conventional multi-class support vector machine developed with an

exhaustive training set. Accuracy ranged from 80.00% to 87.33% showing any of the

three combining approaches yield accurate results statistically similar to the multi-

class classification. Thus the results suggest that an intelligent combination of single

class classifiers can be used to achieve accurate results, statistically non-inferior to the

standard multi-class classification, without the need of an exhaustive sample, saving

resources that can be allocated to other steps of the data analysis process.

5.1 Introduction

Remote sensing data is an important source of land cover information and has been

extensively used to map and monitor land cover classes over time to fulfil a variety of

of scientific and managerial purposes [107]. Supervised classification, in particular,
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has been frequently used to derive thematic maps depicting the land cover classes

present in the study area from remotely sensed data. However, users are often not

interested in all classes present in the study area but just on a small subset. This is

evident in studies where major land cover transformations are object of study, such as

deforestation [104] and urbanisation [24, 39], or where specific classes are of interest,

such as abandoned agriculture [3], specific tree species [5, 54], invasive wetland species

[87], and mangrove ecosystems [90, 140]. In such applications, the use of multi-class

image classification methods can be inappropriate [55].

One problem in using multi-class approach for specific class mapping is that the

training sample has to contain all classes present in the study area regardless of its

importance for the analysis [9]. In other words, supervised multi-class classifiers

are trained with an exhaustive training sample containing all classes present in the

classification space. If a classifier is developed with a non-exhaustive training data set,

the classifier may commit pixels of untrained classes into the set of classes in which

the classifier was training [53]. This may originate classification error that are not

identified in the accuracy assessment process [44]. For example, areas of untrained

forest may consistently be committed into a particular crop or shrub. As result, the

outputted map that overestimates the extension of that crop or shrub. Thus the analyst

has to ensure all classes present in the study area are sampled in order to avoid such

errors.

Another concern is that multi-class classifier is often developed to maximise clas-

sification accuracy over all land cover classes rather than focus on the specific classes

of interest [88]. That is, the classification algorithm seeks to output a classifier where

the overall classification accuracy, measured over all classes, is maximised. Since the

classes of interest are typically only a small part of the training set, the algorithm may

end up neglecting these small but important classes. Thus the analysis may not be

optimal for the discrimination of these classes.

Therefore, when interest is on a subset of classes present in the study area, it may be

preferable to follow an alternative approach to the conventional multi-class supervised

classification method [108, 125]. Building a classifier capable of handling effectively

only a subset of classes may be a better alternative for specific class mapping. There

are essentially two general ways to implement such a classifier. One is to decompose

the multi-class problem in a series of binary classification problems to separate the

classes of interest from all the rest. Binary approaches tend to define simpler decision

boundaries which reduce the competence areas of each classifier producing locally

specialised models [82]. From these small binary problems, the original multi-class

problem can be solved using combining strategies such as one-vs-one and one-vs-all

[129]. Although studies have shown that binary decomposition performs well in most

multi-class problems, it has nevertheless limitations such as being dependent of the

combination method and being susceptible to data imbalance and sparse distributions
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[82]. From the operational point of view, the binary classification approach still re-

quires the sampling of land cover classes of no interest at training collection stage,

since it is necessary to sample the classification space outside the classes of interest.

And like the multi-class supervised method, if this space is ill sampled, that is some

classes are omitted from the training or under-sampled, it is possible for a classifier

to commit some of those areas into a class of interest [52], over-estimating the true

extension of these important classes [55].

An alternative to the binary classification is the one-class classification. With this

approach, each class of interest is treated independently and a one-class classifier may

be developed for each. An attractive feature from the operational point of view is that

the training set is composed exclusively by training data points of the classes of interest,

which represents a significant reduction in the training sampling effort. Although

these classifiers do not use all information available about the classification space,

one-class classifiers display several desirable properties, since they are robust to many

difficulties embedded in the data such as noise, imbalanced or complex distributions

[79]. Previous studies [55, 101, 125] have shown that when interest is focused on just

one class of interest, one-class classifiers are an efficient alternative since they require

only training data for the target class yielding classifiers with classification accuracy

non-inferior to that of standard multi-class methods. However, these studies have

not explored the use of combining one-class classifiers to map a small set of classes

of interest. This is relevant because in some applications, such as mangrove forest

classification, interest is on a small subset of classes of interest and not just in one [31,

140]. In these cases, the direct use of one-class classifiers is not possible and it requires

the combination of multiple classifier decisions.

In this paper, the aim and novelty is to show that the combination of multiple One-

Class Support Vector Machines (OCSVM) can provide an accurate classification of the

classes of interest non-inferior to that of the multi-class approach without the need

to sample all classes present in the study area. In other words, if interest is only on a

subset of the classes present in the study area, the combination of multiple OCSVM

can be an efficient alternative to multi-class classification. To demonstrate this, a se-

ries of experiments are presented in three study areas located in Portugal mainland.

Two land cover classes were defined as the classes of interest. These were classes of

forest: deciduous forest and coniferous forest. Three combination strategies, inspired

in the binary classifier combination schemes, were tested and their classification accu-

racy was compared with that derived from a conventional multi-class Support Vector

Machines (SVM) classifier.
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5.2 Background

5.2.1 One-class classification

The SVM is a popular supervised classification algorithm that has been successfully

applied in many domains [108, 125]. In particular, in the classification of remotely

sensed imagery, the study and application of SVM is extensive and well known [107].

In its origin, the SVM was developed to solve binary classification problems with

linearly separable classes. However, the same principles can be applied to solve one-

class problems, also know as novelty detection problems [128], that consist in detecting

objects from a particular class. This class is often called target class or class of interest.

These problems differ greatly from the standard supervised classification in the sense

that the training set is composed exclusively by data points from the target class and

thus there are no counterexamples to define the classification space outside the class

of interest. One-class classification has been utilised in a variety of applications [126]

and has great potential in remotely sensed data processing. There are two approaches

to one-class classification based on SVM principles, the OCSVM [128] and the Support

Vector Data Description (SVDD) [137]. In this paper, however, focus is in the use of

OCSVM.

The basic idea behind the OCSVM is to determine a function that signals positive if

the given data point belongs to the target class and negative otherwise. To achieve that

the classification space origin is treated as the only available member of the non-target

class. The problem is then solved by finding a hyperplane with maximum margin

separation from the origin. Non-linear problems are dealt with a kernel function as in

the binary SVM. The OCSVM optimisation problem is formulated as follows [128]:

minw,ξ,ρ
1
2
wTw − ρ+

1
νm

∑
i

ξi (5.1)

Subject to wTφ(xi) ≥ ρ−ξi and ξi ≥ 0. Here, m is the number of training data points, w

is the vector perpendicular to the hyperplane that defines the target class boundaries

and ρ is the distance to the origin. The function φ is related with the kernel function

[128]. The use of slack variables ξi used in the OCSVM to allow the presence of class

outliers, similar to binary SVM. The parameter ν ranges from 0 to 1 and controls the

trade-off between the number of data points of the training set labelled as positive by

the OCSVM decision function:

f (x) = sign(wTφ(x)− ρ) (5.2)

Applying the Karush-Kuhn-Tucker (KKT) [30] conditions to the original OCSVM prob-

lem, this can be rewritten as depending of the Lagrange multipliers α:

minα
∑
i,j

αiαjK(xi ,xj ) (5.3)
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Subject to
∑
i αi = 1 and 0 ≤ αi ≤ 1

νm for all training data points, where K(xi ,xj) =

φT(xi)φ(xj ) is the kernel matrix defined by the kernel function φ. From this, the deci-

sion function can be rewritten depending only on the non-null Lagrange multipliers

and on the kernel matrix values:

f (x) = sign(
∑
i

αiK(xi ,x)− ρ) (5.4)

The data points with non-null Lagrange multipliers are effectively the support vectors

of the one-class classifier. The classification rule is based on the signal of the decision

value, positive if the data point is located inside the target class, negative otherwise.

The absolute value of the decision value is directly related with the distance of the data

point to the separating hyperplane in the transformed classification space [128].

5.2.2 Fine tuning one-class classifiers

Like SVM, OCSVM algorithm depends on free parameters that need to be set to de-

velop the classifier. These free-parameters consist in kernel parameters, for example

the radial factor of the radial-basis kernel function and the degree of the polynomial

kernel, and regularisation parameters. In the case of OCSVM this parameter is ν,

ranging from 0 to 1, that defines the upper bound of the fraction of training data

points regarded as outliers and and the lower bound of the fraction of training data

points regarded as support vectors [128]. The determination of these free-parameters

is important. In binary and multi-class classification, the determination of the free-

parameters is often done by grid-search cross-validation [9, 30]. However, the training

set in this study does not contain data points outside the class of interest, and thus it

is not possible to assess the specificity of the classifier (the proportion of data points

outside the class of interest that were correctly classified) in the cross-validation pro-

cess [94, 109]. Thus only sensitivity can be assessed. Using only the sensitivity to

parameterise a classification algorithm may result in a classifier with high sensitivity

and low specificity, overestimating the extension of the classes of interest.

θ̂ = argmaxθ
1
n

∑
k I(fθ(xk) = +1)
Nsv(fθ)

(5.5)

To minimise the effects of this limitation, the cross-validation process can be carried

out using the ratio between the sensitivity and the number of support vectors as metric

[7, 109] (equation 6.7), where n is number of testing data points, I is the characteristic

function, fθ is the decision function (equation 5.4) parametrised with θ and Nsv is the

number of support vectors in fθ. This ratio enforces high sensibility while limiting

model complexity (the number of support vectors) which usually indicates good model

generalisation ability [7].

73



CHAPTER 5. COMBINED USE ONE-CLASS CLASSIFIERS FOR SPECIFIC
CLASS MAPPING: AN EXPERIMENT WITH FOREST CLASSIFICATION

5.2.3 Combining decisions

The combination of one-class classifiers is not as well studied as the combination of

binary classifiers [80]. Indeed, binary classification combination has gained significant

of the machine learning community since it is at the base of many multi-class classifiers,

such as SVM, and has been proven to perform well in most multi-class problems [57].

Although less study, one-class classifiers combination has been explored and shown

its usefulness [80]. Most one-class classifiers combination strategies are based on

strategies applied to binary classifiers, namely One-vs-One (OVO), One-vs-All (OVA)

and Decision Directed Acyclic Graph (DDAG).

In OVO the multi-class problem is decomposed in a pairwise way; that is, all

possible pairs of classes are enumerated and a binary classifier is developed for each

one. Thus if there are N classes, the OVO strategy implies 1
2N (N − 1) binary classifiers

[129]. The final classification is then performed by majority voting [80]. In the OVA

strategy, one binary classifier is developed for each class where all other classes are

agglomerated into a single large class. Although this approach implies less classifiers

it may be susceptible to data imbalances issues [9]. To combine the different outcomes

of each classifier, and to avoid non-labelled data points, the assigned label is that of

the class with maximum decision value [129]. The DDAG constructs a rooted binary

acyclic graph where each node is a classifier (not necessary a binary one) that redirects

the decision. The final classification, like in a decision tree, is found once decision

reaches a terminal node [95].

5.3 Data and methods

5.3.1 Study sites

The study areas are located in continental Portugal (Fig. 5.1). Three locations were

selected based on image availability, landscape variability and how well represent the

different land cover makeups present in continental Portugal.

Study site 1 is located near Salvaterra-de-magos and is composed mostly by agricul-

ture (rainfed agriculture, irrigated agriculture and rice fields) with patches of forestry.

The classes of interest here consist in almost 29% of the study site (table 5.1). Study

site 2 is located in Lourinhã, near the seashore, and consists in pastures, bare soil, rain-

fed agriculture and shrubs. Here the classes of interest compose roughly a quarter of

the site (table 5.1), with deciduous occupying 9.98% of the site and coniferous 15.54%.

Study site 3 is located at North, in the region of Minho. This area is heavily composed

by small patches to agriculture, such as vineyards and fruit trees, shrubs and forestry.

The classes of interest compose almost two-thirds of the site (table 5.1), with deciduous

forest composing 34.45% and coniferous forest composing 33.16%. Each study site

contains also small villages and roads.
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Figure 5.1: The three study areas located in continental Portugal.

Table 5.1: Composition of the each study site. Results are presented in percentage.
Others represent the class of land cover types that are neither deciduous nor coniferous
forest.

Classes Site 1 Site 2 Site 3

Deciduous 16.18 9.98 34.45
Coniferous 12.69 15.54 33.16

Others 71.13 74.47 32.38

5.3.2 Data

Remotely sensed data was acquired in September 2004 by Quickbird with 2.4 m geo-

metric resolution for each study area. All four bands have been used, and since only

one image per study area was utilised for analysis and the atmosphere may be consid-

ered to be homogeneous within each scene, atmospheric correction was not necessary

[132]. The Normalised Difference Vegetation Index (NDVI) was computed as well the

mean and standard deviation filters using a 3x3 moving window for each discriminat-

ing variable and then rescaled to [0, 1] range [94]. Thus the data set is composed by 15

dimensions ranging in [0, 1].

Training data was manually collected by an image analyst with the support of

Google Earth and aerial imagery. For the purpose of this study, the multi-class SVM

was utilised as benchmark and thus training data for all classes present in the study

sites are necessary. Since the study sites are different, not just in location but also
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Table 5.2: Parameterisation of the multi-class SVM for each study site.

Site γ C

1 0.03125 32
2 0.03125 1024
3 0.125 32

in land cover makeup, three training sets were collected independently. In each one

of them, 100 pixels per land cover was collected. In site 1 and site 2, the training

set consisted in a total of 800 pixels, composed by water, roof-tops, roads, bare-soil,

irrigated agriculture, rainfed agriculture and forestry (deciduous and coniferous). In

site 3, on the other hand, 1000 pixels were collected for training, covering burnt areas,

roof-tops, roads, shadows, bare-soil, shrubs, deciduous and coniferous forest, and two

types of agriculture.

5.3.3 Experiments

Four experiments were conducted to demonstrate that the intelligent use of multiple

OCSVM can be used to map a set of specific land cover classes without the need to

collect training samples for all classes present in the study site. The first consisted in

the benchmark and the other three demonstrate the goal of this research paper.

The first experiment consisted in a conventional multi-class SVM classification.

Here the classifier was developed with a training set as defined in section 5.3.2 and

with radial-basis kernel. The SVM kernel free-parameters C and γ were determined

using a 10-fold cross-validation grid-search as described in [20]. Table 5.2 summarises

the parameterisations of the multi-class SVM for each study site. These experiments

were performed with LibSVM software version 3.21 [20].

The next three experiments show three different approaches to the combination

of OCSVM. Although not all relay exclusively on one-class classifiers, all approaches

require only training samples from the classes of interest. In some cases, a binary

classifier can be developed to discriminate between two classes of interest, which does

not require additional information besides the training data of these classes.

In the second experiment, in figure 5.2 (a), a OCSVM is developed for each class

of interest. Here the decision values obtained by each classifier where used instead of

the output labels. The reason for this is that the label in these cases is the signal of

the decision value, as defined in equation 5.4, and provides no additional information

about the classification. This can be problematic when the two classifiers output

positive decision values, since then there is no additional information to break the

tie. Note that when all classifiers output a negative decision value, they are effectively

agreeing that the pixel being classifier does not belong to any class of interest and

thus there is tie to be solved. To combine the decision values of the two classifiers the

following rule was applied: if both values are negative, then the pixel was classified as
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Figure 5.2: (a) second experiment based on OVA strategy; (b) third experiment based
on OVO strategy; (c) fourth experiment based on DDAG. X represents a generic pixel
and Y the output of the process. 1 represents the first class (deciduous) of interest and
2 represents the second class of interest (coniferous) and 1 vs 2 represents a binary
classifier discriminating class of interest 1 from class of interest 2. The minus signal
represents the set of pixels that are neither class 1 nor class 2.

Table 5.3: Parameterisation of the OCSVM for each study site.

Deciduous Coniferous

Site γ ν γ ν
1 0.250 0.25 0.125 0.25
2 0.250 0.50 1.000 0.50
3 0.125 0.50 0.500 0.50

outside of the classes of interest; otherwise the pixel was classified as belonging to the

class with maximum decision value. Since the decision values may range in different

intervals, the positive decision values were normalised using the sigmoid function

[129]. This approach mimics that of the OVA strategy, where one binary classifier is

developed for each class and the decision is based on the highest decision value [129].

Note that the method can easily adapted if the user is interested in more than two

classes of interest.

The third approach mimics the OVO strategy, figure 5.2 (b). Here one OCSVM

is developed for each class and a binary SVM is developed to discriminate one class

of interest from the other. Effectively, the first classifier, a OCSVM, aims to identify

deciduous; the second, also a OCSVM, aims to identify coniferous; and the third, a bi-

nary SVM, aims to discriminate deciduous from coniferous which is a standard binary

classification problem. The classification was then performed by majority voting. Note

that the binary classifier here is developed using only data from the classes of interest;

when the two OCSVM classifiers tie, the binary classifier is then used to break the tie.

A pixel then is neither deciduous nor coniferous only when the OCSVMs agree. The
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Table 5.4: Parameterisation of the SVM for methods 2 (deciduous vs. coniferous) and
OCSVM for method 3 (interest vs. no-interest).

Deciduous vs. Coniferous Interest vs. No-interest

Site γ C γ ν
1 4.8828e-4 128 9.7656e-4 0.01
2 1.9531e-3 512 2.4414e-4 0.01
3 3.9063e-3 64 1.9531e-3 0.01

method can be adapted for cases with more than two classes of interest. Indeed, for N

classes of interest, the method develops 1
2N (N + 1) classifies: N single classifiers and

1
2N (N − 1) binary classifiers. The parameters of the OCSVM classifiers were the same

as in the first approach; the binary SVM parameters were determined with 10-fold

cross-validation trails. Table 5.4 summarises the parameters utilised for each site.

The fourth experiment is based on DDAG where at root node is a OCSVM devel-

oped to identify belonging to the classes of interest, figure 5.2 (c). This node effectively

divides the classification space into interest and non-interest pixels. A second node is

built under the interest pixels set to identify deciduous from coniferous pixels, where

a standard binary classifier is utilised. Note that if the user is interested in more than

two classes of interest, this second node is effectively a multi-class problem where any

standard multi-classification approach, such as OVO or OVA for example, can be used.

Indeed the DDAG approach is similar to the OVO but dissimilar enough to induce

different classifications. In the first step of DDAG, a single OCSVM is used to identify

pixels of interest from pixels of no interest using all the data of the classes of interest,

whereas in the OVO multiple OCSVM classifiers are used that contribute to the final

decision. Table 5.4 summarises the parameterisations of the OCSVM for each study

site. The parameterisation employed in the classifier in the second node was the same

as in table 5.4.

5.3.4 Accuracy assessment and comparison

Classification accuracy was estimated using three independent testing set of 300 ran-

dom pixels for each study area, with 100 for each class of interest, deciduous and

coniferous, and 100 for the remain. The number of testing samples was determined by

the trade-off between the operational implementation effort and the expected precision

of the estimated accuracy metrics. Note that in this paper interest is the classification

accuracy of maps composed by only three classes, the two classes of interest and the re-

main without class specification. In other words, classification errors between classes

of no interest are disregarded. An image analyst visually classified each pixel in the

same year as the image acquisition with support of 50 cm aerial imagery. The accuracy

of each classification was expressed in terms of the proportion of correctly classified
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testing data points. Since a single testing set was used for each test site, the statisti-

cal significance of the difference in overall accuracy between different classification

approaches will be assessed using the McNemar test [49].

The McNemar test is based on a binary contingency table in which pixels are classi-

fied as correctly or incorrectly allocated by the two classifiers under comparison. The

main diagonal of this table shows the number of pixels on which both classifiers were

correct and on which both classifiers were incorrect. The McNemar test however focus

on proportion of pixels where one classifier was correct but the other was incorrect.

The analysis will be based upon the evaluation of the 100(1−α)% confidence interval,

where α is the level of significance, for the difference between two accuracy values

expressed as proportions (say p1 and p2) expressed as [42]:

p2 − p1 ± zαs (5.6)

Where the term s is the standard error derived of the difference between the propor-

tions, which can be determined by [42, 50]:

s =

√
p01 + p10 − (p01 − p10)2

n
(5.7)

where p10 the proportion of testing pixels where the first classifier was correct and the

second was incorrect and p01 the proportion of testing pixels, where the first classifier

was incorrect and the second was correct. In this way, the statistical assessment of the

differences was conducted to determine if these were significantly different or not [49].

Additionally, to the classification accuracy, classification sensitivity and specificity

were also calculated for each target class. Sensitivity defined as the proportion data

points belonging to the class of interest correctly classified and specificity as the pro-

portion of data points outside the class of interest correctly classified [145]. In this

sense, sensitivity and specificity complement each other, since each metric evaluates

the quality of the classification from the two sides of the classification space, inside

and outside the classes of interest. The sensitivity and specificity analysis can also

be useful identify asymmetric classifiers, that is classifiers high number of false posi-

tives and low number of false negatives, or vice-versa. In these cases, sensitivity and

specificity yield asymmetric results with one of them being smaller than the other.

Since the goal of the analysis is to show that combination of one-class classifiers

can be as accurate as multi-class classification when interest is only on a subset of the

classes present in the study area but requiring less training, the statistical analysis

aims to show that the classification derived from the combination of OCSVM is non-

inferior to that of multi-class SVM. It was assumed for the purposed of this paper that

any decline in accuracy smaller than 2% was irrelevant and this value was used to

define the region of indifference [114].
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Figure 5.3: The overall accuracy and the respective 95% confidence interval of each
method in each study site.

5.4 Results and discussion

For the purpose of this discussion, the benchmark method is referenced as BM, the

first method of combination (figure 5.2 - a) is referenced as OVA, the second method

(figure 5.2 - b) is referenced OVO and the third method (figure 5.2 - c) is referenced as

DDAG.

In figure 5.3 is summarised the classifications accuracies of each method in each

study site and their respective 95% confidence interval. It is possible to observe that

the methods show similar performances within each study site, and that accuracies

in sites 2 and 3 are very similar and slightly higher than in site 1. In study site 1,

Benchmark (BM) and DDAG achieved the larger classification accuracy with 80.67%

followed by OVO with 80.33% and by OVA with 80.00%. In site 2, BM achieved

the larger classification accuracy with 88.00%, followed by the remain methods with

87.33%. And in site 3, BM and OVA achieved the larger classification accuracy with

85.67%, followed by OVO and DDAG with 85.67% and 85.33%, respectively. Although

small differences in accuracy between classifications are present for the same site, the

larger differences exist when comparing different sites. For example, BM yield 80.67%

in site 1, 88.00% in site 2 and 85.67% in site 3.

In figure 5.4 is summarised the difference in classification accuracies results based

on 95% confidence interval on the estimated difference in classification accuracy from

the benchmark. Per site, the classification methods present small differences to the

benchmark that are contained in the region on interest. All difference intervals in all

study sites are within the pre-defined region of indifference. That indicates that all
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Figure 5.4: Difference test results based on 95% confidence interval on the estimated
difference in classification accuracy from the benchmark. Note that the region of
interest ranges from -2% to +2%. These are the maximum allowed differences between
the tested methods and the benchmark. Intervals contained in the region of interest
indicates, at 0.025 level of significance, that the proposed methods are non-inferior to
the benchmark.

methods are non-inferior to the benchmark at 2.5% level of significance. Note however

that the analysis of the results of DDAG in site 1 and of OVA in site 3 is trivial since

the difference is null. This does not mean, however, the maps are equal. Indeed, these

two approaches induce different errors as highlighted by the results of the sensitivity

and specificity in figure 5.5.

In figure 5.5 is summarised the sensitivity and specificity of each method in each

study site for both classes of interest. In the left, frame (a), deciduous class and in

the right, frame (b), coniferous class. The dashed line represent the 1:1 straight line.

That is, the points in this line hold the condition that the sensitivity is equal to the

specificity. Thus a point above the 1:1 line indicates a method with more specificity

accuracy than sensitivity (number of false positive is larger than the number of false

negative), while a point below the 1:1 line indicates a method with more sensitivity

accuracy than specificity (the number of false negatives is larger than the number of

false positive)

In site 1, the sensitivity analysis for the deciduous class show BM and DDAG with

81.00% followed by OVO with 80.00% and OVA with 79.00%. The specificity analysis

reveals that any of the methods were equally accurate with 80.50%. For the conifer-

ous class, sensitivity analysis show that any of the methods performed equally with

79.00% and the specificity analysis show BM and DDAG with the higher accuracy,
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Figure 5.5: Sensitivity and specificity of each method in each study site (in parenthesis).
Frame (a) represents the sensitivity versus specificity of all methods regarding the
classification of deciduous class. Frame (b) represents the same thing but regarding
the classification of coniferous class. The dashed line represents the 1:1 straight line.
Thus the more a method is close to the top-right corner (more sensitivity and more
specificity), the better it is classifying the class of interest.

81.50%, followed by OVO with 81.00% and OVA with 80.50%. In general, the classifi-

cation accuracies in study site 1 were smaller than those of the site 2 and 3. A possible

reason for this is the site land cover and their spectral confusion. Indeed, this study

area is composed mostly by agriculture and small elements of natural vegetation, such

as shrubs and grassland, occupying roughly 73%. These natural elements are inter-

mingled with the classes of interest and present high spectral similarity to the target

classes, deciduous and coniferous forest. This may lead to an increase of overlapping

regions in the classification space and thus ambiguity in the classification process.

In site 2, the specificity all methods show equal performances, with 88.00%, differ-

encing only 0.5% from the benchmark. For the coniferous forest, the analysis of the

specificity shows BM and OVA with the highest results, 88.50%, followed OVO and

DDAG only with 88.00%. For the coniferous forest the most sensitive method was the

benchmark, with 87.00%, with the remained methods with sensitivity values differ-

encing no more than 2%. The specificity analysis show BM and OVA with the highest

values (88.50%) with the remain methods only 0.50% smaller. Thus, although small

differences were present in the sensitivity and specificity, the overall show the methods

performing equally well with highest overall accuracies (> 87.00%). It is important

also to notice that in this site sensitivity is consistently smaller than specificity. This

suggests that the extension of the classes of interest is being underestimated. This can

be explained by the landscape of site 2, where the deciduous and the coniferous forest

are present only in small and concentrated pockets, for forestry management purposes,

composing roughly 25% of the study site and everything else, mostly rainfed agricul-

ture grassland and urban, being spectrally very different. These two factors may lead

to better classifications, since spectral dissimilarity reduce the overlapping regions

between classes, and as consequence the ambiguity in the classification process. The
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confinement of the classes of interest to very specific and evident locations, on the

other hand, may lead the image analysts to collect training pixels with low variability.

This misrepresentation of the classes of interest may lead the definition of a shrunken

decision boundary increasing the number of false negatives.

In site 3, for the deciduous forest, any of the methods is equally sensitive yielding

87.00%. The specificity the methods differ, with BM and OVA achieving 85.00% and

OVO and DDAG achieving 0.5% less. For the coniferous class, again BM and OVA

achieve the larger sensitivity values with 88.00% and OVO and DDAG 87.00%. At the

specificity level all methods perform equally, with 88.50%. Thus in general the classifi-

cation accuracies were high (> 85.00%), although not as high as in site 2. It is important

to notice however that differently from site 2 here the sensitivity is consistently larger

than specificity, which suggests that the extension of the classes of interest are being

overestimated by the classifiers. Here also the landscape composition can be used

to explain this difference. Indeed, in this study are each class of interest represents

roughly 33% and thus almost two thirds of the site is occupied by one of these classes.

The remain third is composed by small patches of agriculture, such as vineyards, fruit

trees and olive plantations, and natural vegetation such as grassland and shrubs in

many classes intermingled with forestry (deciduous and coniferous). This leads to

overlapping regions in the classification space but also hinders the image analysts

training collection, leading them to mislabelled data points.

On the combining classifications, OVO and DDAG show equal classification ac-

curacies in site 3 and also the lowest. OVA show the lowest classification accuracy

in site 1 and the highest in site 3 matching that of the benchmark. And in site 2, all

combining approaches show equal classification accuracy. In any of the study sites, the

BM has achieved the larger classification accuracies, which is expected and supported

by literature. Indeed, previous studies have shown that when data points outside

the classes of interest are present in the training set, binary classifiers tend to outper-

form single-class classifiers [80]. The reason for this is that information about the

distribution of the classification space outside the class of interest helps the learning

algorithm to define more accurate decision boundaries [137]. However, from the op-

erational point of view, definition of training pixels for the classes of no-interest may

require too much effort [142]. Indeed, in a site composed by, say, ten land cover classes,

from which only two are relevant for the purpose of the analysis, a large portion of

the time and analysts is allocated to the data collection of classes of no importance

for the purpose of the analysis, and the resulted classifier may be sub-optimal for the

discrimination of those classes of interest [125]. The results of this study, however,

have shown that an intelligent combination of single class classifiers can be used to

achieve accurate results, statistically non-inferior to those of the standard multi-class

classification, without the need to sample all classes present in the study site, saving

resources that can be allocated to other steps of the data analysis process.
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5.5 Conclusion

This work is focused on the classification problem of a subset of classes present in the

study site. This is what often users intend, since in many research focus is on sub-set

of classes and not on all classes that make up the study site. Conventional multi-class

classification can be used to derive a map depicting the classes of interest, but consid-

erable effort is allocated in the definition of an exhaustive training set containing all

classes present in the study area. Additionally the classification process may be sub-

optimal for the discrimination of the particular classes of interest. Alternatively, with

one-class classification, only training data of the classes of interest is utilised which,

from the operational point of view, represents a considerable reduction in sampling

time and effort, and the analysis is focused on the classification of particular classes of

interest. In this paper three one-class classifiers combination approaches were used to

efficiently map a set of classes interest present in the study site. This is illustrated with

the classification of deciduous and coniferous forest in three different study sites, from

Quickbird imagery, using one-class support vector machines. These approaches were

compared with conventional multi-class support vector machine, which was devel-

oped using a training set containing all classes present in the study area. Classification

accuracy ranged from 80.00% to 87.33%, showing that any of the three combining

approaches yield accurate results similar to the multi-class classification method, used

as benchmark, suggesting them to be non-inferior to the benchmark at 2.5% level of

significance. From this study, thus, results that an intelligent combination of one-class

classifiers can be used to achieve accurate results, statistically non-inferior to those of

the standard multi-class classification, without the need to sample all classes present

in the study site, saving resources that can be allocated to other steps of the remotely

sensed data analysis process.
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Specific land cover class mapping by

semi-supervised weighted support vector

machines

Abstract In many remote sensing projects on land cover mapping the interest is often

on a subset of classes presented in the study area. Conventional multi-class classifi-

cation may lead to a considerable training effort and to the underestimation of the

classes of interest. On the other hand, one-class classifiers require much less training

but may overestimate the real extension of the class of interest. This paper illustrates

the combined use of cost-sensitive and semi-supervised learning to overcome these

difficulties. This method utilises manually collected set of pixels of the class of interest

and a random sample of pixels, keeping the training effort low. Each data point is then

weighted according to its distance to its near positive data point to inform the learn-

ing algorithm. The proposed approach was compared with a conventional multi-class

classifier, a one-class classifier and a semi-supervised classifier in the discrimination of

high-mangrove in Saloum estuary, Senegal, from Landsat imagery. The derived classi-

fication accuracies were high, 93.90% for the multi-class supervised classifier, 90.75%

for the semi-supervised classifier, 88.75% for the one-class classifier and 93.75% for

the proposed method. The results show that accuracy achieved with the proposed

method is statistically non-inferior to that achieved with standard binary classification

requiring however much less training effort.

6.1 Introduction

Remote sensing is today an integral part of many research activities related with Earth

monitoring [26]. And in particular supervised classification of remotely sensed data
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has become a fundamental tool for the derivation of land cover maps [107]. Indeed,

users are often not interested in a complete characterisation of the landscape but rather

on a subset of the classes that occur in the region to be mapped. For example, users

may be focused on mapping urban classes [24, 39], abandoned agriculture [3], specific

tree species [5, 59], invasive wetland species [87], or mangrove ecosystems [90, 140].

Fundamentally, depending on the application, the accurate discrimination of some

classes is more important than the discrimination of others [88]. In this paper, it is

assumed that interest is in a single land cover class but the discussion can be adapted

if focus is on a subset of the classes composing the study area.

When interest is focused on a single class the use of conventional supervised clas-

sification process may be inappropriate [55]. Indeed, this approach assumes that the

set of classes has been exhaustively defined [44, 53]. Thus, the correct application of

this analysis require that all classes that occur in the study area be included in the

training set [45, 103]. Therefore, when mapping a region for a user interested in urban

land cover it will be necessary to collect training data points not only on the urban

classes of interest but also on secondary classes with no interest to the user, such as

crops, forest, water if these are present in the area of study. If these classes are not

included in the training data set, the classifier will commit pixels of untrained classes

into trained classes. For example, if the land cover class forest was not incorporated

in the training data set, pixels of forest my be systematically classified as a type of

shrub or crop, which greatly overestimates the real extent of those shrubs and crops

classes. The user, therefore, must seek to ensure that all classes occurring in the region

of interest are sampled to fulfil this requirement. In other words, the users have to

allocate time and effort in training classes that are of no interest for their goals.

In addition, conventional supervised classification algorithms often are not opti-

mised for the discrimination of a particular class [55, 88]. The classification algorithm

seeks a classifier where the overall classification accuracy, measured over all classes, is

maximum [16]. The class of interest, that is typically just one and often a small part

of the set of classes, may be neglected in the process, and thus the resulted model may

not be optimised for the discrimination of that particular class that may underesti-

mate the class of interest [6]. In other words, the classifier may accurately discriminate

secondary classes to the detriment of the class of interest [45, 55]. Hence, in both

training and allocation stages, conventional supervised classification approaches are

not focused on the class of interest. This take users wastefully directed training effort

on classes of no interest and leads to an analysis that may not be optimal in terms of

the discrimination of the important class. Therefore, when interest is on a class of

interest, it may be preferable to follow an alternative approach to the conventional

multi-class supervised classification method [125].

Literature shows that there are essentially two alternatives to the standard multi-

class supervised approach: the binarisation strategy and one-class learning algorithms

[57, 79, 136]. With binarisation strategy, users decompose the multi-class problem in
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a series of small binary classification problems where one seeks to separate the classes

of interest from all irrelevant classes [13, 41, 57, 82]. As binary classification is well-

studied, binary decomposition of multi-class classification problems have attracted

significant attention in machine learning research and has been shown to perform well

in most multi-class problems [82]. Indeed, binary decomposition has been widely used

to develop multi-class Support Vector Machines (SVM) showing better generalisation

ability than other multi-class approaches [65]. The possibility to parallelise the train-

ing and testing of the component binary classifiers is also a big advantage in favour of

binarisation apart of their good performance [57]. In particular, binarisation can be

achieved by combining all land cover classes of no interest into a large nominal class,

called for example "others" [47]. In this way the class of interest can be regarded as

the positive class and all others as the negative class in the binary classification sce-

nario. Previous studies [13, 47, 59, 90] have shown it to be possible to decompose the

multi-class classification problem in a series of small binary classification problems

and achieve results that are more suitable for the particular users’ requests, namely

the improvement of the discrimination of particular land cover classes of interest. Al-

though specific class mapping can potentially be a better approach compared to the

multi-class supervised classification, it has some particular difficulties, namely data

imbalance in the training set [6, 9]. This is because often the classes of interest are only

on a small component of the study area [88]. In fact, applying directly a binary decom-

position to the classification problem may result in a highly unproportional allocation

of training points to the negative class, leading to imbalance in the training data set

[9]. In addition, the binarisation approach also requires the users to collect training

on classes of no interest, similarly to what happens in the multi-class approach.

With the one-class classifier these problems are not present, since the user has only

to collect training from the class of interest. However that is also its major limitation,

since only data about one class is available and thus only one side of the discriminative

boundary can be determined [136]. It can then be difficult to determine how tightly the

boundary should fit in all directions around the class of interest in feature space. To

overcome this difficulty some one-class classifiers (e.g. support vector data description)

assume that the non-interest classes have a particular distribution around the class of

interest. When the true distribution deviates from the assumption, the method may

underperform [81]. Indeed, since the classifier is not able to bind the class distribution,

the classifier may lead to over-expanded decision boundaries [136].That deviation

however can only be assessed with training points outside of the class of interest [136].

Literature also shows that when information about the classification space outside the

class of interest is available, binary classifiers tend to develop more accurate classifiers

then the one-class approach [8, 79].

In the specific class mapping context, since the class of interest in typically only a

small component of the study site [88], the number of negative pixels are much larger

compared to the number of positives pixels, that is the pixels of interest. That is, there
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is typically an over abundance of negative pixels in such that the probability of an

arbitrary unlabelled pixel to be negative is much higher than the probability of being

positive. In this context, the use of randomly selected data points can be an option to

improve specific class mapping. This approach is typically known as semi-supervised

learning.

Semi-supervised learning, also known as positive and unlabelled learning, is meant

the use of unlabelled data points to inform the learning algorithm [21]. Here, semi-

supervised learning can be possible approach to the classification process, since a priori
there is bias toward the negative class [134].

Previous works have used semi-supervised learning approaches to map land cover

classes, for example [6, 109]. In these studies, the Biased Support Vector Machines

(BSVM) algorithm has been utilised with success to map classes like urban and tree

tops from aerial imagery [94], and to classify single tropical species [6]. With BSVM

the unlabelled set is regarded the negative class and the cost associated to the positive

class and the negative class are asymmetrical, so that an error occurring in the positive

class is more costlier than an error on the negative (unlabelled) class [96]. However, it

is not clear how to set up the weights and the trial-and-error approach usually takes

long computation time [34].

In this paper a similar approach is presented, however a different cost-sensitive

approach is employed. A set of unlabelled data points, randomly defined, is used

as an approximation to the negative class and only the positive class (the class of

interest) is manually sampled. However, the costs associated to each class are not

asymmetrically defined, but rather the individual data points are weighted differently

according to its similitude to a positive data point. This similitude metric is function

of the euclidian distance to its nearest positive data point. The heuristics followed here

is that the closer negative data point is to a known positive data point, the higher the

likelihood of that negative point to be mislabelled. Note that the positive data points

are manually defined by an human analyst and thus considered certain and correct.

The weight distribution in the negative class is then used by a cost-sensitive learning

algorithm to develop a binary classifier. In other words, the proposed method aims

to develop a binary classifier to classify a particular class of interest with the same

sampling effort that is required by the one-class classifiers but providing the same

discriminating information of a binary classification. Here the proposed method was

compared with three different alternative approaches: the conventional multi-class

supervised approach, here a support vector machine classifier; a single-class classifier,

the One-Class Support Vector Machines (OCSVM); and a semi-supervised method, the

BSVM.
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6.2 Background

The SVM algorithm is a popular supervised classification algorithm that has been

successfully applied in many domains [125]. In particular, in the classification of

remotely sensed imagery, the study and application of SVM is extensive and well

known [107]. Most implementations of SVM require the solution of the following

optimisation problem [130]:

min
w,ξ

1
2
wTw+CeT ξ (6.1)

subject to yi(wTφ(xi) + b) ≥ 1 − ξi for i = 1 . . .m where m is the number of training

data points, w is the hyperplane normal vector, φ is the kernel function, e is the all 1’s

vector and ξ is the vector of slack variables. The parameterC represents the magnitude

of penalisation. If C is a large value, the optimal solution defines narrower margins

in order to accommodate the misclassified training data points; in contrast, smaller

values of C lead to wider margins [127]. The penalisation strategy here is uniform and

thus equally applied regardless of the class and the data point being analysed.

This is not limited to SVM. Indeed, in conventional supervised classification meth-

ods the aim is to minimise the general misclassification rate and thus all types of

misclassification are regarded equally severe [16]. A more general approach is to

consider misclassifications as not equal. That is, some errors are regarded as more

costly than others. This difference is then utilised to inform the learning algorithm

during the classification induction stage, and drive the induction process in more sen-

sitive way. There are essentially two ways to implement a cost-sensitive approach: the

class-dependent and the instance-dependent. However, which approach is the more

suitable dependents of the problem at hand. Next are presented two implementations

of these approaches: the BSVM implements implementing of the class-dependent

cost definition and Weighted Support Vector Machines (WSVM) implementing the

instance-dependent.

6.2.1 Bias SVM and weighted SVM

The BSVM is an adaption of the classical formulation of the SVM to handle unlabelled

data [96]. This is done by defining different cost values to the positive and to the

negative (unlabelled) classes.

min
w,ξ

1
2
wTw+Cpe

Tξp +Cne
Tξn (6.2)

subject to yi(wTφ(xi) + b) ≥ 1 − ξi for i = 1 . . .m. The vector ξp is the vector of slack

variables of the positive data points, and ξn is the vector of slack variables of the

negative data points. By varying Cp and Cn is possible to penalise the positive class

and the negative class differently. Intuitively, the cost values are assigned such that
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Cp is a big value compared to Cn, because the positive class was defined by an human

analyst, and thus assumed correct, and the negative class is originated from a random

sample of pixels, and thus possibly containing positive data points [109]. However,

there is no clear indication of how to define those parameters and trail-and-error is

generally recommended [96].

Differently from the SVM and BSVM, the WSVM implements an instance-dependent

cost scheme, that is instead to penalising classes, like with the BSVM, or all data points

equally, like with the SVM, the goal is to penalise individual data points. A way to

adapt the SVM approach to inform the optimisation problem that some points are

more relevant than others is by incorporating a weight vector that assigns different

cost values to different data points [67, 145]. The original SVM problem is thus refor-

mulated in the following way:

min
w,ξ

1
2
wTw+CσTξ (6.3)

subject to yi(wTφ(xi)+b) ≥ 1−ξi for i = 1 . . .m, where σ is the vector of weights. The user

can then set different weights to different data points according to a predetermined

criterion. Applying the Karush-Kuhn-Tucker (KKT) conditions, the original WSVM

problem can be reformulated in its dual form [145]:

min
α

1
2

∑
i,j

αiαjyiyjK(xi ,xj )−
∑
i

αi (6.4)

subject to
∑
i yiαi = 0 and 0 ≤ αi ≤ Cσi for i = 1 . . .m. Note that, unlike problem (6.3),

the Lagrange multipliers are now bounded according to its weight. This allows the

learning process to penalise the misclassification of some points differently from other

points.

6.2.2 One-class SVM

In its origin, the SVM was developed to solve binary classification problems with

linearly separable classes. However, the same principles can be applied to solve one-

class problems, also know as novelty detection problems [128], that consist in detecting

objects from a particular class. This class is often called target class or class of interest.

These problems differ greatly from the standard supervised classification in the sense

that the training set is composed exclusively by data points from the target class and

thus there are no counterexamples to define the classification space outside the class

of interest. One-class classification has been utilised in a variety of applications [126]

and has great potential in remotely sensed data processing. There are two approaches

to one-class classification based on SVM principles, OCSVM [128] and the Support

Vector Data Description (SVDD) [137]. In this paper, however, focus is in the use of

OCSVM.
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The idea behind the OCSVM is to determine a function that signals positive if the

given data point belongs to the target class and negative otherwise. To achieve that

the classification space origin is treated as the only available member of the non-target

class. The problem is then solved by finding a hyperplane with maximum margin

separation from the origin. Non-linear problems are dealt with a kernel function as in

the binary SVM. The OCSVM optimisation problem is formulated as follows [128]:

minw,ξ,ρ
1
2
wTw − ρ+

1
νm

∑
i

ξi (6.5)

subject to wTφ(xi) ≥ ρ−ξi and ξi ≥ 0. Here, m is the number of training data points, w

is the vector perpendicular to the hyperplane that defines the target class boundaries

and ρ is the distance to the origin. The function φ is related with the kernel function

[128]. The use of slack variables ξi used in the OCSVM to allow the presence of class

outliers, similar to binary SVM. The parameter ν ranges from 0 to 1 and controls the

trade-off between the number of data points of the training set labelled as positive by

the OCSVM decision function f (x) = sign(wTφ(x)− ρ).

6.2.3 Free-parameter tuning

The development of a learning algorithm requires the use of accuracy metrics to assess

the quality and compare the performance of alternative classifiers. In particular, the

determination of these free-parameters is an important step. Indeed, there are em-

pirical evidence suggesting that parameter tuning is often more important than the

choice of algorithm [17], SVM being particularly harder to tune than other classifica-

tion procedures [89]. Thus the selection of the correct performance metric is a critical

step.

For example, when fine-tuning a classification algorithm, it is often necessary to

compute an accuracy metric to determine the parameterisation that yields on average

the highest accuracy value. Although commonly used, the overall classification accu-

racy (the proportion of correctly classified data points) may not a reliable metric, if the

training set is imbalance. That is if the training data of one the classes outnumbers the

training data of the other class [141]. This is because the performance of the classifier

on the larger class dominates the behaviour of this metric, and thus it gives optimisti-

cally biased results [145]. Indeed, the definition of the accuracy metric is particular

important for binary classification, since the performance of the classifiers can be par-

ticularly sensitive to the classes’ relative size [129, 145]. In this conditions, the result

of the tuning process may be unreliable not because of the process but rather because

of the accuracy metric employed in it. If the training data set is imbalanced and the

classification accuracy is utilised, the outcome of the tuning process will indicate that a

particular parameterisation is the one with the highest classification accuracy but may

indeed be biased towards the majority class, since that parameterisation may yield a
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classifier that classifies very accurately the majority class in detriment of the minority

class [67]. Since often the class of interest is just a small component of the training,

the classifier would then underestimate the true extension of this small but important

class.

There are better alternative accuracy metrics to the classification accuracy, for ex-

ample sensitivity and specificity [61]. Sensitivity is the proportion of true positives

correctly classified, while specificity is the proportion of true negatives correctly clas-

sified [145]. Note that in binary classification, classification accuracy may not be a

reliable indicator particularly if the data set is imbalanced, since the influence of the

majority class is much higher than that of the minority class [67]. Alternatively, other

quality metrics can be used, such as sensitivity and specificity [145]. Sensitivity is the

proportion of true positives correctly classified and specificity is the proportion of true

negatives correctly classified [61]. Effectively, sensitivity is the producer’s accuracy

of the positive class while specificity is the producer’s class of the negative class. In

this way, sensitivity indicates how good the classifier is recognising positive cases and

specificity indicates how good the classifier is recognising negative cases [145].

Often sensitivity and specificity are combined in one metric for better analysis

and comparison [135]. In particular, the geometric mean between sensitivity (s) and

specificity (S) [16, 84], equation (6.6), is particularly useful:

G =
√
sS (6.6)

The geometric mean (G) indicates the balance between classification performances

on the positive and negative class. High misclassification rate in the positive class

will lead to a low geometric mean value, even if all negative data points are correctly

classified [67]. Similarly if the classifiers shows high misclassification in the negative

class. In this way, if both sensitivity and specificity are high, the geometric mean G

is also a high value; but if one of the component accuracies, sensitivity or specificity,

is low, the geometric mean G is affected by it. Thus a classifier with high geometric

mean is highly desirable for class specific mapping [110], and hence G can be used to

fine-tune binary algorithms of classification.

A particular observation is necessary for BSVM. Since the positive class and the

negative class are penalised differently, the BSVM has effectively two penalisation

variables, which complicates the grid-search optimisation process. In general, the pe-

nalisation cost of the positive class should have a large value compared with that of

the negative class should have a small value, because it is unknown whether the unla-

belled samples are actually positive or negatives. However there is no clear criterion

to adjust these parameters and often the user has to resort to trial-and-error [96].

Like SVM, OCSVM algorithm depends on free-parameters that need to be set to

develop the classifier. These free-parameters consist in kernel parameters, for example

the radial factor of the radial-basis kernel function and the degree of the polynomial
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kernel, and regularisation parameters. In the case of OCSVM, the regularisation pa-

rameter is ν, ranging from 0 to 1, that defines the upper bound of the fraction of train-

ing data points regarded as outliers and and the lower bound of the fraction of training

data points regarded as support vectors [128]. In binary and multi-class classification,

the determination of the free-parameters is often done by grid-search cross-validation

using the classification accuracy as metric [9, 30]. However, the training set used with

these type of classifier does not contain data points outside the class of interest, and

thus it is only possible to assess the sensitivity of the classifier in the cross-validation

process [94, 109]. Using only the sensitivity to parameterise a classification algorithm

may result in a classifier with high sensitivity but low specificity, overestimating the

true extension of the class of interest.

θ̂ = argmaxθ
1
n

∑
k I(fθ(xk) = +1)
Nsv(fθ)

(6.7)

To minimise the effects of this limitation, the cross-validation process can be car-

ried out using the ratio between the sensitivity and the number of support vectors

as metric [7, 109] (equation 6.7), where n is number of testing data points, I is the

characteristic function, fθ is the OCSVM decision function parametrised with θ and

Nsv is the number of support vectors in fθ. This ratio enforces high sensibility while

limiting model complexity (the number of support vectors) which usually indicates

good model generalisation ability [7].

6.3 Methods

6.3.1 Study area

The study area is located in Saloum river delta in Senegal, Africa (fig. 6.1). The area

is predominantly flat with altitudes ranging from below sea level in the estuarine

zone to about 40 m above mean sea level inland. The climate is Sudano-Sahelian

type with a long dry season from November to June and a 4-month rainy season from

July to October [31, 38]. The regional annual precipitation, which is the main source

of freshwater recharge to the superficial aquifer, increases southward from 600 to

1000 mm. The hydrologic system of the region is dominated by the river Saloum, its

two tributaries (Bandiala and Diomboss), and numerous small streams locally called

“bolons”. Downstream, it forms a large low-lying estuary bearing tidal wetlands, a

mangrove ecosystem, and vast areas of denuded saline soils locally called “tan” [31].

The largest land cover classes present in the study area are water, mangrove species,

shrubs, savannah and bare soil. The main crop is millet and the urban settlements

are usually small and sparse. Saltpans develop to the north because of excessive salin-

ity [106]. In this paper interest is focused on one type of mangrove, High Mangrove

(HM). HM is generally characterised by a dense and tall canopy and is composed
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Figure 6.1: Saloum river delta in Senegal.

by species like Rhizophora racemose, Rhizophora mangle and Avicennia Africana [32].

The Saloum river delta was designated a United Nations Educational, Scientific and

Cultural Organization (UNESCO) World Heritage site for its remarkable natural en-

vironment and extensive biodiversity and is listed in the Ramsar List of Wetlands of

International Importance [106]. Particularly important is Saloum’s mangrove system,

occupying roughly 180 000 ha supporting a wide variety of fauna and flora, and the

local economy [106].

6.3.2 Remotely sensed data and training set

Remotely sensed data of the study area were acquired on 9 February 2015 by Landsat

8 and downloaded from United States Geologic Survey (USGS) Global Visualization

Viewer (GLOVIS). In this study all non-thermal bands (bands 2 to 7) have been used.

Since only one image was utilised for analysis and the atmosphere may be considered

to be homogeneous within the study area, atmospheric correction was not necessary

[132]. The digital numbers were normalised using the max-min rule to range from 0 to

1. The study area is composed by eight large land cover classes: water, high-mangrove,

low-mangrove, bare soil, savannah, shrubs humid areas and burnt areas. The training

set comprised of 100 pixels per class for each of the eight land cover classes.

6.3.3 Experiments

Four experiments were conducted where the first two experiments were used as bench-

mark. In the first, a OCSVM classifier was developed using only training data of the

class of interest, HM. This experiment is thus labeled as OCSVM. The kernel function

utilised in the analysis was the radial-basis function and its free-parameters were fine-

tuned using 10-fold cross-validation, as described in section 6.2.3. From this analysis
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the free-parameters were set as γ = 0.0000610 and ν = 0.025.

In the second experiment, an image analyst collected 100 points per land cover

present in the study area, comprising a total of 800 data points. The data points la-

beled as high-mangrove were reclassified as positive (class of interest) and the remain

training points were reclassified as negative (class of no interest). Next a SVM was

developed to discriminate exclusively the class of interest. This experiment is then

labeled as SVM. The kernel function utilised for analysis was the radial-basis and its

free-parameters were set with 10-fold cross-validation as γ = 2 and C = 0.125, using

the geometric mean as described in section 6.2.3. This approach consists in a com-

mon binarisation process of the classification problem and has been successfully used

in previous studies, for example [13], and extensively studied by machine learning

researchers [e.g. 41, 57, 82].

The third and fourth experiments were conducted in a semi-supervised way. Thus

a simple random of pixels was utilised to collect random pixels throughout the study

scene, composed by 1000 pixels. Following the semi-supervised approach, these were

then labelled negative without individual verification [21, 94]. Next, only the class

of interest was sampled by an analyst, similar to what happened with the one-class

approach. In the third experiment, a BSVM classifier was trained. The kernel function

utilised for analysis was the radial-basis and its parameters, γ , Cp and Cn were set by

trail-and-error ensuring Cn < Cp, since negative class may contain mislabelled data

points. From this analysis, γ = 2, Cp = 256 and Cn = 0.03125.

In the fourth experiment, the proposed approach was developed. That is, utilise

a WSVM classifier trained in a semi-supervised fashion. Here the same sample that

was utilised to train the BSVM was also used to train the WSVM. However, differently

from the BSVM, with the WSVM a instance-dependent cost-sensitive approach was

implemented to minimise the effect of the mislabeled data points in the learning

process. To this end, the following heuristics was applied: negative data points that

are spectrally close to known positive training points are likely to be mislabeled, and

thus must have to have less impact in the learning process. On the other hand, random

points dissimilar to known positive points are likely to be correctly labelled and thus

are important for a correct learning algorithm. Note that the labels of the positive

points, that were collected manually by the user, are considered certain and thus

correct. But negative points, which were randomly selected and blindly labelled as

negative, may be misclassified. The number of negative training data points that are

mislabelled is expected to be small, since the area occupied by the class of interest is

also expected to be small (roughly 10% from previous studies such as [31]).

The function utilised to relate the spectral distance with the nearest positive point

was the exponential function in equation 6.8:

wi = 1− exp(−σd2
i ) (6.8)
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where wi is the weight of the ith random point and d2
i is the squared euclidean distance

of the ith random point to its nearest positive point in the feature space. The free-

parameter σ > 0 is utilised as a smoothing parameter; large values of σ increases the

average weight of the points, while small values reduces it. Note that the maximum

assigned weight is 1 and the smallest is asymptotically 0. Thus the misclassification

of data points with big weights (close to 1) are more costly that the misclassification

of points with less weight (close to 0). In this way the learning process is informed of

which training points are more important to define the decision boundaries. Since it is

necessary to assign a weight value to all training data points, the positive points were

assigned the maximum weight 1 because these are considered certain and correctly

labeled.

Note that this weighting model is not necessarily unique. Indeed, any function

assigning distances to the interval ]0, 1] may be used, such as the inverse of the squared

distance. However, the purpose of this study is not determine which weight assigning

functions are the most suitable under given conditions, but rather to show the general

effectiveness of the method. Thus only exponential function was utilised.

Similar to the SVM, kernel function that was used was the radial-basis function

and its free-parameters were defined using a 10-fold cross-validation process with the

geometric mean as metric. From this analysis these were set as γ = 2 and C = 512. The

values of σ were set by trail-and-error. A range of values were tested ranging from

very small (0.01) to large (10); at the end the best value for σ was 1. All weight values

were then normalised using the maximum weight. From this analysis, the weights of

the negative data points ranged from 0.001 to 0.86.

All experiments where conducted with LibSVM version 3.21 and LibSVM-weights

version 3.20.

6.3.4 Classification accuracy and comparison

Classification accuracy was estimated using an independent testing set of 2000 simple

random pixels. An image analyst visually classified each pixel, labelling the point as

positive (belonging to high-mangrove) or negative (not belonging to high-mangrove)

in the same year as the image acquisition with support of Google Earth. From this

analysis, 107 pixels were labeled as positive and 1893 where labeled as negatives. The

accuracy of each classification was expressed in terms of the proportion of correctly

classified testing data points, and also using sensitivity and specificity. Sensitivity is

the proportion of positive pixels correctly classified, while specificity is the proportion

of negative pixels correctly classified [9]. Since a single testing set was used for each test

site, the statistical significance of the difference in overall accuracy between different

classification approaches will be assessed using the McNemar test [49].

The McNemar test is based on a binary contingency table in which pixels are classi-

fied as correctly or incorrectly allocated by the two classifiers under comparison. The

96



6.4. RESULTS AND DISCUSSION

−6 −4 −2 0 2 4 6
Diff. in Overall accuracy (%)

BSVM vs WSVM

SVM vs OCSVM

SVM vs WSVM

−3.00 [−4.65, −1.35]

 4.90 [ 3.85,  5.95]

 0.15 [−0.09,  0.39]

Comparison Diff. of Accuracies [95% CI] (%)

86 88 90 92 94 96
Overall accuracy (%)

WSVM

BSVM

OCSVM

SVM

93.75 [92.69, 94.81]

90.75 [89.48, 92.02]

88.85 [87.48, 90.22]

93.90 [92.84, 94.96]

Method Overall Accuracy [95% CI] (%)

Region of indifference

SVM vs. WSVM

WSVM vs. OCSVM

BSVM vs. WSVM

SVM

WSVM

BSVM

OCSVM

(a) (b)

−2 0 2 4 6
Diff. in Overall accuracy (%)

SVM vs OCSVM

SVM vs WSVM

4.90 [ 3.85, 5.95]

0.15 [−0.09, 0.39]

Comparison Diff. of Accuracies [95% CI] (%)

Figure 6.2: The overall accuracies of each method and their respective 95% confidence
interval.

main diagonal of this table shows the number of pixels on which both classifiers were

correct and on which both classifiers were incorrect. The McNemar test however focus

on proportion of pixels where one classifier was correct but the other was incorrect.

The analysis will be based upon the evaluation of the 100(1−α)% confidence interval,

where α is the level of significance, for the difference between two accuracy values

expressed as proportions (say p1 and p2) expressed as [42]:

p2 − p1 ± zαSE (6.9)

where the term SE is the standard error derived of the difference between the propor-

tions, which can be determined by [42]:

SE =

√
p01 + p10 − (p01 − p10)2

n
(6.10)

where p10 the proportion of testing pixels where the first classifier was correct and the

second was incorrect and p01 the proportion of testing pixels where the first classifier

was incorrect and the second was correct. In this way, the statistical assessment of the

differences was conducted to determine if these were significantly different or not [49].

To perform this analysis is necessary to define the zone of indifference [49]. This is, the

largest amount of allowable difference that determine if the methods are considered

equivalent or non-inferior [10]. In this evaluation it was assumed that the zone of

indifference was 1.00%. Although this value was selected arbitrarily, ensures that

small differences in accuracy are inconsequential [113].

6.4 Results and discussion

Figure 6.2 frame (a) presents the overall accuracy obtained with each method and their

respective 95% confidence interval. All methods yielded high classification accuracy:
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SVM achieved 93.90% with confidence interval at 95% confidence level of [92.84%,

94.96%], OCSVM achieved 88.85% with [87.48%, 90.22%], BSVM achieved 90.75 with

[89.48%, 92.02%] and the WSVM 93.75% with [92.69%, 94.81%]. In frame (b) it is sum-

marised the statistical comparison between the classifications. The difference between

the classification accuracies yielded by SVM and WSVM was 0.15% ranging from -

0.09% to 0.39% at 95% confidence interval. The confidence interval for the difference

in accuracy is within the region of indifference ([-1%, 1%]) and thus provides evidence

for the non-inferiority of WSVM. In other words, the statistical analysis shows that the

classification accuracy derived from WSVM is non-inferior to that of SVM at 5% level

of significance. However, WSVM was developed without the need to collect training

data points in secondary classes, which contrast with SVM where all classes present in

the study area were incorporated in the training set. Indeed, the sampling effort was

similar to that of OCSVM. The difference between the classification accuracies yielded

by WSVM and OCSVM was 4.90% ranging from 3.85% to 5.95% at 95% confidence in-

terval. The confidence interval is outside and above the region of indifference without

intersecting it. This provides evidences for the difference between the classifications

at 5% significance level. The difference between the classification accuracies yielded

by BSVM and WSVM was -3.00% ranging from -4.55% to -1.35% at 95% confidence

interval. The confidence interval is outside and bellow the region of indifference with-

out intersecting it, however the difference is smaller to that with OCSVM. Note that

if the region of indifference were increased to [-2%, 2%], the conclusion would not

change, since the interval defining the difference between BSVM and WSVM would

not cross zero, although there would be an overlapping region. The main difference

between BSVM and WSVM is in the way the learning algorithms deal with the negative

class. BSVM penalises all points of the negative class in the same. The WSVM, on the

other hand, particularises the penalisation. This leads WSVM to trust some negative

training data points in the same way as a positive training data point and disregard

some negative points as blunders.

In figure 6.3, Sensitivity and specificity of each method is under analysis. The

dashed line represents the 1:1 line. Thus, any point on the line indicates a method

with equal sensitivity and specificity. However, if a method is localised above the line,

this indicates higher specificity values than sensitivity, which indicates a method that

underestimates the extension of the class of interest. But if a method is bellow the

1:1 line, this indicates a method with higher sensitivity and lower specificity, which

suggests the method is overestimating the extension of the class of interest.

Particular informative is the specificity that quantifies how good each method is dis-

criminating negative data points. SVM, BSVM and WSVM yield specificity accuracies

above 90% while OCSVM yield a respective value roughly 5% lower. This indicates

that OCSVM is committing more pixels of the classes of no interest to the class of

interest, that is the number of false positives in larger in this method. Geometrically

this suggests an over-expansion of the true extension of the class of interest.
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Figure 6.3: Sensitivity and specificity of each method under analysis. The dashed line
represents the 1:1 line.

(a) (b)

Figure 6.4: Two excerpts of (a) the WSVM map and (b) the OCSVM map.

A visual inspection of the outputted maps, in figure 6.4, shows that OCSVM is

overestimating the extension of the the class of interest (). This can be explained by

the fact the one-class classifier does not have access to information of the classification

space outside the class of interest and, thus, this may lead the learning algorithm to

overextend the decision boundary [137], resulting in an overestimation of the positive

class.

Sensitivity values were also high: 90.65% for SVM and OCSVM, 86.24% for BSVM

and 89.72% for WSVM. The high value yield by OCSVM can be explained by the

over-extension of the decision boundary, which is extended enough to accommodate

a large number of positive testing data points. The lower value yield by WSVM and

BSVM, when compared to SVM, can be a consequence of the way the negative data

set was sampled. With training set used by SVM, where all classes present in the

study site were sample, the negative class with well characterised. In other words, all
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regions of the negative classification space are represented in the training set. That

may not happen with the WSVM and BSVM, where this training data was randomly

generated. In other words, some regions of the classification space may have not been

sample and thus the resulted classifier may be committing untrained areas to the class

of interest. Indeed, WSVM and BSVM errors occur mostly in forest and shrub class in

areas spectrally similar to the class of interest, high-mangrove.

6.5 Conclusions

This paper proposes and tests a method that aims to reduce the training sampling effort

in class specific mapping. The motivation for the development of this method comes

from the fact that although one-class classification requires the user to collect only

training data from the class of interest, which represents a great reduction in training

effort, these methods may overestimate the class of interest. Typically if information

about the class of interest and the classes of no interest is available, binary classifiers

tend to achieve higher classification accuracy. However, these methods require the user

to collect training data from classes of no interest. The proposed method combines the

sampling effort required by the one-class classifier with the discrimination capability

of a binary class using a semi-supervised approach with cost-sensitive learning. The

results indicate that although the four methods under analysis achieved high overall

classification accuracy, the one-class classification achieved the lowest classification

accuracy (88.85%) due to the overestimation the extension of the class of interest, and

the proposed method (93.75%) was non-inferior to the binary classification (93.90%)

at 5% level of significance, requiring however less training effort.
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7
Final remarks

The technology associated to remote sensing has evolved considerably giving raise

to a vast group of sensors operating at a wide range of scales, temporal frequencies

and spectral resolutions. Combined with ancillary data, such as past cartography and

a large catalogue of historical remote sensing imagery, the volume of data available

for a given user is vast, accommodating a long list of possible uses and thus user

requirements. With this ever grow number of users, the need of maps that specifically

answer to specific user needs becomes fundamental. This was the starting point of this

dissertation.

In general it was shown that adapting the classification process to the user needs

yields better results when compared with conventional multi-class approach. This im-

provements happens either by an increase in the classification accuracy of the classes

of interest or by minimising the training requirements. In particular, in the first case, a

data set that was utilised to produce an exhaustive land cover map was adapted to the

need of specific class mapping and yielded better results regarding the discrimination

of the classes of interest. In the second and third case, the process was undertaken

from the beginning and only the class of interest was sampled. This represented a

considerable decrease in training requirements without, however, loose classification

accuracy.

For future research, this dissertation presents three possible research lines not

necessarily related with specific class mapping but with the automatic classification of

satellite images.

The first concerns the model selection. Model selection is an important step in

specific class mapping but also in the classification process in general. To find a good

parameterisation is not uncommon for a cross-validation process to train hundreds

of classifiers and once assessed are discarded. Can those classifiers be used instead of
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rejected? One hypothesis is the design of an ensemble with all those classifiers. This

could be profitable in the sense that often errors committed by a particular classifier are

not committed by a similar classifier with a different parameterisation. If this question

is answered, it will save time (because there will be no need for model selection) and

resources (because the user no longer needs to be an expert to correctly fine tune the

classifier).

The second is concerned with a fundamental assumption in automatic classification.

For mathematical purposes, the classification problem is assumed to be inserted in an

infinite space where data points are infinite. In other domains, like fraud detection,

engine anomaly identification, the classification space, that is the set comprehending

all data points that are to be classified, is large enough that is reasonable to assume

infinite. Unlike these domains, in the classification of remotely sensed data for the

purpose of producing land cover maps the classification space finite and well known.

Although images can be large, users’ concerns are with a small region of land, the set

of pixels that need to be classified is small when compared with other domains. With

a ever grow computing power, how can that finitude be leveraged to produce better

land cover maps?

The third is concerned with the training data. More work could be done to under-

stand the important factors and characteristics that make a data set a good training

set. The idea is not new, and literature provides some works investigating this issue.

However, it has apparently been forgotten. Thus, exploring what makes a data set a

good training set is perhaps the most important of these three suggestions for future

research.

This dissertation ends with two recommendations or observations about the auto-

matic classification of remotely sensed data with the aim of producing a land cover

map. These recommendations are the outcome of not only a comprehensive analysis of

the literature but above all of the author’s experience in the production of land cover

maps by automatic means.

The first point concerns the importance that is typically attributed to the classifier.

The classifier is only one component in the mapping process and is often regarded

as the reason a particular map is good or bad. The classifier itself is no more impor-

tant than any other step in the mapping process. There are a multitude of different

approaches to supervised classifier, each one with its own particularities and, one

can assume fairly certain that there is no such thing as the ultimate best learning al-

gorithm. Indeed, the same learning algorithm will render different classifier under

different conditions (training data, parameterisation, etc). For the spotlight to move

to the learning algorithm, other components of the classification process are often

forgotten. For example, the pre-processing phase (feature reduction, scaling, etc) and

model selection are often omitted and their effects are regarded inconsequential. Thus

this recommendation focus on the importance of the process; all steps are relevant and

are equally contributors to the final outcome.
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The second point concerns the disassociation of the classification process from the

data domain. The classification itself is pointless if it is not incorporate in an applica-

tional domain. In the present case that domain is the classification of remotely sensed

data to produce a land cover maps. More time could/must be put on the character-

isation of the problem itself. Effectively, it is fundamental to perform a comprehen-

sive analysis of the landscape of the region of interest and select the most adequate

land cover nomenclature to represent them and understand the limits of what can

be extracted from the data: it is impossible to discriminate beyond the geometrical

resolution provided by the imagery and it is very difficult to discriminate extremely

similar classes. In other words, one must be reasonable and not expect to automati-

cally distinguish between land cover classes that are not separable within the spatial,

spectral and temporal resolutions provided by the data set. In other words, one must

recognise that classification process depends on numerous factors that do not depend

only on the classifier.

To end this document is important to highlight that this dissertation was never

intended to be an ending point. Numerous research directions were always possible

during the course of this investigation and some are still open. Which branch to follow?

was the most difficult question that had to be answered in this research. There are

unopened doors and unturned stones throughout this investigation which indicates

that this inquiry is not the end but only a starting point for new lines of inquiry.
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