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Strategic Asset Allocation in Brazil 

 

Abstract 

We study the impact of asset returns’ predictability on optimal portfolio allocation, 

considering investors concerned with a steady flow of long-term consumption. Relying on a 

monthly database for 2006-2016, the analysis focuses on the Brazilian context covering 

returns on (1) a real short-term asset, (2) a long-term asset, (3) a Brazilian stock index, and 

five other state variables. Predictability of long-term assets returns has a significant impact on 

their overall optimal demand. In addition, by using the S&P500 index we show that foreign 

stocks are more predictable than the Brazilian index for moderately conservative investors. 
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1 Introduction 

Harry Markowitz (1952) pioneered the analysis of quantitative finance with the 

unprecedented article Portfolio Selection. In his work, the author shows the importance of the 

process of asset allocation through portfolio diversification. The mean-variance analysis of 

Markowitz, despite having proved to be a robust tool in the process of asset allocation and be 

widely used, has shown some inconsistencies with long-term asset allocation. This theory is 

based on the assumption that investors are only concerned with the wealth distribution a 

period ahead. Thus, the model is static and does not capture the investor’s concern to maintain 

a flow of long-term consumption provided by its wealth. 

Markowitz’s model should be extended in order to take into consideration the long-

term allocation process, namely the investors’ need to reduce the risk of having their 

consumption affected over time. Paul Samuelson (1969) and Robert Merton (1969, 1971) 

started developing that line of research in the context of multi-period models. Because they do 

not present closed form solution, very complex numerical methods are necessary, which, for a 

long time, made the use of these models unviable. The computational revolution in the 1990s, 

alongside with the recent developments in numerical methods, made the implementation of 

multi-period models more appealing in the recent past. 

Solutions of multi-period asset allocation models may differ significantly from those 

presented by static models, as summarized in Campbell and Viceira (2002). Particularly, 

when investment opportunities are not constant over time, long-term investors are concerned 

both with shocks to these opportunities and with shocks to their own wealth. In order to hedge 

this exposure, long-term investors should seek an intertemporal demand for protection in 

financial assets. This demand for protection is related to the agents’ degree of risk aversion. 

Investors with relative risk aversion equal to one allocate their wealth purely myopically, not 

caring about shocks to investment opportunities. As the degree of risk aversion increases, 
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agents seek for assets that increase in value in case of deterioration in investment 

opportunities. These assets behave as insurance against the risks of falling returns on wealth. 

Investment opportunities are not constant over time. Campbell (1999), Fama and 

French (1989), among others, provide empirical evidence supporting that. The real rate of 

short-term interest has changed over time, but, at the same time, the excess returns on stocks 

and bonds also show some predictability in their dynamics. The most important aspect in 

these findings is the mean reversion tendency of stocks in the long-run. This feature reflects 

the different perception of risk that short and long-term investors have. 

In order to meet the long-term analysis using the mean-variance model, one could 

calculate long-run variances and apply them in the static model. However, such a solution 

would only serve investors who are only concerned with the average and volatility of their 

wealth in a single period of time. And yet, this investor would be limited to making a single 

allocation for that period, without the opportunity for rebalancing it over time. 

 Hereupon, this article replicates the dynamic model proposed by Campbell, Viceira, 

and Chan (2003). In particular, we study how the predictability and persistence of some 

selected Brazilian assets’ returns affect the long-term wealth distribution of an investor who 

values a constant stream of consumption, and considers, in his decision, the variability of 

investment opportunities over time. 

2 The Model 

2.1 Securities 

The model assumes that n securities are available to invest, and investors can 

distribute their wealth, after consumption, among them. 𝑅",$%& is the real portfolio return, 𝛼(,$ 

is the portfolio weight on asset 𝑖, and 𝑅&,$%& is the benchmark real return. We use a real short-

term asset return as a benchmark and, then, calculate excess returns by using it. Though, the 

benchmark real return is not a risk-free asset. 
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𝑅",$%& = 𝛼(,$ 𝑅(,$%& − 𝑅&,$%& + 𝑅&,$%&

-

(./

. (1) 

2.2 State variables dynamics 

Following Campbell et al. (2003), we assume a first-order vector autoregressive 

process VAR(1) to capture the dynamics of the relevant state variables1. Hereby, the vector of 

log excess returns, 𝒙𝒕%𝟏, is defined in the following way: 

 

𝒙𝒕%𝟏 ≡

𝑟/,$%& − 𝑟&,$%&
𝑟6,$%& − 𝑟&,$%&

⋮
𝑟-,$%& − 𝑟&,$%&

, (2) 

where 𝑟(,$%& ≡ log	(𝑅(,$%&). In this article, 𝑟&,$%& is the real short-term return, 𝑟/,$%& is the real 

return on nominal bonds, or long-term assets, and 𝑟6,$%& is the real stock index return. The 

system is going to include three other state variables, 𝑠$%&. Placing 𝑟&,$%&, 𝑥$%&, and 𝑠$%& 

together, we get a 𝑚×1 vector, the state vector: 

 
𝒛𝒕%𝟏 ≡

𝑟&,$%&
𝑥$%&
𝑠$%&

. (3) 

The first-order vector autoregressive system is equated in the following matrix form: 

 𝒛𝒕%𝟏 = 𝚽𝟎 + 𝚽𝟏𝑧$ + 𝒗𝒕%𝟏, (4) 

 𝒗𝒕%𝟏~𝑁(0, ΣL), 

(5)  
𝚺𝐯 ≡ 𝑉𝑎𝑟$ 𝒗𝒕%𝟏 =

𝜎&/ 𝝈𝟏𝒙S 𝝈𝟏𝒔S

𝝈𝟏𝒙 𝚺𝒙𝒙 𝚺𝒙𝒔S
𝝈𝟏𝒔 𝚺𝒙𝒔 𝚺𝒔𝒔

, 

where, 𝚽𝟎 is the 𝑚×1 matrix of interceps, 𝚽𝟏 is the 𝑚×𝑚 slope coefficients matrix, and  

𝒗𝒕%𝟏 represents the shocks to the state variables. These shocks are independent and identically 

distributed (i.i.d.). Consequently, they can be cross-sectionally correlated, although they are 

homoscedastic and independently distributed over time. By using a VAR system, we can 

                                                
1 Authors such as Kandel and Stambaugh (1987), Campbell (1991, 1996), Hodrick (1992), and Barberis (2000) 
have been using this kind of dynamic specification. 
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analyse the dependence of expected asset returns on their previous values, even as on other 

variables that show to be good predictors. 

Assuming these shocks are homoscedastic, it does not allow the state variables to 

predict changes in risk. Portfolio choice is only affected by their predictive power in expected 

returns. However, in the late 1980’s and early 1990’s some authors2 have studied the 

capability of the state variables in predicting risk, and found out that these variables had little 

power in predicting risk. The state variables had bigger effects in predicting expected returns, 

dominating the former effect. 

2.3 Preferences 

Here, the investor is going to be assumed of having recursive Epstein-Zin (1989, 1991) 

preferences. The convenience this model of utility holds is held by its characteristic that 

allows to separate the definition of relative risk aversion from elasticity of intertemporal 

substitution. They are not necessarily the inverse of each other anymore, like in the older 

power utility model, 𝛾 ≠ 𝜓X&. Then, the utility function is expressed below: 

 

𝑈 𝐶$, 𝐸$ 𝑈$%& = 1 − 𝛿 𝐶$
&X]
^ + 𝛿 𝐸$ 𝑈$%&

&X]
&
^

^
&X]

, (6) 

where 𝐶$ represents consumption at time 𝑡, 𝛾 holds for relative risk aversion, 𝜓 is the 

elasticity of intertemporal substitution, 𝛿 is the time discount factor, 𝜃 is equal to (&X])
(&Xabc)

, and 

𝐸$(∙) is the conditional expectation operator. 

At time 𝑡, agents use all relevant information in order to make an optimal 

consumption and portfolio allocation over time. The investor is constrained to an 

intertemporal budget constraint: 

 𝑊$%& = 𝑊$ − 𝐶$ 𝑅",$%&, (7) 

                                                
2 Campbell (1987), Harvey (1989, 1991), and Glostene, Jagannathan, and Runkle (1993). 



 7 

where 𝑊$ is wealth at time 𝑡. The Euler equation for consumption, subject to the 

intertemporal budget constraint, derived by Epstein and Zin (1989 and 1991) is expressed by: 

 

𝐸$ 𝛿
𝐶$%&
𝐶$

X&a
^

𝑅",$%&
X &X^ 𝑅(,$%& = 1. (8) 

This equation is set for an asset 𝑖, and also for the portfolio. Consumption and portfolio 

decisions of investors must satisfy this Euler equation (8). When investment opportunities do 

not vary over time, the equilibrium decision should be a constant consumption-wealth ratio, 

and investors optimize their portfolios myopically. The allocation decision is made as if the 

investment horizon is only one period ahead. However, when investment opportunities vary 

over time, there are no exact analytical solutions to this equation, except for certain values of 

𝛾 and 𝜓. Giovannini and Weil (1989) showed that, with 𝛾 = 1, the investor should follow a 

myopic rule, and that he chooses a constant ratio of consumption-wealth equal to (1 − 𝛿) 

when 𝜓 = 1. Though, when 𝛾 = 1, a choice for consumption relative to wealth is not 

constant, unless 𝜓 = 1, and likewise, with 𝜓 = 1, the optimal allocation is not myopic, unless 

𝛾 = 1. This is the case of the log utility investor, 𝛾 = 𝜓 = 1. 

3 Methodology of the solution 

3.1 An approximation 

In this framework, we are going to use log returns. Campbell and Viceira (1999, 2001) 

got to the following expression of log portfolio returns3, accurate for continuous time: 

 𝑟",$%& = 𝑟&,$%& + 𝜶𝒕S𝒙𝒕%𝟏 +
1
2
𝜶𝒕S 𝝈𝒙𝟐 − 𝚺𝒙𝒙𝜶𝒕 . (9) 

The vector 𝝈𝒙𝟐 ≡ 𝑑𝑖𝑎𝑔(𝚺𝒙𝒙) contains the variances of excess returns. 

The budget constraint in (7) is not linear. According to Campbell (1993, 1996), log-

linearization around the unconditional mean of the log consumption-wealth ratio obtains 

                                                
3 See Appendix A of Campbell et al. (2003) to look at the derivation of log portfolio returns. 
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 Δ𝑤$%& ≈ 𝑟",$%& + 1 −
1
𝜌

𝑐$ − 𝑤$ + 𝑘, (10) 

where Δwr%& is the difference between 𝑤$%& and 𝑤$, 𝜌 ≡ 1 − exp	(𝐸 𝑐$ − 𝑤$ ) and 𝑘 ≡

log 𝜌 + 1 − 𝜌 log (&Xv)
v

.  As consumption is optimally chosen by the investor, 𝜌 depends 

on the optimal level of 𝑐$ relative to 𝑤$, and, thus, is endogenous. This form of budget 

constraint is exact if the elasticity of intertemporal substitution is equal to one and, in this 

case, 𝑐$ − 𝑤$ is a constant equal to (1 − 𝛿). 

By applying a second-order Taylor expansion to the Euler equation (8) around the 

conditional means of Δ𝑐$%&, 𝑟",$%& and 𝑟(,$%&, one obtains a loglinearized Euler equation that 

becomes exact if consumption and return on assets have lognormal joint distribution (𝜓 = 1). 

Hence, we get to a transformed log linearized Euler equation as follows: 

 Er 𝑟(,$%& − 𝑟&,$%& + &
/
𝑉𝑎𝑟$(𝑟(,$%& − 𝑟&,$%&) =

^
a
𝜎(,xXy,$ − 𝜎&,xXy,$ + 𝛾 𝜎(,",$ − 𝜎&,",$ − (𝜎(,&,$ − 𝜎&,&,$), (11) 

where, 

 𝜎(,xXy,$ = 𝐶𝑜𝑣 𝑟(,$%&, 𝑐$%& − 𝑤$%& , 𝜎&,xXy,$ = 𝐶𝑜𝑣 𝑟&,$%&, 𝑐$%& − 𝑤$%& , 𝜎(,",$ = 𝐶𝑜𝑣 𝑟(,$%&, 𝑟",$%& ,	 

𝜎&,",$ = 𝐶𝑜𝑣 𝑟&,$%&, 𝑟",$%& , 𝜎(,&,$ = 𝐶𝑜𝑣 𝑟(,$%&, 𝑟&,$%& , 𝑎𝑛𝑑	𝜎&,&,$ = 𝑉𝑎𝑟 𝑟&,$%& . 

Left-hand part of the equation (11) is the risk premium on asset 𝑖 over asset 1, adjusted for 

Jensen’s Inequality by adding half of the excess return variance. This equation relates the risk 

premium of asset 𝑖 to its excess of covariance with consumption growth, to its excess of 

covariance with the return on the portfolio, and to the covariance of its excess return with the 

return on asset 1 (the last term is eliminated from the equation when asset 1 presents no risk). 

Since consumption growth and portfolio return are endogenous, this equation is a first-order 

condition that describes the optimal solution and not a solution on its own. 

3.2 Solving the approximate model 

In order to solve the model, Campbell and Viceira (2002) assume that the optimal rule 

for consumption and portfolio are presented as follows: 
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 𝛂r = 𝑨� + 𝑨&𝒛$, (12) 

 cr − 𝑤$ = 𝑏� + 𝐁&S 𝒛$ + 𝒛$S𝑩/𝒛$. (13) 

The optimal rule for the portfolio is thus linear in the VAR state vector, however the optimal 

rule for consumption is quadratic. 𝑨𝟎	(𝑛 − 1)×1, 𝑨𝟏	(𝑛 − 1)×𝑚, 𝑏𝟎	1×1, 𝑩𝟏	𝑚×1, and 

𝑩𝟐	𝑚×𝑚 are matrices of constant coefficients to be determined. This is the generalization of 

the solution obtained by Campbell and Viceira (1999) for the multivariate case. It is 

noteworthy that only 𝑚 + ��X�
/

 elements of 𝑩/ are to be determined. 

In order to validate equations (12) and (13) and obtain the solution of the parameters, 

the conditional moments appearing in (11) are written as functions of the VAR parameters 

and the unknown parameters of (12) and (13). Next, we solve this resulting equation for the 

parameters that satisfy (11). Consequently, the conditional expectation of equality (11) is: 

 Er 𝒙$%& +
1
2
𝑉𝑎𝑟$ 𝒙𝒕%𝟏 = 𝑯𝒙𝚽𝟎 + 𝑯𝒙𝚽𝟏𝒛𝒕 +

1
2
𝝈𝒙𝟐. 4 (14) 

Campbell et al. (2003) show that the three conditional moments on the right-hand side 

of equation (11) can be written as linear functions of the state variables: 

 𝝈xXy,$ − 𝜎&,xXy,$𝒍 ≡ 𝜎(,xXy,$ − 𝜎&,xXy,$ (./,…,-
= 𝚲𝟎 + 𝚲𝟏𝒛𝒕	, (15) 

 𝝈",$ − 𝜎&,",$𝒍 ≡ 𝜎(,",$ − 𝜎&,",$ (./,…,-
= 𝚺𝒙𝒙𝜶𝒕 + 𝝈𝟏𝒙, (16) 

 𝝈&,$ − 𝜎&,&,$𝒍 ≡ 𝜎(,&,$ − 𝜎&,&,$ (./,…,-
= 𝝈𝟏𝒙, (17) 

where 𝒍 is a vector of ones. 

3.3 Optimal Portfolio Choice 

After the log linearized Euler equation (11) being solved for the optimal portfolio rule: 

 𝜶𝒕 =
1
𝛾
𝚺𝒙𝒙X𝟏 𝐸$ 𝑥$%& +

1
2
𝑉𝑎𝑟$ 𝑥$%& + (1 − 𝛾)𝝈𝟏𝒙 +

1
𝛾
𝚺𝒙𝒙X𝟏 −

𝜃
𝜓
(𝝈xXy,$ − 𝜎&,xXy,$𝒍) . (18) 

𝐸$ 𝑥$%& + &
/
𝑉𝑎𝑟$ 𝑥$%&  and (𝝈xXy,$ − 𝜎&,xXy,$𝒍) are linear functions of 𝒛𝒕 in (14) and (15), 

respectively. The optimal portfolio choice is expressed as the sum of two components. 

                                                
4 𝑯𝒙 is a selection matrix that captures the excess vector of returns of the state vector 𝒛𝒕. 
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The first term on the right of (18) is the myopic component. When the benchmark 

asset is considered not risky (𝝈𝟏𝒙 = 0), the myopic allocation is ruled essentially by the 

Sharpe ratio (SR) of the risky assets: the vector of expected excess returns is adjusted by the 

inverse of the variance-covariance matrix of returns on risky assets and the inverse of the 

relative risk aversion coefficient. If asset 1 is risky, investors with 𝛾 ≠ 1 adjust their 

allocation by a term (1 − 𝛾)𝝈𝟏𝒙. This component does not depend on 𝜓. 

The second term on the right of (18) represents the demand for protection. In this 

model, investment opportunities vary over time because the expected returns of the assets 

depend on the state variables. An investor who is more risk averse than a log utility investor, 

will seek protection against adverse changes in investment opportunities (Merton 1969, 

1971). He will optimize his portfolio by having strategic positions in some assets. A 

logarithmic investor optimizes his allocation purely myopically, having no hedging demand. 

If	𝛾 = 1, then 𝜃 = 0, therefore, the protection component disappears. Yet, when investment 

opportunities are constant, the demand for protection is zero for every level of risk aversion, 

corresponding to a VAR model with just a constant term. 

By replacing (14) and (15) into (18): 

 𝛂𝐭 ≡ 𝑨𝟎 + 𝑨𝟏𝒛𝒕, (19) 

where, 

 𝑨𝟎 =
1
𝛾
𝚺𝒙𝒙X𝟏 𝑯𝒙𝚽𝟎 +

1
2
𝝈𝒙𝟐 + 1 − 𝛾 𝝈𝟏𝒙 + 1 −

1
𝛾
𝚺𝒙𝒙X𝟏

−𝚲𝟎
1 − 𝜓

, (20) 

 𝑨𝟏 =
1
𝛾
𝚺𝒙𝒙X𝟏𝑯𝒙𝚽𝟏 + 1 −

1
𝛾
𝚺𝒙𝒙X𝟏

−𝚲𝟏
1 − 𝜓

. (21) 

Equation (19) confirms the initial assumption made by Campbell et al. (2003) for the initial 

guessing of the optimal portfolio rule. Coefficients matrices 𝑨𝟎 and 𝑨𝟏 show as functions of 

the parameters that describe preferences and the dynamics of the state variables, as well as of 

the consumption-wealth ratio parameters, 𝑩& and 𝑩/, through 𝚲� and 𝚲&. It is important to 
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note that the terms 1 − &
]

 in equations (20) and (21) picture the effect of intertemporal 

protection on optimal portfolio choice. Therefore, the demand for intertemporal protection 

affects the average allocation of the portfolio through 𝑨𝟎 and 𝑨𝟏, and the sensitivity of the 

optimal allocation to variations in the state variables through 𝑨𝟏. 

Campbell et al. (2003) show that given 𝜌, the coefficient matrices X𝚲𝟎
&Xa

  and X𝚲𝟏
&Xa

 

are independent of the intertemporal elasticity of substitution 𝜓. Hence, the optimal portfolio 

rule is independent for any 𝜓 given 𝜌.  𝜓 only affects portfolio choice as it defines 𝜌. 

4 Empirical Application 

Previous section presented the academical background of strategic asset allocation. 

Here, such a set-up is used to assess how investors, who differ in their preferences for 

consumption and risk aversion, distribute their portfolio among the available assets provided 

by the model: a real short-term asset (STA), a long-term asset (LTA), and a stock. The VAR 

system describes the dynamics of investment opportunities using a real short-term asset 

return, an excess-return of a stock-market index, an excess-return of a long-term asset, and 

other state variables that help to forecast these excess-returns. Optimal allocation of the 

portfolio is computed for different levels risk-aversion 𝛾. Assuming that 𝜓 = 1, 𝑐$ − 𝑤$ =

1 − 𝛿5, and 𝛿 = 0,956 in annual terms, implies that the parameter 𝜌 = 𝛿7. 

4.1 Data Description 

For the purpose of this study, log returns of portfolio assets, and other state variables 

are necessary. Our sample covers January 2006 to December 2016, using monthly frequency. 

In order to construct monthly log returns of the real short-term asset (STA), we obtained the 

                                                
5 When 𝜓 = 1, Campbell et al. (2003) show that consumption-wealth ratio equals 1 − 𝛿. 
6 This value, 0,95, is obtained by 𝛿 = 𝑒X��, where 𝑠𝑟 is the mean average of the CDI rate of return for the 
considered period. We get the same value for 𝛿 when we consider the IDkA Pre 3M return instead. 
7 The numerical procedure used to compute the optimal allocation of assets is described in detail in Appendix B 
of Campbell, et al. (2003). 
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accumulated monthly nominal return over the CDI rate, which is a daily average of the 

overnight interbank loans in Brazil, adjusted by inflation – 𝑟x�(. For the monthly log excess-

return of stock-market index (Stock), we gathered monthly nominal returns over the Ibovespa 

index 𝑟(���, monthly nominal returns over the IbrX index 𝑟(���, and monthly nominal returns 

over the S&P 500 index plus the exchange-rate returns between the U.S. Dollar and the 

Brazilian Real 𝑟�"� (SPXBRL). Monthly log excess returns of the long-term asset (LTA) were 

constructed using monthly nominal returns of a set of indexes that measure the behaviour of 

synthetic portfolios of Brazilian federal securities with constant term8: IDkA Pre 3M, 𝑟6� 

(three months), IDkA Pre 1A, 𝑟&� (one year), IDkA Pre 2A, 𝑟/� (two years), IDkA Pre 3A, 

𝑟6� (three years), IDkA Pre 5A, 𝑟�� (five years), IDkA IPCA 2A, 𝑟("x�/� (two years), IDkA 

IPCA 3A,	𝑟("x�6� (three years), IDkA IPCA 5A, 𝑟("x��� (five years). The 3 last indexes can be 

analysed as inflation-indexed bonds. Note that IDkA Pre 3M, 𝑟6�, is also used as an 

alternative for the monthly log returns of the real short-term asset. Subsequently, the 12-

month accumulated Ibovespa dividend-yield, 𝑠�X", the yield-spread between the IDkA Pre 

5A and the IDkA Pre 3M, 𝑠�"����, the nominal return over the CDI,	𝑠�x�(, the nominal return 

over the IDkA Pre 3M,	𝑠�6�,  the Emerging Markets Bond Index9 (EMBI +), 𝑠���(, and, 

finally, the 12-month accumulated return over the Brazilian Institute of Geography and 

Statistics’ (IBGE) price index (IPCA-IBGE), 𝑠("x�, were the state variables chosen to predict 

the returns10. All the variables adjusted by inflation used IPCA-IBGE. 

In the next sections, we use combinations of these log returns and state variables. 

                                                
8 Since January 2006, these indexes are constructed by the Brazilian Association of Financial and Capital 
Markets (ANBIMA). 
9 The EMBI + is an index, created by JPMorgan, based on debt securities issued by emerging countries. It shows 
the financial returns obtained each day by a selected portfolio of securities from these countries. The unit of 
measure is the base point. Ten basis points are equivalent to one-tenth of 1%. Points show the difference 
between the rate of return of emerging-market securities and that offered by securities issued by the US 
Treasury. This difference is the spread, or the sovereign spread, which is also known by risk of Brazil. 
10 𝑠�X", 𝑠�"����, and 	𝑠� are variables that have been identified as good return predictors by authors such as, 
respectively, Fama and Schwert (1977), Campbell (1987), and Glosten et al. (1993). Moreover, 𝑠���(, and 
𝑠("x�have been identified as good return predictors by previous Brazilian empirical research. 
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4.2 Sample Analysis 

Table 1.1 and Table 1.2 show the first and second moments for the historical series of 

the variables introduced before. In Table 1.1, stock returns and LTA returns are in the excess 

form over the CDI return. These same returns, in Table 1.2, are in the excess form over the 

IDkA Pre 3M return. Sample statistics are in percentage and in monthly frequency. Log mean 

excess-returns are adjusted by half of the variance to accommodate for Jensen’s inequality. In 

both tables, LTA have the highest log mean excess-return and the lowest volatility, therefore, 

they also hold the highest Sharpe ratios, contrary to Campbell, et al. (2003) where stocks had 

the highest Sharpe ratio. 

Table 1.1 – Sample Statistics (Excess returns over CDI return) 

 

CDI Ibovespa Ibrx SPXBRL IDkA 
Pre 1A 

IDkA 
Pre 2A 

IDkA 
Pre 3A 

IDkA 
Pre 5A 

Mean 0,416% -0,231% -0,060% -0,099% 0,093% 0,168% 0,213% 0,301% 

SD 0,342% 6,612% 6,317% 4,543% 0,406% 1,092% 1,849% 3,410% 

Sharpe Ratio - -0,035 -0,009 -0,022 0,230 0,154 0,115 0,088 

 

IDkA 
IPCA 2A 

IDkA 
IPCA 3A 

IDkA 
IPCA 5A EMBI + IPCA SPREAD DIV YIELD_CDI 

Mean 0,217% 0,242% 0,259% 2,498% 0,480% 0,772% 3,590% 0,895% 

SD 0,830% 1,217% 1,886% 0,819% 0,270% 3,398% 0,690% 0,186% 

Sharpe Ratio 0,261 0,199 0,137 - - - - - 

 
Table 1.2 – Sample Statistics (Excess returns over IDkA Pre 3M return)  

 

IdkA Pre 
3M Ibovespa Ibrx SPXBRL IDkA Pre 

1A 
IDkA 

Pre 2A 
IDkA 

Pre 3A 
IDkA 

Pre 5A 
Mean 0,429% -0,244% -0,073% -0,112% 0,081% 0,155% 0,200% 0,288% 

SD 0,354% 6,611% 6,314% 4,545% 0,372% 1,067% 1,827% 3,391% 

Sharpe Ratio - -0,037 -0,011 -0,025 0,216 0,145 0,109 0,085 

 
IDkA 

IPCA 2A 
IDkA 

IPCA 3A 
IDkA IPCA 

3A EMBI + IPCA SPREAD DIV YIELD_3M 

Mean 0,204% 0,229% 0,246% 2,498% 0,480% 0,772% 3,590% 0,908% 

SD 0,802% 1,190% 1,864% 0,819% 0,270% 3,398% 0,690% 0,203% 

Sharpe Ratio 0,254 0,192 0,132 - - - - - 

 

It is worth noting that both of the previous tables have a negative log mean excess-

return for stocks (Ibovespa, IbrX, and S&P 500). They have also the highest volatility. 

Table 2 contains mean nominal returns for CDI, IdkA Pre 3M, Ibovespa, SPXBRL, 

IDkA Pre 1A, IDkA Pre 2A and IDkA IPCA 2A, which are the assets considered in the 
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subsequent exercises. These returns are not in the log form, therefore, they were not corrected 

by half the variance. They are also not presented in the excess-return form. 

Table 2 – Nominal Returns 

 

CDI IDkA 
Pre 3M Ibov Ibrx SPXBRL IDkA 

Pre 1A 
IDkA 

Pre 2A 
IDkA 

IPCA 2A 
Mean 0,899% 0,912% 0,663% 0,836% 0,798% 0,994% 1,069% 1,118% 

SD 0,188% 0,205% 6,555% 6,253% 4,549% 0,474% 1,142% 0,871% 

Sharpe Ratio - - 0,101 0,134 0,175 2,097 0,936 1,284 

 

Once again, it can be seen that Ibovespa shows to be the worst investment, ex-post. 

This is clear when we analyse Figure 1. This graph shows the result of an investment of 

R$100,00 in the beginning of January 2006 in each of the following eight assets: CDI, IDkA 

Pre 3M, Ibovespa, Ibrx, SPXBRL, IDkA Pre 1A, IDkA Pre 2A, and IDkA IPCA 2A. 

 

Figure 1 

In December 2016 the CDI strategy results in R$325,95, the IDkA Pre 3M strategy results in 

R$331.49, the Ibovespa strategy results in R$180,02, the Ibrx strategy results in R$231,53, 

and, even taking into account the exchange rate risk, the S&P500 strategy yields R$249,58, 

exceeding both Brazilian stock-market indexes.  All three assets that follow outperformed 

STA and stocks: IDkA Pre 1A, IDkA Pre 2A, and IDkA IPCA 2A. In December 2016, the 

IDkA Pre 1A strategy results in R$368,34, the IDkA Pre 2A strategy results in R$403,61, the 

IDkA IPCA 2A strategy results in R$432,02. 
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4.3 VAR Estimation 

There were made 391 combinations containing a real short-term asset, a long-term 

asset and a stock (Brazilian stock or foreign stock), and three other state variables by using 

the data presented in Section 4.1. Afterwards, for the purpose of this analysis, we selected 

four types of combinations: one that includes a long-term asset and a Brazilian stock-market 

index; a Brazilian stock-market index and a foreign equity index; a long-term inflation-

indexed asset and a Brazilian stock-market index; and, finally, a combination that contains a 

long-term asset, a Brazilian stock-market index, and the same state variables used by 

Campbell et al. (2003), which are the 12-month accumulated dividend yield, the spread 

between a long-term asset and a short-term asset, and the benchmark nominal return. The 

selection process consisted in selecting the combinations with more statistical significant 

coefficients and highest excess-returns’ R-squared in their VAR estimations. They are going 

to be named combination 1, combination 2, combination 3 and combination 4, respectively.  

Tables 3 and 4 display the estimated VAR parameters and the covariance structure of 

unexpected returns, respectively. Tables 3 exhibit the estimated coefficients of the VAR 

setting, as well as their t-statistics, in parentheses, and the R-squared statistics. Tables 4 show, 

in the main diagonal, the standard deviations of the unexpected returns multiplied by 100, and 

the upper-diagonal elements are the cross-correlation coefficients of unexpected returns. 

4.3.1 VAR Estimation – Combination 1 

In this combination, it was used the CDI real return as a real short-term variable, the 

IDkA Pre 1A excess return over CDI as a LTA, the Ibovespa excess-return over CDI as a 

stock-market index, and three other state variables: the 12-month accumulated dividend yield, 

the EMBI + spread, and the CDI nominal return. This is the first-type combination with more 

statistical significant variables and highest LTA and stock R-squared. 
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 In Table 3.1, the second column presents the equation of the real short-term asset, 

where the only variable that explains its future returns is its one-year lagged returns11. 

Third column of Table 3.1 shows the equation of the LTA, 𝑟&�,$%&. Lagged LTA 

returns are not statistically significant in predicting its future returns. The EMBI + spread has 

a coefficient with t-statistics greater than 2, being the only variable with predictive power in 

this equation. 

Table 3.1 – VAR Parameters 
 𝑟x�(,$%& 𝑟&�,$%& 𝑟(���,$%& 𝑠�X",$%& 𝑠���(,$%& 𝑠�x�(,$%& 

(real) (excess) (excess)    
(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) 

𝒓𝒄𝒅𝒊,𝒕 0,629 0,246 3,164 -0,050 -0,089 -0,022 
 (7,949) (1,806) (1,412) -(0,504) -(0,830) -(0,667) 

𝒓𝟏𝒚,𝒕 0,016 0,095 0,008 -0,001 0,008 -0,013 
 (0,309) (1,061) (0,005) -(0,021) (0,110) -(0,619) 
𝒓𝒊𝒃𝒐𝒗,𝒕 -0,005 -0,007 0,198 -0,009 -0,012 0,000 

 -(1,688) -(1,266) (2,179) -(2,203) -(2,741) -(0,269) 
𝒔𝒅X𝒑,𝒕 -0,059 0,048 0,691 0,889 -0,029 -0,028 

 -(1,709) (0,816) (0,709) (20,445) -(0,619) -(1,992) 
𝒔𝒆𝒎𝒃𝒊,𝒕 0,001 0,107 1,824 -0,026 0,889 0,024 

 (0,033) (2,027) (2,093) -(0,669) (21,268) (1,867) 
𝒔𝒚𝒄𝒅𝒊,𝒕 0,225 -0,105 -6,733 -0,085 0,339 0,793 

 (1,390) -(0,377) -(1,469) -(0,413) (1,543) (11,814) 
Constant 0,002 -0,004 -0,028 0,005 0,001 0,002 
 (0,924) -(1,268) -(0,579) (2,565) (0,485) (3,350) 
R-squared 0,579 0,124 0,085 0,837 0,867 0,744 

Table 4.1 – Covariance Structure of Unexpected Returns 

 𝑟x�( 𝑟&� 𝑟(��� 𝑟�X" 𝑟���( 𝑟�x�( 

𝑟x�( 0,227 0,023 0,012 -0,100 -0,088 0,498 

𝑟&� - 0,391 0,159 0,035 -0,272 -0,066 

𝑟(��� - - 6,433 -0,740 -0,693 -0,223 

𝑟�X" - - - 0,287 0,536 0,123 

𝑟���( - - - - 0,309 0,122 

𝑟�x�( - - - - - 0,094 

Fourth column of Table 3.1 presents the log equation of the Ibovespa excess-return 

over the CDI. The remark addressed by Campbell et al. (2003) is also valid here: stock’s 

excess-returns are difficult to predict – this equation has the lowest R-squared, 0,085. Only 

lagged stock returns and lagged risk of Brazil spread have predictive power. 

                                                
11 As a rule of thumb, a coefficient is significant if its t-statistic’s absolute value is greater than 2. 
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Among these two excess-returns’ equations the one that has the highest R-squared is 

the one of the LTA. Although, the number of variables that help to predict these asset returns 

is higher in the Ibovespa equation, with two statistically significant variables. The first two 

equations have only one statistically significant variable each. 

Last three columns show the results of the estimated parameters for the state variables 

equations. Each of these three equations is well described by an AR (1) process. Their own 

lagged coefficients are positive and close to one, thus, presenting a dynamic persistence. The 

third state variable, CDI nominal return, has the lowest coefficient, 0,793. 

Table 4.1 shows the covariance structure of the VAR system innovations. Unexpected 

returns of Ibovespa are negatively correlated with shocks to its 12-month accumulated 

dividend yield. This is in line with what was found in previous empirical research promoted 

by authors such as Campbell (1991), Campbell and Viceira (1999), and Stambaugh (1999). 

Shocks to Ibovespa returns are also negatively correlated with shocks to the EMBI + spread 

state variable, and with shocks to the CDI nominal returns. Finally, LTA unexpected returns 

are negatively correlated with shocks to the EMBI + spread. 

4.3.2 VAR Estimation – Combination 2 

 Combination 2 differs from combination 1 in the real short-term asset and in the long-

term asset. They are substituted, respectively, by the log return of the IDkA Pre 3M and by 

the log excess-return of the S&P 500 over IDkA Pre 3M return. 

The second column of Table 3.2 presents the log equation of the foreign stock asset. 

Its one-period lag and Brazilian stock’s one-period lag are the only coefficients statistically 

significant in predicting real short-term asset’s returns.  

Log equation of the foreign stock has only the 12-month accumulated dividend yield 

coefficient statistically significant in predicting its returns. Its R-squared is the highest among 

the excess-returns’ equations. Only the one-period lagged Ibovespa’s coefficient of 
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Ibovespa’s equation is statistically significant to predict its future returns. Among these 

excess-returns, the one with highest R-squared is the real foreign stock. 

Table 4.2 – VAR Parameters 

 𝑟6�,$%& 𝑟�"�,$%& 𝑟(���,$%& 𝑠�X",$%& 𝑠���(,$%& 𝑠�6�,$%& 

(real) (excess) (excess)    

(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) 

𝒓𝟑𝒎,𝒕 0,649 1,584 2,956 -0,050 -0,092 0,007 

 (7,905) (1,058) (1,335) -(0,505) -(0,864) (0,182) 

𝒓𝒔𝒑𝒙,𝒕 -0,006 -0,132 -0,031 0,001 -0,005 -0,001 

 -(1,219) -(1,507) -(0,238) (0,228) -(0,785) -(0,627) 

𝒓𝒊𝒃𝒐𝒗,𝒕 -0,007 0,052 0,203 -0,009 -0,012 -0,003 

 -(2,051) (0,870) (2,310) -(2,248) -(2,902) -(1,585) 

𝒔𝒅X𝒑,𝒕 -0,060 2,173 0,891 0,889 -0,027 -0,040 

 -(1,679) (3,339) (0,925) (20,726) -(0,589) -(2,304) 

𝒔𝒆𝒎𝒃𝒊,𝒕 0,016 -0,718 1,629 -0,026 0,890 0,043 

 (0,501) -(1,198) (1,839) -(0,651) (20,984) (2,670) 

𝒔𝒚𝒄𝒅𝒊,𝒕 0,088 -4,607 -5,166 -0,065 0,283 0,657 

 (0,537) -(1,549) -(1,175) -(0,332) (1,346) (8,224) 

Constant 0,002 -0,027 -0,043 0,005 0,002 0,003 

 (1,464) -(0,910) -(0,979) (2,704) (0,723) (4,271) 

 R-squared 0,564 0,130 0,080 0,837 0,867 0,665 

Table 4.2 – Covariance Structure of Unexpected Returns 

 𝑟6� 𝑟�"� 𝑟(��� 𝑟�X" 𝑟���( 𝑟�6� 

𝑟6� 0,239 -0,058 -0,018 -0,064 -0,063 0,539 

𝑟�"� - 4,360 -0,103 0,114 0,130 0,102 

𝑟(��� - - 6,450 -0,736 -0,698 -0,230 

𝑟�X" - - - 0,287 0,535 0,144 

𝑟���( - - - - 0,309 0,127 

𝑟�6� - - - - - 0,117 

Last three columns comprise the results of the estimated parameters for the state 

variables’ equations. Similarly, from combination 1, the three equations representing the state 

variables are well described by an AR (1) process. Their lagged coefficients are positive and 

close to one,  presenting a dynamic persistence. Here, 𝑠�6� has the lowest coefficient, 0,657. 

Table 4.2 presents the covariance structure of the innovations of the VAR system. 

Unexpected returns of Ibovespa are negatively correlated with shocks to the 12-month 

accumulated Ibovespa dividend yield, as well as with shocks to the nominal return of the 
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IDkA Pre 3M, and with shocks to the risk of Brazil spread. Conversely, innovations to the 

foreign stock are positively correlated with shocks to all three state variables. 

Combination 3 does not have any lagged state variable with a statistical significant 

coefficient in its log excess-returns’ equations. The same is true for combination 4, making it 

hard to use these combinations, once it limits our ability to explain portfolio allocations. 

4.4 Strategic Asset Allocations 

In section 3.3 we show that the optimal allocation rule is linear in the vector of state 

variables. Therefore, optimal allocation among the chosen assets varies over time. One way to 

study this rule is to examine its mean and volatility. In order to analyse the magnitude of the 

effects of the optimal allocation, we calculated the myopic allocations (tactical effect) for 

each of these assets, as well as their demands for protection (strategic effect). Based on the 

estimated VAR parameters and the cross-correlation of residuals, the optimal portfolios were 

calculated for each of the four combinations of 𝜓 = 1, 𝛿 = 0,95 (at an annual frequency) and 

𝛾 = 1, 𝛾 = 2, 𝛾 = 5, and 𝛾 = 20. 

Both third and eighth columns in Table 5 show the portfolio allocation across the 

STA, LTA or foreign stock, and Brazilian stock for a log utility investor holding combination 

1 and combination 2, respectively. In this case, the investor is going to decide merely 

myopically. When 𝛾 = 1, it can be seen from equation (18) that this allocation depends only 

on the inverse of the variance-covariance matrix of unexpected excess-returns and on the 

mean excess-returns. Therefore, the allocation decision is essentially based on the asset with 

the best risk-return relationship, that is, the asset with the highest Sharpe ratio (SR, Table 1). 

For combination 1, the myopic allocation when 𝛾 = 1 holds a long position in LTA of 

6349,21%, a selling position in stock of 131,06% and a short position in STA of 6118,15% – 

Table 5. The largest excess-return position is in the asset with the highest SR in absolute 

value, 0,230, while the stock holds a negative 0,035 SR. In Table 6, we observe the absolute 
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value of the LTA to stock ratio of 48,45, probably due to the substantial positive estimated 

correlation of 15,9% between unexpected returns on stocks and bonds, shifting the exposure 

towards the asset with highest SR in absolute value. 

Regarding combination 2, the myopic allocation when 𝛾 = 1 has a short position in 

the foreign stock of 68,88%, a short position of 78,20% in the Brazilian stock and a long 

position in the STA of 247,07%. The largest excess-return’s position is in the asset with the 

highest absolute value in the SR, which is the Ibovespa, 0,037, compared to the -0,025 foreign 

stock’s SR. Here, the foreign stock to Brazilian stock ratio is 0,88. 

Table 5 – Mean Asset Demands for Combination 1 and Combination 2 (%) 

  Combination 1  Combination 2 

 
Asset γ=1 γ=2 γ=5 γ=20 Asset γ=1 γ=2 γ=5 γ=20 

Myopic Demand 

STA 

-6118,15 -3008,43 -1142,59 -209,68 

STA 

247,07 173,32 129,08 106,95 

Hedging Demand 0,00 -1589,02 -1309,38 -429,42 0,00 77,94 98,20 41,76 

Total Demand -6118,15 -4597,45 -2451,98 -639,10 247,07 251,26 227,27 148,72 

Myopic Demand 

LTA 

6349,21 3173,97 1268,83 316,26 
Foreign 
Stock 

-68,88 -34,27 -13,51 -3,13 

Hedging Demand 0,00 1457,98 1205,58 399,56 0,00 -42,16 -51,18 -19,63 

Total Demand 6349,21 4631,95 2474,40 715,82 -68,88 -76,43 -64,69 -22,76 

Myopic Demand 

Stock 

-131,06 -65,54 -26,24 -6,58 

Stock 

-78,20 -39,05 -15,57 -3,82 

Hedging Demand 0,00 131,04 103,81 29,86 0,00 -35,78 -47,02 -22,13 

Total Demand -131,06 65,50 77,57 23,28 -78,20 -74,83 -62,58 -25,95 

 

Investors with risk aversion greater than one seek assets that increase in value when 

investment opportunities deteriorate. Such assets behave as insurance against a fall in the 

return of wealth, which would lead to a reduction in the pattern of consumption that wealth 

could provide. Assets with such characteristics are those that tend to have a lower risk over 

long horizons of time. Thus, investors with 𝛾 > 1 seek, therefore, an intertemporal demand 

for protection. This intertemporal hedging demand tends to be higher in assets that show a 

Table 6 – LTA and Foreign Asset to Brazilian Stock Ratios in Absolute Value 

LTA/Stock Combination1 Combination 2 

 γ=1 γ=2 γ=5 γ=20 γ=1 γ=2 γ=5 γ=20 

Myopic LTA/Stock 48,45 48,43 48,36 48,05 0,88 0,88 0,87 0,82 

Hedge LTA/Stock - 11,13 11,61 13,38 - 1,18 1,09 0,89 

Total LTA/Stock 48,45 70,72 31,90 30,75 0,88 1,02 1,03 0,88 
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greater degree of predictability. It also tends to increase with the degree of persistence of state 

variables that prove to be good predictors of these asset returns. 

In combination 1, since LTA have a large positive Sharpe ratio, investors hold, 

normally, long positions in these assets. Hence, an increase in expected LTA returns is 

understood as an improvement in the investment opportunity set. According to our VAR 

estimation, future LTA returns increase when the EMBI + spread increases (Table 3.1). Once 

LTA are considerably negatively correlated with the EMBI + spread by 27,2%, poor LTA 

returns are correlated with an improvement in future investment opportunities. Consequently, 

conservative investors with 𝛾 > 1 can use LTA to hedge against the variation of their future 

returns, resulting in a positive intertemporal hedging demand.  

Stock returns also have a positive intertemporal hedging demand. First, the EMBI + 

spread forecasts excess stock returns and LTA returns positively. Thus, an increase in the 

stock return represents an improvement in the investment opportunity set. Since stock returns 

are highly negatively correlated with changes in the risk of Brazil variable by -69,3%, this 

generates a positive intertemporal hedging demand by conservative investors with 𝛾 > 1. 

Still, there is a positive correlation between unexpected LTA returns and stock returns of 

15,9%, so investors can offset their positive intertemporal hedging demand for LTA by taking 

short positions in stocks. Although, the model yields a positive intertemporal hedging demand 

for all levels of risk-aversion, meaning that the former effect more than compensates for the 

later. Here, investors with 𝛾 > 1 have a positive total demand for stock, since intertemporal 

hedging demand overweighs myopic demand. Strategic effects surpass tactical effects, 

making it clear the importance of asset returns predictability in optimization. 

Intertemporal hedging demand is smaller for stocks than for LTA, probably due to the 

fact that LTA returns are more predictable than stock returns – LTA R-squared is the highest 

amongst the two excess-return equations. 
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In what concerns combination 2, following the same reasoning above, since the 

Brazilian stock has a negative SR, investors hold, normally, short positions in these type of 

assets. Hence, an increase in expected Brazilian stock returns is understood as a deterioration 

in investment opportunities. Future Brazilian stock returns increase when the 12-month 

accumulated dividend yield increases (Table 3.2). Once the Brazilian stock is considerably 

positively correlated with the 12-month accumulated dividend yield by 11,4%, poor Brazilian 

stock returns are correlated with an improvement in future investment opportunities. 

Consequently, conservative investors with 𝛾 > 1 can use the Brazilian stock to hedge against 

their future returns volatility, resulting in a negative intertemporal hedging demand. 

Foreign stock returns also have a negative intertemporal hedging demand. There is a 

negative correlation between unexpected Brazilian stock returns and foreign stock returns of 

10,3%, so investors can offset their negative intertemporal hedging demand for Brazilian 

stock by taking short positions in foreign stocks. The Brazilian Hedging stock to foreign 

Hedging stock ratio is bigger than 1 for moderately conservative investors, probably due to 

the former’s R-squared, which is higher than the foreign stock’s R-squared. 

The same analysis of could have been made for combinations 3 and 4. There, LTA 

returns are, once again, more predictable than stock returns, and intertemporal hedging 

demand is bigger for LTA, than for stocks. 

 Figure 2.1 and Figure 2.2 plot the history of total and hedging asset allocations for 𝛾 =

5 and 𝜓 = 1 across the 3 assets of combination 1 and combination 2, respectively. Hedging 

demands are less volatile than total demands for both combinations. Myopic allocations are 

responsible for changing the sign of demands. Campbell et al. (2003) show that hedging 

demands only change sign in harsh events. Trying to follow such strategies is almost 

undoable due to transactions costs which investors are subject to. 
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Figure	2.1	

 

Figure	2.2	

5 Conclusion 

We study the predictability of asset returns and its impact on long-term investors’ 

financial decisions. Intertemporal hedging demands are strategically relevant in optimal 

portfolio allocation, contrary to myopic optimal allocations where they play a tactical role.  

The state variables used to predict asset returns affect this demand for protection 

through the correlation of their shocks to unexpected returns on stocks and long-term assets, 
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and their persistence. Risk of Brazil, as measured by the EMBI + spread, and the 12-month 

accumulated dividend yield has the highest correlations amongst all the state variables. These 

state variables are the most important in defining the optimal portfolio demands.  

We consider two types of asset combinations. First we use only Brazilian assets and 

perform the predictability analysis.  We innovate in combination 2 by replacing one of the 

Brazilian components, the Long Term Assets (LTA), by a foreign index (the S&P500). 

In the first combination, the long-term asset was the responsible for intertemporal 

hedging demand. This demand arises from the high correlation between shocks to the variable 

that help to predict returns, EMBI + spread, and shocks to long-term assets. We find that the 

total optimal demand (strategic plus myopic) for long-term assets is positive. In this 

combination, intertemporal hedging demand is positive, playing an important strategic role 

for conservative investors, as opposed to the negative myopic allocation. Corroborating past 

empirical research, we find that LTA returns are more predictable than stocks in Brazil, so 

that intertemporal hedging demand is greater for LTA than for stocks. 

Our analysis innovates by comparing investment in Brazilian assets with the 

possibility of investing in a foreign index. In our set-up the foreign index is more predictable 

for moderately conservative investors, than the Brazilian stocks. As a consequence, 

moderately conservative investors use S&P 500 for intertemporal hedging. 

This research is not free of limitations. Long-term investors have wealth, but labour 

income is not modelled. Short-selling is not constrained. The results constitute an 

approximation for investors with elasticity of intertemporal substitution different than one. 

The VAR system is estimated without corrections for small-sample biases and Bayesian 

priors were not used. Although, Banbura, Giannone, and Reichlin (2010) have shown that a 

Bayesian vector auto regression model is more appropriate for modelling large data sets. 

Finally, the authors consider that investors know all parameters of the model. 
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As the ANBIMA historical series will become longer, it will be worth to reassess the 

demands for the assets with more robust estimates of the VAR parameters. 
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