

Setembro, 2017

Diogo Matos Ferreira

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

[Nome completo do autor]

Licenciado em Ciências da Engenharia Eletrotécnica

e de Computadores

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

[Habilitações Académicas]

Framework for IoT Service Oriented Systems

[Título da Tese]

Dissertação para obtenção do Grau de Mestre em

Engenharia Eletrotécnica e de Computadores

Dissertação para obtenção do Grau de Mestre em

[Engenharia Informática]

Orientador: Doutor Ricardo Jardim Gonçalves, Professor Associado com

Agregação, FCT-UNL

Co-orientador: João Filipe dos Santos Sarraipa, Professor Auxiliar Convidado,

FCT-UNL

 Júri:

Presidente: Doutor Luis Augusto Bica Gomes de Oliveira

– FCT/UNL

Arguente:

Vogal:

Doutor Tiago Oliveira Machado de Figueiredo Cardoso

– FCT/UNL

Doutor João Filipe dos Santos Sarraipa - FCT/UNL

Framework for IoT Service Oriented Systems

Copyright © Diogo Matos Ferreira, Faculdade de Ciências e Tecnologia, Uni-

versidade Nova de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o

direito, perpétuo e sem limites geográficos, de arquivar e publicar esta disserta-

ção através de exemplares impressos reproduzidos em papel ou de forma digi-

tal, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a

divulgar através de repositórios científicos e de admitir a sua cópia e distribui-

ção com objetivos educacionais ou de investigação, não comerciais, desde que

seja dado crédito ao autor e editor.

v

Ao futuro…

vii

Abstract

The forth industrial revolution is here, and with it Industry 4.0, which translates

in many changes to the industry. With the introduction of paradigms like Internet of

Things, Cyber Physical Systems or Cloud Computing, the so called Smart Factories are

becoming a main part of today’s manufacturing systems. The vf-OS Project, where this

thesis falls, intends to be an Open Operating System for Virtual Factories where the

overall network of a collaborative manufacturing and logistics environment can be

managed and thus enabling humans, applications and devices to communicate and

interoperate in an interconnected operative environment.

This thesis intends to contribute to the vision that any kind of sensor or actuator

plugged to the virtual factory network, becomes promptly accessible in the operative

environment and the services that it provides can be accessed and used by any API

composing the system. Finally, it also aims to prove that an IoT Service Oriented Sys-

tem constituted of open software components can be of great assistance and provide

numerous contributions to the emerging Industry 4.0 and consequently to the Factories

of the Future.

With that aim, this thesis will focus on the development of two out of five inter-

connected applications that answer not only to different use case scenarios presented

in the vf-OS but also provide solutions to answer a practical agriculture scenario,

which uses mainly IoT devices and other cutting-edge technologies like cloud compu-

ting and FIWARE.

Keywords: Internet of Things, Cyber Physical Systems, Cloud Computing, Smart Fac-
tories, Factories of the Future, vf-OS (virtual factory – Operating System), Framework,
IoT Service Oriented Systems.

ix

Resumo

A quarta revolução industrial chegou, e com ela a Indústria 4.0, o que se traduz
em inúmeras alterações na indústria. Com a introdução de paradigmas como a Internet
of Things, Cyber Physical Systems ou Cloud Computing, as assim denominadas Smart
Factories (Fábricas Inteligentes), estão-se a tornar cada vez mais uma parte fundamen-
tal dos sistemas de manufatura atuais. O projeto vf-OS, no qual esta tese se insere, tem
como objetivo o desenvolvimento de um Sistema Operativo aberto para Fábricas Vir-
tuais, que pretende ser um quadro capaz de gerir a rede global de um ambiente cola-
borativo de produção e logística e assim permitir que humanos, aplicações e dispositi-
vos comuniquem e operem num ambiente operacional interligado, e é exatamente so-
bre quadro que esta tese incide.

Esta tese pretende contribuir para a visão de que qualquer sensor ou atuador co-
nectado à rede da fábrica virtual se torna prontamente acessível através do ambiente
operativo da fábrica e todos os serviços por ele prestados podem ser acedidos por
qualquer API que componha o sistemas. Finalmente esta tese pretende ainda provar
que os sistemas orientados a serviços IoT, utilizando software livre, podem servir de
grande ajuda e fornecer inúmeras contribuições para a emergente Industria 4.0 e con-
sequentemente para as Fábricas do Futuro.

Para isso esta tese consiste no desenvolvimento de duas de cinco aplicações inter-
ligadas que pretendem responder não só a diferentes “use case scenarios” apresenta-
dos no projeto vf-OS como ainda fornecer soluções para um cenário prático de agricul-
tura, recorrendo principalmente ao uso de dispositivos IoT e a outras tecnologias de
ponta como cloud computing e FIWARE.

Palavras-Chave: Internet of Things (IoT), Cyber Physical Systems (CPS), Cloud
Computing, Fábricas Inteligentes, Fábricas do Futuro, vf-OS (virtual factory – Opera-
ting System), Framework, Sistemas Orientados para o Serviço IoT.

xi

Contents

CONTENTS .. XI

LIST OF FIGURES ... XV

LIST OF TABLES ... XIX

ACRONYMS .. XXI

1 INTRODUCTION .. 1

1.1 MOTIVATION AND BACKGROUND .. 1

1.2 GOALS AND CONTRIBUTIONS ... 4

1.3 THESIS ORGANIZATION ... 5

2 STATE OF THE ART .. 7

2.1 KERNEL .. 7

2.1.1 Kernel’s components...10

2.1.2 Monolithic Kernel ..11

2.1.3 Microkernels ...12

2.1.4 Hybrid Kernels ...13

2.1.5 Exokernels ...14

2.1.6 Kernel Architectures Summary ...15

2.2 FACTORIES OF THE FUTURE ... 16

2.3 WEB SERVICES FOR INDUSTRIAL INTERNET OF THINGS .. 20

2.4 FIWARE ... 24

2.5 IOT AS A SERVICE ... 26

2.5.1 Model ...26

2.5.2 Framework ...27

2.5.3 Mashup ...29

2.6 FROM THE STATE OF THE ART TO THIS THESIS CONCEPT .. 31

2.7 RESEARCH QUESTION AND HYPOTHESIS .. 32

3 PRACTICAL FRAMEWORK .. 33

3.1 VF-OS (VIRTUAL FACTORY - OPERATING SYSTEM) ... 34

3.2 USE CASE SCENARIOS ... 36

3.3 PRACTICAL SCENARIO .. 39

3.4 FROM THE SCENARIOS TO THE APPLICATIONS .. 41

3.5 TECHNOLOGIES .. 44

3.5.1 Docker .. 45

3.5.2 FIWARE Orion Context Broker ... 46

3.5.3 FIWARE Short Time Historic (STH) – Comet ... 53

3.6 SUMMARY ... 57

4 DEVELOPED APPLICATIONS .. 59

4.1 APPLICATIONS ENTITIES .. 60

4.2 VORDER... 62

4.3 VFNEGOTIATION .. 66

4.4 APPLICATIONS DEMO ... 70

4.4.1 vOrder – Choose User .. 71

4.4.2 vOrder – Farmer User Interface ... 72

4.4.3 vOrder – Main Interface ... 75

4.4.4 vOrder – Dispatch Order .. 78

4.4.5 vOrder – Truck Creation Tab ... 79

4.4.6 vOrder – Existent Trucks Tab .. 86

4.4.7 vOrder – Generate Values Tab .. 89

4.4.8 vOrder – Check Transport Tab ... 95

4.4.9 vOrder – Delete Truck Tab ... 102

4.4.10 vOrder – Manage Truck Tab .. 103

4.4.11 vfNegotiation – Choose User Interface ... 108

4.4.12 vfNegotiation – Farmer User Interface .. 109

4.4.13 vfNegotiation – Farmer Main Interface ... 111

4.4.14 vfNegotiation – Farmer Main Interface: Add Fruit Tab 112

4.4.15 vfNegotiation – Farmer Main Interface: Check Fruit Tab 114

4.4.16 vfNegotiation – Farmer Main Interface: Update Fruit Tab 117

4.4.17 vfNegotiation – Farmer Main Interface: Production Values Tab 121

4.4.18 vfNegotiation – Buyer Main Interface ... 123

4.4.19 vfNegotiation – Buyer Main Interface: Manual Search Tab 124

4.4.20 vfNegotiation – Buyer Main Interface: Automatic Search Tab 127

4.4.21 vfNegotiation – Buyer Main Interface: Order Draft 131

5 CONCLUSIONS AND FUTURE WORK ... 135

5.1 CONCLUSIONS... 135

xiii

5.2 FUTURE WORK .. 138

BIBLIOGRAPHY ..141

A. ENTITIES TABLES ...147

xv

List of Figures

FIGURE 2.1 - KERNEL POSITION IN THE OPERATIVE SYSTEM (KERNEL LAYOUT, 2008) ... 8

FIGURE 2.2 – MONOLITHIC KERNEL ARCHITECTURE (KERNEL MONOLITHIC, 2008) ... 11

FIGURE 2.3 – MICROKERNEL ARCHITECTURE (KERNEL MICROKERNEL, 2008) ... 12

FIGURE 2.4 – HYBRID KERNEL ARCHITECTURE (KERNEL HYBRID, 2008) .. 13

FIGURE 2.5 – EXOKERNEL ARCHITECTURE (KERNEL EXOKERNEL, 2013) .. 14

FIGURE 2.6 – MONOLITHIC KERNEL, MICROKERNEL AND HYBRID KERNEL COMPARISON (OS STRUCTURE, 2008)

 .. 15

FIGURE 2.7 – CHANGES IN MANUFACTURING PARADIGMS. ADAPTED FROM(S. J. HU ET AL., 2011) 16

FIGURE 2.8 – FIFTEEN COMPONENTS OF A FACTORY OF THE FUTURE. ADAPTED FROM (LUETH, 2015) 19

FIGURE 2.9 – IOT MODEL: KEY CONCEPTS AND INTERACTIONS. ADAPTED FROM (BAUER ET AL., 2011) 27

FIGURE 2.10 – OPENIOT FRAMEWORK. ADAPTED FROM (KIM & LEE, 2014) .. 28

FIGURE 2.11 – IOTMAAS (IOT MASHUP AS A SERVICE) CONCEPT. ADAPTED FROM (IM ET AL., 2013) 30

FIGURE 3.1 – PRACTICAL SCENARIO ILLUSTRATION .. 40

FIGURE 3.2 – USE CASE SCENARIOS APPLICATIONS APPLIED TO THE PRACTICAL SCENARIO ... 43

FIGURE 3.3 – CONTAINER VS VIRTUAL MACHINE COMPARISON (DOCKER, 2017) ... 45

FIGURE 3.4 – NGSI10 SCHEMA OF REST RESOURCES (NGSI10, 2014) ... 47

FIGURE 3.5 – NGSI9 SCHEMA OF REST RESOURCES (NGSI9, 2014) .. 49

FIGURE 3.6 – NGSI9/NGSI10 CONTEXT ELEMENT (ENTITY) SCHEMATIZED STRUCTURE ... 52

FIGURE 3.7 – ORION CONTEXT BROKER IN A NUTSHELL (FIWARE - ORION CONTEXT BROKER, 2014) 53

FIGURE 3.8 – ORION CONTEXT BROKER + STH WORKING SCHEMATIC .. 56

FIGURE 3.9 – SCENARIO + VAPPS + GENERIC ENABLERS USE SUMMARY ... 57

FIGURE 4.1 – VF-OS INTERCONNECTED APPS DEVELOPED WITHIN THE MASTER THESIS WORKGROUP 59

FIGURE 4.2 – VORDER INTERFACE .. 63

FIGURE 4.3 – VORDER APPLICATION SCHEMATIC .. 65

FIGURE 4.4 – VFNEGOTIATION INTERFACES .. 66

FIGURE 4.5 – VFNEGOTIATION APPLICATION SCHEMATIC .. 69

FIGURE 4.6 – RUNNING FIWARE ORION CONTEXT BROKER THROUGH DOCKER ... 70

FIGURE 4.7 – RUNNING FIWARE SHORT TERM HISTORIC THROUGH DOCKER ... 71

FIGURE 4.8 – CHOOSE USER INTERFACE .. 72

FIGURE 4.9 – VORDER: FARMER USER INTERFACE .. 73

FIGURE 4.10 – FARMER USER INTERFACE: ERRORS INTERFACE ... 73

FIGURE 4.11 – FARMER USER INTERFACE: FARMER CREATION ERROR .. 74

FIGURE 4.12 – FARMER USER INTERFACE: INEXISTENT FARMER ERROR ... 74

FIGURE 4.13 – VORDER MAIN INTERFACE FOR TRANSPORT PROVIDERS ... 75

FIGURE 4.14 – VORDER MAIN INTERFACE FOR BUYERS .. 76

FIGURE 4.15 – VORDER MAIN INTERFACE FOR FARMERS ... 77

FIGURE 4.16 – VORDER FARMER: DISPATCH ORDER INTERFACE ... 78

FIGURE 4.17 – TRUCK CREATION: ONE SENSOR ... 80

FIGURE 4.18 – TRUCK CREATION: FOUR SENSORS ... 81

FIGURE 4.19 – TRUCK CREATION: EMPTY TRUCK ID MESSAGE .. 82

FIGURE 4.20 – TRUCK CREATION: SUCCESS MESSAGE .. 83

FIGURE 4.21 – TRUCK CREATION: DELETE TRUCK SUCCESS MESSAGE ... 84

FIGURE 4.22 – TRUCK CREATION: FAILURE MESSAGE .. 85

FIGURE 4.23 – TRUCK CREATION TAB: TRANSPORT PROVIDER USER ... 86

FIGURE 4.24 – EXISTENT TRUCKS TAB: TRUCKS LIST... 87

FIGURE 4.25 – EXISTENT TRUCKS TAB: LAST READ SENSOR VALUES FOR A TRUCK ... 88

FIGURE 4.26 – EXISTENT TRUCKS TAB: SENSORS WITH NO VALUES EXAMPLE ... 89

FIGURE 4.27 – RANDOM GAUSSIAN DISTRIBUTION ... 91

FIGURE 4.28 – GENERATE VALUES TAB: GENERATING 30 VALUES OVER 1 MIN .. 93

FIGURE 4.29 – GENERATE VALUES TAB: VALUES GENERATION SUCCESS MESSAGE ... 94

FIGURE 4.30 – GENERATED VALUES TAB: EMPTY FIELD ERROR MESSAGE .. 94

FIGURE 4.31 – CHECK TRANSPORT TAB: BUYER USER ... 95

FIGURE 4.32 – CHECK TRANSPORT TAB: INEXISTENT ORDER ERROR MESSAGE ... 96

FIGURE 4.33 – CHECK TRANSPORT TAB: FARMER USER .. 97

FIGURE 4.34 – CHECK TRANSPORT TAB: NO TRANSPORTATION PERFORMED MESSAGE .. 97

FIGURE 4.35 – CHECK TRANSPORT TAB: NORMAL TRANSPORT CONDITIONS VIEW ... 98

FIGURE 4.36 – CHECK TRANSPORT TAB: TRANSPORT CONDITIONS RATED AS BAD ... 101

FIGURE 4.37 – DELETE TRUCK TAB: SUCCESS MESSAGE ... 102

FIGURE 4.38 – DELETE TRUCK TAB: TRAVELLING TRUCK ERROR .. 103

FIGURE 4.39 – MANAGE TRUCKS TAB ... 104

FIGURE 4.40 – MANAGE TRUCKS TAB: ARRIVED BUTTON .. 105

FIGURE 4.41 – MANAGE TRUCKS TAB: EDIT SENSORS BUTTON .. 105

FIGURE 4.42 – MANAGE TRUCKS TAB: EDIT TRUCK SENSORS ... 106

FIGURE 4.43 – MANAGE TRUCKS TAB: EDIT TRUCK SENSORS TYPE ... 107

FIGURE 4.44 – MANAGE TRUCKS TAB: EDIT TRUCK SENSORS ID ... 108

FIGURE 4.45 – VFNEGOTIATION: CHOOSE USER INTERFACE .. 109

FIGURE 4.46 – VFNEGOTIATION: FARMER USER INTERFACE .. 110

xvii

FIGURE 4.47 – VFNEGOTIATION: FARMER MAIN INTERFACE ... 111

FIGURE 4.48 – ADD FRUIT TAB: EXISTENT FRUIT ERROR MESSAGE... 112

FIGURE 4.49 – ADD FRUIT TAB: FRUIT CREATION ... 113

FIGURE 4.50 – CHECK FRUIT TAB .. 114

FIGURE 4.51 – CHECK FRUIT TAB: FRUIT NAME LIST .. 115

FIGURE 4.52 – CHECK FRUIT TAB: FRUIT BREED LIST .. 115

FIGURE 4.53 – CHECK FRUIT TAB: FRUIT INFORMATION PROVIDED .. 116

FIGURE 4.54 – CHECK FRUIT TAB: 0’S IN THE INFORMATION... 117

FIGURE 4.55 – UPDATE FRUIT TAB ... 117

FIGURE 4.56 – UPDATE FRUIT TAB: ERRORS INTERFACE.. 118

FIGURE 4.57 – UPDATE FRUIT TAB: SEARCH DONE ... 119

FIGURE 4.58 – UPDATE FRUIT TAB: FRUIT UPDATE FAILURE .. 119

FIGURE 4.59 – UPDATE FRUIT TAB: UPDATE FIELDS ... 120

FIGURE 4.60 – UPDATE FRUIT TAB: FRUIT UPDATE SUCCESS .. 121

FIGURE 4.61 – PRODUCTION VALUES TAB ... 122

FIGURE 4.62 – PRODUCTION VALUES TAB: FRUIT’S LAST PRODUCTION VALUES ... 123

FIGURE 4.63 – VFNEGOTIATION: BUYER MAIN INTERFACE .. 123

FIGURE 4.64 – MANUAL SEARCH TAB: AVAILABLE FILTERS ... 124

FIGURE 4.65 – MANUAL SEARCH TAB: FILTERS AND NO FILTERS RESULTS .. 126

FIGURE 4.66 – MANUAL SEARCH TAB: NO FARMER ERROR MESSAGE ... 127

FIGURE 4.67 – VFNEGOTIATION BUYER INTERFACE: AUTOMATIC SEARCH TAB ... 128

FIGURE 4.68 – AUTOMATIC SEARCH TAB: AVAILABLE FILTERS ... 129

FIGURE 4.69 – AUTOMATIC SEARCH TAB: FILTERS RESULTS COMPARISON .. 131

FIGURE 4.70 – VFNEGOTIATION: BUYER ORDER DRAFT ... 132

FIGURE 4.71 – VFNEGOTIATION: BUYER ORDER ID REMINDER MESSAGE .. 133

xix

List of Tables

TABLE 3.1 – ANALOGY BETWEEN SOFTWARE OS AND VF-OS MANUFACTURING OS. ... 35

TABLE 3.2 – VF-OS GENERIC USE CASE SCENARIOS. ... 37

TABLE 3.3 – SCENARIO STEPS EXPLANATION. .. 40

TABLE 3.4 – NGSI10 SPECIFIC FUNCTIONS. .. 48

TABLE 3.5 – NGSI9 SPECIFIC FUNCTIONS. ... 50

TABLE 3.6 – NGSI9/NGSI10 CONTEXT ELEMENT (ENTITY) STRUCTURE. ... 51

TABLE 3.7 – FIWARE STH HISTORICAL AGGREGATION METHODS. ... 55

TABLE 4.1 – LIST OF ENTITIES. .. 60

TABLE 4.2 – TRUCK CREATION EXAMPLE ONE. .. 82

TABLE 4.3 – TRUCK CREATION EXAMPLE TWO .. 84

TABLE 4.4 – TRUCKS CREATED FOR EXEMPLIFICATION PURPOSES. ... 87

TABLE 4.5 – MEAN AND DEVIATION VALUES USED FOR EACH SENSOR ... 91

TABLE 4.6 – BOUNDARIES FOR EACH SENSOR AND PERCENTAGE OF VALUES FALLING UNDER EACH ONE 92

TABLE 4.7 –BOUNDARIES OF THE TRANSPORT CONDITIONS EVALUATION .. 100

TABLE 4.8 – BOUNDARIES OF THE TRANSPORT CONDITIONS EVALUATION FOR CO2 (CONCENTRATION). 101

TABLE A.1 – FLEET ENTITY. .. 147

TABLE A.2 – TRUCK ENTITY. ... 148

TABLE A.3 – SENSOR ENTITY. ... 148

TABLE A.4 – SUBSCRIPTION (TRUCK STATE) ENTITY. ... 150

TABLE A.5 – SUBSCRIPTION (SENSOR VALUES) ENTITY. ... 150

TABLE A.6 – ORDER ENTITY.. 151

TABLE A.7 – FARMER ENTITY. .. 152

TABLE A.8 – FRUIT PRODUCTION ENTITY. ... 153

xxi

Acronyms

FoF Factories of the Future

IoT Internet of Things

CPS Cyber Physical Systems

CC Cloud Computing

SF Smart Factories

vf-OS virtual factory – Operating System

vf-SK virtual factory – System Kernel

vf-AP virtual factory - Application Programming Interface

vf-W virtual factory - Middleware

API Application Programming Interface

AI Artificial Intelligence

XaaS Anything as a Service

IT Information Technology

OS Operating System

I/O Input / Output

CPU Central Processing Unit

BIOS Basic Input / Output System

IPC Inter-Process Communication

IIoT Industrial Internet of Things

RFID Radio-Frequency Identification

SOA Service-Oriented Architecture

UDDI Universal Description, Discovery and Integration

WS Web Services

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

IoTaaS IoT as a Service

IoTMaaS IoT Mashup as a Service

ICT Information and Comunication Technology

M2M Machine to Machine

GE Generic Enabler

VM Virtual Machine

NGSI Next Generation Services Interface

REST REpresentational State Transfer

HTTP HyperText Transfer Protocol

DB DataBase

STH Short Time Historic

1

1 Introduction

In this chapter, a brief introduction on the situation under which this the-

sis is developed is presented. This situation is the past and current development

of the factories, manufacture and agriculture worlds. All of these big industrial

worlds are constantly in development and modernization, and a new industrial

revolution is arriving, getting together all these previously distinct worlds and

turning them into one large interconnected industrial world. While the Europe-

an vf-OS project aims to provide answers to the combination of all these big in-

dustrial worlds, this thesis’ goal is to provide small tools, to help the vf-OS an-

swer the requirements of the interconnected industry.

 After the presentation of the background of the vf-OS project which in-

cludes this thesis and the enlightenment about the motivation for this thesis de-

velopment, the primary goals of this thesis are enumerated and explained.

Finally, at the end of this chapter an overview of this document is given,

explaining its organization and the information presented in each chapter of

this master thesis document.

1.1 Motivation and Background

“The First Industrial Revolution used steam power to mechanize produc-

tion. The Second used electric power to create mass production. The Third used

electronics and information technology to automate production. Now a Fourth

1

C
H

A
P

T
E

R

Chapter 1. Introduction

2

Industrial Revolution is building on the Third. It is characterized by a fusion of

technologies that is blurring the lines between the physical, digital, and biologi-

cal spheres” – Professor Klaus Schwab, Founder and Executive Chairman of the

World Economic Forum.

Since the First Industrial Revolution in 1784, with the transition from hand

production to mechanize production, the industrial world has been experienc-

ing constant technology evolution, further improving the way industry works.

Lately, however, the technology used is evolving exponentially, and the chang-

es it is bringing are dramatic to this world. The digitization is taking over the

industrial domain, with many emerging technologies being used in factory

production, such as artificial intelligence, advanced robots, complex sensors,

Internet of Things, cloud computing, digital fabrication, XaaS (“anything as a

service” – cloud computing term for services and applications accessed on de-

mand over the Internet as opposed to being utilized on premises), autonomous

vehicles or machines, and so on. There are also other technologies still under

development that can also make a great difference in the industrial area like,

nanotechnology, energy production and storage or even the much-anticipated

quantum computer. Making use of all these technologies factories are reducing

costs, improving efficiency, increasing speed and scale, developing smarter

products and services, all this in a more sustainable way. With the combination

of the digital and the physical worlds, intelligent products and machines can

“talk” to one another across the value chain, storing and transmitting vital and

real-time information, combining communications, IT (Information Technolo-

gy), data analysis and decision-making ability, thus turning traditional factories

into smart digital manufacturing environments using cyber-physical systems.

Another advantage brought by the incorporation of both physical and dig-

ital worlds into the industry ecosystem is the creation of virtually simulated fac-

tories. This virtual factory is a computer-generated copy of the real factory

where operators can simulate the normal operation of the factory, predict, find

and solve malfunctions, try to add new services to the virtual factory before ap-

plying them to the physical one, to see its response, keep track of the products

whereabouts and state as well as constant knowledge about the factories num-

bers, amount of items produced, amount of machines working, etc. In order to

achieve it, there is a need to develop a platform on which future manufacturing

1.1 Motivation and Background

3

applications can be built. Even though there are already some platforms able to

do this, like for example AUTOSAR, ISOBUS or SmartAgriFood, they apply on-

ly to very specific industrial sectors (automotive, agricultural machinery and

agri-food, respectively), which means that there is yet no open platform across

all sectors, using open standards common to all of them.

The problem about creating an open platform able to be shared by all sec-

tors is the diversity of technologies used by each one and therefore the existence

of diverse and unconnected disjoint systems that are not interoperable. Yet, not

only to interconnect different sectors, is this open platform useful, within the

same sector many additions have been made to the industries over time, result-

ing in a highly heterogeneous manufacturing environment, to which more up-

dates can be hard and expensive to apply. Therefore, an open general platform

could greatly benefit both intra and inter sectors, big and small enterprises not

only to make upgrades easier to implement but also cheaper. In order to fulfil

this need, the European Union under the Horizon 2020 Programme commis-

sioned the creation of a Virtual Factory Open Operating System.

The goal of the vf-OS Project is to develop an Open Operating System for

Virtual Factories, which aims to become the reference system software for man-

aging factory related computer hardware and software resources and providing

common services for factory computational programs. This operating system

will be the component of the system software in a real factory system where all

factory application programs will run. There, a virtualization of the whole fac-

tory can be accessed and controlled and a range of services will be provided to

integrate better manufacturing and logistics processes. This virtualization can

always be further improved by developing and deploying smart applications in

order to optimise communications and collaboration among supply networks of

all manufacturing sectors in all the manufacturing stages and logistic processes.

From the framework embedded in this vf-OS the overall network of a collabora-

tive manufacturing and logistics environment can be managed as the operating

system will serve as an intermediary between the application behaviour of the

factory and the factory hardware itself. In short, the vf-OS will allow any type

of factory to have its own virtual representation and virtualized services and

functionalities, by simply developing and installing their machines applications

Chapter 1. Introduction

4

into the operative system. The platform will then add them to the factory virtu-

alization and make them available through system calls to the OS.

1.2 Goals and Contributions

The purpose of this thesis, developed within the scope of the vf-OS pro-

ject, described above, is the registration, discovery and provision of services or

devices provided by installed sensors, machines or software components

through the internet, more precisely through a cloud based database. During its

development, the registered and discovered devices are mainly sensors, of all

sorts, that allow the users of the developed applications, to keep track of values,

vital to the production and the transport of goods. Besides the installed IoT de-

vices, also critical information needs to be stored in the cloud database and easi-

ly reachable by the users.

Two framework applications are to be developed within a full functional

real-life project composed of five interconnected applications. These intercon-

nected applications aim to provide solutions to a small part of the vf-OS goals,

using European technologies such as the FIWARE Program. Furthermore, these

applications are applied to a real case scenario, and intend to completely fulfil

all the problems found in that scenario. A smooth relation between all the ap-

plications is the primary goal of the project, since they will all need to work to-

gether to better provide the solutions to the presented scenario and ultimately

to the vf-OS goals.

The developed application frameworks are expected to be accessible to all

the users using the vf-OS project, at any given time, always providing all the

necessary functionalities and information about the registered and discovered

services and devices as well as any other essential information to the user. Be-

sides that, the applications aim to be scalable, to incorporate large amounts of

functions, users, and goods, interoperable, to be used alongside other functions

and programs, user-friendly, so that it can be used by all types of people, from

experts to lay people, and portable and easily deployable so that any person can

use it from his personal computer.

1.3 Thesis Organization

5

1.3 Thesis Organization

This master's thesis is composed by 5 chapters organized as follows:

Chapter 1 – In chapter 1, “Introduction”, the present chapter, is given a

brief introduction about the background domain under which this master thesis

falls (the past and current factory, manufacture and agriculture worlds), as well

as the motivations behind the development of a master thesis in this field. The

chapter ends with the main goals and objectives of this thesis, and its organiza-

tion.

Chapter 2 – This “State of the Art” chapter provides several different in-

formation about topics related to this master thesis development. It starts with

defining the central part of the Operative System which is where the vf-OS will

be installed and from where it will run – the kernel. After that definition is in-

troduced, a more detailed description about the background to where this the-

sis intends to contribute is given. With the background explained, alternative

ways of incorporating the IoT in that world is presented starting by listing al-

ternative, already used ways, going through the source of the technologies used

in this thesis development, and ending with the value that these services can

bring to the factories of the future. At the end of the chapter is presented the

Research Question and the Hypothesis that guide all the development of the

master thesis presented in this document.

Chapter 3 – In this chapter is presented the “Practical Framework” that

shapes this thesis development. A proper presentation of the project that com-

prehends this master thesis, the European vf-OS Project, is given as well as the

Use Case Scenarios found by the project developers. From the combination of

some of these Use Case Scenarios a real-life scenario was created and is also

presented in this chapter. After the scenario is set, the technologies used create

the applications that will answer that scenario are presented and explained. Fi-

nally, this chapter ends with a summary establishing the relations between the

use of the presented technologies, the applications created from the listed Use

Case Scenarios and the real-life scenario.

Chapter 1. Introduction

6

Chapter 4 – This chapter explains the “Developed Applications” during

the course of this master thesis progress. It starts with the presentation of a

technology capable of making the created applications portable – the Docker.

After that technology is briefly explained, all the entities (structures where the

application’s vital information is stored) used by both the developed applica-

tions are listed and explained. Finally, this chapter goes through each of the ap-

plication’s functionalities showing what it does and how it should be used. That

explanation is given through the use of elucidative pictures of the applications

during their normal operation. At the end of each application a summary is

done explaining how a real user could make use of the application’s functional-

ities.

Chapter 5 – This chapter concludes this master thesis document and pre-

sents its “Conclusions and Future Work”. In this chapter is explained how this

thesis answered to its main goals, which contributions it offers to both the an-

swered scenario and the project where it falls (the vf-OS Project), and is also

shown how this project proved that an IoT Service Oriented System would be a

great asset, to be added to the industry of the Factories of the Future, which was

the main question that this thesis wanted to answer. At the end of the Conclu-

sions, parallel work done during the writing of this thesis is presented in the

form of two papers, already accepted and published, which can be found in-

cluded in the appendixes. After those conclusions are presented, some ideas of

possible future works on how to change or improve the developed applications

are identified.

7

2 State of the Art

In this chapter is presented fundamental knowledge necessary to the un-

derstanding of this thesis’ related work. Since this thesis falls under the vf-OS

project, whose aim is to create a standard Operative System capable of being

used by all industries, this chapter starts by giving some information about

where an essential part of an Operative System, the Kernel, on top of which the

vf-OS will run. After this essential information is presented, an explanation

about the evolution of the manufacture world is given, from its beginning to the

present day and into one of its possible futures. In order to introduce this mas-

ter thesis’ contribution to that world, several different alternative ways of add-

ing the IoT to it are presented like the Web Services, including the source of the

technologies used during this thesis development, the European open source

generic enablers, program FIWARE. Finally, it is explained how the IoT can be

used as a service to benefit the factories of the future, and this chapter ends

with the introduction of the Research Question and Hypothesis that guide this

master thesis development.

2.1 Kernel

Dictionaries generally define kernel as “the central or most important part

of anything”, “gist”, “core”. This applied to technology, and more precisely to

computers shows that the kernel constitutes the central core of an operating

2

C
H

A
P

T
E

R

Chapter 2. State of the Art

8

system. One main aspect that shows how important the kernel is in a computer,

is the fact that it is the first program of the operating system loaded into

memory on system startup and it is the one that manages the rest of the startup.

Kernel however isn’t exactly mandatory, i.e. it isn’t strictly essential for an

operative system to work. Programs can also be loaded and executed without

the kernel to manage them. In fact, in the early days of computers when kernel

wasn’t used yet, computers could also be started and programs could also be

loaded. An example of this type of startup could be found in are the early con-

sole video game systems, which had no kernel so, rebooting the system was re-

quired every time a new game designed for that console was to be executed

(Mike, 2009).

In order to avoid having to restart the system every time a new program

needs to run, each of these programs would need to have its own bootloader

and direct hardware controlling. And this is one of the most important things

that the kernel adds to an operating system. It provides the capability of execut-

ing multiple programs, at any given time while the other programs continue to

run.

Besides managing the programs that run in the system, the kernel also

provides basic services for all other parts of the operating system. These ser-

vices include memory, processes and files management, as well as I/O (in-

put/output) management which allows the computer to communicate with any

kind of peripherals (keyboard, mouse, printers, speakers, etc.).

Figure 2.1 - Kernel Position in the Operative System (Kernel Layout, 2008)

2.1 Kernel

9

Due to its outmost important role inside the operative system, the kernel

code usually runs in a protected area of computer’s memory. This fact intends

to prevent it from being overwritten by other, less important parts of the oper-

ating system or by application programs. Also, in order to get an additional de-

fence, the kernel has its own kernel space where it performs its tasks, detached

from the user space even though they both coexist in the System Memory.

➢ Kernel Space is a slot in the System Memory where the kernel ex-

ecutes and from where it provides its services. This “space” can only be ac-

cessed by user processes through system calls, which occur when a process re-

quests the kernel to perform something, like a process creation or an I/O com-

munication establishment, etc.

➢ User Space is the “space” in memory where everything the user

does its temporarily saved, from writing a document to running a program.

When a process (instance of a program) is being executed, a copy of that pro-

gram is transferred from the storage into the user space so that it can be ac-

cessed at a high speed by the CPU (central processing unit).

This division of the System Memory aims to prevent the user data to inter-

fere with the kernel data in order to make the system more stable and secure.

Chapter 2. State of the Art

10

2.1.1 Kernel’s components

Even though kernel’s components can vary depending on the operating

system, it can be said that almost every kernel include the following compo-

nents:

1. Scheduler: manages the usage of the kernel time by the various sys-

tem calls done by the processes and also the order by which they will

use it;

2. Supervisor: oversees the computer usage by the processes when it is

their time to use it (time given by the Scheduler);

3. Interrupt Handler: handles the many requests originated by the

hardware devices that compete for the kernel's services;

4. Memory Manager: allocates the system’s memory (i.e. tells the pro-

grams where they should be regarding the memory usage).

Beyond these components, different kernels can have more specific com-

ponents and unlike the BIOS (Basic Input/Output System), which people tend

to confuse with kernel, a computer’s kernel can easy be replaced or upgraded

with more and different components (The Linux Information Project, 2005).

A computer can use one of several different types of kernels. These kernels

vary on their type of architecture and all of them have their pros and their cons

as well as their advocates and their detractors. Based on their architectures they

can therefore be split into four main classifications.

2.1 Kernel

11

2.1.2 Monolithic Kernel

In Monolithic Kernels, all the processing, I/O communicating, devices,

memory and hardware handling, etc. done by the kernel, happen in the Kernel

Space and it also retains full privilege access over the various components un-

der their control.

Therefore, the Kernel Space used by a Monolithic Kernel needs to be larg-

er than the Kernel Space used by other Kernel Architectures, because it focuses

all the necessary code in this space and it deals with all the computer pro-

cessing there. This fact, besides needing greater space usage, makes the code

heavier, slower to load and require its source code to be changed every time the

kernel needs to be updated or fixed.

On the positive side, because of the fact that it condenses all code and pro-

cessing in just one space, it decreases the number of context switches and mes-

saging involved in its provided services making this architecture faster than

other architectures more decentralized.

Linux is a very notorious example of this type of Kernel, where constant

update and replacement is part of the way it has been conceived.

Figure 2.2 – Monolithic Kernel Architecture (Kernel Monolithic, 2008)

Chapter 2. State of the Art

12

2.1.3 Microkernels

In this architecture the Kernel, using the Kernel Space contains only min-

imal amount of functions, such as process management, inter-process commu-

nication (IPC) and memory allocation and transfers all the other services to be

run in the User Space. This allows the kernel code to be split and some of its

functions to be run as daemons (able to be turned on and off when needed, like

normal programs).

Even though these Kernels need a greater amount of context switches and

message trading, making them conceptually slower than Monolithic Kernels,

they are much more responsive, more stable and easier to change and upgrade

due to the lower amount of code they possess in Kernel Space.

One Operating System that makes use of this architecture is the AmigaOS,

due to the fact that it has no memory protection it was able to trade messages

very fast thus overcoming one of the downsides of this architecture.

Figure 2.3 – Microkernel Architecture (Kernel Microkernel, 2008)

2.1 Kernel

13

2.1.4 Hybrid Kernels

Hybrid Kernels, as the name suggests, are a combination of the architec-

ture of both the Monolithic Kernels and the Microkernels. Unlike a Microkernel

where almost every service is run in the User Space, or a Monolithic Kernel

where everything runs in the Kernel Space, a Hybrid Kernel still run many of

its functions in User Space but keep some of them in the Kernel Space.

This approach allows the Kernel to make use of the advantages of both the

mentioned architectures. It combines the speed and simpler design of the Mon-

olithic Kernel with the modularity and execution stability and safety of the Mi-

crokernel architecture.

The best-known example of this Kernel Architecture is the Microsoft NT

Kernel that powers all Windows OS from Windows NT forward, since it makes

use of its ability to use different modules that can communicate with the Kernel

itself and with other modules.

Figure 2.4 – Hybrid Kernel Architecture (Kernel Hybrid, 2008)

Chapter 2. State of the Art

14

2.1.5 Exokernels

This Kernel Architecture is an experimental approach developed by the

Massachusetts Institute of Technology (MIT) that is much smaller in size due to

its limited operability.

Exokernels were built with the intent to eliminate the notion that an oper-

ating system must provide abstractions upon which to build applications. In

order to do this, they impose as few abstractions as possible, instead allowing

application’s developers to efficiently choose to implement or not whatever ab-

stractions are best suited to the applications’ task.

To accomplish this, the Kernel moves the hardware abstractions into un-

trusted libraries located in the User Space, called “Library Operating Systems”

(libOSes). Using those libraries can grant the developers access to different Op-

erating Systems applications, such as, for instance they can simultaneously run

both Linux and Windows applications.

Figure 2.5 – Exokernel Architecture (Kernel Exokernel, 2013)

2.1 Kernel

15

2.1.6 Kernel Architectures Summary

In addition to the listed architectures there are many others with relatively

minor variations. Between the listed ones and all the others, the reason to

choose either one is based not only on the mentioned pros and cons of each but

also depend upon personal choice, reliability, speed and how easy specific

goals can be reached using each Kernel.

On one side of the scale is the Monolithic Kernel that retains full privilege

access over the various components under his control and manages all the sys-

tem by himself from his own personal code and memory space (Kernel Space).

At the other end of the scale, the Microkernel provides as few as possible Kernel

services and negotiates the rest of his functions to user mode components locat-

ed in the User Space. Between them two is the Hybrid Kernel that makes use of

both the Monolithic Kernel and the Microkernel which is the most used by the

modern Operating Systems.

Figure 2.6 – Monolithic Kernel, Microkernel and Hybrid Kernel Comparison (OS Structure,

2008)

Chapter 2. State of the Art

16

2.2 Factories of the Future

Factories are commonly known as buildings or, sets of buildings where

manufactured goods are made from raw materials on a large scale. Factories

began to appear when the population needs became too large for the work-

shops or cottage industry production capacity. In order to keep up with the

population demand of goods, machines were developed to help humans with

the manufacturing of goods. In the factories, a large part of the work is done by

machines while humans are there to operate these machines and to ensure they

are producing the materials with the necessary quality.

With the advent of factories and their growing popularity and use, a new

kind of industry was formed, the Manufacturing Industry. Manufacturing In-

dustry however didn’t remain idle, it kept evolving over the years through sev-

eral paradigms. It started as Craft Production, but quickly evolved to Mass

Production and more recently to Mass Customization.

Figure 2.7 – Changes in Manufacturing Paradigms. Adapted from(S. J. Hu et al., 2011)

In Figure 2.7 we can see the evolution of the Manufacturing Industry par-

adigms over the years on a Variety vs Volume chart.

2.2 Factories of the Future

17

The first paradigm – Craft Production – each product was requested spe-

cifically by a costumer and it was done according to his demands, which trans-

lated, as can be seen in the chart, in a high variety / low volume type of indus-

try. During this paradigm each product was unique, exactly what the costumer

wanted, but it was very expensive. Also the product was made in a single, spe-

cific location and the production was not scalable (S. Jack Hu, 2013).

In order to increase the amount of products made and to reduce their cost,

a second paradigm appeared – Mass Production. With the introduction of this

paradigm the products did have a lower cost, however their variety decreased

drastically as they were made in large volumes where every product looked ex-

actly the same. This paradigm was described very clearly in Henry Ford’s

statement “Any customer can have a car painted any colour that he wants so

long as it is black” (Ford, 1922). During this paradigm lots of changes happened

in the Industry, the division of labour allowed each worker to focus on a specif-

ic repetitive task while an assembly line led all the pieces previously made right

to his hands (S. Jack Hu, 2013), which led to faster production lines and mini-

mal errors due to distraction.

When people got tired of everyone having the exact same products a new

paradigm emerged – Mass Customization – the main goal of this new para-

digm was to provide the costumers who very customized product at the cost of

a Mass Production product. In order to allow a large volume of products com-

ing from a Mass Production to be customizable, this paradigm stated that cer-

tain modules of the product are equal among all the products coming from that

production line, while other modules are provided with several variants

(Herrmann, Schmidt, Kurle, Blume, & Thiede, 2014).

Chapter 2. State of the Art

18

Alongside the need to produce at a Mass scale with the variability of

unique personalized product, the companies that produce those goods are un-

der an ever-increasing pressure to lower the fossil resources usage and conse-

quently reduce the pollution emissions. Therefore, the Factories of the Future

must find a sustainable, environment friendly way to keep producing what the

people are looking for.

In order to be sustainable a Factory of the Future has to address all three

dimensions of sustainability - economy, ecology and society (Herrmann et al.,

2014).

First, in the economy dimension – factories need to keep the production as

high as the demand requests at the lowest cost possible;

Ecologically – factories need to not only meet the governments limits re-

lated to pollution level, fossil resources consumption, etc. but also try to posi-

tively influence its surroundings like recycling its wastes and look included in

the landscape;

Last but not the least a factory must have a positive impact in the people

live, not only make its workers feel needed but also stimulate learning, collabo-

rative work and provide a good working environment.

The ultimate goal of the factory of the future is to interconnect every step

of the manufacturing process. Factories nowadays tend to be more and more

decentralized. They work across domains, geographic boundaries, value chains,

life cycle phases, etc. (OECD, 2011). In order to integrate all their components,

they must resort to a way of “approaching” their most distant parts, and the

best way to do it is through the Internet of Things.

The main purpose of the Internet of Things is to link any type of objects in

the physical world through a virtual representation in the internet. Being able

to maintain connectivity and visibility across operations supply chains and

business partners allows increasing the efficiency in many fields, such as reduc-

ing wastes, improving transport quality and swiftness, reducing manufacturing

time and costs or even eliminating the need of high amounts of stock.

Future factories increasingly want to move away from a make to-stock

manufacturing approach and mass production, and embrace more of a quality-

2.2 Factories of the Future

19

driven, make-to-order approach to meet defined and specific customer needs.

In order to accomplish the mentioned goals, at the heart of the factory of the fu-

ture will be data, visible, comprehensible and actionable (Zebra Technologies,

n.d.).

Making use of the global, physical assets (goods and machines) awareness

provided by the Internet of Things, allowing real time knowledge of their status

and location, and the information stored in the factory data it is possible for the

Factories of the Future to reduce the manufacturing time of goods while still

controlling and reducing defects and eliminating over-production.

Figure 2.8 – Fifteen Components of a Factory of the Future. Adapted from (Lueth, 2015)

The Manufacturing Industry has come a long way since the creating of the

first factories to the idealization and creation of the “Smart” Factories of the Fu-

ture. Processes have been fastened, mass production and mass customization

have been developed and new ways to increase the efficiency have been im-

plemented. Fifteen of the main components that constitute a Factory of the Fu-

ture can be seen in Figure 2.8, and many others are still in development, in or-

der to further meet the pollution limits, the people’s demand and reduce cost

and time of production.

Chapter 2. State of the Art

20

2.3 Web Services for Industrial Internet of Things

Nowadays, due to the increasing development of the technology used in

factories and in industry in general which aim to further improve the way ro-

bots and machines in industry are being more and more interconnected and op-

timized, there is a branch of the Internet of Things (IoT) dedicated especially to

the industry, the Industrial Internet of Things (IIoT).

There is no clear and fully accepted definition of the Internet of Things

(IoT) paradigm, even searching the literature it might be difficult to understand

what IoT really means, which basic ideas stand behind this concept, and which

social, economic and technical implications the full deployment of the IoT will

have. The first place where ideas differ is right on the approach taken by each

stakeholders, business alliances, research and standardization bodies concern-

ing the Internet of Things, each of these start approaching the issue from either

an “Internet oriented” or a “Things oriented” perspective, depending on their

specific interests, finalities and backgrounds (Atzori, Iera, Atzori, Iera, & Mo-

rabito, 2010).

According to (Atzori et al., 2010), the very first definition of IoT derives

from a “Things oriented” perspective; the considered things were very simple

items: Radio-Frequency IDentification (RFID) tags and the term “Internet of

Things” is, in fact, attributed to The Auto-ID Labs (Auto-ID Labs) a world-wide

network of academic research laboratories in the field of networked RFID and

emerging sensing technologies. However, the semantic origin of the expression

is composed by two different words bearing different concepts, while “Inter-

net” can be defined as “The world-wide network of interconnected computer

networks, based on a standard communication protocol”, “Things” is “an object

not precisely identified. Thus, when putted together the words “Internet” and

“Things” in “Internet of Things” assume a semantical meaning of “a world-

wide network of interconnected objects uniquely addressable based on stand-

ard communication protocols” (On, Ystems, Ep, & Lange, 2008).

2.3 Web Services for Industrial Internet of Things

21

Simply put, such as (Jeschke, Brecher, Meisen, Özdemir, & Eschert, 2017)

ascribes to (Atzori et al., 2010), “The Internet of Things (IoT) is an information

network of physical objects (sensors, machines, cars, buildings, and other items)

that allows interaction and cooperation of these objects to reach common

goals”. The Internet of things has today many applications such as transporta-

tion, healthcare, smart homes and industrial environments (Whitmore,

Agarwal, & Xu, 2016). When applied to the last, it can be called “Industrial In-

ternet of Things” (IIoT). Its main purpose is to transform the way field assets

(e.g., machines or robots) connect and communicate within a factory or between

factories, resorting to the use of sensors, advanced analytics, and intelligent de-

cision making (Wang, Wan, Li, & Zhang, 2016). Through it sensors, machines,

and Information Technology (IT) systems will be able to interact with one an-

other using industrial internet technology and send constant and real-time re-

ports to whom they may concern.

According to a study commissioned by Forrester Consulting, 67% of the

surveyed manufactures are concerned with lack of standard interfaces and in-

teroperability challenges (Forrester Consulting 2015). Some efforts are being

made in order to implement the IIoT in today’s industry, starting by addressing

the standardization challenges, promoting open interoperability and the wide-

spread usage of a common architecture. International Electrotechnical Commis-

sion (IEC), Standardization Management Board (SMB), for instance, has estab-

lished in 2014 a Strategy Group, SG8, to deal with a number of tasks related to

smart manufacturing, whose primary focus is to “leverage the adoption of cur-

rent and next generation technologies to achieve safe and secure factory opera-

tions” (IEC.ch). The Industrial Internet Consortium (IIC) was founded with the

purpose to, among other things, further improve the industry by accelerating

the development, adoption, and widespread use of interconnected machines,

devices, and intelligent analytics (IIC.org). Also the Institute of Electrical and

Electronics Engineers (IEEE) Project P2413 and OneM2M, aim to focus on de-

veloping an architecture framework for IoT and defining how devices and ser-

vices are used in the IoT communication, (IEE, 2016) and (onem2m.org).

Despite all this progress and improvement, there are still many ways to

where IIoT can be further improved and optimized. According to (Jung, Wat-

Chapter 2. State of the Art

22

son, & Usländer, 2017) test-beds for smart production technologies (called ex-

perimental factories) have been created with the purpose of establishing in-

teroperability guidelines and applying new IT technologies in existing auto-

mated systems, and thus demonstrate how technologies from different organi-

zations can work together and support new innovations. However, still accord-

ing to (Jung et al., 2017) has been no attempt to interconnect these experimental

factories and allow them to flexibly adapt their production capabilities based on

cross-site demands, so a project was created by Korea Evaluation Institute of

Industrial Technology (KEIT) to build a way to easily interconnect different fac-

tories in order to meet all the demands (keit.re.kr).

In order to manage the usage of all these smart embedded devices in in-

dustry, applications become necessary to better integrate real-time state of the

physical world, and hence, provide services that are highly dynamic, more di-

verse, and efficient. To incorporate these applications Service-Oriented Archi-

tecture (SOA) is in order, traditionally used to couple functionality of heavy-

weight corporate Information Technology (IT) systems, and besides, in such in-

frastructures, composed of large numbers of networked, resource-limited de-

vices, the discovery and usage of remote services is a significant challenge

(Guinard, Member, Trifa, & Member, 2010). Web Services can, therefore, be

used to allow each device to offer its functionalities and, at the same time, dis-

cover and invoke others functionalities offered by services of other devices dy-

namically and on-demand, as suggested by (Karnouskos, Baecker, & S, 2007).

To keep the available Web Services always accessible and organized the

Universal Description, Discovery and Integration (UDDI) registry is widely

used (for example the jUDDI by OASIS, https://juddi.apache.org/). The usage

of UDDI allows the Web Services to be easily found and used, and furthermore,

their registration and discovery turns transparent to the Web Services provid-

ers. According to (Qian, Baokang, Yunjian, Jinshu, & You, 2014), there are 3

roles in SOA: Service Provider, Service Registration Centre and Service Reques-

tor, and is in the Service Registration Centre, that the Web Services are stored.

There, the UDDI gives descriptive information related to the Web Services and,

at the same time, also includes the standard specifications of Web services in-

formation registry (Liu, Liu, & Chao, 2007).

https://juddi.apache.org/

2.3 Web Services for Industrial Internet of Things

23

Web Services can be provided through Cloud Computing, especially as

Software as a Service. In Cloud Computing environment, all the computing in-

frastructure resources are provided as services over the Internet, like Infrastruc-

ture as a Service(IaaS), or Platform as a Service (PaaS) or Software as a Service

(SaaS) (like the Web Services), etc. Also, Cloud Computing is very used in Ser-

vice Oriented Architectures (SOA) which are mainly implemented by Web Ser-

vices (Duan, Yan, & Vasilakos, 2012), and because computer systems leased

from a cloud service provider, are typically connected to internet, they can host

web services. Such architectures have recently been adopted in factory automa-

tion, as they allow systems to reach high levels of decentralization. Those SOA-

based Factories systems become able to combine physical production equip-

ment with Web Services that belong to the information processing (cyber) do-

main, and that can be deployed on cloud resources (Puttonen, Lobov, Soto, &

Lastra, 2016).

Chapter 2. State of the Art

24

2.4 FIWARE

FIWARE or FI-WARE is a community founded by the European Union

whose goal is to provide a middleware platform where developers can create

and deploy applications and services for the Future Internet. Once a service or

application is created, they are filed in FIWARE Catalogue where anyone can

open and use them at their own free will since they all are stored in a public

and royalty-free platform.

This FIWARE community is an open one, which is formed no only by the

developers of the technology but by all those who contribute to materialize the

FIWARE mission: “to build an open sustainable ecosystem around public, roy-

alty-free and implementation-driven software platform standards that will ease

the development of new Smart Applications in multiple sectors” (Fiware.org,

2016).

In order cover a large variety of purposes the FIWARE Community has

some sub-programs besides the core FIWARE program where it provides a set

of APIs (Application Programming Interfaces) like previously mentioned.

Among these sub-programs, one can find:

FIWARE Lab – where the users can test the provided technology or their

own, in some experimental infrastructures developed by the FIWARE commu-

nity where entrepreneurs and domain stakeholders can meet;

FIWARE Accelerate – where interested developers are encouraged to de-

velop new bold solutions to further improve the FIWARE platform. This pro-

gram focuses mainly in SMEs (Small and Medium-sized Enterprises) and start-

ups.

FIWARE Mundus – Program which ambitions are to turn the Europe-size

community into a worldwide community, reaching foreign stakeholders and

governments.

2.4 FIWARE

25

FIWARE iHubs – as the name implies, aims to create operational Hubs

nodes in order to build communities of adopters and contributors at a local lev-

el.

Further information about the FIWARE platform and community can be

found on their original website (www.fiware.org).

One of the many applications that the FIWARE platform can have is in the

Smart Cities domain. Many of the developments achieved in the FIWARE

community can be used to improve the concept of the Smart Cities creating

smart cities applications which in time will attract enterprises and start-ups

who will further innovate and provide a better city for citizens and businesses

(Crouch, 2015).

 In the FIWARE Catalogue is present a rich library of components, al-

ready programmed, implemented and ready to be used and/or changed by an-

yone since they are all public royalty-free and open source, called Generic Ena-

blers. There, Enablers can be found which can be used in many different con-

texts such as:

➢ Internet of Things (IoT) Services Enablement;

➢ Advanced Web-based User Interface;

➢ Security;

➢ Interface to Networks and Devices (I2ND);

➢ Architecture of Applications/Services Ecosystem and Delivery

Framework;

➢ Data/Context Management;

➢ Cloud Hosting.

 In the last two are included not only the Enablers used during the devel-

opment of this thesis “FIWARE Orion Context Broker”, described in chapter

3.5.2 and “FIWARE Short Time Historic (STH) – Comet”, described in chapter

3.5.3, but also the program used to run these enablers, the “Docker” described

in chapter 3.5.1.

http://www.fiware.org/

Chapter 2. State of the Art

26

2.5 IoT as a Service

The Internet of Things presupposes the interaction between innumerable,

physical world objects and their virtual counterparts, allowing these objects to

capture and send information to the Internet. Or as defined by (Lake, Rayes, &

Morrow, 2012), “the Internet of Things (IoT) consists of networks of sensors at-

tached to objects and communications devices, providing data that can be ana-

lysed and used to initiate automated actions”. In order to integrate all these

physical objects with the digital world, there is necessary to find a way to make

them accessible in the Internet, and therefore an Internet of Things as a Service

approach, is necessary.

2.5.1 Model

The first step to making the “Things” from the Internet of Things, accessi-

ble is the creation of a model through which, the physical “things”, can be

found and accessed. According to (Bauer, Martinbauerneclabeu, & Meissner,

2011), the research, so far developed, in this area has focused mainly on “sensor

descriptions and observation data modelling” that offer sensor measurement

data services on the web. The SENSEI Project (Herault & Presser, 2008), for in-

stances (a project created with the intention of developing a framework of uni-

versal service interfaces for Wireless Sensor and Actuator Networks (WSANs))

made use of a resource model to capture resource functionalities and discover

where and how they could be accessed. It would then publish that information

in a repository, where it could be accessed by specific ontologies.

In the SENSEI Project, like mentioned before, the core modelling concept

is the “resource”, which implies that all sensors, actuators, processors, etc. are

there modelled as resources. Let us take as an example of a model, the IoT

model used in this SENSEI Project context depicted in Figure 2.9.

2.5 IoT as a Service

27

Figure 2.9 – IoT model: key concepts and interactions. Adapted from (Bauer et al., 2011)

In Figure 2.9, it is easy to see how an Entity, which has a Device attached,

here associated with a Resource (a norm taken by the SENSEI Project), can be

accessed through a service provided in the Internet.

2.5.2 Framework

Step two, in the Internet of Things as a Service paradigm is the creation

and usage of a Framework. In order to make the paradigm accessible to every-

one, no matter if they are a big industry or a small anonymous people, and to

make sure all will benefit from it, an open service framework needs to be creat-

ed. Once this open service framework is created and available to everyone it can

bring many advantages to everyone’s lives, service providers, device develop-

ers, software developers, consumers, etc.

According to (Kim & Lee, 2014), even though there have already been

made some IoT Frameworks, those were mainly created by big enterprises such

as governments or companies and are mostly based on B2B (Business to Busi-

ness) and B2G (Business to Government) business models. However, there are

also open service platforms for IoT, of which the best-known example is Cosm,

former Pachube, and recently purchased by cloud computing service provider

LogMeIn and called Xively (xively by LogMeIn). This IoT PaaS (Platform as a

Service), allows developers and companies to connect IoT devices and Apps to

Chapter 2. State of the Art

28

securely store and exchange data. Through Web–based registration service it

allowed users to control, monitor, and analyse data collected from IoT devices,

besides giving them a way to search and find those devices (Kim & Lee, 2014).

Another open service framework currently deployed is EVRYTHNG that, as

described by (Kim & Lee, 2014), grants every physical thing an Active Digital

Identity (ADI), and provides to the device and software developers, all the nec-

essary tools to create new services and applications to the everyday items and

devices (EVRYTHNG, n.d.).

In (Kim & Lee, 2014), an open service framework for IoT is presented

where a developer-oriented structure is used to encourage developers to create

and make available App/Web Software and services to the users. On the users

side a quick search for IoT services and devices is offered, and when they in-

tend to connect to the searched IoT device, the software related to that device is

downloaded to their smartphone or tablet or etc. and its provided service is

made available. The architecture used in this open service framework is depict-

ed in Figure 2.10.

Figure 2.10 – OpenIoT framework. Adapted from (Kim & Lee, 2014)

2.5 IoT as a Service

29

At the framework presented in Figure 2.10, an open API (Application Pro-

gramming Interface) is used, as well as a Planet Platform (described as “a server

platform for IoT device registration, management, monitoring, and search in

the global IoT environment”), a Device Platform (software platform “to help

connecting and cooperating things to Open IoT platforms and application soft-

ware”), a Store Platform (“App/Web store containing applications or links to

Web address that provide user services through interaction between IoT devic-

es or Mashup Platforms”) and finally a Mashup Platform (“service platform for

providing new integrated services based on data sets collected from IoT devices

and its mashup of information over the Internet”) (Kim & Lee, 2014).

2.5.3 Mashup

Also needed to allow further development of the IoT model or framework

is a Mashup. The idea behind a “Mashup” is to create new content by reusing

or recombining previous existing content from various sources thus allowing

people who do not master all programming languages to easily build new Web

Applications, or others, by providing some easy-to-use functionalities. A

Mashup is, therefore, a way to compose a new service from existing services

and, “when applied directly to the Web domain, a Mashup is a Web-based ap-

plication that is created by combining and processing on-line third party re-

sources that contribute with data, presentation or functionality” (Koschmider,

Torres, & Pelechano, 2009).

Unlike regular Web Services that are provided in a specific domain and

available at any time in the web, IoT devices, providing a service, are not al-

ways available and not always working in the same place. In addition, it is also

important to realize that, when allied with the IoT, the number and variety of

connected devices will be vast, and because of the fact that they will probably

be producing real-time streaming data, the necessary computation power re-

quested to the Mashup will be huge. This leads to the conclusion that, maybe,

the “physical web mashups” (mixing real-world devices with virtual services

on the Web) used nowadays, may not be enough to be used alongside the IoT

(Guinard, 2010). An alternative solution is presented in (Im, Kim, & Kim, 2013),

Chapter 2. State of the Art

30

where an IoTMaaS (IoT Mashup as a Service) is introduced.

According to (Im et al., 2013), IoTMaaS is defined as “a mashup of things,

software, and computation resource”, and is presented as a cloud-based IoT

mashup service model. In IoTMaaS, thing is described as “any identifiable ob-

ject which can have sensing and actuation services; software is an “assembly

description of software components”; and computation resource is “a current

computer model consisting of CPU, memory, disk, persistent storage, network,

etc. How these components interact with the IoT world is depicted in Figure

2.11.

Figure 2.11 – IoTMaaS (IoT Mashup as a Service) concept. Adapted from (Im et al., 2013)

When applied to the Internet of Things, the IoTMaaS, whose concept is

depicted in Figure 2.11, allows every IoT device to provide its service disregard-

ing which platform it works on or which protocol it uses to communicate, be-

cause regardless of this vast heterogeneity of devices they are all treated equally

by the IoTMaaS. Therefore, users and or developers can make use of all their

IoT devices and enhance their functions resorting to this Mashup.

2.6 From the State of the Art to this Thesis concept

31

2.6 From the State of the Art to this Thesis concept

As stated in this thesis’ State of the Art, the kernel is the central part of a

computer operating system and serves, among many other things, as a bridge

between hardware devices and the software applications accessing those devic-

es, whether they are I/O devices, plugged devices or IoT devices. The applica-

tions developed during this thesis’ elaboration will make use of IoT devices and

the services provided by them to offer contributions to the users and to the vf-

OS project itself. Therefore it is important to understand the how the interaction

between those devices and the vf-OS Manufacturing Operating System will

happen, and that interaction happens through the system kernel.

Both the vf-OS project and this thesis’ scenario in particular, purpose is to

provide some contributions to the development of the factories of the future.

Even though this thesis’ applications were developed primarily to the agricul-

ture scenario, with minor changes they can be used at any other strand includ-

ed in the Factories of the Future paradigm.

In order to apply the perks of the IoT to this Factories of the Future world,

there are many ways to interconnect the physical world objects and the soft-

ware systems through a service oriented approach. Some ways are presented in

this thesis’ State of the Art, such as the usage of Web Services to offer online, the

services provided by a certain IoT device. In addition to the Web Services, an-

other approach to create an IoT service oriented system, is the usage of cloud

computing to allow the IoT devices functions to be made available online. Some

Generic Enablers provided by the European FIWARE make use of a cloud com-

puting system to make available online the functions provided by IoT sensors.

After briefly going through all these essential aspects, the environment

under which this thesis is developed is fully contextualized (the Kernel where

the vf-OS that includes this thesis’ project aims to provide solutions, the Facto-

ries of the Future where this project is to be applied, Web Services for Industrial

Internet of Things as an alternative way to implement the IoT Service Oriented

System, the FIWARE which provides the technology used during this project

development and the IoT as a Service which is the main focus of this thesis’ pro-

ject).

Chapter 2. State of the Art

32

2.7 Research Question and Hypothesis

This master thesis project aims to show and provide a way to encompass

physical objects working under an IoT approach to be used in a Service Orient-

ed System. In order words, this thesis intends to show a way of how it is possi-

ble make available online, the services and functions provided by IoT devices,

or as its title states, present a Framework for IoT Service Oriented Systems.

In order to further clarify the goal of his master thesis project a Research

Question and a Hypothesis were created with the help of the UNINOVA devel-

opers of the vf-OS Project.

After analysing what was already available in the market and which were

the vf-OS needs, the Research Question found to guide the thesis development

according to the market and he vf-OS needs was:

“How can a framework provide guidance to make IoT services discovered

for effective use?”

To answer this question, and once again to guide the thesis development

and answer the market and the vf-OS needs, a Hypothesis was generated. The

produced Hypothesis intends to cover not only the thesis main objective, which

is the implementation of an IoT service oriented system, but also the technology

used for this purpose and its advantages for this goal. Thus, the produced Hy-

pothesis was:

“If the FIWARE technology can provide modularity and discovery solu-

tions then integrate IoT devices through generic enablers will facilitate IoT ser-

vice oriented implementation and use on manufacturing systems.”

33

3 Practical Framework

In this chapter, is presented the practical framework under which this

master thesis is developed. This master thesis is developed under the European

vf-OS Project and is supervised by the UNINOVA institute. The main goal of

this thesis is to provide small contributions to the vf-OS Project, explained in

this chapter. In order to provide such contributions, the Use Case Scenarios pre-

sented in the projected were addressed and a real-life scenario was created.

Combining the created scenario and the generic Use Case Scenarios, five inter-

connected applications were developed in order to provide answers to both the

Use Case Scenarios and the practical scenario at the same time.

In addition to the project which holds this master thesis development, the

Use Case Scenarios addressed and real-life scenario created, also the technolo-

gies used to develop the applications are presented in this chapter. Among the

used technologies are the FIWARE Generic Enablers. The usage of these open

source European technologies allows the vf-OS components, and therefore

these thesis’ applications, to become as generic and standard as possible allow-

ing them to be used by anyone regardless of the FoF field on which they are us-

ing them, factories, manufacture, agriculture, etc.

3

C
H

A
P

T
E

R

Chapter 3. vf-OS (virtual factory - Operating System)

34

3.1 vf-OS (virtual factory - Operating System)

Like previously mentioned, the European vf-OS Project aims to be an

Open Virtual Factories Operating System, including a Virtual Factory System

Kernel (vf-SK), a Virtual Factory Application Programming Interface (vf-API)

and a Virtual Factory Middleware (vf-MW) specifically designed for the facto-

ries of the future. This Open Framework will be able to manage the overall

network of a collaborative manufacturing and logistics environment, and there-

fore enable humans, applications and devices to communicate and interoperate

in the interconnected operative environment. Plus, the vf-OS will provide a set

of Open Services, rooted in the cloud and instantiated at the vf-OS Platform,

moving the industry from the device-centric to the user-centric paradigm. This

Open Platform is to be linked by strong and advanced ICT (like CPS, IoT

Cloud-Models, M2M, etc.) in order to fulfil the actual need on the market for

open services interoperability based on data exchange. When it comes to hard-

ware functions, the OS will act as an intermediary between the applications be-

haviours of the factory and the factory hardware itself. This will enable the ap-

plication factory functionalities and services to be virtualized and executed, ei-

ther directly by the hardware either through system calls to the OS.

The vf-OS, deployed in a cloud platform provide a range of services to the

connected factory of the future to integrate better manufacturing and logistics

processes. In order to do so, the vf-OS intends to not only create new technolo-

gies but also greatly re-use existing tools (especially Open Source ones) and

technologies (especially standardised ones). Like a regular OS, the vf-OS com-

prehends core functionalities, but mainly focused in a manufacturing environ-

ment. An analogy between some components of a regular Software OS and the

vf-OS Manufacturing OS is presented in Table 3.1 (adapted from the vf-OS

technical sheet).

3.1 vf-OS (virtual factory - Operating System)

35

Table 3.1 – Analogy between Software OS and vf-OS Manufacturing OS.

Software Operating System
Virtual Factory -

Operating System (vf-OS)

Kernel Virtual Factory System Kernel (vf-SK)

Processor, Memory, Internal Bus
Framework, Generic Enablers,

Manufacturing Enablers

I/O
Virtual Factory Application

Programming Interface (vf-API)

Interfaces, Peripherals,

Device Drivers, APIs

Devices Drivers, APIs Connectors,

Security & Data Access

File and Data handling Virtual Factory Middleware (vf-MW)

Interfaces

Data Infrastructure Middleware,

Data Storage, Data Harmonisation,

Data Analytics

Chapter 3. Use Case Scenarios

36

3.2 Use Case Scenarios

As described before, the vf-OS intends to be the reference system software

for managing industry related computer hardware and software resources and

providing common services for industry computational programs. This operat-

ing system will be the component of the system software in a real industry sys-

tem where all industry application programs will run. To accomplish this, some

generic case scenarios have been established which can be addressed with the

vf-OS Platform and its Smart Applications.

The current industrial environment faces some problems related to specif-

ic industries and respective sectors. The Use Case Scenarios identified in the vf-

OS project intend to create various applications that meet the users’ needs in

order to solve some of the identified problems. The existing scenarios and the

solutions presented are described to a good extent by following a common

methodology for all the industrial sectors.

The developed scenarios integrate both industrial and user scenarios as

they propose to produce advanced technical solutions to some of the existing

industrial scenarios by developing suitable applications, whereas the user sce-

narios are described following a standard methodology through well-defined

objectives, processes, actuators and possible sets of data. The scenarios ad-

dressed by the vf-OS project capture the needs of different industrial sectors

and process domains as well as providing the guidelines for applications to be

developed in order to meet these needs.

Table 3.2, shows the generic use case scenarios developed by the vf-OS project

as well as a brief description of the scenario and the relationship between the

solutions’ application and the market needs and expectations.

3.2 Use Case Scenarios

37

Table 3.2 – vf-OS Generic Use Case Scenarios.

Name Description

vOrder

Handle customer orders that can be shared between order

manager / production manager or ordering departments / fi-

nancial department or directly within a supplier (it depends

on the usage). This app can also be used to returning process

by clients.

vProductMon

Real-time monitoring on the status of a production, having the

possibility to identify flaws and inform production managers

that can immediately react.

vfSalesLead

Help salesperson to identify sales leads in his region, and

segment territories into employee count, competitor, and loca-

tion.

vfColPlan Provide tools to compute collaborative plans.

vfNegDemand

Visualize and negotiate demand plans in real time. The appli-

cation connects to production plan and data is shared with

providers, in order to validate the demand plan, supporting on

line negotiation.

vfMan

Integration of CPS concepts to identify unexpected manufac-

turing events, the estimation of their impacts (in terms of qual-

ity, time, and quantity) and the decision of next operation.

vfPhyt

Monitor consumption of phytosanitary products in agricultur-

al productions to support demand management, taking into

account quality requirements for the final product.

vfHarvest

Optimize the harvest process integrating data from crops, lo-

gistic and manufacturing process to optimize resource utiliza-

tion and final product quality.

vfFail
IoT application for the automatic registration of spare-part

failures in automation production equipment.

vfPayment
Allow making payments after a negotiation process by inte-

grating different payment gateways.

Chapter 3. Use Case Scenarios

38

vfMyCon
Interface with smart meters and provide energy consumptions

and saving strategies.

vfColPurchase
Provide option for collaborative purchase (reduction on lo-

gistic costs and better deals with suppliers).

vf3DViewer
Allow production employees find and view product parts via

interactive 3D images.

vfProducts
Provide tools to store all relevant documentation regarding the

manufacturing of products.

vfAdaptation
Provide a list of best practices and workflow processes to per-

form when failures and monitor alarms occur.

vfNegotiation

Competencies and resources sharing. A negotiation support

environment for the co-creation of products and business ser-

vices.

3.3 Practical Scenario

39

3.3 Practical Scenario

As said before the Factories of the Future comprise not only factories for

themselves but also other strands, such as the manufacture, the agriculture, etc.

In order to show the vf-OS wide range of applications and also to provide solu-

tions to a gap found in the smart agriculture environment, an agriculture sce-

nario was created. Through the usage of computers, IoT devices, cloud and

smart applications in the agriculture world, an automatization of procedures

can be achieved and that is what this thesis applied to this scenario proposes to

do.

The scenario consists of an applications-assisted fruit production chain,

covering every step, i.e. every step of the food chain is meant to be monitored

and controlled by IoT devices accessible through applications.

The process begins with the harvesting of various types of fruits by sever-

al different farmers, in fields monitored by IoT devices (sensors, actuators, etc.).

The collected fruit is then manually or automatically split according to different

factors (type, size, weight, brand, quality, etc.), and stored in boxes grouped by

the mentioned factors. When a buyer seeks a buy a specific type of fruit with

specific features, makes use of a buying application where he can find the

sellers of the fruit with those specifications and from where he can emit an or-

der to acquire the fruits taking into account the price of the fruit, the seller, the

quality etc.. Once the buying order reaches the producer, the latter dispatches

the fruit using trucks equipped with IoT devices (sensors) in order to ensure the

quality of the transported fruit. The producer, while dispatching his fruits is

able to control, in real time, all the steps taken by the fruit since the its harvest

to the time the fruit is delivered to the buyer. Besides, he is always aware of any

faults or failures occurring during the process as well as keeping track of the

amount of fruit that is being harvested, shipped, or removed due to not being in

conformity with the quality standards.

In Figure 3.1 is presented an illustration of the described scenario.

Chapter 3. Practical Scenario

40

Figure 3.1 – Practical Scenario Illustration

All the steps enumerated in Figure 3.1 can be found listed and summarily

explained in Table 3.3.

Table 3.3 – Scenario Steps Explanation.

Steps Explanation

1 Fruit harvest, controlled by IoT Devices

2 Fruit selection, separation (manually or automatically by IoT devices)

3
Farmer automatic track of things through IoT devices (amount and

quality of fruit, faults and failures, spare boxes, etc.)

4 Buyer selection of type of fruit, size and farmer

5 Buying order

6 Monitoring transport to ensure success delivery (through IoT sensors)

i Monitoring production and checking for failures

3.4 From the Scenarios to the Applications

41

3.4 From the Scenarios to the Applications

After aligning the given generic Use Case Scenarios with the created real-

life practical scenario, five interconnected applications were found that making

use of the described Use Case Scenarios functionalities could provide all the

tools required to implement the scenario. Those five applications were divided

between the work group of students doing their Master Thesis in the vf-OS Pro-

ject, and to each of them a more concise summary was made, always having in

mind the generic use of the source Use Case Scenario but now addressing the

practical scenario in particular.

➢ vfHarvest:

To have a productive process, sensors can be used in all phases of the

production to know if it is going according to the plan. The machines can

also have sensors attached to them, to know if it they are working correct-

ly.

All productions want to have the most efficient production, without

changing its quality, to have more profit on each product.

One application of vfHarvest is having sensors in different fields and

on the production lines. If the sensors have different values, then some-

thing is not correct, and for this reason the production will not be efficient.

➢ vOrder:

A platform accessible to the farmers who shipped goods and the

buyers who bought them, allowing both of them to control and verify the

transport conditions and the safe arrival of the products.

Platform also accessible to the transport providers for them to be able

to create and add trucks to a specific farmer’s fleet.

➢ vFail:

The spare parts take some time to be delivered in the factory, and ac-

cordingly to the stages of the spare parts supply chain: demand forecast,

planning, supply, manufacturing, distribution, storage, and replacement,

it should exist one application to forecast the spare parts demand.

Chapter 3. From the Scenarios to the Applications

42

This problem is also affected by the non-visibility of equipment op-

eration indicators and status.

When the production is stopped due to the lack of spare-parts, its

production decreases and it can stop.

To packing the products, there are always present packing boxes.

Some are used by real-time production, and others are stored, which will

be used in a near-future. There must be an application that knows when to

order new packing boxes.

➢ vProductMon:

Only check the current status and the expected status. If the result is

different, then notify the stakeholders.

In agricultural scenario, it can be used in packing fruits, the shipment

must contain the expected packages and correct weight and size. If neither

of this is correct, the seller must be alerted and the buyer must know that

don't have the expected merchandise.

➢ vfNegotiation:

The buyer must choose, between all its resellers, the most desirable

one, according to different factors.

In most of the interactions, between one agent who produces the

goods and the other agent who buys the goods, the purpose of the negoti-

ation is to make the better negotiation choice, between several agents.

There must be a list of agents to choose and one algorithm to choose one

of them.

In Figure 3.2 are presented all the five interconnected applications built

from the Use Case Scenarios and that together answer the real-life scenario, and

the connections that exist between them

3.4 From the Scenarios to the Applications

43

Figure 3.2 – Use Case Scenarios Applications applied to the Practical Scenario

This thesis in particular, addresses the solution of the vOrder and the

vfNegotiation applications.

Chapter 3. Technologies

44

3.5 Technologies

As presented in the State of the Art of this Master Thesis there are several

different ways to handle IoT devices and the services they provide. The most

commonly used are the Web Services, that allow an IoT device to provide his

services over the Internet. However, for the purpose of this thesis a different

technology was used. The FIWARE program owned by the European Union

has many open source Generic Enablers accessible in their website, and since

this thesis falls under a project being developed for the European Union it

makes all sense to use this FIWARE technology during the development of the

vf-OS project.

For the development of the first application on which this thesis focuses,

the vOrder, two FIWARE GEs were used:

1. FIWARE Publish/Subscribe Context Broker Generic Enabler - Orion

Context Broker;

2. FIWARE Short Time Historic (STH) – Comet.

For the development of the second application, vfNegotiation, only one

FIWARE GE was used:

1. FIWARE Publish/Subscribe Context Broker Generic Enabler - Orion

Context Broker.

Before addressing these GEs however, it is important to mention another

technology that made possible and easier the usage of both this FIWARE GEs,

the Docker.

3.5 Technologies

45

3.5.1 Docker

Docker is a container platform software created by the Docker,Inc. com-

pany, i.e. it is an open source project that allows the deployment and usage of

applications from within software containers. Using these containers, it be-

comes much easier to create, deploy, and run applications from any computer

using Docker without any need to install further applications and also insuring

that the software will always run the same, regardless of where it is deployed

or how many co-workers are working on it at the same time, from different

platforms.

A container image is a lightweight, stand-alone, executable package of a

piece of software that includes everything needed to run it: code, runtime, sys-

tem tools, system libraries, settings (Docker, 2017). A container is therefore a

place where a developer can package up an application with all of the parts it

needs to run, and ship it all out as one package. Containers are in many ways

similar to a Virtual Machine, with the fundamental difference being that unlike

VMs, containers do not bundle a full operating system, only libraries and set-

tings required to make the software work. Containers provide an additional

layer of abstraction, which allows multiple containers to run on the same ma-

chine within the same OS kernel making use of isolated processes in the user

space.

Figure 3.3 – Container vs Virtual Machine comparison (Docker, 2017)

Chapter 3. Technologies

46

By using Docker, it has been made possible to use either the FIWARE GEs

without having to install or configure the enablers or any other programs they

would need, such as the databases and others.

As previously mentioned all the FIWARE GEs are open source and can be

acquired through the GitHub platform and have their own Docker container

there, accessible to everyone.

3.5.2 FIWARE Orion Context Broker

The Orion Context Broker is an implementation of the Publish/Subscribe

Context Broker GE used to develop a Data/Context Scenario through the

NGSI9 and NGSI10 interfaces (Next Generation Services Interface).

In order to deal to physical devices through an Internet approach i.e. to

create the so called IoT devices, FIWARE associated with OMA (Open Mobile

Alliance) to create the NGSI concept which enables a transition from device-

level information to Thing-level information and vice versa. In order to accom-

plish so, two interfaces were created NGSI9 and NGSI10. Both are RESTful APIs

via HTTP but with slight differences. While NGSI10 purpose is to exchange

context information, the NGSI9 is used to exchange information about the

availability of context information.

NGSI10 technology has three main interaction types, which are (NGSI10,

2014):

1. one- time queries for context information;

2. subscriptions for context information updates (and the correspond-

ing notifications);

3. unsolicited updates (invoked by context providers).

All the functionalities that the NGSI10 interface processes can be seen in

the resource tree presented in Figure 3.4.

3.5 Technologies

47

Figure 3.4 – NGSI10 Schema of REST resources (NGSI10, 2014)

Coloured yellow on both figures (Figure 3.4 and Figure 3.5) are listed the

common functionalities, shared by the NGSI10 and NGSI9. Coloured green are

the functionalities specific to the NGSI10 that permit the exchange of context

information, allowing interaction via HTTP ‘POST’. These NGSI10 specific

functionalities can be found listed and explained in Table 3.4.

Chapter 3. Technologies

48

Table 3.4 – NGSI10 specific functions.

NGSI10 Operation Explanation

/queryContext
Retrieve information (through a query) from an

entity

/subscribeContext
Ask to be informed every time an attribute of

the entity changes

/updateContextSubscription
Modify the change that needs to happen to an

attribute in order to be notified

/unsubscribeContext
Delete the need to be notified on change (on

that entity)

/updateContext Update some information present in the entity

When it comes to the NGSI9 technology, it has its own three main interac-

tion types, which are (NGSI9, 2014):

1. one- time queries for discovering hosts, where certain context infor-

mation is available;

2. subscriptions for context availability information updates (and the

corresponding notifications);

3. registration of context information, i.e. announcements that certain

context information is available (invoked by context providers).

All the functionalities that the NGSI9 interface processes can be seen in the

resource tree presented in Figure 3.5.

3.5 Technologies

49

Figure 3.5 – NGSI9 Schema of REST resources (NGSI9, 2014)

Once again coloured yellow are listed the common functionalities, shared

by the NGSI10 and NGSI9. Coloured green are the functionalities specific to the

NGSI9 that permit the exchange of context information, allowing interaction via

HTTP ‘POST’. These NGSI9 specific functionalities can be found listed and ex-

plained in Table 3.5.

Chapter 3. Technologies

50

Table 3.5 – NGSI9 specific functions.

NGSI10 Operation Explanation

/registerContext Register an entity

/discoverContextAvailability Discover if a given entity exists

/subscribeContextAvailability
Ask to be informed whenever a given

entity begins or ceases to be available

/updateContextAvailabilitySubscription
Change the reason why the above-

mentioned information should arrive

/unsubscribeContextAvailability
Delete the need to be notified on an

entity availability

A NGSI context element is a representation of an entity through a data

structure. This context element is where all the information about an entity will

be stored. The information that makes this data structure entity is kept in spe-

cific fields within the structure, as shown in Table 3.6.

3.5 Technologies

51

Table 3.6 – NGSI9/NGSI10 Context Element (Entity) structure.

Name Information

Type Type of Entity (Room, Car, etc.)

ID Entity Name (Room1, Car2, etc.)

Attribute

Name
Name of the attribute (Temperature, Hu-

midity, etc.)

Type
Type of the value of the attribute (Integer,

Float, etc.)

Value Value of the attribute

Metadata
Information specifically related to that en-

tity’s attribute.

Metadata

Name Name given to the metadata field.

Type Type metadata field

Value Metadata information/value

As happens with the entity ID field, also the attribute Name field must be

unique, i.e. each entity cannot have two attributes with the same Name. How-

ever, the FIWARE Orion allows the developer to, in case of wanting to have

two attributes sharing the same name (for example a truck who has two tem-

perature sensors, one in the front and one in the back), create two instances of

the attribute, with the same name, as long as a metadata for each attribute is

created with the Name (metadata name field) filled as “ID”. Using this “trick”

the developer can have an entity with two attributes with the same name where

each of the attributes have a Metadata with the name “ID” and different values

(metadata value field).

The information presented in Table 3.6, can be seen simply schematized in

Figure 3.6.

Chapter 3. Technologies

52

Figure 3.6 – NGSI9/NGSI10 Context Element (Entity) schematized structure

With the information presented in Table 3.6 and schematized in Figure 3.6,

it is easier to better understand the main difference between NGSI10 and

NGSI9. While NGSI10 is used to exchange information about the entities them-

selves (their attributes or metadata values), the NGSI9 is used for availability

information about the entities and their attributes. Here, instead of exchanging

attribute values, information about which entity can provide a certain attribute

value is exchanged.

Using both the described NGSI interfaces the FIWARE Orion Context

Broker makes possible the creation of entities with all the listed information.

Making it also possible to update that information and to subscribe to that in-

formation (be informed when a change has occurred). The FIWARE Orion Con-

text Broker serves than an intermediate crossing point between the Context

Producers and the Context Consumers, storing all the information in a Database

(MongoDB is the database used by Orion by default) which can be accessed by

both the Producers (to update or generate information) and the Consumers (to

query the entities or be notified through the subscriptions), as depicted in Fig-

ure 3.7.

3.5 Technologies

53

Figure 3.7 – Orion Context Broker in a nutshell (FIWARE - Orion Context Broker, 2014)

Even though the FIWARE Orion Context Broker allows to keep track of an

entity’s attribute’s value through queries, or to be informed every time that at-

tribute’s value changes and to what it changed into, Orion does not come with a

way of keeping history of the different changes a certain value has changed in-

to. In order to do that the FIWARE Short Time Historic (STH) – Comet was

used.

3.5.3 FIWARE Short Time Historic (STH) – Comet

The Short Time Historic is a FIWARE component capable of managing

(storing and retrieving) historical raw and aggregated time series information

evolution in time of context data (i.e., entity attribute values) registered in an

Orion Context Broker instance. Like happened in the FIWARE Orion Context

Broker, all the communications performed by the FIWARE STH make use of the

NGSI9 and NGSI10 interfaces.

As stated, even though the FIWARE STH supports the storing and retriev-

al of raw context information, (the concrete entity attribute value which were

registered in an Orion Context Broker instance over time), its main capability

Chapter 3. Technologies

54

and responsibility is the generation of aggregated time series context infor-

mation about the evolution in time of those entity’s attribute values.

In order to keep track of the different values a certain attribute takes over

time, the STH makes use of the Orion Context Broker subscription function, so

that every time that attribute’s value changes, the STH can be informed that the

change occurred and to which value the attribute has changed into. With this

information arriving every time a change of values occurs, the STH keeps a his-

tory of the changes in a database (MongoDB by default, same DB that the Orion

Context Broker uses).

Using an HTTP RESTful API, external clients can query the available his-

torical raw context information maintained by the FIWARE STH. By doing so

the consumers get a list of the different values that attribute has taken over time

and at what time the changes occurred. These results can be filtered to be

shown, for example, the changes that occurred in the last hour or day, or the 10

last changes that happened, or from a specific date to another specific date, etc.

On the other hand, if it is historical aggregated time series context infor-

mation that the consumer is after, the FIWARE STH, also through an HTTP

RESTful API, has many ways of interpreting the information and returning it

through many different aggregations. The aggregation methods that the FI-

WARE STH provides can be found listed in Table 3.7.

3.5 Technologies

55

Table 3.7 – FIWARE STH historical aggregation methods.

Type of

attribute
Aggregation method Explanation

Numeric

max Maximum value

min Minimum value

sum Sum of all the samples

sum2
Sum of the square value of all the

samples

String occur
Occurrences of each textual value

that attribute have had over time

It is worth noticing that by combining the information provided by these

aggregation methods with the number of samples, it is possible to calculate

probabilistic values such as the average value, the variance as well as the stand-

ard deviation, etc.

Finally, the same way that in the raw context information history the val-

ues can be filtered, also here in the aggregated time series context information,

the queried values can be filtered by time (last hour, last day, n last changes,

specific time interval, etc.).

Using all these technologies combined it is possible to store the data pro-

duced by the Context Producers (the IoT devices, in this thesis), and it is possi-

ble for the applications or any other 3rd party program to access either the raw

context information, and the aggregated time series context information by ac-

cessing the Orion Context Broker directly or the STH databases. A schematic

showing all these relationships (data producing, data storing and data query-

ing) is depicted in Figure 3.8.

Chapter 3. Technologies

56

Figure 3.8 – Orion Context Broker + STH working schematic

3.6 Summary

57

3.6 Summary

Using the FIWARE Generic Enablers and other technologies it was possi-

ble to create the applications from the Use Case Scenarios presented in the vf-

OS Project, always bearing in mind an answer to the described practical scenar-

io.. Besides the Java interface, two European FIWARE GEs were used (FIWARE

Orion Context Broker and FIWARE Short Time Historic – Comet), to develop

both the applications addressed in this thesis – vOrder and vfNegotiation).

Figure 3.9 – Scenario + VApps + Generic Enablers use summary

In Figure 3.9 is depicted, in a summary way, which GEs were used in each

of the developed applications and how the scenario involves all the applica-

tions. This thesis contributes, as showed and as previously mentioned, with the

development of two of the five interconnected applications, the vOrder and

vfNegotioation. These applications make use of some open source FIWARE

Generic Enablers, always looking to provide solutions to the practical scenario,

the fruit production chain, all the way from the harvest to the selling going

through the distribution.

58

59

4 Developed Applications

In order to produce the automated food chain presented in the Scenario

through the development of the generic Use Case Scenarios presented in the vf-

OS Project, it was required the development of several different applications.

Within the workgroup doing the master’s thesis under the vf-OS project, it was

established the development of five interconnected applications. Those applica-

tions and their relation can be seen in Figure 4.1.

Figure 4.1 – vf-OS interconnected Apps developed within the Master Thesis workgroup

Throughout the development of this thesis in particular, two of the listed

applications were developed, the vOrder and the vfNegotiation, both thor-

oughly described in this chapter. All the other applications were developed by

other members of the workgroup.

4

C
H

A
P

T
E

R

Chapter 4. Applications Entities

60

4.1 Applications Entities

Before explaining the developed applications themselves, as stated in

Chapter 3, the FIWARE Orion Context Broker makes use of Entities to represent

IoT equipment’s and other devices. In order to represent the IoT devices and

other important information used in the applications development, several En-

tities were created during the development of the applications.

The entities created and used during this thesis development were:

Table 4.1 – List of Entities.

Entity Name Entity Function

Fleet Entity
Contains the information about the fleet of

each farmer.

Truck Entity
Represents every truck present in the applica-

tions.

Sensor Entity
Represents every sensor present in the applica-

tions.

Subscription (Truck State)

Entity

Represents all the “Truck State Subscriptions”

created during the applications’ run.

Subscription (Sensor Values)

Entity

Represents all the “Sensors Values Subscrip-

tions” created during the applications’ run.

Order Entity
Represents the different orders that will take

place between a buyer and a farmer.

Farmer Entity

Represents each farmer using the applications

and holds all the information about the goods

they possess.

Fruit Production Entity
Serves as the link between the vfNegotiation

and the vProductMon Applications.

4.1 Applications Entities

61

All the entities here briefly presented, can be found further explained in

detail in Appendix A. There can also be found an enumeration of each entity’s

attributes.

With all these essential Entities thoroughly explained it’s easier to under-

stand each of the functionalities presented by the two different applications de-

veloped during the duration of this master thesis. These two applications

(vOrder and vfNegotiation) will be described in the coming subchapters of this

Chapter 4, Subchapter 4.2 and Subchapter 4.3 respectively. After the description

of both the applications, their uses, and their relations to the other applications

developed within the vf-OS Master Thesis workgroup, a demonstration of their

use is presented in Subchapter 4.4.

Chapter 4. vOrder

62

4.2 vOrder

vOrder is an application able to be used either by a farmer wanting to ex-

pedite his products (fruits in this scenario), or a transport manager who pro-

vides the farmers with the necessary trucks to transport the sold products, or

finally by a Buyer who wants to keep track of his purchased goods’ transport

conditions.

From the Transport Management point of view, he can add trucks to a

specific farmer’s fleet, by accessing the “Truck Creation” functionality of the

vOrder app, and there providing the farmer to which fleet he will add a truck,

and then specify the truck ID and the list of sensors that truck possesses. From

the buyer point of view, he can check, at any time, the transport conditions of

the goods he has purchased and that are travelling within a truck equipped

with IoT sensors, by getting readings of those sensors’ measurements. From the

Farmer point of view he has the ability to, in addition to create and add trucks

to his fleet, the same way that the Transport Provider can, and check the

transport conditions of the goods being transported by a certain truck, the same

way that a Buyer can, also check the available trucks to use as a transport mean,

manage those trucks (change edit the truck’s sensors types or IDs, as explained

further ahead), and even analyse the application evaluation of the transport

conditions by manually generate simulated values to the truck’s sensors.

In Figure 4.2 is shown the vOrder Main Interface. It is composed by six

tabs, some of them accessible only to some types of users, as explained in Sub-

chapter 4.4 of this Chapter 4.

4.2 vOrder

63

Figure 4.2 – vOrder Interface

A summary of all the vOrder application functionalities, are explained in

the next paragraphs and can be found schematised in Figure 4.3.

When the vOrder Application is run the user is presented with an inter-

face (Figure 4.8) where he can pick one out of three types of users (Transport

Provider, Buyer and Farmer). Selecting either the Transport Provider or the

Buyer, gives the user instant access to the vOrder Main Interface, however both

of them only have privileges to access one of the application’s tab each –

Transport Provider reaches the “Truck Creation Tab” (Figure 4.13) and Buyer

reaches the “Check Transport Tab” (Figure 4.14). A farmer user however, before

reaching the vOrder Main Interface is faced with another interface where he

must state which farmer he is (Figure 4.9), if a new one (in which case the appli-

cation will create a new Farmer) or an existent one (in which case the applica-

tion will verify if an existent Farmer ID was inserted and if so, “login” to that

farmer).

When the farmer reaches the vOrder Application Main Interface, if that specific

farmer has pendent Orders (i.e. orders commissioned by a buyer which still

weren’t expedited yet), a “Dispatch Order” Interface will appear (Figure 4.16),

showing the farmer that order’s intel (fruit, breed, size and ordered amount), as

Chapter 4. vOrder

64

well as the farmer’s stock prior and after the order and the monetary value that

transaction will give him. Also in that interface, the farmer has the ability to se-

lect an available truck from within his fleet to transport the goods to the buyer.

Once the truck is sent, the application checks for others unintended orders and

will present another Dispatch Order Interface if there are any.

The vOrder Main Interface is the core of the vOrder Application. There, it

is possible the creation of trucks with sensors working from within them (Truck

Creation tab – accessed either by a Farmer (Figure 4.17) or by a Transport Pro-

vider (Figure 4.23) type of user, the latter needing to state to which farmer’s

fleet he is adding the truck). After one or more trucks are created and added to

the farmer’s fleet they can be listed to the user (Existent Trucks tab (Figure 4.24)

– only able to be accessed by a Farmer), and the application becomes able to re-

ceive the truck’s sensors readings (which can be simulated in the Generate Val-

ues tab (Figure 4.28) – accessed only by a Farmer user). Once a truck has per-

formed, or at least, started a transportation trip, the conditions of that trip and a

qualitative evaluation of it can be checked (in the Check Transport tab – ac-

cessed by either the Farmer (Figure 4.33) or the Buyer (Figure 4.31) of the trans-

ported goods, while the first can check all of his trucks trip evaluations by

choosing from a list containing all his trucks, the second can only check the

transport conditions of the truck transporting his goods by providing his Order

ID, which has a specific truck associated). Any truck present in the farmer’s

fleet can be removed from it by the farmer itself, if not performing at travel at

that point, in the Delete Truck Tab (Figure 4.37). Finally, the Farmer can check

all of his truck’s states (“Stop” if not travelling or “Travel” if currently perform-

ing a trip) and set the trip’s end, in case of a travelling truck, or edit the truck

sensor’s if that truck is stopped (by accessing the Manage Trucks tab (Figure

4.39)). By editing the truck’s sensors, the farmer can not only change that truck’s

sensors’ types but also completely switch the truck’s sensors by new ones (by

changing the sensor’s ID).

4.2 vOrder

65

Figure 4.3 – vOrder Application Schematic

Chapter 4. vfNegotiation

66

4.3 vfNegotiation

vfNegotiation is an application created with the intent of being used both

sellers (farmers in this scenario) wanting to get his products out for sale and by

buyers looking for products to buy.

A farmer using this application can add new fruits to his stock (each de-

fined by a fruit name, fruit breed and size), by setting a stock amount and a

price for that fruit. Besides adding new fruit to his stock, the farmer also has the

ability to check his current fruit stock and update that stock, by changing the

amount of that fruit he has, and its price.

The buyer, from his side of the application, can search for the fruit provid-

er based on several diverse criteria. The application provides the buyer with

two different search methods, a manual search, where a list of farmers able to

sell the searched fruit is presented and the buyer choose one of them, or an au-

tomatic search, where the user chooses the filters and only the best seller who

meets the requirements is presented.

In Figure 4.4 is shown the vOrder Main Interface. It is composed two dif-

ferent interfaces, one for the Farmer and one for the Buyer, each one having dif-

ferent tabs, four and two respectively. Each tab allows the user to perform dif-

ferent actions, as shown in Subchapter 4.4 of this Chapter 4.

Figure 4.4 – vfNegotiation Interfaces

4.3 vfNegotiation

67

All the functionalities of the vfNegotiation Application, are explained in

the next paragraphs, and can be found schematised in Figure 4.5.

Running the vfNegotiation Application will display an interface where the

user can state which type of user he is (Figure 4.45). This application was devel-

oped to be used by two different types of users, farmers wanting to sell their

produced goods, and buyers looking to buy different goods (the goods trans-

acted in this application during its development are fruits, even though this app

can easily be changed to the transaction of many other different goods).

To a farmer user, yet another interface is presented before he reaches the

vfNegotiation Main Interface. This intermediate interface is the “Farmer User”

Interface (Figure 4.46), where the farmer states whether he is a new user to the

application or someone who has used this application before. If a new user pre-

sents himself he is added to the application system, if not the application will

login into the presented user account informations, either way after this inter-

face the user reaches the vfNegotiation Main Interface for farmers.

When a farmer reaches the vfNegotiation Main Interface he is presented

with the “Add Fruit” tab (Figure 4.47), where he can choose which o his goods

he wants to put for sale. By stating the Fruit Name, Breed, Size, Amount and

Price/Kg that fruit automatically becomes available, under that farmer’s name,

to be found and bought by any Buyer using this app. After one or more fruits

are added to a farmer’s stock, he can check his entire stock in the “Check Fruit”

tab (Figure 4.50). Here he is presented with lists containing all the fruits he cur-

rently has in stock, by selecting a specific fruit the application shows him the

amount of that he still has in stock and for how much he is currently selling it. If

the farmer wants to update a certain fruit, whether to change its current amount

of its current price, he can do so in the “Update Fruit” tab (Figure 4.55). Here,

after selecting which fruit he wants to update, the farmer can change that fruit’s

values and update them in the selling system. In order to know which fruits he

has produced and the amount of produced fruit that falls under each of that

fruit’s size, the farmer can access the “Production Values” tab (Figure 4.61). This

tab displays the information provided by the vProductMon application, that

through the usage of IoT sensors at the production and calibration site, and

Chapter 4. vfNegotiation

68

rules, infers about the amount of fruit produced and transmits that information

for the vfNegotiation application.

On the other hand, if a Buyer enters the vfNegotiation application, he will

find functionalities enabling him to search for farmers selling the fruit he is

looking to buy. When a Buyer first reaches the application, he is presented with

the “Manual Provider Search” tab (Figure 4.63). Using this tab and after select-

ing the fruit he is looking for, the amount he intends to buy and optionally add-

ing filters to the search (Figure 4.64), the buyer will be presented with a list of

farmers that fulfil all the requirements, i.e. that currently have the targeted fruit

in stock with an amount high enough to satisfy the order, and that meets the

specs given in the filters. From the presented list, showing the farmer’s ID and

the price at which he is selling the selected fruit, the buyer can choose the

farmer and place the order. In addition to the Manual Search, the buyer also has

access to an Automatic Search in the “Automatic Provider Search” tab (Figure

4.67). Similar to the Manual Search, here the buyer must also select the fruit he

is looking for and the amount he intends to buy. Here however, the filter is a

mandatory parameter, so the buyer must choose one of the existent filters

(Figure 4.68), in order for the search to return the farmer that best meets the

chosen filter. When the search is completed the automatic search will return a

single farmer, displaying his ID and his price for the selected fruit. If the buyer

is happy with the provided farmer he can order the selected goods.

After a search is made and a farmer is selected the buyer can order the

goods in the “Order Confirmation” interface (Figure 4.70). Here he can have

one last look at his order, where he can see the fruit he is ordering, its name,

breed, size, amount and price/Kg, as well as total price of the order and the

farmer ID of the selected farmer. If everything is correct he can place the order

and will be given an Order ID (Figure 4.71), with which he can check the

transport conditions of his goods in real time using the vOrder Application

(Figure 4.35).

4.3 vfNegotiation

69

Figure 4.5 – vfNegotiation Application Schematic

Chapter 4. Applications Demo

70

4.4 Applications Demo

As stated before, to easily make use of all the Generic Enablers functions

without needing to install and run them on the local machine, Docker was used.

In order to launch the GEs using a Docker container all one has to do (after the

developers encapsulate the GE in a Docker Image) is run the Docker container

where the GE is installed.

To get the applications running, when they use a GE, the first thing to do

is run the GE’s Docker image, by accessing the Docker’s Image directory and

running it from there (through the Docker’s Quickstart Terminal). Both the ap-

plications presented in this chapter use the FIWARE Orion Context Broker, so it

needs to be launched, the way that is presented in Figure 4.6.

Figure 4.6 – Running FIWARE Orion Context Broker through Docker

The vOrder application though, also makes use of the FIWARE Short

Term Historic (STH) – Comet, so similarly to running the FIWARE Orion Con-

text Broker depicted in Figure 4.6, the FIWARE STH is put to run the same way,

through a Docker container, as can be seen in Figure 4.7.

4.4 Applications Demo

71

Figure 4.7 – Running FIWARE Short Term Historic through Docker

The functionalities of both these GEs were explained in the previous chap-

ter (Chapter 3) and their functionalities are essential to the development of both

the presented applications. That fact will become clearer throughout the expla-

nation of the applications always bearing in mind the GEs functionalities de-

scribed before.

4.4.1 vOrder – Choose User

The first interface the user sees when he first opens the vOrder Applica-

tion, is a simple three button’s interface allowing him to state which type of us-

er is wanting to use the interface (a Transport Provider, a Buyer or a Farmer).

According to the choice done here, different tabs in the main application inter-

face will be enabled or disabled according to the user privileges and functions.

An image of that “Choose User” interface can be seen in Figure 4.8.

Chapter 4. Applications Demo

72

Figure 4.8 – Choose User Interface

The interface presented in Figure 4.8 allows the user to state whether he is

a Transport Provider, a Buyer or a Farmer by pressing one of the three buttons

presented. After this selection has been made, this interface will disappear, only

to be set visible again once a new vOrder application is run. Once this interface

disappears, the main vOrder interface will come to light (in most cases, read

next paragraph for further information) with the active tab differing according

to the option selected in the previous interface.

Even though both the Transport Provider and the Buyer types of user,

reach the vOrder main interface as soon as they leave this first “Choose User

Interface”, a Farmer user will first have to go through an intermediate check-

point.

4.4.2 vOrder – Farmer User Interface

When the “Choose User” interface is closed due to the pressing of the

Farmer button, a new interface is presented. The new presented interface

“Farmer User Interface” can be observed in Figure 4.9.

4.4 Applications Demo

73

Figure 4.9 – vOrder: Farmer User Interface

The interface presented in Figure 4.9 allows the farmer to state whether he

is a new user or an existent user of the vOrder application. In case of the user

trying to proceed with either not selecting any of the options (New User / Ex-

istent User) or not typing any Farmer ID an error message like the ones pre-

sented in Figure 4.10, is presented.

Figure 4.10 – Farmer User Interface: Errors Interface

Chapter 4. Applications Demo

74

On the other hand, if the New User option is selected but the provided

Farmer ID, equals another already present in the application database, an error

message like the one presented in Figure 4.11, is displayed.

Figure 4.11 – Farmer User Interface: Farmer Creation Error

In a third option, when the “Existent User” option is selected, but the pro-

vided Farmer ID is not present in the application database, an error message

like the one presented in Figure 4.12, is displayed.

Figure 4.12 – Farmer User Interface: Inexistent Farmer Error

4.4 Applications Demo

75

Finally, if either an inexistent Farmer ID is provided and the option New

User is selected, or an existent Farmer ID is provided and the Existent User op-

tion is selected, by pressing the Proceed button, the user will reach the vOrder

Main Interface.

4.4.3 vOrder – Main Interface

Once the opening interface “Choose User” is closed (after the user has se-

lected which type of user he is – Transport Provider, Buyer or Farmer), or the

“Farmer User” intermediate interface in the scenario where the user is a farmer,

the main vOrder interface is presented. This interface is made of a Tabbed

frame with the different tabs on top being enabled or disabled according to the

user privileges and functions. A representation the different interfaces accessi-

ble to a Transport Provider, a Buyer or a Farmer are presented in Figure 4.13,

Figure 4.14 and Figure 4.15 respectively (note that even though the presented

tabs are the same, both the Transport Provider and the Buyer type of user have

some tabs disabled, i.e. tabs that that kind of user cannot access due to reduced

privileges).

Figure 4.13 – vOrder main interface for Transport Providers

Chapter 4. Applications Demo

76

In Figure 4.13 is presented the vOrder main interface for a Transport Pro-

vider type of user. Due to reduced functions and privileges, this type of user

can only access 1 out of the 6 tabs included in the vOrder app. This type of user

can only create new trucks and assign them to a specific Farmer’s fleet (this

function can be found explained later in this document, more precisely in Sub-

chapter 4.4.5 of this Chapter 4).

Figure 4.14 – vOrder main interface for Buyers

In Figure 4.14 is presented the vOrder main interface for a Buyer type of

user. This user has the least privileges of all since he can only check the

Transport Conditions of the products he has bought. Therefore, the only tab he

can access is the “Check Transport” tab, and all the others are disabled to him.

As all the others, the functions this tab allows are explained later in this docu-

ment, more precisely in Subchapter 4.4.8 of this Chapter 4.

4.4 Applications Demo

77

Figure 4.15 – vOrder main interface for Farmers

In Figure 4.15 is presented the vOrder main interface for a Farmer type of

user. This user is the core user of this application, hence having full access to all

of the application’s tabs and functions. This user can therefore, as listed before,

but now easier to understand by looking at the tabs presented in Figure 4.15:

1. create and add trucks to the fleet;

2. see a list of existent trucks, that truck’s sensors and the last value for

each of its sensors;

3. generate values for each of the truck’s sensors (for test purposes on-

ly, since those sensors will be getting values from environment read-

ings through an IoT device);

4. check the transport conditions of a given truck (to see if the goods

being transported by that truck are traveling in good conditions);

5. remove a truck from the fleet;

6. manage his fleet’s trucks (either to state that the truck’s travel has

ended, or to edit the truck’s sensors – types or IDs).

Chapter 4. Applications Demo

78

4.4.4 vOrder – Dispatch Order

Another difference from the Farmer User to both the other users is the

Dispatch Order interface appearance. Using the vfNegotiation application a

buyer can order some goods from a specific farmer, creating an Order (as ex-

plained in Subchapter 4.4.21 of this Chapter 4). When that particular farmer

“logs in” into the vOrder application a Dispatch Order interface is presented to

him, like the one observable in Figure 4.16, as soon as he reaches the vOrder

Main Interface. During his usage of the vOrder application a thread will keep

running, constantly checking for pendent orders ten minutes (even though this

value can be changed). If a buyer using the vfNegotiaion application orders

some fruits from the logged farmer he will be immediately informed throw the

appearance of a new Dispatch Order interface. If when the farmer logins, he

has multiple pendent orders, created during the time that he was not using the

application, this interface will appear sequentially to the farmer, how many

times as the number of pendent orders that farmer has, i.e. until a truck is dis-

patched to answer the Order, since as soon as a truck is sent to dispatch an or-

der a new verification is made. After all the pendent Orders are dispatched, the

10 minutes thread will take place and will keep checking for new orders.

Figure 4.16 – vOrder Farmer: Dispatch Order Interface

4.4 Applications Demo

79

For each pendent Order the logged farmer has, (any order addressed to

him with no assigned truck) the farmer will face a Dispatch Order Interface

(Figure 4.16). In that interface, the farmer will be able to see the Order ID, as

well as the ordered fruit, breed and size and the ordered amount. The applica-

tion will also show him his stock previous to the expedition of that order and

his stock after that expedition, as well as the total value the farmer will receive

from shipping that order. In order to expedite that order the farmer will have to

choose one of his available trucks to carry the ordered goods (the application

with list all the trucks contained in that farmer’s fleet which aren’t already per-

forming any travel. Once a truck is selected this interface will disappear, and a

new Dispatch Order Interface will automatically appear in case the farmer has

any other pending orders. It is worth mentioning that if the farmer tries to ex-

pedite the order without assigning any truck to it the application will return an

error message stating exactly so. If a truck is assigned to the order, that truck’s

state will change from “Stop” to “Travel”, like it is better explained further

ahead.

4.4.5 vOrder – Truck Creation Tab

The first tab present in the vOrder application, which is also the tab

opened by default when the main interface is launched by either a Transport

Provider or a Farmer user is the “Truck Creation” tab. This tab is accessible to

both the Transport Provider and the Farmer users and, as the name of the tab

implies, it is used to create/add a new truck to the fleet.

In order to create a new truck a valid ID needs to be provided (truck ID’s

are unique i.e. there can’t be two trucks with the same ID in a single farmer’s

fleet, however two different farmers can have trucks with the same ID, this veri-

fication is presented ahead) as well as that truck’s sensors (in the application

denominated as attributes). The truck ID can be any name given by the user

and goes in the “Truck ID” field. Additionally, up to four sensors can be added

to the truck (i.e. a truck can contain one, two, three or four sensors reading val-

ues at the same time). The “Add” buttons allow the user to add new sensors to

the truck and the “Create” button starts the truck creation and consequent addi-

tion to the fleet.

Chapter 4. Applications Demo

80

Figure 4.17 – Truck Creation: one Sensor

Once the “Add” button is pressed, two new fields appears, the first where

the user can state what type of sensor he is adding (i.e. this is the field to write

what type of sensor that truck will have – temperature sensor, humidity sensor,

etc.), and the second where the user can state the ID of that sensor. From here

the user has the ability to create the truck right away by pressing the “Create”

button, or to add more sensors to the truck, by pressing the “Add” button. In

Figure 4.18, are showed all the four sensors the user can add to a truck.

4.4 Applications Demo

81

Figure 4.18 – Truck Creation: four Sensors

If the user wants to go back one step, i.e. not add as many sensors as he

had previously anticipated, the remove button visible in Figure 4.18, will re-

move the fields related to the last added sensor.

The first verification the application does is to check if any Truck ID has

been provided. If it has, the application continues to run, however if the user

tries to create a truck without providing any Truck ID an error message similar

to the one presented in Figure 4.19 is displayed.

Chapter 4. Applications Demo

82

Figure 4.19 – Truck Creation: Empty Truck ID Message

Once a Truck ID is provided and all the desired sensors are added to the

truck, the user can press the “Create” button, which will make the application

check if all the input fields were valid, returning a message in conformity with

the case it has found.

So, if for example the user creates a Truck with the information presented

in Table 4.2:

Table 4.2 – Truck Creation Example One.

Truck ID Truck Sensors

Truck1
temperature

humidity

4.4 Applications Demo

83

Assuming there is no truck in that user’s fleet with the Truck1 ID, the ap-

plication shows the success message presented in Figure 4.20. Alongside with

the truck creation, a Subscription is made to each of the created sensors (as stat-

ed in Chapter 3, the Subscriptions is the way that enables the FIWARE Orion

Context Broker and the FIWARE STH to read the sensor values, i.e. be alerted

every time a sensor reads a new value).

Figure 4.20 – Truck Creation: Success Message

The “Undo Creation” button present in the Truck Creation Success Mes-

sage (here depicted in Figure 4.20), allows the user to, in case of realizing the

occurrence of any mistake during the truck creation (wrong Truck ID or Sen-

sors, for example), quickly and easily delete the truck just created, and create a

new one after making the amends.

 If that “Undo Creation” button is pressed, the Truck just created is delet-

ed from the DB and a “Delete Truck Success” message appears, similar to the

one presented in Figure 4.21.

Chapter 4. Applications Demo

84

Figure 4.21 – Truck Creation: Delete Truck Success Message

If after the truck with the ID Truck1 is created (and not deleted or the have

his creation undone) the user tries to create another truck with that same ID,

even if all the sensors are different as represented in Table 4.3, the application

will return the error message presented in Figure 4.22.

Table 4.3 – Truck Creation Example Two

Truck ID Truck Sensors

Truck1
pressure

CO2 (concentration)

4.4 Applications Demo

85

Figure 4.22 – Truck Creation: Failure Message

Right from the moment a new truck is created, it becomes instantly able to

be consulted in the “Existent Trucks” tab, his sensors become ready to read and

store values, and it becomes possible edit or eliminate the truck in the “Manage

Trucks” and “Delete Truck” tabs respectively.

If this tab (Truck Creation) is accessed through a Transport Provider type

of user, the only noticeable difference will be a field where the user will have to

write to which farmer’s he is adding the new truck (by providing that Farmer’s

ID). All the mentioned verifications remain active with an additional one mak-

ing sure that the provided Farmer ID matches a farmer already signed in the

application. That Truck Creation tab presented to a Transport Provider user can

be observed in Figure 4.23.

Chapter 4. Applications Demo

86

Figure 4.23 – Truck Creation Tab: Transport Provider User

4.4.6 vOrder – Existent Trucks Tab

The Existent Trucks Tab is a tab, like they will all be from now on (except

for the Check Transport tab), accessible exclusively to the farmer type user. In

this tab, the farmer can check his fleet of trucks, i.e. a list of trucks he has at his

disposal to transport his goods to the buyer. In addition to getting a list of

trucks, he can also check the last value every sensor from every truck has read.

Both these functions are presented in Figure 4.24 and Figure 4.25 respectively.

In order to show the potential functionalities of this application, three

more trucks were added to the Farmer1 fleet with different types and numbers

of sensors. The trucks created and the sensors which equip each of them can be

found listed in Table 4.4.

4.4 Applications Demo

87

Table 4.4 – Trucks created for exemplification purposes.

Truck ID Truck Sensors

Truck1
temperature

humidity

Truck2
CO2 (concentration)

pressure

Truck3 humidity

Truck4

CO2 (concentration)

temperature

humidity

pressure

After created, these trucks will automatically be added to the fleet com-

posed by available trucks, and will be present at any list showing the available

trucks, like the one present in Figure 4.24.

Figure 4.24 – Existent Trucks Tab: Trucks List

Chapter 4. Applications Demo

88

By selecting the ”Combo box”, as shown in Figure 4.24 the user is present-

ed with a list containing all the Truck IDs of his available trucks. If a truck of

that list is selected the application will reach for the database and show the last

value read for each of that truck’s sensors, as exemplified in Figure 4.25.

Figure 4.25 – Existent Trucks Tab: last read sensor values for a truck

If any of the sensors hasn’t read any values yet, the “Last Attribute Value”

section will present a value of “-1” by default, as depicted in Figure 4.26. This

will be important to the “Check Transport” tab, which is explained further

ahead in this document, in Subchapter 4.4.8 of this Chapter 4.

4.4 Applications Demo

89

Figure 4.26 – Existent Trucks Tab: Sensors with no values example

4.4.7 vOrder – Generate Values Tab

This Generate Values Tab serves for testing purposes only, since its job is

to simulate the reading of values by the sensors. During test phase while no

sensor included in this application is directly connected to an IoT device, this

tab allows the user to generate random values and assign those values to the

truck’s sensors in order to simulate the actual sensors readings.

After all the applications shown in Figure 4.1 are developed and put to

use, this tab will no longer be required since all the values stored in the Orion’s

entities will come directly from real IoT sensors. These (sensors installed within

every truck owned by farmers using this set of applications) and all the other

sensors used throughout the deployment of this project are linked to the differ-

ent applications in the vfHarvest Application. During the development of the

vfHarvest application all the IoT sensors will be deployed and a way of com-

municating to the other applications, more precisely the vOrder and the vFail

applications, will be developed. When the sensors are actively working on the

field, and a way of communication is established, the values read by the sensors

Chapter 4. Applications Demo

90

will become available to the mentioned applications. The sharing of these val-

ues between the developed applications can be seen in Figure 4.1, represented

by the arrows connecting the vfHarvest application to both the vOrder and the

vFail apps.

 The random generated values for this tab’s test purpose, even though

they are random, they are always possible real values for each of the sensors

used as test during this development section. In order to make sure only possi-

ble values were assigned to a specific sensor, a Random Gaussian Distribution

was used.

A Random Gaussian Distribution generates random values clustered

around an average value, i.e. given a mean value and a deviation value, all the

random generated values will be within certain boundaries depending on the

mean and deviation values. Regardless of the mean and the deviation values,

all Random Gaussian generated values will obey these rules:

1. just under 70% of generated values will tend to have a value with-

in one standard deviation to either side of the average;

2. just under 95% of generated values will tend to have a value with-

in two standard deviations to either side of the average;

3. more than 99% of generated values will tend to have a value with-

in three standard deviations to either side of the average.

Figure 4.27 helps to better understand these rules as it shows (using µ to

represent the mean value, and σ to represent the deviation value) the percent-

age of values that will be generated within the mentioned boundaries.

4.4 Applications Demo

91

Figure 4.27 – Random Gaussian Distribution

For this thesis test purposes, the values for the mean value and for the de-

viation value chosen for each sensor are the ones showed in Table 4.5.

Table 4.5 – Mean and Deviation Values used for each sensor

Sensor Mean Value Deviation Value Units

Temperature 18 4 °C

Humidity 50 15 %

Pressure 760 50 mmHg

CO2 (concentration) 4 1 %

According to the Mean and Deviation values presented in Table 4.5, and

to the rules enumerated before it is expected that all generated values fall with-

in the boundaries and percentages presented in Table 4.6.

Chapter 4. Applications Demo

92

Table 4.6 – Boundaries for each sensor and percentage of values falling under each one

Sensor
Boundaries

Units
~70% ~95% ~99%

Temperature 14 - 22 10 - 26 6 - 30 °C

Humidity 35 - 65 20 - 80 5 – 95 %

Pressure 710 - 810 660 - 860 610 - 910 mmHg

CO2 (concentration) 3 - 5 2 - 6 1 - 7 %

Table 4.6 shows that, for example, around 70% of the values generated for

the sensor temperature will be comprehended within 14 to 22°C interval,

around 95% of the generated values will fall within 10 to 26 °C interval and ap-

proximately 99% of the generated values will be between 6 and 30 °C. The

same, with different boundaries will happen to each of the other sensor’s gen-

erated values.

With this working from behind the application the only data the user

needs to send is the number of values the application should generate per mi-

nute (always bearing in mind that the sensors only read values with up to 1

second difference, i.e. in order to not overload the system the application only

checks the sensors every second, even if the values change more than once a

second, the application won’t see that), and for how many minutes the applica-

tion should be generating values (this was done to keep the application work-

ing as close to reality as possible, since on the one hand the transportation

probably take several minutes if not hours, and on the other hand and it is irrel-

evant to check a real sensor more than once a second because real values don’t

change too much in a small amount of time). The interface that can be used to

randomly generate these values is depicted in Figure 4.28.

4.4 Applications Demo

93

Figure 4.28 – Generate Values Tab: Generating 30 values over 1 min

Given the Truck ID to which sensors the user wants to assign the random

generated values, the values to generate per minute and the minutes to run the

generation of values the application will assign “values per minute × minutes”

values to each of the sensors that truck possesses. The user can accompany this

procedure through the evolution of a progress bar (painted orange in Figure

4.28) or do any other action he wants (on a different tab) that the creation of

values will continue to run in the background. When the creation is completed,

a success message, like the one depicted in Figure 4.29, is presented.

Chapter 4. Applications Demo

94

Figure 4.29 – Generate Values Tab: Values Generation Success Message

If, however, the user does provide the “values per minute” and the

“minutes” but forgets to name the truck to which the values are to be created, a

warning message (similar to the one in Figure 4.30) is displayed.

Figure 4.30 – Generated Values Tab: Empty Field Error Message

4.4 Applications Demo

95

4.4.8 vOrder – Check Transport Tab

After a truck has completed transportation, or even at any point during

that transportation, both the Farmer and the Buyer users can check the trans-

portation conditions up until that point, through the Check Transport tab.

This tab however works very differently according to which type of user is

accessing it. While for the Farmer a list of all his trucks, like the one presented

in subchapter 4.4.6 – Figure 4.24 is presented, allowing him to check on the

transport conditions of each and all of his trucks, for the Buyer only a text field

is presented where he should type his Order ID.

Let’s talk about each of these different interfaces in turns. As stated, on the

one hand if this tab is accessed by a Buyer, the interface presented will be the

one depicted in Figure 4.31.

Figure 4.31 – Check Transport Tab: Buyer User

Since the Buyer is only supposed to be able to check the transport condi-

tions of the truck transporting the goods he bought, in order to access that in-

Chapter 4. Applications Demo

96

formation, he needs to verify that he is the buyer of those goods, and he does

that by typing the Order ID he got at the moment of the order creation (this or-

der creation will be explained further ahead in the vfNegotiation application

explanation – subchapter 4.4.21). Once a valid Order ID is provided the applica-

tion will search which truck was assigned to that travel and will present the

buyer with that truck’s transport conditions, i.e. that truck’s sensors readings.

Besides the already presented verification of empty fields (Order ID being emp-

ty in this case), in case that the given Order ID does not exist in the Order Enti-

ty’s list the error presented in Figure 4.32 is displayed.

Figure 4.32 – Check Transport Tab: Inexistent Order Error Message

On the other hand, if this tab is accessed by a Farmer, a list of all of his

trucks available for transportation is presented as depicted in Figure 4.33, and

after one of those trucks is selected the tab will show that truck’s transport con-

ditions up until that moment.

4.4 Applications Demo

97

Figure 4.33 – Check Transport Tab: Farmer User

After a truck is selected, either by the farmer using the list, or by the buyer

providing the Order ID, the tab will work the same regardless of the user.

In the eventuality that the selected truck hasn’t done any transportation

yet, i.e. his sensors haven’t read any values so far, the application will show a

message (like the one presented in Figure 4.34) stating exactly so.

Figure 4.34 – Check Transport Tab: No Transportation Performed Message

Chapter 4. Applications Demo

98

If, on the contrary, if the selected truck has already completed a transpor-

tation or has already started one at the time the user reaches for his transport

conditions, the application will display the key values of that truck’s sensors

that allowed it to infer about the transport conditions and, also, a qualitative

evaluation of the transportation.

Figure 4.35 – Check Transport Tab: Normal Transport Conditions View

In Figure 4.35 is presented the information a user gets access to, once a

truck that is performing or has already performed a transportation trip gets se-

lected, either from the list of available trucks (Farmer user) or automatically

through the verification of which truck is assigned to the given Order ID (Buyer

user). As the image shows, the user is presented with:

1. a list of all the sensors that truck possesses;

2. the minimum value read by each of the sensors during the last trans-

portation trip, up until the time the search was made;

3. the maximum value read by each of the sensors during the last

transportation trip, up until the time the search was made;

4.4 Applications Demo

99

4. the average value read by each of the sensors during the last trans-

portation trip, up until the time the search was made;

5. a qualitative evaluation of the transport conditions during the last

transportation trip, up until the time the search was made.

It is worth mentioning that in order for the STH to return the required

values for the application to evaluate the trip transport conditions two dates

need to be provided. The two dates provided create the limits within which the

GE will search for the minimum and the maximum values, so a starting

time/date for the trip needs to be provided, as well as an ending time/date.

Both these dates are found using the subscription “Truck State” (explained be-

fore – subchapter 4.4.8). When a truck is assigned to an order, that truck state

will change from “Stop” to “Travel”, and the STH GE will be notified of that

change will returning the time/date when it happened, hence creating the start-

ing time/date of the trip. If the Transport Conditions check is done during the

trip, the application will use that starting time/date and will search the re-

quired values until the present. If the trip ends (function done manually by the

user, as explained further ahead in this document – changing the truck state

from “Travel” to “Stop” and creating a new time/date) and the Transport Con-

ditions check is done after it has ended, the starting time/date will remain the

same and the ending time/date will have the time returned by the STH when

the truck stated changed from “Travel” to “Stop”. If that same truck is later as-

signed to a new trip (and to a new Order) the starting time will change, and so

will the ending time when the truck ends his travel.

The qualitative evaluation mentioned before and observable in Figure 4.36

is created according to a mathematical analysis applied to the values read by

the sensors. In order for the application to decide if the transport conditions

were “GOOD” or “BAD” (the two alternative options to the Transport Condi-

tions field), it calculates a series of comparisons using the values presented and

the typical values of those weather conditions (at the moment, and for test pur-

poses the application is working with the four enumerated sensors – tempera-

ture, humidity, pressure and CO2 concentration). The boundaries between

Chapter 4. Applications Demo

100

which each of the sensor’s generated values are considered acceptable to the

transport conditions and which are not, are presented in Table 4.7.

Table 4.7 –Boundaries of the Transport Conditions Evaluation

Transport Conditions Evaluation

Units
BAD GOOD BAD

Boundaries

temperature<6 6 ≤ temperature ≥ 30 temperature>20 °C

humidity<5 5 ≤ humidity ≥ 95 humidity>95 %

pressure<610 610 ≤ pressure ≥ 910 pressure>910 mmHg

CO2<1 1 ≤ CO2 ≥ 7 CO2>7 %

As can be observed in Figure 4.35, the application automatically paints

green all the values that meet the required conditions, presents in Table 4.7 (i.e.

the application checks whether the minimum value of each sensor is above the

lower bound, the maximum value is below the upper bound, and the average

value is between both bounds). If all the conditions are met, the application

rates the transport conditions of that truck’s last trip, as “GOOD”.

If on the other hand at least or more of the conditions are not met, the ap-

plication will highlight with red the value that didn’t fall within the delimited

boundaries and the transport conditions is automatically rated as “BAD”. An

example where, even if just one of the values fails to respect the required the

transport conditions are rated as bad can be found in Figure 4.36.

4.4 Applications Demo

101

Figure 4.36 – Check Transport Tab: Transport Conditions rated as BAD

As can be observed in Figure 4.36, one of the values does not respect the

required condition in order to allow the transport conditions to be evaluated as

“GOOD” (the value painted in red in Figure 4.36), as the maximum value of one

of the sensors is slightly above the upper bound for that sensor’s value (that

bound can be observed in Table 4.8).

Table 4.8 – Boundaries of the Transport Conditions Evaluation for CO2 (concentra-

tion).

Transport Conditions Evaluation

Units
GOOD GOOD BAD

Boundaries CO2 < 1 1 ≤ CO2 ≥ 7 CO2 > 7 %

However, besides the minimum and maximum values, used for the appli-

cation’s automatic evaluation of the transport conditions, to the user is also pre-

sented the average value. This was done with that intention that even though

the application rates as “BAD” as soon as one of the values fall out of the

Chapter 4. Applications Demo

102

boundaries, the user can analyse all the provided information, including the

average value and decide whether or not the transport conditions had a correct

evaluation (for example, if some value slightly surpasses a boundary – and

therefore the transport conditions is rated “BAD” by the application – but the

average value for that sensor is far from that boundary, probably the goods are

still in good conditions since for most of the time it was under good transport

conditions and just during a small amount of time those conditions have deteri-

orated). The point behind the presentation to the user of this third value (the

average value) was that even though the application rates the transportation

based simply on raw values, the final decision lies with the user (both the

Farmer and or the Buyer) to decide whether the goods are in good conditions or

not.

4.4.9 vOrder – Delete Truck Tab

The Delete Truck Tab, once again accessible only to the Farmer user al-

lows each farmer to remove an existent truck from his fleet. All his available

Trucks are presented in a list, from which the farmer can choose which truck he

wants to eliminate. By selecting the truck ID (from the truck to eliminate) and

pressing the Delete button, the selected truck is eliminated from the DB and all

the sensors subscriptions are removed. An example of a truck deletion is de-

picted in Figure 4.37.

Figure 4.37 – Delete Truck Tab: Success Message

4.4 Applications Demo

103

Removing the given truck from the fleet means having to delete several

components and not just the truck itself. In order to correctly remove the truck

all of the subscriptions bonded to that truck must be unsubscribed (all his sen-

sor’s subscriptions and the truck state subscription), all the sensors operating in

that truck also need to be eliminated from the cloud database as well as the

subscriptions entities. Only after deleting all these components can the truck be

removed from the farmer’s fleet and finally eliminated from the cloud database.

It is worth mentioning that a farmer can only delete trucks that are not

currently performing any trips. If the farmer tries to delete a truck while it is

travelling the application will show an error message like the one presented in

Figure 4.38.

Figure 4.38 – Delete Truck Tab: Travelling Truck Error

4.4.10 vOrder – Manage Truck Tab

The last tab observable in the vOrder application interface is the “Manage

Trucks” tab. Once again is a tab accessible only to the farmer, and is where he

can see a list of all his trucks and their current state, as observable in Figure

4.39.

Chapter 4. Applications Demo

104

Figure 4.39 – Manage Trucks Tab

In this the tab, the farmer can check which of his trucks are currently trav-

eling (State: Travel) and which are currently not assigned to any order (State:

Stop). This tab has two distinct functions, if the selected truck current state is

Stop a “Edit Sensors” button appears, allowing the user to change that truck’s

sensors (depicted in Figure 4.41) if, however, the truck is currently traveling his

sensors cannot be altered with and in this case this tab becomes the place where

the farmer can perform the “truck arrived” function (pressing the “Arrived”

button observable in Figure 4.40), setting the end of that truck’s trip.

4.4 Applications Demo

105

Figure 4.40 – Manage Trucks Tab: Arrived Button

As described in the previous chapter, the “Arrived” button present in Fig-

ure 4.40 allows the farmer to set the end of that truck’s trip. This will change

that truck’s State to “Stop”, creating an end time/date for that trip, and making

the truck’s sensors available to be altered (Figure 4.41) and the truck available

to be used to deliver another Order.

Figure 4.41 – Manage Trucks Tab: Edit Sensors Button

Chapter 4. Applications Demo

106

All the trucks listed whose state is “Stop” are allegeable for the user to edit

their sensors. The truck’s sensors can be changed in one of two ways, first the

user can change what type of sensor that sensor is (keeping the sensor – Sensor

ID – change from a temperature sensor to a pressure sensor, etc.) or secondly,

completely change the sensor that is present in that truck (by changing the sen-

sor ID, always keeping in mind that every sensor in the market has a unique

ID). That choice is presented to the user once a truck is selected and the “Edit

Sensors” button is pressed, through the appearance of a new interface, like the

one presented in Figure 4.42.

Figure 4.42 – Manage Trucks Tab: Edit Truck Sensors

In Figure 4.42 can be seen the two Edit Sensors choices presented to the

user after the Edit Sensors button is pressed. All the “Sensor Type” and “Sensor

ID” text fields are automatically filled with the current truck sensor’s types and

IDs respectively. From here the user has two ways of proceeding, either by

pressing the “Change Type” button or the “Change ID” button.

If the Change Type button is pressed all the Sensor Type fields turn ena-

bled and so does the “Submit Changes” button, like presented in Figure 4.43.

4.4 Applications Demo

107

Figure 4.43 – Manage Trucks Tab: Edit Truck Sensors Type

Once the button (Change Type) is pressed the farmer becomes able to edit

all the sensor types present in the selected truck, and after all the changes are

made he just has to press the “Submit Changes” button and the application will

automatically update that truck’s sensors, and present the new types. If the

farmer decides to undo the edition, hitting the “Cancel Edition” button reverses

all the changes made, and the interface returns to the appearance it has before –

Figure 4.42.

On the other hand, if the “Change ID” button is pressed, the Sensor ID

fields will turn enable and the user will face an interface like the one depicted in

Figure 4.44.

Chapter 4. Applications Demo

108

Figure 4.44 – Manage Trucks Tab: Edit Truck Sensors ID

Once the button (Change ID) is pressed the farmer becomes able to edit all

the sensor IDs present in the selected truck, and after all the changes are made

he just has to press the “Submit Changes” button. This time however the

change isn’t as simple as before when only the names needed to be changed.

Similarly to what happens when a truck is deleted, this “Change Sensor ID”

comprehends the deletion of several components, however, this time, several

others need to be created. In order to correctly change and truck sensor it is

necessary for the application to delete that sensor subscription, and his entity,

create a new entity and a new subscription and change the ID in the truck entity

(where all that truck’s sensors information is stored). After these deletions and

re-creations are made, the interface returns to its previous form, with the new

sensors IDs displayed - Figure 4.42.

4.4.11 vfNegotiation – Choose User Interface

Similarly to what happens in the vOrder Application, the running of the

vfNegotiation Application starts with the appearance of a “Choose User Inter-

face” (Figure 4.45) where the user can choose to enter the application as a

Farmer or as a Buyer.

4.4 Applications Demo

109

Figure 4.45 – vfNegotiation: Choose User Interface

By pressing either one of the buttons observable in Figure 1.42, the pre-

sented interface disappears going one of two different ways. If a buyer is ac-

cessing the application, the Buyer Interface is immediately presented (subchap-

ter 4.4.18). If, on the other hand the application is being accessed by a Farmer,

first he will have to state if he is a new farmer or an existent one in the “Farmer

User” interface, similar to the one presented in the vOrder App, subchapter

4.4.12.

4.4.12 vfNegotiation – Farmer User Interface

Like mentioned in the previous subchapter, if a Farmer accesses the vfNe-

gotiation, right after the “Choose User” interface he is presented with the

“Farmer User” interface – Figure 4.46. Here, and just like it happened in the

vOrder Application, the farmer user will need to provide his ID to “login” to

his particular view of this App.

Chapter 4. Applications Demo

110

Figure 4.46 – vfNegotiation: Farmer User Interface

This interface allows the farmer to either login to an existent Farmer ID or

to create a new Farmer ID and immediately login to that just created Farmer ac-

count.

Like the interface presented in subchapter 4.4.2, during the vOrder Appli-

cation explanation, also this vfNegotiation interface presents some verification

procedures. If either the New / Existent User options are left unchecked or the

Farmer ID field is left empty when the “Proceed” button is pressed an error

message like the one depicted in Figure 4.10 is shown. If the “New User” option

is selected but the provided Farmer ID matches one that already exists in the

cloud database, an error interface like the one present in Figure 4.11 is shown.

Finally, if the “Existent User” option is selected but the provided Farmer ID is

not yet present in the cloud database a fail message like the one observable in

Figure 4.12 is shown.

By providing an inexistent Farmer ID and selecting the “New User” op-

tion, the application automatically creates a new Farmer Entity, adds it to the

application database and presents the user with the Farmer Interface. On the

other hand, if the “Existent User” option is selected and a Farmer ID that exists

in the database is provided, the application will present the farmer with his par-

ticular view of the Farmer’s Interface.

4.4 Applications Demo

111

4.4.13 vfNegotiation – Farmer Main Interface

After a farmer user successfully “logins” into an existent farmer ID or cre-

ates a new farmer account, he reaches the vfNegotiation Main Interface for

Farmers, depicted in Figure 4.47.

Figure 4.47 – vfNegotiation: Farmer Main Interface

This interface consists of four tabs each one providing the farmer with dif-

ferent functionalities. In the first tab, the one that is presented to the farmer as

soon as he reaches this main interface, the farmer can add new fruits to his

available fruit stock. In the second tab, the farmer can check all the fruit he cur-

rently has in his stock, and all the information regarding that fruit. Accessing

his third available tab the farmer can update the set of information about any of

the fruits he currently has in his stock. Finally, the fourth and last tab gives the

farmer information about the amount of each fruit his last production provided.

This tab uses the Fruit Production Entity populated by the vProductMon appli-

cation, through the usage of IoT sensors that measure and count the produced

fruit, providing the amount of produced fruit that falls in each size measure.

This entity is the link between this application – vfNegotiation – and the

vProductMon application, developed by another member of the workgroup do-

ing the master thesis in the vf-OS project.

Chapter 4. Applications Demo

112

4.4.14 vfNegotiation – Farmer Main Interface: Add Fruit

Tab

The first tab in the Farmer Main Interface, the one active when the inter-

face first launches is the Add Fruit Tab. This tab is composed by several fields

which the farmer needs to fill in order to add a new fruit to his available stock,

Figure 4.47.

To add a new fruit to his stock the farmer will need to provide a combina-

tion of three values which does not yet exist in his stock, i.e. a combination of

Fruit Name, Fruit Breed and Fruit Size. Besides the fruit information, for each

combination of those three values, the farmer will have to set a price and an

amount. It is worth mentioning that changing the size equals to the creation of a

whole new different fruit, i.e. there can be different fruits with the same Name

and same Breed with different Sizes.

Like every other interface in the applications, this too have some protec-

tions, like if for example, the farmer tries to add a fruit (Name plus Breed plus

Size) that already exists in his stock, the application will display an error mes-

sage stating so, like the one depicted in Figure 4.48.

Figure 4.48 – Add Fruit Tab: Existent Fruit Error Message

4.4 Applications Demo

113

However, if the farmer changes as much as the size, to a combination that

does not yet exists in his stock, that fruit will be created and automatically add-

ed to his stock, with the provided price and amount, as can be observable in

Figure 4.49.

Figure 4.49 – Add Fruit Tab: Fruit Creation

Using this tab, the user can add as many different fruits as he want to his

stock and they will immediately become available for any potential buyer to

find when searching for a specific fruit.

Chapter 4. Applications Demo

114

4.4.15 vfNegotiation – Farmer Main Interface: Check

Fruit Tab

The second tab accessible in the Farmer Main Interface is the Check Fruit

Tab, Figure 4.50. Using this tab, the farmer can check at any moment all the

fruit he has in stock, as well as its amount, its price and the total monetary val-

ue that that fruit represents.

Figure 4.50 – Check Fruit Tab

When this tab is selected, the application automatically fills the “Fruit

Name” list with all the fruit names of the fruits that are part of that farmer’s

stock, as can be seen in Figure 4.51.

4.4 Applications Demo

115

Figure 4.51 – Check Fruit Tab: Fruit Name List

When a Fruit Name is selected from the list, once again the application au-

tomatically fills the “Fruit Breed” list with all the different breeds of the given

fruit that the farmer has in stock. For different fruit names, the fruit breed list

differs, as shown in Figure 4.52.

Figure 4.52 – Check Fruit Tab: Fruit Breed List

Chapter 4. Applications Demo

116

For the farmer to easily check all his fruits, he just has to select a fruit

name and breed from the lists and then selecting the fruit size. As soon as a

fruit size is selected the three fields (Amount, Price and Total Value) are auto-

matically filled with the current fruit amount, fruit price and total monetary

value of that fruit respectively, as depicted in Figure 4.53.

Figure 4.53 – Check Fruit Tab: Fruit Information Provided

In Figure 4.53, is observable an exhibition of different searches that can be

done using this tab. The search can be done to find different fruits, different

breeds within the same fruit or even different sizes within the same fruit breed.

If the search is done with a fruit name plus fruit breed plus fruit size com-

bination that returns no fruit (i.e. that combination has never been added be-

fore), the application will still return the fields, but filled with 0. However, if the

search focuses a fruit previously added but whose current amount is 0, the ap-

4.4 Applications Demo

117

plication will present 0 in the Amount and Total Value fields, but will still show

that fruit’s price in the Price field. Both these cases can be seen depicted in Fig-

ure 4.54.

Figure 4.54 – Check Fruit Tab: 0’s in the Information

4.4.16 vfNegotiation – Farmer Main Interface: Update

Fruit Tab

The third accessible in the Farmer Main Interface is the Update Fruit Tab,

Figure 4.55. This tab allows to farmer to update every bit of information regard-

ing any of the fruits he has previously added to his stock.

Figure 4.55 – Update Fruit Tab

Chapter 4. Applications Demo

118

In order to update the fruit he currently has in stock, he farmer will first

need to search for that fruit, in a way very similarly to what needs to be done in

the “Check Fruit” tab. The only difference from this tab to the previous one

with regards to the search is the appearance of a “Search” button. Like the pre-

vious tab the Fruit Name list is automatically filled with all the fruits that

farmer owns, and once a fruit is selected, the Fruit Breed list is also automatical-

ly filled. However, unlike the “Check Fruit” Tab where the user just needed to

select an option from each field and the information about the selected fruit

would automatically be presented in the white fields, in this tab after filling all

the fields the farmer needs to press the “Search” button in order to see the re-

turned information.

Since this tab makes use of the “Search” button, some verifications needed

to be included in order to just return information when all the fields are correct-

ly filled. This being said, if the Search button is pressed without selecting both

the Fruit Name, Fruit Breed fields (since the Fruit Size field has a default selec-

tion automatically done), one of the two errors shown in Figure 4.56, will be

presented to the user.

Figure 4.56 – Update Fruit Tab: Errors Interface

After all the fields are filled and the “Search” button is pressed both the

Amount and Price fields will be filled with the selected fruit values (once again

the Amount field will be 0 in case that that farmer currently has no stock of that

fruit, and the Price filed will be 0 if that fruit has never been added to that

farmer’s stock before). An example of both a regular search and a search return-

ing no values is shown in Figure 4.57.

4.4 Applications Demo

119

Figure 4.57 – Update Fruit Tab: Search Done

After the search has return values the farmer can update those values by

pressing the “Update” button. Here another verification is made, the farmer is

only supposed to be able to update the information of fruits he has previously

added to the stock, so if in this tab he tries to “Update” a fruit never added be-

fore the application will return an error message like the one presented in Fig-

ure 4.58.

Figure 4.58 – Update Fruit Tab: Fruit Update Failure

Chapter 4. Applications Demo

120

After all the verifications are checked and the search returns a fruit previ-

ously added to the farmer’s stock, the Update button slightly changes this tab’s

interface to allow the user the make the changes to that fruit information. In or-

der for the changes to be performed the user is presented with the option of

changing both that fruit amount and price, like depicted in Figure 4.59.

Figure 4.59 – Update Fruit Tab: Update Fields

During the fruit update, the current fruit information will remain static in

the upper fields, while the lower fields can be freely changed by the user. At

any point during the update, if the farmer decides to undo the changes he is

making all he needs to do is press the “Back” button and nothing on that fruit’s

information will change. If, however, the farmer wants to proceed with the fruit

update, by pressing the “Save” button that fruit’s information will change, and

to the farmer will be presented an interface showing the new information con-

cerning that fruit. An example of that interface can be seen in Figure 4.60.

4.4 Applications Demo

121

Figure 4.60 – Update Fruit Tab: Fruit Update Success

As can be observed in Figure 4.60, right after the Save button is pressed

and the Success interface is shown, the “Update Fruit” tab will update the in-

formation fields to show the new values of that fruit.

4.4.17 vfNegotiation – Farmer Main Interface: Produc-

tion Values Tab

The Production Values tab is the last tab accessible to the farmer in the

Farmer Main Interface of the vfNegotiation app. This tab, observable in Figure

4.61, allows the farmer to examine the amount of fruit his last production gave

him.

Chapter 4. Applications Demo

122

Figure 4.61 – Production Values Tab

As can be seen in Figure 4.61, this tab is composed by four lists, two of

them where he can specify which food he wants to examine (“Fruit” and

“Breed” lists), one where will he be presented the produced amounts (“Produc-

tion Amount” list) and finally one list where he can select the final fruit’s in-

formation which will give the precise amount of the produced fruit.

As soon as the farmer enters this tab, the Fruit list will be presented auto-

matically filled with all the fruits that farmer has produced (as can be seen in

Figure 4.61, which is the image representing this tab as soon as it is reached).

Once the farmer selects any of the listed fruits, the “Breed” list will be

filled with all the breeds of the selected fruit that that farmer has produced (as

can be seen in the left image of Figure 4.62, which depicts the tab’s appearance

once a Fruit is selected). After a Breed of the given fruit is selected, the “Produc-

tion Amount” list is filled with the amount of fruit produced for each size (as

can be seen in the right image of Figure 4.62). With the amount of produced

fruit, listed to all sizes, selecting one size will select the according amount of the

produced fruit, as exemplified in Figure 4.62.

4.4 Applications Demo

123

Figure 4.62 – Production Values Tab: Fruit’s Last Production Values

4.4.18 vfNegotiation – Buyer Main Interface

The Buyer Main Interface is reached after the Choose User interface is left

by clicking the “Buyer” button from Figure 4.45. Therefore, this is the interface

presented to a Buyer user when using the vfNegotiation Application. This ap-

plication allows the user (buyer) to search for farmers selling the type of fruit he

intends to buy, and select them manually or automatically, using one of the two

tabs observable in Figure 4.63. After a fruit and a farmer are selected the buyer

can, still using this application, an Order to buy the wanted fruit from the se-

lected farmer.

Figure 4.63 – vfNegotiation: Buyer Main Interface

Chapter 4. Applications Demo

124

4.4.19 vfNegotiation – Buyer Main Interface: Manual

Search Tab

The Manual Search Tab is the tab the user reaches when accessing the

vfNegotiation Application as a Buyer. Using this tab the buyer can manually

search for all the farmers registered in this application, who currently have the

searched food in stock.

The manual search can be done either by stating just the fruit the buyer is

looking for (i.e. just by filling the Fruit Name, Fruit Breed, Fruit Size and Fruit

Amount fields), or by adding some filters to the search. The available filters are

presented to the user once he presses the “Show Filter” button. All the currently

available filters can be seen in Figure 4.64.

Even though the search can be performed without adding any of the fil-

ters, if any of the mandatory fields is left empty, and like previously displayed

in this document, the application will show an error interface alerting the user

to which fields were left empty.

Figure 4.64 – Manual Search Tab: Available Filters

4.4 Applications Demo

125

Each of the filters can be selected and deselected at any time during the

search, changing the search’s parameters. For each selected filter, a new field

will appear in front of it where the user can set that filter’s value. As can be seen

in Figure 4.64, the vfNegotiation currently has four available filters for the

Manual Search:

1. “Min Price” – which sets a minimum price for the farmer’s selected

fruit for him to appear in the search results, i.e. if a farmer’s selected

fruit price is above the minimum price set by the buyer he will not

appear in the search results. This filter was implemented in order for

the buyer to, theoretically, find better farmers regardless of the price;

2. “Max Price” – similar to the “Min Price” this filter focuses on the

fruit’s price, however using this filter the buyer can set the maximum

fruit’s price for the farmer to be showed in the search, i.e. the search

will only return farmers whose selected fruit price is below the max-

imum price set. This filter was implemented for buyers wanting to

find the farmers with the lowest prices;

3. “Min Produced Amount” – sets the minimum produced amount of

the selected fruit a farmer must have, to appear in the search results,

i.e. the farmer will only be returned in the search if his production

stock of that fruit is above the minimum amount set. This filter was

implemented to allow the buyer to search only for big producers, i.e.

farmers which produce high amounts of that specific fruit;

4. “Max Produced Amount” – similar to the “Min Produced Amount”

this filter affects the farmer’s production stock of the selected fruit,

however using this filter the buyer can set the maximum amount of

fruit the farmer has produced. Unlike the previous one, this filter

was implemented so that the farmer could search only for the small

producers, i.e. he will be presented with a list of farmers which have

produced small amounts of the selected fruit in stock.

It is worth mentioning that the last two presented filters were developed

using the entity that establishes the connection between the vProductMon and

the vfNefotiation apps. That entity holds the information automatically ob-

Chapter 4. Applications Demo

126

tained, through IoT sensors measurements, about the amount of produced fruit

that falls into each category from a specific farmer. That information, can be

queried by the farmer through the “Production Values” tab (subchapter 4.4.17),

and is also made available to the buyer through the usage of these two filters,

and others presented in subchapter 4.4.20.

Once a fruit is specified, and the wanted filters are set, by pressing the

“Search” button the application will populate both the “Farmers” and the

“Prices (€/Kg)” lists with the farmers who currently have the selected fruit in

stock with an amount high enough to fulfil de order, and those farmers fruit’s

prices respectively. A comparison of a search using and not using filters in the

Manual Search can be seen in Figure 4.65.

Figure 4.65 – Manual Search Tab: Filters and No Filters Results

As can be seen in Figure 4.65, the usage of filters will filter the search’s re-

sults, and more than one filter can be used simultaneously to further filter the

results. If the filters are used in a way that makes the results return no farmers,

i.e. any of the farmers registered in the application meet the necessary require-

ments to show up in the results, an error message like the one presented in Fig-

ure 4.66, will show up to the vfNegotiation user. The same message will appear

even if no filters are used but no farmer currently has the searched fruit in

stock.

4.4 Applications Demo

127

Figure 4.66 – Manual Search Tab: No Farmer Error Message

If the search returns at least one or more farmers, the buy can select one of

them by clicking on his name in the “Farmers” list, and clicking on the “Order”

button, an order draft will appear allowing the farmer to order the searched

fruit from the selected buyer. This is order draft is approached on subchapter

4.4.21.

4.4.20 vfNegotiation – Buyer Main Interface: Automatic

Search Tab

The second and last tab of this Buyer Main Interface is the Automatic

Search Tab. Using this tab, the buyer can ask the application to automatically

select the best farmer that provides a given fruit, according to the Buyer’s re-

quirements. The interface presented to the Buyer when he first accesses the sec-

ond tab of this interface is presented in Figure 4.67.

Chapter 4. Applications Demo

128

Figure 4.67 – vfNegotiation Buyer Interface: Automatic Search Tab

Once again, like happened with tab one of this interface, all the Fruit

Name, Fruit Breed, Fruit Size and Fruit Amount fields must be filled before per-

forming the search, or else the application will display an error message. How-

ever, unlike que previous tab, this tab’s filter field is mandatory, i.e. the buyer

must choose one of the possible filters to perform the search. The optional fil-

ters, shown in Figure 4.68, are used to inform the application’s search function

which parameter the buyer considers to be more important when buying a fruit

from a producer.

4.4 Applications Demo

129

Figure 4.68 – Automatic Search Tab: Available Filters

At the moment, the Automatic Search has 6 optional filters:

1. “Best Price” – the application will search all the farmers who current-

ly have enough of the searched food in stock to fulfil the buyer’s or-

der, and return the one who has the lowest price / Kg of them. This

filter was implemented for the buyer to get the lowest price possible

for the selected fruit;

2. “Highest Fruit Diversity” – this filter will return the farmer which

has enough of the searched fruit in stock to fulfil the order, but that

also has the highest number of the fruit name, fruit breed and fruit

size combination, i.e. the farmer that sells the highest variety of

fruits. This filter was implemented for the buyer to find a farmer

who sells many different fruits, in case for example, that the buyer

wants to buy many different fruits always from the same farmer;

Chapter 4. Applications Demo

130

3. “Highest Fruit Amount” – this filter will force the search to return

the farmer which has the highest current stock of the searched fruit.

This filter was implemented for the buyer to know which farmer has

the current highest amount of that fruit, in the case of wanting to

make a big order of any breed and size within the selected fruit;

4. “Highest Breed Amount” – similar to the previous filter, this one

makes the search return the farmer with the highest current stock of

that the selected fruit’s breed. This filter was implemented for the

buyer to know which farmer currently has the highest amount of

that fruit’s breed, in the case of wanting to make a big order of any

size within the selected fruit’s breed;

5. “Highest Fruit Production” – This filter looks for the farmer which

has the highest production amount of the selected fruit, making use

of the information present in the Fruit Production Entity (the entity

establishing the connection between the vProductMon and the vfNe-

gotiation applications). This filter was implemented for the buyer to

know which farmer breeds the highest amount of that fruit, in the

case of wanting to find the biggest producer of the selected fruit (re-

gardless of breed and size);

6. “Highest Breed Production” – This filter focuses on the production

amount of the selected breed. It makes the search return the farmer

which has the highest production amount of that breed. This filter

was implemented for the buyer to know which farmer breeds the

highest amount of that fruit’s breed, in the case of wanting to find

the biggest producer in the market, of the selected fruit’s breed.

Once a fruit, breed, size and amount are stated and the best fitting filter is

selected the buyer can press the “Search” Button (remember that even any of

the mentioned fields aren’t field at the time that the “Search” Button is pressed

an error message will appear), and the application will return the farmer that

meets all the requirements, as can be observed in Figure 4.69 (the same search

as the one presented in Figure 4.65 was used in order to show the reliability of

the application).

4.4 Applications Demo

131

Figure 4.69 – Automatic Search Tab: Filters Results Comparison

As can be observed in Figure 4.69, unlike the Manual Search function used

in tab one, this automatic search function returns only one farmer. This search is

done based on the selected filter from the “Search Filter” field, and returns only

the farmer that best meets the selected requirement. Once again and like in the

“Manual Search” after the search returns a farmer, the buyer can order the

goods from that farmer by pressing the “Order” button. This order is further

explained in the next subchapter.

4.4.21 vfNegotiation – Buyer Main Interface: Order

Draft

Once a fruit search is performed, by a buyer, in the vfNegotiation applica-

tion, and returns one or more farmers, and one of those farmers is selected, the

buyer has the option to create that Order, i.e. emit an order for the selected

Farmer to dispatch the requested goods. In order to emit that Order the buyer

needs to press the “Order” button present in both the Manual Search - Figure

4.65 – and the Automatic Search – Figure 4.69. Once that button is pressed, an

interface similar to the one presented in Figure 4.70, will be presented to him.

Chapter 4. Applications Demo

132

Figure 4.70 – vfNegotiation: Buyer Order Draft

In Figure 4.70 is depicted the Order draft presented to the buyer after he

has pressed an Order button from either one of the searches available in the

vfNegotiation application. In this draft, the buyer is presented with all the in-

formation about the order he is performing. Here he can see the fruit he is or-

dering as well as the breed, the size and the amount, and also the fruit’s price,

the farmer that will be providing the fruit and the total cost of the order. If the

buyer agrees with the presented information, he just has to press the “Confirm

Order” button and that order will be sent to the specified farmer (which will

receive a “Dispatch Order” message similar to the one presented in the sub-

chapter 4.4.4 of this document), if before sending out the order the buyer wants

to make some changes, by pressing the “Change Order” button, the order send

will be put on hold, this interface will be hidden and the buyer will return to

the search tab that led him here.

It is worth mentioning that the farmer’s stock present in the vfNegotiation

App is immediately updated as soon as the order is emitted, i.e. to the current

value is subtracted the value bought in this order. This was done to prevent

new searches from taking into account an outdated stock value, because even

though the bought goods have not yet been dispatched (only the farmer using

4.4 Applications Demo

133

the vOrder application can really send them) they can no longer be available for

sale since they are already destined to a buyer.

After hitting the “Confirm Order” button, the order will be automatically

sent to the selected farmer and the buyer will be given an “Order ID”, depicted

in Figure 4.71, which he will need to save in order to be able check the

Transport Conditions of his purchased goods in the vOrder “Check Transport”

Tab, like it was introduced in subchapter 4.4.8, Figure 4.31.

Figure 4.71 – vfNegotiation: Buyer Order ID Reminder Message

Chapter 4. Applications Demo

134

135

5 Conclusions and Future Work

After completed the development of two applications which provide solu-

tions not only to the presented real case scenario but also to the vf-OS Project,

this chapter holds the conclusions of such development as well as the future

work that could still be developed in order to add further functionalities to both

the scenario and the vf-OS Project.

5.1 Conclusions

The goal of this thesis was the development of two of the five intercon-

nected applications which aimed to provide solutions primarily to a real-life

scenario which, in turn also provided small contributions to the European vf-

OS project being developed, among other institutions, by the UNINOVA insti-

tute. This thesis was therefore developed under the supervision and guidance

provided by UNINOVA, in order to follow the vf-OS Project patterns and re-

quirements.

The primary goal of this thesis was the usage of cutting-edge technologies,

alongside European technologies to, more easily allow the creation of a stand-

ard application able to be used by all industrial and manufacturing sectors,

which was the aim of the vf-OS project “the goal of the vf-OS Project is to de-

velop an Open Operating System for Virtual Factories, which aims to become

the reference system software for managing factory related computer hardware

5

C
H

A
P

T
E

R

Chapter 5. Conclusions

136

and software resources and providing common services for factory computa-

tional programs”. In order to do so, the FIWARE Program was the main reposi-

tory searched to find such technologies. As stated in this document, besides the

java programming language, all the other technologies used where open source

ones retrieved from the FIWARE Program, such as the Generic Enablers use,

the Orion Context Broker and the Short Term Historic – Comet.

Even though the two developed applications were mainly oriented to the

solution of the food chain scenario presented, they can easily be changed to an-

swer any other scenario that requires the production, selling and transporting

of goods. Also, several different user-friendly interfaces were produced, to al-

low any person to use the applications, and not just for people who are knowl-

edgeable in the field. Any person wanting to sell his produced goods, who likes

to keep track of every step of the process using IoT sensors, can use the present-

ed applications, and all he needs to know is the ID of the sensors he is using

and the goods he wants to sell, and the application will automatically take care

of the rest. In addition to the user-friendly interfaces, several protections were

added to the applications, as described during this thesis document, to make

sure that even if the user fails to add certain information or adds it in a wrong

way, the application will never be corrupted. The applications can also with-

stand not only a large number of users using the framework at the same time,

but also large amount of registered sensors, goods and any other vital infor-

mation, such as transport means, orders of goods or shared information be-

tween applications. All these aspects make the applications effortlessly scalable,

interoperable, fault-tolerant and user-friendly.

For development and tests purposes, both the applications can work in-

dependently of the other applications developed by the master thesis work

group, since arrangements were made to simulate the information that should

be provided by the other applications. However, with all the applications fully

deployed, there is a share of information, resources and functionalities between

these two described applications and all the others developed within the vf-OS

master thesis group project. The shared information goes from simply texts and

values produced in one application and used in a different one, up to the sub-

scription, registration and discovery of physical IoT sensors deployed in one

application and accessed through a different one.

5.1 Conclusions

137

In addition to the applications developed during the writing of this master

thesis and the creation of its prototypes, also two papers were also created. One

of them has already been published in a conference, and the second one has al-

ready been submitted and is waiting to be published.

The first paper: Diogo Ferreira, Pedro Corista, João Gião, Sudeep Ghimire,

João Sarraipa and Ricardo Jardim-Gonçalves (2017). “Towards Smart Agricul-

ture using FIWARE Enablers”, was already accepted and published in the

ICE/IEEE Conference 2017, and depicts an intermediate state of this thesis de-

velopment, after the preliminary search was made, and before the prototype of

the applications was built.

The second paper: Pedro Corista, Diogo Ferreira, João Gião, João Sar-

raipa and Ricardo Jardim-Gonçalves (2018). “An IoT Agriculture System using

FIWARE”, was submitted in the 24th ICE/IEEE ITMC 2018 Conference, and is

waiting for approval. This second paper includes a description of four of the

five interconnected applications created within the Master Thesis workgroup

working under the vf-OS projects and depicts the relations established between

them.

With the development of this master thesis, it became clear that all the in-

dustries (whether they are factories, or manufacture industries or even agricul-

ture industries) have only to gain, with the usage of IoT devices. This project

showed many ways on how IoT sensors and other devices could greatly help all

the steps, in this case, of a food supply chain, but that could easily be adapted

to any other industry sector. That said, it is possible to say that an IoT Service

Oriented System would be a great asset, to be added to the industry of the Fac-

tories of the Future, and this project proves that it can be done quite easily giv-

en the proper tools. Hence, by following the presented research question “How

can a framework provide guidance to make IoT services discovered for effective

use?”, and making use of the consequent created Hypothesis “If the FIWARE

technology can provide modularity and discovery solutions then integrate IoT

devices through generic enablers will facilitate IoT service oriented implemen-

tation and use on manufacturing systems.”, this thesis was able to prove that

using the generic enablers provided by the FIWARE technology it was possible

Chapter 5. Future Work

138

to use IoT discovered services to provide contributions to the Factories of the

Future service oriented manufacturing systems.

5.2 Future Work

As mentioned during the elaboration of this thesis’ document, both the

applications developed during this thesis, were created based on the presented

scenario. Therefore, in a future work, they could both be easily adapted to the

selling and transporting of any other products, with just minor changes to the

interfaces. If any other industry wants to adapt these applications to its prod-

ucts, they will still be able to work over the same source code and only entity’s

and label’s names need to be changed.

Besides, both the developed applications were made mainly from a sell-

er/producer perspective, i.e. they were designed so that the core user of the ap-

plications was the seller/producer, both to put his goods for sale and to manage

its production and expedition. The vf-OS project was designed to be an Opera-

tive System used by goods producers, and that was why these applications

were developed according to that idea. If, however, using the same technolo-

gies, the applications were required to be done mainly from a buyer perspec-

tive, the vfNegotiation (that handles the selling and buying of goods), especial-

ly, could, and should be changed a bit. An idea on how to change the vfNegoti-

ation to a buyer oriented perspective, easily achievable using the same technol-

ogies could be the following:

1. Instead of being the producers to sign up in the applications it could be

the buyers;

2. Once all the buyers were signed in the system, a producer wanting to

sell its goods, should inform all the signed buyers that he had a new

product ready for sale, and the correspondent amount;

3. After receiving the information about the new product in their inter-

face, each of the signed buyers could make an offer saying how much

5.2 Future Work

139

of the product they would like to buy, and how much they were will-

ing to pay for it;

4. After collecting all the propositions, the seller would choose the offer

or offers that that best suited him and would then sell the produced

goods to the respective buyer or buyers.

In the vOrder application, where allegedly is the producer that owns and

controls the transport means, this could also be changed to make the buyers the

owners of the transport carrying the goods, or even a third party being in

charge of all the transportations.

141

Bibliography

Atzori, L., Iera, A., Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of

Things : A Survey The Internet of Things : A survey. COMPUTER

NETWORKS, (November 2014).

https://doi.org/10.1016/j.comnet.2010.05.010

Auto-ID Labs. (n.d.). Auto-ID Labs. Retrieved January 17, 2017, from

http://autoidlabs.org/wordpress_website/

Bauer, M., Martinbauerneclabeu, E., & Meissner, S. (2011). Service Modelling

for the Internet of Things. In Proceedings of the Federated Conference on

Computer Science and Information Systems (pp. 949–955).

Consulting, F. (2015). Connect and Protect : The Importance Of Security And

Identity Access Management For Connected Devices, (August).

Crouch, C. (2015). TELEFONICA, ORANGE, ENGINEERING and ATOS join

forces to push common standards for Smart Cities based on the FIWARE

platform. Retrieved November 14, 2016, from

https://atos.net/en/2015/press-release/general-press-

releases_2015_03_03/pr-2015_03_03_01?utm_source=%2Fen-

us%2Fhome%2Fwe-are%2Fnews%2Fpress-release%2F2015%2Fpr-

2015_03_03_01.html&utm_medium=301

Docker. (2017). Docker. Retrieved May 5, 2017, from https://www.docker.com/

Duan, Q., Yan, Y., & Vasilakos, A. V. (2012). A Survey on Service-Oriented

Network Virtualization Toward Convergence of Networking and Cloud

Computing. IEEE Transactions on Network and Service Management, 9(4),

373–392. https://doi.org/10.1109/TNSM.2012.113012.120310

EVRYTHNG. (n.d.). EVRYTHNG. Retrieved January 24, 2017, from

Bibliography

142

https://evrythng.com/

Fiware.org. (2016). FIWARE - About us. Retrieved November 14, 2016, from

https://www.fiware.org/about-us/

FIWARE - Orion Context Broker. (2014). FIWARE - Orion Context Broker.

Retrieved May 5, 2017, from

https://pt.slideshare.net/fermingalan/introduction-to-fiware-cloud-

context-broker?nomobile=true

Ford, H. (1922). My Life and Work. Wikipedia, 116.

Guinard, D. (2010). Mashing Up Your Web-Enabled Home. In F. Daniel & F. M.

Facca (Eds.), Current Trends in Web Engineering: 10th International

Conference on Web Engineering ICWE 2010 Workshops, Vienna, Austria, July

2010, Revised Selected Papers (pp. 442–446). inbook, Berlin, Heidelberg:

Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-16985-4_42

Guinard, D., Member, S., Trifa, V., & Member, S. (2010). Interacting with the

SOA-Based Internet of Things : Discovery , Query , Selection , and On-

Demand Provisioning of Web Services, 3(3), 223–235.

Herault, L., & Presser, M. (2008). SENSEI - Integrating the Physical with the Digital

World of the Network of the Future.

Herrmann, C., Schmidt, C., Kurle, D., Blume, S., & Thiede, S. (2014).

Sustainability in manufacturing and factories of the future. International

Journal of Precision Engineering and Manufacturing - Green Technology, 1(4),

283–292. https://doi.org/10.1007/s40684-014-0034-z

Hu, S. J. (2013). Evolving paradigms of manufacturing: From mass production

to mass customization and personalization. Procedia CIRP, 7, 3–8.

https://doi.org/10.1016/j.procir.2013.05.002

Hu, S. J., Ko, J., Weyand, L., Elmaraghy, H. A., Lien, T. K., Koren, Y., …

Shpitalni, M. (2011). Assembly system design and operations for product

variety. CIRP Annals - Manufacturing Technology, 60(2), 715–733.

https://doi.org/10.1016/j.cirp.2011.05.004

IEC.ch, I. E. C. (2017). Standardization Management Board SG 8. Retrieved

January 17, 2017, from

http://www.iec.ch/dyn/www/f?p=103:85:0::::FSP_ORG_ID,FSP_LANG_ID:

11072,25

IEE, S. A. (2016). Standard for an Architectural Framework for the Internet of

Things (IoT) IEEE P2413, (September).

IIC.org, I. I. C. (n.d.). Industrial Internet Consortium. Retrieved January 17,

2017, from http://www.iiconsortium.org/index.htm

Bibliography

143

Im, J., Kim, S., & Kim, D. (2013). IoT Mashup as a Service: Cloud-based Mashup

Service for the Internet of Things. In 2013 IEEE International Conference on

Services Computing (pp. 462–469). Washington, DC, USA: IEEE Computer

Society. https://doi.org/10.1109/SCC.2013.68

Jeschke, S., Brecher, C., Meisen, T., Özdemir, D., & Eschert, T. (2017). Industrial

Internet of Things and Cyber Manufacturing Systems. In S. Jeschke, C.

Brecher, H. Song, & D. B. Rawat (Eds.), Industrial Internet of Things:

Cybermanufacturing Systems (pp. 3–19). inbook, Cham: Springer

International Publishing. https://doi.org/10.1007/978-3-319-42559-7_1

Jung, J., Watson, K., & Usländer, T. (2017). Design of Smart Factory Web

Services Based on the Industrial Internet of Things, (Iic), 5941–5946.

Karnouskos, S., Baecker, O., & S, L. M. (2007). Integration of SOA-ready

Networked Embedded Devices in Enterprise Systems via a Cross-Layered

Web Service Infrastructure.

keit.re.kr. (n.d.). Korea Evaluation Institute of Industrial Technology. Retrieved

from http://www.keit.re.kr/eng/index.do

Kernel Exokernel. (2013). Kernel Exokernel. Retrieved January 23, 2017, from

https://commons.wikimedia.org/wiki/File:Exokernel_revised(english).png

Kernel Hybrid. (2008). Kernel Hybrid. Retrieved January 23, 2017, from

https://commons.wikimedia.org/wiki/File:Kernel-hybrid2.svg?uselang=pt

Kernel Layout. (2008). Kernel Layout. Retrieved January 23, 2017, from

https://commons.wikimedia.org/wiki/File:Kernel_Layout.svg?uselang=pt

Kernel Microkernel. (2008). Kernel Microkernel. Retrieved January 23, 2017,

from https://commons.wikimedia.org/wiki/File:Kernel-

microkernel2.svg?uselang=pt

Kernel Monolithic. (2008). Kernel Monolithic. Retrieved January 23, 2017, from

https://commons.wikimedia.org/wiki/File:Kernel-

monolithic_v2.svg?uselang=pt

Kim, J., & Lee, J. (2014). OpenIoT : An Open Service Framework for the Internet

of Things. In 2014 IEEE World Forum on Internet of Things (WF-IoT) (pp. 89–

93). https://doi.org/10.1109/WF-IoT.2014.6803126

Koschmider, A., Torres, V., & Pelechano, V. (2009). Elucidating the Mashup

Hype: Definition , Challenges , Methodical Guide and Tools for Mashups.

In Proceedings of the 2nd Workshop on Mashups, Enterprise Mashups and

Lightweight Composition on the Web (MEM 2009) held in conjunction with 18th

International World Wide Web Conference (WWW 2009), April 20th, 2009,

Madrid, Spain (p. 8).

Bibliography

144

Lake, D., Rayes, A., & Morrow, M. (2012). The internet of things. The Internet

Protocol Journal, 15(3), 10–19. Retrieved from

http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-

issues/table-contents-57/153-internet.html

Liu, J., Liu, J., & Chao, L. (2007). Design and Implementation of an Extended

UDDI Registration Center for Web Service Graph. In IEEE Computer

Society Press (Ed.), IEEE International Conference on Web Services (ICWS

2007) (pp. 1174–1175). Salt Lake City, Utah, USA.

https://doi.org/10.1109/ICWS.2007.74

LogMeIn. (n.d.). xively. Retrieved January 24, 2017, from

https://www.xively.com/?from_cosm=true

Lueth, K. L. (2015). Will the industrial internet disrupt the smart factory of the

future? Retrieved November 8, 2016, from https://iot-

analytics.com/industrial-internet-disrupt-smart-factory/

Mike. (2009). Operating Systems Development - Kernel: Basic Concepts.

Retrieved October 17, 2016, from

http://www.brokenthorn.com/Resources/OSDev12.html

NGSI10. (2014). NGSI10. Retrieved May 5, 2017, from

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-

WARE_NGSI-10_Open_RESTful_API_Specification

NGSI9. (2014). NGSI9. Retrieved May 5, 2017, from

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-

WARE_NGSI-9_Open_RESTful_API_Specification

OECD. (2011). Future Factory. OECD Economic Surveys: Ireland 2011, 8–9.

https://doi.org/10.1002/yd.20002

On, P. L., Ystems, S. M. S., Ep, I. N., & Lange, S. (2008). Internet of Things in.

onem2m.org. (n.d.). One M2M. Retrieved January 17, 2017, from

http://www.onem2m.org/

OS Structure. (2008). OS Structure. Retrieved from

https://commons.wikimedia.org/wiki/File:OS-structure2.svg?uselang=pt

Puttonen, J., Lobov, A., Soto, M. A. C., & Lastra, J. L. M. (2016). Cloud

computing as a facilitator for web service composition in factory

automation. Journal of Intelligent Manufacturing, 1–14. article.

https://doi.org/10.1007/s10845-016-1277-z

Qian, H., Baokang, Z., Yunjian, L., Jinshu, S., & You, I. (2014). A Structure P2P

Based Web Services Registry with Access and Control. In S. Teufel, T. A.

Min, I. You, & E. Weippl (Eds.), Availability, Reliability, and Security in

Bibliography

145

Information Systems: IFIP WG 8.4, 8.9, TC 5 International Cross-Domain

Conference, CD-ARES 2014 and 4th International Workshop on Security and

Cognitive Informatics for Homeland Defense, SeCIHD 2014, Fribourg,

Switzerland, September 8-12, 2014. Proceedings (pp. 286–297). inbook, Cham:

Springer International Publishing. https://doi.org/10.1007/978-3-319-10975-

6_23

The Linux Information Project. (2005). Kernel Definition. Retrieved October 17,

2016, from http://www.linfo.org/kernel.html

Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing Smart Factory of

Industrie 4 . 0 : An Outlook, 2016. https://doi.org/10.1155/2016/3159805

Whitmore, A., Agarwal, A., & Xu, L. Da. (2016). The Internet of Things — A

survey of topics and trends The Internet of Things — A survey of topics

and trends, (April 2014). https://doi.org/10.1007/s10796-014-9489-2

Zebra Technologies. (n.d.). The Factory of the Future new value in

manufacturing . HOW MANUFACTURING SOURCING , SUPPLY

CHAIN MANAGEMENT AND PRODUCTION.

147

A. Entities Tables

In the following tables are presented the different entities created along

the development of the applications, which served as basis to represent the nec-

essary information to ensure the optimal work of the applications. The fields

filled with < text >, are assumed to be filled with a specific value during the

normal functioning of the applications.

Table A.1 – Fleet Entity.

Field Content

Type Fleet

ID Fleet_<Farmer>

Attribute

Name <TruckID>

Type

Value Stop / Travel

In Table A.1 is presented the Fleet Entity. This entity contains the infor-

mation about the fleet of each farmer, farmer whose name will appear in the

Entity ID field. Each of this Entity’s attributes will represent a Truck added to

that farmer’s fleet and the value will change according to whether the truck is

currently traveling or stopped.

A

A

P
P

E
N

D
IX

Appendix A. Entities Tables

148

Table A.2 – Truck Entity.

Field Content

Type Truck

ID <TruckID> (<FarmerID>_<TruckID>)

Attribute

Name <SensorID>

Type <SensorType>

Value <Value>

In Table A.2 is presented the Truck Entity. This entity represents every

truck present in the applications. Each truck has and ID, that mandatorily con-

tains his owner’s ID (the farmer ID in this scenario), as well as a list of its sen-

sors (present in each attribute). These sensors will be represented by its ID

(unique for each sensor in the applications as explained below), his type

(whether they are a temperature sensor, or a pressure sensor, etc.) and its last

read value. Each of the sensors added to a truck represent a real IoT sensor

providing values read on a daily basis. The development of these sensors and

the sending of their read values to the Orion GE are part of the vfHarvest Ap-

plication. The arrow connecting both the vfHarvest and the vOrder applications

depicted in Figure 4.1 represents this sharing of information, i.e. the storage of

the values read by the IoT sensors in the Orion entities used in the vOrder ap-

plication.

Table A.3 – Sensor Entity.

Field Content

Type SensorID

ID <SensorID>

Attribute

Name <TruckID>

Type

Value

Entities Tables

149

In Table A.3 is presented the Sensor Entity. This entity represents every

sensor present in the applications. This Entity is used to facilitate IoT discovery

as each sensor is here represented by his ID (ID that will be unique for each

sensor bought and used in a real use scenario, for testing purposes during the

development of the applications, the sensor ID is here represented with a sug-

gestive name – for example “te31”: temperature, farmer3, truck1). Within each

Sensor entity the ID of which this sensor is associated to is present in the At-

tribute Name field.

This entity was created, as previously stated, for IoT discovery purposes.

Since the regular sensors available in the market provide only its ID alongside

the value they are currently reading, this entity can be used to, making use of

that information provided by the sensor, discover to which truck that sensor is

assigned to, and therefore, to which Truck Entity the value read by the sensor

should be sent to (the “Attribute Value” field presented in Table A.2).

In order to keep track of some changes that happen with the Entity’s at-

tributes value fields, and once again as stated in Subchapter 3.5.2 of Chapter 3,

the FIWARE Orion Context Broker provides a functionality called Subscrip-

tions. This functionality allows certain enablers, like the FIWARE STH – Comet,

presented in Subchapter 3.5.3 of Chapter 3, to be notified every time a certain

attribute value suffers changes. These subscriptions are, during the normal

functioning of the applications, created with a big life time (i.e. they are made to

stay active for a very long time), so whenever an Entity which contains a sub-

scription needs to be deleted, that subscription also needs to disappear regard-

less of how much time it still has left. Therefore, two entities were created in

order to keep track of the different Subscriptions IDs that are generated during

the functioning of the applications, so that they can be Unsubscribed when the

corresponding Entity is deleted.

The two types of Subscriptions used in these applications are the “Sensors

Value” subscription (a warning every time a sensor reads a new value) used to

analyse the transport conditions (as showed further is this document) and the

“Truck State” subscription, which notifies every time a truck state changes from

“Stop” to “Travel” and vice-versa (used to control how much a time a certain

truck voyage took).

Appendix A. Entities Tables

150

Table A.4 – Subscription (Truck State) Entity.

Field Content

Type Subscription

ID Fleet_<FarmerID>

Attribute

Name <Truck>

Type

Value <SubscriptionID>

In Table A.4 is presented the Subscription entity representing all the

“Truck State Subscriptions” created during the applications run. This first type

of subscription holds all the subscriptions IDs saved during the addition of a

certain truck a farmer’s fleet (the subscription to notify every time a truck state

changes from “Stop” to “Travel” or vice-versa). These subscriptions are repre-

sented by its ID (composed by the Farmer’s fleet ID, the monitored Truck’s ID

and the respective subscription ID), so that it can be unsubscribed at any time

using the subscription ID stored in this Entity.

Table A.5 – Subscription (Sensor Values) Entity.

Field Content

Type Subscription

ID <FarmerID>_<TruckID>

Attribute

Name <SensorID>

Type

Value <SubscriptionID>

Entities Tables

151

In Table A.5 is presented the Subscription entity representing all the “Sen-

sors Values Subscriptions” created during the applications run. This second

type of subscription holds all the subscriptions IDs saved during the creation of

the sensor’s subscriptions (the subscription to notify every time a sensor value

changes). These subscriptions are represented by its ID (composed by the

Farmer’s and the Truck’s ID, the Sensor’s ID and the respective subscription

ID), so that it can be unsubscribed at any time using the subscription ID stored

here.

All the entities presented so far operate mainly during the vOrder applica-

tion run. All are used to store and retrieve information about the IoT sensors

and others, used to make the vOrder functionalities accessible to the user. Be-

tween the vfNegotiation App and the vOrder App a new entity is used which

represents the Order processed between the consumer (representing the buyer,

in this scenario) and the producer (representing the farmer, in this scenario).

Table A.6 – Order Entity.

Field Content

Type Order

ID <OrderID> (<FarmerID>_<OrderNumber>)

Attribute

Name <FarmerID>

Type

Value

Metadata[0]

Name OrderValue

Type

Value <Value>

Metadata[1]

Name Truck

Type

Value <TruckID>

Appendix A. Entities Tables

152

Metadata[2]

Name <FruitName>_<FruitBreed>

Type <FruitSize>

Value <FruitAmount>

In Table A.6 is presented the Order Entity. This entity represents the dif-

ferent orders that will take place between a buyer and a farmer. The Order Enti-

ty contains the OrderID (which for development and test purposes possesses

the FarmerID to whom the order was emitted to, as well as an Order Number to

keep a record of the orders previously emitted to that farmer – to keep two dif-

ferent orders to have the same identification number, as will be presented fur-

ther ahead in this document). However, during the real usage of the applica-

tions every order can have a specific ID that doesn’t need to be equal the one

presented here. Furthermore, the Order Entity will also have in the Attribute

Name field, the Farmer answering to that order, and a metadata split in three

different parts. The first part saves the total monetary value involved in the or-

der, i.e. the payment that will occur from the buyer to the farmer. The second

part shows the Truck (chosen by the farmer) that is transporting the goods re-

lated to that order. Finally, the third part holds the transported goods infor-

mation. In the Name field will be present the fruit name and breed, the type

field will hold the ordered fruit size, and in the Value field the amount of fruit

requested by the buyer.

Table A.7 – Farmer Entity.

Field Content

Type Farmer

ID <FarmerID>

Attribute

Name <FruitName>_<FruitBreed>

Type

Value <Amount>

Entities Tables

153

Metadata[0]

Name ID

Type String

Value <Size>

Metadata[1]

Name Price

Type Float

Value <Price>

In Table A.7 is presented the Farmer Entity. This Entity represents each

farmer using the applications and holds all the information about the goods

they possess. The Farmer Entity is constituted by the Farmer’s ID, and the at-

tributes will represent each of the fruits that farmer produces. Every attribute

(representing a different type of fruit) holds the fruit name and breed, as well as

the amount of that fruit the farmer currently owns. In the metadata will reside

the information about the fruit size (makes use of the previously explained “ID

Name field” which allows the same entity to have different attributes with the

same Name, to allow each farmer to have many different sized of a specific fruit

breed). Besides all the fruit information reported the entity will also have an-

other metadata field where the farmer can specify that fruit price (allowing the

farmer to stipulate a different price for every combination of fruit name, fruit

breed and fruit size).

Table A.8 – Fruit Production Entity.

Field Content

Type FruitInfo

ID <FarmerID>

Attribute

Name <FruitName>_<FruitBreed>

Type <Size>

Value <Amount>

Appendix A. Entities Tables

154

Metadata[0]

Name ID

Type String

Value <Size>

In Table A.8 is presented the Fruit Production Entity. This is entity is

shared by both the vfNegotiation Application developed by me and described

in this thesis and the vProductMon Application developed by another member

of the workgroup doing the master’s thesis under the vf-OS project. This Entity

serves as the link between both these applications as depicted in Figure 4.1.

This entity is created whenever a new farmer is registered into any of the

applications (vOrder or vfNegotiation) and is populated by the vProductMon

application. Using IoT Sensors and created rules, the vProductMon App will

evaluate how many of a farmer’s produced fruits fall within each fruit Size, i.e.

every time a farmer produces a fruit (fruit being a set of fruit name and fruit

breed), through measuring sensors and rules the vProductMon will evaluate

within each size the produced fruit fits into, and will save the amount of fruit

that falls within each size in this entity. Thus, this entity will represent the

amount of fruit produced for each fruit type (fruit name, breed and size).

The fields that constitute this entity are the Farmer’s ID, which is the

farmer producing the fruit, the fruit name and breed in the attribute Name

field, and the fruit size and amount in the Type and Value fields respectively. In

order for the entity to have more than one attribute (representing a fruit) with

the same name (since each farmer can breed more than one size of the same

fruit), the metadata field was introduced with the Name field being ID (in order

for the Orion to allow the entity to have more than one attribute with the same

name, as explained in Subchapter 3.5.2 of Chapter 3). With this being said, the

last fields, the metadata fields, of this entity are the Metadata Name, Type and

the most important one Value, which is the characteristic that distinguishes dif-

ferent attributes (fruits) with the same name.

After this entity is fully populated by the vProductMon each time a farmer

has a new harvest, that farmer will be able to check his last production values in

the vfNegotiation App, and choose which and how many of the produced

goods he wants to put for sale.

