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Abstract 

 

As technology evolves, the Internet of Things (IoT) concept is gaining importance for 

constituting a foundation to reach optimum connectivity between people and things. For this 

to happen and to allow easier integration of sensors and other devices in these technologic 

environments (or networks), the configuration is a key process, promoting interoperability 

between heterogeneous devices and providing strategies and processes to enhance the 

network capabilities. The optimization of this important process of creating a truly dynamic 

network must be based on models that provide a standardization of communication patterns, 

protocols and technologies between the sensors. Despite standing as a major tendency today, 

many obstacles still arise when implementing an intelligent dynamic network. Existing models 

are not as widely adopted as expected and semantics are often not properly represented, 

hence resulting in complex and unsuitable configuration time. Thus, this work aims to 

understand the ideal models and ontologies to achieve proper architectures and semantic 

maps, which allow management and redundancy based on the information of the whole 

network, without compromising performance, and to develop a competent configuration of 

sensors to integrate in a contemporary industrial typical dynamic network. 

Keywords: Internet of Things, Sensors, Sensor Configuration, IoT Models, Dynamic Network, 

Network Mapping, Semantic Maps 
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Resumo 

 

Com a evolução da tecnologia, o conceito de Internet das Coisas está a ganhar importância 

por constituir uma fundação que permite alcançar a conetividade ideal entre pessoas e 

coisas. Para isto acontecer e para facilitar a integração de sensores e outros dispositivos 

nestes ambientes tecnológicos (ou redes), a configuração é um processo chave, que promove 

a interoperabilidade entre dispositivos heterogéneos e providencia estratégias e processos 

para realçar as capacidades da rede. A otimização deste importante processo de criar uma 

rede verdadeiramente dinâmica deve ser baseada em modelos que permitem uma 

normalização de padrões de comunicação, protocolos e tecnologias entre os sensores. Apesar 

de ser uma grande tendência atualmente, muitos obstáculos ainda surgem quando se 

implementa uma rede dinâmica inteligente. Os modelos existentes não são tão amplamente 

adotados como seria de esperar e a semântica tende a não estar representada 

apropriadamente, resultando em configurações complexas e demoradas. Assim, este projeto 

consiste em perceber os modelos ideais e as ontologias para atingir arquiteturas e mapas 

semânticos adequados, que permitem a gestão e redundância baseada na informação da 

rede inteira, sem comprometer o desempenho, e para desenvolver uma configuração de 

sensores competente para implementar numa rede dinâmica típica da indústria 

contemporânea. 

Palavras-Chave: Internet das Coisas, Sensores, Configuração de Sensores, Modelos IoT, Rede 

Dinâmica, Mapeamento da Rede, Mapas Semânticos 
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1 Introduction 

 

 Imagine a world where billions of objects can sense, communicate and share 

information, all interconnected over public or private networks. These interconnected objects 

have data regularly collected and analysed, providing a wealth of intelligence for planning, 

management and decision-making. This is the world of the Internet Of Things or IoT 

(Infocomm Development Authority, 2012). This concept represents various possibilities for a 

wide range of areas related, or to be related, in the future, to technology as we can see in 

Figure 1-1. 

 

Figure 1-1: Internet Of Things Impact (Kastelein, 2012). 

 The Internet of Things is an emerging topic of technical, social and economic 

significance. Consumer products, sensors, industrial components and many other everyday 

objects are being combined with Internet connectivity and powerful data analytic capabilities 

that have the ability to transform the way we work and live (Rose Jaren, Eldridge Scott, 2015). 

To implement such idea, these IoT components, or IoT devices, must be somehow prepared 

to communicate, gather information and to share it, in order to develop a sustainable and 

useful network. IoT devices will only be successful when they can leave the abstract domain 

of experts and scientists, and can be used as standard commodities, and be deployed and 

setup by everyone (Chatzigiannakis et al., 2012). 
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 To overcome the existing heterogeneity of devices, which use and demand different 

technologies to function, models of Reference Architectures are required. Some existing 

efforts to solve this problem are the IoT Architecture, the W3C SSN Ontology and the IoT Lite, 

reviewed in further chapters of this work. Other ontologies exist, but aim to different subjects 

or are not as useful to this work as the ones mentioned before. 

 This work aims to contribute to the contemporary methodology regarding the existing 

models for Reference Architectures in the Internet of Things environment by analysing them 

and understanding how they can contribute for a standardization of configuration and 

mapping of IoT devices to maximize compatibility, interoperability, safety and quality within 

an IoT network. In Figure 1-2, the dependencies and influences of a functional IoT model are 

abstractly presented. 

 

Figure 1-2 - A IoT-A High Level Representation of the Reference Model and Reference Architecture (Bauer et al., 

2012). 

 The next section will provide some contextual information about the scenario and the 

motivation that lead to this topic. After that, the research question, hypothesis, approach and 

work methodology of this dissertation are presented. 

1.1 Motivation Scenario - IoT 

 The Internet of Things (IoT) is becoming one of most discussed topics in technology 

today. It represents a concept that not only has the potential to change how technology is 

presented to us but also how we live. In the IoT paradigm, many of the common objects that 

surround us will be on the network in one form or another (Gubbi, Buyya, Marusic, & 

Palaniswami, 2013). As internet is becoming more widely available to the world, the cost of 

technology and connectivity is decreasing, more devices are being created with Wi-Fi and 

other sensors built into them, and smartphone use is skyrocketing. “All of these things are 

creating a perfect storm for the IoT” (Jacob Morgan, 2014). 
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 The concept is based on machine-to-machine communications and interactions 

between objects, devices and people (Bermudez-edo, Elsaleh, Barnaghi, & Taylor, 2015). The 

term was coined in 1998 and later defined as “The Internet Of Things allows people and 

things to be connected Anytime, Anyplace, with Anything and Anyone, ideally using Any 

path/network and Any service” (Vermesan et al., 2009). In the following image (Figure 1-3), 

the ideology referenced by the definition of the term is illustrated. 

 

Figure 1-3 - : Internet Of Things Concept Illustration (Intersog, 2016). 

 In few words, IoT is the concept of connecting any device (such as cell phones, 

televisions, lamps and refrigerators) to the Internet and achieve broad connectivity to provide 

complex tasks or to make them easier. The potential is immeasurable and it is estimated that 

by 2020 the number of connected devices will grow to 26 billion (Rivera & Van der Muelen, 

2013). The IoT can become a giant ubiquitous interoperable network of interconnected 

“things” (which will also include people) and has the potential to be applied to home 

automation or other concepts like “smart cities”, to help us reduce waste and improve energy 

efficiency.  

 The main motivation and focus of the research and development of this dissertation 

lays in the construction of semantic maps and configuration of devices, such as sensors, in a 

IoT domain, to achieve an intelligent and efficient network monitoring system. The idea 

behind the use of semantic maps is to gather and specifically organize the information of the 

network and its components, to allow redundancy by recovering from device errors/failures. 

For this, proper models must be studied, compared and implemented, to develop a useful 

solution for contemporary and future IoT environments. 

1.2 Research Question 

 The general theme for this dissertation can be generally described as “Dynamic 

Semantic Maps in IoT networks”, which leads to the gathering of meta-information from the 
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network and its devices, specifically sensors due to its importance in dynamically adapt to the 

environment, to allow the creation of this specific data structures, the semantic maps, that 

aim to allow alternative configurations, redundancy and analyse the overall performance of 

the domain. 

 Thus, to properly define the procedures of the research work needed and to 

emphasize the objective of this work, it is important to formulate the research question that 

this thesis aims to answer during its completion. 

 

RQ: “Is it possible to use meta-information from network sensors to 

build semantic maps to support the analysis of degrees of similarity, 

alternative configurations and trustworthiness of systems?” 

 

 This question provides some guidance during the development of this thesis and the 

answer is going to result from the necessary system implementation, validation and 

assessment. 

1.3 Hypothesis and Approach 

 Based on the researched information and the research question, provided before in 

this chapter, this thesis is conducted regarding the following formulated hypothesis: 

 

“If it is possible to use meta-information from network sensors and 

contextually analyse it, then we can dynamically build semantic maps 

in order to develop a more trustworthy and intelligent network, 

capable of reacting to the surrounding ecosystem constraints and 

variability.” 

 

 This statement will be challenged, implemented, tested and validated during the 

completion of this thesis. The results of the process will be presented and subsequently 

discussed, regarding this initial approach.  
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1.4 Work Methodology 

 To achieve the best outcome possible with the development of this thesis, it is 

important to define the necessary processes needed to an efficient scientific investigation and 

experimentation. The information and data here presented is based on the stages required 

for this particular topic, the recommendations of the thesis supervisors and classical scientific 

methodology bibliography (Nordgren, 2004), (Camarinha-Matos, 2012a), (Camarinha-Matos, 

2012b) and (Chinneck, 1999). 

 According to an adaptation of the information from the sources previously mentioned, 

the selected main phases considered for this dissertation are: 

1. Research Questions - Relates to a specific problem or area of knowledge, which 

has interest, for the author, to develop a question with the objective of improving 

an existing solution, finding some new aspect or solve a particular issue. 

2. Context Observations - Includes observations and background information about 

the problem in study. 

3. Hypothesis - Typically, is as an “educated guess” and is formed as a statement, that 

is proposed as an answer to the research question. 

4. Experimentation - Is the phase where the experiment is planned in order to test 

the hypothesis. Considers several aspects such as variables, control, observation 

and methods of data collecting. It may result in a prototype or simulation 

environment to be tested, to allow the retrieval of significant data. In this case, the 

experimentation context is related to the C2NET project (C2NET, 2015), which is 

properly detailed further in this dissertation. 

5. Results Analysis- The results are usually in the form of a statement that explains or 

interprets the data. It could provide a positive answer to the formulated 

hypothesis or it can prove it wrong. In the last case, further different hypothesis 

should be formulated or the problem (research question) must be reconsidered. In 

either case, positive or negative results are considered helpful for the scientific 

community. 

6. Thesis Writing and Publishing - This last phase includes the explanation and 

conclusion of the entire work, in this case, in a dissertation. 

1.5 Dissertation Outline 

 After the introduction provided in this section, this dissertation evolves into the 

following chapters: 
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Chapter 2 – IoT Models and Networks: This section presents the research of contemporary 

solutions and concepts for the relevant subjects of this dissertation. After the initial 

contextualization in the IoT paradigm, the studied models of architecture are presented and 

briefly discussed regarding the aspects that are important for this thesis. Finally, the main aim 

for this thesis is introduced, Semantic Maps, and relevant topics, such as sensor configuration 

and network concepts, are described and integrated in the environment of this work. 

Chapter 3 – Semantic Mapping: In this chapter, an overview of the architecture considered in 

this dissertation is presented and explained. This architecture attempts to describe, on a high 

level, the solution for the module designed that will implement the concept of semantic 

maps. 

Chapter 4 – Proof of Concept Implementation: This chapter introduces the design process of 

the proposed solution and includes a detailed report about the practical component of this 

thesis along with a thorough explanation on what it consists and why it was considered in that 

way. 

Chapter 5 - Testing and Hypothesis Validation: In this section, the tests used to validate the 

formulated hypothesis and the respective analysis are presented. The contexts provided for 

the experiments detailed in this chapter are designed to embody real world environments, to 

ensure the accuracy of the provided solution and methodology, and following the demands of 

the foreseen integration and validation with other related research activities. 

Chapter 6 – Final Considerations and Future Work: The final chapter of this dissertation is an 

overall comparison between all the work developed and the initial expectations, based on 

what was studied and the contemporary solutions for this thematic. After the 

aforementioned analysis and final statements, some notes about what could be improved are 

provided along with the already planned future work. 
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2 IoT Models and Networks  

 

 In this section, an overview of the researched scientific literature about this 

dissertation is presented. The Internet of Things sub-section is a complement to the 

information already mentioned in the introduction chapter and addresses the relation with 

the rest of the sub-sections. The IoT Models sub-section presents an overview of the 

contemporary approach on IoT architectures, how they function and what advantages we 

may take from them. Finally, the last two sub-sections of this chapter, present the gathered 

information about the major issues of creating a dynamic and intelligent sensor network 

through semantic mapping, sensor configuration and environment awareness. 

 The objective of this initial investigation is to form an efficient basis for the 

implementation and further work, explained in the further chapters, and to understand the 

concerning main concepts. Further specific research about the development of this 

dissertation may be presented in other chapters, to allow a better understanding of the 

mentioned and used concepts. 

2.1 Internet of Things 

 During the previous chapter of introduction, the definition and concept of Internet of 

Things was explained in order to set the scenario that motivates the development of this 

work. With that in mind, this sub-section is only focused on the relation that emerges with the 

need for IoT reference architectures, models and ontologies. 

 Internet of Things (IoT), as mentioned before, is the communication between objects, 

devices and people. In the near future, the communications and information processing will 

be ubiquitous and performed by IoT systems (Bermudez-edo, Elsaleh, et al., 2015). With the 

rapid development of the internet and technology, the amount of information has increased 

exponentially (online and technologically generated). A lack of standardization and common 

vocabulary has continued to generate heterogeneity, which strongly hinders information 

exchange and communication (Ding & Fensel, 2001), the main purpose of the IoT. In order to 

be successful with the concept of Internet of Things, some base models, or ontologies, need 

to be developed to define how the components will work. An ontology, in computer science, 

is the working model of entities and interactions either generically or in some particular 

domain of knowledge (Stevens, 2001). These ontologies must consider that there is a wide 

variety of sensors or devices that communicate using different protocols and technologies, 

they often measure different things in very different ways and are not capable of exchanging 

information with other devices easily, due to being developed for specific situations.  
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 The correct configuration, regarding efficient ontologies for these components, is 

believed to be the key for a successful implementation, because it provides the needed tools 

and contexts to successfully integrate and configure sensors in order to manage them, or give 

them the capability of managing themselves, and be able to monitor and act on the network 

as a whole. 

2.2 IoT Models 

 A model is a definition of some slice of reality which is being observed and 

interpreted, that is designed through the use of abstract elements and relationships in order 

to correspond to real scenarios and environments (Correia, 2010). 

 An IoT Model aims to tackle the problems mentioned above, in a generic way. They 

usually propose a high-level reference architecture or ontology that establishes identities, 

procedures, configurations and relationships between different entities in various domains, to 

support any emergent idea or concept related to the Internet of Things. To understand the 

importance of these models, it is going to be mentioned some of the most prominent and 

widely available. Some other IoT models like IBM Watson, Cisco IoT System, Google Brillo, Z-

Wave, Osmose, Sensei and DUL are also known, but are not as widely spread, available or 

relevant to the subjects of this work. 

2.2.1 IoT-A Reference Architecture 

 In this model, the European Lighthouse Integrated Project, addresses the structural 

concerns related to the Internet of Things and creates a proposal for an Architectural 

Reference Model (ARM), starting with the definition of an initial set of key building blocks 

regarding functionality, scalability, performance, deployment and security, with the purpose 

to eventually derive into a large set of concrete IoT architectures. 

 

Figure 2-1: IoT-A Reference Model Building Blocks(Unis et al., 2013). 

 As seen in Figure 2-1, one defining choice of the IoT-A project was to base its work on 

the current state of the art (SOTA), rather than opting for a new approach. Due to this choice, 

backward-compatibility is ensured, and the solutions adopted are already established in the 

field. The Reference Model provides the highest abstraction level for the definition of the IoT 
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Architectural Reference Model, the Reference Architecture is the reference for building 

compliant IoT Architectures and the Guidelines are how these models, views and perspectives 

can be concretely used. 

 The IoT-A is often presented with a metaphor of a tree, not to be interpreted too 

strictly, as seen in Figure 2-2. 

 

Figure 2-2 - The IoT-A Tree (Bauer et al., 2012). 

 The roots of the tree include selected groups of communication protocols (such as 

WiFi, ZigBee, IPv6 and RFID) and device technologies (such as sensors, actuators and tags). 

These protocols and devices are in fact the base of an efficient and interoperable IoT model, 

because by achieving complete understanding and commitment between them, full 

connectivity is reached and exchanging information can become an easy task. The leaves of 

the tree represent the wide variety of IoT applications that can be built from the trunk. The 

leaves only succeed if the roots have a proper functioning and for this functioning to be 

useful, the trunk must have an incisive and correct approach on the way the devices and 

protocols work with each other. The trunk is represented here as the Architectural Reference 

Model (ARM). 

 The IoT Reference Model aims at establishing a common grounding and a common 

language for IoT architectures and IoT systems (Unis et al., 2013). It consists of several sub-

models: Domain Model, Information Model, Functional Model, Communication Model and 

the Trust, Security and Privacy Model. The Figure 2-3 describes how concepts and aspects of 

each model are used to support others. 
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Figure 2-3 - Interaction of all sub-models in the IoT Reference Model (Unis et al., 2013). 

 To better understand the general architecture of this model, an explanation of some 

inherent concepts is presented next (Virtual/Physical Entities, Sensors/Actuator/Tags and 

others). These concepts are transversal to other models and are heavily mentioned during 

further chapters of this thesis. After this, some information about the sub-models, that form 

the IoT Reference Model, is provided. 

• Sensors, Tags and Actuators - A sensor provides information about the physical 

environment it monitors. Tags are used to identify physical components of a system, 

usually they need to be read using specific sensor devices. Actuators are responsible 

for actions requested by the system, or user, and express modifications in the physical 

state of the environment. 

• Physical and Virtual Entities - “An entity is anything that has a distinct existence” 

(Rannenberg, Royer, & Deuker, 2009), physically or virtually. The designations 

mentioned are, in this context, directly associated with physical and virtual 

representations of certain elements of an IoT system. The representations may be 

directly linked, for example, a physical entity is represented by the corresponding 

virtual entity or to a group of virtual entities and vice versa. It can even not be any 

links and these connections may appear and disappear during the operation of the 

system. 

• Database (DB) and Knowledge Base (KB) - A database is the storage of information, in 

various formats and typically organized in a way to model certain aspects of reality 

and supports certain processes that need such information. A knowledge base is often 

mentioned as a complex technology used to store structured or not structured 
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information to be used by a computer system. They are known to be a type of 

database but with a more specific purpose to systems and intelligent decision. 

• Simple and Complex Events - A simple event is usually referred to as an action (or 

component), usually a time observation, which results from the operation of a system 

or derives from it. A complex event derives from various (two or more) simple events 

and requires much more processing and allows much more complex solutions. 

• Complex Event Processing (CEP) - The CEP consists in reading and analysing 

information about events and to deduce conclusions about them. The complex event 

processing combines information from various sources or devices to infer events or 

patterns that suggest more complicated circumstances. The objective of this method 

is to identify important events (such as opportunities or threats) and respond quickly 

and effectively. 

2.2.1.1  Domain Model 

 

Figure 2-4 - IoT Domain Model (Unis et al., 2013). 
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 It is the foundation of the Reference Model and describes all the relevant concepts in 

the Internet of Things like devices, services and virtual entities, and the relationships between 

them. It also provides a common lexicon and taxonomy of the IoT domain (Muller, 2008). 

 The main purpose of a domain model is to generate a common understanding of the 

target domain in question. Such common understanding is important because provides the 

possibility to argue about architectural solutions and to evaluate them (Unis et al., 2013). 

 In Figure 2-4, we can see the definition of basic attributes of the concepts related to 

the IoT systems and the way they interact. The software components are layered upon the 

hardware components to extend them to the virtual world where decision-making occurs, 

using the model and functional principles. The decisions and reasoning are then passed to the 

hardware part for the interaction with the environment. 

2.2.1.2 Information Model 

 Defines the structure (relations and attributes) of IoT related information in a system 

on a conceptual level. It can be seen as a meta-model that provides a structure for the 

information to be handled by IoT systems (Unis et al., 2013). That structure provides 

representation, processing, storage and information retrieval to the system. 

 The IoT Information Model represents all the concepts of the Domain Model that are 

to be explicitly represented and manipulated in the digital world (Unis et al., 2013). 

 

Figure 2-5 - IoT Information Model (Unis et al., 2013). 
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 In this model, the information of the virtual entities is organized and defined using 

relevant context for possible applications of the various components. The resultant structure 

of the information represented in the Figure 2-5 shows how it is handled and processed in an 

IoT system. 

2.2.1.3  Functional Model 

 Identifies groups of functionalities and their interactions as seen in Figure 2-6. The 

functional model is an abstract framework for understanding the Functionality Groups (FG) 

that are explained by Functional Decomposition (FD), which is the process to identify and 

relate each FG to the others. With this process, the complexity of the system is divided into 

smaller and more manageable parts. 

 

Figure 2-6 - IoT Functional Model (Unis et al., 2013). 

 In Figure 2-6 is depicted the derivation of the model. From the main concepts of the 

Domain Model (Virtual Entities, Devices, Resources and Users) others emerge like the 

Application, Virtual Entity, IoT Service and Device components. From the need to 

communicate and exchange information to support the IoT system, the Communication 

component is presented and included. The requirements to build services and applications 

are covered by the IoT Process Management and Service Organization. To address the 

concern about IoT Trust, Security and Privacy, the Security component is identified. Finally, 

the Management is a transversal component required for the management and interaction 

between the functional groups. 

2.2.1.4  Communication Model 

 The Communication Model introduces concepts for handling the complexity of 

communication in heterogeneous IoT environments. It aims at the current paradigms for 

connecting elements and, for each case, to create an interoperable network capable of 
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efficiently exchanging information. The proposed model is based on the ISO OSI 7-layer model 

for networks and it highlights the aspects about interoperability among different stacks. 

 

Figure 2-7 - Interoperability Aspect of the IoT Communication Model (Unis et al., 2013). 

 The Figure 2-7 emphasizes the interoperability aspects that the IoT Communication 

Model wants to develop in comparison to the ISO/OSI stack (presented on the right of the 

figure). The dashed lines were used for highlighting the IoT aspects relatively to the stack 

layers. This transversal approach allows the existing protocol stacks, after the system is 

modelled according to the IoT specifications and interoperable needs, to be adapted easily. 

2.2.1.5  Trust, Security and Privacy Model 

 In practical applications, this model defines some characteristics to consider when 

building a safe system. The model of this aspect of IoT systems was not defined entirely but 

there were considered many guidelines, methods and protocols to ensure trust, security and 

privacy without damaging the system’s efficiency. We will review the relevant concepts of this 

model without stepping too further into the protocols or specifications described in this 

model. 

 Trust regards the aspects of authentication when dealing with other entities and 

exchanging sensitive information with them. To properly achieve the compliance needed to 

the expected functional behaviour, all entities, protocols and mechanisms in an IoT system 

must be validated. Some mechanisms that allow this process are protocols for integrity and 

confidentiality, endpoint authentication, non-repudiation methods, behaviour policies and a 

trust anchor (entity to be trusted by default). 

 Security aspects are focused on the layers of service, communication and application. 

It is a very general term, but it focuses on authorization, authentication, identity 

management, trust, reputation and key exchange (each entity has public and private keys to 

communicate and encrypt messages/information). 
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 Privacy regards non-authorized information spreading and security management in 

data banks. Due to the variety of entities that handle data in IoT, guaranteeing data privacy is 

an essential but difficult feature. To accomplish this, mechanisms of access policies, 

encryption/decryption algorithms, security and management credentials can be used. 

2.2.1.6  Review 

 In this sub-section, it was presented a very broad and complete model for organizing 

an IoT architecture. The reference model and sub-models, define the basic concepts, 

terminologies and relationships in the IoT ARM. This architecture is very complete and 

represents one step further in defining the IoT reference architecture, but it lacks the 

applicability that other more specific ontologies have proposed due to a less care for specific 

implementations and real-world situations. 

2.2.2 W3C SSN Ontology 

 In this model, an OWL is used, an international standard for encoding and exchanging 

ontologies designed to support the Semantic Web. The concept of Semantic Web is that 

information should be given explicit meaning, so that machines can process it more 

intelligently (Heflin, 2006). 

 

Figure 2-8: The SSN Ontology (Compton, Barnaghi, & Bermudez, 2011). 

 The OWL, designed to represent complex knowledge about objects, groups of objects 

and their relationships, is used in this ontology to describe sensors, their capabilities, 

measurement processes and resultant observations. This ontology contains only concepts and 

relations directly relevant to the sensors, leaving aside concepts related to other domains. In 



16 

this way, the ontology is better positioned to provide modularity and reusability. The key 

specifications of the sensor information are based on their accuracy, the observations and 

methods used for sensing, the concepts for operating and, related with the structure for field 

deployments, the deployment lifetime and sensing purpose. The ten conceptual modules, key 

concepts and relations are shown in Figure 2-8. 

 The SSN Ontology is built around a central pattern describing the relationships 

between sensors, stimulus and observations, the Stimulus-Sensor-Observation (SSO) pattern 

(Compton et al., 2011). The ontology is divided into four main perspectives: 

• A sensor perspective (what senses, how it senses and what is sensed); 

• A data or observation perspective (observations and related metadata); 

• A system perspective (systems of sensors and deployments); 

• A feature and property perspective (what senses a particular property or what 

observations have been made about it). 

2.2.2.1  The Stimulus-Sensor-Observation (SSO) Pattern 

 The SSO pattern, as seen in Figure 2-9, links sensors, what they sense and the 

observations that result, considering three of the four main perspectives mentioned before 

(the system perspective is more about system organisations and deployments than sensing, 

but it surely relates to the SSO Pattern). 

 

Figure 2-9: The Stimulus-Sensor-Observation Pattern (Compton et al., 2011). 

Stimuli 

 Stimuli are changes (or events) in a environment that a sensor can detect and use to 

measure a property. A stimulus is a representation of an observable property, or a group of 

observable properties. 
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Sensors 

 Sensors are usually physical objects that observe, transforming incoming stimuli into 

another, often digital, form of representation. This new representation normally comprises 

the need to handle the obtained information in data computation. Sensors may be hardware 

devices, sensing systems or anything that somehow senses. 

Observations 

 Observations are essentially the core of this pattern. For a specific sensing event, an 

observation can link the act of sensing, the event that is the stimulus, the observing sensor, 

the sensing method used, a result and an observed feature and property, with the objective 

of placing all of them in an interpretative context. 

2.2.2.2  Perspectives 

Sensor Perspective 

 The SSO pattern describes a sensor in terms of its stimulus, sensing method and the 

observations it makes (Compton et al., 2011). This perspective also includes the capabilities of 

the sensors. For each property that a certain sensor can observe, the performance and 

accuracy of the sensor might be influenced by environmental conditions related or not to the 

property under observation. 

 The accuracy is an observable property of the sensor, generally defined has the 

maximum difference that will exist between the actual value and the indicated value at the 

output of the sensor (Carr & Brown, 2000), often mentioned by a data sheet that lists 

properties observed in various conditions that also include precision, resolution and 

measurement range. A sensor may have various measurement capabilities, describing the 

capability of the sensor in various situations, which are themselves observable properties of 

the sensor’s environment. A measurement capability instance collects observed properties of 

a sensor in the conditions specified. A sensor may have links to any number of instances for 

determining capability in various situations. 

Observation Perspective 

 The observation perspective places a context for interpreting incoming stimuli, the 

observing event and the stimulus. The context includes the observed feature, property, 

observing sensor, result and method from the previously described pattern and can also 

report a quantitative approximation of quality of the observation, a time that the result 

became available and a time at which the sampling occurred. 

System Perspective 

 The system perspective is the view representing part of a sensing infrastructure. A 

system has components, which are also systems that have sub-concepts like sensing devices 
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that have operating and survival ranges and may be deployed on certain platforms. Similarly, 

to how prevailing environmental conditions may affect the performance of a sensor, a system 

or device may have a defined operating environment, and environmental extremes may 

exceed the capacity of a system to survive and make further observations (Compton et al., 

2011). The means for describing operating and survival ranges are the same as for sensors 

and measurement capabilities because they are observable properties of the systems. The 

operating range includes features such as power range, power sources and standard 

configurations. The survival range describes standard environmental conditions to which the 

sensor can be exposed without suffer predictable damage. 

 To this perspective is also relevant to mention the deployment, which is a process that 

includes all phases in the lifetime of an operating system such as installation, maintenance 

and further deactivation. A system is generally deployed on a platform. The location of 

platforms, systems or sensors and temporal properties of deployments can be abstractions of 

real-world locations or also absolute or relative locations. 

2.2.2.3  Review 

 This OWL ontology, describes a specific straightforward approach to sensors, sensing, 

measurement capabilities of sensors, observations that result from sensing and deployments, 

or field applications, in which the sensors are used. The configuration, in this ontology, can be 

represented as an adaptive process which provides an interesting base for the objective of 

this work. The network is visualised in modules to provide better reusability and adaptation 

based on sensor observation. It lacks additional information regarding sensor relative entities 

and the domains where they are used, which means that this ontology has to be 

complemented with other ontologies or models in order to develop an efficient practical 

solution. 

2.2.3 IoT Lite 

 The IoT Lite is a lightweight ontology, based on the SSN Ontology, to represent 

Internet of Things resources, entities and services (Bermudez-edo, Elsaleh, et al., 2015). By 

creating a representation, in a more lightweight approach than previously existed in other 

ontologies, it is possible to achieve an ontology able to provide shorter response time and 

thus create a more efficient structure for systems. 

 This ontology describes IoT concepts into three classes. Objects, System or Resources 

and Services (Bermudez-edo, Barnaghi, & Elsaleh, 2015). The devices are also split into, but 

not restricted to, three classes: sensing devices, actuating devices and tag devices. The 

services in the system are described with an availability or access control and a coverage (area 

covered by the IoT device). The figure 2-10 depicts the concepts of the ontology and the main 

relationships between them. 
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Figure 2-10: IoT-Lite Ontology (Bermudez-edo, Elsaleh, et al., 2015). 

 The IoT-Lite is meant to be used with a quantity taxonomy, that allows discovery and 

interoperability of IoT resources in heterogeneous platforms using a common vocabulary 

(Bermudez-edo, Elsaleh, et al., 2015).  

2.2.3.1  Review 

 The IoT Lite Ontology is a meta ontology designed to be extended in order to 

represent IoT concepts. It also focuses more on sensing and establishes a high-level concept 

on actuation, which allows any future developments or adaptations on this area. It is a lighter 

view of the SSN Ontology, ideal for environments or specific situations in such environments, 

that require fast and easy processing. It also can be combined with ontologies representing 

IoT data streams (Bermudez-edo, Elsaleh, et al., 2015) like the SAO Ontology which focuses on 

representing, semantically, the features of a data stream in the IoT environment (Kolozali, 

Barnaghi, & Bermudez, 2016). 

2.2.4 Discussion 

 Semantic technologies are viewed today as a key technology to solve the problems of 

interoperability and integration within the heterogeneous world of ubiquitously 

interconnected objects and systems (Katasonov, Kaykova, Khriyenko, Nikitin, & Terziyan, 

2006). A relevant problem for IoT related semantic descriptions is that they are not as widely 

adopted as expected (Bermudez-edo, Elsaleh, et al., 2015) and in result of that, the IoT 

landscape nowadays appears to be highly fragmented. One of the main concerns users and 

developers have, is that semantics increases complexity and processing time and, therefore, 
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are unsuitable for dynamic and responsive environments such as the IoT. A model so 

complete as the IoT Architecture tends to be difficult to apply due to existing various aspects 

and constraints that the developer must deal with before even started implementing. Some 

more specific models like the SSN Ontology and IoT Lite, are incisive on the problem they 

want to solve. This author believes that by developing such ontologies for more specific 

solutions, or even consider them protocols (to enforce its use), creates a bigger opportunity 

for the scientific community to excel in the field they wish to improve, instead of dissolving 

into a solution, usually not giving importance to minor but still important problems, for the 

immensity that is the IoT environment. Nevertheless, semantic technologies are widely 

claimed to be a qualitatively stronger approach to interoperability than contemporary 

standards-based approaches (Lassila, 2005). 

 In Table 2-1, a comparison of the studied models is provided for better understanding. 

Some ontologies excel where others present weaker or inexistent solutions, which means that 

different applications may need different ontologies or a combination of some of them.  

Table 2-1 – IoT Models Comparison. 

 W3C SSN IoT-A IoT Lite 

Interoperability ✓ ✓ ✓ 

Device Discovery and 
Management 

✓ ✓ ✓ 

Scalability ✓ ✓ ✓ 

Management of Large 
Volumes of Data 

✓ ✓  

Security, Privacy, and 
Integrity 

 ✓  

Dynamic Adaptation ✓  ✓ 

Fast Processing   ✓ 

Context Awareness    

 

 The concept of combining ontologies is not new and, most of the cases, represents 

the more suitable solution. But adapting models to each other is an absurd idea because they 

represent base concepts and ideas to provide guidance for developers and should not be 

changed or else they would turn every already developed project obsolete. So, to provide a 

suitable solution, model mapping (or ontology mapping) is briefly described. 

 As is depicted in Figure 2-11, two ontologies may have different structures to define 

the same (or similar) concept, in this case the name of a person. These structures can be 

related using a mapping that considers the differences and describes the possible mismatch 

between them, providing a way to use both ontologies and integrate them, relying in the 

identified mismatches (Ferreira, Agostinho, Sarraipa, & Jardim-Goncalves, 2012). This topic is 
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going to be mentioned in further chapters due to its importance in semantic mapping (i.e. the 

creation of semantic maps). 

 

Figure 2-11 - Example of mapping between two ontologies (Ferreira, 2012). 

 After reviewing the different solutions, previously presented, and briefly introducing 

the possible mapping between them, the possibility to represent a sensor network in a model 

gains shape and provides a platform with new features and ideas that improve the capabilities 

of the network. In the next chapters, important concepts that provide such capabilities are 

presented, namely sensor configuration, which arises as the basis for the correct integration 

of the sensors and is the motto for the upcoming concepts related to the semantic maps. 

2.3 Semantics and Concepts of Intelligent Sensor Networks 

 In a broad sense, semantics is defined as the study of meanings. Contextualized in the 

subjects of this work, semantics and semantic maps are terms that promote standard data 

formats and allow information to be shared and reused across applications, enterprises and 

community boundaries (Berners-Lee, Hendler, & Lassila, 2001). 

 Semantics provide the representation of knowledge and use models, similar to the 

ones studied and presented previously in this chapter, to create architectures, common data 

formats and nomenclatures in order to provide a homogeneous environment within the 

sensor network. These semantics are very useful to determine scalable solution processes 

that work in challenging contexts of big data, where the sources can be too large and 

heterogeneous for a developer to review all data (Knoblock & Szekely, 2013). The semantic 

maps are a contextualization of such semantics in the deployment environment, allowing the 

gathering of important meta-data from the network components and its use to provide 

redundancy and reliability. That information is further used for developing a more 

trustworthy system for the network and to build, or apply, concepts that improve the overall 

performance of the network, or intelligence. Those concepts, of typical intelligent sensor 

networks, are reviewed during this section. 
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2.3.1 Sensor Configuration 

 A sensor network perceives the environment, monitors different parameters and 

gathers data according to an application purpose (Pathan, Taylor, & Compton, 2010). The 

capabilities of a sensor network go beyond observing and forwarding raw data, it provides 

services and has the capability to adapt its functionalities to the environment where it is 

deployed. But managing today’s data networks is highly expensive, difficult and error-prone 

and often can’t rely on the initial design of the network, which does not foresee the 

important matter of the constraints of the environment (Kim, 2009). For this kind of 

processes to be easier, proper configuration is required. After proper configuration, to assure 

proper autonomous adaption, self-configuration of the sensors, to the new data from the 

changes observed in the environment, is needed. 

 Configuration in the IoT domain is typically an enhanced upgrade from the usually 

implemented configuration on stable and specific technological environments. The IoT 

domain requires easily exchangeable information and autonomous processes, as was 

previously mentioned, which requires an adaptation from the classic configuration to meet 

the new requirements. These requirements, in the IoT, should be predicted in the 

architectural model or ontology that was used to design the network. 

 Configuration in the IoT has six major challenges, as seen in (Perera, Jayaraman, & 

Christen, 2013):  

• Number of sensors, an ideal configuration should be able to rapidly configure a 

significant number of sensors autonomously; 

• Heterogeneity, devices from different brands usually communicate differently and 

most devices use different techniques for measurement and overall functioning; 

• Scheduling, Sampling Rate and Communication Frequency, usually determined by the 

user’s requirement and relative to the frequency (or opportunity) in which the sensors 

need to generate data or exchange information; 

• Data Acquisition, correct methods of measurement result in better efficiency; 

• Dynamicity, capability of adaptation of the network of sensors to the environment; 

• Context, sensor data by its own is meaningless and needs to be analysed and 

contextualized to better understand the environment. 

 Configuration can also be divided into two possible levels: sensor-level and system-

level: 

• Sensor-level configuration aims to improve the sensor’s efficiency by tuning software 

parameters like sampling rate, data communication frequency and sensing schedule. 

This kind of parameters can be self-adjusted using retrieved external information to 



23 

determine the best configuration for the environment in which the sensor is deployed. 

For this, some sensor networks were developed with additional sensors for detecting 

such situations (this topic is discussed in a further chapter). This configuration is 

limited to the sensor’s basic configurations, what takes us to the system-level 

configuration. 

• System-level configuration is based on the configuration of sensors and data 

processing components according to the user and system requirements. In other 

words, it includes the configurations files and program codes, usually manually 

defined, by the user. Some architectural models were already developed to enhance 

this configuration like the CASCoM Architecture (Figure 2-12). 

 

Figure 2-12 - Context-Aware Sensor Configuration Model – CASCoM (Perera, Zaslavsky, Compton, Christen, & 

Georgakopoulos, 2013a). 

 This model helps non-IT experts to configure sensors and data processing components 

using a single-click, quickly and easily (Perera, Zaslavsky, Compton, Christen, & 

Georgakopoulos, 2013b). Many complex semantic concepts play a significant role behind the 

system, but the idea is to make this process as easy as possible. This model is a valid approach 

on how a system like this should function, but only focusses on the system-level. First, after 

establishing the desired sensor network, a graphical user interface should be developed. This 

interface should function with a question-answer approach and provide a list of available 

tasks to perform, regarding the user input requirements. After that, the system would search 

for programmed components that allow the task and find sensors to produce the input 

requirements. If it fails to fulfil any of these previous tasks, it should provide an error 

information (for example, insufficient resources) and additional information for future 

implementations or similar possible solutions. If it succeeds, one or multiple solutions should 

be provided, with the associated costs, and the user chooses the final solution to apply. With 

the final solution, the system generates the configuration files and program codes. The 

sensing information retrieved is provided to the user and additional adjustments may be 

applied by the user or by the system, using previously developed preferences. 

 With the development of the IoT, users will face increasing challenges in managing 

larger numbers of IoT devices (Rose Jaren, Eldridge Scott, 2015). Efficient sensor network 

system configuration allows to considerably reduce processing time and improve general 

quality of information retrieved by the sensors. The processes of this network clearly 

beneficiate by using automatic adjustments and environmental adaptations that rely on 
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previous and continuous retrieved information. However, for this to work, models like the 

CASCoM, that allow to reduce time required for configuration of data processing mechanisms 

in IoT middleware, need to be further developed and implemented, not only in the system-

level, but also on the sensor-level. This way, sensors will be able to self-configure, self-adapt, 

be context-aware without human intervention, be exchangeable and be able to perform tasks 

more accurately, in the highly dynamic smart environments of the IoT paradigm. 

2.3.2 Context Awareness, Self-Configuration and Self-Adaptation 

 As explained in previous sections, semantics can play a role in assisting users to 

manage and query sensors and data. Indeed, as the scale and complexity of sensing networks 

increases, machine interpretable semantics may allow autonomous or semi-autonomous 

agents to assist in collecting, processing, reasoning about and acting on sensors and data 

(Compton et al., 2011). Configuration itself, when changed, may lead to inconsistent states 

resulting in operational failures and inefficiencies (Konstantinou, Florissi, & Yemini, 2002). 

Thus, some concepts arise as technology improves and to make valid assumptions about the 

models and configurations of sensors within IoT today we must understand those concepts. 

Some of them are context awareness, self-configuration, self-adaptation and the concept of 

intelligent system (in this context). 

 Context awareness refers to the property of a device to passively or actively determine 

its context. When talking about location awareness, is evident that a device only needs to 

determine its location (e.g. via GPS). Nevertheless, when talking about contexts, some of the 

times, the context itself is not clearly defined or is too dynamic. With the evolution of 

systems, we reached a point where automatization is key to develop a fast and efficient 

system, without the need for constant human supervision. That is where the context 

awareness is a plus for sensing systems in the IoT. If we find ways for the sensors and system 

to understand the surroundings, by previously creating methods to do so, they can adapt and 

improve their functionality. This way, we create a truly dynamic system. In Figure 2-13, an 

example of the context aware concept is provided, regarding an example for a context aware 

mobility solution provided by the company Cisco. 

 

Figure 2-13 – Context Aware Concept (Cisco, 2008). 
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 Due to the heterogeneity of devices – including sensors, actuators, storage devices, 

utility monitoring devices, mobile phones, network elements, and computers – and the sheer 

number of devices that are being connected to the internet under the IoT domain, remote or 

cloud-control appears to be a daunting task destined to suffer from limited scalability 

(Athreya, DeBruhl, & Tague, 2013). Hence, the natural direction for the IoT devices is to 

manage themselves using dynamic configuration, both on a software and a hardware level, 

and improve their resources utilization and adaptation. 

 Manual configuration of high numbers of nodes in a network is either impossible or 

highly costly, so it is desirable for the nodes to be able to configure themselves (Guardalben, 

Villalba, Buiati, Sobral, & Camponogara, 2011). Self-configuration is based on the user’s 

specification and includes the methods for generating initial configurations for the sensors 

and the programming codes to apply to the system (or network). These methods can also 

provide guidelines to the system for maintaining stability through all the system’s process. 

 Another relevant concept is self-adaptation. Today, systems must cope with variable 

resources, system errors and changing user priorities, while maintaining, as best as they can 

the goals and properties envisioned by the developer (Garlan, Schmerl, & Cheng, 2009). Self-

adaptation, that is bind to the term self-management, is the capability of an entity (sensor or 

system) to calibrate its functionality by tuning some his parameters to correspond to the 

environment where it was deployed. This concept is applied to function after the 

configuration, including posterior self-configuration at some degree, and ensures correct 

functionality and management for the duration of the deployment of the device, or system. 

The figure 2-14 shows a self-adaptation process in the context of automotive embedded 

systems with the purpose to provide an illustration to the generic approach to this concept. 

 

Figure 2-14 – Self-Adaptation Concept (Weiss, Zeller, & Eilers, 2010). 

 Systems that function based on some kind of decision-making capability or use 

communication to exchange data are often called Intelligent Systems. The terms and concepts 

previously mentioned are ways of improving these systems, each one with their advantages 

and disadvantages. Today’s market thrives on efficient, fast and cheap technology and 

sometimes, due to bad implementation or short time for planning, security and stability of 

systems is despised. By building models and common architectures for technology, using 
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some of the concepts mention before, aspects like security, stability, portability and easy 

communication can be achieved and serve as platform for prospering ideas and solutions. 

2.4 Dynamic Network Communication 

 The interconnectivity of computing and physical systems, can become “the nightmare 

of ubiquitous computing” (Kephart & Chess, 2003).The generated data from IoT devices is a 

challenge to data management and contributes to the emerging paradigm of big data. One of 

the challenges before collecting and processing information from these devices is discovering 

and configuring the sensors and the associated data streams. 

 In the context of IoT, automated discovery mechanisms and mapping capabilities are 

essential to network management and needed for overall communication management. 

Without it, the network management capabilities cannot scale, be accurate or efficient since 

it needs to automatically assign roles to devices based on intelligent matching against pre-set 

templates and attributes. It needs to automatically deploy and start active or passive 

performance monitors based on assigned roles and attributes, start, stop, manage and 

schedule the discovery process and make changes to any role or monitoring profile at any 

time, or create new profiles as required (Vermesan et al., 2009). 

 A sensor configuration process detects, identifies and configures sensor hardware and 

deployment platforms in a way that allows the software systems to retrieve data from 

sensor’s hardware when required. Communication plays a major role in this situation, 

allowing not only that kind of communication but also communication between the sensors, 

improving the performance of the system and further adaptation to the environment of the 

configuration during the deployment. 

 

Figure 2-15 - System Architecture of the CADDOT model (Perera, Jayaraman, et al., 2013). 

 Smartlink, integrated in the CADDOT (Context-Aware Dynamic Discovery of Things) 

architecture model (Figure 2-15) is an example of a developed solution for this kind of 

problem. It is aimed at discovering and configuring sensors, being capable of function with 
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sensors deployed based on a specific location despite their heterogeneity (for example, 

different communication protocols, communication sequences and capabilities). 

 The system architecture presented above is composed by three main components: 

the sensors, the SmartLink tool and the cloud middleware. The Smartlink tool presented is 

just a mediator between the sensors and the middleware, which looks to improve the 

information exchange, the capability of the network and the system’s organization. 

 

Figure 2-16 - CADDOT Model for Sensor Configuration (Perera, Jayaraman, et al., 2013). 

 Figure 2-16 depicts the approach of the CADDOT model for sensor configuration, on 

which the SmartLink tool represents a major role. The SmartLink serves as an open wireless 

spot, so sensors can connect to it using an ad-hoc approach (Detect), extract information 

from the sensors detected (Extract), send information related to the new detected sensor to 

the middleware (Identify), receive plugin information related to the sensor from the 

middleware (Find), retrieve the sensor’s information with direct communication using the 

downloaded plugin (Retrieve) and provide the sensor’s full information for registration on the 

middleware (Register). After that, the stages Reason and Configure are responsible for 

processing the information of the sensors in order to optimize its functioning. 

 This system is just an example of this kind of systems and may vary in other models, 

which usually present different methodologies and purposes. 

 Other important concepts, more related to the communication itself are: Network 

Mapping, Network Discovery and Networked Control System. They are frequently referred in 

models like the one that was mentioned before and are presented here for greater 

clarification and understanding of the concept of Dynamic Network Communication. 

Network Discovery - Consists in uncovering, within a network, the subset of devices or nodes 

that exhibit a particular type of attribute or preference (Yee et al., 2013). This computer 

activity is typically used to discover the user’s names and information like groups, sharing 

preferences and services. 
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Network Mapping - It is the study of the physical network connectivity. Network Mapping is 

used to find the devices that belong to the network (or were recently added) and to 

understand how they communicate. It usually defines the process before Network Discovery, 

because it only finds the information about what devices are connected to a network and 

what operative system/configurations they run. 

 This concept is relevant to this work because by creating an autonomous system, the 

idea is to read data from the environment and to adapt efficiently. Some common situations 

that induce this behaviour are not only environment variations but also failures and errors 

that may occur in the network. By recovering from such situations, the system is truly 

autonomous. The role of this concept is to understand and monitor the physical components 

of the network, the devices and connections, in a way that is possible for the network to 

understand and get feedback from their performance and functioning. 

Networked Control System - This type of system is divided into four components: 

• Sensors, responsible for retrieving information from the environment; 

• Controllers, capable of forwarding commands and decision-making based upon the 

collected data; 

• Actuators, which execute the actions requested by the controllers; 

• Communication Network, that allows information exchange. 

 The most important feature of the Networked Control System (NCS) is the connection 

between the virtual and physical space, allowing the execution of various tasks remotely and 

sometimes autonomously. It also reduces the complexity of physical connections and cost in 

design and system implementation. Some types of communication typically used are 

Fieldbuses, Ethernet and Wireless (like for example, Bluetooth and ZigBee). 

2.4.1 Discussion towards Semantic Maps 

 Communication plays a major role in a dynamic network, as was mentioned before, 

due to necessity of constantly respond to the changes monitored in the environment. The 

advantages of preparing a network, using proper configuration, to be dynamic relatively to 

the environment where it was deployed far exceed, in most cases, the rigid and specific 

network configurations, due to the autonomy and adaptation processes needed.  

 The configuration and the related processes, subjects of this research, emerge as a 

foundation to the dynamism and context-intelligence of an IoT network. Due to necessity of 

truly understanding the configuration processes, the IoT models, mentioned earlier in this 

chapter, provide information on how much the efficiency of any dynamic intelligent network 

relies on the design, standardization of configuration and reference architectures. All that 
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concepts and methodologies contribute to a great part of this work, the creation of semantic 

maps. 

 Semantics is the study of meaning (Merriam-Webster, 2017). The items defined by 

these meanings can be grouped to what is called a semantic field. Thus, the semantic field 

represents a lexical set of semantically related words that are related due to different aspects 

such as context, place or activity. The interest that drives the use of this concept in 

technological environments is the need, as mentioned before, to make information more 

computer friendly and therefore, provide the context and meaning to the words that the 

computers lack to have internal representation of. 

 

Figure 2-17 - Example of Relations (Paiva, 2015). 

 Therefore, semantic mapping can be viewed as a strategy to represent concepts or 

technological instances. The semantic maps that result from the process are relations of a 

certain concept, by the definition of semantics. Some basic relations in semantics are shown 

in Figure 2-17 and they represent the basis for associating concepts and meanings. There can 

be different associations for any concept, like associations of class (the order of things the 

concept falls into), property (the attributes that define the concept) or example (examples of 

the concept) (Estes, 1999). In technology, since the internal representation of information 

gathered by technological components is not intuitively understandable by humans and vice-

versa and it is also inadequate for fast learning processes, the combination of object 

classification and common-sense knowledge with semantic maps, represents an interesting 

approach to provide this type of information. 

 Thus, the information provided in the configuration and representation of meta-

information of the components of the network in semantic maps (that will be much more 

detailed in the next chapters) can provide expressive information, contextual integration of 

the observations and correlation of the knowledge of the environment (W3C, 2012). These 

semantic maps become, in a way, a resource, to store knowledge information that can be 

used for various tasks such as redundancy, fault detection, network monitoring and error 

recovering. With this, associated with the concepts mentioned in this chapter, 

communication improves, due to the homogenous components within each reference 

architecture, and the concept of IoT gains shape, providing a more efficient, resourceful, 

interpretable and trustworthy network. 
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3 Semantic Mapping 

 

 In this chapter, the architecture for the module developed in this dissertation is 

presented. The first section is an overview of the contents of this module, the second section 

delivers a description of the main concepts that originated and provided basis for this work. 

After that, the architecture is explored, and the contents of each module are explained. The 

last section contextualizes the project in an application scenario that briefly shows the 

possibilities for the developed solution. 

3.1 Overview 

 Generally, systems that rely on processing the information of deployed devices and 

their analysis, to read or predict conditions that could trigger pre-determined rules, recur to 

the integration of a Complex Event Processing module. A Complex Event Processing (CEP) 

module analyses large flows of primitive events received from a monitored environment to 

timely detect situations of interest (Margara, Cugola, & Tamburrelli, 2014). This processing 

takes place following user-defined rules and that aspect induces a liability to the dynamism of 

the general system, because any change may cause an incompatibility to adapt or, in the case 

of a device failure, the rules may become obsolete due to a non-implementation of 

redundancy. 

 

Figure 3-1 - CEP Generic Concept. 

 As presented in Figure 3-1, a possible CEP generic concept implementation, the CEP 

module listens to incoming events generated by the devices and, following the pre-
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determined rules (created by the developer), detects situations that may trigger events on 

the devices or simply alerts the system monitor. 

 The idea behind understanding the CEP is to perceive its importance in the application 

of the models studied in chapter 2, and to provide the intended methodology that this 

dissertation aims to propose, the use of semantic maps. These semantic maps, as mentioned 

before, are intended to improve and test the trustworthiness of the system by standing as a 

tool to overcome errors and failures in devices or, more specifically, in sensors. The idea for 

the functioning method of these maps is to be a representation of similar configurations for 

the sensors, therefore an alternative mapping for the CEP module to listen to the network of 

devices and retrieve the information needed to use the existing rules. 

 Recurring to a brief example, let’s say that the sensor A is damaged by unknown 

reasons and provides unusable information (for example, absurdly high temperature 

readings), as depicted in Figure 3-2. Disregarding the detection of such failure, that will be 

mentioned further in this chapter, the sensor A stands as a liability to the event processing 

and may cause several rules to become obsolete for not having the necessary information to 

be triggered. In this way, the system is prone to fail to comply to the initial expectations for its 

correct functioning. To tackle this situation, usually, human interaction is needed to provide a 

solution for this problem. An implementation of another temperature sensor or the use of a 

temperature sensor that is already present in the network are options that the system 

monitor may find to solve this problem. In large networks, in industrial environments, there 

are numerous sensors, deployed for many different uses. So, regarding that aspect, it makes 

sense to believe that using other sensors to solve this problem is a possible and common 

solution.  

 

Figure 3-2 - Example of Detection of a Sensor Failure. 

 To find a possible sensor, one must search another temperature sensor that shares 

the same, or similar, localization and is apt for providing the same functionality for the role 

that was assigned to Sensor A. In this example, sensor B is a match. Of course, in real scenario 

situations, the specifications of the sensors may dictate an adaptation from the output that 

the CEP receives from this Sensor B but, although we mention that aspect further in this 

thesis, in this example that situation is disregarded. 
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Figure 3-3 - Example of Solution to a Sensor Failure. 

 In Figure 3-3, it is depicted that the Sensor B provided a redundancy to the sensor A. 

This is a very simple solution, but is not automated in any way, that means that requires 

human intervention and lacks autonomous dynamic adaptation.  

 Other example of failure is depicted in Figure 3-4, in this case, the method to detect 

the failure or malfunctioning is inconsistency by proximity comparison, a fault detection 

method to be exploited in chapters 4 and 5. 

 

Figure 3-4 Example of Sensor Malfunctioning. 

 Sensor A, B and C, are all temperature sensors of which the CEP retrieves data to 

function, as explained previously. Sensor A and C have consistent similar output values, but 

Sensor B does not. It has a significantly lower value, despite not being absurd, and it may 

trigger some sort of event that is not determined for the current surrounding environment. 

This kind of anomaly detection can be trickier, but it’s also important and may beneficiate 

from the solutions presented in the previous example. 
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 In an industrial implementation, the failure of Sensor A (in the first example) or Sensor 

B (in the second example) may not even be notice among the high quantity of sensors 

readings, and that may imply an incapacity to solve the problem within an acceptable time 

window. This is where semantic mapping comes into play, because it represents and maps 

possible redundancies while providing room for developing the autonomous creation of 

possible maps regarding the aspects of the role of each sensor in the network. This 

autonomous creation of possible mappings is possible, but it always requires an initial manual 

configuration of the device database and relevant possible mappings by the developer, to 

provide consistency to the network. After the use of this methodology, the module 

responsible for such processes, delivers information for the CEP to update its rules database. 

In this way, provides a degree of autonomous functioning to the network with the capability 

of redundancy relative to the failure/malfunctioning of devices.  

 Before defining the module that may contain the semantic mapping mentioned 

before, it is important to understand what the semantic map needs to provide and what 

specifications may be important to distinguish in the sensor’s role in the network. 

 Therefore, this dissertation proposes the following aspects for establishing 

associations between devices for the semantic mapping: 

• Identifiers (ID’s); 

• Instances or Elements in the Association; 

• Type of Relation, Association or Mismatch; 

• Role from the original Instance in the Network; 

• Output data differences between Instances; 

• Importance Weights in decision-making. 

 The mentioned identifiers serve the purpose of the structural organization of the 

mapping and the sensors involved, and represent the individual unique attribute that 

differentiates each instance. The use of the letter “O” defines the origin sensor and the use of 

the letter “D” defines the destination sensor, considering the configuration targeting made by 

the semantic map. Naming the mapping can also be relevant and it is considered in the 

mapping equation, Equation 1, presented further. 

 The instances or elements in the association are the origin and destination sensor 

(considering that the sensor that precedes the mapping is the origin sensor and the one that 

succeeds the mapping is the destination sensor). It is important to mention that that can only 

be one origin sensor (when many fail, individual mapping must be considered) but it could 

exist multiple destination sensors, because a specific sensor may have a complex task or, 

using the previous example, it may not exist a temperature sensor to serve as destination 
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sensor and a combination of multiple sensors may provide the needed measurement that the 

origin sensor provided. 

 The type of relation, association or mismatch is a representation of the difference 

between each instance in a way that highlights the aspects that may have to be considered 

while using the maps. For better clarification purposes, this aspect is referred simply as 

mismatch. An example of a possible mismatch is an encoding situation, where the origin 

sensor measured the temperature in the Celsius scale and the destination sensor measures 

temperature in the Fahrenheit scale. The mathematical explanation for this kind of situation 

(where in this equation field, is simply named) is then complemented with one of the other 

parts of the equation, mentioned in the next paragraph, the output data differences between 

sensors. 

 The output data differences between sensors is the relation of output that each 

sensor may have, regarding its specifications, and that should be considered when analysing 

the data (sensors may have, for example, different measuring scales or the need to perform 

different multiplications to their voltage output). The output data field for the destination 

sensor(s) can have information, normally an expression, using multiple sensors (e.g. recurring 

to average or median values with different importance weights regarding the distance to the 

point to measure) when the mapping is from one origin sensor to multiple destination 

sensors. 

 The role from the original instance is very important, perhaps the main factor to be 

considered, because it represents the functionality that the origin sensor has in the network. 

The destination sensor does not need to have the same role, before the map is applied, but it 

should comply with the aspects that the role requires. And after the use of the semantic map, 

the role is added to the information of that sensor in the network database of sensors 

(explained further in this section) in order to, in further mapping, exist the necessary 

knowledge to use semantic maps in which the previous destination sensor is the new origin 

sensor. 

 The importance weights in decision-making is a way to differentiate several mappings 

for the same sensor. If a certain sensor has different semantic maps, the one with higher 

weight should be considered. This is possible by attributing a value that specifies the 

importance or effectiveness of the map and by dynamically increment or decrement that 

value during the functioning of the system, depending on several occurrences. For example, a 

sensor may have too many roles assigned and to avoid too much reliance by the network (in 

case of failure, requires excessive processing to treat each one of its assigned roles, 

individually), the value may be decremented in order to avoid further mappings to assign it as 

destination sensor. Other example may be that a certain sensor does not have any semantic 

maps associated with it, in which it is the origin sensor (in case of failure, it is not 

automatically recoverable by a semantic map). In that case, the use of the mapping process to 

that sensor should be prevented and the weight of semantic maps, that involve it as 

destination sensor, should be decremented. 
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Semantic Mapping Equation: 

 

MapS = <ID (O, D[i]), Mismatch, Role, CorrelationData, Weight>              Equation 1 

 

 The provided semantic mapping equation (Equation 1) is a summarization of the 

relevant fields in the semantic mapping instance, designed in this dissertation. To better 

understand this equation, some additional information and a brief example is provided by 

Equation 2. 

 

AtoBC_FireAlarm = <(1,[2,3]), Encoding, “FireAlarm”, “(B+C)/2=A*9/5+32”, 1>       Equation 2 

 

 In Equation 2, a concept example of an application of the semantic mapping equation 

is provided. It does not specify the concrete application because the semantic mapping 

structures are not yet defined, something that will occur further in this text. With this, it is 

meant to explain that to define a certain field, like the CorrelationData, sometimes it is not 

sufficient to use only an expression. Other aspect is, the equation does not follow the 

standard presentation of an equation (e.g. multiplication and division correct mathematical 

symbols) because it is presented as it would be in a typical implementation, using a string 

variable. 

 The ID (1, 2, 3) and Name (AtoBC_FireAlarm) fields don’t have too much to explain and 

are specific to the application of the mapping. The ID=1 defines the origin sensor (A), the ID=2 

and ID=3 define the destination sensors (B and C). 

 The mismatch field should not be ambiguously specified by a string variable and 

should correspond to a specific limited set of predicted possible relations. Those relations do 

not need to be equal to every application but should be well defined within the boundaries of 

it. Some possible mismatches are presented in Table 3-1. This table of mismatches belongs to 

the work of (Ferreira, 2012) which was based on the work of (Agostinho, Sarraipa, Goncalves, 

& Jardim-Goncalves, 2011), and describes them and provides an illustrative example. Each 

mismatch is defined as lossless when the relating element can fully capture the semantics of 

the related element or as lossy if a semantic preserving mapping cannot be built (Agostinho, 

Malo, Jardim-Goncalves, & Steiger-Garcao, 2007). In the example, provided by the Equation 2, 

Encoding refers to the different measurement scale between A, B and C, where B and C 

measure temperature in a Fahrenheit scale and A measures temperature in a Celsius scale.  

 The role in the provided example is “FireAlarm” and specifies that the origin 

temperature sensor is used to determine whether a fire alarm should be activated or not. The 
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name used in this field should be direct and simple, to provide an easy grasp of the role in 

question. 

Table 3-1 - Semantic Mismatches (Ferreira, 2012), based on (Agostinho et al., 2011). 

 

 The correlation data field specifies the difference already mentioned on the mismatch 

field as “Encoding” between the temperature scales of Celsius and Fahrenheit, and has the 

mathematical relation between the two scales (Equation 3) implied in the expression.  

 

T(oC) = (T(oF)-32) x 5÷9                                            Equation 3 

 

 The correlation expression, on the left side, uses the reading of the temperature B and 

C to provide a single reading, as it was when only the Sensor A was used by the CEP. That 



38 

resulting reading is an average of the two readings, possibly indicating that they are a bit 

farther from the point where Sensor A was deployed and where the measurement was meant 

to be done. To get the value of the reading, the expression must be solved in order to A, the 

only missing value (B and C represent the readings from Sensor B and Sensor C).  

 Finally, the weight value is initially set as 1 and may be changed during the functioning 

of the network as explained previously. 

 Other field, that was considered during an early version of this equation, but it was 

excluded from this equation was the rule expression, that defines the situation in which the 

fire alarm is activated. In this case, for example, it would be when the temperature, measured 

in Celsius was higher than 35 degrees. But this field would be redundant, because the module 

responsible for this comparison and process is the CEP. The equation, or module responsible 

for the implementation of the equation, should not be responsible for the acknowledgment 

of the validation of the rule expression. 

 

Figure 3-5 - Semantic Mapping Model. 
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 Considering this, the mapping equation stands as a tool to provide information about 

the existing semantic maps, in a generic way, that can be used to update the rules database 

from the CEP. 

 With the information provided previously, we can now construct a model of the 

semantic mapping methodology (Figure 3-5). 

 This model (Figure 3-5) is specified in order to comply with some implementation 

aspects, to be clarified during the next chapters. The main ideas to mention are that the 

Origin Sensor and Destination Sensor(s) are sub-classes of the class Sensor and the Mapping 

Properties class has, as sub-classes, the fields mentioned before in the semantic mapping 

equation (Equation 1). The entities Precedes, Succeeds and Has are ontology properties, that 

are related using the domain and range specifications. The entity Mapping is also a class. 

 In an attempt to better clarify the description and nomenclature given above, this 

ontology model specifies, for example, that a given Origin Sensor (sub-class of Sensor and 

domain of the property Precedes) precedes a certain semantic mapping instance (represented 

by the class Mapping, range of the property Precedes and Succeeds). That certain semantic 

mapping instance will provide a Destination Sensor and that process is specified with the 

property Succeeds, in an inverse way of the mention before with the property Precedes, 

where the domain of Succeeds is the Destination Sensor(s). The mapping instance uses the 

ontology property Has, in its domain, to imply that contains the class Mapping Properties, 

available at its range. Although this example may fail to perfectly clarify the given model 

(Figure 3-5), it will be easier to perceive it in the upcoming chapter regarding the 

implementation of this model. 

 Another important aspect, before unveiling the designed conceptual model for an 

example architecture that includes the semantic maps, is the use of a device knowledge base 

and a mapping knowledge base (Figure 3-6). The definitions for the concept of knowledge 

base is mentioned in the sub-section 2.2.1 and its use is based on the necessity of keeping an 

updated record on the relevant aspects of the sensors, including their current roles, and 

having a knowledge base where the mappings are fully specified. The mapping knowledge 

base is designed to be outside of the suggested model, as the device knowledge base is, 

because it stands as a dynamic record of the mapping information and does not have any 

particular relevance for other decision-making processes. These databases (knowledge base 

being a particular type of a database), are to be accessed only by the semantic module and 

updated by it, every time a change is made to the network (for example, excluding a damaged 

sensor, the semantic maps associated to it and updating the destination sensor with the new 

role in the network). 
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Figure 3-6 - Device KB and Mapping KB. 

 Finally, the system architecture is presented (Figure 3-7). The semantic mapping 

module, named SMAP (from Semantic MAPping), interacts with the user, devices, mapping 

knowledge base, device knowledge base and the CEP module, specifically the CEP engine. 

                 

 

Figure 3-7 - System Architecture. 

 The verification of devices and the respective measurement events that reach the CEP 

engine, a feature mentioned earlier in this section, is assured and also treated inside the 

SMAP module by a fault detection process of one of its sub-modules. Along with this feature, 

the already mentioned interaction with the device and mapping knowledge bases provides 

the integrity of the information during the functioning of this module. The CEP is depicted (in 
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Figure 3-7) and has the CEP engine and CEP database, merely to indicate the existence of the 

database of events (with the user-specified rules) and that the SMAP module interacts 

specifically with the CEP engine, not needing to interact with that database in particular (a 

responsibility of the CEP engine). The sub-modules of the SMAP module are the SMAP Engine, 

the Event Analyzer, the Data Handler and the SMAP Design, detailed further in this 

dissertation. 

3.2 Concept Proposed 

 To better comprehend the general operation of the semantic mapping module 

(SMAP), this sub-section defines high level diagrams that expose the flow of configuration, 

functioning and processes between each element of the system’s architecture. First, a high-

level activity diagram of a generic system, that has the semantic mapping module integrated, 

is presented. After that, a sequence diagram roughly provides the essential interactions, that 

are implemented and described further in this dissertation, between the elements of the 

mentioned generic system (CEP, SMAP, user, mapping and device knowledge bases). Along 

with the diagrams of the generic system that help to explain the runtime processes, the 

process of the semantic map design (or semantic mapping) is also presented using the same 

type of diagrams. 

 In Figure 3-8, the activity diagram for a system’s process is presented. It is a higher 

level of abstraction compared to the diagram represented in Figure 3-9, but it provides an 

initial grip of the flow of processes. In this diagram, the process is initiated in the system itself, 

that in this case represents the architecture presented in Figure 3-7, without the low-layer 

level, the Devices. The system, in this case mainly referring to the CEP, uses a certain sensor, 

sensor A, for a specific role. During its functioning, the sensor’s output is analysed by the 

SMAP module, also part of the mentioned system, and the CEP itself. And if it is functioning 

correctly, the sensor A will continuously provide data to the CEP. If not, the system should 

recur to semantic mapping and apply redundancy to that specific sensor. To accomplish such 

feature, it will query (or search) the device knowledge base to retrieve information about the 

origin sensor, more specifically its roles. After that it will query the mapping knowledge base 

to find possible semantic mapping solutions for the mentioned sensor. If it does not find any, 

for one or more current uses of the sensor, manual intervention is required to solve the 

problem and the functioning of the system should continue after that. If a mapping solution 

exists, the information about the destination sensor, or sensors, is retrieved from the 

databases and used to apply this new solution to the role, previously performed by Sensor A. 

The system should then use this new solution to retrieve the necessary data it requires. 
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Figure 3-8 - Activity Diagram of the Architecture’s Process. 

 Figure 3-9 depicts the sequence diagram of the system’s runtime process. This 

diagram provides a more specific and accurate description of the processes that occur when 

using semantic mapping. 

 The elements of this diagram are the CEP, the SMAP, the mapping knowledge base 

and the device knowledge base. In the beginning of the sequence, it is shown the loop 

process, carried out by the semantic mapping module, within the sub-module called Event 

Analyzer, that listens to the events generated by the devices and compares them to the 

presumable values that the devices measure. This event listening occurs until a verification of 

a specific sensor functioning assumes that the device is not working properly. Some methods 

used to accomplish this are direct comparison with similar sensors, comparison of values by 

geographical interest or proximity distance and physical or expected thresholds. When a 

device failure is detected, the SMAP Engine takes control and activates the Data Handler sub-

module to do a query in the device knowledge base to search for the device’s information and 
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to update the database entries with its new state (not working properly, in this case) to avoid 

further mapping to that sensor. The SMAP Engine then receives the requested information 

and elaborates a request for the Data Handler to query the mapping knowledge base, 

searching for suitable semantic maps. The existing semantic maps (based on the role of the 

origin sensor) are then requested and the mapping, if any, with higher weight is provided 

back to the SMAP Engine. If there are no mappings relevant to apply redundancy to the origin 

sensor, as it was described in the activity diagram presented in Figure 3-8, manual 

intervention is required. When choosing a certain map, the weight field of the map may be 

updated to avoid situations such as too much reliability of the system on a single sensor. By 

now, the SMAP Engine knows the destination sensor, or sensors, and requests the Data 

Handler for its specific information, that uses a query in the device knowledge base, once 

more updating the entries with the new states and roles changes that the current mapping 

has caused. Finally, the SMAP module uses the mapping information to apply the correlation 

between the sensor output of the origin sensor and destination sensor and sends that 

information to CEP in order to update its current rules and events.  

 

 

Figure 3-9 - Sequence Diagram of the Architecture’s Process.  
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 A key aspect to accomplish the previous features is to have a design process, parallel 

and able to run before the runtime process. This design process will allow the creation of 

semantic maps by the user. It is important to mention that autonomous processes may be 

easily created to design the semantic maps with the available information of the network and 

with a few core semantic maps that lay a base for the creation of others. But to simplify this 

stage, in Figure 3-10, the creation of semantic maps is initiated by the user and relies on the 

input interface used by him. The following diagram, Figure 3-11, shows the sequence diagram 

that highlights the processes of the input interface and each part of the module (sub-

modules) and knowledge bases. 

 

 

Figure 3-10 - Activity Diagram of the Design Process. 

 The design process (Figure 3-10 and Figure 3-11) is initiated by the user. An input 

interface is provided to allow him to provide the required information for the creation of a 
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semantic map. The SMAP Design sub-module is responsible for the interface and the 

coherence of the data. After ensuring the correct data format, the SMAP Design transfers the 

information to the Data Handler sub-module. The Data Handler is then responsible for 

checking if it is possible to create the semantic map and, if so, updates the information 

present in the device and mapping knowledge bases and informs the SMAP Design module to 

terminate successfully the operation. If not, the user is warned. At any time, the user can 

cancel the operation or initiate a new one, one per interface. 

 

 

Figure 3-11 - Sequence Diagram of the Design Process. 

3.3 System Architecture 

 The objective for this sub-section, is to provide more information about the 

architecture of this project. To accomplish that, each individual module is going to be more 

explained, still from a semi-practical approach, regarding its importance and the focus that it 

demands. The last sub-section presents the SMAP general objectives and sub-modules that 

allow those objectives to be achieved. 
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3.3.1 CEP 

 The complex event process (CEP) module, was briefly explained in the sub-chapter 3.1 

and to avoid repeating the basic and generic notions of this concept, the approach in this sub-

section will be simple and from a functional point of view. Its implementation is not the focus 

of this work, but concepts and methodologies of this module will be used to manipulate, 

manage and process events regarding some key testing aspects of the implementation. 

 
Figure 3-12 - CEP Overview (Seeger, 2012). 

 The standard CEP implementation is usually defined in three steps: the registration of 

event sources, the definition of EPA’s (Event Processing Agents) and the registration of event 

sinks. The event sources, usually devices in the IoT paradigm, are responsible for providing 

data from the monitored environment, illustrated in Figure 3-12, and will typically generate a 

large number of events. The EPA’s, the core of the event processing and defined as CEP 

Engine in Figure 3-7, process the input from the event sources and try to detect situations of 

interest (SOI). These SOI are set by pre-defined rules, integrated in the CEP DB considering the 

architecture presented in Figure 3-7, regarding the context of the implementation. It is 

important to mention that a CEP mainly focus on detecting SOI in streaming data rather than 

manipulating data streams (Woods, Teubner, & Alonso, 2010) and static CEP, contemporary 

predominant, are very context-sensitive (Hoßbach & Seeger, 2013). Regarding this 

information, ordinary context-based events will be discarded and the events that express 

importance, typically considerably less, will be submitted to analysis regarding persistent 

queries directed to the, already mentioned, rules. The results of such analysis, generally 

originate actions that take place in the event sinks (Figure 3-12), to whom the rules are 

specifically oriented to. 

 An event can be defined as a significant change of state (Chakraborty & Eberspacher, 

2012) and the use of a CEP and focus on device originated events, makes the suggested 

architecture in this work an Event-Driven Architecture (EDA). Nevertheless, the CEP specific 

design does not concern to the subject of this thesis and is only considered for implementing 

and testing purposes. It is also important to mention that some event processing, regarding 
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the verification of correct sensor operation, is done by the semantic mapping module, in the 

Event Analyzer sub-module, allocating some working load from the CEP. 

3.3.2 Devices 

 The devices module, represented as the low-level architecture in Figure 3-7, 

represents the technology that provides and generates events to be considered by the CEP. 

These events are usually raw information about the monitored environment and make no 

judgement or evaluation about it. The W3C SSN Ontology, already described in Chapter 2 

(section 2.2), has a good definition to look upon when implementing something above this 

layer. This module is also connected to the semantic mapping module because of the need to 

keep an up-to-date device database that may also be updated, autonomously or manually, 

according to specific changes that may occur in the devices. 

3.3.3 Device Knowledge Base (C2NET Ontology) 

 The importance of the device knowledge base is mentioned in sub-chapter 3.2 and the 

main objective focuses on an updated registry of the sensor’s information, specifically their 

current roles and state of functioning. In Figure 3-13, a class diagram regarding the features 

of a device that are crucial to this architecture is presented. 

 

Figure 3-13 – Device Knowledge Base Class Diagram. 

 The Id is the unique identifier of the device. The device is then related 1 to 1 to its 

specifications, because each device has its own specifications. In the specifications, the Name 

is the manufacturer designation, the Type specifies the measurement objective, the 

EncodingType defines the measurement scale, the Roles mention the actual ongoing 
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applications of the sensor, which may be none, and the State contains a variable that 

expresses the current operating state.  

 PositionX and PositionY are two parameters that express the position (as coordinates) 

of the sensor in the room, relative to a reference point (typically the centre or a corner of the 

room). These parameters allow methods of fault detection in the SMAP, per example, output 

comparison to other nearby devices (which are explored in the implementation contemplated 

in chapter 4). 

 For each room, there can be one or multiple sensors. The room sets the perception of 

place and is necessary to understand where certain semantic maps are applicable or not. Per 

example, if a temperature sensor fails and the destination sensor is in another room, the 

solution provided by such semantic map should not be considered. The room is characterized 

in this ontology by Id, its unique identifier, Name of the room, geographical or relative 

Location and size (SizeX and SizeY). The latter attribute, is useful to understand whether a 

device is within the boundaries of the room and needed to successfully implement and 

simulate, allowing a visual component to the user by a possible, but not obligatory, graphical 

user interface. This structure of information was based on a pre-existing ontology and 

extended the work already developed for the C2NET European Research project, on which 

this dissertation is included. More details about this project are mentioned further in this 

dissertation. 

 

Figure 3-14 – Fault Detection Class Diagram (with 3 Example Techniques). 

 Other interesting concept, not mandatory for the operation of the SMAP module, that 

assures correct failure detection is the Fault Detection methodology, to be used by the Event 

Analyzer sub-module. The detection of failures and malfunctions exceeds the objective of this 

dissertation, so we will consider the following methodology presented in Figure 3-14. These 

three cases (to be used in the implementation of this project): Comparison, Inconsistency and 

Threshold; are a direct approach, based on some of the most common techniques, to 

determine the functioning of a sensor (Sharma, Golubchik, & Govindan, 2010) (Akbari, Dana, 

Khademzadeh, & Beikmahdavi, 2011). In this case, according to the class diagram provided 
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here, a certain Fault Detection instance (there can be many) is associated with a certain 

sensor (Id and Sensor_Id). Then, the output values of that sensor can be tested by the 

technique of Comparison, where there is a rangeX and rangeY to delimit the size of a 

rectangle around the sensor, where other nearby sensors are considered for comparing using 

the maximum value variation that is allowed. Other techniques are Inconsistency, that 

compares the current reading with previous ones from the same sensor to understand if the 

current reading makes sense, and Threshold, that sets a minimum and maximum value for the 

readings of that sensor. In this case, each sensor can have its own Fault Detection values and 

configurations. 

3.3.4 Mapping Knowledge Base (SMAP Ontology) 

 The mapping knowledge base was also mentioned before, in terms of definition and 

objectives in the architecture. Figure 3-15 shows the class diagram for this special case of 

database. 

 

Figure 3-15 - Mapping Knowledge Base Class Diagram. 

 Above, sensors are described as in the class diagram represented in Figure 3-13. The 

connection between sensors and mapping is not as direct as may seem and is provided by the 

semantic mapping module. Nevertheless, it is explicit that for each mapping there is only one 

origin sensor and may be one or more destination sensors. The mapping properties were 

thoroughly detailed earlier in this chapter, sub-section 3.1, prior to presenting the semantic 

mapping equation (Equation 1) and is not necessary to detail them again in such way. It is 

important, however, to refer two interesting and unmentioned details. The output data has 

here two different fields (OutputDataOrigin and OutputDataDestination) to differ the output 

information of the devices of a certain mapping, in which the one referring to the destination 

may provide data to multiple sensors if that is the case. These fields can contain the same 
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expression (using a variable for each involved sensor) when the correlation is simple, but the 

existence of two separate fields beneficiates more complex cases, with multiple destination 

sensors. Finally, the suggested operations, more may be added according to each specific 

implementation, under the attributes of the class Mapping are just for verification and 

manipulation of the mapping properties. 

3.3.5 Semantic Mapping Module (SMAP) 

 The semantic mapping module (SMAP) stands as the module that represents the 

concept and methodology of this dissertation. The main functions that this module should 

have, in order to comply with the architecture provided, illustrated in Figure 3-7, are: 

• Specific Event Listening from CEP - The events are analysed according to situations of 

interest regarding the monitored environment, the potential of the developed 

semantic maps and the pre-determined mapping situations; 

• Verification of Sensors - The SMAP module, like the CEP, will process events that 

interest to the objective of its existence. The main interest is to analyse the state of 

the sensor, to check if it is functioning properly. Along with the last point, these two 

functions represent a loop of event listening and processing, until some situation 

triggers a semantic mapping procedure. Some pre-defined failure situations can be 

measurements that exceed typical values, constant measurements, noisy readings or 

non-concordant measurements between two or more sensors of the same type, in the 

same area (Munir & Stankovic, 2015)(Sharma et al., 2010); 

• Search and Update Queries to Device Database about Origin Sensor - In order to keep 

an updated record of the sensors and to search the correct mappings, the semantic 

mapping module searches the available information about the sensor, including the 

roles that is operating at the moment, and updates them to “none” and changes the 

state of operation of the device to “Error”; 

• Search and Update Queries to Mapping Knowledge Base - After acquiring the 

information about the sensor, the SMAP module elaborates the request (search and 

update queries to the mapping knowledge base) for a semantic mapping solution. To 

accomplish this, it searches the role, or roles, of the origin sensor in the mapping 

knowledge base. If there are no semantic maps for that type of role, manual 

intervention is solicited. After finding the semantic maps for the needed role, the 

maps that have the mentioned sensor as the origin sensor are selected, by adding 

constraints to the previously mentioned query. The remaining maps, if more than one, 

have a weight component associated to them, as mentioned in 3.1, and the map that 

has a higher weight value is selected for the semantic mapping process; 

• Search and Update Queries to Device Database about Destination Sensor(s) - Similarly 

to happens when using the device database for the origin sensor, the semantic 
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mapping module queries the device database for information about the destination 

sensor. It retrieves the current state to verify if it is indeed available (normally it is 

operating because the device database should have updated information). The roles 

may also be considered to avoid too much reliability on a solution, but again this is 

controlled by the weight value in sensor database and it is typically updated regarding 

that issue. If everything is according to the specifications for good functioning, the 

sensor is updated within the database with a new role and state; 

• Sensor Output Correlation - In this phase, within the semantic mapping module, the 

correlation between outputs from the origin and destination sensor is considered 

recurring to the output data and mismatch from the semantic map information, 

retrieved from the mapping knowledge base. Any particular change or specification 

that the CEP has to deal with, in the event processing or event rules that use the 

destination sensor considered, is transmitted to the CEP engine; 

• Event Update in CEP - In this final phase, the information about the destination sensor, 

or sensors, is provided to the CEP in order to make the necessary changes to the 

events, previously using the origin sensor and replacing it. The information considered 

in the last point, sensor output correlation, is also provided to the CEP in order to 

integrate them in the mentioned events. 

 These points, mentioned above, are the core objectives for the functioning of the 

SMAP module. This module has distinct operations and can easily beneficiate with being split 

in different sub-modules, not only to clarify its functioning to the observer but also to “divide 

and conquer” (as said by Gaius Julius Caesar), allowing for the design process of each sub-

module to be direct and objective, only regarding input/output and relationships with other 

sub-modules/modules. The sub-modules, explained briefly in section 2 of this chapter with the 

sequence and activity diagrams, and also illustrated in Figure 3-7 were: 

• SMAP Design – This sub-module is where the creation of semantic maps occurs. It can 

be an automated process, but we will focus on using a user input interface. This 

interface allows to enter the required information for the creation of the semantic 

maps and ensures coherence and the correct information formats. The SMAP Design 

interacts with the Data Handler, providing it with the information for entering the 

semantic map into the mapping and device knowledge base. This process may fail if 

the Data Handler checks any type of anomaly, such as wrong or duplicate information, 

and the user is informed. The SMAP Design also interacts with the SMAP Engine, 

which is responsible for the runtime process, allowing the creation of semantic maps 

during the execution of the system; 

• SMAP Engine – In order to keep all processes moderated and organized, a SMAP 

Engine is included in the architecture of the SMAP module. It is responsible for 

initializing the use of semantic maps (from an event selected by the Event Analyzer), 

activating the Data Handler, sending and receiving information about the instances 
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(sensors and maps) during the interaction with the Data Handler and conducting the 

process that leads to the use of the maps, sending the information of the updated 

network state to the CEP Engine, moderating and cope with the use of the SMAP 

Design by the user during the system’s runtime and sending and receiving general 

acknowledge and confirmation information between the sub-modules; 

• Event Analyzer – This sub-module acts only in the loop process of the event listening 

by the SMAP module. It listens to events generated by the devices and compares 

them to presumable values, to verify any situation of interest. If some situation of 

interest arises and the Event Analyzer concludes that a device is not working properly 

(using fault detection methodologies), that information is passed on to the SMAP 

Engine and the Event Analyzer continues to listen to the device generated events; 

• Data Handler – In this sub-module, all the queries and processes related to the 

Mapping and Device knowledge bases are handled. The objective is to keep up-to-

date records of the network and available semantic maps. This module is triggered by 

the SMAP Engine to work in specific processes (e.g. query for the origin sensor or 

updating a semantic map entry) and by the SMAP Design when it is the creation of a 

new semantic map with information generated by user input.  

3.4 Potential Application Scenario 

 The application of the designed module, presented in this chapter, was envisioned 

while developing it. This module assumes the functioning described earlier but it does not 

demand a strict implementation and is adaptable to the different situations in the 

environment of the IoT technologies. Its features were designed in order to help the network, 

where it is implemented, to have scalability and handle the constant growth and diversity of 

the IoT paradigm, without being too susceptible to failures. 

 This dissertation objective is to demonstrate the applicability of implementing the 

semantic mapping module to a scenario of a real IoT environment and measure its 

effectiveness by deducing the level of trustworthiness, optimization and the redundancy that 

it provides, to justify the use of this methodology. Thus, an idea of a possible application 

scenario is detailed in order to set the tone for the upcoming implementation description.  

Smart Factory Room 

 The scenario for the implementation described further in this dissertation is a smart 

room of a modern factory that has various machines and sensing devices that allow to control 

its functioning and to provide better working conditions for the employees. This type of 

“aware” room is part of what is now called the Industry 4.0 (or fourth industrial revolution) 

and it is integrated in the IoT paradigm, aiming to connect embedded system production 

technologies and smart production processes with increased connectivity and ever more 
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sophisticated data-gathering and analytic capabilities (Sniderman, Monika, & Cotteleer, 

2016). 

Table 3-2 - Examples for Possible Objectives of Sensing Devices in the Application Scenario. 

Objective Possible Devices Example of Rule and Action 

Adequate 

Room 

Temperature 

Temperature Sensor 
When room temperature is high, the air 

conditioning is activated. 

Fire Detection 

Temperature Sensor; 

Ionization and 

Photoelectric Smoke 

Detectors; Gas Sensors 

When temperature and/or smoke density 

reach levels that indicate a fire, fire alarm is 

activated 

Room Light 

Adjustment 

Photoresistor, 

Photovoltaic or Photo 

Diode Light Sensors 

Light in the room is adjusted according to a 

pre-defined level of lightning. 

Security 
Ultrasonic Sensor; 

Passive Infrared Sensor 

Safety Alarm is activated when an intruder or 

non-authorized person is detected.  

Gas Leakage or 

Oxygen 

Depletion 

Various Specific Gas 

Sensors (like CO2, CO, 

O) 

When the concentration of certain gases in 

the room is life-threatening, the ventilation 

is activated. 

Detect Safety 

Distance to 

Machinery 

Ultrasonic Sensor; 

Passive Infrared Sensor 

When safety distance to the factory’s 

machinery is not satisfied, safety alarm is 

activated and the specific machine is 

stopped. 

Tracking 

Products, Tools 

or Persons 

RFID; Nano Tags; Image 

Capture and 

Recognition 

Determining current states of the production 

process and human safety.  

 

 The justification for the choice of this context is entirely connected to the ever-

growing technology integration, the needed scalability of the networks (regarding the number 

of sensing devices) and the demanded efficiency existing in this type of manufacturing 

environments of the contemporary industries. Therefore, the theme of this thesis fits in this 

paradigm and is prone to be more useful in situations like this, that demand handling various 

sensing devices with the objective of providing a more efficient and trustworthy 

manufacturing process. 
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 In Table 3-2, it is provided some insight of the objectives, that the sensing devices, 

along with the technological modules (like the one developed in this dissertation), may 

improve and offer to this type of environment. The SMAP module, specifically, is intended to 

allow reliability to these processes, managed according to the rules specified by the 

developers in the network, with redundancy by using different devices, already deployed, to 

assure the continuous manufacturing process and wellbeing of the employees. 

 There are multiple and possibly infinite applications of this processes and 

methodologies. The objectives column, regarding the implementation of the semantic 

mapping module, is directly related to the role field in the mapping equation (Equation 1). 

Thus, the role is a designation of this objective and the right column of Table 3-2 sheds some 

light of a possible association of that role to a pre-determined event rule. The centre column 

shows possible devices, used singularly or together, to allow measuring and determine the 

values that will be compared to the thresholds delimited by the mentioned rules.  

 Finally, to clarify the environment of the implementation of this dissertation, an 

example of a map for a smart factory room, based on the examples provided in Table 3-2, is 

provided in Figure 3-16. The objective is to have a similar view, during the simulation of the 

program developed for the implementation, of the one provided in this map. The map shows 

a certain degree of redundancy of the network, by being populated with various sensors. The 

composition and placement are intended for demonstrative purposes and may not entirely 

specify the optimal design for a real scenario. Also, the map is not presented with any scale or 

measurement accuracy and the symbols do not follow the architectural specifications for a 

room, since those are not the focus of this dissertation. Other important detail to mention is 

that the devices presented in Figure 3-16 may belong to any object (for example, a machine), 

if any, but belong to the network and can be accessed to retrieve measurement information. 

In a similar scenario, during the implementation, some events that trigger the detection of 

failures in the devices and its measures are created in order to test the application of 

semantic maps and the redundancy it sets to achieve. The attempt to use the semantic maps 

does not only test the semantic mapping processes but can also determine the degree of 

trustworthiness of the system, by evaluating the capacity to overcome difficulties and failures. 

The next chapters present the specifications of the module and the concerning testing. 
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Figure 3-16 - Smart Factory Room Map Example. 
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4 Proof of Concept Implementation 

 

 This chapter provides information about the implementation of the architecture 

designed and explained previously. The sections here presented are divided in three major 

aspects regarding the implementation process. In the first aspect, requirements and 

functionalities, the needed elements and objectives for the module to be implemented and 

function as intended. After that, the technologic specifications are detailed, regarding the 

software and components that take part in this development. Finally, the last sub-section of 

this chapter, provides the considered implementation steps during the creation of the 

elements of the architecture and the virtual simulator to test everything together. 

4.1 Requirements and Functionalities  

 In this sub-section of chapter 4, the requirements and functionalities for the SMAP 

module are presented. These requirements follow the context and objectives of this 

dissertation, mentioned in Chapter 1, and are the general questions to which the 

architecture, presented in the previous chapter (Chapter 3), aims to respond. Also, the 

functionalities that have been implemented, in part to comply to the requirements, during 

the creation of the architecture design are mentioned and explained. Some assumptions 

occur during this process, based on researched information, to achieve the initial proposed 

goal. 

Requirements 

• The semantic mapping module should be compatible with the generic implementation 

of a CEP without intervening with its functioning. The semantic mapping module 

should not be dependant of any of the CEP’s context variable characteristics. The 

semantic mapping module must also be designed to be able to be applied in an 

already implemented architecture of a network. 

• Be able to maintain up-to-date information in the structures of that nature within the 

architecture. The device knowledge base tackles the importance of having the devices 

information and the mapping knowledge base addresses the mapping information. 

• The semantic mapping module should detect situations of interest upon which triggers 

the process of the use of semantic maps in order to apply redundancy to possible 

failures in devices. 
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• The semantic maps should provide pondered redundancy to the system by recurring to 

certain aspects of the architecture like the databases, weight-based decision making 

and general analysis of the current network, to provide more reliability to the system. 

• The sensors and their data should be considered as an asset to the network general 

operation instead of being only used to one function or rule verification, and their data 

dismissed for all other purposes of the monitoring system. 

• The semantic maps should not only provide redundancy but also be helpful to establish 

the trustworthiness of the system by providing a level of confidence according to the 

number of semantic maps that may be established in a certain network. Lower 

possibilities for semantic maps may be a signal of a low number of devices in the 

network to apply redundancy. Certain areas, with few sensors or that have a low 

number of semantic maps, can be considered critical in terms of possible failures. 

• Detect and react to potential failures, not only in the device events that may originate 

the use of semantic maps but also potential failures in the processes of the 

architecture and semantic mapping module. The implementation and testing 

processes are important to this aspect because they aim to improve the robustness of 

the developed work. 

• Be able to adapt to different contexts with the minimum number of modifications 

possible, to guarantee the correct operation of the methodologies of the architecture. 

The IoT is intended to submerge the everyday objects with technology and, because of 

that, many different deployments for the IoT concepts may arise. This implementation 

leaves some room for adaptation to specific scenarios, but the amount of variation or 

lack of direct nomenclature may interfere with the performance of the methodology. 

• The architecture should be interoperable to provide easy communication between 

each module and with the rest of the network. All devices, disregarding its 

specifications, should be able to be integrated within this methodology. 

• The number of devices, events and amount of data should be scalable to deal with the 

demand of real scenarios in the IoT paradigm, like big data. With this, the architecture 

should be able to grow, be receptive to upper-layer mechanisms, processes and 

techniques, and manage to keep an advisable level of security and data integrity. 

Functionalities 

• Any device can be mapped because the specifications of this implementation are 

inclusive and are generically targeted for different applications. The mapping 

possibilities depend only on factors from the network itself. 

• The semantic mapping module is easily implemented or integrated in the great majority 

of the IoT network because it follows the specifications of the major IoT models and 

the concepts that constitute the IoT paradigm. This also happens because the 
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semantic mapping module is designed to be easily integrated to operate with an event 

processor, without causing any type of interference to its functioning. 

• The semantic mapping module eases some of the CEP’s workload due to being able to 

process the events, that express situations of interest from the monitored 

environment, regarding the possible use of the semantic mapping process. This way, 

the CEP can be configured to handle, more objectively, the events and queries that 

are compared to the specified rules, without being so greatly compromised by 

possible failures of the devices. 

• The architecture maintains an updated database of information about the sensing 

devices and mapping possibilities. The process of querying and updating accordingly to 

the current events is responsibility of the SMAP module. 

• The sensors operational state is checked according to the events that the CEP initially 

receives, or lack of them, by the semantic mapping module. 

• The existence of semantic maps and semantic mapping processes confer a degree of 

trustworthiness to the network that can be comparatively measured, simply by 

analyzing the existing mapping conditions, the sensors involved in that mappings and 

the number of semantic maps. 

• The network is more capable of adapting to the failure of devices and the environment 

context due the use of semantic maps. The environment context can be prone to 

failures due to typical unpredictable or misleading situations and the semantic maps 

can be a way to solve them by providing similar different configurations of devices 

within the network. 

• The SMAP module provides direct information to the CEP about what changes need to 

be made to the events that were signaled as faulty. This information often contains 

details about adjustments, to the rules in the CEP database, that are needed when 

replacing each sensor that is used for a certain specific rule, along with the 

information of the destination sensor(s). 

4.2 Technological Specifications 

 This sub-section presents the technological tools that were used during the 

development of this dissertation. The implementation consisted in a virtual application 

scenario, projected using software that was configured using developing tools and code 

writing, to create situations similar to real case scenarios and to test how the concept of this 

dissertation could work. The IDE for the code development of this project was Eclipse (to take 

advantage of the technologies mentioned next and the all the already available libraries) and 

the development programming language was Java to comply with the requirements of this 
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project and to take advantage of the technologies mentioned next in this section, which seem 

appropriate to the application desired. 

Jena 

 The Apache Jena is an open source Java framework for building Semantic Web and 

Linked Data applications that supports OWL (Web Ontology Language). It provides an API to 

extract data from and write to RDF/XML graphs, which are represented as “models”. These 

models can be queried through the SPARQL standard (a semantic query language for 

databases in the RDF format) (Segaran, Evans, & Taylor, 2009) The SPARQL queries allow 

triple patterns, conjunctions, disjunctions and optional patterns (Prud’hommeaux & 

Seaborne, 2008) to filter the desired data. 

 The main reason to choose this type of framework for this work was the capability to 

work with Java, SPARQL queries and OWL files, generated by another software that was used 

for creating and schematizing ontologies (Protégé). 

Protégé 

 Protégé is an open source modelling tool developed at Stanford Medical Informatics 

and has a community of thousands of users (Knublauch, Fergerson, Noy, & Musen, 2004). This 

tool development was largely driven by biomedical applications (Gennari et al., 2003), the 

system is domain-independent and has been used for many other application areas. 

 The modelling part and viewing part has a distinctive separation in Protégé. The model 

is the internal representation mechanism for ontologies and knowledge bases. The view 

components provide a user interface to display and manipulate the respective model 

(Ferreira, 2012). The model can also be viewed as something based on a simple yet flexible 

metamodel (Noy, Fergerson, Musen, & Informatics, 2000), which is comparable to object-

oriented and frame-based systems. It can represent ontologies consisting of entities such as 

classes, data properties, object properties, individuals/instances, datatypes and property 

assertions. The tool also provides a Java API to query and manipulate models, useful for 

accessing information saved in the property assertions of the individuals, functioning in a 

similar way to a database management tool. 

 This tool was chosen due to the necessity to build and use ontologies based on the 

studied IoT architectures, the capabilities of displaying those ontologies in a clean and 

intuitive way and the fact that provides a connection to Java and exports an OWL file on 

which is possible to manipulate individuals and properties easily during the operation of the 

system. 

Esper 

 Esper, from EsperTech, is a component for complex event processing (CEP) and event 

series analysis, available for Java applications. This tool allows the processing of large volumes 
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of incoming messages or events. It filters and analyses events, responding to pre-set 

conditions of interest (Oberoi, 2011). 

 Esper, in association with the Event Processing Language (EPL), provides a scalable, 

real-time and memory-efficient solution. EPL (technology also known as SQL streaming 

analytics) is a declarative language for dealing with high frequency time-based event data 

(EsperTech, 2016). Some typical applications are in finances, sensor networks and 

management processes. Esper does not require any architecture, container or any 

dependency. 

 The reason to use this tool was to have an independent component similar to a CEP, 

easy to implement and work with. The main advantage of Esper is the conditions, that help to 

automatically trigger processes related to the failure of sensors. In this case, the use of 

semantic maps. 

4.3 Implementation Steps 

 Finally, this sub-section, aims to introduce the next chapter by providing some details 

regarding the implementation of the architecture of this dissertation. In order to organize and 

establish the order of work to attend during the implementation, the practical approach was 

divided into steps. 

4.3.1 Step 1 – Designing the Architecture 

 In this initial step, the functional and sequence models were designed. These models 

were already presented in section 3.2 and aim to determine the flow of the system processing 

and be the basis and canvas for the next implementation steps. In this step, the structures for 

the device and mapping knowledge bases, also defined in Section 3.2, are considered. The 

architecture (Figure 3.7) of the system is very important to consider in detail, in order to fulfil 

the desired relations between the modules and sub-models. 

4.3.2 Step 2 – Creation of Models and Instances on Protégé 

 In this step, the C2NET ontology was considered for developing the model in Protégé 

to contain the information of devices (as a knowledge base). To this ontology, some 

adaptations were made for this implementation in order to be capable of holding some 

additional features such as the perception of localization and space for the devices. 
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Figure 4-1 - C2NET Ontology OntoGraf. 

 Figure 4-1 shows a representation of the model created based on the C2NET 

Ontology. This representation is made by a tool integrated in the Protégé software named 

OntoGraf which allows the interactive visualization with filtering of classes, subclasses and 

individuals, and their respective relationships. 

 In this model, we can see the three main classes of C2NET: Property, Resource and 

Observation. To this application, the class of Resource is more thoroughly explored because it 

is where the devices (or sensors) are defined, which are the elements that this work aims to 

use to implement the semantic maps. Also, in the Resource class, inside the LogicalGroup 

subclass, the concept of Room is defined. This Room is the physical location where the 

sensors are deployed, giving a location context and preventing the existence of the same 

sensor in two different places at the same type (in typical real-world applications, using a 

sensor from a different room has no significant value for any task due to the distance and 

physical barriers between the sensor and the point to be measured). In the Observation class, 

there is a subclass of interest named Status, that defines the possible states for the sensor. In 

this implementation, it was considered four possible states: On, Off, Standby (functioning but 

waiting) and Error (damaged or malfunctioning). The Fault Detection class is an additional 

feature to be explained further in this chapter. 

 In Figure 4-2, a more detailed (or extended) version of this OntoGraf is presented. This 

version includes various individuals (or instances) that were used later for testing. These 

individuals allow to test and experiment with the ontology model to understand its coherence 

and good construction. Later, in this dissertation, these individuals are manipulated and 

displayed to the user in the graphical interface. 
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Figure 4-2 - C2NET Ontology OntoGraf Extended. 

 This OntoGraf may seem confusing at a first glance, due the amount of connections 

needed for the upcoming testing, but by noticing carefully, it is possible to verify all the 

relations between individuals and classes, that were planned in the previous chapters of 

design. It is important to remind that this representation, with all the individuals, is just a view 

of the content of the OWL file, to provide an explanation and demonstration of this aspect, 

which is not intended to be read by the user. Nevertheless, we can follow the SensorSmoke1 

connections, for example, to understand that it is a Smoke Sensor (Resource), from Room2 

(Room) and its current state of functioning is Off (State). This sensor also has, associated with 

it, fault detection instances related to temperature, using three methods (Inconsistency, 

Comparison and Threshold). 

 Each individual of this model will have its own property assertions (object and data), in 

which these relations can be directly viewed and accessed. In Figure 4-3, an example is 

provided. SensorTemperature1 is currently in Room1, its state is Error, it has fault detection 

instances associated and has the 2D coordinates X=2 and Y =1. The unit of measure of the 

coordinates is arbitrary and later, in this implementation, is considered as cells in a grid 

representing the room (for example, X=2 and Y=2 means a cell with 16x16 pixels in the 

second line and second row of the grid, counting from the top left corner of the room). 
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Figure 4-3 - Individual Property Assertions Example. 

 This dissertation also introduces a new ontology, the Mapping ontology, to be related 

to the C2NET ontology. This ontology serves as basis for the mapping knowledge base and it 

was also modelled in Protégé. The respective OntoGraf is presented below in Figure 4-4. 

 

Figure 4-4 - Mapping Ontology OntoGraf. 

 This model (Figure 4-4) is the representation in Protégé of the model designed in 

section 3.1 and presented in Figure 3-5. This model is the basis for the concept and 

methodology of the semantic maps by describing how the sensors interact with the maps and 

the properties included in it. The way this model works and is represented was also 

mentioned in section 3.1 but is important to mention that the sensors are viewed as the 

origin or destination of the semantic map. There can only be one origin sensor in each map 

but it is possible to have various destination sensors, to aim for difficult scenarios where there 



65 

are no equivalent sensors (relative to the origin sensor) in the surroundings. The mapping 

properties were thoroughly detailed in Equation 1 of section 3.1, and are not going to be 

further explained here, but here we can see some typical examples of sensor roles in a 

network such as Fire Alarm, Internal Temperature and Home Security. 

 Similarly, to what was demonstrated for the C2NET ontology, the insertion of 

instances in the Mapping ontology is essential to check the coherence of the model and 

prepare it for further testing in this dissertation. An extended version of the OntoGraf for the 

Mapping ontology is presented in Figure 4-5. 

 

Figure 4-5 - Mapping Ontology OntoGraf Extended. 

 It was mentioned before that this Protégé tool, OntoGraf, allows filtering the elements 

of the model and Figure 4-5 was manipulated using that functionality, in order to display an 

example of the use of semantic maps. This example is also designed to be part of the testing 

to be presented in the next chapter. So, in Figure 4-5, two sensors (SensorTemperature1 and 

SensorTemperature2), some semantic maps (e.g. Uninova_FireAlarm_1to2) and some 

mapping properties are visible (e.g. Default_Weight). These elements are instances inserted 

into the model and represent various scenarios, but for now we should focus on 

SensorTemperature1. This sensor is connected to both originSensor and destinationSensor 

subclasses, that means that it is used for more than one semantic map, because having it as 

both originSensor and destinationSensor in the same semantic map does not make sense 

(when using the semantic maps, we assume the failure of the origin sensor, making it 

unusable for further roles). With that in mind, all semantic maps using SensorTemperature1 
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were filtered as the Figure shows, and only one is connected to the sensor, 

Uninova_FireAlarm_1to2. As the name suggests, SensorTemperature1 is used as origin sensor 

for the map. The other sensor presented in the Figure is SensorTemperature2, also connected 

to the semantic map Uninova_FireAlarm_1to2. Since no other sensor is connected to this 

map, we can safely assume that TemperatureSensor2 is the destination sensor of the 

mentioned semantic map. This semantic map has then connections to mapping properties 

that detail it, such as Naming (a Mismatch) and FireAlarm (the Role of the origin sensor, that 

the destination sensor will inherit). This simple example represents a semantic map that 

simply applies redundancy from one temperature sensor to another, but more complex 

examples are shown in Chapter 5. 

 It is important to mention, as was hinted in Chapter 3, that these ontologies must be 

compatible with each other and have concordant information, otherwise they would be 

unusable together. In the implementation, the main classes and concepts of the ontologies 

are maintained to prove the proposed architecture, but the instances are manipulated in 

order to provide some insight of possible applications and to test them. The way this 

implementation does that is to use the OWL file, that Protégé produces, as database file, 

using the instances inserted into the ontology models as the required information for testing 

(sensors, rooms, semantic maps and other mentioned related information). 

4.3.3 Step 3 – Jena and Esper setup on Eclipse with Java 

 In this step, the setup of Jena and Esper was carried. Jena allows loading the models 

from the OWL file in order to manipulate and query the current state of the ontology and 

respective instances. The implementation of the Esper libraries on Eclipse (the IDE used for 

the development of this implementation programming code in Java) adds automatic functions 

to create complex event processing methodologies, namely statements (to be tested by 

events) and listeners (to read the events). These libraries were explained in section 4.2 and 

despite being very important for this implementation, there is no relevant additional 

information to add for now about them. 

4.3.4 Step 4 – SPARQL Queries and manipulation of OWL files 

 To retrieve information about the instances (elements of the ontologies), the SPARQL 

standard is used in this implementation, making use of Jena library functions. The queries 

allow filtering the results as mentioned in section 4.2 and an example is provided in Figure 4-

6. 
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Figure 4-6 - SPARQL Query Example. 

 In this example, the SPARQL query is intended to filter, from all the sensors in the 

Mapping ontology, the destination sensor(s) of a semantic map that has the origin sensor 

“sensor_name”, maps its specific role (there could be more) and has the greatest weight (in 

case of existing multiple maps that comply with these conditions, the one with the greater 

value is chosen). 

 To accomplish the reverse process of inserting and manipulating information present 

in the OWL files, a specific Java class was developed. This class consists in opening the 

database file (OWL file, in this case), search specific information if that is the case, and change 

or add the content based on the parameters of the functions developed for this class. The 

main functions include adding and editing sensors, maps, rules and roles. The information is 

not easily readable per se, therefore some specific conversions are made with the directives 

provided by the user interface and the information in the format of the database file. 

4.3.5 Step 5 – Sensor Threads 

 Regarding the simulation integrated in the implementation of this thesis, it is 

obviously necessary to achieve an environment the closest possible to a real scenario, to 

provide a reliable idea of how this solution is viable. With that in mind, it was mentioned 

before that the sensors represent the lower layer of the architecture and do not depend of 

the monitoring system, therefore should be independent of the rest of the implementation. 

As (Theunis, Stevens, & Botteldooren, 2017) define, in their work, the sensor is, only, the 

sensing element that transforms an external physical property into an electrical response. In 

the simulation, the sensors are represented by independent and parallel threads that output 

measurements, to which the monitoring system may consider or ignore, similarly to a real 

network. These sensor threads use the information provided by the database files and 

function based on that (active when the sensor is on, suspended when the sensor is standby, 

etc). There is no significant logic or decision-making, like a regular sensor normally operates, 
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except for the output measurement that varies depending on the input parameters (it can be 

randomly generated or it can be a selected value). 

4.3.6 Step 6 – Fault Detection (by Esper and by Ontology) 

 After defining the methodology of the sensing devices and the code that deals with 

the simulation processing, it is important to finally converge to the main focus of this work, 

the semantic maps. And to achieve that, the conditions that lead to the use of semantic maps 

must be implemented in the simulation in order to “make things happen”. 

 With Esper, is relatively easy to set up a fault detection methodology. First, the 

configurations for managing the complex event processing are set accordingly to the scenario. 

After that, the EPL statements (explained in section 4.2) are defined, using keywords to filter 

the type of event and time window that triggers the statement. 

 

Figure 4-7 - EPL Statement Example 

 Figure 4-7 shows an example of an EPL Statement used in the implementation. This 

statement is triggered when the requirements of the expression are met, in a time window of 

the last three measurements of the three sensors of this example (SensorTemperatureA, 

SensorTemperatureB and SensorTemperatureC). 

 After defining the statements, event listeners for each specific statement must be 

created to allow the detection of the event of interest. 

 The use of Esper is recommended for all the reasons mentioned in section 4.2.3, but 

has some restrictions because of the pre-defined filtering methods and the fact that it is 

relatively difficult to automatically generate the statements. Considering this and noticing 

that an approach that can directly relate, inside the ontology models, specific fault detection 

methods with each device, can be useful, an experimental ontology was developed. This 

ontology is not aimed to substitute the use of Esper, but simply to provide an alternative way 

of carrying this process, to compare the effectiveness of both methodologies. 

 The ontology for fault detection was mentioned and explained in section 3.3.3, and is 

integrated inside the C2NET ontology model. With this method, each fault detection instance 

is associated with an ID and, possibly, other data properties, similarly to the sensors, and can 

be related by a class property with the sensors. The beneficial points are to consider these 

methods inside the ontology and database, allowing direct correspondence to the sensors, 
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allowing easy and automated manipulation of the conditions during the implementation (due 

to being present in the always updated knowledge bases and not in the initial programming 

code) and allowing the creation of typical fault detection profiles such as a “fault detection 

instance for temperature sensors for fire alarm roles” (which can be directly associated with a 

new sensor in the network, instead of manually creating a statement). Of course, this method 

has predictable disadvantages, and the most significant ones are the fact that demands the 

inclusion in the initial design of the ontology model (which may be a time-consuming process, 

relative to the use of Esper) and the runtime processing time which is surely greater than 

using the optimized components of Esper. 

 Nevertheless, in this dissertation, both approaches were implemented and tested. 

4.3.7 Step 7 – Recovery with Semantic Maps 

 Finally, the last functional step of the implementation is here presented. After all the 

“fuss” discussed in the previous sections, it all concludes in the recovery of a network failure 

using semantic maps. 

 Despite the method of fault detection (using Esper or by ontology), the recovery of a 

sensor failure is conducted in the same way, as presented in section 3.2. The program 

searches, by query, the origin sensor information, queries again for existing mapping solutions 

and again for the destination sensor(s) (if any semantic map was found). In the simulation, the 

origin device is switched to Error mode, the colour of the representation of the sensor turns 

black and the device becomes non-targetable by other semantic maps, and the destination 

sensor(s) turns green, acquiring the role from the origin sensor. The knowledge bases are 

updated, and the event processing is updated too. 

4.3.8 Step 8 – Implementation of a Graphical User Interface 

 All the steps presented before, converge in the implementation of a GUI. This was the 

selected way of showing the architecture processing working while providing user input 

information. The importance of such feature was mentioned in section 2.3.1 and the 

interaction between the user and interface follows the pattern defined by the CASCoM 

system-level configuration model explained in the same section of this thesis and depicted in 

Figure 2-12. 
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Figure 4-8 - SMAP Graphical User Interface. 

 The SMAP graphical user interface (depicted in Figure 4-8) is divided into two 

windows: the control window and the network visualizer. To allow a better comprehension of 

the functions in each one of them, small descriptions are presented in this section, that will 

be complemented with the use of those same functions during the operation of the sensor 

network, in the scenarios of the next chapter of testing and validation. 

 Control Window: 

• New Room – Allows the creation of a new room; 

• Pause Rooms – The functioning sensors, if any, inside the rooms, switch their 

operating state to Standby; 

• Start Room – Starts an existing room, starting the threads of any sensor with its 

operating state as On; 

• New Sensor – Allows the creation of a new sensor; 

• Sensor Readings – The user can choose the measurement output of any sensor of the 

room (randomized values are an available option); 

• Sensor State – The state of any sensor of the room can be changed with this button. 

The possible operating states are: On, Off, Standby and Error; 

• New Map – Allows the creation of a new semantic map; 

• Show Maps – Shows the semantic maps for a selected sensor of the room (only 

semantic maps that have that same sensor as origin sensor) with a line connecting to 

the respective destination sensor(s); 
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• Show All Maps – Shows all semantic maps for all sensors in the room; 

• Fault Detection – This box, turns on and off the fault detection ontology method, 

explained in step 6 of this implementation, for testing purposes; 

• Log - Gives testing feedback and displays the measurements of active sensors, of the 

current room, in real-time. 

 Network Visualizer Window: 

• Room – The window adapts to the size of the room (scaled), and shows any 

background associated with it. The rooms are divided into cells by an invisible grid of 

16x16 pixels in which the sensors are shown; 

• Sensors – The sensors are represented by circles, within the mentioned cells (in which, 

for example, X=3 and Y=1 means a cell with 16x16 pixels in the first line and third row 

of the grid, counting from the top left corner of the room), with one of the four 

colours that represent their current operating state (On is green, Off is red, Standby is 

yellow and Error is black). There can be more than one sensor in the same cell. When 

clicking on the cell, an additional window for each sensor in that position appears, 

called Sensor Information, and gives additional data such as the sensor types and their 

last three measurements. The sensors that are On also have a small grey circle flashing 

in the centre as a visual aid to help understand which sensors are providing 

measurements; 

• Semantic Maps – The semantic maps are represented by lines connecting the origin 

sensor to the destination sensor(s) and only appear in the graphical user interface 

when one of the two buttons for that effect is selected. 

 This GUI was protected against the most common wrong data formats and fields, 

when the user is inputting information recurring to the Control Window, avoiding user 

induced errors in the simulation. 

 The next chapter provides testing and validation using the program implemented with 

these steps. Some aspects, such as the GUI, are easily depicted when recurring to practical 

demonstrations of its functionalities. 
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5 Testing and Hypothesis Validation 

 

 This section of the thesis addresses the testing of the implementation by validating 

the requirements and functionalities of the system, that were mentioned previously in 

chapter 4. The testing methodology used is explained along with the testing implementation 

that was developed. Following that, the validation of the hypothesis mentioned in chapter 1 is 

detailed and the validation in terms of scientific and industrial importance is addressed. 

 The reader is reminded that testing is an operational way to check the correctness of a 

system implementation by means of experimenting with it (Tretmans, 1999) and represents a 

process with its own effectiveness. And since the testing of realistic systems can never be 

exhaustive, because systems can only be tested during a restricted period, testing cannot 

ensure complete correctness of an implementation. It can only show the presence of errors, 

not their absence (Tretmans, 2001). 

5.1 Testing Methodology 

 The methodology presented in this chapter, for the testing of the implementation, is 

intended to provide insight of the effectiveness of the solution proposed in this dissertation. 

Therefore, it is relevant to use proper methods, already proven and established in other 

academic publications, to ensure reliable results. These methodologies and standards were 

defined and revised throughout the years, based on the expertise of using them and their 

practical results, sometimes recurring to a superimposition of a multitude of these to cover 

complex implementations (Ferreira, 2012). 

 There are many testing methodologies in software engineering, such as unit testing, 

conformance testing, abstract concepts like black box testing, etc (White, 1987). But for 

testing, not only in this environment but also generally, the functional and structural 

processes are distinguished (Myers, Thomas, & Sandler, 2004). Other distinguishable 

characteristic is between dynamic tests (execution of code) and static tests (e.g. code review) 

(Anderson, 2011), but only dynamic tests are considered here. 

 Structural testing is based on the internal structure of a computer program, where all 

code is analysed, and each line is executed at least one time, covering all the possible paths of 

the execution of the program. This analysis is also known as the white-box testing, where 

tests are derived from the program code (Anderson, 2011). 

 Functional testing is based on observing, externally, the program execution, regarding 

only the objectives intended to be tested. This type of testing is known as black-box testing, 

because the internal content of the program is ignored (Zeller, 2017). 
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 Since the functional tests derive from the specifications, the main goal is to analyse if 

the implementation is in fact working as expected. Consequently, due to the nature of these 

testing methods, while structural testing is used in early stages of the software development, 

functional tests are the main focus in later stages of development (Ferreira, 2012).  

 With the information presented here, and by analysing some similar publications, the 

methodology chosen for this testing procedure is based on a known standard, named Tree 

and Tabular Combined Notation (TTCN, or Test Notation Standard). 

 Tree and Tabular Combined Notation (TTCN) 

 The TTCN is a standardised notation by the ISO/IEC 9646-1 for the specification of 

tests for software systems and has been developed within the framework of functional 

testing. The tests are defined through tables which are divided in a general description, 

constraint, behaviour and verdict. 

 The test is defined as a sequence of events which represent the steps of the testing 

process on a given system. Each event has its own sequence level, visible by text indentation, 

and can be one of two types: action or question. Actions are preceded by an exclamation 

point and represent the actions performed on the system. Questions are preceded by an 

interrogation point and represent evaluations of the output of the system after one or more 

actions are completed. The answer can be positive or negative, therefore, multiple questions 

can exist at the same indentation level, covering all possible outputs of the system. After 

completing a TTCN test table, a verdict must be deliberate. The possible outcomes are: 

“Success”, “Failure” or “Inconclusive”. This verdict is based on the sequence of events and is 

conditioned by the output of the system and question events. Example scenarios can be 

found in (TTCN-3, 2013).  

 Regarding the presented methodology, Figure 5-1 shows an example scenario for the 

testing implementation. Different scenarios will be presented in the next section, but it is 

relevant to describe and show a diagram representing a variant of them, to allow a better 

comprehension of the overall testing methodology. 

 In this example, the CEP uses three sensors for a specific role (temperature sensor A, 

CO2 gas sensor X and CO gas sensor Y). The gas sensors measure a normal concentration of a 

given gas, but the temperature sensor A measures a very high temperature. After the SMAP 

verifies the operation of the temperature sensor A, notices the malfunctioning of it and 

provides a semantic map. This semantic map provides a solution to substitute the 

temperature sensor A with a new temperature sensor, B. The information about the needed 

update of the rules database in the CEP is passed from the SMAP to the CEP engine. After 

that, the CEP starts using the temperature sensor B instead of the temperature sensor A, and 

the SMAP changes the state of the temperature sensor A, in its knowledge bases, as faulty 

(Error, in the SMAP sensor state nomenclature). 
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Figure 5-1 – Example Scenario of Testing Implementation. 

 Most of the processing occurs inside the SMAP module, during the search for the 

appropriate semantic map, but it is disregarded in this stage due to the testing being from a 

functional perspective. The representation of the Figure 5-1 is not going to be repeated to the 

upcoming scenarios and it is intended to serve only as an aid to understand the testing 

process. 

5.2 Testing Implementation 

 This section presents the testing of the implementation presented in chapter 4, using 

the methodology of the previous section (5.1). The scenarios presented here are intended to 

show the functionalities of the developed program, using the graphical user interface to 

manipulate and show the current state of the network in each scenario. This section is 

organized by three “Rooms” in which the scenarios are designed to provide feedback of the 

functionalities. “Room 1” and “Room 2” present a general overview of all processes and are 

representations of real case scenarios for two specific situations, implemented for the 

validation of the C2NET project in a factory of a company called “António Abreu 

Metalomecânica, Lda”1, located in Vila Nova de Famalicão, in the north of Portugal. “Room 3” 

presents an extended theoretical application intended for testing purposes and provides 

some additional information. 

 Room 1: SMAP Initialization and Use of Semantic Maps 

 As can be seen in Figure 5-5, this room has four motion sensors: 

                                                      
1 http://www.aametalomecanica.com/ 
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• AAMM_Pass_1: Ultrasonic sensor, active sensor on the top left corner of the SMAP 

Network Visualizer; 

• AAMM_Pass_2: Infrared sensor, inactive sensor on the top left corner of the SMAP 

Network Visualizer, redundant to sensor AAMM_Pass_1; 

• AAMM_Pass_3: Ultrasonic sensor, active sensor on the bottom right corner of the 

SMAP Network Visualizer; 

• AAMM_Pass_4: Infrared sensor, inactive sensor on the bottom right corner of the 

SMAP Network Visualizer; redundant to sensor AAMM_Pass_3. 

 

Figure 5-2 - Infrared Sensor. 

 These sensors represent the four motion sensors implemented in a station, of the 

mentioned factory, responsible for detecting the passage of manufactured pieces. The type of 

infrared sensors (model GP2Y0A02YK0F) used in the implementation in the mentioned 

factory, is illustrated by Figure 5-2 and the type of ultrasonic sensors (model HC-SR05) is 

illustrated by Figure 5-3. 

 

Figure 5-3 - Ultrasonic Sensor. 

 The sensors are placed in pairs, in the top left corner and the bottom right corner (as 

appears in the SMAP Network Visualizer of the following figures), and, initially, only one 
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sensor of each pair is active, the other one is only for redundancy purposes (as can be seen in 

Figure 5-5). This redundancy is achieved with the use of semantic maps, represented by a 

blue line connecting the involved sensors, as can be seen in Figure 5-6. 

 

Figure 5-4 - Room 1: Start Room. 

 Figure 5-4, shows the graphical user interface room selection process. The dropdown 

list of rooms results from a query to the C2NET ontology to get all the existent rooms in the 

database file created for this implementation, using Protégé. 

 

Figure 5-5 - Room 1: Room Started. 

 Following that, Figure 5-5 shows Room 1 functioning with the Log showing the 

measurements in real time from the two active sensors (only two are green), the SMAP 



78 

Network Visualizer showing the existent sensors in the room (four motion sensors, two On 

and two Off) and by clicking in the green circle, on the top left corner, we get access to the 

sensor information from sensor AAMM_Pass_1, displayed in an additional box as seen in the 

mentioned figure. 

 In Table 5-1, the Test Case 1 is provided. This TTCN test table is based on the previous 

two Figures and introduces this testing implementation with the start of a room and 

respective sensors. By analysing the table and Figure 5-5, we can conclude that this step was 

a Success. 

Table 5-1 - Test Case 1. 

 Test Case 1   

Test Case:  Room Start   

Group:  

Purpose:  

Room 1 Tests 

Check if Room 1 starts and the active Sensors run. 

  

 Behaviour  Constraints  Verdict  

! Press Start Room  

     ? Rooms Loaded  

               ? Room Started  

                         ? Sensors Started  

                                   ! Click in the Sensor 

                                             ? Got Sensor Information  

  

  

  

  

  

  

  

  

  

  

  

Success  

     OTHERWISE    Failure  

               OTHERWISE    Failure  

                         OTHERWISE   Failure 

                                             OTHERWISE   Failure  

 

 Next, in Figure 5-6, the button to show maps from AAMM_Pass_1 was clicked and the 

interface showed redundancy to the nearby sensor, AAMM_Pass_2, with a blue line 

connecting the centers of the respective circles. To increase the complexity of this testing 

procedure, the “New Map” function was used to create two new semantic maps from 

AAMM_Pass_1 to AAMM_Pass_3 and AAMM_Pass_4, individually (this can be seen in Figure 

5-7 and Figure 5-8, where two new blue lines appear, connecting the AAMM_Pass_1 to the 

mentioned destination sensors). After that, the “Sensor Readings” button was used to change 

the sensor output of AAMM_Pass_1 to 300 units. The fault detection methods were active, 

so, the program notices the failure in the sensor, by the Threshold fault detection method, 

and asks for recovery using semantic maps (this is depicted by Figure 5-6). 
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Figure 5-6 - Room 1: Failure in a Sensor. 

 In Figure 5-7, we can see the options presented to the user to recover from the faulty 

sensor, AAMM_Pass_1. The semantic maps “AAMM_1to2”, “AAMM_1to3” and 

“AAMM_1to4” are selectable and have as destination sensors, AAMM_Pass_2, 

AAMM_Pass_3 and AAMM_Pass_4, respectively. 

 

Figure 5-7 – Room 1: Semantic Maps for the Faulty Sensor. 

 In Figure 5-8, we can see that the user chose the semantic map for the AAMM_Pass_2 

(visible in the Log box, as active), and the origin sensor circle turned black to indicate the state 

of Error, this disables further semantic maps to target it as destination sensor. The destination 

sensor turned green and, in the Log, we can see its real-time measurements (the 

measurements from AAMM_Pass_1 stopped because it is no longer active). This semantic 
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map selection process is active for this test, but it can be automated using the previously 

mentioned weight component, present in every semantic map. 

 

Figure 5-8 - Room 1: Result of the use of a Semantic Map. 

 The following illustration, Table 5-2, is the test case, relative to the example scenario 

just provided. By analysing the table of the test case and Figures 5-6, 5-7 and 5-8, we can 

conclude that the implementation of the use of a semantic map was a Success and the 

objective of this step was accomplished. 



81 

Table 5-2 - Test Case 2. 

 Test Case 2   

Test Case:  Use of Semantic Maps   

Group:  

Purpose:  

Room 1 Tests 

Check if the program handles the use of a Semantic 

Map, maintaining the network functioning. 

  

 Behaviour  Constraints  Verdict  

! Press Show Maps 

      ? Semantic Maps Loaded 

                  ! Change Output 

                              ? Output Changed 

                                          ? Malfunction Detected 

                                                            ! Choose Semantic Map 

  

  

  

  

  

  

  

  

  

  

  

  

                                                                        ? Network Recovery  Success 

      OTHERWISE    Failure  

                              OTHERWISE    Failure  

                                          OTHERWISE   Failure 

                                                                        OTHERWISE  Failure  

 

Room 2: Sensor State Changes and Network Recovery 

 As can be seen in Figure 5-10, this room has four temperature sensors: 

• AAMM_Temp1: Thermocouple sensor, active sensor on the top left corner of the 

SMAP Network Visualizer;  

• AAMM_ Temp2: Thermocouple sensor, inactive sensor on the bottom left corner of 

the SMAP Network Visualizer; 

• AAMM_ Temp3: Thermocouple sensor, inactive sensor on the top right corner of the 

SMAP Network Visualizer; 

• AAMM_ Temp4: Thermocouple sensor, inactive sensor on the bottom right corner of 

the SMAP Network Visualizer. 

 This room represents the second scenario from the mentioned factory. It is a station 

with an industrial oven where the manufactured pieces dry after being painted. In strategical 

locations of the oven, four temperature sensors are used for calculating the average 

temperature of the room (this calculation is done by the CEP). The type of temperature 

sensors used, in the factory, was the nickel-alloy type E illustrated by Figure 5-9. 
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Figure 5-9 - Temperature Sensor. 

 The objective is to have enough active sensors to do this calculation properly and, if 

possible, leave others as non-active to allow redundancy. Initially, only one sensor, 

AAMM_Temp1 is On (as can be seen in Figure 5-10). 

 In Figures 5-10 and 5-11, a basic functionality, essential from the demonstrative and 

experimental point of view, is shown. That functionality is just the activation of a certain 

sensor, in this case AAMM_Temp2, to better manipulate the simulation environment and 

force the desired following testing procedure. 

 

Figure 5-10 - Room 2: Changing the Sensor State. 

 Figure 5-10 shows the screen after clicking the “Sensor State” button and choosing 

the desired sensor, AAMM_Temp2. The sensor current state is presented (which also can be 

seen in the SMAP Network Visualizer) and in this case, it’s Off. After that, the interface shows 

a message dialog which requests the new state for the selected sensor and, in this test, the 
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On state is selected. And finally, Figure 5-11 shows AAMM_Temp2 as active and, in the Log, 

we can see the current sensor measurements. 

 

Figure 5-11 - Room 2: Sensor State changed. 

 Since this previous case of testing is a very simple procedure, the correspondent Test 

Table, Test Case 3, includes this and the following procedure which represents the 

redundancy from AAMM_Temp2 to AAMM_Temp3 and AAMM_Temp4 (a semantic map with 

one origin sensor and two destination sensors) using a failure that invokes the Inconsistency 

fault detection method. This procedure is shown by Figures 5-12 to 5-14. 

 

Figure 5-12 - Room 2: Inconsistency and Comparison Failures Detected. 
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 Figure 5-12 depicts the procedure and result of changing the reading value of the 

sensor, in this case, the AAMM_Temp2. It is visible in the SMAP Network Visualizer, that the 

three sensors share redundancy by a semantic map (depicted by the blue lines connecting the 

center of the circles). The new sensor output value is within the threshold of the sensor, 

contrarily to the previous example of fault detection. But the significant change from 5 units 

to 25 units triggers the Inconsistency method. 

 As seen in the message dialogs from Figure 5-12, the Inconsistency method was 

activated, but the Comparison fault detection mechanism was activated too. This occurred 

because the Comparison mechanism compares the output values of sensors related by 

geographical interest or proximity distance, using certain proximity thresholds. The developed 

program can compare innumerous nearby sensors (depending on the processing capability of 

the hardware running this interface). In this case, the four sensors can be considered due to 

their proximity but only the active sensors are compared for logic reasons. And with the 

change made previously, the difference between the two active sensors is 20 units, above the 

stipulated for this room (10 units), and for that reason, the Comparison method was 

activated. In order to proceed with the use of the semantic map mentioned before, the user 

clicks “No” on the Comparison method and “Yes” on the message dialog presenting the 

activation of the Inconsistency fault detection rule. 

 Recapitulating, in Figure 5-12, the recovery by semantic maps is activated by the 

Inconsistency fault detection method that compares the current reading of a certain sensor 

with its previous ones, considering a limited acceptable variation. In this case, the current 

sensor reading is 25 and all the previous ones are of 5 units. The limit variation stipulated for 

this simulation is under 20 units, so the recovery process is automatically initiated. 

 

Figure 5-13 - Room 2: Use of a Semantic Map with two Destination Sensors. 
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 As seen in Figure 5-13, there is only one semantic map available for this situation, 

AAMM_Oven2to3and4, and the destination sensors are AAMM_Temp3 and AAMM_Temp4. 

At this point, the readings from AAMM_Temp2 are being disregarded because the simulator 

has undergone into the semantic map redundancy procedure, after the user has chosen to do 

so. 

 

Figure 5-14 - Room 2: Resulting Network State. 

 Finally, in Figure 5-14, we can see the resulting network state, where the 

AAMM_Temp2 state is now Error and the destination sensors are now On. In the Log box, the 

output values of the three active sensors are now being displayed. 

 The correspondent table, Test Case 3, relative to the example scenario just provided, 

is presented in Table 5-3. By analysing the table of the test case and Figures 5-10 to 5-14, we 

can conclude that the implementation of this scenario was a Success and the objective of this 

step was accomplished. In the table, to what is referred as Sensor 2, it is meant to be relative 

to the AAMM_Temp2 sensor. 
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Table 5-3 - Test Case 3. 

 Test Case 3   

Test Case:  Use of Semantic Maps    

Group:  

Purpose:  

Room 2 Tests 

Check if the program handles the manipulation of 

sensor states and a different use of the semantic 

maps 

  

 Behaviour  Constraints  Verdict  

! Press Show Maps 

       ? Semantic Maps Loaded 

              ! Change Sensor 2 State 

                     ? Sensor 2 State Changed 

                            ! Change Sensor 2 Output 

                                   ? Sensor 2 Output Changed 

                                          ? Failure Detected 

                                                 ! Choose Semantic Map 

  

  

  

  

  

  

  

  

  

  

  

  

                                                        ? Network Recovery  Success 

       OTHERWISE    Failure  

                     OTHERWISE    Failure  

                                   OTHERWISE   Failure 

                                          OTHERWISE  Failure 

                                                        OTHERWISE  Failure  
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 Room 3: Theoretical Scenario for Interface Testing 

 As can be seen in Figure 5-15, this room has nineteen thermistor temperature 

sensors, where only one is active, SensorTemperature5, and is represented by the green 

circle. All other eighteen sensors are, initially, inactive and their location inside the room is 

arbitrary. 

 

Figure 5-15 - Room 3: Initial Network State. 

 The active sensor has a semantic map that lists almost all other sensors as destination 

sensors, as can be seen in Figure 5-16. This situation shows the capability to use semantic 

maps from one to many sensors and it is intended to depict a situation of emergency, where 

all sensors are activated for the operator (or user) to get all the possible readings to figure out 

what is going on. 

 In this case, a failure in the origin sensor represents the reason for the situation of 

emergency. In practical terms, this scenario is also helpful to understand if the developed 

program and simulator are capable of functioning during a heavier process. After the use of 

the mentioned semantic map, another developed function is tested, the capability of pausing 

the room, putting all active sensors from all existent rooms on standby. 
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Figure 5-16 - Room 3: Semantic Map. 

 In Figure 5-16, in the SMAP Network Visualizer, is shown the semantic map from 

SensorTemperature5 to thirteen other sensors, present in the room. In the Log there are two 

visible readings, in the first the reading is 5.0 units and in the second it is 55.0. This change 

was forced by the user to make the simulator acknowledge a failure and start the process for 

the use of the desired semantic map, called DEE_FireAlarm_5toAll. The semantic map is then 

chosen by the user and Figure 5-17 shows the resulting network state after this change. 

 

Figure 5-17 - Room 3: Network after the Semantic Map. 

 In the log, there are two readings, from SensorTemperature21 and 

SensorTemperature30 which are two of the thirteen sensors that are now active due to the 
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use of the selected semantic map. The new state of the origin sensor, SensorTemperature5, is 

Error. The rest of the sensors, not comprised by the semantic map, remained Off. 

 As mentioned previously, to finish the testing procedure of this scenario, the 

functionality of pausing all the active sensors is also tested and presented in Figure 5-18. To 

use this, it is only needed to press the “Pause Rooms” button and all sensors are put on 

standby, interrupting all readings. By clicking again in the button, all standby sensors become 

active again. None of the other possible states for sensors (Off and Error) are affected during 

this process. 

 

Figure 5-18 - Room 3: Room Paused. 

 The correspondent table, Test Case 4, relative to the example scenario for Room 3, is 

presented in Table 5-4. By analysing the table of the test case and Figures from 5-15 to 5-18, 

we can conclude that the implementation of this scenario was a Success and the objective of 

this step was accomplished. 
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Table 5-4 - Test Case 4 

 Test Case 4   

Test Case:  Semantic Map from One to Many and Pausing Room   

Group:  

Purpose:  

Room 3 Tests 

Check if the program handles the use of a semantic 

map from one origin sensor to many destination 

sensors and if the pausing room function works 

properly. 

  

 Behaviour  Constraints  Verdict  

! Press Show Maps 

       ? Semantic Maps Loaded 

              ! Change Sensor Output 

                     ? Sensor Output Changed 

                            ? Failure Detected 

                                   ! Choose Semantic Map 

  

  

  

  

  

  

  

  

  

  

  

  

                                          ? Network Recovery   

                                                 ! Press Pause Rooms   

                                                        ? Sensors Are Standby   

                                                               ! Press Pause Rooms Again   

                                                                      ? Sensors Are Active Again  Success 

       OTHERWISE    Failure  

                     OTHERWISE    Failure  

                            OTHERWISE   Failure 

                                          OTHERWISE  Failure 

                                                        OTHERWISE  Failure  

                                                                      OTHERWISE  Failure 

5.3 Hypothesis Validation 

 In section 1.3, the hypothesis of this dissertation was defined and from there were 

drawn the main objectives to achieve during the development of this thesis. From the testing 

and validation presented in this dissertation, it can be concluded that the developed 

architecture successfully achieved the desired functionalities. 

 The developed architecture tackled the use of contextual meta-information from the 

network sensors with the creation of semantic maps to obtain a more reliable and intelligent 

network, capable of reacting to the surrounding environment constraints and variability. With 
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these semantic maps, the meta-information became readily available for the application of 

redundancy to faulty sensors, to maintain the functionalities of the network. 

 The resulting implementation was able to monitor the network and detect situations 

of interest that suggest the malfunction of devices, using the measurements that were 

controlled by the simulation environment. The simulator corresponded to the expectation, by 

maintaining a stable view of a functioning network, retrieving and showing data from the 

simulated active devices. This data was continuously used for the integration of architectural 

concepts that were meant to be tested during this dissertation and allowed their 

experimentation by their manipulation, considering a generic and typical real-world 

environment. 

 As it was explained previously, the core concepts of this architecture, such as the 

mapping equation and the structure of the knowledge bases, must be very similar in each 

implementation, to allow interoperability between systems and easy information exchange. 

By testing these concepts in a scenario, as it was done in this dissertation, it is possible to 

conclude the capability of functioning properly in that given scenario. But other concepts or 

elements of the proposed architecture can be subjective to the constraints of the 

environment, to allow better adaptability and reliability of the network. Examples of such 

elements are the types of mismatches and roles allowed. This means that the proposed 

architecture can be implemented to very different technological situations, due to the nature 

of the context in which was developed, resulting in different variations of the presented 

model. Which leads to conclude that the validation of the architecture can always be 

contested when the paradigm of the surrounding environment forces a very different 

variation of the implementation of the proposed model. 

 In terms of applicability, the proposed architecture was meant to be both suitable for 

integration, before and after the implementation of the network (or system). This was 

accomplished by creating the SMAP module, which functions independently and does not 

require any structural change to the typical IoT System. 

5.4 Scientific Validation 

 A scientific paper was submitted to the IEEE International Conference on Systems, 

Man and Cybernetics (SMC 2017), to validate the proposed theoretical concepts of this 

dissertation. This paper (Lopes, Ferreira, Agostinho, & Jardim-Goncalves, 2017) was accepted 

and is scheduled for presentation in early October of 2017, in Banff, Canada. Below, the paper 

is formally mentioned: 

• Lopes F., Ferreira J., Agostinho C., Jardim-Goncalves R., “Semantic Maps for IoT 

Network Reorganization”, Accepted in: IEEE International Conference on Systems, 

Man and Cybernetics (IEEE SMC 2017). October 5-8, Banff, Canada, 2017. 
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5.5 Industrial Validation  

 The industrial acceptance and validation is also an important aspect of developing 

scientific work, because if the industry does not approve the obtained results, this solution is 

most likely to never be used. By acknowledging this, the integration in practical and real-

world scenarios has always been one of main focuses. 

 With the integration of this thesis in the C2NET project, it was possible to get into that 

paradigm and develop according to the specifications of an industrial research project with a 

real-world environment. As mentioned in the Testing Implementation, sub-chapter 5.2, the 

developed work had a direct impact during its development in the implementation of the 

C2NET project, namely in the “António Abreu Metalomecânica, Lda” factory. 

5.5.1 SMAP in C2NET 

 

Figure 5-19: C2NET Project Overview. 

 This large research project involves 20 partners across the European Union and it was 

founded by the European Commission on the 1st of January of 2015, with a 3 years grant. The 

goal of the project is the creation of cloud-enabled tools for supporting the SME’s supply 
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network optimization of manufacturing and logistic assets based on real time collaborative 

demand, production and delivery plans (C2NET, 2015), as can be seen in Figure 5-19. 

 As is expected from this type of projects, many discussions take place with the 

industrial partners, recurring to both physical and teleconference meetings, involving them in 

the definition of the concepts proposed. During this dissertation, the main focus has been to 

provide industrial pilots with data collection functionalities and virtualized resource 

management. The metalworking SME’s case where “António Abreu Metalomecânica, Lda”, 

highlighted in Figure 5-19, is integrated, is a real test environment for the developments 

described in the implementation and testing scenarios of this thesis, specifically the network 

monitoring stage, where events and redundancies are triggered, based on processed data 

from the sensors. 

 The SMAP module enables any company to implement IoT without any significant 

structural change and enables an additional set of IoT functions with the intend of improving 

its processes. These functions are related with the monitoring of data within spaces, or 

rooms, the detection of situations of interest and the application of similar network 

configurations, based on the semantic maps, to allow redundancy and recovery from device 

failures. The use of semantic maps enables more trustworthy systems and a landscape of 

automatic solutions to solve its most common problems autonomously. The creation of the 

architectural ontologies and the creation of a common tuple for the information present in 

each semantic map, creates a standard for its use and is prone to these automatic processes. 

5.5.2 IoT Network Configuration in the Metalworking Case 

 As it was mentioned in the beginning of this sub-chapter, the implementation of the 

architecture and concepts proposed by this dissertation, needs to be complemented with 

work that is not directly related to what is the objective of this thesis, due to the nature of the 

project itself. Nevertheless, despite not taking part in the previous sections of implementation 

and testing, that work was necessary for real-world validation. Considering this, a brief 

explanation is presented here to allow a better understanding of how the concepts of this 

dissertation can be implemented in a IoT environment, without getting into too much detail. 

 This work consisted in developing communication patterns and the structure for 

messages to be exchanged within the network of the factory mentioned previously. The 

communication structure in this work is assured via CAN bus and/or Ethernet connection 

(using UDP). The participants in this process are the nodes (sensors and actuators) and the 

hub, developed and validated in the work of (Costa, 2016), responsible for the management 

of the network. Each node is constituted by an Arduino2 device (with an Ethernet shield for 

Ethernet connection or CAN bus wiring for communication) and may have multiple sensors 

                                                      
2 https://www.arduino.cc/ 
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attached to it. The hub is constituted by a single Raspberry Pi3 device. A illustration of the 

type of hardware implemented in the AAMM factory is provided by Figure 5-20. 

 

Figure 5-20 - Hardware for the C2NET implementation in AAMM. 

 The sensors send data over the network, from the node to the hub, where the data is 

collected for further processing. The hub is responsible for actuating on the devices, enabling 

or disabling them, and is responsible for the mechanisms to detect new devices, or nodes, 

automatically. One of the implementations can be seen in Figure 5-21, where the data cables 

used for communication are visible as well as a sticker on a cable denoting the connection to 

the hub (as “PI”). 

 

Figure 5-21 - C2NET Implementation in the AAMM factory. 

                                                      
3 https://www.raspberrypi.org/ 
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 The structure of the messages is constituted by a maximum of 8 bytes, where each 

one of them contains specific data. The first byte is always used for the message type, which 

defines the use of the remaining bytes. Typically, the second byte denotes the node ID, the 

third defines the sensor ID (within each node), the fourth denotes the type of sensor (useful 

for messages from the node to the hub, where the hub acknowledges the existence of that 

sensor and what type of data it measures) and the remaining bytes are usually for values of 

measurements, thresholds and frequencies (for communication to happen). Those values 

may be very high and need to be represented by more than two bytes. 

 An example of this structure is presented in Figure 5-22. It is a message intended for 

the actuation of a warning light. The actuator is located in node 3 and has “10” has value for 

its ID (inside the respective node). To activate this warning light, the value 1 should reach the 

actuator. So, the first byte has the pre-defined message type code “0x17” that denotes the 

message for actuation, “0x03” is the node ID and “0x10” is the actuator ID, and occupy the 

bytes 2 and 4, respectively. This type of actuator has a pre-determined value for its 

designation, “0x30”, and that information is inserted into the third byte of the message. The 

value for actuation purposes occupies the fifth byte and to activate this warning light “0x01” 

is written. The three remaining bytes are not used for this type of message. 

 

Figure 5-22 - C2NET AAMM’s Communication Message Example. 

 This structure of communication allows the application of the IoT paradigm and the 

concepts proposed in this dissertation. With the structure of messages here described, the 

network management and processes related to the use of semantic maps, are achieved 

afterwards. This description was very brief but serves to elucidate the reader on how the 

basis of an IoT network can be build using simple programmable components as the Arduino 

and Raspberry Pi devices. 
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6 Final Considerations and Future Work 

 

 This section is the final appreciation of the author regarding the developed project 

and the writing of this dissertation. A comparison to the hypothesis and initial approach is 

here presented, to understand the effectiveness of this scientific work and to situate it in 

means of contemporary importance and possible further implementation. Some keynotes 

about possible future work to be made in the module of this project or even in the subject of 

this dissertation are provided, because “science is never finished” (Hermanns, 1983). 

6.1 Main Results 

 The contribution of this thesis to the C2NET project is based on the demand of IoT 

solutions for autonomous adaptation and reliable functioning. These solutions, are moulded 

by the context of the implementation environment and are intended to be resistant to the 

surrounding constraints and variability. To function properly, under these circumstances, the 

IoT systems need to dynamically adapt and transform, using viable mechanisms. This is where 

the proposed semantic maps and the related concepts and processes come into play. 

 Focusing on the specific contribution of this thesis, to the mentioned project, the 

SME’s manufacturing networks visualization and processing, in terms of collecting important 

information, is a very important aspect that allows optimization, as intended by the project. In 

this case, the envisioned optimization is the application of redundancy, using the semantic 

maps, to ensure that the manufacturing processes are more resistant to failure in the sensing 

devices, responsible for triggering important manufacturing events. With this, situations like 

emergencies and machine failures, are easily detected and handled autonomously, when that 

is possible. 

 The original elements of this dissertation are: 

• Semantic Maps Concept applied in IoT; 

• Semantic Mapping Equation; 

• SMAP Architecture and Software prototype; 

• SMAP Ontology, Methodology and Processes; 

• Fault Detection Methods, using the SMAP Ontology; 

• Simulator and respective Graphical User Interface. 
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 Additional information provided in sections 5.2 and 5.5, shows how this dissertation is 

used to contribute to the C2NET project activities and how it can be implemented in various 

IoT domains that share similar environments.  

6.2 Conclusions 

 In this work, a suggested methodology for using semantic maps, recurring to network 

metadata and function-oriented recovery methodology, to accomplish autonomous error 

recovery and network reorganization, is presented. The objective of this solution is to 

improve IoT network sustainability, reliability and trustworthiness, regarding IoT devices, 

without compromising performance or forcing significant structural changes to systems 

already implemented. These were the main aspects considered during the design of the 

SMAP module and its interactions with the rest of the system. 

 To contextualize the environment of this work, the IoT paradigm, chapter 2 presents 

the researched information that served as basis for the development of the proposed 

architecture. Not only the environment was deemed as important, but also existing 

implemented models were studied and compared, allowing to understand what is considered 

relevant when creating an IoT network, or system, based on semantic models.  

 The studied models were the IoT-A, the W3C SSN Ontology and the IoT Lite. The IoT-A 

presents a very complete approach but tends to be difficult to apply due to existing various 

aspects and constraints that the developer must deal with, before even started implementing. 

Besides that, it can be seen as a model that describes the guidelines for more specific 

ontologies. The other two models have a more specific approach and are incisive on the 

problem they want to solve. This author believes that by developing ontologies for more 

specific solutions, but regarding models like IoT-A as basis to ensure proper interoperability 

within the IoT environment, creates a bigger opportunity for the scientific community to excel 

in the field they wish to improve, instead of dissolving into a generic solution. Nevertheless, as 

mentioned before, the semantic technologies are widely claimed to be a qualitatively 

stronger approach to interoperability than contemporary standards-based approaches 

(Lassila, 2005). 

 Following this thematic, in the same chapter, crucial aspects and concepts, related to 

making the network more dynamic, autonomous and intelligent were mentioned and 

explored, always having the semantic maps as end goal. 

 In the following chapter, the architecture for the semantic mapping module was 

presented and explained, considering each sub-module, element, specification and concept, 

that allowed its design and implementation. Here, a semantic mapping tuple, and the use of 

the resulting map, were described to show the viability of this solution and explain the 

processes that are associated with it. In an early phase of this design process, some event 

processing aspects were considered as part of the module (such as rule comparison and 

associated storage information), due to necessity of such aspects during the network 
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processing. But after reviewing and understanding all the elements of the typical IoT network 

and designing the module to be adaptive to an already implemented system, those aspects 

were dismissed, leaving them to certain network elements (e.g. CEP) in order to construct an 

independent solution and to accomplish the goals, of this work, in an objective manner. 

 In the Proof of Concept Implementation chapter, the requirements and functionalities 

of the general architecture were listed, along with the technological specifications and the 

implementation steps that allowed the validation explained in the following chapter. These 

steps were the culmination of all the research and model design of this thesis, and the end 

result was the graphical user interface, which allows the testing of the semantic maps. 

 Chapter 5 consisted in the presentation of the testing methodology and 

implementation. The implementation focused on C2NET project scenarios that were intended 

to mimic the IoT smart rooms from the contemporary industry and the performed tests were 

based on functional behaviors of the network and monitoring operator. 

 During the testing, it was possible to see the application of the fault detection 

mechanisms, developed in this dissertation. Comparing to the Esper software, initially 

responsible for this part of the semantic mapping process, it makes sense to use the 

developed fault detection ontologies when implementing within semantic models like the one 

of this project. Although the Esper software is proven to be a robust solution and the fact 

that, during the testing process, detected SOI more rapidly, it does not allow the direct 

correspondence to the sensors like the developed solution, which allows a much easier and 

automated manipulation of the conditions to detect SOI. The major disadvantage of using the 

created fault detection ontology is the inclusion in the architectural design, making it a 

heavier and more difficult configuration process. 

 An important implementation and testing aspect is the fact that the main tests were 

all carried out in a simulator, that emulated virtual sensors, instead of using real physical 

sensors. This occurred because the implementation of physical sensors was not the focus of 

this dissertation. The use of virtual sensors provided a better manipulation over them, 

allowing a better testing process. The errors and failures, induced into them, were based on 

real-world situations and the sensors represented individual and independent threads. With 

this in mind, the author believes that the application of the semantic mapping process to 

physical sensors does not bring any advantage over the developed solution because the 

module only focuses on SOI events. Nevertheless, as explained in section 5.5, the 

implementation on physical devices is an undergoing project, regarding the C2NET project 

activities. 

 In summary, the validation of the objectives of this work, supported by the 

implementation of the architecture, shows the capability of the network, when using the 

semantic mapping methodology, to detect common errors, trigger an error recovery process, 

analyzing the redundancies provided by the existing semantic maps, and to reorganize the 

network, to return it to a similar working state, as it was before the error occurred. 
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 With all things considered, it is safe to assume that the results were positive, and the 

use of semantic maps is, indeed, useful to accomplish the mentioned objectives and allow the 

creation of better networks in the IoT environment. 

6.3 Future Work 

 In future developments of this work, it would be interesting to improve the fault 

detection of sensor malfunctions, a process that by itself can lead to a significant degree of 

complexity, enhancing the possible uses of the SMAP module regarding the detection of SOI 

and providing more stability to the typical network. This degree of complexity would be based 

on pattern recognition of typical events, in a big data paradigm, and the use of mathematical 

models to extensively study each case. 

 Another aspect that deserves attention is the improvement of the process that leads 

to the autonomous creation of the semantic maps, creating possible redundancies with 

different types of sensors and measurements, to provide a better response to non-typical 

sensor malfunctions. Currently, this work presents a mostly human-based procedure, while 

creating the maps, to ensure proper development in an early stage. Nevertheless, the 

creation of core semantic maps, while implementing the process described in this work, is 

important to be kept manual and the autonomous procedures to be held during the runtime 

process. 
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