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Resumo  

Face ao aumento da descentralização da rede de energia, as diferentes opções tecnológicas de 

armazenamento em bateria, são consideradas como uma importante opção flexível. 

O desafio está em apoiar o processo de tomada de decisão, fornecendo uma perspetiva mais ampla 

sobre o desenvolvimento tecnológico em baterias, a sua escolha e implementação. 

Uma abordagem personalizada, à luz da avaliação de tecnologia construtiva, em combinação com a 

análise do sistema, permite explorar eficientemente as visões e expectativas dos atores sobre o 

armazenamento de energia em baterias, para fornecer informação (qualitativa e quantitativa) sobre as 

suas consequências. Deste modo, as visões e expectativas de atores relacionados com o 

desenvolvimento da tecnologia é confrontada com a dos atores não relacionados com este processo 

(“enactors” e “selectors”) de modo a criar um novo e vasto conhecimento para fornecer uma tecnologia 

mais sustentável. 

As principais implicações identificadas para o sucesso da bateria mostram falta de modelos de 

negócios, regulamentos incertos e dúvidas sobre sua viabilidade tecno-económica. A salientar a 

confirmação de que as expectativas compartilhadas acerca das propriedades da tecnologia, em 

consonância com sustentabilidade, são resolvidas em perspetivas concêntricas usando o Processo de 

Hierarquia Analítica (AHP). 

Enquanto que os “enactors” concentram-se no desempenho económico e tecnológico, o que reflete o 

viés concêntrico deste grupo, os “selector” percecionam os critérios de impacto ambiental e social como 

mais importantes. O consenso geral entre os atores em relação às diferentes dimensões dos objetivos 

do desenvolvimento da tecnologia, é baixo a moderado. A análise do sistema é usada para quantificar 

as preferências dos atores obtidas através do AHP. As baterias de iões de Lítio (LIBs), as baterias de 

chumbo-ácido (VRLA), as baterias de alta temperatura (NaNiCl e NaS) e as baterias Vanadium-redox-

flow (VRFB) foram avaliadas usando por exemplo a avaliação do ciclo de vida e os custos em quatro 

campos de aplicação (armazenamento descentralizado, suporte de energia eólica, regulação primária 

e deslocamento de tempo de energia (ETS-inclui armazenamento de energia de ar comprimido (CAES) 

e armazenamento de bombeamento-hídrico (PHS)). 

Os rankings preliminares indicam que a maioria das LIBs podem ser recomendadas para todas as áreas 

de aplicação identificadas. VRLA e NaS foram classificadas em último lugar, enquanto o ranking da 

VRFB é altamente dependente do uso considerado. PHS e CAES dominam todas as tecnologias de 

bateria avaliadas no caso das ETS. 

Palavras chave: Armazenamento de energia da bateria, avaliação construtiva da tecnologia, sistemas 

de energia renovável, tomada de decisão, LCC, LCA, MCDA 
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Abstract 

Different battery storage technologies are considered as important flexibility option in the face of 

increasing shares of renewables in the grid. A challenge is to support decision-making by providing a 

broader perspective on battery technology development, choice, and implementation. The tailored 

approach in the frame of Constructive Technology Assessment (CTA) in combination with system 

analysis allows it to explore actor visions and expectations about battery storage and to use this 

information to provide quantitative information about the consequences of these.  

Research results combine the perspectives of technology and non-technology related actors (enactors 

and selectors) to create new and broader knowledge to provide “better” technology. Major implications 

identified for battery storage are missing business models, uncertain regulations, and doubts about their 

techno-economic viability. A highlight is a proof that expectations about technology characteristics in 

orientation to sustainability criteria are settled within concentric perspectives by using the Analytic-

Hierarchy-Process (AHP). Enactors focus on economic and technological criteria which reflect the 

concentric bias of this group. In contrast, selectors perceive environmental and social criteria as more 

important. The consensus among actors regarding criteria importance is not existent to moderate which 

indicates that more research is required here.  

System analysis is used to quantify actor preferences obtained through the AHP. Li-Ion-batteries (LIB), 

lead-acid-batteries (VRLA), high-temperature-batteries (NaNiCl and NaS), and Vanadium-redox-flow-

batteries (VRFB) are evaluated through e.g. life cycle assessment and costing for four different 

application fields (decentralized storage, wind energy support, primary regulation and energy-time-shift 

(ETS-includes compressed-air-energy-storage (CAES) and pumped-hydro-storage (PHS)). Preliminary 

rankings indicate that most LIBs can be recommended for all application areas, wherein decentralized 

storage is considered to offer the highest potentials for battery storage. VRLA and NaS achieve rather 

low scores whereas ranking of VRFB is highly dependent on the considered use case. PHS and CAES 

dominate all assessed energy storage technologies in the ETS application case.  

 

Keywords: Battery energy storage, renewable energy systems, constructive technology assessment, 

decision making, MCDA, LCC, LCA 
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1 Introduction 

It is common sense that the German “Energiewende” represents a large socio-technical transition of the 

current energy system towards a more sustainable and renewables based one. The transition process 

is characterized by increasing fluctuating renewable energy system (RES) capacities leading to a higher 

demand of flexibility options as energy storage technologies in the mid to long term [1], [2], [3], [4]. 

Battery storage systems with various existing as well as emerging chemistries and vertical system 

integration possibilities are such a storage technology in the foci of this research. They are told to 

represent an enabling technology to achieve a more sustainable electricity system consisting of RES, 

grid infrastructure, residential power generation, power plants, and regulation. Vice versa they are 

dependent on other energy system developments as well dynamics and do not represent a separately 

identifiable dominant system [5]. Their success is dependent on hardly predictable future technical 

advances, actor preferences, development of competing technologies and designs, diverging interests 

of actors, future cost efficiencies and environmental performance as well as the evolution of market 

demand and design. All these dependencies can lead to engineering skepticism regarding technologic 

and economic viability or public concerns whether high costs of this technology might not outweigh 

possible benefits [6] within the energy system.  

A legitimate question arises here about the expectations and visions of society regarding the 

characteristics and future role of electrochemical energy technologies. The role of stationary battery 

storage technologies within the energy system remains blurry in theory and practice. There is a multitude 

of studies available that aim to access the future role of emerging storage technologies and their impacts 

as well as benefits. Such attempts are often labeled as sustainability assessments entailing multiple 

dimensions as environmental impacts or economic performance of energy storage and in some cases, 

provide a quantification of these. Such multi-dimensional perspectives inhibit conflicting values, different 

moral positions, and belief systems when it comes to the promotion of such “better” technologies (may 

it be in environmental, economic or social terms). Such expectations and visions regarding desired 

technology properties are a result of social construction that engages certain communities (e.g., locals, 

industry or governments) in a new way [7]. The creation of “better” or sustainable technology should 

thus be seen as a process of community-based thinking and learning about the need to integrate 

environmental, economic and social issues in a long-term view.  

This complex interaction of actor interests, market development and blurry notions about the economic, 

environmental and social stamping of battery energy storage make decision making and technology 

development more difficult [8]. They have inspired the current research leading to the proposition that 

there is a strong need to prospectively identify, exploit and exhaust possibilities to shape or select the 

“best” technology alternatives according to sustainability or better said multi-dimensional assessment 

principles in a participative and action-orientated way [9], [7]. Providing “better” technology means in 

this context to avoid unintended effects as wrong investments, possible social conflicts, and negative 

environmental impacts over the entire life time of new technology rather than to tackle them when they 

become apparent after the technology has already penetrated society [10].  
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From this results a need of ex-ante assessment strategies which allow the identification and especially 

prioritization of such important technology properties and provide a broader basis for decision making, 

early warning, actor modulation and finally technology support as well as selection. A major implication 

resulting from this task is the necessity to deal with two worlds, the external world of economics, 

chemistry, markets and the internal world of psychology, values, thought and of course, decision making 

itself [11]. The view of constructive technology assessment (CTA) using a transdisciplinary methodology 

is seen as a strategy able to tackle these tasks.  

1.1 Research focus 

The research focusses on actor expectations and visions on the uptake and desirable properties of 

stationary electrochemical energy storage systems and compares them with other energy storage 

options in the context of a changing energy system and different application fields. It furthermore takes 

a constructive technology assessment (CTA) stance as an ex-ante strategy to open innovation 

processes, to enable social learning, reflexivity and the development and choice of the “best” or 

sustainable technology using a set of environmental, economic, technology and social criteria. A 

transdisciplinary oriented approach is tailored in the frame of CTA in which academic and non-academic 

stakeholders are actively incorporated into the research. This is realized by a combination of semi-

structured interviews, online surveys, system analysis and multi-criteria decision-making methods 

(MCDA). System analysis methods include life cycle costing, life cycle assessment- and techno-

economic characterization of different energy storage technologies to identify conditions that enable a 

“better” embedment of technology in society. MCDA combines stakeholder expectations from science, 

industry, academia, and politics as well as system analysis results to unveil the consequences of the 

actors notions about an optimum construct of battery storage technologies. These expectations are then 

discussed and analyzed comprehensively through the goggle of CTA.  

1.2 Hypothesis and research question  

Technology is developed, produced and used by a multitude of organizations with different temporarily 

valid technological capabilities, interests, and beliefs [6]. The presented research is based on the 

hypothesis that energy storage technology design and selection according to societal needs form a 

complex decision problem under high uncertainty underlined by multiple expectations of what the future 

will look like. A design and decision dilemma arising from the claim to achieve something as “better or 

more sustainable technology” is to find the right shape target (e.g., environmental vs. economic vs. 

social aspects) and how to characterize these. This phenomenon is often associated with the so-called 

Collingridge dilemma [12] which states that: in early technology development stages opportunities to 

steer are plentiful, but hard to choose from, while at later stages this is reversed [13] [12]. This problem 

is reinforced by the fact that sustainability is a “wicked problem” meaning that there is no definitive 

formulation of it. Consequently, there is also no “best” technological solution.  

Notions about sustainable or “better” technology properties rely on diverse expectations from different 

actors embedded in different “worlds” (e.g., organizations) within a temporarily dominant socio-technical 

regime, in this case, the energy system. The power of these expectations depends on the degree to 

which they are shared among the system. This degree of ‘sharedness’ ensures that stakeholders act 
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accordingly and rational to these expectations. CTA offers a possibility to tackle this dilemma by 

broadening the design of new technologies by feedback of technology assessment activities into the 

construction of technology [14]. By nature CTA has a transdisciplinary research orientation which allows 

to; 1) incorporate processes, methodologies, knowledge, and goal of stakeholders from and across 

academia as well as actors from outside academia, 2) to create solution-oriented and social robust 

knowledge which is transferable to scientific and societal practice [15], [16], [17]. 

Chapter 2 will unveil gaps within the literature regarding battery energy storage its future use and 

sustainable stamping in the energy system, while chapter 3 gives a detailed overview of the briefly 

mentioned grounding concepts of this research which have both led to the following overall research 

question:  

What is the future role of different stationary battery storage technologies within 
the German energy turn-over and what expectations do actors have regarding their 
characteristics? 

The research targets a broad peer group, starting with technology developers, users, decision makers 

& research in the field of stationary battery storage and the energy system.  

1.3 Objectives of the research 

This work follows the ex-ante heuristic of constructive technology assessment (CTA) [18] which serves 

as a guiding principle [19]. CTA has the aim to broaden the early design process of (electrochemical 

energy storage) technologies by including more actors and aspects to realize a better technology in 

society [20]. Critical parameters and conditions over the entire battery life cycle have to be identified to 

achieve the latter. Life cycle based system analysis methods, more specifically life cycle costing and life 

cycle assessment are seen as suitable approaches to unveil major sustainability conditions. 

Participative measures and social learning represent the kernel of CTA as a transdisciplinary research 

framework and enable it to open up the innovation process of technology. Thus, system analysis as a 

more quantitative approach is flanked by participative measures as surveys and interviews to; a) gather 

stakeholder expectations on energy storage and b) identify critical factors and to include their 

characterization into technology evaluation. Both, quantitative and qualitative methods are merged 

through a multi-criteria decision analysis to find an “ideal” solution to meet societal demands nowadays. 

The following objectives have been set to fulfill this: 

x Carry out a comprehensive literature review on electrochemical energy storage and implications 

in general through changing markets, technologies, and electricity system conditions in Ger-

many to identify driving forces for energy storage need and development 

x Develop and operationalize an integrative approach using CTA as a research framework 

x Identify future socio-technical implications and include non-linearity of technology development 

paths (applications fields, relevant actors, potential market or drivers) by the involvement of 

stakeholders 

x Identify quantitatively and comparatively actors notions about the relevance of critical parame-

ters over the entire life cycle of selected electrochemical energy storage systems based on life 

cycle thinking and on a broader sense sustainability 
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x Analyze these preferences, their sharedness and quantify these via modeling 

x Provide a ranking of factors relevant for technology choice by multi-criteria decision analysis 

methods (Analytic Hierarchy Process) including a indicative ranking of technologies. 

1.4 Research structure 

The structure of this work is based on nine chapters. Chapter 2 represents a critical literature review on 

energy system development, energy storage demand, electrochemical energy storage and studies re-

lated to battery storage technology choice regarding different sustainability dimensions. In the end, 

major implications are derived from this review. The third chapter highlights theoretical assumptions for 

CTA and interrelations to sustainable development. It explains the theoretical groundings of employed 

threads used in this research to answer the questions raised. Firstly, it starts with the illumination of 

socio-technical dynamics, emerging irreversibilities and entrenchment and sustainability as an implicit 

meta-goal for CTA to create “better” technology. Finally, major process steps, assumptions, and goals 

as well as the transdisciplinary characteristics of CTA are highlighted and discussed briefly. 

The research framework is presented in chapter 4. A specification of the research questions is 

conducted on the base of chapter 2 and 3 by setting up a hypothetical decision process. The used 

methods as system analysis methods as life cycle assessment and costing (LCA and LCC) are outlined 

together with the integrative concept of multi-criteria-decision analyses. The chapter is concluded by the 

presentation of the analytical framework used to tackle identified research questions. Stakeholder ex-

pectations on the energy system and battery storage development are unveiled in chapter 5. Interview 

and survey results are summarized, interpreted and analyzed statistically. First, the role of battery stor-

age among other flexibility options, relevant developments in markets and the relevance of sustainable 

development for storage technology design and investment are explored. In the second half, specific 

expectation and visions on battery storage are analyzed. Results are then summarized and used to 

illuminate potential implications that might have an impact on battery storage development and their 

market introduction and further steps for modeling.  

Chapter 6 is indirectly related to chapter 5 as the MCDA is carried out together with the survey. It intro-

duces MCDA methods, namely the analytic hierarchy process (AHP) which is used to gather actor pref-

erences and to calculate consensus among participants. After that, a description of how different criteria 

were chosen based on stakeholder references is given. The aggregation of stakeholder preferences 

and modeling results is realized using the Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS).  

In chapter 7 the quantification of selected criteria and alternatives through system analyses methods 

and intermediate results are presented together with a sensitivity analysis. First selected social and 

technological criteria a described in detail in this chapter. A high emphasis is put on the approaches of 

LCC and LCA by highlighting major calculation steps and assumptions in combination with 

corresponding sensitivity analyses. Results are presented in chapter 8 by depicting general priorities, 

group preferences, consensus, indicative technology rankings and related sensitivities. The conclusion 

is provided in chapter 9 wherein every stated research question is tackled by an own sub-section. In the 

end, the entire research is discussed and provides an overview of major findings of this research.  
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2 Electric energy storage for the power system  

The following sections provide a literature review to study recent and future developments of the German 

power system related renewable energy system (RES) and the potential need, requirements, impacts, 

and selection of energy storage technologies. This review aims to identify major gaps related to battery 

energy storage choice and application. The first part provides an overview of the history and future 

development scenarios of the German power system. In the following section, potential demand for 

flexibility resulting from high RES shares is analyzed with a focus on electrochemical energy storage 

technologies. A summary of the different requirements on energy storage as well as evaluation criteria 

for technology evaluation is given, which is then contrasted with results from selected multi-criteria 

decision-making studies. Finally, implications for further research are derived and summarized.   

2.1 Historical development of the power system 

In the early 50ies, energy consumption in Europe was steadily growing leading to a high rate of large 

generation capacities owned by a few utilities. These developments were often reinforced through 

national laws as, e.g., in Germany through the “Energiewirtschaftsgesetz” (EnWG) leading to the 

formation (and maybe faveolization) of large, centralized and vertical integrated public owned utility 

companies with defined supply areas. This structures remained in many countries until the 90ies with a 

national regulation aiming to maintain this structures [21] [5].  

Liberalization became a global phenomenon in the early 90ies. Some countries started early with 

experimenting with liberalized markets like the United Kingdom in 1989, Chile in 1982 or Argentina in 

1992, representing pioneers in electricity market liberalization [22]. The reasons for liberalization are 

different for each country but mainly have the objective to reduce end-user energy costs in relation to 

monopolized markets, to reduce external especially political involvement including regulatory measures 

as well as to open markets for new entrants. Additional drivers for liberalization were political ideology 

on the faith of market forces, the desire to attract foreign investment, distaste for strong unions and 

environmental concerns [22].  

Liberalization of energy markets in Europe started in the late 90ies and is based on the three-pillar policy 

of the EU namely energy security, competitive markets and the development of renewable energy 

sources [23] and includes further strategic and political goals (directive 2003/54/EG) [22]. The directive 

has led to a severe transformation of the former state-owned highly vertical integrated energy companies 

in Germany. The companies were obliged to conduct an ownership and legal unbundling of their 

divisions of electricity generation, transmission and distribution (grid) as well as consumption. 

Parallel to liberalization a strong promotion of renewable energy systems as photovoltaics and wind 

turbines, e.g., through EU directives 2001/77/EC took place which has set challenging indicative national 

targets to increase RES shares [23]. Several promotion strategies were adopted simultaneously to 

liberalization in Europe in the form of investment focused (investment incentives, tendering systems, 

environmental taxes, etc.), generation based (Feed-in tariffs, tendering system for long term contracts, 

etc.) and voluntary focused measures (Investment focused shareholder programs, voluntary 

agreements) [23]. This action has led to a massive growth of RES in several countries as Germany, 
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Spain, and others since the year 2000. The establishment of the European Emission Trading System 

EU- ETS 2003/87/EG and the definition of the EU 2020 targets1 in the frame of the Kyoto goals are also 

seen as an important factor for this development [24].  

German utilities have become more short-term and cost competition oriented due to the liberalization of 

the sector. They maintained a conservative investment behavior and invested heavily in the conventional 

generation before the renewables rush began [25]. This has led to a long delay of investment through 

electricity utilities in the field of RES. Additionally, utilities had to face increasing public pressure to 

“green” electricity production. This pressure was based on concerns over the impact of climate change, 

resource depletion and supply security (Russia and the Middle East) and created uncertainty over the 

long term feasibility of our current system of energy supply [26]. So as RES-technology became more 

commercially viable, renewables such as wind turbines gained popularity among utility companies, 

which started to a certain degree to integrate them into the existing power grid. This was also pushed 

by ambitious German Federal government´s aims to transform German energy supply by cutting down 

CO2 emissions by 80% to 95% from the 1990 level until 2050 [27].  

An event that has triggered the RES development or even led to a shift in energy system development 

in at least some countries as Germany was the meltdown of the Fukushima reactors in 2011 through 

the catastrophic earthquake and the following Tsunami in Japan. This incident has led to the radical 

decision of politics to force a fast phase-out of German nuclear power plants until the year 2022 [1]. It 

has furthermore triggered Germany’s Energiewende, which has hammered the country’s utilities [25]. 

The resulting overcapacity of conventional power plants built up before the RES rush has caused 

wholesale electricity prices to tumble. Some conventional power plants cannot make enough money to 

cover fuel costs and are being shut down. The Fukushima incident represents a different and 

unforeseeable landscape change that increased regime problems that have led actors, mainly utilities, 

to lose faith in regulation, markets, and policy [28]. A good example is the German utility company E.ON 

which wants to quit conventional energy to focus entirely on renewables [29].  

2.2 The future electric energy system 

Germany has ambitious targets to produce 35 % of the needed electricity from renewable energy 

systems by 2020 and over 80 % by 2050 within the so-called “Energiewende” - Energy transition [30] 

which is flanked by the German federal government. The energy system is complex, and a high 

magnitude of uncertainties characterizes future developments to achieve these goals. This has 

motivated the creation of numerous variations of energy system development scenarios as [31], [27], 

[32], [33]. One of the most cited scenarios for RES shares within the German Energiewende is based 

on DLR [27]. The scenarios have been built in orientation to the goals of the German federal government 

and illustrate the associated structural changes over time. They also highlight different paths of the 

developments in the transport sector which is closely linked to the power industry. An overview of all 

considered scenarios with a detailed insight is given in Figure 2-1. In total three main scenarios 2011 

                                                      

1 The targets are to cut greenhouse gas emissions by 20 %, increase the share of energy from renewable sources by 20 %, 
increase energy efficiency by 20 % until 2020. 
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A2; B3 and C4 were taken into account. These main scenarios were supplemented by two additional 

scenarios 2011 A5 and scenario 2011 THG956 [27]. The main differences between main scenarios are 

variations in assumptions regarding the transport sector (use of H2 and or CH4). Each scenario results 

in a share of RES at a gross consumption of around 85 % in 2050. Scenario 2011 THG95 represents 

the most ambitious variation in which almost the entire energy supply (95%) is based on RES and 

surpasses the base scenario A, B, and C with about 28 %. Photovoltaics (PV) and On- and Offshore 

Windpower contribute of 50% to 75 % to total RES generation [34] in all scenarios (bandwidth of min 

and max penetration scenarios is given in orange in Figure 2-1). The share of low carbon technologies 

in the electricity mix is estimated to increase from around 45% nowadays and nearly 100% in 2050 [35]. 

In contrary, conventional generation capacities including coal, nuclear and gas power plants will be 

drastically reduced from around 85% down to 10 % in 2050.  

 

Figure 2-1: Potential RES generation for various scenarios until 2050 (own figure; database [27]) 

The increasing market roll out of fluctuating decentralized energy resources represents a difficult issue 

for grid stability. This issue is reinforced by the decreasing number of existing residual energy generation 

capacity as coal and nuclear power plants. The future grid will have to face greater challenges by 

providing clean power from a high share of renewables. This increasing share is accompanied with more 

dynamic loads, less controllable generation capacities [37], excess generation, as well as power flows 

that occur from low voltage levels from residual energy generation to high voltage grid levels. At the 

same time, wholesale electricity markets face stronger spot market price deviations.   

All these developments are told to lead to a more decentralized structure of generation and foster the 

development of new structures of the electricity grid known as “smart grids.” Traditional grids have 

comparatively few point of electricity generation in combination [38] with energy users that are not active 

                                                      

2 Base scenario with a middle path of RES growth, including 50% of hybrid passenger cars in 2050 and other forms of alternative 
transportation technologies. Hydrogen is considered as storage medium for RES – nuclear phase out is considered 
3 Same assumptions as A. It is considered that hydrogen is converted in synthetic methane that is also used in transport 
4 All passenger cars are based on electricity. Consumption patterns are identical to the other scenarios. Hydrogen is only required 
for long term storage 
5 Includes a reduction of total final energy consumption of 15% by 2050. Assumptions remain the same as in scenario 2011 A 
6 The scenario provides a preview of RES expansion and improvement in efficiency to reach the upper goals of 95% until 2050 
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participants but just consume the energy supplied by a utility company and pay the energy bill [39]. In 

contrary, the smart grid represents a highly decentralized system where consumers and generators are 

connected through advanced information and communication technologies (ICT). More importantly is 

that users not only consume energy but also produce and supply energy back to the grid. This new type 

of energy-user is called a “prosumer [39]. The development of smart grids thus represents something 

striking and new that changes entirely the distribution of roles inherent in energy systems nowadays 

[40]. An overview of the transition of the classic energy system towards these new systems is given in 

Figure 2-2.  

It can be observed how in the past the energy system was shaped by a one-directional flow of energy 

where no connection was immanent to users who were merely passive consumers. Conditions in the 

present changed toward a more integrated system on a transmission grid level where the increasing 

amounts of ICT. This phase is also strongly shaped by an increasing number of RES. The future phase 

will be characterized by a highly integrated bi-directional flow of information, money, and energy 

between customers (encircled in red) and the remaining energy system which itself becomes more 

complex through the inclusion of new technologies as storage or electric vehicles.    

 

Figure 2-2: Transition of the energy system towards a smarter and interconnected electricity system (source: [40]) 

2.3 Future need for flexibilization options for RES  

The energy system represents to a certain degree an unstable and highly dynamic system due to the 

stochastic behavior of users or intermittent generators as wind or photovoltaics which have to be 

continuously coordinated. The reason for this is that single or a collective of users, and the feed-in 

behavior of such generation units can only be forecasted to a limited degree. Imbalances have thus to 

be mitigated by continuous and fast adjustment of controllable generation or load units on different time 

scales. Such balancing services are “up-regulation” that provides additional power in case of high 

demand whereas “down-regulation” reduces power generation in the system in case of oversupply. 

Typical balancing technologies are combined cycle gas turbines (CCGT) (only up-regulation) or pumped 

hydro energy storage (up and down regulation) with high adjustment rates able to provide balancing 

services [41]. Both regulation forms can also be provided by increasing or decreasing loads. A 

precondition for balancing it the availability of sufficient electricity transport abilities through electric 

power networks and sufficient system operation rules to spatially match generation and load. Flexibility 

is thus an inherent feature of power system design and operation. Intermittent energy sources have a 
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highly fluctuating generation behavior which only correlates partially with load and might occur on a 

regional level. From this results an increasing demand to balance electrical energy and power to mitigate 

extreme ramps7 or excess energy8. The degree of flexibility is the ability of a power system to maintain 

safe operating conditions in the face of growing balancing demand and consequently determines the 

degree of RES that can be integrated into it [42]. Figure 2-3 provides a simplified schematic of power 

system operation principles related to flexibility. 

 

Figure 2-3: Simplified scheme of the electric power system operation principle (adapted from [42]) 

Fluctuations of a high amount of RES including extreme ramps, excess energy, and forecast errors can 

cause system blackouts when there is no sufficient balancing option available. The absence of sufficient 

balancing capacity results in significant challenges for grid operators which have to compensate the 

variability of an increasing share of decentralized solar and (centralized) wind power to maintain grid 

stability in the future [37]. A successful integration of renewable energy sources has thus to be realized 

on different time dimensions of balancing covering seconds, hours to days (e.g. seasonal storage or 

balancing forecast errors) as depicted in Figure 2-4. The need of flexibility options as energy storage is 

often intuitively connected to excess energy of RES as the technology is considered as an enabling 

technology for RES by storing excess energy and feeding it back into the grid in peak times (see pumped 

hydro storage - PHS charging and discharging in Figure 2-4).  

A set of RES studies is compared as depicted in Figure 2-5 to explore potential RES excess impact 

scenarios for the German energy system until 2050. Each mark represents a single scenario for a 

specific year. All these scenarios do not have the aim of predicting the future; they rather create a context 

in which potential development paths can be visualized and discussed [5]. Most importantly they allow 

it to identify to a certain degree potential consequences of different transitions paths of the energy 

system or energy storage respectively.  

                                                      

7 Extreme changes of a generation units power output within seconds to minutes 
8 Amount of generated electricity that surpasses demand in combination with must run power plants 
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Figure 2-4: Illustration of extreme RES impact on the German energy system in 2025 (simulated on base of [43]) 

It can be observed in Figure 2-5 that most scenarios draw a pretty common picture until the year 2035. 

Starting from this point results become more diversified due to a high amount of uncertainties and 

influence parameters in 2050 (variations of excess energy from 0 TWh up to 100 TWh and a median of 

23 TWh). Genoese [2], DB research 2013 [44] and Fraunhofer ESP 2011 [45] tend to have relatively 

moderate and comparable impact scenarios while SRU 2011 [33], Ökoinstitut 2014 [46] and UBA 100% 

[47] are considered with higher RES impacts of up to 100 TWh per year. Nevertheless, a take-off of 

RES-excess energy production is considered to start at a share of 60% in most cases (see red line that 

indicates a 2nd-degree polynomial regression of indicated median values in Figure 2-5). The 

assumptions about the amount excess energy through RES often serve as a base for simulations to 

identify the potential need for balancing options which will be presented in the next chapter. 

 

Figure 2-5: Comparison of different RES excess scenarios (own figure based on [48], [45] [2], [49], [33], [46] [47]) 
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2.4 Future need for energy storage as a flexibility option  

It must be stressed that energy storage is not the only available measure to facilitate RES system 

integration and to maintain system safety. Storage technologies make it possible to increase system 

reliability and flexibility by decoupling demand and supply of electricity in a time dimension. There are 

non-technical options available to increase system flexibility through regulatory or legal measures. Other 

possibilities are demand-side management or demand-side response measures where the provision of 

accurate information of consumer consumption behavior in combination with, e.g., dynamic pricing 

allows to remote control electricity load and devices to match current generation [50]. New flexible power 

plants (e.g., gas turbines, combined heat and power plants) provide most balancing power available 

nowadays [24]. Also, RES can be included in this category by adding the possibility of generation 

management to these (e.g., changing angles of wind turbines). Further measures from the supply side 

also include the conversion of synthetic fuels as H2 or CH4 which could be used for electricity generation. 

The electricity grid provides spatial sharing of flexible resources and represents thus an integral 

component of the future power system. Main options to increase grid capability are a) dynamic 

assessment of power transfer capabilities, b) expansion of the network (e.g., new AC or DC transmission 

lines), and c) power flow control [42].  

All named options are seen a highly relevant for the future energy grid as only the conjunction of these 

allows a achievement of the German energy transition. The emphasis of this work lies on 

electrochemical energy storage technologies whereas more information about other balancing 

technologies is given in [24] and [42]. Energy storage can be categorized among the other options 

mentioned before as indicated in Figure 2-6 which also provides a brief description of these.  

 

Figure 2-6: Overview of different flexibility options for RES balancing (based on [42] and [24]) 

As explained before, the need for electric energy storage is highly related to other developments in the 

energy system on a generation, grid, demand and system level. There is a high of energy system models 

available aiming to estimate the future demand for storage systems. These models mostly seek to 
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achieve a macro-economic optimum of energy storage in relation to other balancing options, grid 

reinforcement measures and other factors by the use of mathematical optimization. Optimization goals 

in most of this assessments represent a minimization of overall system costs based on hourly time series 

[2], [32], [49]. These assessments often don´t allow a separated view on different storage technology 

types. Instead, generic technologies for power or energy applications are used due to practical reasons. 

Table 2-1 gives a brief overview of specific influence factors and system developments considered in 

such models that might reduce and stabilize or increase the need for energy storage technologies facing 

a high share of RES.  

The literature points out that there is a difference between market and system based need for storage 

[51]. Both forms of energy storage demand can include in a simple way at least two application areas. 

These are namely:  

a) Power applications with short periods of charge and discharge (milliseconds to minutes up to 

one hour) and many cycles a day [52]. Application areas in this time frame are balancing, power 

quality management and re-dispatch. 

b) Energy applications including mid- to long term storage (storage time of several hours including 

multiple cycles per day) and long term storage (relatively long charging periods over days to 

weeks) to use the stored energy to decouple the timing of generation and consumption of 

electricity [53]. Typical business areas are electric time shift and RES support. 

The need for energy storage from a market perspective arises in the case of negative wholesale market 

prices when supply surpasses the demand of electricity [48]. This situation can lead wholesale electricity 

markets to tumble, and spot market prices may spike. An explanation for this is the so-called merit order 

effect. Demand for energy storage out of a system perspective refers to grid congestions caused by, 

e.g. excess energy through RES. Such events occur when grid connection nodes cannot absorb 

electricity feed-in of generation units into the transmission grid level. Consequently, contracted energy 

cannot be physically delivered due to grid restrictions, grid errors or the breakdown of large generation 

units.  

The market need for energy storage is mainly defined on the bases of arbitrage businesses on a 

transmission grid level (exceptions are Agora [54] and Grünewald [2]). Short-term services are mainly 

defined as applications with durations of up to 4 hours and mid-term storage applications with 8 to 10 

hours [32], [49] and [55]. Additionally, the grid is modelled as a copper plate (see VDE –ETG [49], BMU 

Langfristszenarien 2012 [27], SRU 2011 [33] and Genoese [5]). The need for storage on a distribution 

or mid-voltage grid level is thus often expulsed as it is difficult to make robust prognoses in this field 

[56]. Redispatch9 and frequency regulation are consequently also often excluded and only discussed 

qualitatively. Only a few studies consider this systemic benefits (category A / power applications) through 

energy storage as [51]. The “Roadmap Speicher” [51] uses adopted RES scenarios from [27] within the 

European grid. In this way interconnectors and supranational electricity trade is represented within the 

                                                      

9 Measures to mitigate grid congestions (e.g. violation of n-1 principles) by changing power output of local generation portfolio 
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simulation. The estimated German RES share is 45 %10 for 2020 and 69 %11 in 2030. EU shares are 

26 % and 37 % for the EU in 2020 and 2030. Re-dispatch is simulated by adaption of the generation 

portfolio in a specific grid section via Security-Constrained Optimal Power Flow (SCOPF). It represents 

a linear optimization with the aim to minimize overall re-dispatch costs, based on the hourly status of 

the grid and market-based energy storage. A side condition of the linear optimization is the adoption of 

the feed-in rate of reactive and active power and transformer adjustment levels to avoid off-limit 

conditions and n-1 violation. The study calculated that balancing options with a total capacity of 

2.400 MW could help to reduce re-dispatch costs up to 30 % and that they can help to facilitate a safe 

RES system integration until 2030 [51].  

Table 2-1: Summary of system development that influence the need for energy storage technologies [57], [32], 
[2], [58], [55], [49]) 

Demand 
for storage 

Generation level Grid level Demand side System level/ 
Markets & regulation 

Increased 1) Positive develop-
ment of RES  

2) Remaining share of 
must run capacities 

3) Forecast errors of 
RES 

4) Share of inflexible 
power generation12 

1) Delay of grid re-
inforcement 

2) No extension of 
inter-European grid 
connection points 

 

1) Inflexible demand 
2) No demand side 

management 
3) Increase of demand 

 

1) Increasing 
electricity & fuel 
prices 

2) Support schemes 
3) High CO2 costs 
4) Capacity markets 

 

Stable or 
decreased 

 

 

1) Use of flexible ge-
neration 

2) Reduction of fore-
cast errors 

3) Reduction or retrofit 
of must run 
generation 

4) Management of 
RES 

1) Grid reinforcement 
2) Increasing inter-

European grid con-
nections 

 

1) Use of flexible con-
sumers 

2) Activation of de-mand 
side mana-gement in 
power markets 

3) Decrease in demand 

1) Low wholesale 
energy prices 

2) Low consumer and 
electricity prices 

3) Low CO2 costs 

 

 

The VDE – ETG Taskforce for Energy storage [49] estimates in their main scenario E that the German 

demand for short-term energy storage (< 4 hours) in 2050 could be up to 14  GW with a needed capacity 

of 70 GWh based on a cost optimum. The optimum short-term storage capacities from Agora 2014 [32] 

are vast (1 to 26 GW). Both [49] and [32] include extreme scenarios where energy storage is used to 

mitigate any excess energy from RES (over 25 GW in 2050). They also state that these scenarios are 

not economically viable. Scenarios between Zerrahn and Shill 2015 [57] are more moderate with low 

variations in the amount of excess energy is not considered as that high. All scenarios have in common 

that short-term storage take-off is estimated around 2035 when an RES share of 60% is achieved (see 

red line in Figure 2-7 A) due to the extrusion of residual load power plants through RES. Only few 

additional storage capacities of an average of 2 to 3 GW are required before 2020.  

The need for long term storage (8-10 h) demand is higher in relation to short-term storage as depicted 

in Figure 2-7 B. The VDE – ETG Taskforce [49], Genoese [2], calculated an average need of 18 GW 

and 7 TWh storage capacity [34]. Droste-Franke [24] (not included in the graph) reports that 

                                                      

10 The scenario is divided into two wind capacity paths; Wind (53 GW, 45 Offshore) and Wind+ (65 GW Onshore; 55 Offshore) 
11 This scenario includes two paths Flex and Flex+, the latter includes grid reinforcement measures and flexible demand 
12 So called “must run” generation unit as Nuclear or lignite fired power plants or non-manageable RES units 

+ 

- 
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economically viable storage capacities in 2040+ could be about 15 GW. Scenarios within SRU 2011 

[33] consider that electricity supply is covered by 100 % through RES in 205013 resulting in very high 

demand for energy storage technologies. The need for storage over time is comparable to short-term 

storage needs, with take-off at a share of 60 % share of RES. The higher amount of required midterm 

in relation to short-term storage can be explained through longer deviations in RES production that have 

to be mitigated. However, it is clear that energy storage will play an essential role for these applications 

in the future energy system.  

Potential demand for storage capacities on a short- to midterm level are depicted in Figure 2-7 C. Bubble 

sizes indicate the required energy storage capacity in combination with required power capacity. Storage 

capacity is calculated based on the reviewed studies where enough data is available. The graph shows 

that studies vary significantly in the bandwidth of required storage capacities.  

 

Figure 2-7: A) Potential demand of short term storage power capacities (4<x<5 h per day) until 2050); B) Potential 
demand of installed mid-term storage capacities (8<x<10 h per day) until 2050 based on ([57], [32], [2], [57], [58], 

[55], [49]); C) Potential energy storage capacities until 2050 (own calculations based on [49],[57], [32], [2]) 

2.5 Application cases for energy storage  

Energy storage is seen as a valuable option to, e.g. facilitate a system integration of RES among other 

things by temporarily avoiding grid expansion investments or congestions in electric grids on all voltage 

levels, ancillary services, load leveling, voltage stabilization and system backup services. They have a 

                                                      

13 Scenarios 1 a, b consider only German RES generation units, 2.1. a and b considers a RES- connection DE-DK-NO, the last 
scenario includes full RES supply through a connection of north Africa to Germany (DE-EUNA) 
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highly vertically integrated nature due to the modularity of some technologies as batteries offering 

various services for the energy system including generation, network and demand within all voltage 

levels [59]. From this results a high number of potential users as well as business areas for (battery) 

storage systems distributed in the entire electricity system. Potential users-side actors are private and 

municipal utility companies, transmission and distribution system operators, end users (private 

households, industry), RES system integrators and manufacturers, pooled BEV-owners or third parties. 

Figure 2-8 provides an indicative overview of some application fields, their benefit type, typical power 

output and stakeholder groups affected by them.  

 

Figure 2-8: Indicative summary of different application fields for different flexibility options (adapted from [60]) 

Each application area represents a service provided by energy storage with a certain value. Energy 

storage technologies can provide multiple operational uses across the power system value chain. The 

aggregation of complementary benefits through the provision of multiple services is also named as 

“stacking” [60]. Some of the most named applications named literature and in Figure 2-8 are summarized 

in Table 2-2.  

All named application fields exist today, and more will emerge in the future which will be part of future 

research [60]. More information about different application cases can be found in the given sources. 

Table 2-2 is not comprehensive; there are more relevant applications for energy storage in, e.g. stand-

alone electricity systems in rural areas or mobile services [32]. For instance, uninterruptible power 

supply is one of the leading markets for battery energy storage nowadays (market size about 2 billion € 

in the EU), which is mainly triggered by the telecommunications sector [32]. 
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Table 2-2: description of different energy storage application fields  

Service Description Source 

Balancing services: 
frequency regulation 
services and ancillary 
services 

Match generation and load on a sec. to minutes 

Remunerations for being kept online and for providing energy.  

Primary, secondary and tertiary regulation (PRL, SRL and TRL) 

[60], [61] 
[62], [63] 

[64], 
[32]. 

RES support: RES direct 
marketing, renewable 
smoothing 

(EEG) obliges operators of large wind turbines to sell their produced electricity on 
wholesale electricity markets 

Mitigating effects from forecast deviations and exhausting arbitrage possibilities in 
spot markets 

Mitigation of rapid output changes due to the intermittency of solar or wind-based 
generation. 

[60], 
[65], 
[63], 

[64] 

Energy management: 
Electric bill management or 
Self-consumption 

Use of stored energy by end-use customers in conjunction with RES to reduce 
electric bills. 

Solar generated energy in combination with battery storage is seen as an 
economically viable application field. 

[60], 
[65], 
[64], [63] 

Electric time shift /Arbitrage Electricity is traded at different spot markets for electricity 

Baseload energy is bought and sold during on-peak times 

Most common application field for energy storage today 

[60], 
[63], [64] 

Transmission and 
Distribution upgrade 
deferral (T &D upgrade) 

storage is used to defer the need to replace or to upgrade T&D equipment or to 
extend the life time of existing equipment 

Electricity is stored in times without congestion and discharged in peak load 
periods or vice versa during high RES generation inputs  

[60], 
[63], [65] 
 

Distributed energy storage Modular systems provide increased customer reliability, grid T&D support, and 
potentially ancillary services and RES support on a local level  

[60], [63] 

 

2.6 Electric energy storage technologies for the grid 

Energy storage technologies can generally be divided into mechanical (Pumped Hydro-Electric (PHS), 

(adiabatic) Compressed Air Energy Systems (CAES), Flywheels, electrical (Super Conducting Magnet 

Energy Storage (SMES)), thermal and chemical systems (including Battery Systems and Hydrogen) as 

well as hybrid systems14 [66] [67]. Total global stationary storage capacity nowadays is around 168 GW 

of which only 4% is based on electrochemical storage (see Figure 2-9). PHS with a share of 84 %15 is 

the only commercially viable and available large-scale storage technology nowadays. There are only 

low CAES capacities available nowadays with <1 % (CAES Huntorf in Germany with 321 MW and 560 

MWh and McIntosh USA with 110 MW and 2.640 MWh) [68]. 

                                                      

14 Represent a combination of different technology types as LIQHYSMES (Liquid-Hydrogen-Super conducting magnet energy 
storage) for short and long term storage times 
15 There is a total capacity of 7 GW installed in Germany. 
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Figure 2-9: Total share of different electric energy storage technologies in 2016 (own figure using data from [65] 
and [69]  

All storage technologies can be categorized in specific application fields in respect of their typical size 

and storage time which are namely: short-term storage from milliseconds to hours, mid-term storage up 

to 8 hours and long-term storage including several days up to weeks [48]. These application possibilities 

have different cost and technologic properties, which profoundly affect the applicability of different 

storage options when compared to the application fields in Figure 2-8. Figure 2-10 gives an overview of 

different storage technologies and operating ranges in respect of discharge time and storage capacity 

including Power to X. Comparable technology characteristics can lead to a competition between different 

energy storage technologies (CAES and PHS) as well as other flexibility options (e.g., CCGT). A further 

distinction of technologies can be conducted on the base of their location. Typical storage units 

nowadays are centralized storage units with a fixed location (e.g., CAES, PHS). They are often 

dependent on geographic aspects (e.g., height difference for PHE or salt/impervious rock caverns as 

wells as aquifers for CAES) and face acceptance problems [70]. A brief overview of the named 

technologies is provided in Table 2-3. 

 

Figure 2-10: Comparison of different energy storage technology and their application fields (own figure based on 

[4]) 
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In contrary decentral storage technologies as batteries refer to small and modular units that can be 

integrated into distribution grids, mid-voltage level or in local smart grids (e.g., battery systems in 

combination with multiple PV units and demand response). These technologies are told to have a 

comparatively little land use impact (e.g., land occupation combined with the removal of trees) and 

higher acceptance within society about centralized storage [71]. The modularity from some kW up to a 

multi MW level makes it possible to cover a full field of applications by adjusting the storage unit to 

potential changes, e.g. in a wind park (e.g., through repowering) and to adapt to new market situations. 

A significant problem of this modularity is that technology only benefits little from scale effects [48].  

Table 2-3: Summary of different energy storage technologies based on [24]and [68]. 

Technology Description 

Capacitors Electricity stored electrostatically between conducting plates separated by dielectric 

Super capacitors Comparable to capacitors but have a liquid electrolyte which forms a second plate of the 

capacitor  

Compressed air storage Energy stored in air compressed in high pressure (40-70 bars) in porous rocks, or salt caverns 

Pumped hydro storage PHS consists of two superficial water reservoirs situated in different altitudes (potential energy) 

connected by a penstock, turbines & generator.  

Hydrogen & Synthetic 
methane / Power to X 

Energy conversion into hydrogen (electrolysis) or in further step into, e.g. synthetic methane. 

Conversion to electricity through various technologies as gas turbines or fuel cells  

Electrochemical storage/ 
batteries 

Energy storage through chemical reactions  

 

2.7 Electrochemical energy storage  

There are several electrochemical energy storage technologies available for stationary applications 

nowadays. Figure 2-11 provides an overview of global markets for battery storage including the most 

installed types nowadays. High-temperature batteries, mainly through Sodium-Sulfur batteries (NaS) 

have the highest share in the segment (59%). Various Lithium-Ion batteries (LIB) also contribute 

increasing share with around 35 % followed by Lead-Acid based batteries (VRLA) and finally Redox-

Flow-Batteries (RFB) with a 1% share. The market potential for electrochemical storage is seen as very 

high and could reach shares of up to 51% of total German storage demand in 2030 [72].  
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Figure 2-11: Total share of stationary battery storage and related shares of single battery chemistries in 2016 
(own figure using data from [65] and [73]) 

2.7.1 Electrochemical energy storage technologies and properties 

In general, cells can be classified into non-rechargeable primary cells, rechargeable secondary cells or 

tertiary cells which are fed continuously to the cell from outside [74]. A secondary battery cell consists 

of two electrodes (positive and negative), a fluid or gel-like electrolyte, conductor and a separator. The 

last-mentioned component is responsible for the separation of the reduction and oxidation processes, 

to avoid short circuits. When discharged, redox reactions occur at the electrodes causing an electron 

flow through an external circuit [59]. In more detail, electrons are released at the anode from the active 

material that is oxidized, and cathodic substances are reduced by receiving electrons [74]. After the 

battery is discharged an external voltage source forces a reversal of the electrochemical process 

(voltage ≥ as the equilibrium potentials of the two half cells). Through this process, the reactants are 

restored to their original form, and the energy can be used again by a consumer [74] [14]. A simple 

overview is the scheme of a battery is given in Figure 2-12.  

There are several material combinations available for electrode design that can be used for 

electrochemical energy storage. The theoretical capacity and voltage of a cell are the function of the 

anode and cathode materials which determine the maximum energy that can be delivered by an 

electrochemical system. It is not possible to fully utilize theoretical energy storage capacity due to the 

need for nonreactive components as separators, containers, and electrolytes that add weight as well as 

volume to a battery. A detailled overview of different standard potential and capacity determined by the 

type of active materials contained in different battery cells is given in [75], [74].  

Figure 2-13 provides an overview of the gravimetric energy density in Wh/kg and power density in W/kg 

delivered by different battery systems. The figure does not depict single values. Instead fields are plotted 

to demonstrate spreads of energy storage performance under different use conditions. The cycle and 

calendric life time (shelf time) of an electrochemical cell are beside energy and power density a vital 

parameter for economic and ecological reasons. The first refers to the number of cycles which determine 

how often a battery cell can be charged and discharged before a lower limit of nominal capacity is 

reached (a value of 80 % of nominal capacity is often set) [74]. Cycle life time is among other things a 

function of the depth of discharge (DoD) and is dependent on the used electrode material. A high DoD 

leads to lower cycle life times in relation to lower ones. 
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Figure 2-12: Simple scheme of a secondary battery charging and discharging (own figure based on [75]) 

Additional deterioration of secondary cells occurs through chemical side reactions which proceed during 

operation but also during mere storage time. These effects are dependent on the design of a cell, 

operation temperatures, the state of charge (SoC) affect the calendric life time and the charge retention 

of an electrochemical cell [74].  

 

Figure 2-13: Ragone plot for comparison of energy storage properties of some different energy storage 
technologies (own graph based on Batt-DB) 

An often named significant advantage of batteries in relation to other storage technologies is a high-

efficiency grade (>0.6 up to 0.96) which represents the ratio of charged and discharged energy. The 

latter is always lower than the first due to incomplete conversion of charging currents and occurrence of 

side reactions with heat production. Naturally, this is dependent on the used electrode materials, 

formation as well as design and electrolyte conductivity [75]. Other influence factors to be named are 

temperature, current density, the porosity of the separator and the age of a battery cell [74].  

Battery technologies can be considered as a relatively safe source of energy if they are operated 

properly. A precondition for safe and reliable operation is the choice of the right electrochemical system 
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with correct charge, discharge, and other storage conditions. It is possible that batteries can rupture, 

vent or in extreme cases explode in case of extreme abuse (too high or improper charge or discharge 

rates, short-circuiting, too high temperatures) [68]. Every battery system thus inhibits a battery 

management system which is especially crucial for Li-Ion batteries [74].  

A brief introduction to different battery technologies is given in Table 2-4. The list is not comprehensive 

but includes all technologies that have a particular market share nowadays.  

Table 2-4: Summary of different electrochemical energy storage technologies (sources are provided in the table) 

Technology  Description  

Lithium-Ion 
batteries (LIBs) 

Li-ion batteries are produced with various anode and cathode combinations resulting in different 

performance characteristics. The anodes currently use graphite or lithium salt of titanium oxide (LTO) as 

the active material. Cathodes active material can be Co-dioxide; Ni, Co, Al or Mn composite oxides; Mn 

spinel oxide or iron phosphate [76]. 

Valve 
Regulated Lead 
Acid Battery 
(VRLA) 

Built out of a positive electrode of lead oxide and a negative electrode of sponge lead. The electrodes are 

separated by a microporous material and immersed in an aqueous sulphuric acid electrolyte [77].  

Sodium Sulfur 
(NaS) 

NaS- batteries consist of liquid electrodes and a solid electrolyte [4]. The cell voltage level is between 1.7 

and 2.08 V at 350°C [71]. The main disadvantage is the requirement for a thermal management system 

[52], due to a very high required operating temperature to keep the electrodes above their melting point or 

liquidly respectively and to achieve an adequate ion conductivity [4] [60]. 

Sodium Nickel 
chloride 

Also high-temperature battery (>300°C), with a secondary electrolyte of molten sodium tetrachloraluminate 

(NaAlCl4) and solid transition metal halides (FeCl2 or NiCl2) as active cathode materials [52], [78]. Less 

corrosive and safer reaction products than NaS [52], [71] 

Vanadium 
redox flow 
(VRFB/RFB) 

Battery systems in which one or both reactants (liquidized ionized metal compounds) are stored in external 

tanks while a stack itself contains the electrodes which are serving as reaction sites and current collectors. 

Electrolytes are pumped from the tanks to the electrodes (by flowing through porous diffusive layers made 

of materials such as carbon felt) within the cell [79] [80]. Nowadays the all-vanadium based RFB-system 

is the most developed RFB type and the only one that reached commercial fruition [79] 

Others  All Ni-metal batteries (NiCd, NiMH), Polysulphide-bromide flow battery Zinc-bromine redox flow battery 

 

Especially LiBs are seen as one of the most promising systems in development for the next 10-15 years 

requiring R&D programs to take profit of all its potentiality [81]. The reason for this successful 

development can be explained by their very high gravimetric and volumetric energy density, offering 

good competitive advantages on this market segment [59]. Further growth of the LIB-market due to 

electric transportation and consumer electronics may lead to further technology improvements and 

manufacturing economies of scale, which could also make electricity grid applications more feasible 

[52]. Experts believe that stationary markets for LIBs may exceed those for transportation [81]. 

2.7.2 Challenges and research demand for electrochemical energy storage 

On the one hand, technologies as lead-acid batteries are in general a mature technology, which is 

utilized for more than a century for industrial products [81]. On the other hand, available battery 

technologies as Li-ion or redox flow batteries have many shortcomings in a variety of use cases. There 
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is still high effort needed in basic research for market breakthrough regarding cyclic and calendrical life 

time, safety and environmental concerns for most technologies. A brief overview about significant 

research in the mid- to long term to come is given in Table 2-5. Battery research nowadays is a dynamic, 

active field with various involved institutions carried out on a global scale. 

Table 2-5: Major R&D activities in the field of battery storage mainly based on [82], other sources are indicated in 
the table 

Technology Mid-term 5 to 10 years Long term 10-20 years 

Lead Acid 
batteries 

Develop high-power/energy carbon electrodes, 
understand poor materials utilization through 
diagnostics 

Develop advanced active materials can help to 
improve specific power and lower resistance 
designs [81] 

Li-Ion batteries Design and fabricate novel electrode architectures,  Develop new intercalation compounds with low 
cycling strain and fatigue; aim for 10k cycles @ 
80% DoD 
Develop self-balancing chemistries to eliminate 
need for balancing electronics 

New models for ion transport through solids 

Development of high conductive inorganic solid-
state conductor for solid-state Li-Ion batteries 

Develop high energy density electrodes with high 
ionic and electric conductivity 

Sodium-based 
batteries / High-
temperature 
batteries 

Decrease operation temperature, near to ambient 
temperature 

Develop sodium-air battery which provides higher 
value in almost all categories of performance 

Develop robust planar electrolytes to reduce stack 
size and resistance 

Identify species on sodium-ion anodes and 
cathodes 

Flow batteries Emergent research fields are the development of 
new electrolytes and the permeability of 
membranes, new cell designs, decreasing costs 
regarding membranes and stacks as well as the 
effect analysis of more extended non-service 
periods on electrodes [3].  

Develop non-aqueous flow battery systems with 
broader cell operating voltages to improve 
efficiency 

 

A major problem of battery technologies are high capital costs in combination with long amortization 

periods lead to accordingly high risks for investors and can be seen as a main barrier for further diffusion 

from an economic perspective [83]. Economies of scale through electric battery vehicles roll out can 

help to overcome some obstacles by the use of cheap materials and production strategies and new 

electrolytes. 

There are several stages of battery life cycle including production, use, and disposal in which negative 

effects on the environment cannot be avoided completely. There are for example heavy metals like 

copper, nickel or cadmium as well as other toxic organic compounds that can be contained in certain 

battery systems and related electronics. Especially the disposal of “newer” battery technologies as Li-

Ion batteries is thus still a challenging task [84]. The growing demand for electrochemical energy storage 

and resulting mass production also increases resource depletion of rare earth, metals, and other 

materials. All these factors lead to a higher awareness of environmental problems caused by battery 

technologies and might result in stricter regulations, especially on those which are related to hazardous 

residues containing heavy metals [85]. A prominent and often cited example here fore is the 

development of the nickel-cadmium battery (NiCd). The application of NiCd batteries in Germany is 

limited to medical and security-related areas as well as electric vehicles due to the EU-wide restrictions 

of cadmium use since 2006 [86]. Such examples show the importance of approaches as LCA to identify 

potential environmental impacts in advance that might lead to a restriction of the use of technology as 

in the case mentioned before.  
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Not only environmental and techno-economic issues can hinder the market diffusion of electrochemical 

storage. The commercialization of various battery technologies is also highly dependent on policy 

facilitation which will be crucial to the uptake of grid-scale, residential-scale and electric vehicle battery 

technology over the next decade [87]. Such facilitations are, e.g. proper market regulations, safety and 

recycling frameworks and grid integration rules. An overview of different support policies which include 

efforts such as financial support for R&D, market transformation and mandates for projects can be found 

in [69]. 

2.8 Decision support on energy storage and other flexibility options 

The studies analyzed in the chapters before showed in a technology agnostic type that there is a 

potentially high demand for additional energy storage capacities to flexibilize the power system of the 

future. It remains unclear which technologies will be suitable for these tasks and to which services they 

will provide. The following chapter provides a brief introduction to energy storage criteria which are used 

to compare and evaluate different technologies. The emphasis lays especially on multi-criteria decision 

analysis (MCDA) which is told to provide decision support through the ranking of technologies based on 

a certain set of pre-determined criteria and a wide set of available methods.  

2.8.1 General requirements on energy storage technologies 

Energy storage technologies have to face different and often competing requirements which are 

dependent on the viewed application field. An optimization of, e.g., battery energy density might lead to 

losses in power density whilst increasing cycles might lead to higher cost. Every technology has to fulfill 

simultaneously multiple performance requirements such as high power, high energy, long life, low cost, 

excellent safety, abuse-resistance, a wide bandwidth of operating temperatures and minimal 

environmental impacts. Nowadays no technology can meet all of these goals, making the right decision 

of a proper battery system for an special application often a compromise [74]. The choice of the best 

energy storage technology is always based on the requirements of a certain application field. It is 

possible to define favorable properties for energy storage which are provided in Table 2-6.  

Some of the named properties for energy storage technologies named in the table above are given in 

Table 2-7. The values provide bandwidths of major energy storage characteristics, which gives an 

impression about the high variance of a selected set of important properties. Each application field has 

certain requirements on the characteristics depicted in Table 2-6 which have to be matched with the 

properties of energy storage technology.  
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Table 2-6: General requirements on energy storage technologies based on [74] and [88]  

Aspect Attribute Description 

Quality of 
storage 

High energy density Ability to store energy per mass or volumetric unit 

High Power density Ability to provide high charge and discharge rates 

Low self-discharge rate Rate of energy losses over time 

High-efficiency grade The ratio of output to input energy 

Safety High operation safety Low probability of fire, explosions,  

Low damage potential Damage though, e.g. toxic materials, explosions. 

Life time High calendar life time Low rate of electrode degradation over time 

High cycle life time Number of deliverable charge-discharge cycles  

Environmental 
compatibility 

Production Energy demand, emissions and  

Use Efficiency grades, consumption of power 

End of life Toxic materials, recyclability of used materials 

Economic  Low investment cost Includes all cost for uptake of a storage project 

Low operation cost Includes all cost related to maintenance, electricity/fuel purchase 

Low cost per stored watt-
hour 

Cost of battery and ratio of charging cost to delivered energy 

 

Table 2-7: Overview of different balancing options median and lower quartile values using values from [89], [90] 
and [91]; [92], [93], [94], [95] and [96], [92], [97], [98]. 

Technology Efficiency Energy 
density 

Power 
density 

Cycles 
 

Life time Investment 
cost (cell) 

 [%] [Wh/kg] [W/kg] 10^3 [a] [€/kWh] 
All Vanadium 

redox flow 
66-75-85 8.7-10-21 1-1.6-2.1 9-10-13.3 6.3-15-20 129-458-860 

Li-Ion 
(various)16 

81-91-98 84-115-145 253-640-
1,300 

0.73-2-8 7.5-15-20 453-745-
1,227 

Lead Acid17 63-76-90 23-33-37 3-27-53 0.3-1.6-1.8 10-18-20 179-230-320 
High 

temperature 
(various)18 

75-86-90 120-148-158 113-160-196 2.8-3.6-5.9 10-14-17.5 172-295-440 

Ni-based19 60-81-85 58-57-46 140-186-477 0.8-1.6-2.5 7.1-12-13 290-1,200-
2,300 

Pumped 
hydro storage 

65-75-85  0.5-1-1.5 10-16-50 30-40-60 46-500 

CAES 54-70-88 3.8-5-6 - 6-12-20 20-35-40 3-40-300 
CCGT 54-60-63 - - - 20-30-40 680-900 

[€/kW] 
SuperCaps 90-95-97.5 5.2-8.7-21.7 1.450-3,500-

1,0000 
21-50-100 10-15-20 570-1,463-

6,800 
 

2.8.2 Socio-ecologic and economic requirements on energy storage technologies 

The work of [99] represents a socio-ecological analysis in combination with potential acceptance 

problems of decentralized battery storage technologies in distribution grids in the frame of the German 

energy turn-over. An online survey was conducted for three different community types across Germany 

namely communities with; A) high activity in the field of RES B) considerable activities in the field of RES 

and C) low activity in the field. A total number of survey participants was 11,191 residents. The results 

                                                      

16 Summary of LFP, NCA, NMC, LTO, LMC without peripheries (inverter, balance of plant etc.) 
17 Summary of VRLA and Flooded Lead acid batteries (inverter, balance of plant etc.) 
18 Summary on NaS and NaNiCl batteries (inverter, balance of plant etc.) 
19 Summary of NiCd and NiMH (inverter, balance of plant etc.) 
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of this work indicate a high acceptance of battery storage technologies in general in comparison to other 

flexibility options. Potential characteristics which might lead to lower acceptance of different 

electrochemical storage technologies were also assessed. The author made a significant distinction 

between social aspects and environmental aspects relevant for energy storage acceptance. Participants 

then could express their preferences on a Likert scale (1 - low to 6 - high). In case of the first aspect, 

the criterion of “no impacts on human health” was ranked the highest followed by “safe electricity supply” 

and “no danger of fire or explosions.” Relevant criteria related to environmental aspects are “emission-

free,” “low degree of ecological impacts,” “environmental impact” and “long life time”. 

Another example is the work of [100] which also carried out an online survey about the energy turn-over 

with 108 participants in the community of Grafing - Bavaria. Citizens were asked to rate the importance 

of different aspects seen as relevant for integrating energy storage technologies into the community’s 

power grid. The majority of habitants (70%) thought that it is crucial that local energy supply is supported, 

followed by the reduction of CO2 emission (52%). Interestingly the reduction of the nuclear power share 

(36 %) played a more important role than the positive economic effect on end-users [100]. One section 

within the same work was concerned about preferred characteristics that an energy storage technology 

should have out of the community’s perspective. The criterion “No impact on nature and landscape” was 

ranked the highest (74), followed by “environmentally friendly” (70) which seems to be a rather 

redundant result.  

Results of both surveys are provided in Table 2-8 and give an impression about the relevance of different 

technology characteristics related mainly to battery storage or decentral storage based on [99] and [100].  

Table 2-8: Summary of the preferences of different community residents in Germany regarding social and 
environmental aspects for socio-ecological acceptance based on [99], ComI=community with high activity in the 

field of RES. ComII=Community with considerable activities in the field of RES; ComIII=Community with low 
activity in the field of RES N=11,191 where 1 is low relevance and 6 very high, Relevance of different storage 

characteristics for Grafing – Bavaria based on [100], numbers indicate the amount of votes for one option 

For battery storage [99] N=11,191 Storage in general [100] with N=108 

Socio-economic aspects Com. I Com. II Com. III Socio-economic aspects Responses -% 

Low cost 3 3 4 No impact on nature and land-
scape 74 

No impacts on human health 5 5 5 Environmentally friendly 70 

Safe electricity supply 4 4 5 Sufficient for energy autarchy 65 

No danger of fire or explosions 4 4 5 Sub-terrainial location 30 

No impact on landscape 2 2 4 Outside the city 18 

Environmental aspects    Small size 17 

Low demand for space 3 3 5 Small impacts during constr. 15 

No noise 5 6 6 Short construction time 12 

Low efficiency losses 5.5 6 6   

Emission free 6 6 6   

Low degree of ecological impacts 6 7 7   

Long life time 6 6 6   

High recycling rate 4.5 6 6   

 

None of the mentioned studies provides an evaluation of different storage technologies based on the 

obtained values to provide decision support. In some cases, chosen criteria seem to a certain degree 
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to be redundant. Conducting simple weighting without an overlying heuristic which, e.g. allows to include 

cognitive abilities of a decision maker or depicting consequences of preferences inhibits the danger of 

providing biased findings. There is furthermore no detailed distinction between different application 

cases for technology. Results of the studies presented here nevertheless provide a valuable indication 

of the relevance of different aspects of energy storage choice, design and development. 

2.8.3 MCDA studies for batteries and other flexibility options in energy systems 

Multi-Criteria Decision Analysis models (MCDA) as a sub-discipline of operations research explicitly 

consider complex decision problems and provide a possibility to tackle them [101] and to unveil stake-

holder preferences in a formalized and reproducible way. A literature review of MCDA studies was con-

ducted to get a first overview of relevant criteria and methods that are considered as necessary for the 

evaluation and choice of energy storage technologies. The review was limited to publications within the 

field of energy systems, RES and storage. MCDA methods have already been widely applied to solve 

large-scale socio-technical decision problems with intangible an tangible criteria according to energy 

policy planning as in the case of Finland [102] or for the choice of the best renewable energy technology 

for sustainable energy planning [103]. The review shows that most MCDA studies claim to identify the 

most sustainable energy technology based on mainly four dimensions: technological, environmental, 

economic and social criteria [11] [104].  

These four main aspects comprise a high number of sub-criteria. A summary of multiple sub-criteria 

used in MCDA literature regarding different energy systems can be found in Table 2-9. Only a small 

number of the reviewed publications focus on balancing and energy storage technologies. These studies 

are additionally summarized in the same table in the column Energy storage systems (EES) to get an 

overview about specific criteria used to evaluate these technologies. 

Economic criteria include aspects as costs and profitability as well as methods (e.g., payback method 

or NPV). The most named criteria in this area are Life-cycle-cost (LCC), levelized cost of energy, invest-

ment costs and operation and maintenance costs. This comes true for energy systems in general and 

energy storage in detail. Other named factors for storage are, e.g. export potential or emission costs. It 

is in some cases challenging to separate economic factors from social ones, as, e.g. a high export 

potential may create jobs leading to higher social standards [104].  

Environmental criteria consider various specific emissions of electricity generation or other indicators 

also used for LCA. Prominent criteria here are land use, greenhouse gas emissions, and resource de-

pletion. The latter is the most cited one for energy storage. There are some other aspects named as 

water pollution or wildlife impacts in the context of energy storage [105].  

Technological aspects are often used to analyze the general suitability of technology for a particular 

application field. It is difficult to really separate technology aspects from, e.g. economic aspects as the 

one influences the other. Efficiency, maturity and system life are in general considered as relevant. More 

clear criteria as cycle life time or power and energy density are included in the case on energy storage 

[106], [105].  

Relatively “new” are social aspects which include factors as acceptance, impact on human health or job 

creation effects [104]. The latter is considered as very important in most reviewed studies followed by 
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social acceptance and effect on the landscape. Some of these criteria can be to a certain degree redun-

dant and difficult to measure. Social acceptance was named the most for energy storage [107]. 

Table 2-9: Review of criteria used in MCDA literature for energy system evaluations (partially based on [8])  

Aspects Criteria Literature for energy system evaluation  Σ EES Other EES 
criteria 

Environ
mental 
impacts 

Resources 
GHG emissions 
Impact on ecosystems 
Risk in cause of failure 
CO2 Emission 
CED 
Land use 
SO2 
NOx 
Particles 
Others 

[104], [103], [108], [107], [109], [105] 
[104], [110], [103], [111], [112], [107] 
[103], [107] 
[107] 
[103], [113], [109] 
[104], [114] 
[104], [113], [110], [111], [112], [115], [105] 
[109] 
[109], [114] 
[114] 
[111], [112], [115], [107], [105] 

5 
5 
2 
1 
3 
2 
6 
1 
2 
1 
3 

3 
1 
 
 
 
1 
1 
 
 
 
 

Water 
pollution, 
Wildlife 
impacts  
[105] 

Eco-
nomic 
aspects 

Specific cost, LCOE, LCC 
Enh. Of comp.  
Investment Cost 
O & M Cost 
Fuel Cost 
Payback method 
NPV 
Others 

[113], [107] [109], [110] [114], [112], [115], [116], [106] 
[107] 
[103], [113], [109], [114], [111] 
[103], [105] 
[111], [105] 
[103], [117], [111] 
[111]  
[107], [110], [114], [103], [111], [105] 

7 
1 
5 
1 
1 
3 
1 
5 

2 
1 
3 
2 
 
 
 
 

Export 
potential, 
[104], 
End of life 
costs, 
emission 
cost [105] 

Social 
aspects 

Compliance with pol goals 
Nat. indep. 
Employm. Pot., new jobs 
Social accept. 
Effects on landscape 
Social Benefits 
Risk 
Contribution to reg.dev. 
Other 

[104], [107] 
[107] 
[107], [109], [117], [111], [112], [115], [105] 
[103], [104], [107], [111], [115], [105] 
[107], [110], [107] 
[103], [111] 
[104], [115] 
[117] 
[110], [114], [105] 

2 
1 
6 
5 
2 
2 
2 
1 
2 

1 
1 
 
2 
1 
 
1 
 
 

Security  
[105] 

Tech-
nology 

Efficiency 
Exergy efficiency 
PER 
Safety 
Reliability 
Maturity 
System life 
Availability 
Fatalities 
Flexibility 
Others 

[113], [104], [107], [114], [117], [111], [116], [106], [105] 
[108], 
[108]  
[111] 
[103], [110], [111], [116] 
[103], [116], [110], [117], [106], [105] 
[111], [116], [118] 
[111] 
[112] 
[115], [116], [105] 
[107], [110], [112], [115], [116], [106], [105],  

6 
1 
1 
1 
3 
4 
1 
1 
1 
1 
4 

3 
 
 
1 
1 
2 
2 
1 
 
 
3 

Production 
Energy 
density, 
Load 
response, 
[116], 
Capacity, 
power 
density, 
cycles 
[105] 

 

The literature review revealed that there is a high number of publications concerned with the issue of 

sustainability of energy technologies including a manifold of different indicators and methods. There are, 

however, only a few studies that have a direct focus on energy storage in general or more specific on 

electrochemical energy storage. In total only following studies were found that explicitly address energy 

storage or balancing options [116], [104], [107], [106] and [105]. The named studies are summarized in 

Table 2-10 including the assessed technologies, used MCDA methods, aim of the study and its results 

in the form of different rankings. The studies are also briefly analyzed regarding the expert consultation 

for weighting of criteria. Criteria used for the different evaluations are indicated in Table 2-9.   

The comparison of named studies gives interesting insights into the diversity of results in a frame of 

comparable goal settings but different application areas. In Daim et al. [105] CAES was evaluated as 

the best energy storage technology regarding RES integration and sustainability. Batteries (NaS) were 

ranked second followed by PHS the as the worst alternative. The weighing was conducted on the base 

of 12 expert opinions. Environmental impacts (air and water pollution and wildlife impacts) have been 
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evaluated by three expert opinions from Bonneville Power Administration, which is the home institution 

of two of the co-authors. Other criteria have been evaluated on the base of literature.  

Krüger et al. [107] use a mixture of qualitative and quantitative approaches to evaluate technology based 

on criteria which are then transformed into to a 0 to 10 scale for further calculus. Indexing is based on 

own estimations based on literature (comes true for storage technologies) and partially own calculations 

(LCA and economic modeling) for some of the assessed alternatives. There is no distinction between 

different use cases for using technologies (cost is evaluated on a 6-hour use case whereas 

environmental evaluation is based, e.g., for Redox flow batteries on energy to power ratio of 8). Detailed 

information on score attribution through literature are given. Grid extension measures are ranked first, 

batteries and CAES last. The attribution of weights within MCDA (Analytical Hierarchy process AHP) 

was conducted by the project team itself.  

Energy storage evaluation in Barin et al. [106] is conducted on the base of three different scenarios; a) 

power quality, b) cost scenario and c) environmental scenario where a) is used as base scenario. 

Batteries (Li-Ion and V-Redox-Flow-Battery) are ranked best, and PHS worst in the central scenario a. 

Flywheels are ranked first in two alternative scenarios. A set of researchers from the same university 

carried out a qualitative evaluation from 1 to 10 of a set of criteria as “load management,” “technical 

maturity” and “environmental impacts”. Quantitative factors are, e.g. efficiency and cost per kW.  

Oberschmidt [104] evaluates three different storage technologies via Promethee I using different 

technology evaluation scenarios which are dependent on the specific grade of maturity of each assessed 

technology. Results, including a comprehensive sensitivity analysis, show that RFB is ranked first and 

adiabatic CAES (here named as TACAS) second whereas Proton Exchange Membrane used for H2 

production with re-electrification with a gas motor is ranked last. No stakeholders have been included in 

the weighting process of this work, instead, literature values are used. Nevertheless, the inclusion of 

stakeholders is comprehensively discussed including ways of achieving consensus among 

stakeholders. 

The work of Raza [116] considers H2-fuel cells as a best alternative. The method is based on indexing 

on a scale from -5 to 5 of different properties. Criteria are classified based on calculations (cost based 

on net present value) and own qualitative estimations of all other criteria through authors about, e.g., 

“environmental impacts” and “risk factors” named in literature. There is no interaction with stakeholders 

during the assessment.  

The contradictory results of the reviewed studies make it difficult to identify the best alternative of 

technology to enable a sustainable energy system. This might, on the one hand,, be based on the 

specific use cases they allocate to different technologies. On the other hand, and maybe more severe 

for some of the outcomes, is the degree of representativeness and high subjectiveness of obtained 

weights through a low number and homogenous selection of experts. Not all studies consulted experts 

as [116] and [104], which are only partially comparable due to the different technologies that were taken 

into account. Studies where experts were consulted hardly give information about the kind of inquiry, 

number of participants or the procedure of weighting in general as in [107]. It seems that additionally the 

number of participants was rather small and homogenous as in [105] and [106]. The choice of criteria in 
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most studies is based on literature and a selection process conducted through authors. Thus, all studies 

have their shortcomings which comes especially true when it comes to the selection of stakeholders. 

Table 2-10: Comparison of MCDA literature concerned with energy storage or balancing technologies in general 

Source Technologies MCDA 
Methods 

Aims and Results Experts  Comments 

Daim et 
al. [105] 

PHS, CAES, NaS AHP, Fuzzy 
Delphi, fuzzy 
consistent 
matrix  

Goal: Choice of reliable 
and cost-effective storage 
option for US regarding 
RES  
Result: 1st CAES, 2nd NaS, 
3rd PHS 

Interviews with 
Bonneville Power 
Admin. Experts, no 
of consulted 
interviews 
unknown 

Based on expert 
interviews, Results 
flanked with sensitivity 
analysis, technology 
evaluation based on 
qualitative estimation  

Krüger 
et al. 
[107] 

PHS, Hydrogen, V 
- Redox Flow 
Battery, NaS, 
CAES grid 
reinforcement, 
measures: DC 
underground 
cables & overhead 
lines, High temp. 
Transmission lines 

AHP Goal: Find most 
sustainable way to use 
excess wind power 
Result: 1st – 4th Grid 
reinforcement, 5th new 
PHS, 7th to 10th PHS and 
Hydrogen, 11th AC 
underground cables, 12th 
H2, 13th to 14th batteries, 
worst on place 15 CAES 

Unknown, no 
information given, 
only refer to 
“decision maker” 

Quantification through 
indexing and 
aggregation of properties 
and own calculus, 
Results are seen as 
consistent for grid 
measurements, Storage 
technologies except 
CAES are seen as no 
alternative  

Barin et 
al. [106] 

CAES, PHS, H2, 
Flywheels, 
Supercap. Li-Ion, 
NaS, V - Redox 
Flow Battery 

AHP and 
fuzzy logic 

Goal: Find most suitable 
Power Quality alternative 
in combination with RES  
Result: 1st Li-Ion & 
Flywheel, 2nd NaS, VRB 
and H2, PHS & CAES on 
4th rank 

Num. of 
participants 
unknown, group of 
researchers from 
Fed. Univ. of Santa 
Maria 

Based on literature 
review, only 2 
quantitative factors (eta 
and cost), rest is 
qualitative, consistency 
measure unknown 

Ober-
schmidt 
[104] 

V - Redox Flow 
Battery, Fuel Cell 
(PEM), TACAS -
Thermal and 
compressed air 
storage 

Promethee Goal: identify most 
suitable long-term storage 
option for RES  
Result: 3 Scenarios – 
overall result 1st V - Redox 
Flow Battery, 2nd TACAS, 
3rd fuel cells (H2) 

No experts, based 
on Literature and 
database: “Multidi-
mensionale 
Technikbewertung
” 

Chapter within a PhD, 
very comprehensive 
work – considers only 
long-term storage, good 
understandable 
framework 

Raza et 
al. [116] 

Lead Acid, Li-
Polymer and Fuel 
Cell (PEM) – H2 

Index based 
approach 

Goal: Find best 
sustainable option for 
intermittent RES (PV) 
Result: 1st Fuel cell, 2nd Li-
Ion and last Lead Acid 3rd  

No experts, 
calculated on base 
of a developed 
sustainability index 

Reasoning for 
quantification (e.g. 
efficiency and cycle life 
time) remains 
questionable, dubious 
sources 

 
2.9 Summary and implications for research 

The German power grid will be strongly shaped by a high share of RES of up to 100 % in 2050. Several 

studies point out that there is a need for additional balancing capacities due to excess power through 

RES between 0 up to 100 TWh in the same year. These demands are seen in a magnitude of 0 to 

35 GW for short term storage (up to 4 hours) and 0 to 37 GW for mid-term storage (>8 hours). This 

development is also told to be accompanied by a stronger decentralization of generation and a more 

complex structure of the power grid. Contrasting these expected developments with a historic perspec-

tive shows that in general the development of the power system influencing the market uptake of energy 

storage can represent a complex interplay of policy, societal demands towards a greener electricity 

generation, utilities, technologies, and research.  

Energy storage is just one available flexibility option among demand side management, electricity grid 

extensions, power plants with high power gradients, market and regulation measures. It is possible to 

characterize energy storage into centralized (PHS, CAES, etc.) and modular/decentralized technologies 

(battery storage, supercapacitors etc.). Electrochemical energy storage technologies can be allocated 

to the latter and include a high amount of differently available cell chemistries. NaS, Li-ion, Lead Acid, 

High temperature and Vanadium Redox Flow batteries are the most used technologies for stationary 
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applications nowadays. Market development of stationary battery storage technologies in Germany is 

expected to grow from up to 59% in 2030. There is further research needed for market breakthrough 

regarding cyclic and calendrical life time, safety, environmental concerns and mainly investment costs. 

Another critical factor is the availability of suitable market and regulatory framework for energy storage. 

This comes primarily true when electrochemical storage is compared with other balancing options as 

CAES, PHS or CCGT.  

Literature states that the demand for energy storage technologies in various application fields (ancillary 

services, energy management etc.) will potentially increase sharply starting in the 2035ies. Reviewed 

studies use technology agnostic approaches or only a limited set of technologies to estimate future 

energy storage demand. This approach is sufficient to provide more extensive insights of potential in-

terrelations and developments of storage and the energy system in general but provides only limited 

decision aid for the selection of a technology for different power grid services.  

Sustainability is considered as a significant aspect of the choice of the right energy storage technologies. 

Some studies give general insights of actor notions about the importance of criteria in this context rele-

vant for energy storage but do not quantify these. Criteria evaluation is conducted in a somewhat non-

formal way using a Likert scale approach. Furthermore, a pure “end-user perspective” is given, as their 

research is centered on acceptance. There is no industry perspective given which might indicate rea-

sons to invest in energy storage. It is assumed that participant’s knowledge about energy storage tech-

nologies is relatively low as the technology has a comparably low market share nowadays 

Literature including MCDA also provides a broad set of methods and criteria for energy storage evalua-

tion and selection. These are often declared as sustainability criteria which are mainly structured around 

technology, economy, social aspects as well as environmental impacts. The term sustainable often 

remains undefined and blurry. Most of the studies use mixed qualitative and quantitative approaches for 

criteria aggregation, often by the use of indexing of properties of defined scales (e.g. -5 to 5) which can 

be seen as a source of uncertainty due to different notions about specific impacts which may lead to 

inherent decision conflicts (e.g. social impact vs. economic performance). Values used for technology 

evaluation are, despite some exceptions, mainly based on literature sources or on the base of expert 

opinions. Experts in these studies seem to be mainly centered in the same technological field (e.g., 

stakeholders from a utility or academia). At least in the considered studies, there seems to be an ab-

sence of a heuristic for stakeholder inclusion when it comes to technology evaluation and selection.  

Besides a missing heuristic for stakeholder inclusion, only some authors conduct own calculations and 

instead rely on specific literature in the field. Such comparisons may be based on using environmental 

impacts calculated for a certain application and costs calculated in a different context and can be seen 

to a certain degree as inconsistent. Beside this different system, boundaries are used in different litera-

ture sources which furthermore increases uncertainties when it comes to criteria aggregation. Addition-

ally, all studies do not consider the interplay of different stakeholders or significant socio-technical dy-

namics and interrelations as well as potential impacts on actor notions of what is claimed as “sustaina-

ble.”  
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There also seems to be an absence of approaches that enable social learning on multiple levels between 

different actors when it comes to enabling technologies. Such approaches have to engage the commu-

nity and make it possible to think through the kind of future they aim to achieve. At the same time, such 

a process has to be open enough to avoid the creation of paralysis in situations with different views 

about values. Instead, they have to use constructiveness that allows diversity of opinions to be ex-

pressed [7]. 
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3 Theoretical background  

Technology assessment (TA) is performing context and topic dependent by the combination of research 

with the scope of advising decision makers. It claims to give contextually-influenced and practical 

information about the consequences of technology, to assist society in the evaluation of this information, 

to provide a base for communication about technology and strategies for technology implementation 

[120]. TA literature often points out that this “shaping” of technology is achieved not merely at an 

engineering level but also on a level of shaping societal framework conditions [18].  

Constructive Technology Assessment (CTA) has in relation to other TA streams a strong technology 

orientation. It was developed as an academic-theoretical line within transdisciplinary research [17] in the 

Netherlands by [18] and was adapted in several countries [120]. It is understood as a soft intervention 

strategy in the development of technology to minimize mismatches, social conflicts and wrong 

investments in the face of the lack of knowledge of the social embedment of technology. CTA is 

interested in the dynamics of the process of technology development and implementation, where 

impacts are being built up, and co-produced, during the process of technical change. Technology 

impacts on its environment are not seen as passive effects but actively sought or avoided by technology 

users and producers, and other actors such as governments or pressure groups (NGO´s) which have 

all their own concrete goals, interests and values. The inclusion and modulation of different stakeholders 

and alignment of different visions and expectations [18], [121] is the core of CTA. Such modulation 

activities remain an empty phrase without a defined meta-level criterion for a desirable development 

goal [18]. Creating “better technology in a better society” and sustainability are often named as unprecise 

meta-goals in CTA literature [18], [120].  

This section gives a brief introduction to the background of CTA by giving insights into co-evolution of 

technology and society, multi-actor dynamics as well as the desirable goal of “sustainable development.” 

Finally, CTA is presented in detail as a guiding framework for this research. 

3.1 Socio-technical dynamics: A brief overview 

Technology itself is seen as a part of a seamless web of highly related heterogenic elements as 

organizations (manufacturers, research, and development, end users, etc.), resources, scientific 

elements and legislation (law). Societal functions such as transport and energy supply are results of 

such clusters of heterogenic elements which can be named socio-technical systems [122]. Technology 

is always embedded in sub-systems (e.g., a company, academia etc.) of such complex socio-technical 

systems. Views about the meaning and value of technology are also rooted in these sub-regimes. The 

development, production, use, profitability, environmental impact, user acceptance and disposal of 

technology artifacts in combination with organizational and legislative artifacts entail the development 

of a sub-system and the entire socio-technical system [8] [123].  

Technology is composed of materials and components that are combined into a working system. A 

precondition for the latter are configurations that work including the skills required to install, operate and 

manage technology (e.g., infrastructures, labor and cultural norms including selectors). The concentric 

system view based on [124] underpins this as depicted in Figure 3-1. In the center of this view is the 
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hardware (technological artifact), followed by the software (developers, skills, and knowledge to operate 

technology, e.g. system integrators) and orgware (infrastructure, a division of labor and cultural norms, 

e.g. utilities, politics). The outer concentric ring, the socioware includes the embedment of technology 

(the conjunction of society itself) in a particular societal context [121] and [124]. The orgware and 

software are seen as an integral part of technology within the concept of socio-technical systems. All 

these factors are highly dependent on each other through social linkages as well as developments within 

the socioware.  

 

Figure 3-1: Concentric systems view where hardware represents a specific technology, software the ability to 
operate it, orgware the infrastructure and cultural norms to manage technology. The socioware refers to the 

societal embedding of technology in a particular concrete societal context [121], [124] 

It is possible to link this concentric perspective to different sociotechnical regime dimensions identified 

by [125] within the multi-level perspective (MLP) framework [5]. This perspective distinguishes three 

levels of heuristic, namely: Sociotechnical landscape, socio-technical regimes and niche innovations 

which are linked to the concentric view. The socio-technical regimes refer to shared routines in a certain 

community including scientists, users, and special interest groups which directly or indirectly contribute 

to the patterning of technological development [28]. They may represent the software and orgware in a 

concentric view. The socio-technical landscape refers to an exogenous environment that is not directly 

influenced by niche and regime actors and can be seen as the socioware out of a concentric perspective. 

Examples for this are macro-economics and –political developments, or changes in deep cultural 

patterns. The Energiewende might be seen as such a development. Changes on this level occur of a 

long time, usually decades [28] [28]. Niches are considered as incubation rooms protecting novelties 

against dominant market selection (support schemes for renewables as wind or PV). Small networks of 

specific actors are for example the promoters of niche innovations [28] (small companies, developers). 

The relationship of this three levels is considered as a nested hierarchy, where regimes are embedded 

within landscapes and niches within regimes [126]. The kernel of the concept is that innovations can 

diffuse through the interplay within the dynamics between the three levels [126]. 

3.2 Emerging irreversibility and entrenchment 

The properties of emerging technology entering into a socio-technical system are not given beforehand, 

but they co-evolve with interactions which occur during development, implementation, adoption and 

broader use of it [18]. This process is referred as “co-evolutionary process” and begins with an innovative 

product against an existing societal-technical regime which sets up the rules. This process is 

characterized by the involvement of multiple actors situated in different sub-regimes and takes place at 

different aggregation levels. It is important to recognize that from this process multiple different views 

on technology development might arise that cannot always be reconciled entirely with each other [7].  
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In case of a more significant technological transition as the Energiewende, a replacement or 

reconfiguration of embedded socio-technical practices and regimes might occur and offer opportunities 

for new technologies by creating new standards or dominant designs, reconfiguration of the system, 

changing regulations, infrastructure and user patterns [5]. In such a situation emerging irreversibilities 

can arise which are reinforced when actors start to invest in technological paths that seem to emerge 

[20] [127], e.g. through collective roadmaps representing articulated expectations which paths a 

collective of companies or an entire industry should follow20 [127]. Such irreversibility’s can facilitate 

certain technological paths but make it also more difficult to make something else. Such potential 

constraining actions and views can span up “endogenous futures”. There is the danger that such 

expressed development targets may distract us from potential solutions by taking us into the wrong 

direction. Such processes are not deterministic, actors can anticipate them and create “better” paths 

[20]. From this arises a phenomenon cited as Collingridge dilemma [12] which states that: in early 

technology development stages opportunities to steer are plentiful, but hard to choose from, while at 

later stages this is reversed [13] [12].  

Typical questions in this context are questions of how to steer the development of emerging technology 

and its societal context before technology entrenchment limits the potential for intervention. Such 

entrenchment appears gradually over time through the aggregation of irreversibility’s linked to a 

technologies conception, to diffusion into and success in the market. Decisions and actions leading to 

entrenchment are framed by visions and expectations as they express the ideas and intentions about 

how the future will be [121]21. Notions about what technology could be is a natural in every emerging 

technological field and has to be seen in contrast to already proven innovations and applications in case 

of established technologies. Positionings of actors as well as their relations are often unclear and remain 

in-transparent in this phase, resulting in a high uncertainty about future paths. It is not clear what actors 

are doing and should do to make technology successful [128]. The power of such expectations and 

visions about technology depends on the degree to which actors share them among the system. This 

degree of ‘sharedness’ ensures that stakeholders act accordingly to these expectations. Expectations 

can thus inspire development and the related trajectory of new technological developments that 

subsequently have to be protected by other collective expectations [121].   

3.3 Sustainable or “better” technology as a meta-goal for CTA 

Sustainability potentials are often named as a major goal in literature or policy documents when it comes 

to the selection or development of technology. The concept of sustainable development (orientation 

towards efficiency gains and improvements of technology) and sustainability (perspective on related to 

individual values and attitudes towards nature) has been object of interest in a wide spread of literature 

and other diverse discussions as in [123], [9], [129], [130] and [7]. Sustainability of technology is also 

often mentioned as a goal in CTA literature in line with wealth creation, safety, and quality of life [18]. 

All these factors can be seen as rather redundant mentions and are simply summarized as “better” 

technology for a “better” society” in CTA [120]. There is no definite formulation provided of what “better” 

                                                      

20 E.g. through technology lock-in, sunk costs, economies of scale, technological interrelatedness etc. 
21 This represents a well-known phenomenon in social sciences referred as Thomas theorem [121] 
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means but it can be assumed that CTA-authors implicitly refer to more sustainable technology. It is thus 

worth to take a closer look at sustainable development and the resulting implications of what “better” 

technology might potentially refer. 

The concept of sustainability itself was first formulated in the Brundtland Report “Our common future” 

from 1987 [131] and defines sustainable development as follows: 

“Humanity has the ability to make development sustainable to ensure that it meets 
the needs of the present without compromising the ability of future generations to 

meet their own needs.” 

This definition inhibits on the one side aspirations between humanity towards a better life and the 

limitations imposed by the state of technology and social organization on the ability of nature to meet 

this needs on the other side [132]. Environmental concerns are essential for this view on sustainable 

development, but the primary argument is on welfare in the context of inter-generational equity. There 

is no intrinsic value to care about the environment but to preserve resources for our children [132]. This 

makes sustainable development synonymous with growth, where it means ameliorating but not 

challenging economic growth and existing political order [7]. Sustainable development represents a 

particular shift in perspectives, away from a focus on purely economic development towards a more 

multidimensional development22 or something as a “better society”. These dimensions have been re-

interpreted to as encompassing three pillars namely; environmental, social and economic factors [123]. 

The relevance of those dimensions is extensively discussed in the literature, e.g. [1]23 [133]24 and [134]25. 

These dimensions can be seen as highly opposing imperatives of growth and development on the one 

side and the ecological, social or economic pillar of sustainability on the other. Being able to reduce 

environmental impacts in economic activity does not mean that it improves the quality of life for all. There 

are differences in the meaning and value of different sustainability dimensions which are rooted in 

different perceptions. In this sense, sustainable development can to a certain degree be considered as 

an attempt to square a circle [7].26 

Sustainability of mankind´s development is highly dependent on socio-technical systems27 which 

determine to a large extent the demand for raw material and energy, needs for transport and 

infrastructure, emissions, mass flows of materials and composition of waste [120], [135]. Technology 

serves as a key factor in the innovation system influencing a multitude of dimensions as prosperity, 

lifestyles, social relations, and cultural developments. Thus, actions taken in the development, 

production, and disposal of technological products and systems have a high influence on the 

environmental, societal and economic dimension of sustainable development or maybe the “embedment 

of better technology in a better society”. Related assessments should therefore always entail the entire 

life cycle of a product.  

                                                      

22 There are other preferences as a more dualistic topology that focuses on the relationship between humanity and nature [7] 
23 Refers to the integrative sustainability concept developed at Institute of Technology Assessment and System Analyses. 
24 Supposes to reject the idea of pillars and formulated principles on which sustainability could be based on. 
25 They distinct five paradigms for environmental management and propose a set of multiple factors to be included. 
26 Which is impossible.  
27 It should be noted that sustainable development should also be discussed on base of radical shifts in individual behaviour, 
politics or other radical social arguments that tackle current neoliberal economic orders and proposes an alternative system [7] 
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There is no definitive formulation of sustainable development or “better technology”, it remains 

contradictory, inhibits complex interdependencies and creates other problems. Sustainability-related 

problems are constantly changing as they represent the continuous negotiation of preferred futures 

under deep uncertainty. It is a normative concept nested in real-world problems and dependent on 

different sets of individual values and moral judgments [7]. There is no final sustainable state, nor a fixed 

condition or common definition available for the concept of sustainable development. It is rather seen 

as an inherently dynamic learning process [123]. There is also no conclusively “best” technology solution 

to achieve something as infinite sustainability or a “best” technology [123].  

Technology itself is not sustainable, but it may contribute to sustainability depending on the social 

dynamics in the context [120] (its socio-technical embedment). It causes several problems emissions 

and costs but is also considered as a solution or at least as one aspect of the solution of societal 

problems [9]. The stamping of this contribution remains fuzzy; it is unclear if or when it will appear as 

well as how it will look. These aspects make it challenging to determine which factors and methods 

should be integrated and applied when it comes to a sustainability assessment of emerging technology. 

Additionally, it is claimed that such assessments shall be considered in practical decision making [136]. 

This has fostered several conceptual, theoretical and methodological developments and their constant 

refinement in the field of sustainability [7].  

3.4 Modulation of socio-technical developments in the face of “sustainability” 

The concept of socio-technical co-evolution implies that the socio-technical embedment of technology 

is the core for sustainable development [137]. Again, the interplay of different spheres of a socio-

technical system related to “sustainable” or “better” technology development can be – in a simplified 

way - broken down into different rings. Each of these rings represent a certain sub-regime within a 

concentric view as depicted in Figure 3-2 (rings can of course vary and are not comprehensive). There 

is no direct deterministic relation between technology and a certain socio-technical sub-system to 

achieve a more sustainable development [123]. It is rather a more complex process, where they 

influence each other iteratively and mutually via a high magnitude of different aspects [123].  

 

Figure 3-2: Sustainability perspective on electrochemical storage systems (based on [123] and [14]) 

This process is nested in different socio-technical regimes which include multiple stakeholders and has 

a highly experiential as well as experimental character. The concept of sustainable development has 

thus not only to integrate different sustainability dimensions but also has to be extended across sectors 
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and interests by recognizing multi-actor dynamics and differences. A design and decision dilemma 

arising from the claim to achieve better technology is to find the right “shape target” (e.g., environmental 

vs. economic vs. social aspects) before entrenchment limits potentials to steer technology development. 

As explained before, actions and interactions that shape technology in regard of sustainable 

development are based on two elements, namely expectations and visions, this comes especially true 

in the case of emerging technologies [7].  

They are crucial elements to achieve desired futures as they can set technology on a particular trajectory 

and determine the outcome of technological change and (non-) sustainable development [121]. This 

results in ambiguity to achieve sustainable development as follows  

A) There is a strong need to prospectively identify, exploit and exhaust possibilities to shape or 

select emerging technology alternatives based on visions and expectations according to 

different sustainability dimensions.  

B) Potential trajectories of technology have to be unveiled based on actors visions and 

expectations about the use and development of technology, its specifications and market use 

that determine sustainability.  

To modulate technological innovations in a more sustainable or “better” way makes it necessary to 

understand the primary target group of actors which works with technology and that they work within 

concentric perspectives [138]. The work of [139] distinguishes two levels of actors when it comes to 

expectations socio-technical developments which can also be applied for sustainable development; so 

called insiders and outsiders [138]. Both groups have different social construction processes that impact 

the way of how they assess technology and perceive sustainable development.  

Insiders are actors directly associated with technology which are often not informed or not 

knowledgeable about development and issues at stake for different professional environments (e.g., 

business, end-user, government) [128] and are strongly technology focused. They are referred as 

“Enactors” which try to realize new technology and identify with it and tend to emphasize positive aspects 

(e.g., think and work in “enactment cycles”) [20]. The opposition may be disqualified as irrational or 

misguided or following own agendas. Enactors identify themselves with a technological alternative and 

perceive the world as waiting for their product [20], and the enactment frame leads them to a concentric 

notion of “making the product right, then look at the market and regulation and then afterward worry 

about public acceptability” [140].  

Outsiders also referred as “selectors” are non-technology development related actors which get some-

how directly or indirectly in contact with the final product (governments, regulation, NGOs, end-users). 

These actors usually observe technologies from the outside and compare them with other parallel de-

velopments. The specific properties of a technology play only a small role for most of this kind of stake-

holders (so-called black box effect) when it comes to “pick” the “best” technology. Comparative indica-

tors for technology selection as costs, applicability, environmental impacts, and safety are more relevant 

for them [141] [20].   

Responsibility is distributed over selectors as well as enactors when it comes to “manage” technology 

in society with the goal of sustainable development. The nature of responsibility though is different for 
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each kind of actors. At the end, all kind of actors are required and have to interact to create better 

technology [18]. A precondition for the modulation of sociotechnical developments is the provision of 

spaces for interaction, exchange of visions and expectations.  

3.5 Constructive Technology Assessment as a soft intervention strategy 

The previous chapters provide the theoretical background for CTA regarding the normative meta-goal 

“to create better technology in a better society” which is seen as closely to “sustainable development.” 

The following section provides a summary of the theory and a more detailed view on the aims, strategies 

and typical process steps of CTA named in the previous sections. 

Main theoretical aspects relevant for CTA are namely co-evolution of technology and society, 

entrenchment, emerging irreversibilities, positioning, spaces, multi-actor dynamics and endogenous 

futures [142] which are summarized in Table 3-1 for a better understanding of the approach. 

Table 3-1: Summary of grounding concepts of CTA based on [121], [127] and [128]  

Concepts  Summary 
Entrenchment x Technology becomes gradually more entrenched and is steered by the actions of actors 

involved that take development into a specific direction  
x Is a concept of social sciences of innovation also referred as path dependency in 

economic theory  
x The level of entrenchment results from the accumulation of irreversibilities 

Emerging 
irreversibility 

x Refers to patterns that enable certain actions and interactions, while constraining others 
e.g. all resources are limited, if they are allocated to a project, another will have to do 
without them 

x An indicator for irreversibilities are stakeholder’s expectations involved in the agenda 
building that follows from expectations. 

Expectations 
of emerging 
technologies 

x Decisions and actions are framed by intentions and ideas about a future situation 
x Taking expectations as facts reduces the subjective degree of uncertainty 
x The power of expectation lies in the “sharedness” of them among the system 
x They can inspire new technological developments 

Positionings x Refers to the allocation of roles in line with positioning theory in social psychology 
x It states that no stable roles have been established, they are rather continuously shaped 

and altered based on expectations of actors of how they see their role and the role of 
others 

Spaces x Channels of communication of expectations between stakeholders and the way they are 
organized (anything that provides opportunity for interaction) 

x There is often an absence of channels when it comes to emerging technology 
Multi-actor 
dynamics 

x The concept defines two categories of actors involved in technological development 
namely; Enactors – technology actors, e.g. developers that are rallied behind a certain 
technology; Selectors – societal actors who take a position of comparing and selecting 
technology, e.g. users or governmental groups with a more distant relation to technology  

 

CTA has the aim to broaden and positively influence technology development processes by addressing 

potential innovation obstacles or impacts as early as possible [141], rather than assessing ex-post the 

impacts of more-or-less finalized products [130]. There is no “perfect timing” to start such a process; it 

should take place before the level of technology entrenchment is too high making it too difficult to 

conduct desired changes as these might be too expensive (the technology has probably already 

achieved a certain market diffusion).  

CTA is a strategy to achieve goals of wealth creation, safety, and quality of life and to conduct actions 

to promote technologies that promise to have mainly such desirable impacts and few undesirable 
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impacts [18]. Doing so CTA can be interpreted as a pragmatic view which has an interest not only for 

what “is,” but also what might “be” caused by actions in technology development. It owns a role of an 

intermediary and offers a way to change actual situation. Action must be guided by purpose and 

knowledge as well as awareness of epistemic limits in order to perform changes in the desired way [143] 

[144]. From this results the view that the world is changed through reason and action and the 

acknowledgment that there is an inseparable link between human knowing and human action [145]. 

Doing so, it recognizes that the world is in the state of continuous becoming and is concerned about 

action and change as well as the interplay between knowledge and action [144]. There is the (maybe 

moral) need to present knowledge that has consequences for future applications, to unveil what 

differences this knowledge will have in practice and how it preferably leads to improvements. Moreover, 

a belief that knowledge has to be generated and disseminated among and through relevant actors.  

Having this is mind CTA as a transdisciplinary research framework represents a soft intervention by 

confronting enactors with the visions, interests, and expectations of comparative selectors, and vice 

versa to create new knowledge of how to reach desired goals. There is no canon of “CTA methods” 

available that can be used for every case. Several methods in design practices can be included within 

CTA that anticipate impacts, involving actors and allow any kind of social learning [18], [121]. This 

justifies a widespread application of new methods, strategies, procedures and design solutions that can 

contribute to develop or exploit technology beyond common/traditional applications. There are, however, 

at least three general and generic intervention strategies identified by [18] which should be considered 

in every CTA based approach: 

x “Technology forcing: Inverse Anticipation and Feedback”: – technology forcing by regulation 

from authorities (government agencies, insurance companies or banks, etc.) in which desired 

impacts are stipulated, and technology actors have to fulfill these (e.g., emission restrictions). 

The strategy takes place over societal actors 

x “Strategic Niche Management: Graded learning and Feedback”: - introduction of protected 

niches for technology development in which different actors (mainly enactors) learn about user 

needs, design and political acceptability. The strategy takes place over the technology actor 

x “Alignment: Loci for Reflexivity and Feedback”: - aims to create and exploit loci (real spaces, 

forums, institutionalized linkages between supply and demand) to offer possibilities to modulate 

development. The strategy includes the societal as well as technology side 

It is recommended that the three presented strategies should be mixed regarding particular cases in 

order to stimulate anticipation (identify effects or impacts of new technologies […] co-produced during 

the process of technical change), learning (“[…] to explore possible new linkages between a range of 

aspects, e.g. design options, user demands […]”) and reflexivity (“[…] avoid falling into contrast between 

technology and society […] to recognize different roles of stakeholders in different regimes”) [18].  

CTA can create and orchestrate spaces in which interaction can occur, e.g. through workshops, 

interviews or surveys even if interactions between participants might be partial. Such interactions are 

mainly supported by socio-technical scenarios to show effects of interfering enactment and selection 

cycles and are told to give a solid base for the interactions [20]. The idea is of this intervention is to 

enable actors to do better in their environment by contributing to more desirable paths [128] such as 



Theoretical background 

40 
 

sustainable development might represent. Figure 3-3 provides an overview of the role of CTA by 

providing a space for enactor-selector interference to break through typical enactment cycles by shifting 

the locus of assessment towards a broader perspective. Following [128] CTA can (but does not have 

to) be divided into three general phases which are as follows:  

1) Providing in-depth information about the topic in line to a) decrease asymmetry that is inherent 

in any emerging field; b) provide information yet not available but needed for participants to 

develop visions and build arguments on [128].  

2) The CTA analyst stimulates participants to articulate their prospective view to eliciting personal 

expectations and visions of the field. Such inquiries have to carried out carefully and individually, 

e.g. by face to face interviews [128] 

3) Finally, a platform for interaction, e.g. through a dialogue workshop is provided where 

participants discuss presented scenarios and brainstorm to formulate technology options, which 

are combinations of applications for specific markets or practices as well as potential impacts 

of these. The ultimate goal of such an event is to achieve convergence which can be tested, 

e.g. by a prioritization matrix to unveil which applications and technology properties are seen as 

most feasible by workshop participants. There is no guarantee that convergence will be reached 

[128] but participants become at least aware that there are different perspectives which they 

can take into account for their further actions [128]. 

CTA practitioners mostly use qualitative narrative methods expressed through prospective socio-

technical scenarios developed in face to face interviews and derived from stakeholders thoughts [146], 

[20], [147]. Practitioners than interpret meanings about the world of actors they got in touch with and 

then try to transfer this knowledge into probabilities of how technology may be embedded in society. 

This interpretation in the form of socio-technical scenarios is used as a narrative for an interaction base 

for stakeholders, preferably through a workshop, to discuss and brainstorm of “how to achieve better 

technology in a better society.” There are critics who state that using socio-technical scenarios including 

their interpretation might be very blurry and that the use of CTA is thus restricted to an exclusive idealistic 

forum following an esoteric agenda [13]. However, new methods can be tailored to every CTA project 

[121]. 

It is necessary to see if the goals of CTA are achieved if actors are chosen and assigned correctly, if 

there was achieved a sufficient support to participate in discussions and if the set-up allowed represent 

a sufficient interface between enactors and selectors. Follow-up interviews after a workshop are a 

measure to validate if the CTA exercise was successful. And, if actors have developed a shared frame 

of applications [128]. Such interviews can be conducted via telephone within a frame of up to 10 months 

after a workshop [146]. 
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Figure 3-3: Scheme of dynamics in the constitution of a technological field (based on [139]) 
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4 Methodology 

The following chapter provides an overview of the methods used to answer the research question stated 

in the introduction. It must be mentioned that the explorative work of Versteeg et al. [121] and [148] has 

provided valuable input for the conceptual set-up of this research. First, the scope of the research is 

specified, and sub-questions are formulated based on previous chapters. Then used methods are 

introduced in the next sections. Finally, the analytical framework is explained. 

4.1 Scope of the research 

The work on hand represents a transdisciplinary research carried out under the frame of Constructive 

Technology Assessment (CTA) principles with an orientation towards Alignment: Loci for Reflexivity and 

Feedback”. The research can be expected as an experimental attempt to a) explore actor visions and 

expectations about battery storage properties and its application and b) to use this information to provide 

detailed information about the consequences of the first through quantitative modeling.  

A high emphasis is put on displaying quantitatively the consequences of normative expectations on 

“better” battery technology design which is seen as a novelty in comparison to popular set-ups for CTA 

(qualitative formulation of socio-technical scenarios as a base for discussion). Creating “better” 

technology is used as a loose term in CTA literature which can be understood as synonymous with 

creating more sustainable technology. This work does not claim to provide a full sustainability analysis 

or LCSA, including all the discussions that emerge around the topic of sustainability. Instead, it refers to 

the term of “better” technology used in CTA with an orientation towards named sustainability dimensions 

and criteria in the literature (see chapter 3.3 and 3.4).  

A broad master narrative related to the domain is derived to avoid a too narrow view (or enacting view) 

on battery storage. The usually last step of CTA, the provision of a platform for interaction of actors to 

achieve alignment of visions, e.g. through a dialogue workshop is too large for this project. Nevertheless, 

the work aims to identify quantitatively the degree of “consensus” among actors to provide a potential 

base for a focused discussion and alignment within such a platform. At the end enabling social learning 

is the core of CTA, results are thus distributed across participants who are interested in feedback. A gap 

which cannot be filled by this work is to prove if something as social learning is achieved through this 

new combination of methods.  

The study mainly uses generic data and is carried out in detail for stationary battery systems. It does 

not allow assessing the merit of innovation of properties that are not available in today´s technology 

portfolio. Modelling is based on today´s commercial potential for energy storage within the European 

electricity market. The exchange between different sectors as transport is possible but not considered 

here. There is a high magnitude of available battery storage technologies, and it is not possible to include 

all of them, this also comes true for other flexibility options. The battery technologies analyzed here 

include a comparison of All-vanadium Redox-Flow batteries (VRFB), Sodium-Nickel-Chloride battery 

(NaNiCl), valve-regulated Lead-Acid, Lithium-Iron-Phosphate battery (LFP) and Lithium-Titan-dioxide 

(LTO), Lithium-nickel-manganese (NMC) and Lithium-nickel-cobalt-aluminium-oxide batteries (NCA). 

For a more systemic perspective, a selection of these technologies is compared to established 
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conventional technologies namely pumped hydro storage (PHS) and a diabatic compressed air energy 

storage (CAES) in a long-term storage application scenario. Hydrogen, power to gas, double use of 

electric vehicles (V2G), second life cycle traction batteries and demand-side management are not 

explicitly considered in this work. 

4.2 Specification of research questions 

The development of electrochemical energy storage technologies can be understood as a process of 

social learning where questions arise about the technical optimization of single components and the 

specific implementation (use) of the technology. This process is linked with political and societal aspects 

relevant for a high number of actors [146]. The research question stated at the beginning is: 

What is the future role of different stationary battery storage technologies within 
the German energy turn-over and what expectations do actors have regarding their 
characteristics? 

A conceptual decision flow diagram (Figure 4-1) helps to contextualize related questions which a 

decision maker might have considering a) choosing battery storage as a balancing option in general b) 

the choice of the right battery technology for a specific application area considering actor expectations. 

It is an example for an iterative decision process inspired by [149] to illustrate the potential logic of a 

decision in the context of the proposed research framework.  

 

Figure 4-1: Schematic decision process for the implementation of energy storage out of a sustainable 
development perspective linked to the research questions A-F (own draft inspired by [149]) 

The hypothetical decision process for this example firstly starts with the question if there is a need for 

balancing within the future German energy system. If there is none, there is no need to proceed, and no 

batteries are required in an oversimplified way. The requirement for balancing technologies can then be 

associated to the question if there is a suitable business case available for battery energy storage and 

if they can compete (if there is any competition) with other flexibility options. 
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In case of an absence of viable business cases for battery storage, other alternatives are chosen. If 

there is a potential application available one has to decide which battery technology to choose. Different 

technologies must then be tested, evaluated and compared to each other according to expectations 

related to their properties. In case of low performance of specific technology an alternative should be 

taken and vice versa in case of a good performance. If a certain technology scores low strategies of 

shaping technology or using it in a different application field might lead to alterations and a positive 

decision within a further iterative loop (not covered in this work). This decision process can be broken 

down into four theme blocks and eight concrete sub-questions as follows which are also indicated in 

Figure 4-2:  

1) Questions related to the general role of battery storage as a flexibility option: 

A) Is there a need for battery energy storage in respect of other flexibility options and what are the 

main driving forces and obstacles for it? 

2) Questions specifically related to battery storage 

B) Identify new linkages between a range of aspects, e.g. design options, user demands, business 

models and potential system integration levels of battery storage 

C) What demands and expectations do different actors have regarding key parameters for battery 

systems for a “better” (sustainable) embedment of technology into society? 

D) Are there shared expectations among actors on energy storage properties and use for energy 

storage among different actors? 

3) Question about impact of expectations through technology evaluation  

E) What are the effects or impacts of different energy storage technologies in selected 

application scenarios regarding identified criteria and use cases?  

F) Which technologies perform the best based on C, D, and E? 

4) Questions about future research points (thus not included in Figure 4-1): 

G) How can results be used to inform actors and to achieve something as “better 

technology”? 

H) How can this process be opened for future assessments to provide a broader basis for 

decision making and technology design?  

The perspective of CTA offers three significant analytical achievements relevant to answer the given 

questions: socio-technical mapping, early and controlled experimentation enabling to identify 

unanticipated impacts and the creation of a dialogue between insiders and outsiders [150]. 

4.3 Applied methods 

A set of quantitative and qualitative methods can be tailored and combined for a CTA project. As 

discussed in the chapters before the core of CTA is that chosen methods should stimulate A) learning 

to explore new aspects e.g. design options and user demands; B) reflexivity to recognize different roles 

of stakeholders in different regimes and C) anticipation to identify effects or impacts of new technologies 

co-produced during the process of technical change [18]. The triangulation of methods and sources, as 

well as closeness to empirical phenomena, is seen as a way to achieve the three forms of stimulation 

[145].  
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As in most research projects, a literature review is conducted which is then followed by a stakeholder-

based inquiry. The research question is formulated broadly at the beginning with the ulterior goal to 

maintain a holistic view of major implications of the domain and to reach a broader population of 

researchers and actors from the application side/selectors. After this, questions are explicitly centered 

on battery storage technologies properties and their use and are more oriented towards enactors. A 

preliminary inquiry is conducted with informal talks, followed by an online test survey with feedback 

comments and semi-structured interviews of both actor groups. The use of different data sources 

(literature, preliminary survey, and interviews) is used to stepwise structure the survey and the multi-

criteria decision model (MCDA) (contribution to A – learning) and consequently, define scenarios for 

technology evaluation through a set of system analysis methods. Triangulation of methods can help to 

gather a deeper understanding of different actor visions and expectations in an interpretative (semi-

structured interviews), and their validation is an empiric way (survey). Beyond these two classical forms 

of inquiry, MCDA can be seen as a valuable method to obtain different normative expectations by 

attributing weights to different aspects of sustainability (contribution to B – reflexivity). These 

expectations and visions must be transferable to “the real world” and must overpass conceptual 

discussions otherwise there is a danger that discussion results may collapse to insignificance the 

moment you force them to test and to trace real consequences [143]. Based on criteria defined in MCDA 

and corresponding weights, the anticipation of effects is analyzed through a set of system analysis 

methods as life cycle assessment and costing (contribution to c – anticipation). All steps of the research 

are given in Figure 4-2 which also refers to the single chapters.  

 

Figure 4-2: Resulting research design for prospective system analysis following meta-heuristics of CTA  

The degree of stakeholder interaction is the highest in step 2 and 3, step 4 - the phase of modeling 

includes only an indirect interaction of stakeholders but builds up on some of the questions raised in the 

preliminary assessment. This point is specified at the end of chapter 5. Step 5 – the presentation of 

results includes the distribution of results among stakeholders.  
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4.3.1 Stakeholder engagement  

The following sections discuss methodological issues related to the involvement of stakeholders. Three 

approaches are applied to inquire actor expectations and visions of energy storage and sustainability. 

Firstly, explorative semi-structured interviews are introduced together with the conducted survey. 

Finally, MCDA is briefly presented as method beyond typical forms of inquiries within CTA. More 

information about the single steps is given in the corresponding chapters. 

4.3.1.1 Survey set-up and semi-structured interviews 
The survey served as a base for semi-structured interviews and was continuously enhanced during a 

pretest phase that consisted 3 phases. The first phase consisted of informal discussions at the 

candidate’s home institutions to structure the survey. These first versions were sent to a selected set of 

external experts able to comment the survey in the sense of critical reviewers. Beside technology system 

integration and application issues, a first set of relevant criteria was included here. Actors where then 

interviewed based on the questions and proposed MCDA criteria of the survey.  

There are three general forms of interviews: structured, semi-structured and unstructured interviews. 

Structured interviews are eligible for descriptive research, whereas unstructured ones are used for 

exploratory research. Semi-structured interviews offer a way to combine exploratory and explanatory 

insights [149]. The motivation to conduct interviews in this research was to obtain particular insights into 

the problems that different actors face nowadays and to find out what expectations and visions they 

have for the future use on stationary energy storage systems. Semi-structured interviews are explored 

to provide sufficient structure as well as flexibility to tackle this task. All interviews had a length of 20 to 

120 minutes.  

After this pre-test phase, a consolidated version of the survey including an MCDA model was spread 

among relevant stakeholders for reasons of empiricism and to gather preferences regarding the shape 

targets of stationary battery storage in respect of sustainable development.  

4.3.1.2 Multi-criteria-decision-analysis  
Multi-Criteria Decision Analysis models (MCDA) can be seen as a valuable method to obtain normative 

knowledge about of “about how the world should be.” The uncertainty inhibited in this assessment is 

based on the fact that shape targets for an optimum technology construct are dependent on multiple 

actors preferences which by contrast to physical / tangible factors represent a psychological realm 

claimed to be intangible as they are related to subjective ideas based on beliefs of the individual about 

himself or herself and the world of their experience [151]. This complexity and inherent uncertainty of 

early-stage system analysis are re-enforced by the unclear (or yet not existing) socio-technical 

embedment of emerging technology. This situation makes it difficult to disaggregate or allocate 

technological, societal, environmental and economic impacts. MCDA as a sub-discipline of operations 

research explicitly consider such complex decision problems and provide a possibility to tackle them 

[101]. Especially the Analytic Hierarchy Process (AHP) developed by [152] in combination with the 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [153] is identified to be an 

adequate method in the frame of this research.  
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It is important to mention that MCDA is not able to identify the ultimate right solution, as there is never 

a perfect solution available in real life [154] as pointed out by Phillips as follows [101]:  

“…. decision theory has now evolved from a somewhat abstract mathematical discipline  

which when applied was used to help individual decision-makers arrive at optimal decisions,  

to a framework for thinking that enables different perspectives on a problem to be  

brought together with the result that new intuitions and higher-level perspectives are generated.” 

MCDA is considered as a support for decision making with the aim to support decision makers to 

organize available information, to rethink consequences of alternatives and to explore their own 

perceptions and needs [155]. Further decisions and preferences are expressed in the form of equations, 

inputs, and coefficients which can be observed and reproduced by other specialists [156]. In this way, 

MCDA provides essential, reproducible as well as objective insights and allows to grasp strategic 

intelligence about influence parameters of new technologies and their sustainability which at the end 

result from their socio-technical embedment.  

The degree of “sharedness” of visions and expectations about technology design is seen as a base to 

identify discussion points to achieve alignment among actors. The use of methods as the Shannon 

entropy or beta- and gamma diversity offer a solution to make this visible based on AHP results.  

4.3.2 Technology evaluation through system analysis 

The need for system analysis emerged from the increasing complexity of modern technology. It is a 

collective term for mostly quantitative but also qualitative methods which are used for technology 

planning, development, decision making and broad assessment also from non-technical criteria [157]. 

System analysis aims to reproduce certain phenomena (e.g., the energy system, electric vehicle, 

specific component) including their properties. This is done via formal approaches to reduce the 

complexity of a (technical) system and its surroundings by problem decomposition into sub-problems. 

And, enables it to trace real consequences of “actions” taken in technology development.  

The major step within almost all system analysis approaches is the definition of a system and its borders. 

A system is always in interrelation with its environment (may it be markets, nature, an electric engine or 

society). Over its borders, there is a continuous flow of in and outputs as depicted in a schematic way 

for a technological system and a market in Figure 4-3. This approach makes it possible to understand 

major dynamics inhibited in such a system and to identify “screws” that might lead to a better system. 

 

Figure 4-3: Scheme for the interrelation of a technological system showing the exchange of services and money 
with its environment [149] 

Some typical quantitative and qualitative tools used for system analysis tools are techno-economic 

assessments, economic-, social- and ecological life cycle assessment, material flow analyses, ABC-

Analysis, and energy system modeling, etc. [157], [142]. The choice of the right system analysis tool 
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depends on the specific research question, technology as well of its development status. In case of the 

assessment of emerging technologies the more distinct term “prospective system analysis” (PSA) is 

sometimes used [19]. This term implicitly inhibits one of the guiding principle of CTA by using quantitative 

methods to look at drivers, effects or economic, social and environmental impacts of emerging 

technologies as early as possible in order to avoid unintended effects or at least rise attention to them 

[158], [19]. Anticipating efficiently potential impacts of emerging technologies before they enter market 

requires an assessment that covers the entire life cycle of a product or system. This entails production 

patterns, political as well as economic framework conditions, future developments and markets and 

usage of technologies [120].  

 Life Cycle Assessment (LCA), Life Cycle Costing (LCC) and social Life Cycle Assessment (sLCA)28 are 

methods that enable the identification and quantification of potential benefits (or disadvantages) of new 

technology in comparison to other traditional alternatives. These approaches include the extraction of 

raw materials, production, use phase as well as the disposal or recycling of products (cradle to grave). 

This assessment is done by accounting for burden shifting between these life cycle phases and the 

tracking of impacts in diverse impact categories. The different approaches, which are mainly used in 

this work can be briefly introduced as follows:  

x  LCA is a “classic” within analytic tools and is an established and integral part of environmental 

management tools. It is a standardized approach within DIN ISO 14040 [159] and 14044 [160] 

that documents a product’s or product system’s environmental impact over the complete life 

cycle. Such impact categories can range from climate change to human toxicity, acidification, 

and ozone depletion. It is characterized by four phases; goal and scope definition, live cycle 

inventory analysis, life cycle impact assessment and the interpretation of results. 

x LCC as a tool for management is used by companies for among other things major investment 

decision processes, alternative production processes, maintenance and logistic concepts [161] 

to identify potential cost optimizations during a . There is no standard available for LCC but 

guidelines as the IEC 60300-3-3 [162] or VDI 2884 [161] for general application by both 

customers and suppliers of products, explaining the purpose and value of LCC and outlines the 

general approaches involved.  

x Other methods: Literature review of relevant articles to build up database for modeling, monte-

Carlo simulation to evaluate aleatoric uncertainties and a sensitivity analysis related to LCC and 

LCA 

Analyzing and comparing traditional against innovative products with each of this approaches makes it 

possible to give feedback to developers, manufacturers or decision-makers about the specific impact of 

an innovative product system regarding different spheres of technology properties considering various 

application cases expressed through numeric values [19]. The named approaches LCA and LCC (as 

well as s-LCA) can be combined to access technology impacts. There are methods as Life cycle 

                                                      

28 The method is not applied in this work as it is considered to be in its infancy as well as the absence of reliable data. 
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sustainability Assessment available, e.g. [163], [164] that claim to provide a sustainability assessment 

but which remain at least partially conceptual.  

 

4.4 Analytical framework  

The last chapters have introduced the scope, sub-questions and the used methods of this research 

conducted under the frame of CTA. Stakeholder engagement includes semi-structured interviews, an 

online survey, and a Multi-Criteria-Decision Analysis model to elicit different expectations and visions 

about the domain. These expectations are quantitatively evaluated by the use of MCDA and different 

system analysis methods. None of the presented methods are deemed to be sufficient to analyze the 

future role of electrochemical storage technologies and their properties. It is postulated that combining 

insights of all methods under the frame of CTA allows not only gain more profound insights into the 

economic, environmental and social performance of electrochemical energy storage, but also 

implications of the larger landscape and niche developments. Combined views from enactors and 

selectors allow it to shift the loci of assessment to provide a broader picture of the domain. This 

information is then fed back to interested actors in the form of a short report. Finally, the analytical 

framework is presented in Figure 4-4. The flow of information indicated in this figure will be explained in 

the corresponding chapters. Stakeholder engagement is presented in chapter 5 including first results 

about relevant socio-technical factors and six where MCDA is introduced. Technology evaluation is 

presented in section 7. Finally results from MCDA and technology evaluation, which are highly 

interdependent as the first determines what to analyze in the latter are presented in chapter 8.    

 

Figure 4-4: Overview about the analytical framework where arrows indicate the flow of information under the 
frame of CTA 
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5 Actors views on battery storage as a balancing option 

The literature review has shown that there is a high potential for energy storage in the future. This 

chapter has the aim of exploring the agency of enactors and selectors to identify to what extent other 

balancing technologies, concerns about technology and market design as well as institutional factors 

represent a barrier for market diffusion of electrochemical energy storage technologies in the context of 

the energy transition in Germany. The semi-structured interviews and the survey in this work are 

structured around the following points:  

A) Balancing technologies – questions about relevant developments in the energy system, related 

expectations on balancing technologies, markets, system architecture and sustainability  

B) Grid battery storage – questions about the future use, technical requirements, and application 

of grid battery storage 

C) Desired characteristics of balancing technologies – Analytic Hierarchy Process (AHP) for the 

ranking of criteria considered as relevant for a better socio-technical embedment (next chapter) 

and “sharedness” of expectations on these 

The interviews are analyzed qualitatively whereas survey results are evaluated statistically by the use 

of a Mann-Whitney U-test realized in SPSS © to prove if there are significant statistical differences 

between enactors and selectors. The MCDA approach is explained separately in chapter 6 due to a 

large extent. The survey and the MCDA inquiry are realized in SoSci Survey © which is freely available 

for academic research and has proven to be flexible enough for the research on hand. A detailed 

overview of the entire online survey is given in Annex A.  

The first section highlights the process of stakeholder selection and engagement. The following chapter 

aims to unveil stakeholder visions and expectations about point A. This is followed by more detailed 

questions about electrochemical storage (point B). Finally, a summary and some implications ofe this 

further research is presented.  

5.1 Set-up for stakeholder involvement and selection 

Choice of participants is based on different socio-technical sub-regimes dimensions relevant for energy 

storage identified by [5] as indicated in Table 5-1. Multiple mentions of stakeholders regarding different 

dimensions to concentric rings are unavoidable as an explicit allocation is not possible.  

Relevant stakeholders of the different named socio-technical sub-dimensions were selected based on 

three approaches as follows: 

1) Via organizations; which are known to be a relevant stakeholder were contacted and asked to 

forward the inquiry to a responsible person for the given topic. 

2) Contacts with relevant skills; persons with high skills in the field, track record or publications 

were approached directly.  

3) Snowball principle: All participants were asked to forward the inquiry to colleagues fulfilling 

the conditions of the former point 
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A precondition for actor invitations was to have a balance between all named stakeholder groups of at 

least 6 participants with a maximum of 50 % of academics [5]. Participants should be experts in their 

field but not necessarily in the field of stationary battery storage. A primary aim was to contact mainly 

principal investigators, higher management and project leaders. 

Table 5-1: Different socio-technical dimensions and corresponding stakeholder groups within a concentric view of 
energy storage in general inspired by [5] and [149]. 

Socio-technical sub-
regime 

Stakeholder groups and their location within a concentric system view 

Software  Orgware Socio-ware 

Technology  Developers, academia, 
manufacturers 

Developers, academia, 
manufacturers, industry 

Political goal: transition 
of the Germany energy 
system towards an RES 
share of 100 % in 2050 

 

  

Industry Developers, academia, 
manufacturers 

companies, networks operators, 
developers, RES system integrators, 
component manufacturers (inverters, 
etc.), Energy storage industry 

Infrastructure  Transmission & Distribution System 
operators (TSO &DSO), utilities, 
academia 

Policy  Regulators, academia, Policymakers 

Culture All All 

Science Academia, Industry Academia, Industry 

Market User 
preferences 

 Utilities, TSO´s and DSO´s, demand 
Aggregators, End users, RES-
generation owners 

 

Actors related to the socio- and orgware were mainly contacted with a geographical focus on German 

Germany in the context of the “Energiewende”. Additionally, actors from Austria and Switzerland were 

included to create a broader base for the inquiry. The choice of these countries is based on the fact that 

they share a common electricity wholesale market area with Germany. Furthermore, legal frameworks 

are comparable, and electricity exchange between the three countries is very high. An exception was 

the hardware circle strongly related to technology consisting of internationally distributed stakeholders 

as battery manufacturers and developers are active on a global level. The final list of included groups 

and their allocation with a short description and classification through the goggle of CTA (selector – 

enactor) is given in Table 5-2.  

5.2 Format of stakeholder engagement 

The survey served as a base for semi-structured interviews and was continuously enhanced during a 

pretest phase that consisted 3 phases. A first pretest phase was carried among 12 persons working in 

the broader field of energy systems (System analysis, energy storage, mathematics, technology 

assessment) at the Karlsruhe Institute of Technology (KIT) and Nova University Lisboa (UNL). All 

participants had the possibility to comment each question and criteria presented in the online survey. 

Additionally, to this step 5 informal semi-structured discussions were carried out. These conversations 

were based on the feedback and results participants gave in the before distributed survey and has led 

to an adopted list of stakeholder groups and reformulation of some questions and criteria. The talks had 

a duration between 30 to 180 minutes. Finally, all questions, stakeholder groups, and criteria were 

presented to the candidates working group (7 persons) to consolidate the inquiry.  
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Table 5-2: Classification of different stakeholders 

Stakeholder Allocation Description 

Utilities Orgware – selectors Generation, service, end user, infrastructure 

Network operator Orgware – selectors Grid operation, infrastructure 

RES production/retail Soft and orgware – selectors System integration, manufacturing, planning, 
operation 

Energy Storage Business Software - enactors System integration, service, operation, 
planning, Lobby groups 

Battery R &D (University) Software - enactors R & D battery technologies (electrodes, 
systems, electrolytes, etc.) 

Research - Energy system 
(University) 

software - selectors System analysis and modeling, energy market 
modeling 

Regulation Orgware – selectors Market rules, grid connection rules, etc. 

Civil society Software and socioware – 
enactors and selectors 

Environmental conservation groups - NGOs 

Battery manufacturer Hard, Org- & software – 
enactors 

Production, R&D, sales, system integration, 
operation 

Automotive sector (electric 
mobility) 

Software – enactors & 
selectors 

System integration (vehicle), production, 
operation 

Public body & policy making Orgware & Software – 
selectors 

Legal framework, subsidies,  

Other Various Related to the topic 

 

The second pretest phase included external experts (outside KIT and UNL) which were confronted with 

a more consolidated survey. A precondition for this phase was to contact at least one representative of 

all stakeholder groups within the seven socio-technical sub-regimes. The survey was distributed with 

individual emails to 22 experts within all socio-technical sub-regimes. The first contact briefly introduced 

the topic of the survey and possible interview. The mail stressed that the aim is to get critical feedback 

on the survey as well as to gather general expectations about energy storage. It also highlighted that no 

expert knowledge about electrochemical energy storage is required. Candidates were also asked if they 

are willing to participate in follow-up interviews. In total 13 external experts responded providing various 

comments and thoughts on the topic. From these ten candidates were willing to participate in an 

interview. An overview of the participants and the interviews is given in Table 5-3. 

The interviews were conducted in a semi-structured way mostly via telephone due to the considerable 

physical distance of the candidates. Only one personal interview was conducted with a participant 

working in the same city. Each interview had a duration between 30 to 120 minutes and was conducted 

one to one. As mentioned before candidates were familiar with the overarching questions for the 

interview as they were provided in advance through the survey. The questions were not followed strictly, 

but they provided a structure for the individual development of each interview. It was guaranteed that 

the material would be used in an anonymized form without direct quotation.  

The interviews started with a short introduction of the topic and then left the candidates space to 

introduce themselves and their field of work. This was flanked by questions about their profession. This 

has helped to achieve a more casual interview situation, and to surpass to a certain degree the non-

personal character of a phone talk. It was recognized that all candidates answered questions very 

carefully in the first 10 minutes probably due to cautiousness. After 15 minutes, they opened and 

expressed more their own opinions. Leading topics were discussed between 20 to 40 minutes 
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depending on additional questions based on the amount of feedback provided by each interviewee a 

priori. This was then followed by a less formal conversation about the research and the implications of 

it.  

Table 5-3: Overview of interviewed actors 

Index*  Organisation Type Organisation Profession Comment 
P1RE Private Research 

Institute 
Enactor Private Research 

Institute 
Head of Energy 
department  

Via telephone, ~40 
minutes, notes 

P2U Utility company Selector Utility company Head of department   Via telephone, ~50 
minutes, notes 

P3RES RES System 
integrator 

Selector RES System 
integrator 

Senior operation 
services  

Via telephone, 
~115 minutes, 
notes 

P4U Utility company Selector Utility company Senior consultant Via telephone, ~40 
minutes, notes 

P5U Utility company Selector Utility company Head for energy 
storage project 
development  

Via telephone, ~50 
minutes, notes 

P6Reg. Regulation agency  Selector Regulation agency  Expert of the 
department of RES 
and energy 
efficiency 

Via telephone, ~90 
minutes, notes 

P7Auto Automotive  Enactor Automotive  Vice head of project 
management 

Via telephone, ~80 
minutes, notes 

P8ES Energy storage 
business 

Enactor Energy storage 
business 

Project 
management 

Via telephone, ~90 
minutes, notes 

P9Ac R&D University Enactor R&D University Principal 
investigator energy 
storage research 

Personal, ~80 
minutes, notes  

P10PC Energy Policy 
consulting 

Selector Energy Policy 
consulting 

Consultant & 
Professor @ Univ. 

Via Telephone ~20 
min, notes 

*Index for every participant where RE=Private Research, U= Utility, RES=Renewable energy source, 

Auto=Automotive business, Ac=Academia, PC=Policy consulting  

Hand notes were conducted with the ulterior motive to avoid guarded responses and maybe self-

consciousness as in the case of recordings [5]. None of the participants refused this procedure. Notes 

were transcripted directly after the inquiry and included only the most critical points of the interviews.  

This phase has led to further small alterations of the survey and offered valuable additional qualitative 

information about the questions raised. The responses are combined with the results of the survey in 

order to provide a deeper understanding of stakeholder’s visions about the development of the sector.  

The third phase before final distribution was a last technical pretest. The test was conducted with five 

persons of the candidates working group. It had the aim to avoid format and spelling errors in the final 

survey version and to test the connected MCDA model presented in chapter 6. After this loop, the survey 

was distributed to the previously identified persons and organizations.  

5.3 Stakeholder consultation and participation  

The pretest phase has led to a total number of 13 stakeholder groups. Candidates where approached 

based on 1) organization, 2) skills and 3) snowball principle as explained before. The first list of 81 

stakeholders and organizations was developed based on internet research and business contacts. An 

internet research was conducted to identify organizations suitable for the inquiry. Identified organizations 

were contacted formally and were asked to forward the inquiry to contact responsible for the field.  
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Contacts related to point 2 were based on the candidates existing network. This network consists of a 

high number of experts from the field of energy storage, generation and RES through international 

conferences, workshops, and projects. Some events which have led to essential connections worth to 

be mentioned were among other things: Energy Storage World Forum 2014 in London; Armand Peugeot 

- International Conference "Electromobility: Challenging issues"; IEEE International Energy Conference 

2014. Dubrovnik, Croatia; 4th International IEEE-Conference on Clean Electrical Power Renewable 

Energy Resources Impact (ICCEP) in Alghero, Sardinia 2013; "Energiewende - zwischen Konzept und 

Umsetzung." Bonn 2013 and IEEE International Energy Conference and Exhibition (EnergyCon), 

Florenz 2012 and others.  

Finally, 106 persons were contacted directly via personalized emails naming the reason why the 

candidate has been selected for the inquiry, and 30 emails addressed organizations. One initial condition 

was to include about six persons per stakeholder group which was not achieved at the beginning. It was 

thus necessary to contact more experts in the areas where this was not achieved. Still, it was not 

possible to fulfill this precondition as feedback was very low in some of the stakeholder groups (e.g., 

public body & policy making). The total number of contacted experts was 136 and an estimated amount 

of about 100 persons included through forwarding the message to colleagues (communicated in 

response emails and total clicks on the survey of 272). In total 91 persons started the survey if second 

round pre-testers are included. 71 Persons finished the entire survey, while the remaining ones did only 

finish it partially. All stakeholders are categorized into the two categories of enactors and selectors as 

indicated in Figure 5-1. 

 

Figure 5-1: Total number of different participants including pre-testers of 2nd phase with n=71 

Other stakeholders were three consultants, four power electronics manufacturers, one electrolyzer man-

ufacturer (one unknown profession was excluded in total assessment). The most responses came from 

battery researchers (11), followed by utilities (12) and energy system research (8). The RES sector also 

had active interest in the topic (8). About five battery manufacturers and six experts from the field of 

energy storage answered the survey. The municipal utility (2), automotive (2) and policy-making group 

(1) had the lowest feedback rate. The feedback rates should be handled with care as they do not allow 

representative insights into the interest of different stakeholder groups in the topic. Feedback rate might 

be influenced by several factors, e.g. a number of colleagues informed. The self-assessment into one 

of the stakeholder groups can be tricky, this was stressed by some of the interviewed candidates. One 
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stated that most of the municipal utilities are also network operators making it difficult to allocate one-

self into the right field intuitively, what might explain the low feedback rate of this group.  

The success of CTA is, of course, dependent on the willingness and openness of actors to use “spaces 

for broader negotiation processes. Participants of the survey were thus asked to voluntary indicate at 

the end their willingness to participate in an alternative interactive workshop and in follow-up interviews 

related to the recommendations found in section 3.5 (see Figure 5-2). Most of the actors would be willing 

to participate in such an event to gather more profound insights into the field. Especially battery 

manufacturers showed a high interest in such a format which contrasts with battery R&D.  

Less than the half of all participants would then be willing to participate in follow-up interviews. In both 

cases, about half of the selectors and enactors would be willing to participate in a workshop. Willingness 

to participate in follow-up interviews for validation is slightly lower in relation to the former. Still, in both 

cases, it is believed that there would be enough participants available for a workshop and a handful of 

follow-up interviews to test if the CTA process has changed stakeholders view on technology (if they 

think differently about technology, are they more conscious regarding other criteria not considered 

before the process).  

 

Figure 5-2: Willingness of participants to take part in an interactive workshop and in follow-up interviews with 
N=67. 

5.4 General expert views on balancing options  

The following section gives an overview about expert expectations on different balancing options and 

the role of battery energy storage in relation to these. Political and market aspects related to energy 

storage and changes of the electricity system towards more decentralization are given in the following 

sections and aim to construct the “evolving landscape.” The last section analyses the perceptions on 

the importance of sustainability aspects for investments into balancing options, especially energy 

storage. 
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5.4.1 Expectations on balancing technologies  

The interviews showed that all experts agree that there will be a need for balancing in the future. Indeed, 

there was no consensus about the amount, time frame or balancing options needed [P1RE, P2U, P4U, 

P8ES]. In general, some participants see a requirement for additional flexibility options at an RES share 

around 40 % which would correspond to the year 2025 regarding the analyzed studies in section 2.3. 

Expectations and visions of stakeholders about the need for balancing strongly correlate with the set of 

studies reviewed in chapter 2. There are though doubts about taken market assumptions [P5U] and 

considered business models [P2U] and [P7Auto]. One expert [P1RE] pointed this out as follows:  

“…  not clear how much balancing required…it is impossible to give robust statements about single 

technologies… not important as there will be a mix of different flexibilization technologies.” 

This statement was underpinned by other interviewees as P4U by stating that the specific technology is 

not of interest out of a energy economic perspective. Interest is more nested in the bigger context with 

a general view on storage. It was furthermore stressed that balancing does not have to be provided by 

energy storage technologies as there are other options available [P1RE, P2U, P4U]. There are mainly 

four alternatives discussed in the community which are namely: 1) Grid reinforcement measures, 2) 

flexible demand, 3) flexible power plants and at the end of line 4) electric energy storage. The latter was 

divided into centralized (PHS, CAES) and modular storage/battery storage for a specific discussion with 

experts about the role of these among other alternatives. All addressed balancing options are seen as 

relevant, but expert’s options differ on the extent of importance:  

Demand side management: A significant problem regarding demand-side response is seen in end-

user acceptance related to required smart meters and related high costs nowadays. This was especially 

pointed out for industry regarding the fear of losing to a specific degree control over their production 

[P7Auto]. There is only seen a small potential for DSM in the end-user and energy markets due to 

missing business cases and small profit margins [P6RES], [P5U]. One exception was mentioned using 

wall boxes to conduct DSM with electric vehicles [P7Auto].  

Centralized storage (e.g., PHS and CAES): The potential for centralized energy storage especially 

PHS is viewed as critical due to severe acceptance problems of the public against new projects and 

high environmental legal constraints. At the same time, they are claimed to be the only economic viable 

option available nowadays facing an increasing cost pressure from markets [P10PC]. Existing PHS are 

already operating at the brink of being economi viable [P8ES], and potentials have already been 

exploited in the past [P8ES]. The technology may serve as a backbone for system stability in 

combination with decentralized storage options in the future [P10PC]. Other technologies named in the 

context of centralized energy storage were power to gas and hydrogen.   

Grid Extension: is perceived as elemental to the success of the Energiewende. Despite the need for 

it, all experts argued that this option is highly unpopular within population making it difficult to realize 

necessary extensions [P3RES], [P7Auto], [P5U].  

Flexible Power Plants: Experts stated that technologies as gas turbines are well known for their safety 

and low cost in relation to other options. There are furthermore no acceptance problems awaited as, 



Actors views on battery storage as a balancing option 

57 
 

e.g. in comparison to PHS. Nevertheless, some experts do not see this technology as relevant on the 

long term (after 2035 to 2040) [P8ES].  

Battery storage: Experts have different opinions when it comes to electrochemical energy storage in 

comparison with other flexibility options [P10PC]. An often-named significant advantage for batteries in 

relation to other options are high-efficiency grades [P3RES] and modularity [P10PC]. Electrochemical 

storage is seen as crucial for specific niche applications especially for short-term applications as primary 

frequency regulation or uninterruptible power supply. Most interviewees doubted that battery technology 

could compete with any of the given alternatives due to their bad comparable economic performance 

[P9Ac]. Low economic performance is also often linked to concerns about sufficient cycle life time of 

most battery types. Thus, participants perceive them as not that relevant for the years to come [P3RES], 

[P8RES] and [P10PC]. High potentials are seen for battery storage in case of a decentralized energy 

system structure in combination with increasing market shares on electric vehicles [P8RES], [P7Auto]. 

This is mainly seen due to a more accessible realization of small multi-kWh units until the 2030ies and 

the possibility to adapt to increasingly dynamic market situations through the given modularity of 

batteries.  

Some of the survey participants also added several flexibilization options in the comment area as 

follows: Power-to-heat, power-to-gas, Vehicle-to-grid, Flexible RES generation (e.g., curtailment & 

participation to balancing), Power conversion, P2heat and P2cold. Comments show that there is a 

plenitude of options available which are not considered explicitly in this work. 

It can be said that some balancing measures are considered by experts as more intermediate solutions 

as transmission grid extension and flexible power plants [P8ES]. Most experts think energy storage 

technologies, including modular and centralized systems, are in general still too expensive in relation to 

the other options named [P8ES] [P10PC] and that there might be a too strong willingness of policy to 

support energy storage projects since they might “bet on the wrong horse” [P10PC]. A major problem 

attributed to the energy storage is not directly related to the technology itself but the absence of suitable 

business cases. The general need for energy storage itself is intensively discussed in the community 

[P1RE, P2U, P4U, P5U, P7Auto, P8ES] and the extent of the relevance of a balancing option should 

always be seen in relation to all available technologies [P8ES]. The lack of suitable business cases can 

also be transferred to all other technologies named, despite grid extension measures.  

Participants were asked to attribute points to different balancing options in a 1-10 continuum between 

“low relevance,” “Medium” to “high relevance” within the survey as depicted in Figure 5-3. A Mann-

Whitney U-test is conducted to evaluate if there are significant statistical differences between enactors 

and selectors. The U-test is a non-parametric test which compares two groups response distributions 

by replacing original observations with an ordinal rank to form a test statistic [165]. It is one of the most 

used statistical tests used in case of the absence of normally distributed data or if there are notable 

differences in the number of subjects of two comparative groups [166]. Both circumstances are the case 

for the inquiry conducted. A p-value over 5 % leads to a rejection of the Null-hypothesis that groups 

have statistically significant different characteristics. The higher the value is, the higher the probability 

that the compared groups have the same distribution of responses. For the sake of reproducibility also 

Mann-Whitney U values (MW U) are given in the figure for comparison reasons. 
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Figure 5-3: Relevance attributed to different balancing measures where Mod.Bes=Battery storage; Grid Exp.=Grid 
expansion measures; Flex.Pow= flexible power plants, CES=centralized energy storage and DSM for demand-

side management 

Different tendencies of enactors and selectors allocated to a specific technology are indicated by the 

mean value of ratings. Interviews give a somewhat pessimistic outlook for storage in general for the 

years to come; this comes especially true for batteries. It is thus interesting that both types of actors 

perceive battery storage as the most relevant technology among the other balancing options (7.4) in the 

survey. Especially the group of RES production and retail actors attributed a high score to batteries, 

maybe due to their interest in promoting stronger decentral structures with a high share of PV. This also 

comes true for participants from the automotive sector who see a high potential for synergy effects of 

electric mobility and battery storage.  

All participants have a rather pessimistic view of the role of larger energy storage units. This perception 

seems is especially shared by utility companies which may have bad correspondent experiences and 

corresponds well with the insights given in the interviews. Other measures as DSM and Grid expansion 

measures have comparable ratings regarding their importance (high with a mean value from 6 to 7). In 

total, notions about the relevance of unique technologies seem to vary a lot among the groups. Still, the 

U-test has shown that the observed differences in all cases between the two groups in the sample are 

not statistically significant.  

5.4.2 General expert views on market and policy aspects 

Most of the participants perceive balancing technologies, especially energy storage as an essential 

precondition for the success of the German energy transition, but don´t see a high potential for these in 

the years to come. An often named reason for reluctant investment activities is the absence of 
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commercial and legal incentives. This results from the fact that stakeholder roles are not really 

established and continuously shaped and regrouped [121]. Yet no really socio-technical regime has 

been established when it comes to energy storage. Further discussion was thus based on the question 

if RES impacts on markets and system stability are underestimated on a policy and market level. The 

aim of the question is to explore policy and market conditions under which storage technologies will be 

introduced into the energy system in the frame of this transition and which may be seen as an obstacle.  

Participant P10PC stated that the market impacts of RES are well understood and that most of the 

relevant studies published in the last five years go in line about the effects of RES on wholesale markets 

and related implications for energy storage. On the other hand, RES growth was underestimated in the 

last five years. Transmission grid operators did, e.g. not anticipate the number of grid congestions and 

dispatch costs related to the system integration of wind and PV [P10PC]. 

There are thus doubts among experts regarding the predicted RES shares until 2030 due to missing 

strategies to achieve RES goals on a policy and regulation level. These concerns are primarily 

connected to the German Renewable Energy Act (Gesetz zur Förderung erneuerbarer Energien –EEG). 

Not only EEG regulations have to be improved, but markets, as well as the legal framework of the 

electricity grid as actors, think that impacts are underestimated on multiple levels. A representative 

statement was given by P5U as follows: 

“…. The energy turn-over will work… but not in the way it is propagandized by the government …with 

an 85 % RES share target… it is completely illusory regarding the catastrophic market situation…and 

missing regulation….already 40 % RES shares will lead the market and system to tumble…then we 

might have a problem if not storage is available… market and EEG regulations have to change to 

maintain system safety”. 

The EEG is considered as a key to energy storage success, in the sense that it should attribute more 

personal responsibility to RES and energy storage asset owners. Especially regulation for residential 

storage and the obligation of (more) direct marketing of RES [P5U] were named as crucial aspects to 

foster new business models. Such regulations should also include third parties that provide direct 

marketing services of RES generated electricity in combination with energy storage [P5U]. Experts also 

stress that changes in regulations should not only happen on a national level but on a European scale. 

This statement is reinforced by P3RES, P9Ac, and P7Auto, addressing lack of suitable overarching 

strategies on a policy level and regulation as follows [P3RES].  

“.. it is underestimated to a certain degree… policy actors have learned from the past … EEG was 

adopted to minimize RES growth to take pressure from grid operators…the measure does not work… 

RES still grow and still no overarching strategy…Is available” 

On the other hand, there are also other views on the role of regulation which is not seen as a necessary 

measure to steer energy storage development [P5U]. This notion is reinforced by a statement from a 

survey participant claiming that decentralization and democratization of electricity production should not 

be hindered through legal regulation as it is the case for PV nowadays.   

The magnitude of interviews [P3RES, P7Auto, P2U, P4U, P8ES] agreed that market situation in 

Germany should change in frame of the Energiewende. Even mature energy storage technologies as 



Actors views on battery storage as a balancing option 

60 
 

PHS are operated sharply on the threshold of being economically viable due to increasing market 

pressure. Most experts claimed that there are several storage technologies already existent nowadays, 

but that there is no business case and only insufficient market regulations available. The value of storage 

cannot be directly allocated to one actor as there are several beneficiaries of services provided (e.g., 

storage in combination with wind energy direct marketing leading to transmission and distribution 

upgrade deferral). This is problematic as the investment in storage is conducted by one party. Thus, 

storage services provided should be accordingly rewarded which is not the case nowadays [P7Auto]. 

Actors named different measures to tackle these challenges reaching from a new way to calculate 

margin costs within the merit order model, new forms of auctioning models [P5U], up to the formation of 

capacity markets [P8ES]. In this context, some actors claimed that available energy models do not 

account changes in market design and broader technology use. Stakeholder P5U claimed that market 

models have a short validity because it is unclear if market clearing prices and margin costs will be 

calculated the same way in 2030. Further doubts are also related to the underestimation of dispatch 

costs and grid congestions. This is on the one hand based on the logic of applied energy models that 

use a “copper plate” grid approach and don´t consider these effects [P10PC]. Furthermore, short-term 

fluctuations are often not adequately considered as hourly time steps are used in most modeling 

approaches [P5U]. The magnitude of the interview partners seemed to agree that some studies may 

systematically underestimate storage technologies.  

The results of the survey give a more moderate view in relation to interview impressions as indicated in 

Figure 5-4. All participants had the possibility to rate if they entirely agree (5) or not (1) to the given 

statement (if RES impacts on markets and system stability are underestimated on a policy and market 

level). Half of the selectors (25) agreed to the comment whereas only ten enactors did. It is notable that 

about 18 participants did not agree with the statement and that in average enactors seem to have a 

slightly neutral view on this statement (average 3.1). The reason for this discrepancy could be based on 

the fact that this some participants of the group are either not so familiar with overall system challenges 

or that they do not perceive them as critical. The U-test has shown that there are no statistically 

significant differences between the two groups due to a p-value above the significance level of 5%. 

 

Figure 5-4: Agreement on the statement that Impacts of the “Energiewende“ on markets and system stability are 
underestimated with n=71 

5.4.3 Expert opinions about decentralization and balancing options 

The next section addressed potential changes regarding the architecture of the future energy system. 

These changes are related to markets, ownership structure and developments of the electricity grid 

towards smart grids and more decentralization with a highly integrated bi-directional flow of information, 
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money, and energy between customers where the entire energy system becomes more complex 

through the inclusion of new technologies as storage or electric vehicles. Such future energy systems 

are told to offer new potentials for DSM, energy storage and battery systems [167], [32]. The next 

question thus aimed to find out about how strongly actors agree that the energy system will be 

decentralized and if this offers new possibilities for energy storage options. There was a strong 

consensus in favor of this statement among the interviewees P9Ac, P3RES, P4U. Especially participants 

from utilities explained that they are conducting own research in the field of decentral energy systems 

and electric mobility to explore new business potentials. Participant P3RES noted that especially 

industry is increasingly building up own generation units to optimize own power consumption. 

Interviewee P5U expressed his approval in a representative form as follows:  

“… the future system will become more small sized… with a higher degree of individual 

responsibility29… and more benefits on a local level…end users have to be integrated in a stronger 

way…only this and not regulation itself enables the integration of balancing measures as batteries, 

demand-side management and others..” 

Some experts see these changes on the long term until 2050 and believe that there will be a balance of 

central multi MW and small multi kW power plants as a kind of transition phase after 2030 up to the year 

2050. Within this time frame, large investments in the field of GW units are told to sharply decrease due 

to increasingly dynamic and uncertain energy market conditions [P6Reg] and [P10PC]. PV, batteries 

and electric vehicles are seen as a significant driver for this development [P7Auto]. It also clear that the 

establishment of decentralized systems may require new local market structures which provide benefits 

for a specific region. This process is seen as a complex task where local actors have to be integrated 

and to provide business models which enable it to generate benefits for them [P5U]. Also, such concepts 

would require the integration of new players as third parties who coordinate marketing and provided 

services by storage [P5U].   

The survey results underpinned this impression as indicated in Figure 5-5. The magnitude of both 

groups agrees to this statement, whereas only four do not. It could be proven that tendencies slightly 

vary across groups, as indicated by different average values, but that there is no significant statistical 

difference among them as p>0.5.  

 

Figure 5-5: Agreement on the statement that the future energy system will be strongly decentralized 

                                                      

29 In the context of local energy consumption and regulation 
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5.4.4 Relevance of sustainability aspects for investment in balancing options 

The literature claims that investment decisions related to energy technologies are strongly based on 

sustainability aspects which reflect the need of society [168]. This claim might be true considering a 

policy level, e.g. the EU directives 2001/77/EC or the target formulation of the German federal 

government regarding the “Energiewende.” The specific question was thus if “sustainability” aspects 

(environmental, economic and social factors) should play a more significant role in investment and 

research decisions regarding balancing options. It had the aim to see how actors think in general about 

fitting technology to societal needs. The question was thus deepened in the interviews and extended by 

asking them if sustainable development is already a task in pragmatic decision making in day to day 

business.   

All participants intuitively agreed that sustainability aspects are an essential factor that should be 

considered in a stronger way in the future [P7Auto, P2U, P5U, P6RES]. Deeper discussion showed that 

most interviewees relativized their first intuitive notion after a certain time as P7Auto: 

 “Of course everybody would intuitively say yes, of course, it is important, but… social justice or 

ecologic compatibility are not a major topic in companies day-to-day business... Only if there is a 

possibility to generate competitive advantages….The availability of resources and a guaranteed future 

are of course important but mainly out from an economic perspective.“ 

The discussion showed that none of the actors would increase the sustainability of a product due to 

altruism on a business level. In contrary, it was stated that actors go out all to exhaust existing legal 

frames and regulations to generate competitive advantages. The statement from the literature that 

decisions related to RES are highly driven by sustainability might be true on the first view but are in their 

core more complex. Interviews showed that notions about sustainability are characterized by a deep 

dichotomy. This circumstance is expressed by P3RES as follows: 

 “Definitely … it (sustainability) is very important! …We are already working in the field of RES, so I 

guess we already contribute to sustainability…but we have to sell our products as cheap as possible… 

there is a strong competition, and at the end, only prices count in the field of RES.” 

All experts are aware of the importance of sustainability aspects but do not explicitly consider them on 

a pragmatic business decision level. In case, notions about different dimensions of sustainability are 

always implicitly connected to economic motives. One Actor argued for example that his company 

included three different sustainability factors into technology-related decision making namely; CO2-

emissions, cost, and resources [P2U]. These three factors can also be seen as primary economic input 

parameters for margin cost calculation and thus form the base of investment calculations nowadays30. 

It is thus assumed that sustainability aspects are probably the least motivation for using these indicators.  

Participant [P10PC] stated that the importance of different sustainability dimensions would increase in 

the future. The example of social acceptance is seen as very important as local resistance against a 

project may lead to delays in planning. Similar statements were also named regarding environmental 

                                                      

30 Generation units margin cost are mainly calculated on base of fuel prices (resources), CO2 certificate costs and maintenance 
cost. 
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aspects (especially regarding the Umweltverträglichkeitsprüfung/Environmental review by officials). 

Thus, the implicit motivation is again based on economic interest. It seems that actors from science 

have a different perspective. They perceived sustainability as more important but also attributed 

themselves a higher degree of freedom as they do not face economic pressure and competitiveness as 

stakeholders from industry [P1RE and P9Ac].  

The results of the survey in Figure 5-6 show that the magnitude of 32 stakeholders agrees strongly with 

the statement. About 26 agreed with it while only 10 remained neutral, and three did not agree. This 

results give the impression, that sustainability is considered as very important within the entire sector. 

A certain skewness can be observed towards higher importance on the aspect in the group of selectors 

in relation to enactors (mean value 4.33 and 4.04). None of the participants disagrees entirely with the 

statement. 

 

Figure 5-6: Indication about the statement that sustainability (economic, ecologic and social dimension) should 
play a more significant role in large balancing technology investments and research (n=71) 

The Mann-Whitney U-test indicated that there are no significant differences between the two groups. 

However, results are characterized by a certain degree of inconsistency when they are compared with 

the interview results. Statements have shown that actors agree intuitively to the statement but implicitly 

always refer to the economic sphere of sustainability. It is assumed that results in the survey are to a 

certain degree a product of un-reflected and somewhat arbitrary answers as sustainability is seen as a 

desirable and normative state by a high magnitude of participants.  

5.4.5 Summary of expert views on balancing technologies 

The need of energy storage technologies is highly discussed among enactors and more actively across 

selectors, not in the sense if they are required but when and in which amount. Energy storage 

technologies represent one balancing option among others which are namely; 1) Grid reinforcement 

measures, 2) flexible demand, 3) flexible power plants and at the end of line 4) electric energy storage 

which itself can be separated into modular and centralized storage. Experts expressed general doubts 

about the economic viability of energy storage itself in relation to these other balancing alternatives as 

there are no suitable business cases and regulations available. There is no high potential seen for 

centralized large energy storage technologies (it remains unclear if large battery storage units are also 

included here). A comparable high relevance is attributed to modular energy storage/battery systems in 

the survey but interviewed experts perceive them as one of the most expensive technologies and don´t 

attribute them a high relevance in the next ten years to come. There is a high consensus among all 
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participants that it is hard to make any robust estimations regarding energy storage technologies due to 

missing business cases and regulatory frameworks.  

Significant issues named are missing regulations within the EEG, wholesale market structure and the 

absence of an overarching European strategy to achieve a 100% RES share until 2050. Experts 

perceive these issues intuitively as an obstacle for broader market introduction of energy storage 

technologies of any kind. It can be derived from the inquiry that changes in the architecture of the energy 

system towards a more decentralized system and resulting lower large-scale investments might 

represent a big opportunity for battery storage in the mid- (2035) to long-term (2050). It remains unclear 

if this process leads to market changes and how new business models will look like in such a system.  

The inclusion of different sustainability dimensions into investment decisions for balancing measures is 

seen as intuitively crucial by almost all participants. Interviews have shown that both actors, selectors, 

and enactors tend to go out all to exhaust existing legal frames and regulations to generate competitive 

advantages [P7Auto]. In general, sustainable development is instead seen as a normative state with low 

relevance on day to day business decisions for technology-oriented actors.  

5.5 Specific expectations on electrochemical energy storage systems  

In general, Experts claimed that it does not make sense to go into detail of different battery technologies 

as the entire topic of energy storage remains blurry and complicated for them. Instead, they proposed 

to make a more general approach and not to focus on single electrode chemistries but just to refer to 

batteries in general. The first section will focus on the expectations and visions about the use and 

location of battery storage systems. The second section will highlight the views of stakeholders to the 

selected properties of battery storage systems.  

5.5.1 Expert views on stationary battery applications and system integration  

There are already various battery technologies available that can be considered as mature, but they are 

not seen as profitable nowadays by the interviewees as there are no reasonable business cases 

available [P7Auto] and [P3RES]. Market diffusion of battery storage is not seen as a disruptive event, 

rather an incremental process over the next ten years [P7Auto]. This development is seen as highly 

dependent on market frame conditions, namely energy prices and availability of regulations. Experts 

state that batteries can provide high power as well energy and can be scaled depending on a given 

business case making the technology very flexible [P9Ac], [P10PC]. Defining which battery type may be 

suitable for a particular market is considered as a challenging task due to the different properties which 

each technology inhibits. Especially cost and life time issues in relation to DoDs and categorization of 

application fields are named as a factor of uncertainty [P5U]. Following discussions with experts are 

thus centered on the suitability of the following five different potential business cases.  

Decentralized storage on a distribution level nearby demand within a storage range of multiple hours 

is seen as a vast market for battery storage in Germany. Especially the combination of storage with 

decentralized renewable energy sources as photovoltaics was named by all interviewees. PV has 

already reached grid parity in Germany due to high end-user electricity prices (up to 30 €c/kWh). Self-

consumption is thus seen as a practical way to reduce energy cost. The field of self-consumption in 

combination with PV and batteries is also expected to be also very interesting for mid- and large-scale 
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industry companies. Participant P10PC stated that in 10 years PV systems would in general only be 

sold in combination with battery systems. It was also stressed that the area of decentralized storage can 

also be combined with wind, DSM and other alternatives.  

Further diffusion of stationary battery systems in this area is told to be highly linked to market diffusion 

of electric vehicles. The market introduction of EVs is seen as a way to reduce costs in battery production 

[P7Auto]. The Tesla power wall and Mercedes “Heimspeicher” were named in the frame of this 

discussion [P2U], [P7RES]. The automotive and PV industry was told to be one of the leading lobbying 

groups in Germany to push forward residential storage and governmental subsidies to enter a new 

market segment. They are considered to become one of the leading gainers from this development 

[P2U], [P5U]. 

New decentralized concepts: P3RES proposed new business models in the broader field of self-

consumption as leasing contracts for entire systems that could attract potential customers in this field 

by avoiding high up-front investments. Especially new concepts as virtual power plants offer utterly new 

business possibilities for scalable battery storage [P5U]. Such concepts can also focus on using 

batteries to smoothen local energy demand as a DSM measure using different end-user tariffs. Battery 

owners might, for example, receive a price forecast curve which is then matched with real-time curves 

and finally inverted via a battery system to save energy cost [P5U]. The problem is that the composition 

of these decentralized systems itself is in their infancy. Interviewee [P7Auto] proposed that it would 

make sense to offer entire packages as a business model. Such packages should consider PV, DSM, 

and storage in a sense that the entire system becomes economic vaiable. A significant problem with 

such systems is that there is no adequate remuneration for provided services. An example of not 

rewarded indirect services through storage is the avoiding of additional investments through municipal 

utilities in distribution grids.  

Generation near energy storage on a mid- to high voltage level is believed to be an interesting field 

for stationary batteries, but only in combination with RES [P3RES], [P5U], [P10PC] and [P8ES]. One of 

the main advantages in this context is seen in the scalability of battery systems allowing it to adapt to 

market situations. RES direct marketing was named to become a significant area in Germany since 

EEG tariffs were drastically reduced. A significant advantage for batteries in this application is that they 

can be built up nearby generation units offering advantages as increasing efficiency and operation 

conditions [P3RES], [P10PC]. However, electricity wholesale market prices in the near future are 

considered to be too low for such an application as they would not cover present storage cost [P6Reg]. 

Another argument for generation near storage was named by [P5U] through avoiding local T &D 

upgrades almost always required at new RES grid connection nodes. There might be the possibility in 

the view of the interviewee to combine direct wind marketing and, e.g., T&D deferral and help to save 

costs for TSO´s and DSO´s.  

Day-ahead market arbitrage business on a multiple hour level on a transmission grid level is not seen 

as reasonable for battery storage out of an economic view [P7Auto], P10PC], [P8ES]. PHS represents 

the absolute reference for this case and batteries are not considered in any way as a competing 

technology. Nevertheless, interviewee P5U stated that there might also be a potential for battery storage 

in day-ahead markets. This potential is not seen by using hourly based time steps to exploit on- and off-
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peak spreads but to use short-term 15-minute time steps following price curves more strongly influenced 

by meteorological forecasts. There is no study available that would underpin a useful application of 

batteries in this field [P10PC].  

Short-term balancing is seen as a very lucrative application for battery storage as they offer the 

possibility to mitigate deviations very fast on nearly every time and grid-scale [P9Ac]. Applications for 

ancillary service provision only require short storage times and high power rates. This meets halfway 

the central issue of battery costs which strongly correlate with storage capacity [P10PC] making battery 

storage economic viable within a short time. The case of primary regulation is seen as the most 

promising battery application in the field nowadays [P10PC]. A high potential is again seen in the future 

use of smaller battery storage units within virtual power plants which provide balancing services (so-

called pooling) [P5U].  

On the other hand, participants stressed that it is difficult to make a general statement about business 

cases as the questions are strongly related to different technologies. An example expressed here fore 

was that RFB has completely different storage times than a Li-Ion battery [P3RES], [P5U]. Nevertheless, 

seconds to multiple hour applications as RES balancing, e.g., on a distribution level are seen as the 

most interesting area for battery technologies within the interviews [P3RES]. In general, most 

participants perceive missing valuation of provided energy storage services as a primary obstacle for 

market diffusion of stationary batteries. The stacking of services as a business model is seen as an 

important issue but has to be elaborated in detail in the future [P5U] and [P10PC]. One participant 

(network operator) of the survey commented this as follows: 

“Each party uses it for its value, integration of these values could generate a more efficient system 

approach.” 

Experts were also asked to rate the relevance of different storage timescales and linked application 

cases for electrochemical energy storage on a scale from 1 (low relevance) to 5 (high relevance) as 

indicated in Figure 5-7. Again, mean values are used to compare group preferences. 
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Figure 5-7: Potential application fields for battery storage  

There is almost an equal ranking of preferences among enactors and selectors regarding the different 

storage dimensions. Seconds up to several hours and even days are seen as suitable timescales for 

battery storage which was also flanked by a statement of a survey participant (network operator): 

“Not yet profitable ... after expected price decrease range from seconds until days could become 

profitable for batteries.” 

All experts agreed that there is no viable business case available for long-term storage applications up 

to weeks. Results from U-test indicated that there are no significant differences between the two groups 

regarding all application fields.  

In general system integration of battery storage is naturally dependent on the suitability of a given 

business case as discussed in chapter 5.5.1. Battery storage is mainly seen on a decentralized level 

nearby local renewable-based generation and users [P2U], [P7RES], [P5U]. Some participants from the 

survey (battery manufacturer and Network operator) underpinned this by comments as “location nearby 

decentral industry” for the provision of regulation services. Experts have different views on the 

integration into other grid levels, especially into transmission grid level. Most state that there will be 

nothing like bulk storage through large battery banks connected to the high voltage grid [P10PC], 

[P3RES]. Generation near integration of battery storage for conventional power plants is considered as 

not probable whereas a combination with large-scale RES as wind turbines or ground-mounted PV is 

seen as more suitable on a multi-MWh scale.   

Experts were asked to indicate the probability of different system integration levels for electrochemical 

energy storage on a Likert scale from 1 (very unlikely) to 5 (very likely). Integration of battery storage 

technologies is considered to happen mainly on a distribution (<10 kW) and mid-voltage level (<1 MW) 

as depicted in Figure 5-8. Generation side applications (alongside large generation units >1MW) are 

ranked before the use on a transmission grid level (e.g. T&D deferral with >1 MW). The latter is 

considered as rather improbable in the frame of the interviews due to actual regulations related to 
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unbundling. Survey results do indicate a more neutral stance of stakeholders regarding this integration 

level. Again, the U-test indicated that there are no significant differences between the two groups 

regarding all application fields.  

 

Figure 5-8: Potential system integration level for battery storage including mean values;  

5.5.2 Expectations: properties and development of stationary battery systems  

Most participants agreed that high costs are the most significant problem of available battery 

technologies and that they have to decrease in the future. There are doubts that this will happen for all 

electrochemical energy storage systems in the years to come [P10PC], [P3RES] and [P5U]. Scale 

effects through electric mobility are considered to have the potential to considerably lower cost for Li-

Ion based systems. In general, most participants see a demand for further research efforts to lower 

battery system cost [P3RES], but the absence of viable business cases seems to be a more critical 

issue.  

The issue of calendric and cyclic life time is considered as a central problem [P10PC], [P3RES], [P8ES] 

and [P5U]. Interrelation of both factors, costs and life time, is seen as a complex task. The prolongation 

of life time can be achieved by oversizing of the battery, but this causes additional cost [P10PC]. At the 

same time, the relation of depth of discharge (DoD), calendric as well as cycle life time and implications 

on overall storage cost remains unclear. An example named in this context is primary regulation which 

is characterized by several cycles per day with a low DoD and the question how this impacts battery life 

time and consequently overall cost. The issue of missing knowledge about cycle life time and DoD 

relation hinders potential investments in the area [P5U]. The issue was addressed in a representative 

way by an example about RFB expressed by P9Ac: 

“…RFB can have around 10 k cycles in general… it will change if you configure it for a high power 

application … so you would have to add cells again to increase cycle life time, and that would, of 

course, increase cost…” 
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Participants agree that battery systems can be optimized [P9Ac], [P5U] and [P10PC]. This optimization 

should start in the production phase and the targeted application area to identify room for improvement. 

The cathode is seen as the most expensive factor from a narrow point for most systems. It makes thus 

sense to see if a high-power variation is needed. Most stationary applications do not need them, and 

they can thus be excluded in most cases. Such measures are, again, highly dependent on the 

technology and application field in scope and are finally guided by costs [P9Ac].  

Energy density is in general seen as an essential factor for battery storage but not for stationary 

applications as these are characterized by a low degree of restrictions on weight or space. Power density 

is perceived as more critical especially when it comes to short-term balancing [P9Ac] as in the case of 

primary regulation. The relevance of this property is thus dependent on the viewed business case. 

Efficiency degrees are also named to have significant importance, especially when battery storage is 

compared with other balancing options [P3RES], [P10PC]. In general, all of the named aspects are seen 

as relevant and highly interdependent from each other [P8ES]. 

Used materials for electrode manufacturing constitute a critical factor for market success [P5U], 

[P10PC]. There are concerns about potentially harmful materials used in the manufacturing of certain 

battery technologies. This comes mainly true for applications situated nearby the end-user in 

decentralized applications. The toxicity of used materials in PbA (lead) and potentially VRFB (H2SO4) is 

for example seen as problematic by experts in this context [P5U]. Thus, technologies should be 

thoroughly tested before they are used nearby to consumers [P10PC]. There is, in general, a need to 

make people more aware of the potential environmental dangers of electrochemical storage as 

expressed by [P5U]: 

“…if you have … let´s say 300 MWh redox-flow battery … with a large number of toxic materials…you 

need some risk management…” 

The availability of critical materials used for electrode manufacturing was also named as an essential 

issue. In the frame of this discussion, recycling is seen to be important if there are materials included in 

a battery that are worth recycling them. There is for most technologies a lack of available recycling 

processes (despite PbA), but the aspect will become more relevant when more cells are produced of a 

specific battery type [P9Ac].  

The perceived relevance of different aspects influencing the future investment decision in battery 

storage was ranked in the frame of the survey within a range of low, medium to high on a 1 to 10 scale. 

The results are indicated in Figure 5-9, where the mean values indicate tendencies of the two related 

groups. Cost factors are not addressed directly in the survey but are included as a criterion within the 

multi-criteria decision-making analysis. Results from the survey indicate a comparable picture to the 

interview statements. Calendar and cycle life time are perceived as the essential property of battery 

storage technologies, followed by efficiency, power density and recycling and energy density.  

The Mann-Whitney U-test showed that there are no significant statistical differences between the two 

groups regarding the expectations of battery storage properties.  
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Figure 5-9: Importance of battery storage properties for stationary applications rated by experts on a scale from 1 
to 10 (low, medium, high) 

5.5.3 Summary of expert expectations on battery storage 

Participants did not show interest in single chemistries but the performance of different batteries as they 

do not see commercially viable business cases for them. Market diffusion of different battery storage is 

seen as an incremental process over the next ten years, closely linked to electric mobility and 

decentralization of the grid. Battery system integration is considered to mainly happen on distribution 

and mid-voltage level and in some cases transmission grid level alongside with RES sources as wind 

turbines. Significant potentials are seen in storage times between seconds up to some hours, e.g., for 

ancillary service provision depending on the used technology. Experts struggled to allocate battery 

technologies into specific applications due to their different properties and resulting economic viability. 

Especially DoD to cycle life time implications and their impact on overall system cost are named in this 

context. These factors are understood as a central challenge in the next years. Possibilities for cost 

reduction are seen through scale effects and optimization of cell manufacturing. Potential toxicity of used 

materials is of major concern, especially in consumer near applications on a decentralized level but also 

when a high magnitude of capacity is required. Most stakeholders perceive more research in the field 

as a prerequisite for the success of battery storage technologies.  

5.6 Summary and implications for further assessment 
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The preliminary interviews with various actors are used in combination with the insights from the 

literature review to structure the domain of energy storage and overall landscape developments and to 

form an overlying narrative for battery storage development within the German energy transition as 

indicated in Table 5-4.  

Table 5-4: Results of interviews and surveys to structure the domain of flexibility demand and battery storage 

Landscape 
aspects 

Questions discussed  Interview and survey results   

System-level 
developments 
and 
implications 
for energy 
storage in 
general  

RES impacts on the 
German energy system 
considering 100% target 
in 2050 

- Enactors and selectors mostly agree 
- RES impact underestimated to certain degree, especially 

on a system level but not a market level  

Demand for balancing - Is expected to grow strongly after 2025 to 2035 
- Strongly dependent on overall power system design 

Will the future energy 
grid be decentralized?  

 

- Enactors and selectors strongly agree 
- Grid considered to become more complex  
- Higher role of small generation as PV and Wind  
- No largescale generation expected after 2040 due to 

increased risk through volatile markets 

Availability of market 
regulations (e.g., 
capacity market) for 
energy storage 

- Enactors and selectors strongly agree 
- Markets (capacity markets, spot markets) and regulation 

(EEG) have to change  
- Market pressure very high, new structures required 
- No viable business case available for energy storage  

o No valuation of benefits (in general) 

 Role of battery energy 
storage among other 
flexibility options (power 
grid extension, demand-
side management, 
flexible power plants) 

- Enactors and selectors mostly agree 
- There will be an interplay of all four options  
- Battery storage is seen as too expensive at the moment 
- No competition for other options today  
- However, battery technologies are considered as most 

important technology among other options on the mid-term 
(see survey in 5.4.1) 

- Incremental market growth is seen over next ten years  
- Growth-linked to electric mobility and residential storage 

o Automotive sector as key for market diffusion 
o Tesla and Mercedes are named in this context 

- Decentralization provides potential for battery storage 
o New business models 
o Modularity allows adapting to market   

Relevance of 
sustainability  

Relevance of 
sustainability for 
flexibility option 
development, 
investment, and use  

- Selectors agree strongly, enactors agree 
- Seen as a normative goal, not relevant nowadays 
- Perceived to become more critical in the future, 
- Factors as local acceptance are seen as crucial 

 

The process of decentralization and electric mobility are seen as a core for the success of battery 

storage. Significant concerns are not directly related to the technology itself, instead the absence of 

viable business cases is considered as problematic. The relevance of sustainable development is 

thought to become higher in the future. 

The second part of the stakeholder engagement focused explicitly on electrochemical storage properties 

and potential applications. The discussion is structured mainly around five topics also identified 
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preliminary in the literature (see chapter 2.8.3); technology, economics, environment and application 

fields as depicted in Table 5-5, whereas social factors as acceptance were only mentioned by actors on 

the brink. The table is separated into critical issues named by actors and expectations and visions that 

correlated to these.  

Table 5-5: Specific results regarding electrochemical energy storage technologies 

Center for 
discussion  

Critical issues for battery storage named by 
actors  

Expectations and visions:  

 

Technical 
drivers 

Relevant properties: 

- 1 st Calendar and cycle life time, 2nd 
Power density & 3rd efficiency, 4th  
recycling ability & last energy density  

- DoD-Cycle impact unclear 
o Comes true especially for different 

applications 

 
- Structuring of electrodes possible for 

optimization  
o power density named as an example 
o Cathodes are seen as most expensive 

component 
- SoC management to extend battery life time 

 

Economic 
drivers 

- Up-front investment still too high for 
some actors 

- Unclear interaction of life time and cost  
o Especially for different applications 
o There is no viable business case 

available making predictions difficult 
 

 

 
- New business models as leasing could tackle 

this issue 
o Avoiding up-front investment 
o Sell entire “packages” 

(PV+DSM+storage) 
o New third parties provide services 

- Adopt EEG to create economic stimulus 
- Optimization of cell manufacturing for specific 

application  
- Scale effects through EV markets 

Environ-
mental 
aspects 

- Risk management regarding toxic 
materials needed 

- Environmental dangers (Electrolyte or 
electrode material) 

- Recycling of critical materials 
- Doubts are especially centered large-

scale storage units  

 
- Monitoring required to avoid damages 
- Recycling processes will only be available for 

materials that are worth recycling  

Social 
aspects 

- Acceptance is seen as high in general,  
- Use of critical material problematic 
- Decentralized end-user near 

applications critical 

- Comprehensive monitoring of potential 
dangers to guarantee acceptance 

Application 
fields 

- Which technology in which application? 
- It is claimed that no viable business 

case is available 
- Mainly short-term and decentralized 

applications  
- Stacking of services required 

 
- Enactors and selectors mostly agree 
- Bulk storage/arbitrage business (1/4 h) 
- Short-term application (sec- to minutes) 
- Decentralized / application  

o new applications 
- Generation near storage (for RES) 

 

However, the results from the interviews and the survey show that there are different application cases 

discussed. Decentralized applications are seen as most interesting application field in the future. This is 

also in line with the “master narrative” where decentralization of the grid is seen as a leading driver for 

battery storage technologies in the future. The DoD-cost relation is considered as critical and difficult to 

estimate, especially when different application cases are considered. These aspects make it difficult to 

allocate different battery technologies into a particular application field. Major issues related to the 

environment are centered in toxic materials, recycling of critical materials and environmental dangers. 
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These doubts are highly related to the application (e.g., nearby end-users, large-scale storage). 

Comparable statements come also true for social aspects.  

The in-depth insights about electro-chemical storage obtained through stakeholder engagement serve 

as a base for the further specification of sub-criteria used for MCDA. Naturally, implications for 

technology evaluation arise through the predefinition of criteria within the MCDA-process as different 

system analysis models must be fitted and found accordingly to these. Table 5-6 provides some 

fundamental implications identified for the MCDA and technology evaluation conducted in chapter 6 and 

7.    

Table 5-6: Basic implications for MCDA and technology evaluation 

Aspect Implications for MCDA and technology evaluation set-up 

Technical drivers 
 

- Inclusion of this DoD-cycle relation for storage operation simulation 
- Testing of importance of parameter relevance  

Economic drivers 
 

- LCC  to analyze cost-life time provide detailed information  
- Investment cost analysis 

Environmental 
drivers  

 
- LCA-approaches provide general picture related to environmental dangers  
- Toxicity and recycling processes are difficult to evaluate (lack of data) 

Social Aspects 
 

- To be tested  

Different use cases 
 

- Comparison of technologies used in different applications under consideration of 
DoD-Cycle relation, cost and environmental impacts  

- Focus on decentralized application 
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6 Multi-Criteria-Decision-Making model 

The main challenge to select or to develop best alternatives for energy storage within the “Ener-

giewende” is to “pick the winners” at a level of society [140]. The identification of criteria and methods 

that “measure” sustainability is a prerequisite to explore technology performance. Technology develop-

ment is an evolving process constructed through a social process in which scientific and expert 

knowledge is combined with the preferences and values of affected communities to enable a co-pro-

duced understanding of preferred outcomes [7]. Using principles of CTA offers the analytical achieve-

ment of shifting the loci of the assessment through the inclusion of enactors and selectors to obtain a 

broader perspective and to avoid thinking in enactment cycles. 

The addressed problems in this work include several alternatives and a high degree of uncertainty about 

the prospects of emerging energy storage technologies on a system level. Multi-criteria decisions anal-

ysis methods (MCDA) offer a way to aid such complex decision-making problems transparently. They 

provide formal mechanisms based on mathematics to integrate stakeholder preferences objectively and 

to make decision processes more transparent as well as debatable.  

The first sections give an overview about the field of MCDA and the structure of the proposed model. 

AHP in combination with Shannon Entropy, alpha and beta diversity is introduced in the following 

section. After this, the Technique for Order Preference by Similarity to Ideal Solution – TOPSIS is 

highlighted as an aggregation method. This is followed by a description of the selected criteria and 

alternatives. Finally, an overview of the developed model and its realization is given. 

6.1 MCDA: A short introduction 

MCDA is considered as a branch of operation research models that deal with decision problems 

involving multiple criteria. Literature offers a separation of MCDA methods into Multi-Objective Decision 

Making (MODM) and Multi-Attribute Decision Making (MADM). The first set of methods handles decision 

problems where the decision space is continuous. MODM aims to find an optimal solution space in 

consideration of predefined boundaries [104]. Typical examples are mathematical programming or 

maximum vector problems with multiple objective functions [169].  

Methods within MADM concentrate on problems with discrete decision spaces where a set of decision 

alternatives has already been predetermined. In general MADM problems can include m alternatives 

which are evaluated on n criteria which can be expressed in a grouped decision matrix as follows [8]:  

 

Figure 6-1: Example for a decision matrix (based on [8]) 

MADM refers to “attributes,” “goals” and “alternatives.” “Attributes” are considered as “objectives,” 

“factors” or “criteria,” e.g., economic performance and environmental impact. “Alternatives” is 

synonymous with technology “option,” “policy,” “actions” or “method” [170], [171]. Each method has a 
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“goal” or general objective of the decision process. Criteria related to the problem are located beneath 

to this goal. These criteria can be further decomposed into sub-criteria which also can be seen as 

constraints or refinements [101]. 

An advantage of MADM is that criteria with different scales or units can be simultaneously compared. 

This work compares a limited predefined set of emerging technologies with other mature technologies 

that can be delimited from each other. These technologies are evaluated based on different 

sustainability oriented criteria. The contribution of each technology to achieve this goal can be measured 

on different scales. Thus, this work fulfills all preconditions to apply MADM. The use of MODM methods 

is more suitable to optimize systems through the combination of a high number of different technologies 

for a future energy system [104] which is not part of this work.  

A question that remains is which kind of MADM should be applied in the context of this work? This is an 

often underestimated or just ignored issue within the field of MCDA [172]. In general, MADM can be 

separated into classic compensatory approaches or multi-attribute utility theory methods (CCA) 

(American school) and outranking approaches (OA) (European school) [104], [172], [171] [8].  

CCA assigns a utility value to each alternative. The total utility is the sum of marginal utilities that each 

criterion assigns to a considered action [173] and is known as a single synthesizing criterion. These 

methods offer a total preorder of given alternatives. Typical methods are MAUT (Multi-Attribute Utility 

Theory), SMART (Simple Multi-Attribute Rating Technique) [174], TOPSIS (Technique for Order 

Preference by Similarity to Ideal Solution) [153] and AHP (Analytic Hierarchy Process). It is claimed by 

literature that the level of aggregation within the American school of MCDA is a disadvantage due to the 

loss of information and that they do not accept that there are good reasons to justify the incomparability 

of two alternatives. The decision maker furthermore admits that an absolute compensation can exist 

between the different evaluations. Thus a good performance for one criterion can easily be 

counterbalanced by another poor one [172]. This can lead to the choice of a non-optimal alternative that 

might have a good performance on one specific criterion but a bad one on the remaining others. 

OA seek to eliminate alternatives that are in a particular sense dominated. References are used to give 

some criteria more influence than others [171]. Some concepts available to establish such relations are 

thresholds, concordance, and discordance. Typical methods are ELECTRE I, II and III (ELimination and 

Choice Expressing REality) [173] and PROMETHEE (Preference Ranking Organization METHod for 

Enrichment of Evaluations) [104]. Concerns about OA are centered around the dependency on rather 

arbitrary definitions of what constitutes outranking and how threshold parameters are set and later 

manipulated and that they lack an axiomatic basis [172].  

An overview and summary about some typical methods within different MCDA claims are given in Figure 

6-2. A good comparison of different methods is given in [172], [101], [104], [171] and [175] and is not 

provided in this work.  
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Figure 6-2: Categorization of MCDA methods  

6.2 Choice of an MADM method 

In general, all MADM methods have their theoretical and pragmatic limits and are more or less adequate 

for different decision problems. They can be roughly schematized by a construction phase (input data 

and the modeling phase that includes the interface to stakeholders) and an exploitation phase 

(aggregation and calculation leading to recommendations). This separation shall serve as a base to 

elicit an adequate method.  

The first phase of MADM is highly dependent on the mode of preference articulation which plays a 

critical role in the entire decision-making process. Often used elucidation modes are tradeoffs, direct 

rating, lotteries and pairwise comparisons. This work aims to include a high number of participants, 

various criteria by a survey and a limited set of semi-structured interviews. One has thus to consider the 

limitations on human performance described in the literature of psychology which are named as 

cognitive spans (memory span, attention span, perceptual span, etc.). These limitations refer to the 

amount of information or distinctions that can be grasped by a stakeholder at once as a base of making 

judgments [176]. It has furthermore to include several complex criteria based on different qualitative and 

quantitative types of data. The following basic requirements have been defined for the construction 

phase of an MADM method for this research:  

x limited potential for actor consultation due to time restrictions  

x has to include quantitative and qualitative data 

x has to consider blurry and uncertain data 

x measure different data on one scale 

x provide all the information required for a stakeholder to express his preference adequately 

x elucidation method that is easily understandable and intuitively usable by the participants 

The exploitation phase requires a method that allows the aggregation and calculus of preferences. There 

are several multi-criterion aggregation procedures (MCAP) available within MADM [172]. The 

requirements on MCAP for this work are: 

x handle a high number of input numbers of multiple stakeholders (> 50)  

x allow an assessment of group decisions 
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x be implementable within a justifiable time 

x provide transparent and easily understandable results  

MADM methods initially tested31 where ELECTRE I [173], SMART [174], TOPSIS [153] and AHP 

(Analytic Hierarchy Process). Requirements for the construction as well exploitation phase make the 

expression of trade-offs required for OA methods only partially possible. The tested method of 

ELECTRE I required some time for programming and was not considered to be practical for a high 

number of participants and the limited possibility of interaction with these. Finally, a mixture of AHP and 

TOPSIS was considered as a most suitable approach.  

6.3 AHP-TOPSIS model  

An overview of the MCDA model including all steps and methods (numbered from I to III) is given in 

Figure 6-3. AHP makes it possible to structure complex decision problems by a hierarchic structure 

easily. The phase of obtaining stakeholder priorities by pairwise comparisons within AHP is seen as an 

intuitive and easy way of elicitation. The choice of proper criteria is an integral part of the first step in the 

entire MCDA model. All selected criteria are explained in detail and quantified in chapter 7.  

 

Figure 6-3: Scheme of the adopted MCDA-model for energy storage technology evaluation  

The results of AHP are furthermore used to calculate an index that describes the consensus among all 

participating actors in respect to their perceived stakeholder group using concepts of bio-diversity (alpha 

and beta diversity) and Shannon entropy (see II in Figure 6-3). This helps to identify if there is something 

as “shared expectations” regarding the relevance of different criteria for sustainable development of 

storage technologies within the different stakeholder groups (see section 6.3.2). The derived priorities 

from AHP serve as input for Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for 

                                                      

31 Within FCT-UNL MAD classes 
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result aggregation (see Figure 6-3 III). TOPSIS allows a fast and straightforward calculation of rankings 

using the calculated priorities from AHP as well as to combine them with the results from system analysis 

and is explained introduced in chapter 6.3.2. The entire MCDA model was implemented in Microsoft 

Excel and Visual Basic.  

6.3.1 The Analytic Hierarchy Process 

In general, AHP represents a non-linear framework for carrying out both deductive and inductive 

thinking, considering several factors simultaneously, allowing for tradeoffs to arrive at a synthesis [151]. 

The method is based on mathematics and principles of psychology. It is a compensatory method which 

allows numerical trade-offs among various dimensions.  

AHP requires the establishment of a hierarchic or a network structure representing the problem [177]. 

This is simply done by decomposing and structuring the given decision problem into different levels 

within a hierarchy. At the top of this hierarchy is the general objective of the decision process (e.g., 

choice of technology or policy). Criteria related to the problem can be found below this goal and can be 

further decomposed into sub-criteria. Finally, competing alternatives can be found at the bottom below 

the lowest-level criteria (e.g., some technological artifacts) ([101], [177]) as depicted in Figure 6-4. This 

structure allows it to mix quantitative and qualitative data and is easily over-seeable. 

A restriction of the hierarchic structure is that any criterion of one level has to be capable of being 

connected to an element in the next higher level. The latter represents a criterion to assess the relative 

impact of elements in the level below [170].  

 

Figure 6-4: Construction of a hierarchic structure for AHP 

Comparisons based on a 1-9 Likert scale of absolute numbers have to be carried out to gather the 

relative importance of each criterion after establishing a hierarchic structure. The fundamental question 

for pairwise comparisons is: how many times more important is one element than the other concerning 

a specific criterion or attribute? This comparison expresses the preference to a specific attribute 

assigned by an individual or a group of participants [170]. The use of pairwise comparisons in AHP is 

considered to user-friendly and understandable from a participant perspective. The number of pairwise 

comparisons 𝑛𝑐 is dependent on the number of considered criteria and can be calculated by the use of 

Eq 1:  
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𝑛𝑐 = 𝑛(𝑛−1)
2

       Equation 1 

When all comparisons are made a scale of priorities is derived on the base of the relative dominance of 

these preferences. The relative importance of two compared criteria is scaled in a fixed continuum from 

1 to 9 as depicted in Table 6-1. 

Table 6-1: AHP pairwise comparison scale based on [8] 

1 Equal importance  Two criteria contribute equally to objectives 
3 Slightly more important, weak moderately One criterion is slightly favored against another 
5 Moderately more important, essential 

importance 
One criterion is moderately favored against another 

7 Strongly more important, strong importance One criterion is strongly favored over another  
9 Extremely more important, absolute 

importance 
One criterion is favored over another with the highest possible 
order of affirmation 

2,4,6,8 Intermediate values between the two 
adjacent scale values 

Used to represent compromise between priorities listed above 

 

AHP requires a 𝑀𝑥𝑁 matrix where 𝑀is the number of alternatives and 𝑁 the number of criteria. The 

matrix is constructed by pairwise comparisons that provide the base for a square matrix in which aji 

represents the weight ratios (wj/wi) for each object A1,…..,An. The remaining matrix elements represent 

the reciprocal property of the matrix through aji=1/aij and ajj=1 [170] [177] as depicted in Eq. 2 [152]: 

𝐷 =

𝐴1      … 𝐴𝑛
𝐴1
⋮

𝐴𝑛

[
𝑤1 𝑤1⁄ ⋯ 𝑤1 𝑤𝑛⁄

⋮ ⋱ ⋮
𝑤𝑛 𝑤1⁄ ⋯ 𝑤𝑛 𝑤𝑛⁄

]     Equation 2 

There are several prioritization methods available in the literature, but only a few provide corresponding 

factors that allow it to evaluate inconsistency within judgments [178]. Inconsistency is a consequence 

of the attempt to derive a priority through the comparison of two objects at a time. These objects may 

be involved in several comparisons on a non-standardized scale, where relative values are assigned as 

a matter of judgment where inconsistency may occur. Some inconsistency measurement methods to be 

named are arithmetic mean method, characteristic root methods, least square methods [8] and 

geometrical mean method. In the classic AHP approach priorities are obtained by the so-named 

Eigenvector method (EVM) by solving the eigenvector problem. The need for a corresponding factor 

called Consistency Index (CI) for inconsistency evaluation results from the fact that individual judgments 

never agree entirely. A reciprocal comparison matrix can be considered as consistent when 𝜆𝑚𝑎𝑥 = 𝑛 

and CI converges against zero. Inconsistency is faced in case of a high positive value. Consistency of 

priorities is additionally measured by a consistency ratio (CR) to avoid order dependency. The random 

consistency Index (RI) for matrices of order n represents the expected value of CI corresponding to 

matrices of n, when judgements are simulated and EVM is used as prioritization method. The CR gives 

information if judgements in the pairwise comparison matrix are consistent or totally random. In case of 

the latter comparisons have to be repeated, or as in this work be excluded. A high CR value reflects 

inconsistency and a low one the contrary case. [177] suggests a rule of thumb of 10 % (CR<0.1). More 

recently it was proposed to use thresholds of 5 % and 8 % (for 3x3 and 4X4 matrix). If this conditions 

are satisfied a decision or prioritization of actions can be made else the procedure of judgements has 

to be repeated [152], [103]. A detailed description of the mathematical procedures are given in [152]. 

Using EVM as a prioritization method has shown to be extensive in terms of calculation time when it 

comes to a high number of participants. Furthermore, CR rules were not satisfied for a high number of 
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judgements and should thus have been repeated. This was not possible as AHP was carried out by an 

anonymous survey. The hurdle of 10 % is also seen as too restrictive by literature out of a practical view 

[179]. 

A more suitable method that meets the requirements and allows it to evaluate inconsistency is the 

geometric mean method (RGMM) [180]. It is considered as that RGMM does as well as EVM or even 

better than it regarding rank reversal and other aspects [180]. The phenomenon of rank reversal is 

caused by the addition or deletion of an alternative and can lead to a shift of the final ranking of 

alternatives and will be addressed in chapter 6.3.3.  

The work of [178] proposes the use of a geometric consistency index (GCI) and provides approximated 

thresholds. The approximation corresponding to CR of ≤0.1 are: GCI=0.31 for n=3, GCI=0.35 for n=4 

and GCI=0.37 for n>4. These thresholds are calculated for each participant by the use of Eq. 3:  

𝐺𝐶𝐼 = 2
(𝑛−1)(𝑛−2)

∑ 𝑙𝑜𝑔2𝑒𝑖𝑗𝑖<𝑗      Equation 3 

Where 𝑒𝑖𝑗 = 𝑎𝑖𝑗𝑤𝑗/𝑤𝑖 is considered as the error obtained when the ratio 𝑤𝑖/𝑤𝑗 is approximated by 𝑎𝑖𝑗. 

Further information about GCI-calculation and theory can be found in [178] and [180]. 

6.3.2 Consensus on criteria importance 

AHP offers the possibility to make the prioritization of technology criteria through an actor more 

transparent. As stated in chapter 3 sustainable technology development can be seen as a process of 

community-based thinking and learning. It was thus of interest for this research to gather a picture of 

consensus among stakeholders allocated to different clusters, precisely between enactors and 

selectors. The degree of consensus is seen as an equivalent to the degree of “sharedness” of 

expectations among stakeholders expressed through the judgments carried out in AHP and represents 

the level to which a group is “satisfied” by a decision. This requires that judgments are homogenous or 

align, in the sense that priorities expressed by individual group members are compatible with the group 

priorities [181]. Further investigation for group dispersion and group judgments for AHP can be found in 

[181] and [182]. 

This approach follows the idea expressed by [179] using the concept of diversity in biology and ecology. 

The original idea of this concept is to describe species richness and relative abundance and can be 

related to the priorities obtained through AHP. There are several diversity indices as Gini-Simpson, 

HCDT entropy x or Simpson concentration x available. A more profound insight into the introduction of 

true diversity in the form of a mathematical framework is given in [183]. 

The concept allows it to derive a consensus indicator S* to elicit actor preferences in numerical terms 

situated in a continuum between 0 to 100 %. The interpretation depends on the particular requirements 

within a group. The Indicator S* is based on Shannon entropy H [184] that can be used as diversity 

index for the distribution of prioritization of criteria using Eq. 4 [184], [183]:   

𝐷 = 𝑒𝑥𝑝 (− ∑ 𝑝𝑖 𝑙𝑛 𝑝𝑖) = 𝑒𝑥𝑝 (𝐻)𝑁
𝑖=1       Equation 4 

Where  𝑝𝑖 are the calculated priorities for i=1 to N and true diversity of order one (D) [179]. Shannon 

entropy is expanded through the introduction of alpha and gamma diversity to compute S* following Eq. 

5:  
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𝑆 ∗=
[𝑀−𝑒𝑥𝑝(𝐻𝛼𝑚𝑖𝑛)

𝑒𝑥𝑝(𝐻𝛾𝑚𝑎𝑥)]

[1−
𝑒𝑥𝑝(𝐻𝛼𝑚𝑖𝑛)
𝑒𝑥𝑝(𝐻𝛾𝑚𝑎𝑥)]

        Equation 5 

Where 𝑀 = (1 exp(𝐻𝛽)⁄  is a reciprocal of beta diversity representing a simple homogeneity measure 

[179] [183]. 𝐻𝛽 is the difference between Hγ and 𝐻𝛼.  M represents the maximum numerical scale for the 

maximum possible priority of a criterion (in this case the Saaty scale with M=9). The 𝐻𝛼𝑚𝑖𝑛 is minimal if 

a SH fully prioritizes one criterion. Minimum alpha entropy 𝐻𝛼𝑚𝑖𝑛 and maximum gamma entropy 𝐻𝛾𝑚𝑎𝑥 

for C criteria and K decision makers is computed following Eq. 6: 

𝐻𝛼𝑚𝑖𝑛 = − 𝑀
𝐶+𝑀−1

𝑙𝑛 ( 𝑀
𝐶+𝑀−1

) − 𝐶−1
𝐶+𝑀−1

𝑙𝑛 1
𝐶+𝑀−1

    Equation 6 

and Eq. 7: 

𝐻𝛾𝑚𝑎𝑥 = (𝐶 − 𝐾) (− 𝑀
𝐶+𝑀−1

) 𝑙𝑛 ( 𝑀
𝐶+𝑀−1

) − (𝑛+𝑀−1
𝐶+𝑀−1

) (𝑙𝑛(1
𝑛

 𝑛+𝑀−1
𝐶+𝑀−1

))  Equation 7 

The Indicator can be seen as a measure of evenness of priorities obtained from the AHP process. A 

concentration of priorities of fewer or same criteria among stakeholders leads to a higher S*. The 

consensus of a group is low when the indicator converges against zero if priorities are distinct and high 

when priorities of SHs are identical [179].  

6.3.3 Aggregation method: TOPSIS  

The Technique for Order Preference by Similarity to Ideal Solution - TOPSIS is an MADM method built 

on the idea developed by [153] that a chosen alternative should have a minimum distance to the positive 

idea solution A* and a maximum distance from the negative ideal solution A-. The principle is simple: the 

selected best alternative should have the shortest distance from the positive ideal solution in a 

geometrical sense while it has the longest distance from the negative ideal solution. This distance can 

be described by the Euclidian distance as depicted in Figure 6-5. 

 

Figure 6-5: Schematic overview of TOPSIS  

A decision matrix has to be established in TOPSIS including all alternatives A1, A2,…Am over each 

criterion c1, c2,…cn  [186]. The first step is to normalize the given decision matrix 𝑅 = 𝑟𝑖𝑗  by the use of 

Eq. 8. 
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𝑅 = 𝑐𝑖𝑗

√∑ 𝑐𝑖𝑗
2𝑚

𝑗=1

,       𝑖 = 1, … , 𝑚,   𝑗 = 1, … 𝑛.      Equation 8 

The next step is to multiply this matrix with its associated prioritization 𝑤𝑗 provided by AHP to determine 

the stretching of the axis of normalized value 𝑣𝑖𝑗 (see Figure 6-5) [185] by the use of Eq. 9. 

𝑣𝑖𝑗 = 𝑤𝑗 ∗ 𝑟𝑖𝑗,            𝑗 = 1, 2, … . , 𝑛;        𝑖 = 1, 2, , … . . , 𝑚.     Equation 9 

The next step is to determine the ideal alternatives A* and negative ideal alternatives A- by the use of 

Eq. 10 and 11 where 𝐽 represents a benefit criterion and 𝐽− a cost criterion [186]:  

𝐴∗ = {𝑣1
∗, 𝑣2

∗ … … . , 𝑣𝑗
∗, . . 𝑣𝑛

∗ }  = {(𝑚𝑎𝑥𝑖𝑣𝑖𝑗
∗ |𝑗 ∈ 𝐽), (𝑚𝑖𝑛𝑖𝑣𝑖𝑗

∗ |𝑗 ∈ 𝐽−) } 𝑖 = 1, 2, … , 𝑚  Equation 10 

𝐴− = {𝑣1
−, 𝑣2

− … . , 𝑣𝑗
−, … 𝑣𝑛

− }  = {(𝑚𝑖𝑛𝑖𝑣𝑖𝑗
∗ |𝑗 ∈ 𝐽), (𝑚𝑎𝑥𝑖𝑣𝑖𝑗

∗ |𝑗 ∈ 𝐽−) } 𝑖 = 1, 2, … , 𝑚  Equation 11 

After establishing negative and ideal solutions separation measurement using n-dimensional Euclidian 

distance 𝐷𝑖
∗ to calculate the distance of each alternative and ideal vector A* given by Eq. 12.  

𝐷𝑖
∗ = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

∗)2𝑛
𝑗=1 ,               𝑖 = 1, 2 … . 𝑚      Equation 12 

This has also to be carried out for the separation for each alternative from the ideal negative solution A- 

by Eq. 13 

𝐷𝑖
− = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

−)2𝑛
𝑗=1 ,            𝑖 = 1, 2 … . 𝑚      Equation 13 

The last step required is the computation of the closeness to ideal solution CIS and to finally rank the 

performance order by the use of Eq. 14: 

𝐶𝐼𝑆𝑖
∗ = 𝐷𝑖

−

𝐷𝑖
∗+𝐷𝑖

− ,                                  𝑖 = 1, 2 … . 𝑚      Equation 14 

It is clear that 𝐶𝐼𝑆𝑗
∗ = 1 if (𝐴𝑖 = 𝐴∗) and that 𝐶𝐼𝑆𝑗

∗ = 0 if (𝐴𝑖 = 𝐴−). Ranking is carried out by the descend-

ing order of 𝐶𝐼𝑆𝑗
∗, where the highest value represents the better performance [187]. As explained before 

TOPSIS also inhibits the danger of rank reversal [188], [186]. Two fictitious alternatives including values 

{𝑀𝑖𝑛𝑐, 𝑀𝑖𝑛𝑐} and {𝑀𝑎𝑥𝑐, 𝑀𝑎𝑥𝑐} were thus introduced following the recommendations of [186]. These 

values remain fixed so any valuation in reference to them cannot change. Distances 𝐷𝑖
∗ and 𝐷𝑖

−related 

to different alternatives A remain unchangeable and do not depend of performances nor on the intro-

duced number of alternatives.  

6.3.4 Choice of energy storage alternatives 

Four principal battery chemistries were mentioned in the interviews and in the reviewed literature: Li-Ion 

batteries (LIB), Lead-Acid batteries (PbA), high temperature sodium-sulphur batteries (NaNiCl), and 

Vanadium redox flow batteries (VRFB) [P10PC], [P3Res], [P9Ac], [P5U], [P2U], [P7 Auto]. These are 

the most common battery types for stationary energy storage nowadays. PbA is the most mature 

electrochemical storage technology, which is used for a high quantity of power system applications [77] 

as local power quality, stabilization of grid extension, frequency stabilization [24]. Lithium-Ion batteries 

are seen as one of the most relevant technologies for stationary applications followed by vanadium 

redox flow batteries [P9Ac], [P10PC].  

The inquiry has a strong focus on electrochemical energy storage; there are however different 

application areas in which battery storage competes with other technologies such as compressed air 
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energy storage (CAES) or pumped hydro storage (PHS) which are included in one application scenario. 

An overview of all considered technologies is given in Table 6-2. 

Table 6-2: Choice of alternatives for comparison 

Alternative Sub-Categories Stakeholder & Literature 

Li-Ion batteries NCA, LFP, NMP, LTO High considered potential 

High-temperature batteries NaS and NaNiCl Seen as mature technology 

Redox-Flow batteries All Vanadium High potential due to high flexibility 

Lead Acid Valve regulated Lead acid Seen as most mature technology.  

Pumped hydro storage - Seen as reference technology 

Compressed air storage Diabatic - 

 

6.3.5 Choice of criteria for electrochemical energy storage 

In general, the success of an MCDA is extremely dependent on the effectiveness of the used criteria 

that correspond to the problem and the fulfillment of an objective [168]. The formulation of the problem 

and related criteria is more challenging than its solution which is a matter of math or skill. The choice of 

proper criteria represents the most exciting step within MCDA [172] and was an integral part of the initial 

pretest survey and the semi-structured interviews.  

It is not given that the inclusion of a high number of criteria is helpful for decision making regarding 

sustainable development. In contrary, a low number of sufficient criteria can be more beneficial for an 

evaluation. The choice of proper criteria for technology evaluation can be linked to 5 principles [8]: 

1) Systemic: Criteria should reflect essential characteristic of technological systems 

2) Consistency: Criteria should be consistent with the decision-makers aim 

3) Independence: Criteria should not include relationships at the same level criteria 

4) Measurability: Criteria should be measurable in quantitative values or qualitatively ex-

pressed 

5) Comparability: Decisions are more rational when comparability of criteria is more obvi-

ous 

It is difficult to follow all these principles and not to select minor criteria. The selection of criteria is 

furthermore often characterized by a certain repeatability as including job creation and social benefits 

of a technological alternative (see section 2.8.3 and Table 2-9).  

The actual literature on the topic provides a high magnitude of indicators which can be adapted and 

combined regarding specific objectives [115]. A first set of criteria based on the literature review in chap-

ter 2.8 and the four main criteria, environment, economy, social aspects and technology was presented 

to 12 persons and discussed with five of these. Afterword’s 22 external experts were contacted and 

asked to conduct a critical review of the given criteria in a first round (see also chapter 5.6). In a further 

loop, a set of 8 participants was willing to take part in an interview to discuss the criteria. A last critical 
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round was conducted in 2 follow up Interviews. A summary of the final primary and sub-criteria is given 

in Table 6-3; a more detailed discussion is given in the technology evaluation model in chapter 7. 

Table 6-3: Summary of used criteria for technology evaluation  

Main cri-
teria 

Sub Criteria Unit Description Comment on changes 

Economic Investment €/kWh All cost for project implementation OPEX was removed, as they 
were perceived as redundant 

 cost €ct/kWh Includes all cost over entire life time  

Technol-
ogy as-
pects 

Maturity - 

MW 

1-3 

Track-record of a technology  

- Global capacity 

- Technology life stage 

- Reformulation of flexibility, 
initially composed of 5 factors 
(combability, universality, 
modularity), - 

- Performance factors intro-
duced later as – even if to a 
certain degree redundant – 
most actors sought them to be 
of high importance for sepa-
rate evaluation 

Techn. Perfor-
mance 

various Technological properties relevant for storage 

- Efficiency, Power & energy density, 
cycle & calendar life time 

Tech. Flexibility Various Ability to respond to fast-changing operation 
cond. And adoption of new market situation 

- Dependency on infrastructure 

- Power ramps  

- Modularity 

Environ-
mental 
impacts 

Damage to eco-
system 

Y Loss of various species in certain time and area  -No major changes, only word-
ing issues and description of 
indicators 

Damage to Hu-
man health 

Y No. of diseases based on human health statis-
tics 

Damage to res. 
availability 

$ Risk of running out of resources 

Society 
and 
policy 
/social as-
pects 

Socio-economic 
performance 

- Direct and indirect numbers of employment 
possibilities 

Several discussions and 
changes of “acceptance” as 
there are highly different opin-
ions about this criterion Acceptance - Opinions related to energy systems by the local 

population 

Regulation & 
policy 

- Economic incentive-based policy 

 

6.4 Summary of MCDA approach and realization  

A summary of all selected criteria and their hierarchy for AHP regarding the overall research goal is 

given in Figure 6-6. Elicitation for AHP was developed within conducted interviews and realized in the 

second half of the survey described in chapter 5. Stakeholders had the possibility to conduct the survey 

in English or German. The first part of the AHP survey section offered a short introduction to AHP and 

provided links to further literature. Each criterion was briefly introduced with a short description. Partici-

pants had then to set a modulator on the point of their preferred prioritization within the pairwise com-

parisons. An example of a pairwise comparisons of three sub-criteria related to environmental impacts 

is given through a screenshot of the survey in Figure 6-7.  
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Figure 6-6: Overview of selected criteria and their hierarchy for MCDA as well a alternatives 

The behind laying scale of the pairwise comparison was set from 1 to 17 and then converted into a 

suitable 1- 9 scale by calculating reciprocal values where, e.g. 9=1 for AHP or the reciprocal matrix. 

Most stakeholders liked the way of inquiry as it was easy and intuitive to follow. There were also 

concerns expressed that the easy way of setting preferences might lead to non-reflected prioritizations 

not representing the real participant opinions.  

 

Figure 6-7: Screenshot of a pairwise comparison within AHP in the survey 

Figure 6-8 provides a screenshot of the behind laying excel-VBA calculation for one set of criteria and 

four participants. The inputs in the form of comparisons from the stakeholders that participated in the 

survey were translated into the reciprocal matrices required for AHP to calculate the row geometric 

mean method (final weights are indicated by the red bars). In this case, the first participant is very 

concerned about the social impacts and the technology performance, whereas the second one 

perceives economic performance as the most crucial factor for technology selection. The green field 

indicates that the prioritization of this stakeholder can be considered as consistent as explained before 

(GCI=0.35 for n=4). This procedure was repeated for all chosen sub-criteria sets and stakeholders.  
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Figure 6-8: Example of an AHP reciprocal matrix, normalization, priority vectors and consistency check for 5 

participants 

 

Stakeholder Priority vectors ConsistencyReciprocal Matrice Normalization

8 En
v.

Ec
on

.

Te
ch

n.

So
ci

al
 

A
sp

ec
ts

En
vi

ro
nm

en
t

Ec
on

om
ic

s Te
ch

no
lo

g
y So

ci
al

 
A

sp
ec

ts

G
eo

m
et

ric
 

m
ea

n

GCI Calculation GCI

 Battery research & development (University, research center etc.)Env. 1 9.00 0.13 0.14 0.06 0.47 0.05 0.06 0.097 1 4.24 0.39 0.60 0.30
Econ. 0.11 1 0.50 0.14 0.01 0.05 0.19 0.06 0.046 1.00 3.35 1.27
Techn 8.00 2.00 1 1.00 0.50 0.11 0.38 0.44 0.306 1.00 1.32
Social Aspects 7.00 7.00 1.00 1 0.43 0.37 0.38 0.44 0.404 1.00 Consistent
Summ 16.11 19.00 2.63 2.29 1 1 1 1

1 Env. 1 0.17 1.00 0.20 0.08 0.10 0.06 0.05 0.069 1 1.31 0.88 0.87 0.03

 Other Econ. 6.00 1 7.00 3.00 0.46 0.61 0.44 0.69 0.540 1.00 0.79 1.65

Techn 1.00 0.14 1 0.14 0.08 0.09 0.06 0.03 0.061 1.00 0.70
Social Aspects 5.00 0.33 7.00 1 0.38 0.20 0.44 0.23 0.298 1.00 Consistent
Summ 13.00 1.64 16.00 4.34 1 1 1 1

1 Env. 1 5.00 1.00 0.25 0.16 0.54 0.11 0.14 0.190 1 3.16 0.51 0.62 0.18

 Other Econ. 0.20 1 3.00 0.33 0.03 0.11 0.33 0.18 0.120 1.00 2.41 1.31

Techn 1.00 0.33 1 0.25 0.16 0.04 0.11 0.14 0.097 1.00 1.22
Social Aspects 4.00 3.00 4.00 1 0.65 0.32 0.44 0.55 0.474 1.00 Consistent
Summ 6.20 9.33 9.00 1.83 1 1 1 1

7 Env. 1 0.25 0.25 0.25 0.08 0.03 0.05 0.14 0.061 1 0.50 1.00 2.00 0.12

 Research - Energy system (University, research center etc.)Econ. 4.00 1 0.25 0.25 0.31 0.11 0.05 0.14 0.121 1.00 0.50 1.00

Techn 4.00 4.00 1 0.25 0.31 0.43 0.18 0.14 0.242 1.00 0.50
Social Aspects 4.00 4.00 4.00 1 0.31 0.43 0.73 0.57 0.485 1.00 Consistent
Summ 13.00 9.25 5.50 1.75 1 1 1 1
Env. 1 0.25 3.00 0.25 0.11 0.03 0.36 0.14 0.111 1 0.27 3.46 1.07 0.31

8 Econ. 4.00 1 0.25 0.25 0.43 0.11 0.03 0.14 0.119 1.00 0.27 1.00

 Battery research & development (University, research center etc.)Techn 0.33 4.00 1 0.25 0.04 0.43 0.12 0.14 0.128 1.00 0.93
Social Aspects 4.00 4.00 4.00 1 0.43 0.43 0.48 0.57 0.476 1.00 Consistent
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7 Technology evaluation 

The choice of sufficient criteria is an integral part of the first step in the entire MCDA model. It is 

necessary to link the MCDA model with technology characteristics and potential application fields to 

provide insights into the performance of technology related to actor expectations towards an ideal 

configuration of storage technologies as indicated in Figure 7-1. The first sections are related to 

technological and societal criteria which are handled statically due to the scarce of application related 

data (grey fields not linked to application fields). In the second half of the chapter, a way to link 

technology evaluation with real-world application conditions is presented. This is done by the use of 

specific energy storage use cases and by calculating the impact of specific technologies (blue fields).  

 

Figure 7-1: Schematic of procedure for technology evaluation for MCDA  

Such use cases are required for a set of methods from system analysis; namely life cycle assessment, 

investment and life cycle cost calculation. Most of these application cases are taken from literature, 

whereas a new one is generated for a decentralized hybrid microgrid case, which also serves as a 

reference case. The last chapter provides a short discussion about the choice of indicators in this work 

and gives a brief insight to the results of other works to provide a more extensive picture of the 

challenges associated with the choice, definition, and quantification of these. Additionally, sensitivities 

are analyzed and discussed for the reference case.  

7.1 Energy storage database 

An energy storage database (Batt-DB) containing up-to-date techno-economic data from industry, 

literature and scientific reports for all types of secondary batteries [90], [189] is developed as a base for 

technology evaluation. This database includes over 5,000 data points for 12 different battery types 

including the years 1999 to 2016. The database is continuously updated and provides data about 

efficiency grades, energy and power densities, specific cost, cycle and calendar life time and others. An 

overview of the values obtained from Batt-DB and used for technology evaluation is given in Table 7-1, 

which also includes data for PHS and CAES. The high amount of available data makes it possible to 

gather bandwidths of different energy storage performance properties. Only datasets starting from 2014 

have been used for this evaluation. 
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Table 7-1: Key performance parameters of the assessed batteries using upper quartiles, median and lower quartile values using values from [89], [90] and [91]; assumptions for 
compressed air energy storage (CAES) are based on the work of [92], [93], [94], [95] and for PHS [96], [92], [97], [98]. 

  Assessed Battery technologies  Other technologies 

Component Unit Range VRLA LTO LFP LMO NMC NCA NaNiCl VRFB NaS PHS CAES 

Cost  €/kWh 

25 q 169 600 289 153 192 172 86 129  500 700 

median 230 900 309 238 318 213 220 458  750 850 

75 q 320 1200 315 564 554 355 403 860  1000 1000 

Cycle life 
time @ DoD 

80 % 

 25 q 300 4500 1750 1000 1000 1250 1000 9000  - - 
- median 1400 8000 5000 1500 4000 3000 3000 10000  - - 

 75 q 1600 9750 5325 5000 4875 5125 6250 13250  - - 

Efficiency  

 25 q 63 81 83 85 83 90 84.25 65  65 45 
% DC-DC median 76.5 90 96 94 93.8 91.55 86 75  75 54 

 75 q 90 94.5 96.5 98.25 97.275 93.1 91.25 85  80 70 

Calendric 

 25 q 10 10 7.5 5 5 10 10 6.25  39 23.7 
a median 18 17.5 15 10 10 10 14 15  40 35 
 75 q 20 25 20 15 15 15 14.8 20  60 40 

O&M 

 25 q 4.3 11 17 20 20 20 12.4 17.7  3 2 
€/kW y median 16.9 25 25 25 20 25 20.9 40  15 6 

 75 q 37.4 33.8 31.3 30 30 30 44.8 50.5  18 19 

Investment 
cost per kW 

           623 517 
           750 850 
           1975 1000 
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Older data sets are only used in cases where no actual data was available for a technology or a specific 

parameter. This is especially the case for NaS and Vanadium Redox Flow batteries.  

7.2 Evaluation of technology criteria 

There is a high magnitude of technological criteria available in the literature available for energy storage 

systems (see chapter 2.8.3). The ones selected in the frame of this work in cooperation with 

stakeholders will be presented in detail in the following. They are viewed as general characteristics 

relevant for all applications fields. Most of the required battery performance parameters (cycle- and 

calendric life, charge/discharge efficiency, and costs, etc.) for all batteries are derived from the Batt-DB. 

7.2.1 Technology performance 

Technology performance is related to common technical properties of energy storage technologies high-

lighted in literature as [71], [59] and [68]. This indicator consists of five energy technology indicators as 

follows; Firstly, the efficiency which refers to how energy can be converted through an energy source 

by measuring by the ratio of output to input energy. The second and third indicator for technology per-

formance is represented by the calendric and cyclic life time. Both factors are seen as critical for the 

economic and environmental performance [190]. Finally, energy and power density are also included as 

battery technologies have highly varying characteristics in this regard. The weighting of subcategories 

was carried out by experts in the frame of the survey in the continuum of 1 t o10 (low, high and very 

important, see chapter 5.5.2).  

The attributed scores to different energy storage technology characteristics are indicated in Table 7-2. 

Obtained values are normalized to derive weights. Most stakeholders consider the factor of calendric 

and cycle life time as most important for stationary energy storage. Energy density is ranked last as 

there are not that strong limitations regarding size and weight of a storage unit. Power density and 

efficiency are considered as almost equally important in total. The low degree of variance indicates that 

there is some consensus on the importance of these two aspects. 

Table 7-2: Distribution of weights including variance based on survey results with n=50 

 Calendar life 
time  

Cycles life 
time  

Efficiency Pow. density Energy den-
sity 

Mean 8.64 8.60 7.38 6.88 4.72 
Stdv. 1.45 1.44 1.98 2.19 2.38 

Variance 2.08 2.11 3.9 4.8 5.6 
Normalized 23.85% 23.74% 20.30% 18.99% 13.03% 

 

It can be seen in Table 7-2 that technology properties can vary considerably. These variations are con-

sidered by including three different technology performance scenarios, which are simply named pessi-

mistic (lower quartiles of technology values), base (median values) and optimistic (upper quartiles). 

Weights and technology performance values are used to calculate relative performance of each tech-

nology by the use of TOPSIS. The evaluation results from TOPSIS can be found in Table 7-3, where 

also the main impact factors are included regarding their positive or negative influence on overall scores. 

It has to be noticed that the values have to be seen in relation to each other where, e.g., the case for 

LFP where the optimistic case shows lower values as in the base case due to changes of all scores. 

PHS and CAES achieve the highest scores due to their high calendar and cycle life time (LTC and LTY) 
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which are ranked the highest by actors in relation to the other parameters. VRLA scores the lowest due 

to its relatively low cycle life time (LTC), energy density (ED) and efficiency (EF).  

Table 7-3: Different technology performance evaluation scenarios using different weight in TOPSIS, 
EF=Efficiency, ED=Energy Density; LTC=Cycle Life Time; LTY=Calendric Life time; PD=Power density 

Technology Pessimistic Base Optimistic Pos. Neg. 

LFP 0.372 0.410 0.362 EF, LTC;PD ED 

LTO 0.288 0.357 0.328 EF, LTC, PD ED 

LMO 0.279 0.312 0.302 EF, ED LTC 

NCM 0.351 0.401 0.369 EF, ED LTC 

NCA 0.329 0.358 0.328 EF, ED LTC 

VRLA 0.171 0.226 0.228 LTY LTC, ED, EF,  

NaNiCl 0.249 0.283 0.271 ED, PD LTC EF 

VRF 0.226 0.291 0.283 LTC PD, EFF, ED 

NaS 0.244 0.325 0.291 ED PD, EF 

PHS 0.759 0.738 0.771 LTC, LTY EF, ED 

CAES 0.617 0.692 0.613 LTC, LTY EF, ED 

 

7.2.2 Technology flexibility 

The criterion of technology flexibility represents the ability of a technology to be built up without 

restrictions on any geographical location, to provide a high magnitude of different services and to adapt 

to new market situations. Restrictions can be based on topographic aspects as, e.g., the need for a 

height difference and the need for additional infrastructure as water supply for PHS or a gas pipeline 

system for CAES. The ability to provide different services is determined by a technologies response 

time [88], [92]. These can vary in dependence of the technology from milliseconds up to several minutes 

or hours. Another critical factor is the modularity of a technology which allows increasing storage 

capacity or power retrospectively to adapt to new market situations in the face of a growing share of 

intermittent generation. This ability is influenced by the energy to power ratio (E/P) of energy storage 

technologies as this relation limits to a certain degree modularity. 

The qualitative evaluation is based on literature and on a simple traffic light principle where points are 

attributed from 1- to 3 for each color (red=1/low, orange=2/moderate, green=3/good) whereas 

intermediate allocations are rewarded with 0.5 points. The results for flexibility evaluation are given in 

Table 7-4. It can be seen that CAES has in general fast response times but that switching operation 

modes form charging to generation may take up to an hour [92]. VRFB has received half a point more 

in the field of modularity as the technology has a highly flexible E/P ratio as power and capacity can be 

scaled independently from each other. NaS has a fixed ratio of 6 [191]. The latter is thus only rated with 

2.5 points regarding its modularity. It has to be mentioned that response time of NaNiCl and NaS are 

only fast when batteries are in operation. Cold starts take up to several hours [191], both are thus rated 

half a point less in relation to other battery storage technologies. VRFB and Li-Ion are ranked the highest, 

followed by VRLA and high-temperature batteries. CAES and PHS have the lowest score in this 

category.  
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Table 7-4: Aspects of technology flexibility based on [92], [88] and [191] 

Technology Infrastructure Topography Modularity Response time  Total Norm. 

PHS Electricity grid,  height difference between 
upper & lower basin, water 

Low 3min 7.0 1.10 

CAES Electricity grid 
Gas Pipeline  

Porous rock, salt cavern 
required 

Medium  3 to 10 min response 6.5 1.00 

36 min storage to gen. 

Li-Ion Electricity grid None High Seconds 12.0 1.95 

VRFB Electricity grid None High ++ Seconds 12.5 2.00 

VRLA Electricity grid None High Seconds 12.0 1.95 

NaS Electricity grid None  Med  high Seconds Hours* 11.0 1.84 

NaNiCl Electricity grid None  High Seconds Hours* 11.5 1.89 

*in case of cold starts 

7.2.3 Technology maturity 

The criterion of technology maturity is a crucial factor for technology evaluation when it comes to 

investment decisions. On the one hand, technological innovation is a prerequisite for corporation growth, 

but on the other hand, companies also try, in various ways, to prevent change to maintain a stable state. 

The use of innovative technologies is usually associated with higher uncertainties and costs in relation 

to mature technologies. Companies usually inhibit a rational view in which management may be able to 

anticipate and control the risk of innovation to a certain degree. This is usually done by quantifying likely 

dangers (investment calculations, SWOT-analysis, etc.) as well as rewards and to weigh them to each 

other to justify anticipated costs and decisions [192]. Such situations of uncertainty may induce a 

company to reject the effort of innovation or at least allow them to continue in an isolated or critical 

reduced way. Somehow, they also might adopt innovation by compartmentalizing it or oscillating 

between support and resistance. This reaction can be considered conservatism which is implicitly 

embedded in every company leading to the ambivalence according to innovations [192]. Investment 

decisions are thus often in favor of established technologies [104]. It can be questioned if all arguments 

apply to every company type. Especially investment intensive and large industries as chemical, energy 

utilities or car manufacturers can be considered as more conservative regarding innovations. Less 

capital intensive industries tempt to adopt innovations faster, as it takes fewer resources to make an 

invention marketable.  

There are several ways to measure the degree of maturity, e.g. by categorizing technology into different 

technology readiness levels [121] or others [8]. This work follows an approach with an orientation 

towards [104] using patents to determine the life cycle stage, which can also be considered as maturity 

degree of the considered technologies and installed unit data. Examples to determine the life stage of a 

technology through the use of patents are given in [193] or [194].  

The latter was extended through [195] as depicted in Figure 7-2 which expresses the theoretical 

development of patenting activity. This activity can be measured by the number of patent applications 

over time (e.g., years). It is possible to distinguish 4 idealized phases within a technologies life cycle 

based on [195] and [194] as follows: I) an emerging phase of new technology initially with stable patent 

activity with an abrupt interruption by increasing activity (representing the end of development phase); 

II) a consolidation phase with decreasing growth of patent activity due to new focus on first experiences 
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with new technology; III) a market penetration phase with strong growth of patent activities as new 

companies start to filing patents in the area; IV) a maturity phase where the peak can be seen as 

breakthrough where a technology reaches maturity. It has to be mentioned that patent applications may 

also follow the stages of hype cycles, more precisely the expectation phase. This might indicate rather 

a market reserve characteristic then real technology development [195]. It is assumed that patents mirror 

to a certain degree the changes of technological change. Such a “technology life cycle curve” can be 

plotted by patent applications over time. More information about technology life cycles can be found in 

[195], [194]. An overview about patents and the detailed results for single technologies can be found in 

Annex B. 

 

Figure 7-2: Amount of patent applications along different stages of a technological innovation life cycle [195], 
[194]. 

The patent search is carried out in Depatisnet by the use of the internal IKOFAX search language [196]. 

IKOFAX allowed the combination of relevant IPC main classes, country codes for priority countries and 

keywords for technology by Boolean operators to avoid wrong search results. Results of the search are 

then used to conduct a statistical analysis of bibliometric data. An example for Li-Ion batteries is given 

in Figure 7-3 (for more details see Annex B). It can be seen that the technology can be considered to 

be in a market penetration phase. 

 

Figure 7-3: Innovation life cycle of Li-Ion battery systems (global patent data) 

Data to calculate total installed capacities are taken from [65], [197]. It is not possible to distinguish 

different types of Li-Ion battery; they are thus handled as one technology. Additionally, other five maturity 

estimations from recent literature are presented in Table 7-5 and are used to verify own data. All 
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literature data sets are normalized and, equal weights (10%) are used to calculate maturity levels. Own 

considerations on installed capacity and technology level are weighted slightly higher with 15% each. 

An optimistic case is included in calculating final technology scores which are not dependent on their 

maturity degree but only resulting performance. 

PHS and VRLA represent the most mature technologies in relation to the other given options. Li-ion 

batteries have all the same score as it was not possible to break down installed capacity and patents 

into single electrode chemistries. NaS and NaNiCl have comparable scores whereas VRFB has the 

lowest maturity degree.  

Table 7-5: Input data for maturity level of different technologies based on own calculations and literature [68], 
[198], [199], [200]  

Technology Inst. Cap 
in MWh 

Techn. Life 
cycle 

Av. From 
literature 

Final score Optimistic 
case 

LFP 1484.6 3 8.53 7.8 9.4 
LTO 1484.6 3 8.53 7.8 9.4 
NCM 1484.6 3 8.53 7.8 9.4 
NCA 1484.6 3 8.53 7.8 9.4 
VRLA 181.2 4 10.00 9.4 9.4 

NaNiCl 19.6 3 8.40 7.7 9.4 
VRF 72.9 2 7.17 6.4 9.4 
NaS 3670.0 3 8.54 7.9 9.4 
PHS 140000.0 4 9.85 10.0 10 

CAES 485.7 3 8.72 7.1 9.4 
 

7.3 Social criteria related to electrochemical energy storage 

The assessment of social factors is relatively new in the file of quantitative impact assessment, and 

identification or measurement of these is difficult due to a missing approved theory [201]. So far only a 

few studies exist on the evaluation of energy technology options in combination with social aspects and 

their operationalization as [104]. There is a common sense that social aspects represent a crucial factor 

for the success or failure of a distinctive technology [142] which has a long time been neglected by early 

policy programs. Social aspects are often addressed in literature, but there are only rarely definitions 

given [202]. The work of [201] provides several societal indicators for energy systems and technologies. 

Such factors are, e.g. availability of infrastructure for disposal and awareness level of risks. but all are 

related to technologies which have to a certain degree already penetrated markets as coal power steam, 

gas turbine combined cycle (CCGT).  

Interviewed participants claimed that it is difficult to rate the social aspects of a new storage technology 

which is not or hardly available on markets. Most thought that it is very challenging to make this 

evaluation qualitatively based on the survey. This comes especially true for some technologies like 

battery storage where almost no literature and more importantly only limited knowledge about 

technology impacts is available (e.g., in the case of VRFB).  

The social factors considered and discussed in the interviews will be explained in the following three 

sections starting with compliance with policy and regulation, socio-economic impacts and finally the 
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perceived public acceptance of different (battery) storage technologies. Survey and interview results are 

supplemented by literature data where available. 

7.3.1 Compliance with policy and regulation  

The interviews have shown that participants see a lack of available market regulations for energy 

storage technologies. According to literature “compliance with policy and regulation” represents a factor 

of socio-political acceptance which can be seen as acceptance on the broadest level [202]. It can be 

defined as the influence of regulatory incentives to support certain directions of technological 

development. Such development can be cost-effectively steered by, e.g. the use of economic incentive-

based policy. If there is no environmental policy available investments in environmentally friendly 

technology development, as well as diffusion, are likely to be less than they would be if socially desirable 

[203]. The indicator describes possible rules, specifications, policies or laws as obedience by a particular 

actor group related to technology development, diffusion, and investment. It represents a qualitative 

indicator that is rated by experts.  

The work of [204] gives a more comprehensive picture of such regulations namely; 1) energy regulation 

and law as well as 2) construction, environmental and immission laws. The latter is concerned about 

frameworks related to recycling, water protection, and fire safety regulations. Participation on markets, 

access to the grid and billing are issues related to the first category. Aim of this work was to provide 

characterization sheets for different balancing technologies through an interdisciplinary approach and 

the inclusion of experts in the area. The results were then discussed and validated on a three-day 

workshop. Rating is based on a simple traffic light principle. An overview about the different distinctions 

for different rating possibilities and their meaning are given in Table 7-6 (red=low, yellow=moderate, 

green=very high).  

Table 7-6: Evaluation scheme for regulation and policy issues related to different balancing technologies [204] 

Color / 
indication 

Energy regulation and laws Construction, environmental laws 

5 No need for action seen, framework available No visible conflicts 
4 Problems can be solved by small adjustments 

of existing laws 
Problems can be solved by small adjustments 
of existing laws 

3 Extensive changes in law required  Extensive changes in law required without 
lowering existing standards 

2 Extensive changes in law required realization 
may not be possible 

Extensive changes in law required with 
lowering existing standards 

1 Operation of technology does not make sense 
under today’s legal framework 

Operation of technology does not make sense 
under today’s legal framework 

 

Participants of the survey were also asked to rate the level of perceived political support and the 

availability of adequate market and legal regulations for different technologies. Stakeholders argued that 

does not make sense to rate single battery chemistries as there is seen a gap in the general availability 

of a clear legal framework for these technologies. This gap is related to regulations regarding 

decentralized storage and market participation rules [204] and [P8ES], [P5U]. The latter participant also 

stated that mere regulation is not sufficient to integrate storage technologies into markets by, e.g. 

incentives. Furthermore, stakeholder [P6 Reg] also stated that this criterion is difficult to interpret as 

regulation does not automatically induce political willingness. The criterion is considered more as a 

process of continuous negotiation between regulation and policy, where the latter sets political targets 
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which then must be discussed with the first if, e.g. adoption of current law seems to be necessary. The 

work of [205] provides a detailed qualitative analysis of experts opinions related to economic and 

institutional aspects of storage and is worth to be mentioned here.  

Results for this criterion are combined with the evaluation conducted by [204] and own survey results 

where experts could rate the availability of regulations for each technology on a Likert scale from 1 to 5 

(low, neutral and high). Final scores represent the sum of these values as indicated in Table 7-7. VRLA 

has the highest score among electrochemical storage technologies which is explainable through the 

well-established recycling system. The other technologies achieved all the same score as no distinction 

was made among them based on several stakeholder recommendations. PHS and CAES achieved the 

highest value regarding expert votes and available energy regulation and law. The first have to face high 

legal burdens before it can be implemented, which can be validated through Stakeholder [P8ES] 

experience with this technology. 

Table 7-7: Resulting evaluation of socio-political aspects of different storage technologies based on own survey 
with n=69 and [204] 

Technology Energy 
regula-

tion and 
laws*  

Construc-
tion, envi-
ronmental 

laws* 

Own 
survey Stdv. Comment Final 

score 

LFP 

3 3 2.9 1.04 Regulations missing (fire safety) – 
especially for large installations 

8.94 
LTO 8.94 
NCM 8.94 
NCA 8.94 

VRLA 
3 4 2.9 1.04 

Regulations through the “Wasser-
haushaltsgesetz” due to lead and 

sulfuric acid 
9.94 

NaNiCl 3 3 2.9 1.04 Regulations missing (fire safety) – 
especially for large installations 8.94 

NaS 3 3 2.9 1.04  8.94 
VRF 3 3 2.9 1.04 Concerns due to hazards & water 

protection 8.94 
PHS 4 2 3 1.10 Environmental concerns 9.01 

CAES 4 4 3.3 1.05 Comparable to CGCC 11.28 

*Results from [204] 

7.3.2 Socio-economic impacts 

Socio-economic performance is considered as a qualitative and a recapitulative criterion, roughly 

measurable [8], [111]. It can be expressed by a number of job creations, fair distribution of cost as well 

as benefits, social life and income generation. This makes it very difficult to rate new technologies under 

development regarding this aspect as there are often no statistics available [8]. An evaluation is 

furthermore challenging due to the missing consistent definition of this criterion. There is a 

comprehensive framework provided by [206] how to analyze the socio-economic effects in a quantitative 

way for the case of renewables. According to this study, value creation can be divided into different 

levels namely into impacts on a macro, meso and micro level including different variables (value added, 

welfare, employment, risk reduction, etc.). It was not possible to apply this rather complex framework in 

this work due to the high effort of data and time related to it. 

Instead, expert opinions are obtained to at least collect qualitative notions about the socio-economic 

performance of new balancing technologies and especially battery storage. Survey participants could 

rate the perceived socio-economic value on a Likert scale of 1 to 5 (low, neutral – to high) of different 
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balancing technologies related to job creation and fair distribution of costs and benefits caused by 

energy storage. Social factors named in the frame of the semi-structured interviews are strongly seen 

in the possibility of a higher autarchy for end-users resulting in financial and environmental benefits on 

a local level [P6Reg] and other aspects as lower emissions [P9Ac]. It was challenging for participants to 

rate this criterion due to its broad definition and the high number of variables that are involved for this 

criterion. Further discussion with participants has shown that this criterion seems to be more related to 

the general issue of technologies considered as decentral and those as central storage. It is thus not 

possible to distinguish socio-economic impacts for different battery storage technologies in this work. 

Technology ratings are thus set all to the same level as it would require more effort to provide robust 

values for this indicator. Survey results for socio-economic evaluation are given in Table 7-8.  

Table 7-8: Resulting evaluation of socio-economic aspects regarding job creation and fair distribution of costs and 
benefits caused by energy storage of different storage technologies based on own survey with n=69 and [204]  

Tech-
nology 

Own 
survey Stdv. Comments Final 

score 
LFP 

3.1 1.15 None 

Set 
to 

equal 
level 

LTO 
NCM 
NCA 

VRLA 3.1 1.15 None 
NaNiCl 3.1 1.15 None 

NaS 3.1 1.15 None 
VRF 3.1 1.15 None 
PHS 2.9 1.08 None 

CAES 2.9 1.08 None 
 

7.3.3 Perceived public acceptance of energy storage technologies 

Social aspects related to energy storage can be broken down into three highly interdependent categories 

of overall societal acceptance namely: socio-political, community acceptance and market acceptance 

[202]. This interdependency is also named by interview participants who thought that it is difficult to 

distinguish these three levels of social acceptance. The indicator in this work is dedicated to community 

acceptance which represents a blurry notion of opinions related to energy systems by the local 

population regarding the hypothesized realization of the projects under review from the consumer point 

of view. This criterion is critical since the opinion of the population and of pressure groups may 

profoundly influence the amount of time needed to go ahead with and complete an energy-related 

project. This comes mainly true for energy storage technologies that directly interfere with the public, 

e.g. on a decentralized level for residual storage by visual impacts, perceived health and safety 

concerns, etc. [149]. RES as well as battery storage tends to happen closer to the end-users “backyard” 

and increases its visibility and brings environmental impacts closer to their residence [202]. This criterion 

is highly interesting and should be seen in contrast to more global notions on a socio-political or -

economic level. Acceptance of technology on a community level refers to specific siting decisions and 

projects by mainly local stakeholder as local authorities and residents.  

This level of acceptance is where the debate around “not in my backyard – NIMBY” unfolds. The NIMBY 

phenomena are something that cannot be rationally explained in this case. The major problem is that 

acceptance which is related to this phenomena is not really measurable [111]. Again, this criterion is not 

considered as a quantitative but a qualitative factor. Qualitative measures for various alternatives can 
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be obtained via surveys carried out by the local community or city [8] as in the case of [100] or [99]. The 

semi-structured interviews in the frame of this work showed how difficult it is to handle this topic as 

participant’s don´t see anything like a reasonable public acceptance of technologies as NaS or 

Vanadium Redox Flow batteries due to the missing knowledge of the public related to these 

technologies.  

It is worth mentioning in this context that when people only know little about the technology they may 

depend on the trust in actors which are responsible for the development of technology [207]. The actors 

related to technology and their affective responses towards technology have thus a strong influence on 

society’s perception of the risks or benefits of relevant technology. Estimating local acceptance is difficult 

as the case renewable energies have shown where authorities, investors, and companies thought that 

implementation is no problem as surveys on public acceptance of res revealed high levels of support for 

the technology. However, experience has shown that such results indicating public support, or support 

from essential stakeholders on different scales cannot be taken for granted [202]. Thus, results 

presented in the following should be taken as indicative.  

The study of [204] also provided characterization sheets regarding the “societal acceptance” for different 

balancing technology using the same methodology as in the case of socio-political aspects. Rating is 

again based on a traffic light principle. An overview about the different distinctions for different rating 

possibilities and their meaning are given in Table 7-9 and are combined with own findings (red=low, 

yellow=moderate, green=very high). 

Table 7-9: Evaluation scheme for regulation and policy issues related to different balancing technologies [204] 

Color / indication Acceptance 
5 High acceptance, no local and national problems awaited  
4 In general, high acceptance, little number of aspect that should be considered 

in implementation  
3 Local and national acceptance not clear, further assessment required 
2 Low acceptance, residents should be included in decision process 
1 Not possible in Germany 

 

Also in the frame of this work experts rated the perceived social acceptance level related to, e.g. impact 

on the landscape, perceived danger and of the considered technologies on a Likert scale from 1 to 5 

(low, neutral and high). The issue of social acceptance was often related to the potential environmental 

or health impacts of toxic materials used in battery types as lead acid or vanadium redox flow batteries 

[P1RE]. The issue of the danger regarding explosions was also raised by stakeholders [P6Reg]. Experts 

also see potential acceptance problems when it comes to the acceptance of large storage units as PHS 

whereas battery storage is not seen as critical in relation [P8ES]. This impression was reinforced by 

[P9Ac] which stated: 

“… and I think they are not that suspicious when it comes to batteries….” 

However, some Stakeholders see in general a deficit in the acceptance of large-scale solutions including 

large battery capacities. A significant issue named by participants in this context is the visibility of such 

large-scale technology solutions [P7Auto]. Results indicate common tendencies as [48] that energy 

storage is to a great extent socially accepted in relation to other components, e.g. construction of wind 

turbines, new transmission lines or power plants of the energy system. One exception is pumped hydro 
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storage due to a perceived high impact on the landscape and related damage to the local environment. 

The option of building new flexible power plants (as in the case of CAES) is considered as unproblematic 

regarding local acceptance [P6Reg]. This is surprising as they also have a specific impact on the 

landscape and air quality. Stakeholders were asked to rate the perceived rate of public acceptance 

based on the impact on the landscape, and perceived danger (e.g., explosion, impact on landscape and 

toxicity). The final scores for public acceptance represent the sum of the results based on [204] and 

survey results as indicated in Table 7-10.  

Table 7-10: Resulting general acceptance of different storage technologies based on own survey with n=69 and 
[204] 

Technology Public ac-
ceptance* 

Own 
survey 

Stdv.  Comments Total  
Score 

LFP 

4 3.7 0.94 Doubts about safety due to the danger of 
fire & explosion 7.7 LTO 

NCM 
NCA 

VRLA 4 3.7 0.94 Well known but high amount of lead and 
sulfuric acid 7.7 

NaNiCl 4 3.7 0.94  7.7 
NaS  3.7 0.94 Concerns regarding the danger of fire 7.7 
VRF 4 3.7 0.94 Concerns regarding large installations & 

leakage nearby population 7.7 
PHS 2 2.8 1.23 High resistance of local residents 4.8 

CAES 4 3 1.04 Comparable to CGCC 7 

*Results from [204] 

It is worth to mention that technology evaluation itself can also be seen as an integrative part of 

acceptance as described in an acceptance behavior framework developed by [207]. This frameworks 

kernel is that acceptance out of a psychological view is based on expectations on social or environmental 

benefits, potential risks, and costs. These expectations are as already mentioned before linked to trust 

in actors related to technology. Every considered criterion used to evaluate technology provides new 

knowledge which itself might lead to higher acceptance or the contrary. An example is given by [208] 

where people had more knowledge about hydrogen as a fuel with safety risks, had a lower positive 

attitude to use it. Notions about the related environmental benefits through hydrogen were high which 

has led to a higher willingness to use it. The combination of both factors where perceived environmental 

benefits where higher then safety concerns have led to a positive effect on attitude and willingness to 

use [207]. Such effects may be based on the preliminary evaluation of technology acceptance have to 

be considered for result interpretation. 

7.4 Evaluation model for environmental and economic criteria 

It is necessary to develop a model that allows an evaluation of energy storage technology properties 

under different application conditions in a quantitative way. Operation conditions have a strong influence 

on, e.g. necessary maintenance efforts as well as potential replacement investments and thus on the 

total Investment, LCC as well as LCA results. This becomes especially true for most battery technologies 

which have a cycle or calendrical endurance limit [209]. The interrelation of cycles, DoD and cost, was 

an aspect of major concern expressed by experts in the conducted interviews (see section 5.5.3). The 

model thus includes an optimization for the proper dimensioning of batteries regarding cycle life time 
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and DoD relation in economic terms. Additionally, cell cost degression effects are included to draw cost 

reduction in case of battery exchangement properly. 

Involvement of stakeholders helped to choose and define realistic application scenarios for this purpose. 

The resulting operation profiles and future price developments for different application cases serve as a 

base for modeling. Based on averaged operation data an economic optimization of the battery storage 

system’s nominal capacity is done, providing the base for the following, investment cost calculus, life 

cycle costing (LCC) and LCA calculation. The framework of the entire application related assessment 

process is depicted in Figure 7-4.  

 

Figure 7-4: LCA and LCC model for battery storage evaluation 

There are simplified approaches available in the literature that allow an evaluation of energy storage 

technologies by defining average daily cycles of storage with predefined capacities over a given project 

life time which is in this case 20 years. A good overview of such different business areas is given in 

[210] and [211]. The application of such generic use cases implies a simplification of the real potential 

requirements associated with energy storage. It was furthermore emphasized by stakeholders that new 

system concepts should be considered for battery storage [P5U]. Such concepts have to include PV, 

DSM, and storage units in a sense that the entire system becomes economic and environmentally 

viable. Examples of such systems are decentralized hybrid energy systems (HMGS). There are no 

representative load profiles for such a case available in the literature, making it necessary to generate 

such profiles firstly. The modeling of such a system requires a more sophisticated optimization-based 

model as it inhibits a higher degree of complexity.  

Two different approaches are thus considered to provide a comprehensive picture of technology 

performance in combination with MCDA. The first approach is based on predefined conditions from 

literature whereas the second is based on a decentralized hybrid microgrid optimization model to 

generate such a load profile. Both approaches have been published in the context of this work and are 

thus only explained briefly in the following two subchapters [89] and [212].  
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7.4.1 Grid application cases from literature 

The approach is based on standardized (yearly) cycles for different application fields and technology 

parameters as well as different dynamic integration scenarios which will be explained in the following. 

Stakeholders perceive batteries as suitable for applications on almost every level. One exception are 

long-term storage applications up to weeks. The following representative application fields were chosen 

based on the survey and semi-structured interviews in chapter 5 for assessment summarizing data from 

[65], [211]:  

x Primary regulation (PR): Conjunction of measures for short time reconciliation of supply and 

demand. Energy is stored and released within seconds to respond to sudden spikes caused by, 

e.g. the intermittent nature of RES and to avoid changes in grid frequency [27]. PR is a high-

power application, but also requires some capacity reserves in both directions, why on average 

the battery is maintained at 50% SoC. 

x Electric time shift (ETS): Electric time shift is also referred as ‘arbitrage.’ Energy is stored during 

periods of low electricity market prices and discharged during times of high prices. This can help 

to compensate fluctuations in electricity generation due to increasing shares of RES where high 

or negative price peaks might occur on spot markets. It represents the typical application field 

for large-scale energy storage technologies as pumped hydro storage or compressed air stor-

age nowadays. Batteries can also be used in this application until a certain capacity and power 

output of about 100 MW and a rating of around 800 MWh [210]. 

x Renewables support: Energy is stored by RES (e.g., wind turbine) operators when producing 

excess electricity and dispatched during high demand times. Typical timespans are multiple 

hours resulting in a high E/P- ratio (focus on storage capacity, not power) [213] 

An overview of the different application cases is given in Table 7-11. PHS and CAES are only considered 

in large-scale bulk storage in the frame of ETS to conduct arbitrage business. A simple one-factor model 

namely; random walk price model (RWP) [214] is used for price prediction for the purchased electricity 

during storage unit operation. The model was applied within a Monte Carlo simulation to capture 

potential long-term changes in electricity, CO2-certificates, and natural gas spot market prices until 2040. 

Historic spot market prices for the stochastic simulation are based on [215] and include the years 2007 

to 2015. The desired operation period for the entire energy storage system is assumed to be around 20 

years for all applications [216], [210].  

Table 7-11: Overview of used cases for the assessment. ORWP = Abbreviations of Application cases see above 

Application Power 
[MW] 

Capacity 
[MWh] 

Cycles 
p. day 

Electr. 
cost 

[€/MWh] 

Source of 
economic 

value 
creation 

Service 
value 
[60] 

[USD/kW] 

Location in 
electricity 

supply chain 

Sources 

ETS 100 600 2 RWP [a] Arbitrage 67-335 Transmission 
& Distribution [217], [215] 

PR 1 1 34[b] RWP[a] 
voltage and 
frequency 
regulation 

6-6845 Transmission 
& Distribution [210], [218], [215] 

RS 2 20 1.12 80c Arbitrage 44-1750 Generation [219], [220], [221] 
[a] RWP = Random Walk Price mode – See Annex l 
[b] Adopted to German market conditions, 34 small cycles with an average DoD of 5 %, equivalent to 1.7 full cycles per day 
[c] Levelized cost of energy for onshore wind turbine with operation times about ~2000h/a 
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It is important to mention that only costs are reflected by this analysis, but that the application cases 

have different potential revenues (see Table 7-11). Thus, the LCC does not necessarily correspond with 

the economic viability, what must be considered when interpreting results. Additionally, other storage 

technologies like flywheels or hydrogen, which are not covered by this study, might also be promising 

for comparable application fields [2], [3]. 

7.4.2 Decentralized grid optimization model for load profile generation 

New decentralized system concepts as smart grids offer entirely new business possibilities for scalable 

electrochemical energy storage [P5U] and [P7Auto]. Especially the use of storage within Hybrid Micro 

Grids Systems (HMGS) which form an element of the smart grid is seen as a promising application field 

for battery storage. The aim of decentralized integration of Renewable Energy (RE) within HMGS is to 

maximize the share of renewable electricity directly consumed by local users. HMGS can be described 

as clusters of small generators, loads and battery energy storage systems connected through a local 

electricity network, controlled by a power management system that optimizes power flows. Such sys-

tems allow to reduce energy losses in transmission and distribution [222] and to increase autarchy up 

to a certain degree. A major challenge of such grids is the fluctuating generation behavior of decentral-

ized sources as photovoltaics and wind turbines which correlate only poorly with loads. Battery storage 

technologies allow to match intermittent generation with local demand and are thus seen as a crucial 

factor for a safe and reliable HMGS operation. The problem is that the composition of these concepts 

itself is in their infancy. A simplified scheme of a grid-connected HMGS is given in Figure 7-5.  

 

Figure 7-5: Simplified scheme of a grid-connected hybrid microgrid including photovoltaic, small wind turbines, 
battery storage and different loads (based on [223])  

A micro-grid model including the Canonical Differential Evolutionary Particle Swarm Optimization (C-

DEEPSO) algorithm is used to generate necessary parameters for the overall model used. HMGS 

modeling is realized via MATLAB® partially using a code initially developed by [224]. The model was 

reformulated for German conditions, including new boundaries, side conditions, a new optimization 

algorithm and techno-economic calculations. A aim of the HMGS optimization model is to increase the 

share of RES and to minimize the loss of power supply probability (LPSP) and the levelized cost of 

electricity (LCOE). This is achieved by finding the best composition of generation units and optimum 
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battery operation mode in the HMGS. More details about the mathematical model can be found in [224] 

and [212] as they cannot be covered in detail here. The optimization results in the form of new time 

series, generation shares, and other operating characteristics are used to calculate the inputs required 

to conduct the MCDA. A scheme of the optimization model is given in Figure 7-6.  

 

Figure 7-6: Simplified scheme of the used optimization model for HMGS and storage simulation 

The original optimization is based on a PSO algorithm in combination with a linear scalarization tech-

nique for the treatment of the bi-objective problem wherein the objective functions have been combined 

into a single function. The share of RES is not directly integrated into optimization but is included as a 

boundary, which is set in this work to a goal share of 80%. C-DEEPSO is a new population-based 

optimization algorithm built upon swarm intelligence and differential evolutionary technique [225] and is 

used as a solving algorithm instead of PSO due to higher robustness of results [212]. More details about 

the C-DEEPSO algorithm and its properties can be found in [212] [225]. A generic battery [224] is used 

to provide a representative operation load profile for battery storage. Major assumptions for the HMGS 

optimization model are given in Table 7-12.  

Table 7-12: Brief overview of major assumptions for HMGS optimization  

 Values Comment Source 
Size of com-
munity 

1.000 residents Average communities size in Ger-
many 

[226] 

Electricity cost 
from grid 

Without EEG-share & VAT resulting in 15 
ct/kWh 

No remuneration for feed in next 
grid level 

 

Load profiles Normalized standard load profiles: H0 (33%), 
G1 (22%), G3 (44%)   

Typical composition of load profiles 
for communities in Germany 

[227], 
[228] 

Meteorological 
data 

Hourly values for irradiation, wind velocity, 
and monthly average temperatures 

For south Germany (Black Forest) [229], 
[230] 

Wind turbines P= 200 kW, 1687 €/kWp, d=30m, min v=2.7 
m/s, rated speed=12.5 m/s max v=25 m/s, 
h=40; Operation time 1,720 to 2,230 h/a 

Wind turbine type: WES30 from 
Windenergy solutions 

[231] 

PV modules 7.2 kWp each, 1,500€/kWp, Operation time 
900 to 1260 h/a 

Fixed modules, multi-Si panels [224] 

Storage ca-
pacity 

1000kWh, 300 kW, DoD=80%, efficiency 
85% and 220€/kWh and additional cost re-
lated to balance of plant (table section 7.6.1) 

Generic battery, capacity depends 
on given boundaries for autarchy 
level (3 hours in this case) 

[224], 
[228] 
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The resulting optimum HMGS constellation consists of a PV capacity of 1.739 kWp and includes eight 

wind turbines. An excerpt of the HMGS operation for one week in summer is given in Figure 7-7. The 

battery is charged when there is a surplus of RE and vice versa on the contrary case. Total battery 

capacity is higher than the net capacity of 1000 kWh due to a minimum SoC of 20 % and compensation 

of efficiency grade losses. It can be observed that wind and PV generation surpasses load (including 

battery charging) for an extended period (10 hours). These amounts of energy are fed back into the 

public grid and are not used within the HMGS.  

 

Figure 7-7: Excerpt of resulting battery operation over one week within an HMGS  

No remuneration or restriction has been considered for the feed-in of surplus energy into the public grid. 

Including this could change overall LCOE with batteries and will be a task of future works. The contribu-

tions of the different RES to the battery charge is calculated based on hourly values for the specific 

wind- or PV- generated electricity surplus within the HMGS. LCOE for an HMGS with battery storage 

(18 to 27 €ct./kWh) are higher in average in relation to a system without storage (16 to 25 €ct/kWh), but 

RES share is increased by 7 to 15 %/a depending on the used meteorological data set. These costs do 

not represent the pure LCOE of battery storage. Though pure cost from RES in this application is 

depending on yearly operation hours resulting in a range of 9 to 16ct/kWh. Named bandwidths will be 

considered within a sensitivity analysis in the sections 7.6.4 and 7.7.3. All result bandwidths are given 

in Table 7-13.  

Table 7-13: HMGS optimization results (bandwidths) 

 Cycles Duration  Cost ct./kWh Comment 

Average 
Load pro-
file for 
MCS 

Cycles: min 0.3 
max, 1.40 (the 
latter is used as 
a central sce-
nario) 

0 to 3 h/d (the 
latter is used 
as a main sce-
nario) 

9, 13, 16 
(depends on yearly op-
eration hours of wind 
and PV) 

Can vary extremely in 
dependence of chosen data 
set, maximum case assumed 
for HMGS 

 

7.5 Consideration of uncertainties  

A vast range of often contradictory values can be found in the literature for many battery parameters. 

Selecting or calculating one single value out of this value ranges can be problematic since it is always 
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arbitrary and does not preserve any information about data uncertainty. This can be overcome by using 

probabilistic calculation methods, i.e., Monte-Carlo simulation, where a probability distribution is defined 

for every input variable [232]. The Monte-Carlo simulation (MCS) is seen as one way to include this 

aleatoric uncertainty into the MCDA. Due to the high number of datasets contained in the Batt-DB, 

ranges for most battery types can be obtained as the basis for MCS. 

MCS is based on the law of large numbers, which implies that a value, based on a random experiment 

calculated command variable strives towards a real command value with an increasing number of 

simulations or drawings respectively [233]. This is especially helpful if the analysis of a real system is 

not or only partially possible [234]. The MCS is applied, e.g. by the variables efficiency, energy capacity, 

daily operation time, investment costs (cells, PCS, BOS), life time in years and cycles, and efficiency 

[235]. In general, such a simulation needs reference values and adequate probability functions. 

Distributions in this work are approximated by beta-Pert distributions. The beta-PERT distribution is 

comparable to a triangular distribution, requiring a minimum, most likely and maximum value, but the 

standard deviation is smaller [236] [237]. It is repeatedly applied in cost and LCA calculation for 

electrochemical energy storage systems [210] [235]. An overview of the MCS methodology is given in 

Figure 7-8. On the left side, various priorities are generated with a suitable distribution function and 

serve as an input to the MCDA model. The combination of different distributions results in a new 

distribution for Investment cost, LCA, and LCC. 

 

Figure 7-8: Example of MCS procedure  

The model requires a proper number of simulations to achieve a distinctive accuracy (>1.000) [232]. 

Median values, upper and lower quartiles are used as an input for MCDA. Detailed information about 

probabilistic calculations of energy storage is given in [189]. 

7.6 Economic evaluation 

There are several competing energy storage and other flexibility technologies under the frame of a 

liberalized European energy market leading to the question which technology is the most economically 

valuable alternative for a specific application field. This makes it difficult and only partially possible to 

compare different technologies with each other due to their suitability for different application fields, 

operation modes (amount of cycles) and development levels. The considered economic criteria are 

introduced briefly in the following:  
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Investment costs; represent the economic magnitude of the introduction of a technology. It includes all 

costs for all the project implementation phases relating to purchase of equipment, installation, 

construction of roads, buildings, engineering services, etc. [8] [117]. Investment costs are one of the 

most used indicators for energy planning [238]. Each storage technology has different cost structures 

and balances. An example is, e.g. the cost for battery storage which is mainly dominated by capacity 

(€/kWh) while CAES, and PHS are more dominated by power (€/kW) [48] 

 Cost (LCC) can be used for a systematic comparison of alternative project designs including total 

expenditures (initial investment, capital, replacement, operation, energy and disposal costs, etc.) over 

the whole economic life time of a product. LCC can provide insights to help society appropriately allocate 

limited financial resources to monetary optimize technical improvements. A central problem of LCC 

approaches for emerging technologies is that there is often only a limited amount of data available in 

combination with a wide value distribution and several calculation possibilities [239]. Some calculation 

procedures are non-discounted (e.g., cost comparison calculation) or discounted techniques (Internal 

Rate of Return – IRR or Net Present Value – NPV). All approaches have advantages and disadvantages 

as well as limitations and should be selected carefully regarding the scope and goal of the planned 

assessment.  

Stakeholders agreed about the choice of the two criteria as they reflect different ways of evaluating 

potential investments from a company perspective. Investment costs play a higher role in short-term 

investment decisions. In contrary LCC plays a stronger role when it comes to mid- to long term 

investments. LCC and Investment costs are to a certain degree redundant when calculated but not 

regarding investment decision which is at the end always based on a company’s preference [P2U], 

[P4U] and [P3RES].  

7.6.1 Calculus of Investment and LCC 

Initial investment costs are based on the rated power and capacity specific battery costs (C) in €/kWh 

[240] using the data of the Batt-DB. The battery life cycle costs are calculated using the annuity method 

in which present values are distributed in yearly equivalent series of cash flows over the entire life time 

of the storage unit. The quotient of the annuity and the total amount of energy stored and released by a 

technology represents the LCC of electricity storage or its probability respectively as indicated by Eq. 

15.  

𝐿𝐶𝐶 =
𝐶𝑁𝑃𝑉∗ (1+𝑖)𝑇∗𝑖

(1+𝑖)𝑇−1

𝑃𝑚𝑎𝑥∗𝑡𝑗∗∏ 𝑛𝑛
𝑡=1 𝑡∗𝑁𝑐𝑦𝑐𝑙𝑒𝑠

    Equation 15 

CNPV represents the net present value, which is just multiplied by an annuity factor where i represents a 

depreciation rate and t total amount of project life time. Pmax is the maximum storage power, tj total 

operation time over the period of one year, nt is the sum of efficiency grades related to specific 

technology and finally Ncycles which indicates the total sum of cycles conducted within a year.   

All storage technologies are scaled to the same effectively available capacity for comparability reasons 

within the investment and LCC calculation. This means that losses caused by different efficiency grades 

are compensated by adequately dimensioning each battery. Interest rates are based on the investors 
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time value of money perception [241] to discount future expenditures to present values at a specific 

reference time point [242]. Depreciation is based on the assumptions of [210] where lower rates are 

assumed for smaller projects (6%) and higher ones for small-scale projects, e.g. in the frame of ETS 

where large utilities usually carry out the investment (8%).  

Investment costs of all batteries are calculated in the same way. One exaptation is the VRFB which is 

dependent on the number of cells used in a stack, while capacity is depending on the volume of the 

tanks and the electrolyte amount and concentration [37]. The outcome of this fact is that VRFB is very 

suitable to store energy from a few hours up to several days [37]. This makes it difficult to estimate the 

cost of this battery type for different applications. Thus an exponential relation between the amount of 

required membrane and electrolyte was assumed based on [243] using the cost indicated in Table 7-1 

as a starting point. This cell price was then multiplied with an energy to power relation dependent factor 

between 7 and 0.5 [190].  

All considered cell types potentially have to be exchanged at least one time over the assumed period 

due to either non-sufficient calendric or cyclic life time. Learning curves were thus calculated to consider 

potential future cell-cost reductions in case of cell exchange. A learning rate of 82 % is calculated for 

Lithium based technologies resulting in high-cost reduction potentials in the years to come due to scale 

effects. The produced amount of LIB batteries in MWh/y and historical price data required for calculation 

were derived from [244], [245], [246]. Learning curves for other battery types were taken from [247], 

[248] and [249]. Development for NaNiCl and VRFB was assumed to be comparable with a rate of 87 % 

(average for battery technologies). Lead Acid PbA is the most mature electrochemical storage 

technology, which is used for a high quantity of power system applications since over 100 years [77], 

[5]. It is thus considered that cost reduction potentials have been actively exploited in the past resulting 

in a low future learning rate of 94 % [190]. An overview of learning curves and their calculation is given 

in Annex C. 

Apart from battery cells, a stationary battery storage system requires electronics, infrastructure, and 

auxiliaries. The investment costs associated with the latter two are the so-called balance of system 

(BOS) and can contribute over 60 % to the total investment costs [250]. BOS include the cost for 

commissioning and installation and commissioning, structural and mechanical equipment such as 

protective enclosure, heating/ventilation/air conditioning (HVAC) and maintenance/auxiliary devices as 

well as communications and control equipment and can in total contribute up over 60 % of investment 

costs [250]. It is expected that BOS will follow a substantial learning curve through a portfolio of best 

practice in managing cost. This may lead to BOS cost reductions of around 40 % in the years to come 

[251] [252]. BOPs are poorly defined in the literature and that there are only a few reliable cost values 

available. Power electronics (PCS) cost in €/kW (AC-DC converters) is dependent on the size as was 

calculated by using cost digression exponents obtained from [253] and [254]. The assumed PCS costs 

were multiplied by a power dependent factor between 0.25 to 6. Inverter efficiency was estimated to be 

0.95. All assumed costs are indicated in Table 7-14 [190]. Using this assumption has led to comparable 

cost shares in final results as reported by [253], [255]. For more information see Annex C.  
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All assumptions related to costs of CAES and PHS including major components are given in Table 7-15. 

More details about the cost structure of this technologies can be found in the sources given in the table. 

CAES requires further assumptions regarding fuel and consumption of natural gas and CO2 emissions 

related to the combustion of fuel in the gas turbine. The CO2 is traded form of CO2-certificates in €/tCO2 

in the frame of the European emission trading system (ETS) and is together with natural gas a 

component of short-term marginal cost calculation.  

Table 7-14: Specific battery cost assumptions typical cost shares are reported by [253], [255] and [190] 

Type Cost €/kW Av. cost share %  Comment Source 
Contingency 83 - Covers unforeseeable events [252] 
Installation ~125 ~4  [252], [256] 

BMS+BBOS 273 - 475 12-40 Missing common definition  
, [243] 

[252], [256] 
Enclosure ~10 - Dependent on technology [252] 
Inverter - 10-20 Depends on scale effects [253], [243] 
Utility Intercon. equipment ~59 - Can vary extremely [252] 
Battery See Table 7-1 30-50 Technology-dependent DatBat 
Interconnection eq. ~59 ~1 Dependent from location [252] 
Permitting ~50 - Dependent of region [256] 

 

It was not possible to find reliable sources regarding de-construction and recycling of stationary battery 

systems, PHS and CAES. Thus, the waste treatment, disposal, and recycling of batteries is not 

considered here. This is apparently a simplification, since the end of life handling of different battery 

types and other storage technologies would vary significantly, but no established processes exist, and 

therefore no reliable data is available.  

Table 7-15: Specific CAES and PHS cost assumptions  

Type of cost PHS CAES Source 
BoP ~ 5 €/MWh 65-136-273 €/kWh [257] 

Fuel ratio (gas) - 1.1 -1.16 kWh/kWh [94], [93] 
Fuel ratio (electricity) - 0.67-0.7 kWh/kWh [94], [93] 

CO2 cost  0-26.6 €/tCO2€  

Comments Turbine & Pumps, Generator Compressors, gas 
turbines, expander  

 

7.6.2 Calculation and economic optimization of cycle life time  

Battery operation is optimized under economic aspects considering a minimum state of charge (SoC) 

which itself influences battery cycle life time [258], [235], [210]. A high Depth of Discharge - DoD (deep 

cycling) generally reduces battery cycle life, why batteries are often oversized in order to expand 

operation time. The aim is to minimize overall LCC by finding an optimal equilibrium between initial 

investment cost (battery oversizing) vs. replacement costs (reduced battery life) under given conditions 

for the different applications. It has to be mentioned that most battery types are not charged to 100 % 

or discharged to 0 % to avoid overcharge and discharge. Typical SoC ranges were thus assumed to be 

between 10 % to 95 % [259], [260]. A simple approximation of cycle life is applied in dependence of 

DoD using a approach formerly published in [261] under the named SoC restrictions. The methodology 

was already applied in [91] and [190]. Results for cycle life time calculation are given in Figure 7-9.  
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Figure 7-9:Calculation of DoD-Cycle relation [89] 

An example for the optimization results for the LFP type battery in dependence of the minimum SoC 

and operation cycles per day (for, e.g. electric energy time shift -ETS) is given in Figure 7-10. LCC is 

found to be optimal for ETS at a min SoC of 23 % at an average of 730 cycles per year or 2 cycles per 

day (exemplary yellow line). Each “step” in the graph represents an exchange of cells (red line) which 

is highly dependent on daily cycles and min SoC. A lower SoC would lead to an earlier and potentially 

additional exchange of batteries which would result in higher overall cost. It can also be seen that in this 

specific case (fixed E/P relation), the optimization is highly dependent on the amount of cycles per day. 

A low number of cycles per year (i.e., 1 cycle per day) does not require a minimum SoC. The reason for 

this is that calendric life time (for LFP 10 years) dominates here as operation cycles do not surpass 

cyclic life time which leads to no further cost benefits through oversizing. Optimization results for all 

batteries are given in [89].  

 

Figure 7-10: Sensitivity analysis of NCA min SoC in relation to operation cycles per year [190] 

There was no sufficient data available to calculate cell degradation of VRFB. Thus a minimum state of 

charge of 20 % was assumed based on [262], [263] and [264]. It has to be mentioned that other 
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Literature reports that VRFB can also be operated in a SoC range between 5 % to 95 % as in the case 

of [265] – if this comes true cost may be overestimated in this work. For NaNiCl, ideal operation modes 

of the battery are reported to be between 30 % to 100 % [266]. In this work, a minimum SoC of 20 % 

was assumed as most information about cyclic life time of NaNiCl was only available at a DoD of 80 %. 

This represents a strong simplification in relation to the other battery types and calls for further research 

in this field. The model offers also the possibility to include changes in technology performance e.g. a 

certain increase of cycle life time after the exchange of battery cells. However, it is very difficult to 

estimate potential developments in this area. It is therefore simply assumed that a new cell generation 

would have a slightly higher cyclic life time of around 10 % over 20 years, resulting in a yearly increase 

of 0.5 % per year [89]. 

7.6.3 Resulting investment cost and LCC for specific applications 

The simulation is carried out for 10.000 trials within a Monte Carlo simulation for each storage technology 

in every application field. Figure 7-11 provides an example of the distribution of results for investment 

and life-cycle cost for LFP used for primary regulation for the sake of the reader. The distribution function 

for investment cost is slightly left-skewed (0.141) with a kurtosis of 2.8 (indicating that variance comes 

more from the center) which is also the case for all other assessed technologies in this application. The 

results for 25%, 50%, and 75% quartiles are used as input for MCDA. Cost input for MCDA would be in 

this case 1,407 €/kWh, 1,442 €/kWh, and 1,493 €/kWh. 

The distribution function of life cycle cost results is strongly left-skewed (4.5), and kurtosis is higher 

(33.3) in relation to investment cost due to high variance of tails (up to 1,000 €ct./kWh). This can be 

explained by a high target value within a triangular distribution regarding operation times per cycle which 

lead to decreasing LCC. Again, as in the case of investment costs 25%, 50%, and 75% quartiles are 

used as an input for MCDA. In this case, MCDA input values are 62.54 €ct./kWh 81 €ct./kWh and 

124  €ct./kWh. A detailed overview of numeric MCS-LCC results is given in Annex D. 

 

Figure 7-11: Example for MCS results regrading LFP investment and life cycle cost used for primary regulation   

The initial investment costs obtained for the different battery types under the four considered application 

cases are displayed in Figure 7-12 in the form of box plots due to graphical reasons. The energy to 

power ratio (E/P) is also indicated for a better understanding of the results as this ratio highly affects 

initial investment costs. The box plots show the 5 % and 95 % percentiles, 25 % quartiles; median and 

75 % quartiles and provide an idea of the uncertainties, and shape of the distribution function of results 
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associated with the given calculations. The case of HMGS is separated from the other cases as it is 

based on a real load profile generated by an optimization model.  

In the case of ETS and CAES and PHS are compared with other battery storage technologies whereas 

two lithium-ion batteries were excluded due to graphical issues. These battery types are included in all 

other comparisons. Investment costs correlate to a certain degree with LCC; they will thus be interpreted 

together. The life cycle costs including main cost shares for all considered application cases and 

technologies are displayed in Figure 7-13. Again, as in the case of investment costs, box plots show the 

result distribution and provide an idea of the uncertainties associated with the given calculations. 

 

Figure 7-12: Resulting investment cost for all considered technologies and application cases 

The investment cost and LCCs obtained per kWh of electricity provided vary strongly between the four 

considered application cases. While costs for ETS, RS, and HMGS are on a similar level, those for PR 

are significantly higher, as well as the corresponding uncertainties. The ranking of the different battery 

chemistries also changes from one application case to the other, highlighting the importance of a well-

designed storage system optimized for the desired application. Especially the VRFB shows 

fundamentally different performances depending on the application case, as discussed in the following.  

ETS: With an E/P ratio of 6, ETS is a low power application, what reduces investment costs for power 

electronics and BOS. The combination of a comparably high amount of cycles (use-intensive 

application) with relatively low initial investment costs gives the lowest LCC among the four application 

cases for all batteries. Highest costs are obtained for NaS and VRLA, due to comparatively low-

efficiency grades. Cost related to VRLA results from a comparably low cycle life. In the end, none of the 

considered electrochemical energy storage technologies can compete against CAES and PHS. The 

latter represents the most economical energy storage technology up to date. CAES tend to have lower 

investment cost, but natural gas and CO2 emission cost can represent a significant cost factor and may 

increase in the future.  
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Wind energy support (WES): The profile obtained for WES is comparable to that of ETS, though with 

slightly higher median costs for all technologies due to higher specific costs wind turbine generated 

electricity. Here, LTO has the highest cost among the group of LIBs due to its high initial investment 

cost. The LCC of VRLA are the highest in this application because of low expected price reductions and 

strong oversizing in combination with a low cycle life of this type of battery. The E/P ratio of 10 required 

by this application favors VRFB, which obtain costs comparable to those of LIBs, mainly due to the low 

initial investment cost of about 513 €/kWh.   

 

Figure 7-13: LCC results for all considered technologies and application cases including cost shares.  

PR: This application is characterized by a high amount of small cycles per day in combination with a 

very high E/P ratio and comparably few total operation hours per year (~230 h/y). This leads to 

significantly higher investment costs for all battery types, especially for NaS with a median LCC of 

2.99 €/kWh due to significantly oversizing (E/P=6). VRFB also shows relatively high cost in relation to 

other battery types. High LCC are obtained for all battery types, mainly due to low operation hours per 

year in this application. The combination of these factors also leads to comparably high uncertainty in 

the results (large LCC bandwidths). Nevertheless, PR has high potential revenues and is therefore 

considered an economically very interesting business case [60].  

HMGS: The requirements for HMGS are characterized by a comparably low E/P size. The overall rise 

of average LCC in relation to WES can be explained by a higher cost for PV- and micro wind turbine 

generated electricity. VRLA show the highest LCC for this application, mainly due to its low-efficiency 

grades in combination with high electricity costs. Again, the cost for NaS and VRFB are also relatively 
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high due to an unfavorable E/P ratio of 3.33, resulting in higher initial investment costs. Here only battery 

storage is evaluated, whereas in the optimization model total HMGS is evaluated where battery cost 

has only a particular impact on total cost.  

7.6.4 LCC - sensitivity analysis for HMGS 

Figure 7-14 provides an overview of the parameter sensitivity in LCC calculation. LFP has been used 

as a reference technology together with the HMGS use case. Median values of depicted values are 

taken and varied within a bandwidth of -20% to 20%. Negative changes of single parameters are given 

in light grey and positive ones in dark grey. Result variation is depicted around the median of 48 ct/kWh. 

It can be seen that e.g., decreasing cycle life time leads to an increase of LCC and vice versa in the 

case in case of cell cost. The impact of DC-DC efficiency is the highest in relation to the other parameters 

due to high electricity costs, whereas calendar life time has no impact as cycle life time is more relevant. 

Efficiency grade is 96 % for LFP, 100% thus represents the maximum positive change with +4.2 % (even 

if unrealistic). A maximum discharge time of 3 hours is used for calculation. Thus only negative changes 

are conducted. It becomes clear that LCC is highly dependent on HMGS operation conditions. 

 

Figure 7-14: Sensitivity of LCC to different parameters of battery operation and properties (inspired by [5])   

A detailed overview about the interrelation of varying operation parameters on overall LCC is given in 

Figure 7-15 A and B where the high dependency of the LCC on the daily charge duration and daily 

cycles can be observed in the first. These influence battery exchange rates and yearly operation hours 

strongly, why the proper definition of the application case is a critical issue. Other important factors are 

the electricity costs and efficiency grades, which directly affect operation costs (Figure 7-15 B). A 

comprehensive sensitivity analysis of different investment cost, operation conditions and technology 

properties for ETS, WES and PR is given [190] and is not provided in the frame of this work. 
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Figure 7-15: LCC sensitivity analysis of HMGS with LFP for A) operation conditions including the number of 
cycles and charging time per cycle B) Influence of efficiency and purchased electricity. 

7.7 Quantification of environmental criteria 

Life Cycle Assessment (LCA) is used to calculate potential environmental impacts of technology over 

its entire life time. It is a standardized approach [159] and [160] that documents a product’s or product 

system’s environmental impact over the complete life cycle. This includes the mining and refining of 

primary material, the production phase, energy consumption, emissions and maintenance efforts over 

the entire use phase, as well as repercussions from the treatment at the product’s end of life. As in the 

economic assessment, battery production and battery operation (electricity loss due to inefficiencies) 

are considered, while the end-of-life handling of the batteries is neglected, mainly due to insufficient 

data availability about recycling processes. 

The functional reference of energy storage is each kWh withdrawn from the grid or RES unit depending 

on the scenario. The calculation is comparable to LCC calculation wherein costs €/kWh are substituted 

by a specific environmental impact EInkWh. Total environmental impacts over the entire life time of a 

specific system component EIkWh (e.g., battery, PV or wind turbine) are summed up and divided by the 

sum of the provided energy Pn by a particular component (e.g. generated through RES, converted by 

the battery or directly provided by the grid) as shown in Equation 18 

𝐸𝐼𝑘𝑊ℎ = ∑ 𝐸𝐼𝑛
𝑛
𝑛=1

∑ 𝑃𝑛
ℎ=8640
ℎ=1

    Equation 16 

It is difficult to choose different environmental impact categories as an MCDA criterion. There exists a 

high number of different impact categories as noise, non-methane volatile organic compounds or land 

use and others which can be hardly prioritized by a broad stakeholder group just due to missing 

knowledge (it is challenging to, e.g. rank eutrophication against land use). Furthermore, the choice of a 

limited number of criteria might lead to non-representative results (e.g., on technology option might only 

have greenhouse gas emissions but large ones regarding water toxicity). A question related to this set 

of criteria was thus how to provide aggregated criteria that can be simply understood by participants and 

allow a comprehensive assessment of potential environmental impacts.  

There is a set of well-known methodologies available for LCA as Eco-Indicator 99 for endpoint indicators 

(endpoints and single score) and CML 2002 for midpoint indicators (greenhouse gases, ozone depletion, 

etc.) [267]. Recipe is a follow-up of these two methods. It combines and harmonizes midpoint and 
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endpoint approaches, and all impact categories have been redeveloped. Recipe allows users to choose 

their level of result through eighteen midpoints which are relatively robust, but not easy to interpret. Thus 

three simple to understand, but more uncertain endpoints where introduced in the method [268]. It is 

recommended to rather use mid-point impacts for detailed analysis as end-point results are difficult to 

interpret and considered more uncertain in relation to the first [269]. An overview of recipe principles is 

given in Figure 7-16.  

 

Figure 7-16: LCI results (left), midpoint indicator (middle) and endpoint indicator (right) in ReCiPe 2008 [268]. 

The recipe endpoint method is complex and is thus only explained roughly in this context. Detailed 

information can be found in [269], [268]. All endpoints used as criteria for this work can be briefly sum-

marized as follows [268]: 

x Damage to Human health (DHH): using the concept of „disability-adjusted life years“ – DALY 

(yr). The DALY of a disease is based on human health statistics on life years lost and disabled 

including various cancer types, vector-borne diseases, and non-communicable diseases.  

x Damage to ecosystems (DE): based on the loss of terrestrial, freshwater and marine species 

during a specific time in a specific area (yr). 

x Damage to resource availability (DRA): describes the risk of humanity running out of re-

sources for future generations. It is based on the geological distribution of resources and the 

marginal increase of extraction cost ($) 

The method offers the possibility to include different perspectives on the considered time frame which 

are as follows: Hierarchist perspective (100 years) is considered as the default option which is frequently 

used and referred to in [160]; Egalitarian (500 years) for a long term view (e.g., to consider the 

atmospheric life time of certain substances); and finally Individualist perspective for short-term 

perspectives (20 years) [267]. The standard Hierarchist perspective is taken into account in this work. 



Technology evaluation 

115 
 

Most of the interviewees (one exception) thought that these three criteria are easy to understand and 

that it makes sense to use them rather than to weight a selection of midpoint criteria.   

7.7.1 Life cycle inventory for energy storage technologies 

The impacts associated with battery, PHS, and CAES production are calculated based on present LCA 

studies. For this purpose, the inventory data provided by existing studies are recompiled and unified by 

using identical average values for common battery components in the case of LCA [91]. This improves 

significantly the comparability of the results from different individual studies [270]. Although some of the 

LCI disclosed by these works represent Li-Ion battery packs for electric vehicles, it is assumed that a 

stationary energy storage system would use battery modules of a similar configuration in a modular 

array. 

The inventory for the PbA is based on the recent work of Spanos et al. [271], an LCA study about battery 

for stationary demand-charge reduction. While a NaNiCl battery is contained in ecoinvent, the 

corresponding inventory is very simple, and therefore an alternative LCI is used, based on the works by 

Longo et al. [272], Galloway et al. [273] and Sudworth et al. [274]. No recent LCA study on VRF batteries 

is available, why a rather old work is used with comparably simple LCI for this type of battery [265] and 

additional information regarding the battery layout from a recent cost study published by [275] as well 

as the production of Vanadium Pentoxide based on [276]. As in the case of LCC, a linear correlation of 

membrane (Nafion-membrane) area and amount of electrolyte is assumed for impact calculation of the 

VRF battery, based on the energy to power ratio. The limited availability of reliable data and thus the 

higher uncertainty in the inventories of the non-lithium batteries (VRLA, VRF, and NaNiCl) has to be 

taken into account when comparing results. The LCI for CAES is taken from [94] and rescaled in a linear 

way for the case of ETS. Leaching far salt caverns was excluded as it is assumed that CAES represents 

a second use case. The original ecoinvent data [277] set for PHS construction was taken as a starting 

point and is as in the case of CAES linearly rescaled linearly for comparison reasons.  

The three recipe endpoints obtained with these inventory data for the different battery types, CAES and 

PHS are given in Table 7-16. Robustness of the used datasets is also rated qualitatively by the use of 

a traffic light principle where red indicates poor, orange medium and green good. High impact 

discrepancies can be observed per kWh of energy storage capacity due to different energy densities of 

each technology. The environmental impact of battery production is associated with the amount (the 

mass) of battery that has to be produced. For a low energy density battery, a higher amount of material 

is required for providing the same capacity, increasing the impacts correspondingly due to a high 

conversion factor (CF). A detailed breakdown of the environmental impacts of battery production to 

single battery components and thus the primary drivers for impacts can be found in a previous 

publication [270]. VRLA and VRFB show very low impacts per kg of battery produced, mainly due to 

their simplicity (in the case of VRF, the overwhelming mass share of the battery consists of tanks filled 

with liquid electrolyte), while their low gravimetric energy density reduces these advantages on a per 

kWh basis, especially for the VRFB. It has to be mentioned that the LCI of VRFB is based on an energy 

to power ratio of 9:1, while with a lower ratio, the share of the electrolyte of the total battery mass would 

decrease. Consequently different environmental impacts would result from a different E/P ratio.   
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In most of the underlying studies, no probability distributions or uncertainty information are given 

together with the provided inventory data or the LCA results. Thus, for the calculations of the three recipe 

end-points of the considered systems, a deterministic approach is used with static impact factors for 

each battery type except LFP and NCM. For these, at least two works are available and thus a value 

range that can be considered.  

Table 7-16: LCI sources and resulting recipe impact factors per produced kWh of storage, where DHH=Damage 
to Human health, DE=damage to eco-systems; DRA=Damage to resource availability 

Techn. Wh/kg CF1. DHH DE DRA Source Unc.2 Comment 

LFP3 96.1 10.6 9.48 3.21 6.48 [278], [279], [270] Low Good documentation 

LTO 52.3 19.1 13.67 5.64 11.06 [270], [280] Low Good documentation 

NCM 134.7 7.18 10.46 9.45 9.45 [281], [278], [270] Low Good documentation 

NCA 133 7.51 4.652 1.82 5.58 [270], [280] Low Good documentation 

VRLA 45.1 22.15 5.23 1.15 9.71 [271] High LCI very superficial 

NaNiCl 112.5 8.88 7.74 1.18 7.131 [272], [273], [274] Med. No comparison av. 

VRFB 17.52 57.12 29.44 4.54 15.11 [265], [275] High Very old source 

NaS 116 8.62 5.30 2.08 6.39 [282], [283], [272] High LCI very superficial 

PHS -  5.04 4.76 1.02 [277] Med. No comparison av. 

CAES -  8.94 6.12 4.56 [94] Med. No comparison av. 

1Conv=Conversion factor; 2Unc=Uncertainty; related to E/P ration of 1/9; 3Average from [278], [279], [270] 

For determining impacts associated with electricity generation, the ecoinvent 3.2. dataset “electricity, 

EU w/o CH” is used for the reference year (2012) [284]. Naturally, this applies only to the two application 

fields where grid electricity is used; for the application field ‘Wind Energy support’ a 3 MW onshore wind 

turbine is used. Inverters are taken from Ecoinvent 3.2 but had to be rescaled as the database only 

provides 3 kW or 500 kW sized ones. Also for the HMGS case ecoinvent 3.2 only provides data for wind 

turbines with a capacity of 750 kW and PV panels with a minimum size of 3 kWp. These components 

are thus also re-scaled linearly to the assumed size within the considered application cases. Admittedly, 

this represents a conservative and simplifying assumption but can be considered necessary due to the 

lack of more precise data in this regard. More details about the LCA can be found in recent publications 

related to this work [89], [91] and [285].  

7.7.2 LCA Results 

The LCA results for the different application for all impact categories, cases and the contribution of the 

different life cycle stages are given in Figure 7-17. Again, box plots show as in the case for LCC the 5 % 

and 95 % percentiles, 25 % quartiles; median and 75 % quartiles and provide an idea of the 

uncertainties associated with the given calculations. The following interpretation of results has been 

recently published in [286] in the line of this research and is thus only discussed briefly. A detailed 

overview of numeric MCS-LCA results is given in Annex D. 
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The availability of LCI data for VRFB is limited (little data or very simplified modeling) and the 

corresponding results should be interpreted with care. The results obtained for the LCA differ quite 

remarkably from those of the LCC, with a clear distinction between two system approaches: (i) Systems 

that use renewable electricity (HMGS and RS) and (ii) systems based on grid electricity (ETS and PR). 

This indicates the importance of the use phase (energy consumption during operation due to internal 

losses) for the final LCA results. HMGS and RS show very similar profiles, although the contribution of 

the different life time phases varies slightly. Especially the use phase has a lower contribution as wind 

electricity shows a small environmental burden than PV based one, why the contribution of internal 

energy consumption due to inefficiencies has a lower weight. ETS and PR have comparable impacts as 

the charged electricity is assumed to be based on the European electricity mix which has a considerable 

higher environmental burden in relation to the renewable energy for HMGS and RS.  

 

Figure 7-17: LCA results for all technologies and application cases and main shares to total impact 

Comparing the different LIB types, NCM shows a high endscore for all application cases where it is 

considered. Correspondingly, the high cycle life of the LTO and LFP leads to very good results for these 

two battery types in all applications. Like for LCC, where the initial investment costs of LTO are 

significantly above those of other LIB, the recipe end-score for LTO battery production is also higher. 

Nevertheless, the difference over the entire life cycle is lower, and the higher cycle life time and a low 

minimum SOC can compensate for this in all applications. VRLA has, despite its very low impacts from 

cell production, a very high environmental impact over its life time. This is mainly due to relatively low 

cycle life time and low-efficiency grades, requiring heavy oversizing in all cases. Also, VRFB show 
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comparably low-efficiency grades, leading to higher energy consumption and thus a higher 

environmental burden over the entire life time, especially for the grid-electricity based application (ETS). 

An interesting difference regarding VRFB in relation to other battery types (and a result contrary to that 

for LCC) is that the impact increases for applications with a very high E/P ratio (e.g., RS). A high E/P 

ration requires proportionally high amounts of vanadium pentoxide (V2O5) electrolyte, associated with 

environmental burdens for its production. It has to be mentioned that the results of VRFB are associated 

with a high uncertainty as in the case of LCC. In this work, V2O5 is assumed to be obtained from slag 

from an iron production process by roasting with NaCl or NaCO3, leaching with ammonia, alumina-

thermic reduction and electron-beam melting [276]. This leads to a high overall impact for VRFB in cases 

with a high E/P ratio, while other ways like obtaining it from petroleum or refinery slags or a by-product 

of uranium mining [287], might give different results. Since these different modeling approaches cannot 

be represented by uncertainty distributions, they are also not reflected in the uncertainty distributions of 

the recipe final scores.  

Impacts for NaS are very high for the case of PR due to the fixed E/P ratio and the resulting considerable 

oversizing of capacity (factor 6). This also comes true for the HMGS application case where the battery 

scores next to last to VRLA. Results with higher E/P ratios show better results which are comparable 

with those from NaNiCl as in the case for RS.  

PHS is characterized by low impacts despite its comparatively low-efficiency grades which can be 

explained by the long-life time of this technology of up to 90 years. CAES has the highest impacts in this 

application field due to low-efficiency grades and the combustion of natural gas. It has to be mentioned 

that future works should consider adiabatic CAES where no combustion is required due to the use of 

storage units to store heat resulting from compression which is then used for heating in case of air 

expansion.  

The share of the different impact categories in relation to total scores are given in Figure 7-18. It can be 

seen that overall impacts come from DRA and DHH dominate in all cases. A brief overview of the main 

categories and their overall share on total scores is given in the following as it is not possible to present 

a detailed picture of all impact categories for each technology and application case. 

DRA: Is characterized by two categories namely metal and fossil depletion. The first category describes 

the additional net present costs that society has to pay as a result of extraction and has a significant 

share in almost all battery storage technologies. Fossil fuel depletion refers to resources including 

hydrocarbons (liquid petrol, methane, etc.) and is strongly dependent on the provided electricity mix 

(e.g., ENTSO-EU mix vs. electricity from wind turbines corresponds to a factor of 24 or a factor of 5.3 

for PV. The case of metal depletion though is contrary, and RES show a higher depletion in this category. 

VRLA shows the highest DRA among all battery storage technologies as the battery is considerably 

oversized to assure a sufficient high cycle life time to avoid cell exchange. NaS and NaNiCl have 

comparable results, where only HMGS and PR show differences due to the oversizing of the first related 

to limitations of E/P ratio. Total scores of all battery technologies are dominated by cell production. Fossil 

fuel is one of the main contribuents in the case of CAES.  
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DHH: the final score of almost all technologies is strongly influenced by climate change (e.g. radiative 

forcing in CO2equivalents, temperature effects damage to human health (malnutrition, cardiovascular 

disease etc.)), followed by human toxicity (the environmental persistence and accumulation in human 

food chain, and toxicity of a chemical) and particulate matter formation (includes a magnitude of organic 

and inorganic substances (e.g. SO2 NOx, NMWOC etc.)). One exception is VRLA and NMC where the 

human toxicity dominates. This is mainly due to the use of lead (88% share) for VRLA and related to 

cell production in the case of NMC. In general, cell production contributes the most significant share to 

climate change and particulate matter formation for all batteries. Again, total scores in this category are 

highly dependent on the considered electricity mix. Especially CAES shows here high impacts due to 

the additional combustion of natural gas. 

DE: The highest impacts are also as in the case of DHH related to climate change (related to ecosystems 

and the loss of species (mainly plants and butterflies)), followed by agricultural, urban, natural and 

agricultural land occupation (occupation of transformed area and related loss of species over a given 

period time required for restoration and the impact on the number of species on that area [268])). Espe-

cially the latter is relatively high for PHS due to the need for a lower and upper water basin. Climate 

change contributes the main share for all technologies within this endpoint. Technologies with low-

efficiency grades tend to have higher impacts in this category due to increased energy consumption. As 

in the other cases, this factor is strongly dependent on the electricity mix considered. 

 

Figure 7-18: Share of endpoints to total score for all technologies and application cases (median values) 

7.7.3 LCA - sensitivity analysis for HMGS 

The sensitivity of recipe endpoint results in dependence of major battery storage parameters within a 

range of -20% to 20% around median values is given in Figure 7-19. Again, LFP is taken as a reference, 

and positive changes of parameters are indicated in dark grey and negative ones in light grey. Variation 

of recipe scores is related to the median value of 0.02. It can be seen that decreasing efficiency grades 

increases environmental impacts significantly. Reducing impacts during cell production leads to 
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significant reductions in total impacts. Comparable impacts can be observed for cycle life time and 

energy density where increasing parameters lead to environmental benefits.  

The detailed sensitivity analysis (as previously for LFP in HMGS) shows that results are, as for the LCC, 

highly dependent on operation hours and thus the amount of energy stored per year (Figure 7-20 A). 

Relevance of efficiency grades is highly dependent on the environmental burden of the charged 

electricity in the case of HMGS (determined by the share of PV or micro wind turbine), and its influence 

only increases for minimal use-intensive applications (low amounts of energy stored per year). This is 

due to the increasing weight of battery production since for a low-efficiency battery the losses have to 

be compensated for by oversizing correspondingly (the basis of comparison is the net electricity 

provided by the battery). 

 

Figure 7-19: Sensitivity of recipe endpoint results to different parameters of battery operation and properties 
(inspired by [5])   

The recipe endpoints allocated to the charged electricity is of paramount importance for the total 

environmental impacts of the system and has a comparable impact to the impacts caused by the battery 

production process (Figure 7-20 B). A comprehensive sensitivity analysis of different operating 

conditions in ETS, RS, and PR and resulting environmental impacts is also provided in [190] for 

greenhouse gases.  

 

Figure 7-20: Sensitivity analysis for RS with LFP A) battery production vs. charged electricity B) Variation of 
efficiency and total stored energy per year 
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7.8 Discussion of technology evaluation 

The chapter provided an overview of effects and impacts of different energy storage technologies in 

selected applications regarding the identified criteria and use cases within the MCDA process. Figure 

7-21 provides an overview of all considered criteria, the way of quantification as well as comments 

related to the issues which occurred during technology evaluation presented before. Based on this 

experience the quantification methods used are rated regarding their perceived robustness and state of 

knowledge and indicate the potential for future research. This is simply done qualitatively by a traffic 

light system where red indicates low knowledge, orange a moderate and green a good robustness as 

well as the availability of data.  

Social factors represent the most uncertain criterion due to missing literature and knowledge related to 

energy storage in this context. Especially local acceptance is a relatively new area when it comes to 

end-user near decentralized stationary battery storage. It is difficult to find standard definitions in 

literature as there are highly different notions when it comes to the factor of, e.g. “public acceptance.” 

Some examples for factors which increase the willingness to adopt a technology (or to accept it) from 

literature which can be named in this regard are the works of [99] and [100] which have been introduced 

in chapter 2.8. In general, expectations of the public about low cost and environmental impacts and 

properties of different technologies have a high impact on their technology acceptance [207]. Every 

criterion used for this technology evaluation can thus be seen as a relevant aspect and is highly 

interdependent from others which in sum may contribute to the overall “acceptance“ or willingness to 

adopt a technology.  

 

Figure 7-21: Summary of all indicators and quantification methods used for technology evaluation in frame of the 
MCDA and the perceived uncertainty of these (own estimation) 

The robustness and state of knowledge related to LCA results are highly dependent on the availability 

of data which is not the case for some technologies (e.g., RFB, NaS or CAES), where more research 

efforts are required. A more in-depth analysis should thus be conducted based on mid-point indicators 
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to obtain a more comprehensive picture of the impacts related to the technologies assessed. Economic 

aspects seem to be relatively robust as there is already a certain degree of literature available. It remains 

however difficult to find representative application fields for different electrochemical energy storage 

technologies. This comes mainly true when dynamic cycle life time is considered.  

The intermediate results and the sensitivity analyses point out the importance of cycle life and internal 

efficiency of battery systems for their environmental impacts and costs (LCC). This corresponds to the 

findings by Hiremath et al. [288] and Battke et al. [210], who assessed the environmental impacts and 

LCC of different battery types in stationary applications. In line with these works, initial investment costs 

and battery replacement are found to be the primary drivers of costs (LCC). Therefore, the LCC results 

depend to a significant share on the battery cell costs, while for the LCA, the battery efficiency (charge-

discharge losses during operation) is of paramount importance, especially when buffering electricity with 

a substantial environmental backpack. 
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8 Results  

The literature review has shown that most studies concerned with decision making regarding energy 

storage do not consider socio-technical dynamics and instead focus on small homogenous expert 

groups. It is postulated that CTA can help to break through typical enactment cycles by shifting the locus 

of assessment towards a broader perspective to provide a base for social learning to create “better” or 

sustainable technology in a “better” society. 

Stakeholder priorities regarding technology properties quantified in the chapter before are obtained by 

pairwise comparisons within AHP which will be presented in the following sections. One of the aims of 

this work is to identify if there is there are common expectations about these characteristics that energy 

storage technologies should possess. A high “sharedeness” of expectations ensures that stakeholders 

act accordingly to these expectations. AHP judgments serve as a base to calculate the consensus which 

represents the level to which a group is satisfied by a decision. This requires that judgments are homog-

enous and that the priorities expressed by individual group members are compatible with the group 

priorities [181]. The degree of this consensus can serve as a starting point for further stakeholder inter-

action to achieve alignment. A further target of this work stated in chapter 4 is to identify which technol-

ogies perform the “best” in the face of identified criteria and application cases. AHP priorities and tech-

nology evaluation results are used as an input for TOPSIS which serves as aggregation method to 

calculate overall technology performance. A special focus is put on the case of HMGS due to the high 

relevance attributed by actors to decentralized use cases (see chapter 5.6). An open question is how to 

use given results to inform actors to achieve something like “better technology” and to enable something 

like “social learning.”  

The following chapter provides the results of the MCDA inquiry, presenting overall and specific group 

preferences and their degree of consensus. Resulting scores through the combination of technology 

evaluation and AHP through TOPSIS are given in the following section. Then, a sensitivity analysis of 

varying weights and model assumptions for HMGS to provide insights into changes of rankings is given. 

Finally, a summary of results is provided and discussed.  

8.1 General priorities and consensus 

The prioritizations, including insights to mean, min, max, medians, standard deviations and consensus 

for all stakeholders and criteria are indicated in Table 8-1. Median values for priorities are taken for 

further calculations related to technology evaluation. All categories include the consensus of prioritiza-

tions regarding the sub-criteria as, e.g. damage to human health, to ecosystems and resource availabil-

ity as in the case of environmental impacts. A high consensus up to 100 % indicates a high degree of 

consensus or “sharedness” of the perceived characteristics technology should have, >75 % can be con-

sidered as high. Around 50 % represents modest consensus and <30 % can be considered as very low.  

Results for median priorities related to the main criteria indicate a high preference for economic aspects 

(0. 241) and environmental impacts (0. 236). It is interesting that stakeholder almost attribute the same 

importance to these two criteria as a strong preference towards economic aspects was perceived. It 

must be mentioned that average values indicated the contrary standard deviation shows that a rather 
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high variance of perceptions of different stakeholders is given. This may be explainable by the comments 

given by interview participants which indicated, that environmental impacts can also represent a crucial 

impact on overall project costs in case of unforeseen severe environmental impacts. Technology per-

formance aspects are ranked third related to their perceived importance (0.197). The least importance 

is attributed to social aspects (0.131) which seem to play a little role when it comes to the relevance of 

storage technology properties. Standard deviation is the highest for first two main criteria and is signifi-

cantly lower for last two. This also comes true for maximum priorities (0.59 vs. 0.7). The consensus is 

with 42 % is rather low and indicates that there is no real common perception regarding these four 

criteria among all participants. Consistency (GCI) of overall results is very high (0.115). 

The category of environmental impacts shows a clear dominance of potential impacts related to the 

recipe category of human health (0.472). This criterion is followed by damage to eco-systems (0.263) 

and finally resource use which was weighted the lowest (0.146). Here, standard deviation, minimum and 

maximum preferences are comparable for all criteria. Total consensus though is low with 37.9%, indi-

cating that there is the need for a more in-depth discussion with participants whereas consistency of 

AHP comparisons is at an average level.  

Social acceptance, as well as socio-economic value, are perceived as equally important (0.33) within 

the field of social aspects, which are ranked the lowest in relation to the other categories. Regulatory 

frames received the lowest priority (0.2). The latter is not necessarily seen as a prerequisite for technol-

ogy success through the eyes of some participants (compare with chapter 6), but on the other hand 

missing regulation is often named as an obstacle when it comes to technology introduction. In general, 

standard deviation was very high for all criteria, and consensus shows a low degree of shared expecta-

tions in this category.  

The criterion of “Technology aspects” is ranked third among the other main categories. Again, 

consensus is very low (32%), which also comes true for the consistency of given priorities (0.310). This 

indicates that is was difficult for stakeholders to attribute clear priorities to each of these criteria within 

the pairwise comparisons. Maturity and technology flexibility are seen as highly relevant (0.33 for both). 

Technology performance has received a slightly lower priority (0.283). Especially maturity shows high 

deviations regarding the given priorities (0.214).  

Results for economic criteria show clearly a higher perceived importance for cost in relation to invest-

ment costs (0.200 vs. 0.800). There is no consensus among the stakeholders about the relevance of 

these two criteria which is a surprising result as the contrary was expected based on the interviews 

where LCC where often named as a relevant parameter for investment decisions. An explanation for 

this may be that these two criteria can be seen an arbitrary and thus as challenging to rate for stake-

holders, or that indeed some stakeholders have a rather short-term perspective on investment decisions 

(expressed by a high rating towards investment costs). The GCI for economic factors is 0 as only two 

criteria are compared to each other.  
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Table 8-1: Overview of overall weights obtained through AHP for all stakeholders n=69 

 

 

8.2 Group preferences and consistency  

Numeric values of preferences of enactors and selectors are given in Table 8-2 to provide detailed 

insights into resulting priorities as vectors had to be rescaled for graphical reasons regarding the four 

main criteria in Figure 8-1. Results from AHP show that selectors have profoundly different expectations 

on technology properties in relation to enactors which will be discussed separately in the following. The 

matrix in Figure 8-1 is calculated in orientation towards the Boston Consulting Group (BCG) matrix and 

allows “to map” stakeholder´s preferences and consensus regarding the four main criteria in a simple 

way. The location of the bubble is based on the four vectors attributed to each criterion by every 

stakeholder group. A group does not have a strong preference for any criterion if, e.g. a bubble is 

situated nearby the middle of the 4-field matrix. Labeling of bubbles includes the number of valid 

prioritizations (1 to n) then the type of stakeholder group and finally the resulting consensus factor within 

the entire group in %, which is also expressed in a bubbles size (the bigger it is, the higher is the 

consensus). 

The selector sub-group preferences (see Table 8-2 and Figure 8-1) are highly diverse. In total, there is 

a stronger preference towards environmental aspects and relative comparable priorities for technology, 

economics, and social aspects. As stated in the theory chapter, comparative indicators for technology 

selection as environmental and social impacts are more relevant for this actor group [141] [20]. Total 

consistency for selectors is 40% which can be considered as low. It is difficult to provide a representative 

picture of all stakeholder sub-groups due to the low response rate or non-sufficient consistency of 

prioritization of some single groups. It is evident that 1 participant will achieve a consensus of 100 % as 

in the case of public body and policymaking. The two candidates from “Regulation” (lower right quadrant) 

and “Municipal utility” show a very high and moderate consensus with 97 % and 74 %. The latter shows 

a strong tendency towards social aspects which also comes true for the one stakeholder from 

policymaking. The group of utility companies including 11 valid datasets has a low consensus of 35 % 

Category Criteria Median Mean Min Max STDEV.
Average 

GCI Consensus
a) Environment 0.236 0.276 0.038 0.700 0.142
b) Social Aspects 0.131 0.170 0.038 0.509 0.095
c) Technology 0.197 0.206 0.038 0.590 0.108
d) Economics 0.241 0.271 0.038 0.700 0.142
Eco-system 0.263 0.290 0.037 0.773 0.141
Human health 0.472 0.485 0.037 0.773 0.169
Ressource use 0.146 0.193 0.037 0.662 0.169
Social acceptance 0.333 0.364 0.052 0.750 0.192
Socio econ. value 0.333 0.371 0.052 0.750 0.194
Regulatory frame 0.200 0.239 0.052 0.745 0.165
Maturity 0.333 0.341 0.051 0.750 0.214
Flexibility 0.333 0.346 0.051 0.678 0.163
Performance 0.283 0.277 0.051 0.662 0.153
Investcost 0.200 0.324 0.100 0.900 0.242
LCC 0.800 0.676 0.100 0.900 0.242

d) Enconomic 
Performance

Main 
Criteria

a) Envrion-
mental impacts

b) Social 
performance

c) Technology 
performance

0.115

0.132

0.145

0.310

0.000

37.9%

34.3%

32.9%

0.0%

42%
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with a stronger tendency towards the importance of technology and economic aspects of energy storage 

technologies. 

Table 8-2: Priorities from enactors and selectors as well as related subgroups 

 

This might be explained by the heterogeneity of this subgroup which also comes true for the group 

“Others” with a consensus factor of 35 %. Stakeholders from “Research Energy System” had a strong 

orientation towards environmental aspects with a balance of social and technical aspects with a low to 

moderate consensus of 62% for 8 participants. Civil society had the strongest orientation towards 

environmental aspects with a comparably high consensus of 73% with two participants.  

Enactors show a stronger tendency towards economic and technical aspects and subgroups can be 

considered as more homogenous regarding their priorities. Results prove that the enactment frame 

leads them to concentric thinking about desired technology properties. This impression is reinforced 

through a low consensus factor of 53 % for the entire group. The energy storage business participants 

achieved a high (low to moderate) consensus of 72%, while battery storage manufacturers and 

academic research achieved a low degree of 53% and 41%. The average preferences of enactors have 

a clear techno-economic orientation. One exception are battery manufacturers who seem to have a very 

balanced preference towards environment and economics.  

The total consensus of 45 % for all actors is low and indicates a more or less different notions about the 

importance of economic and environmental aspects of storage technologies. Technology aspects are in 

total considered as more important in relation to social aspects as described in the chapter before.  
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Selector 0.252 0.167 0.162 0.149
 Utility company 0.171 0.249 0.232 0.079
 Network operator 0.376 0.135 0.107 0.205
 Municipal utility 0.340 0.065 0.129 0.409
 RES production/retail 0.332 0.208 0.094 0.120
 Research - Energy system 0.291 0.135 0.215 0.213
 Regulation 0.092 0.453 0.336 0.107
Civil society 0.534 0.098 0.128 0.170
 Public body & policy making 0.236 0.236 0.180 0.311
 Other 0.450 0.147 0.100 0.169
Enactor 0.136 0.373 0.237 0.112
 Energy storage Business 0.090 0.413 0.250 0.176
 Battery research R&D (Univ.) 0.123 0.307 0.162 0.091
 Battery manufacturer 0.361 0.340 0.179 0.107
 Automotive sector 0.198 0.465 0.236 0.047
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Figure 8-1: Consensus of different stakeholder groups and their median orientation towards the four given main 
criteria for technology design, note that only valid entries have been included with N=69 

Details to preferences and consensus of enactors and selectors as well as related subgroups for sub-

criteria are given in Table 8-3. Most enactors and selectors see LCC as a critical criterion for technology 

choice in relation to investment cost within economic aspects. The consensus is very low for both 

groups; enactors and selectors. Some exceptions are given for network operators and automotive 

sector. Comparison of environmental impact factors shows a substantial importance to the criterion of 

“human health” among the other two factors within this sub-group. One apparent exception is civil 

society, where two participants from NGOs took part and perceive “low damage to ecosystems” as most 

relevant as a technology characteristic. The consensus is high for most of the groups, despite the 

automotive sector. Criteria for social aspects are almost equally weighted for enactors and selectors 

with a low consensus, whereas some of the sub-groups as battery manufacturers achieved high values. 

Criteria related to technology aspects are weighted more differently between enactors and selectors. 

The latter seem to lay more effort on technology performance whereas enactors perceive the technology 

maturity as very important, which comes mainly true for battery manufacturers. It is interesting that in 

general priorities and consensus of subgroups vary remarkably. This variation shows that interests are 

profoundly different among the subgroups related to enactors and selectors.  
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Table 8-3: Prioritizations of sub-criteria and related consensus factor for enactors and selectors including all 13 
stakeholder (SH) subgroups. 

 

 

8.3 Ranking of technologies in different applications 

First, MCDA results for all main criteria are discussed, and total rankings are given at the end. Figure 

8-2 provides the results for the aggregation of economic criteria namely; investment cost and life-cycle 

cost (LCC). The first row of bars represents the optimistic case in which the lower 25% quartiles of MCS 

results (lower investments and LCC) are used as input for ranking. Main results in the base scenario 

are indicated in color by the bars in the second row. Finally, the pessimistic scenario is represented by 

the 75 % quartiles (high investments and LCC). 

The first case is represented by ETS which includes CAES and PHS (indicated in yellow and dark-blue) 

as technologies for comparison reasons. It also represents the principal business case for large bulk 

storage technologies as already mentioned earlier. LTO and NMC are not included in this case, due to 

graphical issues (ranking is the same as in the case of HMGS). PHS dominates this application followed 

by CAES and VRFB. The latter seems to be the most competitive technology in economic terms among 

battery storage but is followed narrowly by NaNiCl which switches ranks with LFP in the pessimistic 

scenario. In general, LFP dominates the group of Li-based batteries. NaS and VRLA share the last two 

ranks. Whereas the first has a close distance to the other technologies and the latter not.  

Wind energy support only includes battery storage technologies, which are dominated by NCA and LFP. 

VRFB and NaNiCl share ranks 3 and 4 and switches ranks in the optimistic case due to their comparable 

investment cost and LCC. LTO and NaS share the ranks 6 and 7. The first has very high investment 

cost whereas the latter has a comparably low-efficiency grade resulting in higher energy cost in LCC. 

Again, VRLA is ranked last.  

Results for primary regulation are slightly different to the other two cases. LFP is ranked first, followed 

by NCA due to their balance of investment cost and LCC. Here, NMC is ranked 3rd followed by NaNiCl 

and with some distance by LTO. VRLA is ranked in the 6th place as NaS and RFB can be considered 
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as not suitable for this application which comes especially true for NaS. This results from the energy to 

power ratio of this technology of 6 to 1 which results in a considerable oversizing.   

The case of HMGS is calculated for a 3.33 energy to power ratio which favors other technologies then 

VRFB and NaS which are ranked last due to their comparably low-efficiency grades in combination with 

high electricity cost resulting from PV and small wind turbines. Thus, VRLA also lose ground to other 

technologies and are ranked on the 6th rank. Here, LFP and NCA dominate again the application 

followed by NaNiCl and NMC. It can be seen that the last three ranks can switch within the other 

scenarios, results should for these thus be seen as critical due to very close results in the different 

viewed scenarios.  

 

Figure 8-2: Results for economic criteria, all technologies and application areas considering Optimistic, base and 
pessimistic cases 

Aggregated results for environmental criteria on the base of stakeholder weights are given in Figure 8-3. 

It can be noticed that ranking varies considerably in relation to those obtained for economic criteria. 

LFP, NCA or LTO share within all application areas despite ETS the ranks one 1 to 3. Ranks can vary 

slightly in the same range depending of the viewed scenario (optimistic or pessimistic). LTO has a very 

high cycle life time, resulting in a considerably higher score due to a low number of cell replacements 

which can be seen in contrast to its rather low economic ranking. Here, PHS is ranked third in the case 

of ETS and switches ranks with NCA in the optimistic scenario. CAES is ranked last due to the 

combustion of natural gas.  

VRLA is ranked last for wind energy support and HMGS. One exception is the primary regulation 

application field where NaS has the lowest results, due to its significant oversizing. RFB is ranked lower 

with higher E/P ratio due to an increasing need for Vanadium Pentoxide which comes especially true for 

wind energy support (E/P ratio of 10). In general distances among total scores are very close in case of 

lithium-based technologies and NaNiCl. 
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Figure 8-3: Results for environmental criteria, all technologies and application areas considering optimistic, base 
and pessimistic cases 

The results for all technology aspects are summarized in Figure 8-4. These are evaluated independently 

from application areas as explained in chapter 7. In consequence, only ETS is compared with other 

application fields as ranks of the latter do not change. Details on the evaluation can be found in the 

corresponding chapter 8.1.  

 

Figure 8-4: Results for technology criteria, all technologies and application areas considering optimistic, base and 
pessimistic cases – scores do not change for the single application cases and are thus summarized to “other 

application cases.” 

ETS includes two different technologies, namely PHS and CAES which dominate the other alternatives 

due to high cycle and calendric life times. The optimistic case is also characterized by an equal maturity 

degree of all technologies to receive a pure technology driven picture. This leads to a change of ranks 

between VRLA and VRFB. Li-Ion based technologies dominate technological aspects in all other 
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application fields due to a good balance of properties of these technologies and a comparably high 

maturity degree. Again, VRLA and VRFB change ranks in the optimistic case. Admittedly, technological 

criteria can be seen as redundant as the also have high impacts on LCC and LCA results. Nevertheless, 

a particular relevance is attributed to them when stakeholders are confronted with them as they are easy 

to interpret.  

All results for the aggregation of social aspects are indicated in Figure 8-5 where only two cases are 

shown as in the case of technology aspects as ranks do not change in the other application areas. This 

is a result of the relative bad availability of data in this field and indicates a high demand for further 

research. It can be seen that PHS has the lowest score of all technologies. This can be mainly explained 

by the low perceived public acceptance of this technology. It is surprising that CAES is ranked first. A 

reason for this circumstance it the high score of this technology when it comes to regulatory issues and 

comparably good score for its perceived acceptance. Battery storage ranks are the same for all 

applications; only VRLA is ranked higher due to the availability of regulations regarding recycling rates 

(compare section 7.3.1).  

 

Figure 8-5: Results for social criteria, all technologies and application areas considering optimistic, base and 
pessimistic cases – scores do not change for the single application cases and are thus summarized to “other 

application cases.” 

Total results for all analyzed economic, social, environmental and technological criteria, technologies 

and application fields are given inFigure 8-6. Aggregation has been carried out by TOPSIS using the 

weights for the four main criteria provided by AHP (See chapter 6). Again, the structuring of the graph 

is the same as in the case of the environmental and economic evaluation.   

The case of ETS is dominated by PHS, followed by CAES which is interesting as the technology can 

balance its low score from environmental evaluation with the one form economic evaluation. These two 

criteria are almost equal ranked, but economic performance of all other battery types is far lower in 

comparison to considered large-scale energy storage technologies. CAES changes rank with LFP in the 

optimistic and pessimistic case. Even low acceptance scores of PHS did not omit high ranking of this 

technology as social aspects were in general ranked very low.  

In the three remaining cases, lithium-based technologies despite LTO achieved comparably high ranks, 

as promising results achieved in the environmental assessment of this technology do not outweigh the 

low economic score it. NaNiCl shows comparable performance to LIBs due to a good balance of scores. 

NaS has a rather low ranking (6 to 7), which comes especially true in the case of primary regulation (E/P 

1) due to its fixed E/P ratio of 6. The case of RFB is highly dependent on the viewed application field. It 
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can be stated that this technology has, in general, a high potential for large-scale applications with high 

E/P ratios but not for other areas where lower storage times are required. Results for HMGS should also 

be seen in the context, that battery size was set to an E/P ratio of 3.33. Higher E/P ratios can lead to 

changes in ranking which will be part of the following sensitivity analysis. In general, VRLA scores low 

almost all cases and scenarios, still this technology shows low investment cost and is often used for 

applications as uninterruptible power supply. It could be however shown that performance of most 

technologies is dependent on the chosen application area.  

The use of different scenarios/datasets does not lead to significant changes in ranking. Only slight 

changes of up to one rank can be observed (HMGS for NaS in Figure 8-6). 

 

Figure 8-6: Final Results for indicative ranking, all technologies and application areas considering optimistic, base 
and pessimistic cases – 

8.4 Sensitivity analysis for HMGS 

The following chapter will give some insights into major parameters which have an impact on the 

presented results. Firstly, an overview of different modeling assumptions for HMGS as a reference case 

and their impact on final results is given. In the second section impacts of different AHP rankings are 

given for selected application cases.  

8.4.1 Impact of assumptions: HMGS sensitivity analysis 

The application case for HMGS is used as a reference case to explore how changing modeling 

assumptions impacts final raking of considered technologies. The sensitivity analysis includes 2 different 

scenarios in relation to the base which are as follows: 

A) Improved storage capacity: Storage size is increased from 1 MWh to 2 MWh, whereas cycle 

probability is maintained (energy to power ratio of 6.66).  

B) Base case: reference case, see chapter 7.4.2 with 1.4 cycles and 1 MWh storage capacity 
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C) Low cycles per day: represents the minimum average number of cycles per day (from 1.4 reduced to 

0.3) obtained from the HMGS model 

The results of the considered scenarios regarding recipe are given in Figure 8-7. It can be seen that 

changing assumptions regarding the size and operation conditions of storage have an impact on 

ranking. Increasing storage capacity changes rankings up to one place for most technologies where 

NCA switches to rank two and NaNiCl and NaS to the 4th and 5th rank. VRFB is rated worse in relation 

to the base case due to the higher amounts of VO5 electrolyte required which has a high environmental 

burden (See chapter 8.3). Decreasing the daily number of cycles from 1.4 to 0.3 has comparable impacts 

as changing storage size. One exception is VRLA is now on the 6th and RFB on the 8th place. This is 

due to the reduced amount of exchanges for VRLA which reduces considerably environmental impacts. 

Using different dataset (optimistic 25 % quartiles, Base median and pessimistic 75 % quartiles) does 

not have significant impacts on the ranking of the considered technologies (compare with chapter 9.3).  

The impacts on economic scores are given in Figure 8-8 and show that there are extreme changes in 

the ranking of the different battery types. VRFB would be ranked on the 4th place in scenario A) in relation 

to the base case B) where the latter was ranked last due to reduced investment cost as well as LCC. 

LTO and VRLA lose ground and are ranked in the last two places. Scenario C) is very favorable for 

NaNiCl which is now on rank one due to very low LCC. The remaining rankings are comparable to the 

base case. In total, using different datasets has not led to significant changes in ranking. 

 

Figure 8-7: Sensitivity analysis of environmental score for the HMGS case with different assumptions on storage 
size and operation conditions  
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Figure 8-8: Sensitivity analysis of economic score for the HMGS case with different assumptions on storage size 
and operation conditions 

Finally, impacts on total scores are given in Figure 8-9. It can be seen that rankings have a comparable 

order to the base case where LFP and NCA are always ranked first. VRFB is ranked on the 5th rank in 

scenario A) and VRLA, as well as LTO last which represents a significant change to case B. Reducing 

daily cycles leads to an improvement for VRLA which is ranked on the 5th place lower cycling, favors 

this technology) whereas NaS and RFB remain on the last two ranks.  

 

Figure 8-9: Sensitivity analysis related to final scores for the HMGS case with different assumptions on storage 
size and operation conditions  

These changes show that the chosen load profile for HMGS always has to be analyzed for a specific 

case and that it is difficult to provide a representative case for this application field. In general, 
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assumptions have to be selected carefully, and results should always be seen in the given scenario 

context.  

8.4.2 Impact of changing priorities on technology ranking 

A sensitivity analysis for AHP weights is conducted to explore the impact on different preferences on 

criteria related to the analyzed technologies. All pairwise comparisons are set to equal to avoid 

inconsistent comparisons where only the parameter of interest is then changed in relation to the others. 

First, changing weights for main criteria, then for a selection of sub-criteria are analyzed. Median values 

from the technology evaluation are used for criteria aggregation. The different weights also indicate 

which technology would be the most suitable out of the perspective of distinctive stakeholder groups.  

Figure 8-10 provides an overview of the impact of different preferences regarding environmental aspects 

vs. economic aspects as these were perceived as the most critical criteria in average by the 

stakeholders. Final results are plotted in dependence on a varying AHP scale from 9 (Extremely more 

important, absolute importance where one criterion is favored over another with the highest possible 

order of affirmation) to 1 (Equal importance where two criteria contribute equally to objectives). Again, 

it must be noted that all other criteria weights are set to 1, which represents an equal weight. Final results 

may thus not be identical with the ones presented in chapter 9.3.  

 

Figure 8-10: Sensitivity analysis for all application cases of varying AHP weights for environmental and economic 
performance 

It can be seen that ranks can change noteworthy depending on the application case and given AHP 

score up to the maximum of three ranks. The case of ETS shows, e.g., that CAES is ranked on the 5th 

place when preferences towards environmental aspects are low and on the 2nd rank if a strong economic 

performance is preferred which correlates well with the results found in chapter 8.5 and 8.6. This is 

explainable through the strong economic performance of this technology which outweighs its impacts 

on the environment in case of favorable weighting.  

Comparable results are given in the case for WES regarding VRFB with a change from 7th to 6th rank in 

case of economic preferences. In both cases, VRLA is always ranked last despite different weights. LTO 
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changes ranks in the case of PR, where the technology is ranked 3rd for stronger weights on low 

environmental impacts and the 5th rank on the contrary case. VRLA, NaS, and RFB are not affected by 

different weights and remain on the same ranks. The first battery type is ranked on the 7th rank in case 

of HMGS and a stronger emphasis on environmental criteria and on the 5th rank on the contrary case 

for economic performance.  

Figure 8-11 depicts the impact of changing weights related to technology aspects and environmental 

vs. social aspects for ETS as there are almost no changes for the other applications observable. CAES 

changes rank in case of a strong preference towards social aspects as follows: one rank in comparison 

to technology aspects due to a very low score on acceptance for PHS; 3 ranks in case of lower 

preferences towards environmental aspects.  

 

Figure 8-11: Sensitivity analysis for ETS with different AHP weights for technology and environmental aspects vs. 
social aspects.  

It is not possible to provide a sensitivity analysis for all sub-criteria and application cases. The analysis 

in the following is thus limited on ETS and HMGS and some selected criteria. Weighting the sub-

categories differently can lead to a change of maximum 2 ranks as depicted in Figure 8-12 for the case 

of ETS and HMGS. The upper two graphs show the results for different weights on investment cost vs. 

LCC. It can be seen, that a preference towards of these two criteria can lead to a switch of ranks for 

CAES and LCC and that NaNiCl can lose up to two ranks in case of a stronger weight for LCC. The 

same comes true for VRLA in HMGS where the technology is first ranked on the 6th rank and then on 

the 8th.  

The lower two graphs represent the changes which can occur in case of different attributed weights 

related to damage to ecosystems and damage to human health for the same application cases. In ETS 

only CAES and PHS switch ranks. PHS is in total ranked second in case of a higher preference towards 

low damage on ecosystems due to high impacts related to urban as well as agricultural land occupation 

and natural land transformation. CAES switches rank with PHS when damage to human health is 

weighted stronger due to the formation of emission related to the combustion of natural gas (greenhouse 

gases, ozone depletion, etc.). Comparable results can be seen for the case of VRLA due to the use of 

lead (88% share) which has a high impact on human health. 
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Figure 8-12: Excerpt of the sensitivity analysis for ETS and HMGS with varying AHP weights for the sub-criteria 
investment cost vs. LCC and damage to ecosystems vs. human health  

8.5 Summary and discussion of results 

Table 8-4 provides an overview of given stakeholder preferences, their calculation, and sharedness 

among the participants regarding the main criteria. Green indicates a strong preference and a high 

consensus, a weak preference and low consensus are indicated in red, intermediate results are depicted 

in yellow and orange. Enactors attributed priorities within their enactment frame with a strong tendency 

towards economic aspects (LCC) and technology performance of electrochemical energy storage. 

Impacts on the environment and social aspects seem to play a minor role for them. Selectors have a 

broader view with a strong focus on environmental issues and comparably equal priorities for the other 

factor. Combined views from enactors and selectors within the frame of CTA allow it to shift the loci of 

assessment to provide a broader picture about the relevance of properties regarding “better” technology.  

Total priorities have a stronger orientation towards the environment and economic factors, followed by 

technical and social aspects for both groups. The consensus of all participants regarding the importance 

of all used criteria was rather low. Single group consensus was the highest for enactors for main criteria 

(54%) in relation to selectors (40%). An explanation here for might be that the actors of the latter group 

are more heterogeneous in relation to the first. On average, all participants perceived the economic and 

environmental performance as most important (0.241 and 0.236). Technology performance and social 

aspects are comparably ranked lower (0.197 and 0.131). The consensus (0 none, 50% low and 100% 

total consensus) on the importance of different criteria with a value of 42% can be considered as low 

which also comes true for all sub-criteria with scores below 38% (See chapter 8.2 and table 8.1). 

Interestingly both groups (enactors and selectors) have comparable tendencies regarding priorities 

attributed to the different sub-criteria.  

The low consensus about the importance of the two sub-criteria LCC and Investment cost was 

surprising, especially as it was expected that consensus would be high. Investment costs play a higher 

role in short-term investment strategies. In contrary LCC plays a stronger role when it comes to mid- to 

long term investments and has a broader aim (the entire life cycle). Both criteria are to a certain degree 
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redundant when calculated but not regarding decision making which is at the end always based on a 

company’s preference.  

Table 8-4: Summary of weights for main criteria and related consensus for enactors, selectors and combination of 
both (total) (green = high; Orange= moderate; red=low) 

 Attributed weights [-] Consensus about weights in [%] 

 Enactors Selectors Total Enactors Selectors Total 
Social & Political aspects 0.112 0.149 0.131 12 41 34.3 

Techn. Performance 0.237 0.162 0.197 25 40 32.9 

Env. impacts 0.136 0.252 0.236 14 65 37.9 

Economic perf. 0.373 0.167 0.241 0 2 0 
 

All priorities are used for criteria aggregation in combination with four different application cases (hybrid 

microgrid generation (HMGS), energy times shift (ETS), primary regulation (PR) and wind energy 

support (WES)) to pick the “best” or most sustainable energy storage alternative. An overview about the 

indicative ranking of (electrochemical) energy storage technologies for the four different cases of ETS, 

RS, PR, and HMGS is given in Table 8-5. Additionally, primary positive and negative influence variables 

on the final ranking are also indicated in the same table.  

It could be shown that batteries are ranked behind PHS and CAES in case of bulk storage applications 

as ETS. This is highly interesting as CAES scored apparently the lowest in the category of environmental 

impact, but second in economic and technical performance. PHS achieved the lowest score for social 

aspects, but its high economic score has balanced out this drawback. The VRFB achieved the highest 

score among all battery types in economic terms for ETS, but low results in environmental criteria lead 

to a slightly low ranking (6 of 8). The use of batteries in this application would make only sense in case 

of the absence of infrastructure required for alternatives or a high environmental preference (at least 

when compared to CAES). 

The other applications are strongly dominated by either LFP, NMC or NCA and NaNiCl. The 

performance of VRFB and NaS is highly dependent on the considered E/P ratio. A high E/P ratio leads 

to a better ranking of these technologies. Nevertheless, Li-ion based technologies dominate them in all 

cases regarding total scores. The use of different MCDA evaluation “scenarios” using lower and upper 

quartiles as well as median values has only low impacts on the final rankings (max. 1 rank). The 

sensitivity analysis has shown that depending on the application case efficiency grades can have a high 

impact on LCC as well as LCA results for all battery types. Calendar life time has proven to have only 

little impact impact in relation to cycle life times as they determine battery exchange rates in most cases. 

These results can be seen as contradictory to the weights attributed by stakeholders to calendar life 

time and efficiency within the survey (see chapter 7.2.1). Additionally, the sensitivity analysis shows 

clearly that technology only changes up to three ranks depending on the viewed case and the attributed 

(extreme) weights. Variation of priorities related to sub-criteria can lead to changes of up to 2 ranks. 

Changing major assumptions in the reference case of HMGS has also led to a maximum change of up 

to 3 ranks. In total MCDA results can be considered as relatively robust regarding the conducted 

sensitivity analysis.  
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It has to be stressed that presented rankings should not be seen as an end of state, rather as indicative. 

They can provide a first base for actors to discuss implications leading to these results and to improve 

specific technologies into a certain direction. 

Table 8-5: Summary of technology ranking within the four considered different application cases (green = high 
rank; Orange=average rank; red=low rank) and major issues identified related to specific technologies 

 Indicative Ranking Major positive and negative impacts 

Appli. 
1 

HMGS 
2 

WES 
3  

PR 
41 

ETS 
Positive Negative 

LFP 1 1 1 3 Life time, env. impact Cost, recycling unclear2 

NCA 2 2 2 4 
Efficiency, life time, env. 

impact 
Cal. Life time 

LTO1 5 5 4 - Efficiency, env. impact Cost, energy dens. 

NMC1 3 3 3 - Efficiency Cost 

NaS 6 7 8 7 Cost Efficiency, env. impact 

NaNiCl 4 4 5 5 Cost, env. impact Life time 

VRLA 7 8 6 8 Recycling, inv. cost Efficiency, env. impact 

VRFB 8 5 7 6 Life time, cost Efficiency, env. impact3 

CAES - - - 2 Cost, life time Env. impact, efficiency 

PHS - - - 1 Cost, life time Social acceptance 
1: LTO and NMC are not evaluated in this field, as already two Li-based technologies are included 
2: comes true for all Li-based systems 
3: has to be validated 
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9 Conclusion  

This work has the aim to identify the drivers and the future role of different stationary battery storage 

technologies within the German energy transition and to pick the “best” or “better” technology 

alternatives using a Constructive Technology Assessment (CTA) oriented framework. Providing “better 

technology in a better society” is postulated as a goal within CTA-literature. The goal remains on purpose 

loose and does not provide a recipe or definition of what “better” signifies. CTA provides a way to think 

through the future we want to achieve by reducing potential negative impacts co-produced through the 

interplay of society and technology (may it be environmental impacts, stranded costs or acceptance 

problems). It offers a space to broaden perspectives, increase reflexivity and to enable social learning 

among actors. These attempts are closely connected to some discussions in the field of sustainability 

which is often named in line with “better” technology (see chapter 3.3). However, CTA does not 

necessarily aim to provide a sustainability assessment of technology it rather aims to contribute to the 

realization of better technology as stated before. This CTA framed work uses criteria named in literature 

in line with sustainability to provide a first base to explore actor visions and expectations (see chapter 

3.3 and 3.4) on battery storage using a transdisciplinary approach tailored in light of CTA theory (see 

chapter 4).  

The central question raised is broken down into 4 sub-topics (compare sub-research questions in 

chapter 4.2) which are discussed in line with CTA theory. First general expectations and visions about 

the future role of battery storage as a flexibility option are summarized, and recommendations are 

provided within a SWOT analysis. Then, secondly, expectations related to an optimum construct of 

battery storage are highlighted using the AHP. Thirdly, impacts of these expectations and a indicative 

ranking of “best” technologies are presented in a quantitative way (LCA, LCC, and TOPSIS). 

Recommendations of how to open and to provide a broader base for decision-making and technology 

design are given in the fourth section of this chapter. Additionally, some research recommendations for 

systems analysis are also provided. Finally, a critical reflection on the development and realization of 

this research including CTA and the used modeling methods is given.  

9.1 Future role of battery storage technologies  

The first question block is based on the literature review as well as stakeholder expectations and visions 

in chapter 2 and 5. It is considered about the general role of battery storage within the German energy 

turnover, its role among other flexibility options and related main driving forces and obstacles. And, to 

identify new linkages between a range of aspects business models and potential system integration 

levels of battery storage. 

It can be concluded that there is nothing as a most “probable scenario” for battery storage market 

diffusion and use, the work provides instead an overlaying narrative and major implications based on 

stakeholder expectations and visions which can serve as a base to further explore potential battery 

technology trajectories (compare chapter 5).  

Chapter 2 and 5 have shown that market diffusion of energy storage technologies is seen as heavily 

dependent on the share of RES, available (or absent) regulations and market conditions. Energy storage 
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technologies are considered as one balancing option among others which are namely; 1) Grid 

reinforcement measures, 2) flexible demand, 3) flexible power plants and at the end of the line 4) electric 

energy storage which itself is separated into modular and centralized storage. Stakeholders believe that 

the energy transition will only be successful through an interplay of all these technologies. 

A comparable high relevance is attributed to battery systems among other flexibility options in the online 

survey. Interestingly, interviewed experts perceive battery storage as one of the most expensive 

technologies and don´t attribute them a high relevance in the next 10 years to come. Market diffusion of 

electrochemical storage is believed to happen in line with increasing decentralization of the grid and 

further progress in electric mobility (see chapter 5.4.2). Stakeholders agreed that it is hard to make 

estimations about the uptake of battery energy storage technologies due to missing business cases and 

regulatory frameworks. In general, electricity markets nowadays do not value the services provided by 

energy storage technologies which is seen as one of the leading barriers for market penetration by 

actors. The stacking of services through the integration of multiple business cases is considered as 

promising for a more efficient use of battery technologies. It is believed that battery storage will be 

profitable within an application range of seconds to days, mainly on a decentralized and generation near 

level as soon as prices further decrease (see chapter 5.5.1).  

However, most important single applications for battery storage named by stakeholders and used for 

the technology evaluation are: 

x Decentralized storage: Storage nearby demand in combination with PV or wind turbines 

x Generation near energy storage: Only in combination with RES as wind 

x Short-term balancing: Provide several balancing services 

x Day-ahead business: Participation in ¼ h spot markets 

Especially decentralized energy storage and short-term balancing were mentioned as highly promising 

areas for battery storage.  

The most critical technology properties for stationary applications named and ranked by experts are 

cycle and calendric life time, followed by power density, efficiency and recycling abilities with energy 

density on the last rank. Further discussion about battery storage with stakeholders was structured 

mainly around 5 topics already identified preliminary in the literature (see chapter 2.8.3), technology, 

economics, environment, application possibilities and social factors. Table 9-1 provides a summary of 

stakeholder expectations and visions in the form of a SWOT analysis of endogenous threats, 

opportunities and indigenous technology strengths and weaknesses and potential strategies derived 

from interviews to tackle named issues. 

9.2 Expectations on battery energy storage properties  

The second theme block with corresponding sub-questions is concerned about the demands and ex-

pectations related to an optimum construct of battery storage technologies considering different actor 

expectations (namely enactors and selectors) regarding (sustainability) key parameters; and the 

“sharedness” of these expectations. Eleven sub-criteria were identified in orientation to MCDA and sus-
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tainability literature and structured around four main criteria namely; economic as well as technical per-

formance, environmental impacts and social & political aspects. Chapter 2 showed that most studies 

considered in the MCDA literature review focus on sustainability criteria of different flexibility options and 

are deemed to be insufficient due to a unilateral perspective (no consideration of different actor groups) 

and the absence of providing anything as social learning. 

Table 9-1: Summary and SWOT-Analysis of electrochemical energy storage technologies for stationary 
applications including different strategies (Strength-opportunity-SO, strength-threat=ST, weakness-

opportunity=WO and weaknesses-threat=WT strategies) based on expert visions and expectations as well as 
literature used in chapter 2 

             Endogenous  
                   Aspects 
 
 
 
Technology 
aspects 

Opportunities: 
1. Scale effects (electric mobility) 
2. Improvement of production 
3. Decentralization / new business 

models 
4. Perceived high local acceptance  

 

Threats: 
1. Limited knowledge (DoD vs. 

cycle life time) 
2. Which technology into which 

business case? 
3. Competing technologies 

(DSM, flex. power plants) 
4. Missing regulation  
5. Environmental doubts 

 
Strength: 

1. Several technologies 
available 

2. High efficiency (for 
most) 

3. Modularity 
4. Fast response times 

SO-Strategies: 
A) Use wide application potential 
B) Adapt to new market situations 

(modularity) 
C)  

 
 

ST-Strategies: 
A) More demonstration projects 
B) Increase life time 
C) Develop proper SoC 

management systems 
 

Weaknesses: 
1. Cost (up front) 
2. Life time issues 
3. Pot. toxic materials 
4. Environmental dangers 

 
 

WO-Strategies: 
A) Find suitable business models 
B) SoC-cycle management 
C) Risk management, monitoring 
D) Optimization of cell manufacturing 

WT-Strategies: 
A) Opt. of operation modes 
B) Prove operation in appl. 
C) Increase recycling rates, risk 

management 

 

Referring to the survey selectors and enactors agree that sustainability should play a stronger role in 

the development and investment of new flexibility options. Interview participants see sustainability 

instead as a normative and blurry goal, not relevant nowadays but in the future. 

The AHP was identified to be a suitable and easy to realize method to explore normative expectations 

about desired technology properties and was included in the conducted survey. A preposition of this 

work is that the higher the degree of shared opinions about a criterion is, the more probable it becomes 

that stakeholders act accordingly to these expectations (compare chapter 3.4). The latter can thus 

inspire development and the related trajectory of new technological developments. Using the AHP and 

calculating the consensus helps to quantitatively gather expectations about how technology should 

ideally look like and if these impressions are shared among the addressed community. These 

expectations are sought to inspire sustainable or “better” technology development, span up potential 

trajectories and to serve as a base for further discussions.  

One of the highlights of this research is the proof that expectations about technology characteristics are 

settled within concentric perspectives. Indeed, enactors have a strong orientation towards economic 

and technological performance criteria which reflects the concentric bias of this group (developing the 

product right and to look at economic factors and market situation) named in CTA literature. These 
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preferences are also shared to a certain degree among this “insider” group (see chapter 8.2). 

Environmental and public concerns (if there are any regarding battery storage) are rather seen as 

something to overcome to make a technology marketable. This impression is reinforced through 

interview results where environmental impacts and acceptance are considered as something that could 

slow down project development (see chapter 5.4.4). It becomes fortuitous if outcomes generated 

through the consultation of this group will be optimal regarding the goal of creating better technology.  

Selectors provided a more diverse picture and have a stronger focus on other comparative criteria which 

is again nicely in line with CTA literature. Especially the aspect of low environmental impacts is 

considered as highly relevant for this group. Economic, technological and social factors are rated in a 

quite balanced way. Consensus towards the relevance of main criteria is very low within this highly 

diverse group and indicates that there is a high potential for further discussion about criteria relevance. 

However, selector preferences are to a certain degree opposing enactors expectations on the relevance 

of (electrochemical) energy storage technology characteristics. Confronting the latter with more diverse 

selector notions is assumed to provide a first base to broaden perspectives on technology development 

and selection processes. 

Combined views from enactors and selectors within the frame of CTA allow it to shift the loci of 

assessment to provide a broader picture about the relevance of properties regarding “better” technology 

(see section 3.5). The combination results in a more balanced view on the importance of different 

technology properties. Nevertheless, economic and environmental criteria are in total considered as 

more significant in relation to technology or social based criteria (see chapter 8.5). Especially in case of 

the latter actors struggled to attribute weights as they considered them as too fuzzy. In the end, there 

are no collective or only low shared opinions among actors regarding the diffuse goals of, e.g. lowering 

environmental impacts and increasing economic performance. This may be explainable through the 

different interpretation of criteria through participants and the unguided way of elicitation in the form of 

an online survey. There is thus more effort required to create a broad consensus to provide a base for 

agenda building and further actions through a more participative platform.  

9.3 Technology evaluation & picking the “best” alternative 

Naturally, implications for technology evaluation arise through the predefinition of criteria within the 

MCDA-process as different system analysis models must be fitted and found accordingly to these (see 

section 4.4 and 6). In general MCDA in combination with interviews, LCA and LCC proved to be highly 

useful to quantitatively explore impacts of actor expectations and visions and to determine which 

technology performs best in the face of these including potential implications for further technology 

development (see table 8.5). 

Chapter 5 has shown that main concerns of stakeholders are related to daily operation cycles and depth 

of discharge and their impact on overall battery life time and resulting cost. These issues were adopted 

in the LCC and LCA model. Representative battery technologies identified in the literature review and 

analyzed in this work are various lithium-ion batteries (LFP, NCA, NMC, and LTO), valve-regulated lead-

acid batteries (VRLA), high-temperature batteries (NaNiCl and NaS), and vanadium-redox-flow batteries 

(VRFB). Additionally, compressed air energy storage (CAES) or pumped hydro storage are included in 
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one application scenario for comparison reasons. The comparison of this technologies on the base of 

the defined criteria within AHP was carried out for 4 representative applications fields in orientation to 

those named by stakeholders in section 9.2. Simplified load profiles have been defined to quantify 

impacts on the base of literature and own modeling as follows:  

x 1 Storage for Hybrid-Micro-Grids (HMGS) – optimization model (see section 7.4.2) 

x 2) Wind energy support (WES) – increase arbitrage possibilities of direct wind marketing 

x 3) Primary regulation (PR) – short-term balancing 

x 4) Energy time shift (ETS) - comparison with CAES and PHS  

Referring to the interviews, decentralized storage (HMGS) and short-term applications (PR) are seen 

as most promising areas for battery storage. The first is used as a reference case for sensitivity analysis 

within technology evaluation using an own HMGS model for load profile generation.  

PHS and CAES as typical bulk storage technologies are ranked first in case 4 (ETS) due to the poor 

economic performance and missing maturity of most battery technologies. Interestingly several battery 

technologies achieved promising scores regarding environmental and social criteria but could not 

outweigh comparable low performance in other named areas (especially economics). VRLA and NaS 

are ranked last in all cases because of relatively low efficiencies and cycle life times. Ranking of VRFB 

is highly dependent on the considered use case and is favored by high energy to power ratios. Li-Ion 

batteries have proven to be the most recommendable technology among other electrochemical energy 

storage technologies for most application areas in economic and environmental terms.  

In general, the suitability of a technology for a particular business case should be tailored thoroughly in 

every case as it is not possible to provide an ultimate ranking. This is shown through sensitivity analyses 

conducted for HMGS by changing some of the underlying assumptions (storage capacity, daily operation 

cycles, etc.) which has led to stronger changes in final rankings (see sensitivity analysis in section 8.4.1). 

Additionally, it was not possible to include recycling of technologies which might also have a certain 

impact on LCC and LCA and thus technology ranking through the re-use of specific materials. The 

sensitivity analysis in section 8.4.2 showed that rankings remain relatively robust in the face of weight 

variation (max. 3 ranks).  

Rankings should thus not be seen as a final state but as an indicative base for further discussion about 

technology impacts, use, and design in face of sustainability. The low scores of some technologies do 

not indicate that they are “non-sustainable” or worse than other options per se, instead that other 

applications can be found for them and that properties of technologies should be improved through 

corresponding research efforts (see section 8.5 Table 8-5). A question which remains is how to use 

these results to achieve anticipation, reflexivity and social learning which remains a theoretical task in 

this work as discussed in the following chapter. 

9.4 Providing a base for stakeholder modulation and future research 

Literature review about MCDA has shown that there is an absence of approaches that enable social 

learning on multiple levels between different actors when it comes to technology selection and 

development. The presented methodology is seen as suitable to enable social learning and reflexivity 
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through the quantification of expectations and to provide a broader as well as a robust basis for decision 

making and “better” technology design or selection.  

Discussing the choice of criteria and attributed weights to these can be considered as a reassessment 

of perceptions about technology design. MCDA allows it to grasp multiple differences in perceptions, 

attitudes, judgments, and practices of various actors and to quantify these. In this sense, it provides a 

solid base for stakeholder modulation following the principles of CTA by allowing differences in opinions 

to develop a best construct of technology and to make expectations transparent and debatable. And, to 

confront developers with the numeric dimensions of selector expectations and their consequences to 

broaden perspectives and increase reflexivity (see chapter 3.5) through, e.g. the indicative ranking of 

different (electrochemical) energy storage technologies in the face of conducted weights and different 

application areas. Intermediate results also may provide indicators for developers about aspects that 

may influence the success (or in this case ranking) of their technology (e.g., certain environmental or 

economic impacts).  

It was not possible to provide a more interactive platform as part of a comprehensive CTA study for this 

discussion, but an ideal constellation of an extended research framework based on the one presented 

in 4.4 and recommendations found in the literature (see section 3.5) is given in Figure 9-1. Such an 

approach should include an interactive workshop to define common criteria, conduct weighting and 

directly discuss these. It is recommended to test if CTA measures have been fruitful by, e.g. conducting 

follow-up interviews after a certain time span (e.g. 10 months). In general, it appears that actors are 

willing to participate in such a workshop and to a lower degree in related follow-up interviews (see 

chapter 5.3). However, these steps remain a task of future research. 

 

Figure 9-1: Enhancement of the proposed research framework for future assessments 

There are several future research potentials for systems analysis of electrochemical storage already 

adressed in the corresponding chapter 7. Only the most critical ones are named in the following. LCA 

(and LCC) results for VRFB, NaS and VRLA should be taken with care due to the poor availability of up 

to date LCI´s. It is thus recommended to analyze these technologies using an originary LCI which was 

not possible in the frame of this work. It has also to be mentioned, that considering recycling potentials 

and disposal of the considered battery storage systems may have a significant impact on LCA results. 

The end of life phase should thus be analysed in more detail in future research. 
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Additionally, only a limited set of energy storage technologies has been analyzed and discussed in this 

work. Other flexibility options as the use of hydrogen, flexible power plants, vehicle to grid or power to 

X should be considered in future assessments.  

9.5 Discussion of the conducted research  

The underlying philosophy of CTA, as presented in chapter 3 is to provide “better” technology for a 

“better society” which can be seen as implicitly equivalent to sustainable development. And, to stimulate 

anticipation, learning, and reflexivity of enactors. It can be questioned if developing socio-technical 

scenarios as a method are sufficient in every case to prove any kind of positive or negative effects of 

technology or to contribute to its better socio-technical embedment. As stated in the beginning, this 

research has a specific explorative character and aims to provide recommendations to conduct a 

comprehensive CTA study in combination with quantitative system analysis methods (see chapter 

4.3.2).  

The overlaying narrative found shows how uncertain and complex the development of new 

electrochemical energy storage is. It is believed that the presented research framework and results can 

provide a fruitful base to broaden the perspective of related actors and to make them more reflexive by 

directly providing them insights into consequences of their choices if presented within a workshop. The 

aspect of reflexibility turned out to be an essential addendum to the conducted MCDA and related 

system analysis. “Typical” system analysis methods as LCA and LCC to quantitatively assess impacts 

of technology are highly dependent on data (e.g., inputs as energy consumption, raw materials, ancillary, 

physical or required operation conditions, life time, maintenance, cost, etc.) and time-consuming (see 

chapter 7). Most assessments in this field start with extrapolation of available data into the future by the 

development of scenarios (e.g., as in this work combination of learning curves, economies of scale, 

linear upscaling with data from comparable mature systems) through the analyst. Such scenarios have 

to be developed carefully and have to deal with the high uncertainty of data and its poor availability. 

Complex system analyses as LCA, LCC of emerging technologies thus often require assumptions (ad 

hoc suppositions) and simplifications (e.g., ceteris paribus conditions). Not considering recycling 

processes for battery storage technologies is clearly a good example for such a simplification in case of 

this work.  

The articulation of extrapolations and “dynamics as usual” is also problematic as (energy) markets 

evolve. At the end, only a narrow view of an emerging (battery) technology might be given caused by 

technological and economic realities and individual ideologies which are implicitly embedded in the 

modeling apparatus. Such a narrow view might creep in when system boundaries are set up due to 

practical reasons (see chapter 4.3.2). And, the danger that a CTA researcher might subtly fall into a 

concentric bias together with enactors. It is believed that the “master narrative” in combination with the 

conducted MCDA helped to omit this at least to a certain degree. 

The weighting of criteria and sub-criteria within AHP allows grasping different perspectives and interests 

of various stakeholders namely enactors and selectors embedded in different socio-technical sub-

regimes making them transparent and debatable. Using AHP helped (at least in this case) to recognize 

the different roles of stakeholders in different regimes (increase reflexivity as one CTA goal) and to find 
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a common base for further discussion to seek for alignment. Furthermore, AHP provides reproducible 

insights and allows to grasp strategic intelligence about normative expectation on technology design in 

the face of different applications scenarios (e.g., different business cases). It has to be mentioned that 

one has to consider the drawbacks of AHP as, e.g., rank reversal or the domination of a single criterion 

over other ones. In general, choosing the most suitable MCDA method is a challenging task and should 

be conducted carefully for every task. 

Carrying out a comprehensive CTA exercise using the proposed research framework is a time-

consuming task and has to be prepared cautiously. The combination of named system analysis methods 

under the frame of CTA makes only sense if there are sufficient data and time available allowing it to 

quantitatively evaluate the technology in scope which is not always possible. Using system analysis 

under the frame of CTA offers the potential to provide a broader and more robust base to identify, explore 

and frame potential roles and to identify or minimize potential impacts of emerging technologies within 

large sociotechnical landscape changes as the German energy transition. Developing socio-technical 

scenarios might be more adequate in cases where only pure technology concepts are available or in 

case of the absence of any reliable technical data. 

Clearly, time and resources were too short to conduct a more comprehensive CTA approach wherein 

social learning could be provided in a more participative way as in the form of a workshop instead of 

sending a final report. This also comes true for the validation of such potential effects (compare chapter 

9.4) which remain a task for future research. Nevertheless, following CTA principles helped to break 

through typical enactment cycles by shifting the locus of assessment towards a broader perspective 

(also for the LCA or LCC analyst himself). More importantly regarding social learning, results confront 

enactors with the visions, interests, and expectations of comparative selectors, and vice versa are 

believed to create new knowledge of how to develop “better technology in a better society.”  
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Annex A 

The following pages provide an overview of the conducted survey including all questions and the 

pairwise comparison within AHP.  
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Annex B 

The applied patent research methodology is highly dependent on the study goal, available time and 

money as well as topic [289]. It is possible to generally divide quantitative and qualitative patent 

research. The first includes the evaluation of patents by reading single patents and to e.g. determine 

their value which is not considered as recommendable due to the vast amount of available patent 

documents. Quantitative methods are carried out by the use of bibliometric approaches and indicators. 

The first represents merely the statistical analysis of bibliometric data, and the latter a measure to derive 

information about specific situations and developments regarding patents [290], [291]. In this case the 

latter is used as these approaches allow it to unveil e.g. certain technology development trends, to 

identify market leaders or to search for key markets for specific technology solutions. Such statistical 

analyses can be based on the available number of patents related to a certain IPC-class, one inventor 

or a certain time period [290]. It does however not substitute in-depth patent analysis as it is not possible 

to accurately evaluate real importance of a patent only by the use of quantitative approaches.  

There are worldwide over 100 patent data sources available each with a different data range and 

suitable for different purposes. Most of these sources are freely available and provide access to patents 

and bibliographic data [290]. The most popular ones will be briefly introduced here. The World 

intellectual property organization (WIPO) provides a global data base named Patentscope [292], 

Esp@cenet is a database provided by the European patent office [293] and the German patent office 

DPMA provides Depatisnet [196]. All three provide patent collections from a multitude of countries.  

However, there are differences between the sources regarding: data coverage, search functionality, 

result list of records, bibliographic view and patent data export. The search modes in the three databases 

are similarly based on command line searching and search fields. Searches can be conducted either by 

the use of keywords or technological classifications or the combination of both to identify patents of 

certain patents [294]. Patentscope owns a high magnitude of patent collections with full text searching 

capability, whereas the other are very limited. A good in-depth comparison of differences between 

Patenscope, Espacenet and Depatisnet is given in [295]. A brief overview of different patent data 

sources is given in table 1. 

Tab. 1: Brief overview of Patentscope, Espacenet and Depatis based on [295] 

Name Patent 
records 

Available patent 
collections 
(countries) 

Patent collections with 
full text search capability 

Sourc
e 

Germany patent office - Depatisnet  ~90 Mil. 101 1 [196] 

European patent office - Espacenet  ~ 90 Mil. 101 2 [293] 

World intellectual property 
organization (WIPO) Patentscope ~37 mil. 39 19 [292] 

Overview for more databases  - -  [296] 

A pure keyword based search inhibits the risk of potentially excluding patents through a too narrow 

combination of keywords related to a certain area. Or vice versa to include wrong patents by a too loose 

formulation. Another associated problem to this kind of research are differences in the wording used in 
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patent applications within different jurisdictions [290]. Changing a keyword or logical operator may lead 

to completely different results. However, a purely IPC based search allows only a certain resolution 

regarding technology classification (e.g. batteries to H01M*32). It is worth to mention that patents are 

categorized within the international patent classification (IPC) into different units. Each patent is 

classified in up to 70.000 subcategories. Categorization is normally organized by choosing a main group, 

a subclass, a group and finally a subgroup. There are in total eight section defined based on [292], [297].  

The combination of both can circumvent these challenges. The recently introduced cooperative patent 

classifications (CPC) between the United States Patent and Trademark Office (USPTO) and EPO allows 

even a more refined search manner of technologies in a certain area e.g. related to transmission or 

distribution, transport etc. [298], [294]. The search combination in frame of this work consists the IPC 

main classes, country codes for priority countries and keywords for technology.Table 2 provides an 

overview of used classifications in frame of this work and the mentioned CPC groups. 

Tab. 2: Considered technologies and their corresponding keywords, CPC and IPC [294], [298] and [292] 

Technology keyword CPC subclass and IPC main class 

Groups & subgroups 

Lithium H01M 
Y02E 
Y02T 

10/052 
60/122 
10/7011 

High-temperature 
batteries (NaS, NaNiCl) 

H01M 10/39 

Regenerative fuel cells 
(redox-flow batteries) 

H01M 
Y02E 

8/188 
60/528 

Lead Acid, PbA, VRLA, 
AGM 

H01M 
Y02E 
Y02T 

2/28, 4/14-4/23, 4/73-4/84, 10/12?*, 10/06-10/18, 10/342 
60/126 
10/7016 

 

Depatisnet is used for this research as it allows to gather in-depth information about patents by a unique 

feature – it´s IKOFAX search mode. IKOFAX is a command line search interface where searches can 

be constructed by an internal search language. It allows to conduct complex search queries e.g. by 

combination of IPC and CPC entries as well as relevant keywords within a certain period related to a 

priority country. An example for redox flow battery patents from Japan max be as follows: 

“01.01.1997<=/PUB<=01.01.2018 AND (H01M8/18?)/ICB AND (Vanadium)/BI AND (JP/PRC)”. The 

ability to conduct complex search requests by logic combination outbalances the relatively low abilities 

of full text search in Depatisnet. The evaluation of the gathered data is carried out by the use of Excel. 

It is recommended to use professional text mining software for future research as Excel only provides 

restricted possibilities to conduct bibliometric analyses. 

                                                      

32 H01M – “PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO 
ELECTRICAL ENERGY” [292] 
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Fig. 1: Innovation life cycle stage of used to determine the maturity of VRFB 

 

Fig. 2: Innovation life cycle stage of used to determine the maturity of high temperature batteries (NaS and 
NaNiCl) 

 

Fig. 3: Innovation life cycle stage of used to determine the maturity of VRLA 
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Tab. 3: Results of the literature review regarding the maturity degree of different energy storage technologies 

 

 

Luo et al 2015
Sterner et al 
2014 Delooitte 2016EASE 2017

TRL MRL Market trends Maturity levels 1 to 5TRL Maturity level

LFP 9 9 strong growth
Robust chem. Market leader, 
increasing no. 4 3 7.8 4.6 5

VRFB 8 7 Env. Concerns, short life in demo 3 2.5 6.3 4.6 4
NaNiCl 8 7 Anticipate growth GE & FIAMM 4 4 7.8 4.7 5
NaS 6 6 N/A Niche Applications 4 4 7.8 4.7 5
CAES 9 7 stable round trip efficiency 5 4 6.8 4.8
PHS 9 10 decline Limited areas 5 5 9 5
VRLA 9 10 marg. Growth Benchmark technology 5 5 9 4.6 6
NCA 9 9 strong growth Tesla el. Veh 4 3 7.8 4.6 5

NMC 9 9 strong growth
redidential and commercial 
storage, e.g. Tesla powerwall 4 3 7.8 4.6 5

LTO N/A N/A N/A N/A 4 3 7.8 4.6 5

Advanced PbA 8 7 Anticipate growth
significant pot. Based on ex. 
Techn. 5 N/A N/A

NiCd 9 9 decline
Decline due to env. Probl. & 
memory effect 4 N/A N/A

Zinc bromide 9 8 Growth N/A 2 N/A N/A
Flywheel 7 8 Stable Off-grid appl. Deployment 4 N/A N/A
Super/Double-layer capacitors7 8 stable Niche Applications 3 N/A N/A
SMES 7 5 N/A Complex technology 3 N/A N/A

Maturity levels 1 to 5
CSIRO 2016 Fereira et al 2015
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Annex C 

The following figure provide an overview about calculated learning curves and scale effects of the power 

conversion system. Details can be obtained from the literature provided in the main text.  

 

Fig. 4: Cumulated battery production rate for learning curve calculus  
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Fig. 5: Excerpt of base case for used learning curves for LCC 

 

Fig. 6: Electricity price spread calculus used for LCC-MCS 

 

Fig. 7: Scale effects of Inverter size – the average (own) is used for calculus 
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Annex D  
Tab. 4: Numeric LCC-MCS results for ETS (Energy time shift / Load levelling) and WES (Wind energy support) 

 

Tab. 5: Numeric LCC-MCS results for PR (Primary regulation) and HMGS (hybrid micro grid system) 

 

LFP NaS VRLA NCA VRFB NaNiCl CAES PHS LFP LTO LMO NCA NCM NaNiCl VRLA VRFB

Mean 31.23055021 44.2850075 79.44413626 31.94732201 32.03396838 34.74968623 15.96168351 8.187883884 Mean 46.6714635 84.8536796 59.7597882 46.8952015 51.6943301 52.8097109 101.429027 51.1826972
Standard error 0.276285275 0.4288421 0.930119113 0.302156764 0.284887602 0.377005724 0.123159847 0.067127087 Standard error0.29019321 0.72232847 0.67006406 0.32671529 0.40891449 0.41056172 1.0086534 0.33578835
Median 29.70891126 41.196811 71.86293139 30.37351397 30.97798883 32.64139532 15.73467093 8.202787574 Median 43.7355684 78.0068404 54.0000534 44.3144882 48.4247275 50.0162673 92.8530007 48.5897333
Standard deviation8.736907536 13.56117792 29.41294891 9.555035855 9.008936999 11.92196779 3.894656332 2.122744869 Standard deviation9.17671509 22.8420319 21.1892861 10.3316447 12.9310115 12.9831015 31.8964212 10.61856
Variance 76.33355329 183.9055465 865.1215635 91.2987102 81.16094586 142.1333161 15.16834794 4.506045777 Variance 84.2120998 521.75842 448.985843 106.742882 167.211057 168.560925 1017.38168 112.753816
Skewness 1.546046389 1.78194462 2.005723709 1.77484352 1.229581823 2.284003419 0.278492208 0.242720957 Skewness 1.81505304 1.77080624 2.57301236 1.96067734 2.08700186 1.58877072 2.32783538 1.64054513
Kurtosis 7.388552673 7.762673515 8.809571728 8.716682711 6.623890951 13.88164142 2.739559444 3.212322328 Kurtosis 6.8390646 6.83354912 13.7847773 8.05614957 10.5063461 6.62410768 13.6628057 7.02772979
Maximum 86.60171672 123.4916161 254.8526176 92.63633111 89.25820493 142.0940084 27.33681591 17.10480158 Maximum 89.8463321 201.972299 232.981195 105.373276 152.283815 121.01063 397.834288 118.6911
Minimum 15.35197842 23.51623933 33.39131752 14.71195513 11.69793332 13.27633229 6.662832161 3.182200417 Minimum 35.4598787 47.9680169 35.8200005 32.843763 33.6808952 32.1706818 53.9654554 34.5010388
lquartile 25.67334365 35.40134825 60.53294243 25.95047291 26.09078396 27.49520843 13.1100756 6.670098428 lquartile 40.5347062 70.1259452 45.3951213 39.8947608 43.1456404 44.0349779 80.9531275 43.9742133
uquartile 36.74897638 52.17937519 96.62765981 37.3179556 38.00052253 41.04686657 19.2510547 9.925589099 uquartile 52.0167581 97.5458895 71.032688 52.0035023 58.8994805 60.5248248 120.330133 57.8116303
upercentile 48.50571667 72.40151041 136.4512873 50.68679809 47.95330783 57.0025841 22.80429873 11.51383213 upercentile 64.8906852 134.091018 99.3755413 67.8913007 77.2505707 79.0932821 164.636409 73.7278058
lpercentile 20.23559857 28.88951958 48.3113108 20.41175859 19.91763777 20.76358672 9.939991462 4.691778687 lpercentile 37.6909798 60.9462833 39.7057631 36.409634 38.0022648 37.7809103 67.9232276 39.2559265

Botton 25.67334365 35.40134825 60.53294243 25.95047291 26.09078396 27.49520843 13.1100756 6.670098428 Botton 40.5347062 70.1259452 45.3951213 39.8947608 43.1456404 44.0349779 80.9531275 43.9742133
2Q 4.035567605 5.795462753 11.32998896 4.423041063 4.887204863 5.146186889 2.624595326 1.532689146 2Q 3.20086219 7.88089513 8.60493206 4.41972744 5.27908718 5.98128942 11.8998732 4.61551998
3Q 7.04006512 10.98256419 24.76472842 6.944441627 7.022533704 8.405471256 3.516383769 1.722801525 3Q 8.28118968 19.5390491 17.0326346 7.68901407 10.4747529 10.5085574 27.4771324 9.22189696
W+ 11.75674029 20.22213522 39.82362754 13.36884249 9.952785298 15.95571753 3.553244028 1.588243032 W+ 12.8739271 36.5451286 28.3428533 15.8877984 18.3510903 18.5684573 44.306276 15.9161755
w- 5.437745088 6.511828672 12.22163163 5.538714319 6.173146191 6.731621709 3.170084142 1.978319741 w- 2.84372639 9.17966198 5.68935828 3.48512679 5.14337551 6.25406767 13.0298999 4.71828684

Load leveling Wind energy support

LFP LTO LMO NCA NCM NaNiCl VRLA VRFB LFP LTO LMO NCA NCM NaNiCl VRLA VRFB
37.1110714 0 47.486794 44.3755601 45.7676074 20 46.6273785 20

Mean 103.659262 137.580266 154.155845 104.064432 107.901485 114.662646 187.412783 286.064241 Mean 41.8859277 81.7308628 68.6732834 43.4947664 50.6471956 48.4228546 91.3223829 63.745064
Standard error2.52015371 3.46292142 4.23218041 2.51942477 2.56481477 2.94130661 5.19746543 7.15112607 Standard error0.21560165 0.55659028 0.43765121 0.23254207 0.32879746 0.3047374 0.78392595 0.44231761
Median 81.4352769 106.377581 116.337094 82.2543246 85.1125089 90.5574488 143.913739 217.12798 Median 40.1719908 77.0724216 65.3250621 41.9506595 48.2253788 46.2597056 84.9756037 60.6082742
Standard deviation79.6942578 109.50719 133.833296 79.6712066 81.1065645 93.0122819 164.358288 226.138462 Standard deviation6.81792273 17.6009301 13.8397463 7.35362596 10.3974885 9.63664265 24.7899151 13.987311
Variance 6351.17472 11991.8247 17911.351 6347.50116 6578.27481 8651.28458 27013.6469 51138.6041 Variance 46.4840703 309.792741 191.538578 54.0758147 108.107767 92.8648815 614.53989 195.644868
Skewness 4.53501204 4.70192244 4.79793492 4.35080569 4.13923686 5.18048324 5.36858059 3.71993845 Skewness 1.26666634 1.34157005 1.18100951 1.28592164 1.30594444 1.22484889 1.53404805 1.15277881
Kurtosis 33.2679968 35.6270238 35.6843294 30.6194668 27.4809746 43.8799405 44.6449447 22.6506134 Kurtosis 4.63827481 5.1252759 4.3669037 5.35268688 5.34901836 4.94031623 6.14313346 4.56763694
Maximum 922.988525 1291.50772 1573.05972 918.527568 840.674413 1239.56393 2050.4872 2176.57642 Maximum 75.2072405 172.466943 126.97235 82.9030694 105.220499 91.1854773 223.09983 127.994917
Minimum 38.7064172 45.1080062 47.5818897 36.6435886 36.5589744 35.3969321 57.5285548 72.1801716 Minimum 31.8119661 53.7079546 45.4478762 30.5347375 34.3802823 31.0665357 53.3530986 40.5586445
lquartile 62.5470715 82.5485476 88.5747185 62.3781999 64.5613921 68.7391281 108.66265 162.396335 lquartile 36.9600869 69.4679857 58.7018127 38.2037679 42.9086129 41.3798765 74.0443842 53.8022945
uquartile 124.218508 165.284412 191.377505 125.091613 131.808367 139.096167 226.114512 356.744575 uquartile 46.5852667 93.4537152 78.3009214 48.4941918 57.9700987 55.029566 108.138403 73.9606778
upercentile 224.161226 302.796629 357.913198 232.653613 246.424956 246.621922 407.132689 713.494705 upercentile 56.8160105 118.132627 97.5335321 57.405707 71.8669103 68.572414 143.850066 91.7094351
lpercentile 48.7123123 61.7378493 62.3240554 47.6152384 49.7969366 51.3312283 80.3616285 113.800915 lpercentile 34.1294638 61.234257 52.2747439 34.669461 38.3862371 36.5831703 63.308289 46.4234102

Botton 62.5470715 82.5485476 88.5747185 62.3781999 64.5613921 68.7391281 108.66265 162.396335 2Q 36.9600869 69.4679857 58.7018127 38.2037679 42.9086129 41.3798765 74.0443842 53.8022945
2Q 18.8882054 23.8290329 27.7623757 19.8761248 20.5511168 21.8183207 35.2510887 54.7316448 3Q 3.21190389 7.60443594 6.62324941 3.7468916 5.31676587 4.87982906 10.9312195 6.80597968
3Q 42.7832306 58.9068319 75.0404104 42.8372883 46.695858 48.5387179 82.2007732 139.616595 W+ 6.41327594 16.3812936 12.9758593 6.54353229 9.74471994 8.76986039 23.1627997 13.3524036
W+ 99.9427182 137.512216 166.535693 107.562 114.616589 107.525755 181.018177 356.75013 w- 10.2307437 24.6789121 19.2326107 8.91151522 13.8968116 13.5428481 35.7116626 17.7487573
w- 13.8347592 20.8106983 26.2506631 14.7629614 14.7644555 17.4078997 28.301022 48.5954206 2.83062311 8.23372869 6.42706882 3.53430685 4.52237575 4.79670623 10.7360952 7.37888437

Primary regulation HMGS
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Annex E 
Tab. 6: Numeric LCA-MCS results for ETS (Energy time shift) and the three recipe endpoints 

 

ETS
LFP NaS CAES NCA PHS NaNiCl VRLA VRFB LFP NaS CAES NCA PHS NaNiCl VRLA VRFB LFP NaS CAES NCA PHS NaNiCl VRLA VRFB
DRA DRA DRA DRA DRA DRA DRA DRA DE DE DE DE DE DE DE DE DHH DHH DHH DHH DHH DHH DHH DHH

0.0189 0.0261 0.0616 0.0221 0.0217 0.0285 0.0423 0.0266 0.0121 0.0152 0.0293 0.0137 0.0266 0.0233 0.0273 0.0242 0.0245 0.0311 0.0548 0.0274 0.0264 0.0291 0.0346 0.0300
Mean 0.0228 0.0286 0.0608 0.0237 0.0215 0.0288 0.0548 0.0303 0.0135 0.0162 0.0278 0.0141 0.0174 0.0156 0.0192 0.0176 0.0281 0.0334 0.0525 0.0286 0.0329 0.0353 0.0477 0.0426
Standard error 0.0005 0.0008 0.0013 0.0005 0.0003 0.0009 0.0037 0.0007 0.0002 0.0003 0.0006 0.0002 0.0002 0.0002 0.0005 0.0003 0.0005 0.0006 0.0011 0.0004 0.0003 0.0010 0.0021 0.0013
Median 0.0213 0.0274 0.0591 0.0230 0.0213 0.0269 0.0496 0.0299 0.0133 0.0157 0.0268 0.0139 0.0171 0.0152 0.0188 0.0173 0.0272 0.0323 0.0509 0.0281 0.0329 0.0332 0.0448 0.0411
Standard deviation 0.0024 0.0034 0.0058 0.0022 0.0012 0.0040 0.0164 0.0030 0.0008 0.0012 0.0026 0.0007 0.0011 0.0010 0.0023 0.0011 0.0023 0.0029 0.0048 0.0018 0.0016 0.0044 0.0092 0.0056
Variance 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
Skewness 1.1995 1.3192 0.2352 2.0577 0.3737 1.3490 1.6428 0.9069 0.7816 1.1707 0.1899 2.0133 0.5176 1.3570 0.9763 0.4194 1.0028 1.2542 0.2350 2.0428 0.1051 1.3508 1.5028 1.0560
Kurtosis 3.5522 3.8527 1.6989 7.6036 2.6644 4.0605 5.7417 2.8380 2.5478 3.8513 1.6881 7.4856 2.8445 4.3210 3.7151 2.1533 2.9512 3.9076 1.6319 7.5916 2.3092 4.0911 5.2540 3.1149
Maximum 0.0293 0.0370 0.0715 0.0314 0.0244 0.0400 0.1068 0.0373 0.0153 0.0193 0.0325 0.0167 0.0201 0.0186 0.0253 0.0197 0.0334 0.0408 0.0615 0.0350 0.0362 0.0476 0.0760 0.0563
Minimum 0.0202 0.0246 0.0526 0.0213 0.0195 0.0248 0.0376 0.0271 0.0124 0.0145 0.0238 0.0133 0.0157 0.0145 0.0163 0.0157 0.0253 0.0296 0.0461 0.0266 0.0302 0.0310 0.0371 0.0367
lquartile 0.0210 0.0262 0.0546 0.0225 0.0205 0.0254 0.0426 0.0275 0.0127 0.0153 0.0252 0.0137 0.0166 0.0146 0.0173 0.0166 0.0263 0.0313 0.0476 0.0276 0.0313 0.0315 0.0411 0.0380
uquartile 0.0243 0.0299 0.0662 0.0248 0.0225 0.0311 0.0615 0.0317 0.0139 0.0167 0.0303 0.0144 0.0183 0.0163 0.0200 0.0187 0.0294 0.0346 0.0570 0.0295 0.0339 0.0379 0.0512 0.0448
upercentile 0.0268 0.0364 0.0696 0.0264 0.0231 0.0362 0.0815 0.0360 0.0149 0.0187 0.0312 0.0150 0.0187 0.0173 0.0233 0.0195 0.0326 0.0397 0.0590 0.0308 0.0351 0.0433 0.0636 0.0532
lpercentile 0.0202 0.0246 0.0526 0.0213 0.0195 0.0248 0.0376 0.0271 0.0124 0.0145 0.0238 0.0133 0.0157 0.0145 0.0163 0.0157 0.0253 0.0296 0.0461 0.0266 0.0302 0.0310 0.0371 0.0367

Botton 0.0210 0.0262 0.0546 0.0225 0.0205 0.0254 0.0426 0.0275 0.0127 0.0153 0.0252 0.0137 0.0166 0.0146 0.0173 0.0166 0.0263 0.0313 0.0476 0.0276 0.0313 0.0315 0.0411 0.0380
2Q 0.0003 0.0012 0.0045 0.0005 0.0008 0.0016 0.0070 0.0025 0.0006 0.0003 0.0016 0.0002 0.0005 0.0006 0.0015 0.0007 0.0009 0.0010 0.0033 0.0005 0.0017 0.0017 0.0037 0.0031
3Q 0.0030 0.0025 0.0071 0.0018 0.0012 0.0042 0.0119 0.0017 0.0006 0.0011 0.0035 0.0005 0.0012 0.0011 0.0012 0.0014 0.0022 0.0023 0.0061 0.0014 0.0010 0.0047 0.0063 0.0037
W+ 0.0025 0.0066 0.0034 0.0016 0.0006 0.0051 0.0200 0.0043 0.0010 0.0020 0.0009 0.0006 0.0004 0.0010 0.0033 0.0008 0.0032 0.0052 0.0021 0.0013 0.0011 0.0054 0.0124 0.0084
w- 0.0008 0.0017 0.0020 0.0012 0.0010 0.0006 0.0050 0.0004 0.0004 0.0008 0.0014 0.0004 0.0009 0.0001 0.0010 0.0009 0.0010 0.0018 0.0015 0.0010 0.0011 0.0006 0.0040 0.0013
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Tab. 7: Numeric LCA-MCS results for ETS (Energy time shift) and the three recipe endpoints 

 

Tab. 8: Numeric LCA-MCS results for WES (Wind energy support) and the three recipe endpoints 

 

PR 
LFP NaS LTO NCA NCM NaNiCl VRLA RFB LFP NaS LTO NCA NCM NaNiCl VRLA RFB LFP NaS LTO NCA NCM NaNiCl VRLA RFB
DRA DRA DRA DRA DRA DRA DRA DRA DE DE DE DE DE DE DE DE DHH DHH DHH DHH DHH DHH DHH DHH

Mean 0.025263 0.08903 0.021043 0.025992 0.032042 0.035086 0.072031 0.032629 0.014939 0.036712 0.011982 0.015606 0.016364 0.017918 0.022114 0.018717 0.03097 0.084082 0.032728 0.031035 0.04379 0.04261 0.051076 0.041293
Standard error 0.000822 0.00693 0.000549 0.000675 0.001355 0.001671 0.007133 0.00105 0.000384 0.002352 0.00017 0.000307 0.000419 0.000511 0.001038 0.000423 0.000914 0.005812 0.00082 0.00062 0.001581 0.001864 0.004052 0.002025
Median 0.024449 0.081442 0.02049 0.025257 0.029982 0.034084 0.05832 0.030803 0.014571 0.033894 0.011866 0.015414 0.016031 0.017719 0.020266 0.018287 0.029937 0.077366 0.031886 0.030508 0.041124 0.041554 0.042473 0.036818
Standard deviation 0.003677 0.030993 0.002456 0.00302 0.006059 0.007475 0.031899 0.004694 0.001719 0.010517 0.000758 0.001373 0.001876 0.002285 0.00464 0.001891 0.004086 0.025991 0.003665 0.002771 0.007071 0.008336 0.018122 0.009055
Variance 1.35E-05 0.000961 6.03E-06 9.12E-06 3.67E-05 5.59E-05 0.001018 2.2E-05 2.95E-06 0.000111 5.75E-07 1.88E-06 3.52E-06 5.22E-06 2.15E-05 3.58E-06 1.67E-05 0.000676 1.34E-05 7.68E-06 5E-05 6.95E-05 0.000328 8.2E-05
Skewness 0.853063 0.479631 0.977157 0.528408 0.712365 0.759386 1.512024 0.92102 0.961938 0.484407 0.741122 0.5859 0.717877 0.714337 0.950951 0.826687 0.968553 0.480827 1.000079 0.546189 0.614434 0.754074 1.389322 0.937637
Kurtosis 2.846338 2.147577 3.201908 2.269737 2.583837 2.612012 5.283388 2.821265 3.198149 2.164598 2.864058 2.387439 2.64052 2.643405 3.391018 2.669451 3.166938 2.154726 3.295513 2.31225 2.408158 2.617942 4.825757 2.848308
Maximum 0.034027 0.152714 0.027272 0.031951 0.045973 0.052503 0.171557 0.043542 0.019272 0.058469 0.013853 0.018528 0.020622 0.023151 0.034389 0.022866 0.041129 0.137598 0.04217 0.036671 0.058069 0.061984 0.105962 0.062918
Minimum 0.020216 0.048833 0.018341 0.02159 0.024338 0.025238 0.037349 0.027009 0.012747 0.023266 0.01109 0.013624 0.014001 0.014829 0.016298 0.016354 0.025734 0.05064 0.028735 0.026978 0.034271 0.031574 0.03117 0.030814
lquartile 0.021999 0.059791 0.018627 0.022912 0.026498 0.028956 0.049289 0.028738 0.013486 0.026851 0.011179 0.014279 0.014553 0.015894 0.019022 0.017168 0.027623 0.059506 0.029103 0.028236 0.037853 0.035686 0.038329 0.034966
uquartile 0.027113 0.11351 0.022077 0.028462 0.036749 0.043295 0.094351 0.035656 0.016174 0.045051 0.012605 0.016569 0.017652 0.01996 0.025791 0.020412 0.033701 0.104652 0.034335 0.033219 0.047948 0.05181 0.064132 0.045267
upercentile 0.031926 0.145721 0.025427 0.031193 0.042256 0.048267 0.119552 0.041642 0.018224 0.055926 0.013196 0.017936 0.019998 0.022133 0.030209 0.022496 0.038926 0.131705 0.039235 0.035724 0.058062 0.057456 0.079107 0.057519
lpercentile 0.020216 0.048833 0.018341 0.02159 0.024338 0.025238 0.037349 0.027009 0.012747 0.023266 0.01109 0.013624 0.014001 0.014829 0.016298 0.016354 0.025734 0.05064 0.028735 0.026978 0.034271 0.031574 0.03117 0.030814

Botton 0.021999 0.059791 0.018627 0.022912 0.026498 0.028956 0.049289 0.028738 0.013486 0.026851 0.011179 0.014279 0.014553 0.015894 0.019022 0.017168 0.027623 0.059506 0.029103 0.028236 0.037853 0.035686 0.038329 0.034966
2Q 0.00245 0.021652 0.001864 0.002345 0.003484 0.005128 0.00903 0.002065 0.001085 0.007043 0.000687 0.001135 0.001478 0.001824 0.001243 0.001118 0.002314 0.017859 0.002782 0.002272 0.00327 0.005868 0.004144 0.001852
3Q 0.002663 0.032068 0.001587 0.003204 0.006767 0.009211 0.036031 0.004853 0.001603 0.011156 0.000739 0.001155 0.001621 0.002241 0.005526 0.002126 0.003764 0.027286 0.00245 0.002711 0.006825 0.010255 0.021659 0.008449
W+ 0.004813 0.032211 0.003349 0.002731 0.005508 0.004971 0.025202 0.005986 0.00205 0.010875 0.000591 0.001367 0.002346 0.002174 0.004417 0.002084 0.005226 0.027053 0.0049 0.002505 0.010114 0.005646 0.014976 0.012251
w- 0.001783 0.010958 0.000286 0.001323 0.00216 0.003718 0.011941 0.001729 0.000739 0.003585 8.88E-05 0.000655 0.000552 0.001065 0.002725 0.000814 0.001889 0.008866 0.000368 0.001257 0.003582 0.004112 0.007158 0.004153

WES
LFP NaS LTO NCA NCM NaNiCl VRLA RFB LFP NaS LTO NCA NCM NaNiCl VRLA RFB LFP NaS LTO NCA NCM NaNiCl VRLA RFB
DRA DRA DRA DRA DRA DRA DRA DRA DE DE DE DE DE DE DE DE DHH DHH DHH DHH DHH DHH DHH DHH

Mean 0.006304 0.008634 0.00487 0.00686 0.008233 0.009398 0.027365 0.013035 0.002106 0.002746 0.001151 0.00218 0.002375 0.002548 0.003905 0.004135 0.007202 0.008636 0.008379 0.007028 0.012712 0.010804 0.016654 0.021606
Standard error 0.000216 0.000331 0.000375 0.000345 0.000605 0.00062 0.001739 0.000879 8.81E-05 0.000112 6.41E-05 0.000115 0.000178 0.000161 0.000213 0.000287 0.000254 0.000279 0.00036 0.000288 0.000848 0.000675 0.000965 0.001668
Median 0.00606 0.008604 0.004918 0.006326 0.007558 0.008018 0.025332 0.012126 0.001973 0.002718 0.001132 0.001992 0.002175 0.002206 0.003679 0.003841 0.006729 0.008601 0.007588 0.00657 0.012285 0.009308 0.015613 0.020036
Standard deviation 0.000965 0.001482 0.001678 0.001542 0.002708 0.002774 0.007775 0.003931 0.000394 0.000501 0.000287 0.000516 0.000797 0.000718 0.000954 0.001284 0.001136 0.001247 0.00161 0.001286 0.003793 0.003019 0.004316 0.00746
Variance 9.3E-07 2.2E-06 2.81E-06 2.38E-06 7.33E-06 7.7E-06 6.05E-05 1.55E-05 1.55E-07 2.51E-07 8.21E-08 2.66E-07 6.36E-07 5.16E-07 9.09E-07 1.65E-06 1.29E-06 1.56E-06 2.59E-06 1.65E-06 1.44E-05 9.11E-06 1.86E-05 5.56E-05
Skewness 0.573184 2.032561 0.037682 0.450733 2.45296 0.988568 0.739128 2.205286 0.719483 2.053784 0.166316 0.450595 2.498411 0.997111 0.739306 2.23374 0.713383 1.9689 1.245419 0.443302 1.901338 0.988324 0.732182 2.276506
Kurtosis 2.139416 8.380748 2.278273 1.992483 9.55618 2.83464 2.631412 8.764826 2.542658 8.407265 2.356213 1.983487 9.74927 2.852613 2.662034 8.870471 2.466414 8.204985 3.454027 1.996607 7.297092 2.836353 2.628007 9.042514
Maximum 0.008083 0.01391 0.008048 0.009541 0.018246 0.015312 0.045134 0.027241 0.003037 0.004532 0.001699 0.003079 0.00534 0.004062 0.006107 0.008789 0.009824 0.013049 0.012349 0.009261 0.025727 0.017233 0.026514 0.048791
Minimum 0.004849 0.006829 0.002405 0.004678 0.005846 0.006376 0.017968 0.008773 0.00162 0.002147 0.000731 0.001452 0.001633 0.001765 0.002772 0.002754 0.005759 0.007082 0.006842 0.005199 0.008782 0.00751 0.011482 0.013639
lquartile 0.005487 0.00728 0.002546 0.005486 0.006413 0.00691 0.020121 0.01014 0.001719 0.002293 0.000775 0.001714 0.001815 0.001898 0.002986 0.0032 0.006169 0.007457 0.007242 0.005887 0.009566 0.008085 0.012556 0.016133
uquartile 0.006928 0.009063 0.006426 0.008106 0.009087 0.010868 0.033586 0.014422 0.0024 0.002907 0.001424 0.002619 0.0026 0.002912 0.004675 0.004598 0.008094 0.00898 0.009883 0.00805 0.013968 0.012399 0.020124 0.024352
upercentile 0.007966 0.009923 0.007818 0.009527 0.011147 0.01507 0.042501 0.016595 0.002707 0.003194 0.001691 0.00307 0.003177 0.004053 0.005752 0.005299 0.008987 0.009727 0.011994 0.009246 0.017537 0.017 0.025056 0.028369
lpercentile 0.004849 0.006829 0.002405 0.004678 0.005846 0.006376 0.017968 0.008773 0.00162 0.002147 0.000731 0.001452 0.001633 0.001765 0.002772 0.002754 0.005759 0.007082 0.006842 0.005199 0.008782 0.00751 0.011482 0.013639

Botton 0.005487 0.00728 0.002546 0.005486 0.006413 0.00691 0.020121 0.01014 0.001719 0.002293 0.000775 0.001714 0.001815 0.001898 0.002986 0.0032 0.006169 0.007457 0.007242 0.005887 0.009566 0.008085 0.012556 0.016133
2Q 0.000573 0.001324 0.002372 0.000841 0.001145 0.001108 0.005211 0.001986 0.000255 0.000426 0.000357 0.000278 0.000361 0.000308 0.000693 0.000641 0.00056 0.001144 0.000346 0.000683 0.002719 0.001224 0.003056 0.003904
3Q 0.000868 0.000459 0.001508 0.001779 0.001529 0.00285 0.008254 0.002296 0.000426 0.000188 0.000292 0.000627 0.000425 0.000706 0.000997 0.000757 0.001366 0.000379 0.002295 0.00148 0.001683 0.00309 0.004511 0.004315
W+ 0.001038 0.00086 0.001392 0.001421 0.00206 0.004202 0.008916 0.002173 0.000307 0.000287 0.000267 0.000451 0.000577 0.001141 0.001077 0.000702 0.000893 0.000747 0.002111 0.001196 0.003569 0.004601 0.004932 0.004018
w- 0.000638 0.000452 0.000141 0.000808 0.000567 0.000534 0.002154 0.001368 9.94E-05 0.000145 4.4E-05 0.000263 0.000182 0.000133 0.000214 0.000446 0.00041 0.000375 0.0004 0.000688 0.000785 0.000574 0.001074 0.002494
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Tab. 9: Numeric LCA-MCS results for HMGS (hybrid micro grid system) and the three recipe endpoints 

HMGS
LFP NaS LTO NCA NCM NaNiCl VRLA RFB LFP NaS LTO NCA NCM NaNiCl VRLA RFB LFP NaS LTO NCA NCM NaNiCl VRLA RFB
DRA DRA DRA DRA DRA DRA DRA DRA DE DE DE DE DE DE DE DE DHH DHH DHH DHH DHH DHH DHH DHH

Mean 0.00695 0.015298 0.005572 0.007028 0.009789 0.010467 0.0293 0.009745 0.003971 0.006858 0.002808 0.004034 0.004528 0.00476 0.006456 0.00499 0.007738 0.014074 0.008207 0.00712 0.014037 0.011751 0.018126 0.015254
Standard error 0.000266 0.000952 0.000201 0.000357 0.000585 0.000689 0.00165 0.000474 0.000113 0.000337 6.69E-05 0.000148 0.00017 0.000193 0.000221 0.000156 0.000278 0.000803 0.000313 0.000307 0.000817 0.000745 0.00091 0.000929
Median 0.006473 0.013826 0.005198 0.006595 0.008841 0.009639 0.026898 0.008973 0.003755 0.006381 0.002716 0.003819 0.004271 0.004511 0.006137 0.004733 0.007194 0.012804 0.007697 0.006625 0.012482 0.010943 0.016927 0.013693
Standard deviation 0.001188 0.004257 0.000901 0.001597 0.002617 0.003083 0.00738 0.002121 0.000506 0.001506 0.000299 0.00066 0.000762 0.000863 0.000987 0.000697 0.001242 0.00359 0.001401 0.001374 0.003653 0.00333 0.004069 0.004157
Variance 1.41E-06 1.81E-05 8.11E-07 2.55E-06 6.85E-06 9.51E-06 5.45E-05 4.5E-06 2.56E-07 2.27E-06 8.96E-08 4.36E-07 5.8E-07 7.45E-07 9.75E-07 4.86E-07 1.54E-06 1.29E-05 1.96E-06 1.89E-06 1.33E-05 1.11E-05 1.66E-05 1.73E-05
Skewness 0.595029 1.508659 0.842842 0.847758 1.185137 1.027605 0.724266 1.023334 0.528723 1.331462 0.044529 0.704628 1.012185 0.409888 0.698792 0.555117 0.77945 1.520515 0.791345 0.830787 1.287722 0.936437 0.717731 1.031598
Kurtosis 2.208989 4.741495 3.050747 2.961224 3.690968 3.22789 2.339152 2.696656 2.136625 4.177747 1.846632 2.820735 3.272532 2.305458 2.421018 1.845166 2.181222 4.803633 2.757915 2.904214 4.223322 3.005077 2.354306 2.60591
Maximum 0.009514 0.027936 0.007649 0.011084 0.016947 0.018084 0.044343 0.014651 0.004954 0.011168 0.003327 0.005607 0.006461 0.006415 0.008607 0.006235 0.010265 0.024824 0.011448 0.010527 0.024603 0.019841 0.026369 0.02447
Minimum 0.005352 0.010779 0.004354 0.005015 0.006665 0.006022 0.019848 0.007473 0.003209 0.0051 0.002297 0.002999 0.003523 0.003198 0.004983 0.004049 0.006393 0.010336 0.006436 0.005339 0.009773 0.006881 0.012807 0.011064
lquartile 0.005983 0.012236 0.004893 0.005631 0.007833 0.008288 0.023198 0.008116 0.00353 0.005678 0.002558 0.003585 0.003846 0.004037 0.005742 0.004349 0.006628 0.011435 0.00714 0.00605 0.011416 0.009383 0.014946 0.011941
uquartile 0.007896 0.017303 0.006237 0.008324 0.012045 0.011924 0.033586 0.011399 0.00457 0.007797 0.003086 0.004458 0.004947 0.005476 0.007483 0.005783 0.009212 0.015793 0.009153 0.008242 0.015707 0.013782 0.020613 0.018296
upercentile 0.00897 0.022974 0.007529 0.00952 0.014437 0.016414 0.041785 0.013322 0.004905 0.009285 0.003256 0.005113 0.005991 0.006373 0.008087 0.006073 0.010039 0.020141 0.011002 0.00951 0.019655 0.017921 0.02495 0.022671
lpercentile 0.005352 0.010779 0.004354 0.005015 0.006665 0.006022 0.019848 0.007473 0.003209 0.0051 0.002297 0.002999 0.003523 0.003198 0.004983 0.004049 0.006393 0.010336 0.006436 0.005339 0.009773 0.006881 0.012807 0.011064

Botton 0.005983 0.012236 0.004893 0.005631 0.007833 0.008288 0.023198 0.008116 0.00353 0.005678 0.002558 0.003585 0.003846 0.004037 0.005742 0.004349 0.006628 0.011435 0.00714 0.00605 0.011416 0.009383 0.014946 0.011941
2Q 0.00049 0.00159 0.000305 0.000964 0.001008 0.00135 0.0037 0.000857 0.000224 0.000704 0.000158 0.000233 0.000425 0.000474 0.000394 0.000384 0.000567 0.001368 0.000557 0.000575 0.001066 0.00156 0.001981 0.001752
3Q 0.001423 0.003476 0.00104 0.001729 0.003204 0.002285 0.006688 0.002426 0.000815 0.001416 0.00037 0.00064 0.000676 0.000965 0.001346 0.00105 0.002018 0.002989 0.001456 0.001618 0.003225 0.002839 0.003686 0.004604
W+ 0.001075 0.005671 0.001292 0.001196 0.002392 0.00449 0.008199 0.001923 0.000335 0.001488 0.00017 0.000654 0.001044 0.000897 0.000604 0.000291 0.000827 0.004348 0.001849 0.001268 0.003948 0.004139 0.004337 0.004375
w- 0.000631 0.001457 0.000539 0.000616 0.001168 0.002266 0.00335 0.000644 0.000321 0.000578 0.000261 0.000586 0.000322 0.000838 0.000759 0.000299 0.000234 0.001099 0.000704 0.000711 0.001643 0.002502 0.002139 0.000877
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