
Ricardo Filipe Chaves Gaspar

Master of Science in Computer Science

Orchestration of a large infrastructure of Remote
Desktop Windows Servers

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Informatics Engineering

Adviser: Paulo Orlando Reis Afonso Lopes, Assistant
Professor, Faculdade de Ciências e Tecnologia
da Universidade Nova de Lisboa

Co-adviser: Sebastian Bukowiec, IT Systems Engineer,
European Organization for Nuclear Research (CERN)

Examination Committee

Chairperson: Prof. Doutor João Manual dos Santos Lourenço
Raporteur: Prof. Doutor José Henrique Pereira São Mamede

Member: Prof. Doutor Paulo Orlando Reis Afonso Lopes

December, 2017

Orchestration of a large infrastructure of Remote Desktop Windows Servers

Copyright © Ricardo Filipe Chaves Gaspar, Faculty of Sciences and Technology, NOVA

University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Dedico este trabalho à minha família que me apoiou ao longo
desta jornada. Em especial, à minha mãe, Rosa, pelo seu amor
e apoio incondicional mesmo à distância. À minha namorada,
Ana Sofia, que embarcou comigo nesta aventura, me apoiou e
mostrou o que é o amor. A todos os meus amigos que, mesmo

longe, me acompanharam e apoiaram ao longo deste ano de
aventura.

Acknowledgements

First, I would like to thank my faculty, Faculdade de Ciências e Tecnologias da Univer-

sidade Nova de Lisboa, and the Department of Informatics for the past few years of great

teachings and opportunities. A special thanks to Professor Pedro Medeiros, coordinator of

the Master degree in Computer Science, for supporting my application for the Technical

Student Programme at CERN; and helping me with the needed bureaucracy so I could do

my master thesis abroad.

Many thanks to my adviser, Professor Paulo Lopes, without whom it wouldn’t be

possible to write this thesis. Thanks for the help with the writing and the support along

the way.

Secondly, I want to thank CERN for the opportunity I’ve been given; it was a long-

time wish that became true. Of course, this was only possible thanks to my supervisor,

Sebastian Bukowiec, who chose me to collaborate with him. I’m grateful for the things

he taught me, the freedom and creativity to do my work and write my thesis, and for the

great support and encouragement.

I would also like to thank my section leader, Michal Kwiatek, who challenged me to

do a small Python project, one that I enjoyed and drove me to learn new things.

Thanks to my co-workers for the interesting conversations, the funny moments and

the support.

Finally, thanks to my family and friends for the love and great support along this year.

vii

Abstract

The CERN Windows Terminal Service infrastructure is an aggregation of multiple

virtual servers running Remote Desktop Services, accessed by hundreds of users every

day; it has two purposes: provide external access to the CERN network, and exercise

access control to certain parts of the accelerator complex.

Currently, the deployment and configuration of these servers and services requires

some interaction by system administrators, although scripts and tools developed at CERN

do contribute to alleviate the problem. Scaling up and down the infrastructure (i.e.,

adding or removing servers) is also an issue, since it’s done manually.

However, recent changes in the infrastructure and the adoption of new software tools

that automate software deployment and configuration open new possibilities to improve

and orchestrate the current service. Automation and Orchestration will not only reduce

the time and effort necessary to deploy new instances, but also simplify operations like

patching, analysis and rebuilding of compromised nodes and will provide better perfor-

mance in response to load increase.

The goal of this CERN project, we’re now a part of, is to automate provisioning (and

decommissioning) and scaling (up and down) of the infrastructure. Given the scope and

magnitude of problems that must be solved, no single solution is capable of addressing

all; therefore, multiple technologies are required. For deployment and configuration of

Windows Server systems we resort to Puppet, while for orchestration tasks, Microsoft

Service Management Automation will be used.

Keywords: Windows Terminal Services, Remote Desktop, software configuration man-

agement, automation, orchestration, Puppet, Microsoft Service Management Automation.

ix

Resumo

O CERN dispõe de uma infraestrutura que designa por “Windows Terminal Service

Infrastructure”(WTS), e que é um agregado de servidores (que são, de facto, VMs) que

executam os serviços de Remote Desktop e são acedidos diariamente por centenas de

utilizadores. Os dois objectivos principais da WTS são: permitir o acesso aos utilizadores

credenciados que se encontram off-site, e controlar o acesso ao software que manipula

certas zonas do complexo onde se localiza o acelerador de partículas.

Neste momento a implantação (deployment) e configuração de serviços requer alguma

interacção por parte dos administradores de sistema - embora com o auxílio de ferramen-

tas e scripts desenvolvidos no CERN. As operações de aprovisionamento e remoção de

servidores também requerem alguma interacção, o que contribui para piorar a situação

atrás descrita.

Contudo, recentemente têm surgido novas ferramentas que permitem automatizar os

processos de distribuição e configuração de software, bem como orquestrar múltiplas ac-

tividades desencadeadas sobre múltiplos alvos (por exemplo, servidores). Pode-se, assim,

melhorar a qualidade dos serviços prestados pela infraestrutura, já que como resultado

da introdução da automação e orquestração pode-se não só diminuir o tempo de apro-

visionamento, mas também simplificar operações de patching e análise e reconstrução

de nós problemáticos. Subsidiariamente, pode-se ainda conseguir reagir em tempo útil a

aumentos de carga.

O objectivo deste projecto em que estamos inseridos é automatizar o aprovisiona-

mento e remoção de servidores e serviços, e a escalabilidade da infraestrutura WTS. Con-

siderando o âmbito e a magnitude dos problemas a resolver, não existe uma ferramenta

única que, de uma assentada, os permita resolver todos, pelo que é necessário utilizar

múltiplas tecnologias: para o aprovisionamento e configuração de sistemas Windows Ser-

ver utilizaremos o Puppet; para orquestração de tarefas, vamos usar o Microsoft Service

Management Automation.

Palavras-chave: Windows Terminal Services, Remote Desktop, gestão de configurações,

automação, orquestração, Puppet, Microsoft Service Management Automation.

xi

xii

Contents

List of Figures xvii

List of Tables xix

Glossary xxiii

Acronyms xxv

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 3

1.3 Contributions . 4

1.4 Document Organisation . 5

2 CERN’s Windows Terminal Service Infrastructure 7

2.1 The infrastructure . 7

2.1.1 CERN Cloud Infrastructure (OpenStack) 8

2.1.2 Remote Desktop Services . 13

2.1.3 HAProxy . 17

2.2 Monitoring the WTS Operations: SCOM 19

2.3 Management and Configuration of the WTS infrastructure 20

2.3.1 Active Directory . 20

2.3.2 Group Policy . 21

2.3.3 Scripting . 22

2.3.4 Computer Management Framework 23

3 Agility 25

3.1 DevOps . 25

3.1.1 Before DevOps . 26

3.1.2 What is DevOps? . 28

3.2 Infrastructure as Code . 33

3.2.1 Principles of IaC . 34

3.3 Configuration Management . 35

xiii

CONTENTS

4 Configuration Management 37

4.1 SCM Tools: an Introduction . 37

4.2 SCM Tools: a brief survey . 39

4.2.1 Overview . 39

4.2.2 Puppet . 40

4.2.3 Ansible . 50

4.2.4 PowerShell DSC . 56

4.3 SCM Tools’ Evaluation . 60

4.3.1 Tool Installation and Configuration 60

4.3.2 Testing the Tools . 62

4.3.3 Integration with PowerShell DSC 63

4.3.4 Evaluation Results . 66

4.4 WTS Configuration Management using Puppet 68

4.4.1 Puppet-wmi module . 69

4.4.2 puppet-sslcertificate module . 69

4.4.3 cernsslcertificate module . 71

4.4.4 teigi module and teigi_subfile resource 73

4.4.5 Building Puppet types from DSC modules 75

4.4.6 WTS Puppet manifests . 77

5 Automation and Orchestration 79

5.1 Automation and Orchestration . 79

5.1.1 Runbooks and Workflows . 80

5.2 Evaluated Automation & Orchestration tools 80

5.2.1 System Center Orchestrator . 81

5.2.2 Service Management Automation 83

5.3 Windows PowerShell Workflows Concepts 85

5.3.1 InlineScript . 87

5.3.2 Checkpoints . 89

5.3.3 Parallel Execution . 90

5.4 Service Management Automation usage at CERN 91

5.5 Our Work with the SMA . 92

5.5.1 CERNOperations Integration Module 92

5.5.2 Runbook create-vm-with-volume . 96

6 Conclusions & Future Work 101

6.1 Conclusions . 101

6.2 Future Work . 103

Bibliography 105

I Puppet test manifest 117

xiv

CONTENTS

II Ansible test playbook 119

III PowerShell DSC test configuration script 121

IV DSC configuration script to set Group Policy rules 123

V Manifest to set Group Policy rules using DSC resources 125

VI Ansible playbook to set Group Policy rules using DSC resources 127

VII Original version of puppet-wmi module 129

VIII Improved version of puppet-wmi module 131

IX Original version of puppet-sslcertificate module manifest 133

X Original version of inspect.ps1.erb template 137

XI Original version of import.ps1.erb template 139

XII Improved version of puppet-sslcertificate module manifest 141

XIII Improved version of inspect.ps1.erb template 145

XIV Improved version of import.ps1.erb template 147

XV cernsslcertificate module manifest 149

XVI Windows provider for teigi_subfile 153

XVII Improved teigi_subfile manifest to contemplate Windows systems 157

XVIII Puppet Manifest to configure Remote Desktop Servers of CERN’s WTS 161

XIX Puppet Manifest to configure Remote Desktop License server 167

XX Sync-Files PowerShell script to synchronise a folder structure 169

XXI CERNOperations SMA Integration Module 171

XXII create-vm-with-volume Runbook 189

xv

List of Figures

1.1 Life cycle of a VM in the WTS infrastructure. 5

2.1 Traditional IT vs. Cloud computing service models [21]. 9

2.2 OpenStack components [22]. 11

2.3 OpenStack & WTS overview (adapted from [17]). 12

2.4 Remote Desktop Services Component Architecture. 14

2.5 CERN Terminal Service architecture. 15

2.6 CERN Windows Terminal Service connection workflow. 16

2.7 Remote Desktop Connection to CERN workstation. 16

2.8 Load balancing example showing the back-end concept [41]. 18

2.9 HAProxy+keepalived example. 19

2.10 Active Directory logical structure [51]. 21

2.11 Computer Management Framework logical structure [58]. 24

3.1 Waterfall model [62]. 26

3.2 Evolution of software development (adapted from [63]). 27

3.3 DevOps life cycle [68]. 31

4.1 Push and pull models [85]. 38

4.2 Puppet client-server model [90]. 41

4.3 An overview of a puppet run - only steps 2 to 5 (adapted from [97]). 48

4.4 Foreman Hostgroup example. 50

4.5 Ansible architecture overview [103]. 51

4.6 Ansible components [104]. 52

4.7 Inventory and playbooks in Ansible [106]. 54

4.8 PowerShell DSC push and pull models overview (adapted from [109]). 57

4.9 PowerShell DSC execution phase [111]. 57

4.10 PowerShell DSC push model [111]. 58

4.11 PowerShell DSC pull model [111]. 59

4.12 Group Policy GUI displaying the rule to set. 64

4.13 Group Policy GUI displaying the settings of the rule to set. 65

4.14 Cernsslcertificate logic

flowchart. 74

xvii

List of Figures

4.15 Cernsslcertificate execution

flowchart. 74

5.1 Orchestrator runbook example [133]. 80

5.2 Provisioning steps of a VM in the WTS infrastructure. 81

5.3 Orchestrator architecture [133]. 82

5.4 SMA architecture [14]. 84

5.5 SMA runbook execution steps [14]. 85

5.6 Execution of PowerShell commands on remote computers using InlineScript

[141]. 88

5.7 Making a request to OpenStack through AIADM servers. 93

5.8 Flowchart of the WaitForVM function. 94

5.9 Flowchart of the WaitForCMF function. 95

5.10 Contact CMF Web Service to get the status of a VM’s CMF Agent. 95

5.11 Invoking ai-kill to delete Puppet-managed servers on OpenStack. 95

5.12 Orchestrating the provisioning process of a VM in the WTS infrastructure. . 96

5.13 Flowchart of the create-vm-with-volume runbook. 99

xviii

List of Tables

2.1 Subset of CERN’s OpenStack flavours. 12

3.1 Conceptual framework characterising DevOps (adapted from [4]). 28

3.2 How DevOps addresses different challenges (adapted from [64]). 29

3.3 DevOps practices (adapted from [2]). 30

4.1 Foreman Hostgroups. 49

4.2 Puppet code and hostgroup organisation. 50

4.3 Characteristics of the evaluated SCM tools. 61

4.4 Evaluation results for the surveyed SCM tools. 68

xix

List of Listings

1 Puppet (hostgroup) manifest example for Windows systems. 44

2 Another Puppet (hostgroup) manifest example for Windows systems. . . 46

3 YAML syntax examples [105]. 53

4 Example of an inventory file using the INI format. 54

5 Example of an inventory file using the YAML format. 55

6 Playbook with one play. 55

7 Playbook with two plays. 55

8 PowerShell DSC configuration script example [112]. 60

9 PowerShell DSC configuration script to set a Group Policy rule. 65

10 Puppet manifest using a DSC to set a Group Policy rule. 66

11 Ansible playbook using a DSC to set a Group Policy rule. 67

12 Original version of puppet-wmi module. 70

13 Improved version of puppet-wmi module [119]. 71

14 Improved version of puppet-sslcertificate module manifest. 72

15 Sample of cernsslcertificate module showing the use of resource collectors. 74

16 Docker file to create a container to build Puppet types from DSC mod-

ules [128]. 76

17 Sample manifest using DSC resources . 77

18 Windows PowerShell Workflow basic structure (adapted from [141]). . . 86

19 Windows PowerShell Workflow calling a function. 87

20 InlineScript syntax [141]. 87

21 Formatting a new volume in a remote computer using an InlineScript [141]. 88

22 Passing and returning values from an InlineScript activity. 89

23 Checkpoint-Workflow example. 89

24 An example using the Parallel block. 90

25 An example using the Parallel block with a sequence of commands. . . . 91

26 An example using the ForEach -Parallel loop. 91

xxi

Glossary

Ceph Ceph is a software storage platform that implements object storage on a distributed

computer cluster and provides interfaces for object-, block- and file-level storage.

Ceph aims primarily for completely distributed operation without a single point

of failure, scalable to the exabyte level, and freely available.It replicates data and

makes it fault-tolerant, using commodity hardware and requiring no specific hard-

ware support. As a result of its design, the system is both self-healing and self-

managing, aiming to minimise administration time and other cost [32].

Docker Docker is a software technology providing containers, promoted by the com-

pany Docker, Inc. It provides an additional layer of abstraction and automation of

operating-system-level virtualisation on Windows and Linux. Docker uses the re-

source isolation features of the Linux kernel such as cgroups and kernel namespaces,
and a union-capable file system (e.g. OverlayFS) to allow independent “containers”

to run within a single Linux/Windows instance, avoiding the overhead of starting

and maintaining virtual machines (VMs) [79] .

MOF The Managed Object Format (MOF) defined by DMTF is a file format with it’s own

language based on IDL (the Object Management Group’s Interface Definition Lan-

guage). It provides a way to describe object-oriented class and instance definitions

in textual form, with the goals of human readability and parsing by a compiler. The

main components of a MOF specification are textual descriptions of element quali-

fiers (meta-data about classes, properties, methods, etc.), comments and compiler

directives, and the specific class and instance definitions [108].

SOAP Simple Object Access Protocol (SOAP) is a lightweight protocol for exchange of

information in a decentralised, distributed environment. It is an XML based proto-

col that consists of three parts: an envelope that defines a framework for describing

what is in a message and how to process it, a set of encoding rules for expressing in-

stances of application-defined datatypes, and a convention for representing remote

procedure calls and responses [101].

Windows Workflow Foundation Windows Workflow Foundation (WWF) is a program-

ming model, set of tools, and runtime environment that allows to write declarative

workflows on the Windows platform to represent the execution model of programs.

xxiii

GLOSSARY

It provides an API, an in-process workflow engine, and a designer to implement

long-running processes as workflows within .NET applications [143].

WinRM Windows Remote Management (WinRM) is the Microsoft implementation of

WS-Management Protocol, a standard firewall-friendly protocol that allows hard-

ware and operating systems, from different vendors, to interoperate [99].

WMI Windows Management Instrumentation (WMI) is the Microsoft implementation

of Web-Based Enterprise Management (WBEM), which is an industry initiative to

develop a standard technology for accessing management information in an en-

terprise environment. WMI uses the Common Information Model (CIM) industry

standard to represent systems, applications, networks, devices, and other managed

components. CIM is developed and maintained by the Distributed Management

Task Force [55].

WS-Man Web Services Management (WS-Man) provides interoperability between man-

agement applications and managed resources, and identifies a core set of web service

specifications and usage requirements that expose a common set of operations cen-

tral to all systems management. It is a SOAP-based protocol for managing computer

systems (e.g. personal computers, workstations, servers, smart devices) that sup-

ports web services and helps constellations of computer systems and network-based

services collaborate seamlessly [100].

xxiv

Acronyms

ACL Access Control List.

AD Active Directory.

API Application Programming Interface.

CD Continuous Delivery.

CDev Continuous Development.

CERN Conseil Européen pour la Recherche Nucléaire.

CI Continuous Integration.

CLI Command-line Interface.

CM Continuous Monitoring.

CMF Computer Management Framework.

CPU Central Processing Units.

CT Continuous Testing.

DevOps Development and Operations.

DMTF Distributed Management Task Force.

DSC Desired State Configuration.

DSL Domain Specific Language.

FA Feedback Agent.

GPO Group Policy Object.

GUI Graphical User Interface.

GUID Global Unique Identifier.

HEP High Energy Physics.

xxv

ACRONYMS

IaaS Infrastructure-as-a-Service.

IaC Infrastructure-as-Code.

IP Internet Protocol.

IT Information Technologies.

LCM Local Configuration Manager.

NIST National Institute of Standards and Technology.

NSS Name System Set.

OS Operating System.

OU Organisation Unit.

QA Quality Assurance.

RDCB Remote Desktop Connection Broker.

RDG Remote Desktop Gateway.

RDL Remote Desktop Licensing.

RDP Remote Desktop Protocol.

RDS Remote Desktop Services.

RDSH Remote Desktop Session Host.

RDVH Remote Desktop Virtualization Host.

RDWA Remote Desktop Web Access.

SaaS Software-as-a-Service.

SCM Software Configuration Management.

SCOM System Center Operations Manager.

SDN Software Defined Network.

SMA Service Management Automation.

SRS Software Requirements Specification.

SSL Secure Sockets Layer.

TDD Test-Driven Development.

URI Unique Resource Identifier.

xxvi

ACRONYMS

VCS Version Control System.

VM Virtual Machine.

WMF Windows Management Framework.

WTS Windows Terminal Service.

xxvii

C
h
a
p
t
e
r

1
Introduction

1.1 Context

As one can imagine, an organisation like Conseil Européen pour la Recherche Nucléaire

(CERN), whose main goal is to do research in the field of High Energy Physics (HEP) and

has more than 16000 employees from 22 countries, requires a huge amount of computing

resources to carry out its research and support daily operations - two Data Centres (one

in Geneva, Switzerland and another in Budapest, Hungary) with roughly 12,500 physical

servers and 25,000 virtualised servers .

This document focuses on CERN’s Windows Terminal Service (WTS), a subset of

these computing resources that provides user access to the CERN intranet and controls

the access to certain parts of the accelerator complex. The CERN’s WTS is, furthermore,

virtualised: its servers are virtual machines (VMs) organised in multiple groups (referred

to as clusters) and assigned to different user groups and departments.

Installing, configuring and managing a large number of machines (virtual or not),

some of them with quite different configuration parameters, requires a lot of effort from

systems administrators (SysAdmins) mainly because there’s a significant amount of hu-

man interaction. For example, to deploy a new cluster for, e.g., a CERN department,

multiple servers must be deployed, networking must be set up, and several Windows soft-

ware components and/or services must be configured. The current approach to minimise

the SysAdmin’s work is to use multiple services and tools:

• directory services (Active Directory) - to manage users, groups, computers and other

devices;

• group policies (Group Policy) - to enforce policies upon users, groups and comput-

ers;

1

CHAPTER 1. INTRODUCTION

• scripts - to automate some deployment and configurations tasks;

• configuration management software - to install and/or remove software applica-

tions.

CERN’s WTS current management approach relies on the previous mentioned tools plus

scripts and an in-house developed configuration management tool, dubbed Computer

Management Framework (CMF) (see section 2.3.4) to automate several types of actions;

however, there is still a lot of room for improvement.

Unfortunately Windows Server components have distinct interfaces (command line,

Graphical User Interface (GUI), Application Programming Interface (API), etc.) which

make the scripting approach a possible but tedious solution, as each resulting script deals

with a particular component and has little opportunity for reuse. So, one must take a step

back and reexamine the problem of Configuration Management.

We begin by stating the obvious: what system administrators want is to have a compli-

ant (all the machines in a group have the “same” target software configuration), scalable

and easy to manage infrastructure. Therefore, the main objective is the orchestration

of common activities by defining workflows to reduce error-prone manual actions and

operational workload.

To address this goal, given the size and growth rate of IT infrastructures all over the

world, a new paradigm of configuration management was born: Infrastructure-as-Code

(IaC) [1], itself a descendant of the Development and Operations (DevOps) paradigm

[2–6]. IaC states that configuration management problems can be solved using the same

concepts of software development: the idea is to write programs that specify the desired

configuration states, and then execute them.

The result is the availability of a number of Software Configuration Management

(SCM) [7] tools to tackle these challenges, like Puppet [8], and Chef [9]. The first incar-

nation of those tools was targeted at server architectures running UNIX-like operating

systems, since they represented the majority when compared to, e.g., Windows. This has

been reflected in the way they operate and manage resources since, in UNIX-like systems,

most configurations are stored in files and software is installed via packages. Only in

recent years these tools have begun to support Windows, and that process is ongoing,

with an increased number of features available in every new version of a tool. Windows

server deployments (core versions excluded) were mostly based on GUI and their config-

uration and management has traditionally required a lot of user interaction. However,

in recent versions of Windows Server, many efforts have been made by Microsoft to offer

tools like PowerShell extensions (cmdlets, in their terminology) such as Desired State

Configuration (DSC) [10] that allow programmers to create scripts that require no user

interaction to deploy software packages and configure system components.

Another important aspect is orchestration, the ability to automate repetitive tasks

and complex processes in a way that they can be carried out by computers, i.e. without

human interaction.

2

1.2. MOTIVATION

Note that automation, as carried out by configuration management software tools, is

concerned with a single task (e.g. installing an application, configuring a web server or

stopping a service) while orchestration is concerned with the execution of a process or

workflow - multiple tasks that can involve multiple systems. An example of a workflow

can be setting up an infrastructure for a complex service consisting of several, simpler

ones: a web server, an application server and a database server [11].

The usage of automation and orchestration tools may significantly improve the man-

agement of large computing infrastructures, as well as reduce the systems administrators’

workload. Some use cases can be alert remediation - monitor a resource and react to a

trigger -, maintenance tasks and cross-technology integration1 [12]. For Windows Server

systems, Microsoft has been releasing products that address those needs, like Orchestra-

tor [13] and, more recently, Service Management Automation (SMA) [14].

1.2 Motivation

Within CERN’s Information Technologies (IT) Department, the Applications and De-

vices group is the one responsible for the Windows Terminal Service infrastructure which,

as referred previously, grants access to servers in the CERN intranet to authorised users.

These servers are grouped in clusters which can be categorised in two types: General

Purpose (a.k.a. Public) clusters and Specialised (a.k.a. Dedicated) clusters.

There are 3 General Purpose clusters with a total 21 servers which goal is to allow

CERN users to remotely log in and use the pre-installed productivity software (Microsoft

Office, etc.) and provide access to resources available only in the CERN intranet . The

Specialised clusters, for which there are there are 30 (with a total of circa 130 servers), are

dedicated to different teams and departments as they serve different purposes related to

specific tasks such as accelerator’s experiments, beam monitoring, etc.. A more detailed

explanation is described in section 2.1.

The Applications and Devices team must deploy, configure and manage these servers

and, currently, a sizeable amount of that work requires human interaction; and, to worsen

things up, these tasks must be performed quite often. The challenge, therefore, resides in

how to maintain compliance and adherence to CERN’s standards and best practices in a

vast, highly dynamic, and growing infrastructure.

In 2011, CERN’s IT Department began to review the data centre infrastructure in

order to expand and optimise the its usage [15]. The goal was to explore widely-used tech-

nologies for cloud computing, virtualisation, and configuration management to reduce

the operational effort, improve agility and support lights-out (i.e., no human presence)

remote data centres. Hence, the birth of the CERN’s Agile Infrastructure project [15, 16]

which aimed to deploy in CERN data centres, with minimal customisation, the same set of

tools and processes for data centre management that was used in data centres elsewhere.

1Integration with other software technologies or systems.

3

CHAPTER 1. INTRODUCTION

At that time, OpenStack [17, 18] - a software stack that can be used to provide

Infrastructure-as-a-Service (IaaS) private clouds- was chosen for CERN data centres. As

the IT Department embraced that new paradigm, it was decided that the WTS infrastruc-

ture should also be deployed on top of OpenStack.

The reasons for adopting a private cloud infrastructure are manifold, but we will

point just two: the sharing of hardware resources (compute, storage and networking)

among cloud consumers; and its intrinsic ability to rapidly deploy (and retire) a virtual

machine - either through cloning of a base image (a.k.a. template or golden image),

or from scratch. In short, WTS servers are Windows Server VMs that can be rapidly

deployed with OpenStack; but, after the initial deployment step, further configuration

and/or installation of software components must be performed. To automate these tasks,

ensure compliance across servers providing the same services and reduce administrator

burden, Puppet was chosen.

Since 2013 the Agile Infrastructure is in place and continues to evolve [16] but now,

with the introduction of Puppet versions with support for the Windows platform together

with Microsoft changes that enable its server tools to be used in non-interactive ways, an

opportunity arises to extend those benefits to the Windows Terminal Service infrastruc-

ture.

Therefore, our goal is to leverage automation and orchestration across WTS to reduce

error-prone manual actions and operational workload. By endowing the infrastructure

with automated mechanisms it is possible to reduce both the time to provision new servers

and the number of misconfiguration events.

Fig. 1.1 depicts the life cycle of a VM in the WTS showing the steps to provision and

maintain it as well as the tools required for these steps. In the next section we will further

detail our contributions to the WTS infrastructure including the process illustrated in the

fig. 1.1 using the tools previously mentioned.

1.3 Contributions

Our aim is to address the challenges of configuration management, automation and

orchestration using an IaC approach in order achieve an automated infrastructure with

less operational costs. To reach the above goals, and as there is no single “silver bullet”

solution that solves them all, several technologies had to be used together: Puppet for

configuration management and SMA for automation and orchestration.

With the adoption of these technologies a reduction has been achieved in the number

of operations requiring human (system administrator) intervention for:

• WTS components (servers, software, services) provisioning and decommissioning;

• remedial services (taking a component out and refreshing it or reinstalling it);

• scaling up (and down) the infrastructure as a response to user load changes.

4

1.4. DOCUMENT ORGANISATION

• Create VM with Windows image

Apps
• Deploy and configure applications

Configure
• OS settings

Create VM
Au

to
m

at
io

n
&

 O
rc

he
st

ra
tio

n
To

ol

Maintain
• OS settings

Software
Configuration
Management Tool

Software
Configuration
Management Tool

Figure 1.1: Life cycle of a VM in the WTS infrastructure.

As a result of the use of Puppet for configuration management of the WTS VMs

(Windows servers), a number of improvements were made to some Puppet community

modules targeted to Windows systems, namely puppet-sslcertificate and puppet-wmi, and

also to modules privately used at CERN, such as cernsslcertificate and teigi.

Other contributions were made as a result of using Service Management Automation -

the automation and orchestration tool. A PowerShell module named CERNOperations was

developed to abstract the most common operations invoked by other SMA runbooks (e.g.

Delete VM, Delete Volume, Wait for VM, Wait for CMF, etc.). Another major contribution

was a runbook to orchestrate the provisioning of a WTS VM, following the steps depicted

on fig. 1.1.

1.4 Document Organisation

The remainder of this document is organised as follows:

Chapter 2 describes the infrastructure of CERN’s Windows Terminal Service and

the software technologies currently used to provide those services. It explains the WTS

architecture, its purpose, the role of each component, and how the infrastructure is

5

CHAPTER 1. INTRODUCTION

managed.

Chapter 3 starts by describing the birth of DevOps and explains the concepts asso-

ciated with it, as configuration management technologies play an important part in this

paradigm, one that relies on automation and collaboration between development and

operations teams to deliver properly configured infrastructures to run applications and

services. It also introduces the motivations for the existence of tools that automate the

configuration of large infrastructures.

Chapter 4 starts with a brief introduction of SCM tools, and then presents and de-

scribes some of the tools available to increase the level of automation in WTS and makes

a comparison between them. It concludes by presenting the work done using Puppet, the

tool that was selected to configure and manage the WTS infrastructure.

Then, Chapter 5 begins with the introduction of a set of tools that were selected as

candidadtes for automation and orchestration of the WTS infrastructure, followed by a

more detailed presentation of the SMA and how it was used to develop workflows to

automate the provisioning of servers and execution of maintenance tasks.

Finally, Chapter 6 discusses not only the WTS infrastructure needs and the solutions

that were put in place to address them, but presents other possible solutions that could

fit the same purposes. It finishes with a section dedicated to the discussion possible

improvements and technologies that should be explored in a near future to increase

automation to the WTS infrastructure even more.

6

C
h
a
p
t
e
r

2
CERN’s Windows Terminal Service

Infrastructure

CERN’s Windows Terminal Service (WTS) infrastructure has two major purposes: pro-

vide access to the CERN network from the outside and control the access to certain parts

of the accelerator complex. This chapter presents the WTS architecture and the soft-

ware technologies that CERN’s IT Department is currently using to deploy, configure and

manage WTS hosts and services.

2.1 The infrastructure

The WTS is an infrastructure of virtualised hosts that, for the sake of simplicity of this

document, are grouped into two categories that we shall refer to as infrastructure services
(e.g., proxy, broker and licensing hosts) and user services (i.e., hosts that are accessed by

users to run applications, etc.). Hosts running user services are grouped in clusters and

assigned to different user groups and departments at CERN; they all run the Windows

Server operating system and allow incoming remote connections in order to provide the

same user experience as if they were accessed locally. Remote access to a Windows Server

host can be enabled through the activation of a server role - a software service embedded

in the operating system - called Remote Desktop Services [19].

With RDS, users can access resources in CERN’s internal network using a secure

connection without providing direct access to these resources, i.e., the user’s computer

(accessing the remote server’s desktop) has no access to the internal resources but the

user, indirectly through the remote server, can access those resources. A more detailed

description can be found in section 2.1.2.

In WTS there are two types of user-accessible clusters: public and dedicated.

7

CHAPTER 2. CERN’S WINDOWS TERMINAL SERVICE INFRASTRUCTURE

Public clusters (for which there are three, with a total of 21 servers) allow any user

with a valid CERN account to log in and use one of the available hosts; these hosts are

pre-installed with productivity software (Microsoft Office, etc.) and enable users’ access

to resources available only in the CERN intranet (e.g. documents in file servers, internal

websites).

Dedicated clusters (for which there are 30, with a total of circa 130 servers) have

different purposes, since they are assigned to different groups at CERN and their access

is restricted (e.g. monitoring services for the experiments). Each cluster (i.e., its member

servers) requires its own software stack since they have different purposes. Only users

that are members of a group can access the group’s dedicated cluster(s).

In public clusters, servers accessed by the users are pre-installed and ready-to-use,

while servers in dedicated clusters are handed out to group/team managers and assigned

administrative privileges that let them deploy new software. Nevertheless, the hosts in

the dedicated clusters also have to follow general rules and polices that are in place to

ensure a compliant and secure infrastructure.

Gateway servers are also a part of CERN’s WTS; they run a service that enables users to

remotely connect directly to their (physical) workstations. In this case, users can remotely

work on their workstations located at CERN in the same way they would do if they were

in their office.

Given the size of this infrastructure, it makes sense to have tools that automate the

deployment and configuration, and provide mechanisms that (re-)apply configuration

parameters (either because they have been inadvertently or maliciously altered or because

a new configuration must be pushed).

The remaining subsections describe the technologies that are in place to support the

WTS infrastructure, and how they are used.

2.1.1 CERN Cloud Infrastructure (OpenStack)

As previously mentioned, our WTS is run as a virtualised infrastructure where the VMs

are executed on top an IaaS private cloud; therefore, we would like to start introducing

two concepts - cloud computing and IaaS - quoting the National Institute of Standards

and Technology (NIST) definitions (the bold markup being ours):

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction.” ([20])

Furthermore, in a cloud environment we have several important entities (and/or roles)

but, for brevity, we refer only three: the (service) provider, the (service) consumer and

the user. They interact with “the cloud” in different ways: the user, simply uses the

applications, and sometimes has no idea or does not care if they run on a cloud, or not; the

8

2.1. THE INFRASTRUCTURE

consumer usually interacts with the cloud software through portals and requests services

(e.g., in a IaaS - see below - service model, the consumer asks for a Virtual Machine

(VM) with some characteristics); the provider manages the cloud resources (physical

infrastructure, software, etc.) and makes them available to consumers.

Among the different types of service models provided by clouds (see fig. 2.1), the

most basic is the Infrastructure as a Service (IaaS). In IaaS, “the capability provided

to the consumer is to provision processing, storage, networks, and other fundamental

computing resources where the consumer is able to deploy and run arbitrary software,

which can include operating systems and applications. The consumer does not manage

or control the underlying cloud infrastructure but has control over operating systems,

storage, and deployed applications.” ([20])

Figure 2.1: Traditional IT vs. Cloud computing service models [21].

The main reasons for using a virtualised, cloud-based infrastructure relates to the

flexibility and efficiency it provides: existing hardware may be more efficiently used since

it is possible to have multiple VMs per physical host with just a small increase in power

usage; and resource sharing is what gives the flexibility for this approach, since it provides

the means to allocate resources to those who need them (e.g., new VMs are created) and

deallocate/recall them from those which need less, or do not need them anymore (e.g.,

some VMs are destroyed).

CERN uses OpenStack [18, 22] as its cloud software stack for the two data centres

(DC) it owns: one in CERN’s headquarters in Geneva, Switzerland, and another at the

Wigner Research Centre for Physics in Budapest, Hungary. The last one was built as an

expansion of Geneva’s DC to increase CERN computing capabilities. They are about 1000

Km apart and connected through 100Gb/s (Gigabit per second) [23] optical fibres. The

9

CHAPTER 2. CERN’S WINDOWS TERMINAL SERVICE INFRASTRUCTURE

VMs for CERN’s Windows Terminal Service are hosted in the Meyrin site (Geneva DC).

OpenStack is composed by a set of independent community projects which provide

different services and are coupled together to assemble a private cloud infrastructure.

Their independence comes from the fact that they can be updated independently, thus

having different versions, and not all are required to build a cloud infrastructure. These

projects can be also designated as components or services interchangeably. OpenStack

features the following main components/projects (adapted from [22]):

• Compute (a.k.a. Nova) allows the user to create and manage a large number of

VMs using a set of predefined images. It is the “brain” of the cloud. Nova facili-

tates this management through an abstraction layer that interfaces with supported

hypervisors.

• Block Storage (a.k.a. Cinder) provides persistent block storage for compute in-

stances (VMs). Cinder creates software-defined storage via abstraction by virtual-

ising pools of block storage from a variety of back-end storage devices which can

be either software implementations (e.g. Ceph) or traditional hardware storage

products. Cinder’s primary functions are to manage the creation, attaching and

detaching of the block devices. The consumer requires no knowledge of the type of

back-end storage equipment or where it is located [24]. This flexible architecture

makes creating and managing block storage devices very easy.

• Networking (a.k.a. Neutron) provides various networking services to cloud users

(tenants) such as IP address management, DNS, DHCP, load balancing, and security

groups (network access rules, like firewall policies). It also provides a framework

for Software Defined Networks (SDNs) that allows for pluggable integration with

various networking solutions. Neutron allows cloud tenants to manage their guest

network configurations. Security features include network traffic isolation, avail-

ability, integrity and confidentiality.

• Image Service (a.k.a. Glance) provides disk image management services: image

discovery, registration, and delivery to the Compute service, as needed. Users can

upload and discover data assets that are meant to be used with other services. This

currently includes VM images and metadata definitions. Glance has a RESTful API

that allows querying of VM image metadata as well as retrieval of the actual image.

• Object Storage (a.k.a. Swift) provides support for storing and retrieving arbitrary

data in the cloud. It is important to understand that object storage differs from

traditional file system storage. It is best used for static data such as media files

(MP3s, images, videos), virtual machine images, and backup files. These blobs of

data (objects) are stored in an organisational hierarchy that offers anonymous read-

only access, Access Control List (ACL) defined access, or even temporary access.

Applications can store and retrieve data via an HTTP RESTful API. In addition, it

10

2.1. THE INFRASTRUCTURE

offers an Amazon Web Services S3 compatible API. Swift provides a high degree of

resiliency through data replication and can handle petabytes of data.

• Identity Service (a.k.a. Keystone) provides a central directory of users mapped to

the OpenStack services. It is used to provide an authentication and authorisation

service for other OpenStack services.

• Dashboard (a.k.a. Horizon) is a web-based portal that interacts with all the un-

derlying OpenStack services such as Nova, Neutron, etc. Through this interface

cloud administrators and tenants (users) can provision, manage, and monitor cloud

resources.

Figure 2.2: OpenStack components [22].

CERN’s OpenStack infrastructure has all components deployed, with the exception

of Swift and a few others not referred here (e.g. Ceilometer and Heat) [18].

As previously described, OpenStack Nova supports multiple hypervisors [25], such as

KVM [26], Xen [27], Hyper-V [28] and VMWare ESXi [29]. For the sake of comprehension,

it’s important to introduce here the concept of hypervisor: an hypervisor is a software

module that abstracts (virtualises) hardware resources and multiplexes and manages

them so that multiple Operating Systems (OSs) can run simultaneously on the same

physical computer. Bugnion et al. [30] define an hypervisor as a specialised piece of

system software that manages and runs virtual machines; the concept was first introduced

by Popek and Goldberg [31].

Nowadays, WTS VMs are run on top of the KVM hypervisor as KVM’s current versions

also support Windows guests; previously, both KVM (for Linux guests) and Hyper-V (for

Windows guests) were used, but after some time CERN’s OpenStack team chose to adopt

one hypervisor only, because that simplifies the development and management.

CERN’s private cloud provides different flavours to host VMs. A flavour defines the

VM “hardware” characteristics (e.g., of number of virtual Central Processing Units (CPU)

cores, amount of memory and disk size). Currently, there are 5 flavours available for

CERN’s WTS (see table 2.1).

11

CHAPTER 2. CERN’S WINDOWS TERMINAL SERVICE INFRASTRUCTURE

Figure 2.3: OpenStack & WTS overview (adapted from [17]).

Table 2.1: Subset of CERN’s OpenStack flavours.

Name Memory (MB) Disk (GB) vCPU’s (Cores)

m2.small 1875 10 1
m2.medium 3750 20 2
m2.large 7500 40 4
m2.xlarge 15000 80 8
m2.2xlarge 30000 160 16

In WTS, all Windows VMs use the m2.xlarge flavour since it provides enough disk

space to store the Windows operating system, and also sufficient CPU and memory re-

sources to execute it. The use of more generous flavours is possible, but due to the amount

of resources they require, it’s often difficult to find available resources to allocate. In ad-

dition, the large number of VMs already used for WTS is continuously growing and the

team responsible for WTS infrastructure has adopted a horizontal scaling (having more

machines) approach as opposed to vertical scaling (have less machines but with more

resources) to ensure a good availability and quality of service.

OpenStack images (a.k.a golden images or templates) are managed through Glance,

but stored on a Ceph [32] back-end. When an image is chosen to start a VM, the instance’s

(virtual) system disk is created locally on the host that is going to execute the VM; the

host’s local storage for those disks is based on SSD technology. However, if the instance

needs more storage, that space is assigned as a new disk volume, with a custom size;

usually additional volumes are crafted from Ceph’s HDD-based storage pools.

CERN uses Ceph as the back-end storage service due to its superior design with respect

to reliability, scalability (in terms of size) and future growth (in terms of use cases) [33].

CERN has chosen to integrate Ceph in the OpenStack architecture through Cinder, the

OpenStack service responsible for managing block storage and providing volumes to

VMs.

12

2.1. THE INFRASTRUCTURE

Note: The purpose of this document is not to describe the OpenStack-based CERN’s

private cloud in detail, but rather describe how the cloud is used to host the different

types of (virtual) servers that are used to build the WTS infrastructure. For a more

detailed description of OpenStack, see [22]. To learn more about CERN’s OpenStack

private cloud, see [18, 33–36].

2.1.2 Remote Desktop Services

Microsoft’s Remote Desktop Services (RDS) [19] are implemented in a role included

in Windows Server; when enabled, it allows remote connections to access and control

Windows machines over the network. Previous to Windows Server 2008 R2 the role was

named Terminal Services; CERN’s IT Department has kept the original name, hence the

WTS acronym: “CERN Windows Terminal Service”.

Note: Throughout this document the service provided by the IT Department at CERN will

be referred to as “CERN’s Windows Terminal Service” but, for the sake of convenience,

“Remote Desktop Services Infrastructure” or, in short, “RDS Infrastructure” will also be

used to refer to an infrastructure running these services.

RDS uses the Remote Desktop Protocol (RDP) [37, 38] to establish connections

between clients and servers, enabling users to connect to remote computers and interact

with them as if they were “right there”, at the user’s desk where the computer is located.

Users can connect to remote computers using thin-client applications such as Remote

Desktop Connection or RemoteApp.

In RDP, a client receives the (screen) image of the remote system’s desktop, displays

that image locally, and sends the input from the local mouse and keyboard back to the

remote system, which receives that input and responds accordingly, as if the input was

coming from directly connected devices. As a result, all execution takes place on the

remote system.

Figure 2.4 depicts the six fundamental components of the Remote Desktop Services

architecture (the Server Manager is not a part of it, it’s just a management console included

in Windows Server systems).

• Remote Desktop Session Host (RDSH): formerly named Terminal Server, enables

a server to host remote desktop sessions. Users can connect to an RDSH server

to execute programs, manage files and use network resources on that server. The

access can be performed through the Remote Desktop Connection client.

• Remote Desktop Connection Broker (RDCB): previously named Terminal Server

Session Broker, keeps track of user sessions in a load-balanced RDSH server farm.

It uses a database to store session state information that includes session IDs, their

associated usernames, and the name of the server where each session resides. When,

in a load-balanced farm, a user currently connected to an RDSH server requests a

13

CHAPTER 2. CERN’S WINDOWS TERMINAL SERVICE INFRASTRUCTURE

Remote Desktop
Web Access

Remote Desktop
Gateway

Remote Desktop
Licensing

Remote Desktop
Session Host

Component Architecture

Server
Manager

SQL
Database

Remote Desktop
Connection

Broker

Remote Desktop
Virtualization Host

Figure 2.4: Remote Desktop Services Component Architecture.

new connection, the Connection Broker redirects the user to the same Session Host

server; this prevents the user from being connected to a different server in the farm,

thus starting a new session.

• Remote Desktop Web Access (RDWA): once named Terminal Server Web Access,

allows users to make Remote Desktop connections to remote servers using a web

browser.

• Remote Desktop Gateway (RDG): formerly named Terminal Server Gateway, en-

ables authorised users to connect to resources on an internal corporate network over

the Internet or on the same network. The network resources can be RDSH servers

running virtual desktops, or physical computers with Remote Desktop Services

enabled.

• Remote Desktop Licensing (RDL): named Terminal Server Licensing in the past,

manages the Remote Desktop Services client access licenses (RDS CALs) that are

required for each device or user to connect to an RDSH server. It is used to install,

issue, and track the availability of CALs on a Remote Desktop license server. It

only allows remote connections if there are licenses available, otherwise they are

rejected.

• Remote Desktop Virtualization Host (RDVH): integrated with Microsoft Hyper-V

to host VMs and provide them to users as virtual desktops. It can be configured so

that each user is assigned a unique virtual desktop, or they are dynamically assigned

to a shared pool of virtual desktops.

14

2.1. THE INFRASTRUCTURE

The above is just a general description of RDS; CERN’s Windows Terminal Service

infrastructure has a somewhat different structure, illustrated in fig. 2.5 for two use cases:

the first scenario (the upper-half of the figure) shows how remote desktop connections

to public/dedicated servers are dealt with; the second portrays remote desktop access to

physical Windows 10 workstations, placed in user’s desks.

Figure 2.5: CERN Terminal Service architecture.

In the first scenario (see fig. 2.6), a cluster of HAProxy [39, 40] servers running on

top of Linux VMs, acts both as a proxy and a load balancer for the RDP traffic, effectively

replacing RDCB which is used in CERN’s WTS just to keep track of user sessions. When

a remote desktop connection, initiated at the user’s client (1) reaches one HAProxy server,

the load balancer chooses one of the RDSH servers (2) to try to establish the remote

desktop connection. To do that, the chosen RDSH server has to request a license from

RDL (3) and then ask if the RDCB has any connection state for that user (4); if one is

found, the session is resumed; if not, a new session is created. Afterwards (5), the remote

desktop connection is established.

In the second scenario (see fig. 2.7), RDG is used to connect to the workstations (user

desktops), while checking for license availability. Here, a remote desktop connection is

15

CHAPTER 2. CERN’S WINDOWS TERMINAL SERVICE INFRASTRUCTURE

Figure 2.6: CERN Windows Terminal Service connection workflow.

made to RDG (1), which validates if there are licenses available to accommodate a new

connection (2) and then establishes the connection (3).

Figure 2.7: Remote Desktop Connection to CERN workstation.

In both scenarios, the only components exposed to the outside network are HAProxy

and Remote Desktop Gateway servers. Even though it is not depicted, there is a firewall

between the HAProxy/RDG and the external network, for enhanced security.

It is also important to refer why a (Windows) Server version is used for the user-

accessible (i.e., running RDSH server role) hosts, instead of the usual desktop versions

(e.g. Windows 7,8,10). The reason has to do with the ability to allow multiple Remote

Desktop sessions at the same time: only server versions allow them.

Having described both scenarios, we must refer that our work is focused on the infras-

tructure responsible for remote desktop connections to RDSH servers (first scenario).

16

2.1. THE INFRASTRUCTURE

2.1.3 HAProxy

HAProxy [39, 40] stands for “High Availability Proxy”, an open source software that is

both a proxy server and a load balancer that can be run on Linux, Solaris, and FreeBSD.

It has been designed for scenarios where availability is an important requirement, i.e.,

down times should be short (a few minutes, at most). It is capable of load balancing and

proxying TCP and HTTP-based traffic and also has monitoring capabilities. It’s used by

many high-profile websites including: GitHub, Stack Overflow and Twitter.

HAProxy uses two concepts to deal with the services (e.g., webservers/applications)

it mediates access to: back-end and front-end.

• A back-end is a set of servers that receives forwarded requests and is defined by the

load balancing algorithm to use and a list of servers and ports.

• A front-end defines how requests should be forwarded to back-ends. Their defini-

tions are composed by a list of Internet Protocol (IP) addresses and ports, ACLs and

back-end rules. A front-end can be configured to various types of network traffic.

HAProxy can be considered a fairly complete load balancer regarding the set of al-

gorithms it supports (9 different load balancing algorithms) [40]. The most common

are:

• round-robin - for short connections, pick each server in turn;

• leastconn - for long connections, chose the least recently used of the servers with

the lowest connection count;

• source - for SSL farms (groups of servers) or terminal server farms, where the server

directly depends on the client’s source address;

• uri - for HTTP caches, the server directly depends on the HTTP URI;

• hdr - the server directly depends on the contents of a specific HTTP header field;

• first - for short-lived virtual machines, all connections are packed on the smallest

possible subset of servers so that unused ones can be powered down.

In the WTS infrastructure the leastconn algorithm is used to ensure a good load balance

of RDS sessions (long connections).

Some applications require that a user that for some reason has been disconnected

(without closing the session) will, when reconnecting, be directed to the same back-end

server. In HAProxy, this persistence is achieved through sticky-tables. Sticky-tables are

commonly used to store stickiness information, that is, to keep a reference to the server a

certain user was directed to, using the identifier associated with the user (IP address, SSL

ID of the connection, HTTP or RDP cookie, etc.) as a key and the server’s identifier as the

associated value [40]. Through the use of sticky-tables in the WTS infrastructure, a user’s

17

CHAPTER 2. CERN’S WINDOWS TERMINAL SERVICE INFRASTRUCTURE

Figure 2.8: Load balancing example showing the back-end concept [41].

RDS session can be recorded, enabling requests (from same client) to be redirected to the

same server.

High Availability for the HAProxy: Keepalived

CERN uses the Keepalived [42] software to monitor services or systems for failures

and, upon failure, restarts the failed service/server - in a different node, if needed.

Keepalived uses a floating IP address that can be moved between servers. In the

case of two servers, for example, if the primary server goes down, the floating IP will be

automatically moved to the second server, allowing it to resume the service with the same

IP, thus keeping it transparent to clients [43]. An example diagram showing the usage of

Keepalived with two HAProxy servers is depicted in figure 2.9.

CERN Windows Terminal Service has two HAProxy servers monitored by keepalived

to provide a highly available and redundant infrastructure, eschewing a single point of

failure.

Feedback Agent

Feedback Agent (FA) [44, 45] is a daemon designed to run on back-end servers that

provides a way for HAProxy to get their workload status (CPU and memory usage percent-

age). HAProxy servers can take into account the server’s workloads and redirect traffic to

those which are less loaded.

This agent has three modes: normal, down and drain. Normal, means that the server

can receive connections; Down, means the server stops all the connections and doesn’t

accept new ones; Drain, server doesn’t accept new connections, current connections are

kept until they are terminated.

In the context of WTS, FA is installed on RDSH servers to provide memory usage

percentage - as some of the applications used are memory sensitive - to HAProxy so it can

load balance using this workload data and also the number of connections (RD sessions)

each machine has. Currently HAProxy is configured to redirect connections to other

servers when a server reaches 90% of memory used optimal load balancing. The drain

mode is useful when the servers are subject to maintenance tasks or need to be replaced,

allowing RD sessions to be redirected to other servers.

18

2.2. MONITORING THE WTS OPERATIONS: SCOM

Figure 2.9: HAProxy+keepalived example.

2.2 Monitoring the WTS Operations: SCOM

System Center Operations Manager (SCOM) [46] is a comprehensive monitoring solution

that offers centralised monitoring and management of applications, virtual environments,

physical environments, and cloud-based workloads. SCOM is the core monitoring solu-

tion from Microsoft for over a decade and supports both Microsoft Windows Server and

Unix-based systems.

SCOM uses a single interface that shows the state, health and performance informa-

tion of computer systems, and also provides alerts generated in response to events that

may signal problems, e.g., in availability, performance, configuration or security.

SCOM is a software solution designed for large scale infrastructures that run critical

services and applications whose performance and availability must be ensured. This

means that SysAdmins need to know when there is a problem, identify where the problem

is, and figure out what is causing it, ideally before it gets noticed by the users. The larger

19

CHAPTER 2. CERN’S WINDOWS TERMINAL SERVICE INFRASTRUCTURE

the scale of the infrastructure, the more challenging this task becomes [47].

In System Center Operations Manager, the administrator can configure what to moni-

tor by selecting targets as diverse as computers, devices, services and applications. Some

targets may require importing management packs that provide specific agents for the

items being monitored.

A SCOM is infrastructure is composed by 4 components [46]:

• Management Server - is the central point for administering the management group

and communicating with the database.

• Operational Database - is a SQL Server database that contains all configuration

data for the management group and stores all monitoring data that is collected and

processed for the management group. It retains short-term data, by default 7 days.

• Data Warehouse Database - is also a SQL Server database that stores monitoring

and alerting data for historical purposes. Data that is written to both databases, so

reports always contain current data. The data warehouse database retains long-term

data.

• Reporting Server - is responsible for generating and presenting reports based on

the data stored in the data warehouse database.

In WTS, SCOM is used to monitor availability, workload and health status of servers

and databases; SCOM alarms are also used to trigger alerts when some resources are

reaching critical status (e.g. not enough free disk space in a particular server).

2.3 Management and Configuration of the WTS infrastructure

As previously referred, the WTS infrastructure is currently configured and managed

using services commonly found in Windows domain networks, such as Active Directory

and Group Polices (that help manage computing resources like users, computers and

printers) and other mechanisms like scripts and configuration management software

tools. In this subsection we briefly introduce these services and mechanisms and explain

how they are used in CERN’s WTS.

2.3.1 Active Directory

Active Directory (AD) [48] is a directory service that Microsoft developed to centralise

management of Windows (domain) networks.

Generically speaking, a directory is a listing of objects; an example of a directory is

a phone book: it stores information about people, businesses, and organisations. AD

stores information about organisations, sites, systems, users, file shares, and many other

entities, or objects; these fall into two broad categories: resources (e.g., printers) and

20

2.3. MANAGEMENT AND CONFIGURATION OF THE WTS INFRASTRUCTURE

security principals (user or computer accounts, and groups). Each object represents a

single entity (user, computer, group, or printer) and its attributes.

AD allows clients to find objects within its namespace - the area in which a network

component can be located. Using the previous example, phone books provide a names-

pace for resolving names to telephone numbers in the same way that DNS is a namespace

that resolves host names to IP addresses. In AD, the namespace is used for resolving the

names of network objects to the objects themselves. Namespaces can be organised into

multiple hierarchical levels: forest, tree, and domain.

A domain is as a logical group of network objects (computers, users, devices) that

share the same AD database, while a tree is a collection of one or more domains into a

contiguous namespace.

The forest represents the top of the structure and is a collection of trees that share a

common global catalog, directory schema, logical structure, and directory configuration.

The forest represents the security boundary within which users, computers, groups, and

other objects are accessible.

The objects held within a domain can be grouped into Organisational Units (OUs)

allowing to mimic an organisation structure and thus simplifying the implementation of

policies and reducing administration burden [49, 50].

Typically, to apply and enforce a set of configurations and polices to same OUs or

domains, Group Polices are used, as explained in subsection 2.3.2 below.

Figure 2.10: Active Directory logical structure [51].

2.3.2 Group Policy

Group Policy is a feature of Windows domain networks that provides centralised man-

agement and configuration for Windows operating systems, applications and user settings.

21

CHAPTER 2. CERN’S WINDOWS TERMINAL SERVICE INFRASTRUCTURE

Group policies are Active Directory objects formally named Group Policy Objects (GPOs)

that contain the rules and settings to be applied to an Organisation Unit (OU) or domain.

If a set of users needs to have the same standard desktop configuration and the same

set of applications, the users can be put into an OU, and Group Policy can then be used

to configure the desktop and to manage the installation of applications [50]. There are

many types of policy settings available; we list a few below:

Administrative templates Used to manage registry-based parameters for configuring

application settings and user desktop settings, including access to operating system com-

ponents and to the control panel.

Security Used to manage the local computer, domain, and network security settings,

including controlling user access to the network, configuring account policies, and con-

trolling user rights.

Software installation Used to centralise the management of software installations and

maintenance.

Scripts Used to specify scripts that can be run when a computer starts or shuts down,

or when a user logs on or off.

Folder redirection Used to store certain user profile folders on a network server. These

folders, such as the My Documents folder, appear to be stored locally but are actually

stored on a server where they can be accessed from any computer on the network.

Preferences Used to manage options related to Windows settings or Control Panel set-

tings, including drive mappings, environment variables, network shares, local users and

groups, services, devices, and many more.

Group Policy allows the SysAdmin to define policies that control software deployment

in a very limited form. It is GUI-based, and therefore doesn’t provide an automated way

of deploying software, or reporting about its installation status.

2.3.3 Scripting

Scripting is most basic approach when it comes to automate the deployment and con-

figuration of operating systems. SysAdmins rely on them to do most of the tedious and

repetitive tasks that involve multiple steps in order to obtain the desired effects, while

avoiding error prone operations.

Generically, scripting languages run on a special run-time environment and offer

primitives to operate the underlying system; these primitives are usually elementary

tasks or API calls, and the language allows them to be combined into more complex

programs.

22

2.3. MANAGEMENT AND CONFIGURATION OF THE WTS INFRASTRUCTURE

Until the introduction of PowerShell, Windows SysAdmins had to rely on the system

shell and other scripting languages (e.g. JScript [52], VBScript [53]) to automate tasks.

However, the system shell cannot be used to automate all facets of the GUI’s functionality,

in part because command-line equivalents of operations exposed via the graphical inter-

face are limited, and the scripting languages are elementary and don’t allow the creation

of complex scripts [54].

In 2006, Microsoft introduced the PowerShell automation and scripting language for

the Windows platform, one that allows to simplify the management of these systems [54].

Unlike other text-based shells, PowerShell takes advantage of .NET Framework, providing

an object-oriented paradigm and a massive set of built-in functionality for taking control

of Windows environments.

PowerShell enables scripts to perform virtually any task one can do using the Win-

dows’ GUI; it includes numerous system administration utilities, and has consistent syn-

tax and naming conventions, and improved navigation for common management data,

such as the registry, certificates stores, and WMI [55] - a core technology for Windows

system administration, because it exposes a wide range of information in a uniform man-

ner [56]. As described by Microsoft:

“Windows Management Instrumentation (WMI) is the Microsoft implementation of

Web-Based Enterprise Management (WBEM), which is an industry initiative to develop a

standard technology for accessing management information in an enterprise environment.

WMI uses the Common Information Model (CIM) industry standard to represent systems,

applications, networks, devices, and other managed components. CIM is developed and

maintained by the Distributed Management Task Force (DMTF).” ([57])

PowerShell provides an interface and programming environment that allows users

and administrators to access and set system properties through .NET objects and single-

function command-line tools called cmdlets which are the building blocks of PowerShell

scripts.

A lot of the current automation and configuration effort of WTS is based on PowerShell

scripts, due to their flexibility and to the advantages presented above.

2.3.4 Computer Management Framework

The Computer Management Framework (CMF) [58] is a software framework, designed

and developed at CERN, that offers a range of tools that enables groups of Windows

computers to be easily managed. CMF’s main functionality is to distribute software

applications to computers in a user-friendly and managed way; it replaced the Microsoft

Systems Management Server (SMS) [59] tool and some group policies and start-up scripts

that were previously used.

CMF runs as an agent in Windows systems so that users can interact and control and

schedule deployment processes. The operations are done through a web portal where is

possible to manage computer membership and select the software packages to deploy. It

23

CHAPTER 2. CERN’S WINDOWS TERMINAL SERVICE INFRASTRUCTURE

also offers improved security, stricter control on patch deployment and reboot actions,

and enables instant reporting.

A domain is called a Name System Set (NSS) in CMF, and the framework is based on

the concept of hierarchical delegations between a master NSS (domain) and sub-domains.

The master NSS has full control over the whole domain and can create other NSSs and

grant them permissions; the idea is to structure NSSs in a way so that each NSS can

control a well defined set of computer or user groups. The role for each NSS is defined

by the permissions that were granted by the master NSS.

Figure 2.11: Computer Management Framework logical structure [58].

24

C
h
a
p
t
e
r

3
Agility

This chapter is about agility; agility is of paramount importance today, not only in

development but also in operations, as only after deployment the new product or version

can be used and appreciated.

Introduction of agility in the development process is generally acknowledged to have

happened around the year 2000 (although some trace it back into the 70s and Smalltalk)

but, as far as infrastructure operations are concerned, that process is very recent.

In this chapter we start by introducing DevOps, which has merged agile software

development with agile infrastructure operations and then explain how the later was a

result of the adoption of the Infrastructure-as-Code (IaC) paradigm in the new tools that

are now in place.

3.1 DevOps

After the birth of Web 2.0 (but before cloud services) some IT companies (e.g. Amazon)

were facing the problem of managing the configuration of large-scale infrastructures - a

problem with two axes: management, and software delivery. Big service providers have

different teams responsible for different parts of the services they deliver: development

team, continuous integration and testing team, and operations team. Development teams

are responsible for software development and their focus is to continuously deliver new

features and functionalities; continuous integration and testing teams provide tests and

tools to easy the process of integration of new software features and prevent them from

reaching production with bugs or erroneous behaviour; operations teams are in charge of

managing and configuring the underlying infrastructure where the software will run (i.e.

desktop computers, servers, mobile devices).

25

CHAPTER 3. AGILITY

3.1.1 Before DevOps

Before agile development methodologies were adopted, the traditional approach of

developing software was based on the Waterfall model [60], which was first formally

defined by Winston W. Royce in 1970 - although he didn’t use the term “waterfall”. In

the Waterfall model, the whole process of software development is divided in distinct

phases which are carried out sequentially - a phase only starts when the previous one has

ended. Phases in Waterfall model are [61]:

1. Requirement Gathering and Analysis - All possible requirements of the system to

be developed are gathered and documented in a Software Requirements Specifica-

tion (SRS) document.

2. System Design - The requirement specifications from first phase are studied and

the system design is prepared. This system design helps in specifying hardware

and system requirements and helps in defining the overall system architecture.

3. Implementation - Based on system design, the system is first developed in small

programs called units and then integrated in the next phase. Each unit is developed

and tested for its functionality, a.k.a. Unit Testing.

4. Integration and Testing - All the units developed in the implementation phase

are integrated into a system after testing of each unit. Post integration, the entire

system is tested for any faults and failures.

5. Deployment - Once the functional and non-functional testing are done, the product

is deployed in the customer environment or released to the market.

6. Maintenance - After deployment, usually there are some issues which come up in

the customer environment. Hence, patches or new versions are released in order

to enhance the system. Maintenance is the delivery of changes to the customer

environment.

Figure 3.1: Waterfall model [62].

26

3.1. DEVOPS

This model is simple and easy to understand and implement: each phase has to be

completed in sequence, and has specific deliverables (documents, tests, code); and this

approach is quite suitable for small projects where the requirements are very well defined

and understood.

But the waterfall model is not suitable for projects whose requirements are subject to

frequent change and when the final software/product is not clear; it is also not suitable

for projects that require large-scale infrastructures - the waterfall model was not designed

to cope with uncertainty and frequent changes: once in a testing phase, is very difficult

to go back and change something that was not very well thought in the design phase.

In recent years, big software projects and large-scale infrastructures are more common

and it’s hard to design and develop software using models that don’t cater for unforeseen

changes. Adopting such a model would be designing to failure, increasing the costs

of such projects. On the other hand, the Agile development model, an approach that

results in faster software development, incorporates design changes and relies on small

but frequent releases of new features.

However, this approach raises lots of conflicts between the development and opera-

tions teams: developers want to deliver new functionalities as soon as they have them,

following an Agile development model, while operators resist against new changes as

they are afraid of disrupting production services. Operations teams usually have plenty

of responsibilities in addition to software deployment, including managing costs, user

accounts and overall capacity, and ensuring overall security [6]. Continuous integration

and testing teams served as a buffer between the other two groups, thus avoiding some

conflicts, but a better solution was the introduction of the DevOps approach, something

that we will study in more detail further down.

Figure 3.2: Evolution of software development (adapted from [63]).

So, in order to achieve frequent delivery of small software changes, a new set of tools

and techniques was needed. The new set of tools that was created was heavily influenced

by two concepts: Infrastructure as Code (IaC) and Software Configuration Management

(SCM) [6].

IaC is a result of the increase of Software-as-a-Service (SaaS), IaaS (e.g. Amazon

Web Services) and APIs that provide functions for the management of large-scale/cloud

infrastructures, e.g., that cater for the provisioning of virtual machines/cloud instances.

27

CHAPTER 3. AGILITY

Combined with SCM tools, the computing infrastructure can be now handled in the same

way software is (see 3.2).

The new breed of SCM tools are a result from the application of the IaC methodology

and provide a way of describing the desired state of an infrastructure through Domain

Specific Languages (DSLs), allowing SysAdmins to both create and manage the infras-

tructure using the same tools, as described in section 3.3.

In addition, the increasing prevalence of simpler and easier-to-use APIs (like REST-

ful APIs) has allowed non-developers to use them, resulting in a wider adoption from

operators (SysOps) and enabling them to do development as opposed to scripting. This

engaged more people into learning basic software engineering practices.

As a response to these needs, a new approach for software development was born and

coined as DevOps.

3.1.2 What is DevOps?

The term DevOps results from the combination of the words “development” and “oper-

ations” and emphasises the collaboration between development and operations process-

es/tasks. However, a better definition can be found in a recent study carried out by Jabbari

et al. [2] which aimed to formally define DevOps based on the available literature:

“DevOps is a development methodology aimed at bridging the gap between Develop-

ment (Dev) and Operations (Ops), emphasising communication and collaboration, con-

tinuous integration, quality assurance and delivery with automated deployment utilising

a set of development practices.” (adapted from Jabbari et al. [2])

Lwakatare et al. [4] described a conceptual framework that depicts the problems that

DevOps aims to solve, its principles and its outcomes. Table 3.1 summarises the pillars

on which DevOps is based.

Table 3.1: Conceptual framework characterising DevOps (adapted from [4]).

Problems addressed by
DevOps

Principles
of DevOps

Outcomes of DevOps

Poor communication Collaboration Shared responsibility; one team responsi-
ble for entire service or product

Manual operations (e.g.
deployment, configuration
management)

Automation Continuous deployment of functionality
and infrastructure provisioning

Performance of develop-
ment and QA are not sup-
ported by data

Measurement Operational data to also measure perfor-
mance of development

Monitoring data is segre-
gated and voluminous

Monitoring Consolidated view of operational data as
feedback

28

3.1. DEVOPS

When relying on a traditional software development model like waterfall, develop-

ment and operations teams face different challenges for which DevOps offers a solution.

Table 3.2 illustrates those challenges.

Table 3.2: How DevOps addresses different challenges (adapted from [64]).

Team Challenge DevOps Solution

Development
Waiting time for code de-
ployment

Continuous Integration ensures there’s a
quick deployment of code, faster testing
and feedback mechanism

Pressure of work on old,
pending and new code

No waiting time to deploy the code and
developers can focus on building the cur-
rent code

Operations

Difficult to maintain up-
time of the production en-
vironment

Virtualization provides a flexible way of
provisioning new machines to replace
and ensure the production environment
uptime

Tools to automate infras-
tructure are not effective

Configuration Management helps organ-
ise and execute configurations, ensuring
compliance and proactively manage the
infrastructure

High and continuously
growing number of servers

Continuous Monitoring lets keep track
the status of the infrastructure

Difficult to diagnose prob-
lems and provide feedback

The DevOps approach extends the concepts of the Agile development model, enabling

developers increase the rate of software releases and operations teams to automate a sub-

stantial part of their work [2, 65]. The fundamental goal is to remove all bottlenecks in

the software development process by automating software integration, testing, deploy-

ment and infrastructure configuration so that software releases can be performed quickly,

frequently and reliably. This approach defines the notion of a dynamic infrastructure,

also known as Agile Infrastructure [66, 67], capable of adapting to frequent changes.

DevOps practices, as presented in table 3.3, are a logical consequence of the principles

previously referred in table 3.1.

29

CHAPTER 3. AGILITY

Table 3.3: DevOps practices (adapted from [2]).

Knowledge Area Sub-Knowledge Area Practice

Software
Engineering
Management

Software Project
Planning

Continuous planning
Feedback loop between developers
and operators

Software Project
Enactment

Continuous monitoring
Automated performance monitoring
during test and continuous integra-
tion
Automated feedback for perfor-
mance models and performance
predictions
Application monitoring
Automated dashboards

Software
Construction

Practical Considerations Continuous integration
Software Construction
Fundamentals

Prototyping applications

Software
Configuration
Management

Software Release
Management and
Delivery

Integrated deployment planning
Continuous deployment
Automated deployment
Continuous delivery
Cooperative application configura-
tions
Monitoring application and next de-
velopment

Management of the SCM
Process

Staging application
Integrated configuration manage-
ment

Software Configuration
Control

Integrated change management
Change management

Software Testing Test Techniques
Continuous testing
Automated testing

Software Process Process Definition
Process standardisation
Production support

Software Quality Practical Considerations Use of data to guide QA

Software
Engineering
Tools and
Methods

Software Engineering
Methods

Infrastructure as code
Modeling & Simulation
Measure performance metrics
Continuous application performance

Software Engineering
Tools

DevOps maturity evaluation model
Elasticity practice

Software
Requirements

Software Requirements
Fundamentals

Defining requirements

Requirements Process Stakeholder participation

Software Design Software Structure and
Architecture

Designing architecture

30

3.1. DEVOPS

Adopting DevOps in one’s organisation requires both cultural as well as technolog-

ical changes; the latter is supported by a set of tools, the DevOps toolchain, each one

addressing a phase in the process (from the development down to the operations):

• Plan - Planning of the software to develop, gather requirements;

• Code - Code development and review, version control tools, code merging;

• Build - Continuous integration tools, build status;

• Test and Verify - Continuous testing tools that help verify and validate the software

quality and stability;

• Package - Artefact repository, application pre-deployment staging;

• Release - Change management, release approvals, release automation;

• Configure - Infrastructure configuration and management, Infrastructure as Code

tools;

• Monitor - Applications performance monitoring, end–user experience.

Figure 3.3 illustrates these phases (where some "combination"of adjacent phases has

been applied for the sake of brevity).

Figure 3.3: DevOps life cycle [68].

These phases in the DevOps life cycle are associated with some of its practices: Con-

tinuous Development, Continuous Testing, Continuous Integration, Continuous Deploy-

ment/Delivery. One can note a pattern in these terms with the word “continuous”, which

reflects the feedback loop - continuous cycle - between stages, a cycle that goes on repeat-

ing itself until the desired quality is achieved for the product. For each stage there is a

number of tools that can be used to perform the required tasks.

31

CHAPTER 3. AGILITY

Continuous Development (CDev): This is the stage where the software is developed

continuously. Unlike the Waterfall model, software deliverables are broken down into

multiple sprints of short development cycles, developed, and then delivered, all in a very

short time. This stage involves the Coding and Building phases and makes use of tools

such as Git [69] and SVN [70] for maintaining the different versions of the code, and tools

like Ant [71], Maven [72], Gradle [73] for building/packaging the code into (executable)

files that are forwarded to the testing stage.

Continuous Testing (CT): The stage where the software already developed is continu-

ously tested for bugs. For Continuous testing, test automation tools like Selenium [74],

JUnit [75], etc. are used. These tools enable QA testing of multiple code-bases thoroughly

in parallel to ensure that there are no functionality flaws. In general there are at least

three environments to run and test software: Development - for the development stage;

QA or Test - to test the code; and Production - the final environment where the software

is running. The best practice is to have four [76, 77], one more, usually called Staging or

Pre-production, inserted before production, an environment very similar to the produc-

tion’s, used to perform final tests before moving to production. But more environments

can be used [78]. In this phase, the use of Docker [79] containers to simulate the test envi-

ronment, on the fly, is also a preferred choice. Once the code is tested, it is continuously

integrated with the existing code.

Continuous Integration (CI): The stage where the code supporting new functionality

is integrated with the existing code. Since there is continuous software development, the

updated code needs to be integrated continuously as well as smoothly with the current

systems in order to reflect the changes onto the end users. The modified code should

also run with no runtime errors in the new environment, allowing us to test not only

the changes made to the code but also their interaction with the runtime environment.

One of the most popular tools used for Continuous Integration is Jenkins [80]. Using

Jenkins one can pull the latest code revision from Git repository and produce a build

which can finally be deployed to test or production server. It can be set to trigger a new

build automatically as soon as there is change in the Git repository or triggered manually

on click of a button.

Continuous Deployment/Continuous Delivery (CD): This is the stage where code is

deployed to the production environment. The most basic requirement is to ensure that the

code is correctly deployed on all servers. If there is any new functionality or a new feature

is introduced, then one should be able to withstand an increase in the resource usage (e.g.,

server communication traffic). So, it is also a responsibility of the Operations team to

scale up the servers to host more users. Since new code is deployed on a continuous basis,

automation tools play an important role as the above-mentioned tasks should be executed

32

3.2. INFRASTRUCTURE AS CODE

quickly, and frequently. Puppet, Chef and Ansible [81] are some popular tools that are

used in this stage.

Continuous Monitoring (CM): This is a very crucial stage in the DevOps life cycle,

aimed at improving the quality of the software by monitoring its performance, something

that requires the participation of the Operations team, that will monitor user activity for

bugs and any unusual behaviour of the system. Usually, the use of application-level

monitoring that complement the basic system performance statistics is important, and

there are dedicated tools that perform those tasks and highlight any issues. Some popular

tools used are Nagios [82], NewRelic [83] and Sensu [84]. These tools help you monitor

the application and the servers closely to check the health of the system proactively. They

can also improve productivity and increase the reliability of the systems, reducing IT

support costs. Any major issues found to be in the code’s realm could be reported to the

Development team so that they can be fixed in the continuous development phase.

3.2 Infrastructure as Code

Infrastructure as code (IaC) is an approach to infrastructure automation based on

practices from software development. It emphasises consistent, repeatable routines for

provisioning and changing systems and their configuration [1].

The premise is that infrastructure can be treated as if it were software and data. This

allows to manage infrastructures applying the same principles, practices and tools used in

software engineering: Version Control Systems (VCSs), Test-Driven Development (TDD),

Continuous Integration (CI), Continuous Delivery (CD), automated testing libraries, and

deployment orchestration. Hence system administrators (Operations team) can benefit

from the use of these mechanisms to leverage automation across their organisation’s

infrastructures.

IaC was introduced with cloud infrastructures as a result of the difficulties of manag-

ing servers using traditional configuration and deployment strategies. Nevertheless, the

principles and practices of IaC can be applied to any infrastructure independently of its

nature: physical, virtualised, or cloud-based.

Cloud providers rely on virtualisation platforms to take the most out of the available

hardware and create flexible infrastructures; and IaC enables the concept of a dynamic

infrastructure by providing the ability to create and destroy servers programmatically.

But even hardware can be automatically provisioned so that it can be used in a fully

dynamic fashion - sometimes referred as a “bare-metal cloud” [1]: it is possible to use

many of the concepts of infrastructure-as-code with a static infrastructure. Furthermore,

servers that have been manually provisioned can be configured and updated using con-

figuration management tools.

However, the ability to effortlessly destroy and rebuild servers is intrinsically related

with many of the principles of IaC.

33

CHAPTER 3. AGILITY

3.2.1 Principles of IaC

Morris [1] laid out IaC’s set of principles, and we shall present them as follows:

Systems Can Be Easily Reproduced The possibility to effortlessly and reliably rebuild

any computer in an infrastructure. Effortlessly means that there is no need to make any

significant decisions to rebuild an element of the infrastructure. Decisions related with

software versions to install, the hostname selection, and others should be captured in

the scripts and configuration tools that provision it. The ability to effortlessly build and

rebuild any part of the infrastructure removes much of the risk and fear when making

changes, since failures can be handled quickly and with confidence. It also allows the

provisioning of new services and environments with little effort.

Systems Are Disposable The benefits of a dynamic infrastructure reside on its dispos-

ability: resources can be easily created, destroyed, replaced, resized, and moved. In

order to take advantage of this, systems should be designed with the assumption that

the infrastructure will always be changing. A dynamic infrastructure allows to make

live (runtime) improvements and fixes and that, in turn, makes services more tolerant to

failure, something that is very important in large-scale/cloud infrastructures, since the

reliability of all of the underlying hardware can’t be ensured.

Systems Are Consistent Having consistent infrastructure means that systems which

provide similar services should be nearly identical (e.g. application servers in a cluster

that provide the same service). In those systems, the software and configuration should

be the same with the exception of some configuration items that differentiate them and

make them unique (e.g., IP addresses). The existence of inconsistent systems (in the same

cluster that provide the same service) makes its automation more difficult since systems

that don’t quite match (different characteristics) increase the configuration’s complexity.

This principle relies on reproducibility: systems should be built using the same procedure

to ensure its similarity and consistency.

If, for example, there are two file servers and one of them needs to be changed (e.g.

adding a larger disk partition), there are two ways to keep consistency:

1. Change the definition so that all file servers are built with a large enough partition

to meet the need.

2. Create another configuration definition, one that differs from the standard one by

having a larger disk.

Hence, either type of server can be built repeatedly and consistently.

34

3.3. CONFIGURATION MANAGEMENT

Processes Are Repeatable Also in accordance to the reproducibility principle, any ac-

tion carried out on the infrastructure should be repeatable; therefore, scripts and config-

uration management tools should be used instead of making changes manually, although

it can be hard, especially for experienced system administrators. Even if takes some time

to develop and test such scripts and use configuration management tools, the long-term

benefits of automating processes are obvious. Besides, teams need to rely on reproducible

automated processes to ensure that all team members perform these actions in the same

way, adhering to policies, rules and best practises, and therefore avoiding configuration

drifts caused by human interaction.

Effective infrastructure teams have a strong automation culture: automate whenever

it’s possible. Thus, teams can rely on the processes without worrying about which member

knew how to solve a specific problem or configure a specific element.

Design Is Always Changing Before cloud infrastructures, the traditional approach of

designing a system didn’t incorporate change in the design process, thus making it diffi-

cult and expensive to change it. Limiting changes to the system once it was built made

sense. On the other hand, that approach requires comprehensive initial designs that take

“every” possible requirement and situation into account.

Because it’s very difficult to accurately predict how a system will be used in practice,

and how its requirements will change over time, this approach naturally creates overly

complex systems. At the same time, this complexity makes it more difficult to change

and improve the system, which makes it less likely to perform well in the long run.

With cloud (dynamic infrastructures), making a change to an existing system can be

easier and cheaper. However, software and infrastructures must be designed as simple

as possible to meet the current requirements and facilitate change. Changes should be

easily, safely and quickly delivered, because they can happen frequently.

As a result, this motivates everyone involved to learn good habits for managing

changes, develop efficient and streamlined processes, and use adequate tools.

3.3 Configuration Management

Software applications and services require a physical or virtual environment on which

they can be deployed and run. Typically, the environment is an infrastructure compris-

ing both hardware and operating system on which software can be deployed. Software

applications are decomposed into multiple services running on different servers, either

on-premises or in the cloud; while each service has its own application and infrastructure

configuration requirements.

In order to deliver software systems to customers (end-users), both infrastructures

and applications need to be properly configured. In addition, to prevent service failures

and downtime, configuration drifts need to be handled.

35

CHAPTER 3. AGILITY

Nowadays, software development models like agile require multiple stages and envi-

ronments, with different configurations, on which an application needs to be deployed,

tested and executed. Thus, it is important to ensure that the application can be deployed

to multiple environments without undertaking any manual changes to its configuration.

In short, the three main challenges that Configuration Management solves are:

• Large-scale deployment - configure and deploy applications to a huge amount

(hundreds or thousands) of servers;

• Configuration across different environments - when migrating from test to pro-

duction environment, software does not work due to distinct environment configu-

rations;

• Application version roll-back - roll-back to a previous stable version of an appli-

cation when an updated version causes errors.

For this, Configuration Management provides a set of processes and tools which help:

• Ensure that each environment and application has its own configuration;

• Keep track of configuration items;

• Define the relationships between configuration items and how changes in one con-

figuration item will impact another.

Software Configuration Management (SCM) tools achieve this by enabling the config-

uration at different levels: the infrastructure and the application.

By following IaC principles, SCM tools help in the process of configuring the servers

in the infrastructure (OS level) by having configurations described as code and stored in

a repository with version control. Therefore, it allows to have the code (configuration) in

one place, only accessible by authorised team members who can make changes to it, track

those changes and its authorship. Thus, increasing the collaboration and communication

between team members. Besides, its always possible to deliver configurations to new

servers ensuring a consistent configuration state across the infrastructure.

The deployment and configuration of applications is the step that follows after provi-

sioning the infrastructure. Applications can be installed and configured in an automated

manner by having a central repository or a file server with the application artefacts (e.g.

executables, binaries, configuration files, etc.) and the instructions to deploy them pro-

grammatically.

In general, configuration settings should be monitored to trace the applied configu-

ration settings, check its status and detect configurations drifts and errors. Therefore,

reporting is a key feature of these tools since it helps to verify and ensure that the target

systems have the desired state configuration. Furthermore, SCM tools are capable of

detecting a configuration drift and re-apply the configuration, and thus ensuring that all

the target systems stay compliant with the desired configuration.

36

C
h
a
p
t
e
r

4
Configuration Management

Software Configuration Management (SCM) Tools are fundamental to increase the level

of automation of an infrastructure. For the WTS, an SCM tool is required to automate the

configuration of the Operating System settings (see fig. 1.1). In this chapter, we briefly

introduce some concepts and principles of their operation, and present some of the most

popular (w.r.t. production use) tools and their principles of operation.

4.1 SCM Tools: an Introduction

Let’s start by explaining why using these kind of tools is better than scripts. When

using scripts to apply configurations SysAdmins face some challenges: the development

is hard and takes a lot of time. Typically, scripts are quite verbose and sometimes can

be difficult to understand, and that makes its development a hard and time consuming

task. Besides, it’s not possible to specify dependencies between different configuration

scripts nor idempotency. Dependencies are useful to indicate configuration settings that

should execute based (depending) on the result of the execution of other configurations.

Idempotency means that once the desired state is achieved, future executions of the

configurations will not produce any changes.

Furthermore, SCM tools typically use a more declarative approach based on DSLs

which makes the development of configurations easier by enabling SysAdmins to de-

scribe the desired configurations in a declarative manner (without having to be skillful

developers). By design, these tools are idempotent, ensuring that configurations are only

applied only when needed. They also allow to specify dependencies between configura-

tion settings so that a certain setting will only be executed after others that must precede

it have executed successfully. The execution order is calculated at compilation time, based

on the dependencies specified in the configuration file.

37

CHAPTER 4. CONFIGURATION MANAGEMENT

Another important concept is the architecture that SCM tools adopt: in general, most

use a client-server (or agent-master) architecture and therefore usually require an agent

(client) installed on the target machines to communicate with the server. As we’ll see later

on, there are some tools that don’t require agents (they are agentless) but still follow a

client-server architecture since they use standard protocols like SSH to invoke commands

in the target machines.

In a client-server architecture there are essentially two models of delivering config-

urations to the target machines: push and pull (see fig. 4.1). In a push-based model,

the server sends configurations to the target machines, whereas in a pull-based model,

the target machines (the clients) are the ones which fetch configurations from the server.

Agent-based tools also allow configurations to be applied in a standalone manner by

having the configuration file in the target machine and executing it locally.

Figure 4.1: Push and pull models [85].

In summary, configuration settings are stored as code (in some DSLs) in a file; that

code is then executed in the target machines to apply the correspondent configuration

settings.

The execution of the configuration code is usually called a run and it’s composed by

multiple phases:

1. Gather facts - do an inventory of the system resources (OS, CPU, IP address, etc.);

2. Apply configurations - Check and apply configuration settings (idempontency);

3. Report results - Report to the server the changes made.

The first phase, gathers the facts - information about the system resources of the

target machine - which are then fed to the second phase. Then, a local-system specific

38

4.2. SCM TOOLS: A BRIEF SURVEY

configuration code is generated based on the target machine facts. Hence, the configura-

tion code can be identical to a set of machines with different specifications (e.g. different

OSs version). After applying the configurations, the run concludes by sending a report

of the changes made in the target host, to the server, which gathers all the reports. Re-

porting is an important feature of SCM tools since it provides a summarised view of the

configuration status of the managed infrastructure.

4.2 SCM Tools: a brief survey

This section addresses the SCM tools whose primary objective is to manage system

configuration in large infrastructures. Notice that one of them (Puppet) is already in

place at CERN, as a result of the Agile Infrastructure project, and is used as the main

SCM tool.

4.2.1 Overview

There are several configuration management technologies currently available that can

be used to automate configuration deployment and ensure compliance across the infras-

tructure; we will now briefly describe some of them, chosen among those that are capable

of configuring Windows systems, since this is the main platform of the WTS infrastruc-

ture. Despite their differences, all tools have essentially the same goal: manage and

deliver configurations to target hosts.

Puppet [8] is an open source configuration management solution, built on Ruby, that

offers a custom DSL called Puppet Language to create configuration files, using a declar-

ative programming paradigm.

Puppet uses an agent-master architecture where agents manage nodes and request

relevant configurations from the master. It allows configurations to be delivered to infras-

tructure nodes and reports about their status to be retrieved; a more detailed explanation

of Puppet can be found in the subsection 4.2.2.

Ansible [81] is an open source tool (acquired by RedHat in 2015 [86]) developed to

simplify configuration management tasks. It is written in Python and allows users to

define configurations in YAML [87] using a declarative programming paradigm. YAML

is a human friendly data serialisation language, similar to JSON, designed to work with

other languages.

Ansible uses a push model to send, via SSH, commands and configurations to target

nodes. It uses an agentless architecture, and the server (a.k.a control machine) is used to

tunnel commands and apply configurations to target machines [88].

39

CHAPTER 4. CONFIGURATION MANAGEMENT

PowerShell Desired State Configuration [10] is a PowerShell-based declarative plat-

form used for the configuration, deployment and management of computer systems [10];

it has a client-agent architecture and supports both the push and pull models.

DSC offers a set of PowerShell language extensions, new PowerShell commands (a.k.a.

cmdlets), and resources that can be used to declaratively specify how the software envi-

ronment must be configured.

Previous to CERN’s Agile Infrastructure project, Quattor was the used as the SCM tool

for Linux hosts but it was neither agile nor scalable enough for large scale deployment

and didn’t support Windows hosts. A replacement tool had to be found and, at that time,

the choice had to be between the two leading tools: Puppet and Chef [9]. Puppet was

chosen mostly as a result of its declarative approach, when compared to the imperative

paradigm of Chef. Both were mature, well integrated with other developments, and had

good and active communities behind them [15].

However, Puppet approach was similar to Quattor, since they both use declarative

languages, and it was considered a better fit for CERN’s work processes and for the large

number of distinct administrative groups that the tool needed to support.

For these reasons, and in addition to Puppet, we focus our study on Ansible and

PowerShell DSC since they also offer a declarative paradigm and have good support for

Windows systems.

4.2.2 Puppet

Introduction

Puppet is a configuration management tool that allows a user to define, in a declarative

language, a configuration (a manifest, in Puppet’s terminology) for a set of resources,

specifying the resource’s desired states. Then, Puppet enforces that configuration across

multiple targets, both hardware or software - such as computer nodes, routers/switches,

operating systems, applications, etc.

Configurations are expressed as resources that model complex relationships using

Puppet’s DSL. A large set of native resources for modelling the desired state of a system

is already available; these include the management of, e.g., users, groups, packages, and

services.

Puppet uses a declarative language which means that configuration files (a.k.a. man-

ifests) specify the desired state and its attributes (e.g. install and configure a software

package, ensure a service is running or manage local users and groups). In short, mani-

fests declare what the state of their hosts should be: what packages should be installed,

what services should be running, and so on; System administrators don’t need to care

about how this state is achieved.

Since version 3, Puppet extended its support to the Windows platform making most of

the existing language resources usable to Windows hosts; this survey is based on version

5 (we have currently deployed version 5.1).

40

4.2. SCM TOOLS: A BRIEF SURVEY

In Puppet, there are essentially two ways of applying configurations: to a local ma-

chine, in a stand-alone fashion, or to many nodes, using a pull model - the paradigm we

use in our work.

In a client-server deployment, a Puppet Master node is used to deploy configurations

to client nodes, each running a Puppet Agent daemon [89]. In this model (see fig. 4.2,

Puppet Master contains the configuration required for the specific environment. Each

agent connects to the Puppet Master through an encrypted and authenticated connection

using Secure Sockets Layer (SSL) protocol and fetches the configuration to be applied.

As previously mentioned, Puppet configurations are idempotent: if the master has no

configuration available for the agent or if the configuration has already been applied, the

agent will do nothing - Puppet will only make changes if they are required.

Note that the agent runs with administrative privileges in order to make changes to

the target system (on Windows it runs as the SYSTEM user account). Usually, the agent

is configured to periodically check with the master to confirm that its configuration is

up-to-date or to retrieve any new one. Nevertheless, it’s possible to trigger a Puppet run

manually from the agent.

Figure 4.2: Puppet client-server model [90].

Basically, to apply a given configuration, Puppet Master has to:

1. Interpret and compile the configuration stated in the manifest;

2. Communicate the compiled configuration (a.k.a. catalog) to the agent;

3. Apply the configuration on the agent;

4. Report the results of that application to the master.

First, the Puppet Master analyses the configuration in the manifest file and calculates

how to apply it to the agent based on its facts. To do this, Puppet creates a dependency

graph with all resources declared in the manifest and their relationships. Relationships

41

CHAPTER 4. CONFIGURATION MANAGEMENT

between resources can be specified in the manifest, e.g., reboot after changing the page

file size. This allows the Master to sort out the order in which to apply each resource to

the agent. Puppet then takes the resources and compiles them into a catalog for each

agent; the catalog is sent to the Puppet Agent, which then applies the changes; results of

this process are then sent back to the master as a report.

Puppet Language: the basics

The Puppet language is all about declaring resources and its attributes. A resource is

an abstract concept that can represent things like files, software packages, services, and

others. Groups of resources can be organised into classes and be described in manifest

files (that end with a .pp extension). A class can describe configurations for a specific

application (e.g. Apache Web server) or even an entire service (e.g. configuration settings

for a set of front-end Web servers). Classes can also contain other classes to describe

system roles or services e.g., “database server”, “application worker”, etc. By default, the

order of execution of the configuration items present in manifest files follows the line

sequence order. But Puppet allows to specify relationships between resources so that

when the catalog is compiled these dependencies may change the execution order.

In Puppet, nodes (devices running puppet agent) can be organised in different groups

so that nodes in the same group have the same configurations (classes). The Puppet

Enterprise version has a special tool for this purpose called node classifier [91–93]. Since

CERN uses the community version, the node organisation is accomplished using another

open source tool, called Foreman, that integrates with Puppet as described later. Foreman

refers to this organisation as “hostgroups”. From this point on, we will use this naming

convention.

Basically, there are two kinds of manifests:

• Hostgroup manifests - are aligned with the hostgroup structure (folder tree) and

describe the configurations to apply to all nodes in that hostgroup.

• Module manifests - are re-usable units of code, each typically configuring one OS

daemon or feature, and may be regarded as a library of functions to be used in

hostgroup manifests.

Note that Puppet modules are installed on the Puppet Master(s) and the agents only

fetch and store their resources (module’s code) according to the hostgroup manifest they

must execute.

Listing 1 shows an example of a hostgroup manifest, encapsulated in a class, with con-

figurations for Windows servers. It displays five kinds of resources: file, group, service,

exec and registry. The first four are part of Puppet standard library, whereas the latter is

part of the registry module designed for Windows systems.

In Puppet, each resource is declared by its name - i.e. file, group, service, exec -,

a title (string between the first brace “{” and colon “:”) and a list of attributes and the

42

4.2. SCM TOOLS: A BRIEF SURVEY

corresponding values. The title of resources of the same type must be unique in order

to distinguish them; otherwise an error occurs when compiling the catalog. In some

resources, the title string can be used as the default value for the namevar attribute (a

mandatory attribute) [94]. This attribute is usually the name attribute, but in some

resources, like file, the namevar defaults to the path attribute. By using the provided

string in the title field, it avoids the explicit declaration of that attribute. File and service
resources, in the example manifest, illustrate this well: the title for file resource specifies

the path for the file to be created, whereas in service resource it specifies the name of the

service to be managed.

Each resource has specific attributes, but some, like ensure, are common to several

distinct Puppet resources. This attribute is used to specify the behaviour of the managed

resource, and is usually set to either “present” or “absent”, meaning that the resource must

either exist, or not, in the target nodes. Depending on the resource type, other values and

behaviours are allowed, e.g., the service resource uses “running” and “stopped” values to

describe whether a service should or shouldn’t be running; whereas a file resource allows

the “present”, “absent”, “file”, “directory” and “link” values to specify if a file should or

shouldn’t be present, create a file, a directory or a symlink (symbolic link - a shortcut to

another location in the filesystem).

The resources displayed in the example manifest of listing 1 declare different con-

figuration settings: the file resource specifies that a text file with the name “foo” must

be created under the specified directory, and should contain the text indicated in the

contents attribute; in the group resource, the user “rchavesg” should be a member of the

local user group named “Power Users”; and, in the service resource, the service “WSearch”

should be stopped and should not be enabled at boot time.

The exec resource is used to execute a given command in the target system; Puppet

handles the command as a string, it is not aware of the command language syntax. The

exec resource has some useful attributes like provider that specifies what Command-line

Interface (CLI) interpreter should be used to run the command, and unless, an attribute

that allows us to control whether or not the main command should be run, based on

the exit code of the command indicated in this attribute - it executes it only if the exit

code is non-zero. In the example manifest, this resource is used to execute a command

that sets PowerShell (Windows CLI) to the “unrestricted” mode, allowing it to execute

non-signed (i.e., potentially unsafe) scripts. Commands specified both in main and unless
are executed by PowerShell since that is the chosen provider/interpreter.

Finally, the registry resource - a Windows-specific module - is used to set values in the

Windows registry of the target machine for a specific key. In this case, it will disable User

Account Control - a security feature of Windows systems that prevents unauthorised

changes to the OS by prompting for administrator-level credentials when an attempt

occurs.

43

CHAPTER 4. CONFIGURATION MANAGEMENT

1 class hg_windows {

2

3 # Create file foo.txt inside C:\Temp\ with some text

4 file { 'c:\\Temp\\foo.txt':

5 ensure => present,

6 content => 'This is some text in my file'

7 }

8

9 # Add user rchavesg to Power Users group

10 group { 'add my user':

11 name => 'Power Users',

12 ensure => present,

13 members => ['domain\rchavesg']

14 }

15

16 # Stop WSearch service

17 service { 'WSearch':

18 ensure => stopped,

19 enable => false

20 }

21

22 # Set Powershell Execution Policy to unrestricted

23 exec { 'Set PowerShell execution policy unrestricted':

24 command => 'Set-ExecutionPolicy Unrestricted',

25 unless => 'if ((Get-ExecutionPolicy -Scope LocalMachine) -eq "Unrestricted")

26 { exit 0 } else { exit 1 }',

27 provider => powershell

28 }

29

30 # Disable User Account Control (change registry key value)

31 registry::value { 'Disable UAC':

32 key => 'HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System',

33 value => 'EnableLUA',

34 data => '0',

35 type => 'dword'

36 }

37

38 }

Listing 1: Puppet (hostgroup) manifest example for Windows systems.

Listing 2 depicts another manifest example, this one shows other feature set of the

Puppet Language. This manifest does essentially two things: changes the page file size of

the Windows host and installs a service (a.k.a. server role or server feature).

As shown in the manifest, Puppet supports variables and embedding them inside

strings (used in context of the exec resource). Variables start with dollar symbol and are

followed by a string name (e.g. $pagefile_initialsize). Also, it’s important to mention

that Puppet makes a distinction between single-quoted (e.g. ‘a single-quoted string’)

and double-quoted strings (e.g. “a double-quoted string”) [95]. Only double-quoted

strings allow interpolation - the replacement of variables or expressions for their values.

Furthermore, to use some literal symbols (e.g. $ or \) inside the string without being

interpolated, they need to be escaped with the backslash symbol (“\”).

44

4.2. SCM TOOLS: A BRIEF SURVEY

The exec resource also supports the onlyif attribute, which is similar to the unless but

with the opposite behaviour: the main command is executed only if the exit code of the

attribute’s command is zero.

After changing the page file (using the exec resource), the machine must be rebooted;

that’s why there is a reboot resource, one that makes it possible to declare when the host

must be rebooted (using the apply attribute) and display some text message to any logged-

in user (using the message attribute). The apply attribute accepts “immediately” and

“finished” as values to convey whether the restart should happen immediately or if the

resource should wait for all the remaining resources in the manifest. In order to trigger

the computer to restart only when the page file is changed, the subscribe relationship

attribute is needed; it declares that it is dependent on the exec resource that changed the

page file by referring to the resource using its title.

The second configuration in the manifest demonstrates how to install a server feature.

Since target machines can have different Windows Server versions and the name of that

server role may also be different among them, an if statement is used to account for these

two scenarios. This is done by storing the appropriate name in a variable ($search_service)

for latter use.

Puppet DSL is not purely declarative and provides some conditional statements like

if and case [96]. In the example manifest, to compare between different OS, the variable

operatingsystemrelease - a facter variable - is used. This is an example on how facts can be

used in manifests to deliver target system-based configurations. As previously explained,

facts are first sent by the agent when it contacts the Puppet master; then the catalog is

compiled and sent to the agent, thus delivering the appropriate configuration for each

target system.

The windowsfeature resource is a Windows-specific module that enables the instal-

lation and removal of Windows server roles, controlling it through the ensure attribute

using the values “present” or “absent”. In this example, the server role to install is the

Windows search service, whose name is stored in the $search_service variable.

45

CHAPTER 4. CONFIGURATION MANAGEMENT

1 class hg_windows_dev {

2 # Page file sizes

3 $pagefile_initialsize = 2048

4 $pagefile_maximumsize = 4096

5

6 # Set page file using PowerShell commands

7 exec { 'Set-pagefile':

8 command => "Get-CimInstance -ClassName Win32_ComputerSystem |

9 Set-CimInstance -Property @{ AutomaticManagedPageFile = \$false };

10 Get-CimInstance -ClassName Win32_PageFileSetting |

11 Set-CimInstance -Property @{InitialSize = $pagefile_initialsize;

12 MaximumSize = $pagefile_maximumsize}",

13 onlyif => "\$AutoManaged =

14 (Get-CimInstance -ClassName Win32_ComputerSystem).AutomaticManagedPagefile;

15 \$PageFile = Get-CimInstance -ClassName Win32_PageFileSetting;

16 if(\$AutoManaged -or \$PageFile.InitialSize -ne $pagefile_initialsize -or

17 \$PageFile.MaximumSize -ne $pagefile_maximumsize)

18 {exit 0}

19 else

20 {exit 1}",

21 provider => powershell

22 }

23

24 # Reboot after setting page file parameters

25 reboot { 'reboot after pagefile':

26 apply => finished,

27 subscribe => Exec['Set-pagefile'],

28 message => 'Puppet changed the page file settings. This computer will be rebooted now.'

29 }

30

31 # Install and disable search

32 if ($::operatingsystemrelease == '2008 R2') {

33 $search_service = 'FS-Search-Service' # For windows Server 2008 R2

34 } else {

35 $search_service = 'Search-Service' # For windows Server 2012 R2

36 }

37

38 windowsfeature { "${search_service}":

39 ensure => present

40 }

41

42 }

Listing 2: Another Puppet (hostgroup) manifest example for Windows systems.

Puppet platform and tools at CERN

CERN has deployed a configuration management infrastructure based on Puppet and

complemented with other tools [97]; the list is presented below:

• Puppet: The open source server software and client daemon responsible for con-

figuring systems. CERN uses the open source edition of Puppet and has recently

updated the version to 4.9.4.

• Facter: An inventory tool, part of Puppet, that provides information (called facts)

about the nodes to Puppet (e.g. IP address, operating system version, CPU model,

46

4.2. SCM TOOLS: A BRIEF SURVEY

uptime, etc.).

• PuppetDB: A database that collects all the information from Puppet runs. It can

be used to externally query the state of the nodes, or within a configuration to

configure dependencies between nodes.

• Hiera: A Puppet built-in key/value lookup system with an hierarchical search path

that enables the separation code and data. Configurations (written in manifest files)

can be modular, so different (hierarchic) hostgroups can be configured based on

their data files (specified separately). When Hiera methods are used in the code,

Hiera can retrieve on-the-fly (at compilation time) the data (e.g. configuration

variables, Puppet modules to be imported) associated with that hostgroup. These

data files can be written in YAML or JSON and are stored (and versioned) alongside

with manifests (but in a different directory) using the git versioning system.

• Foreman: The web front-end for the configuration management system that is used

to assign individual hosts to clusters (called hostgroups) and to visualise the reports

returned from Puppet runs. It uses PuppetDB to fetch puppet data (runs and

facts) and provides dashboards with statistics about the status of the managed

machines, thus providing monitoring. Foreman also enables the management of

the configuration code (repository) and development environment each machine

should look for when fetching configurations. Foreman is not part of the Puppet

suite.

• GitLab: A platform that provides git repositories to store the puppet code to be

applied to the nodes. Gitlab is also not part of the Puppet suite.

An overview of how these components interact with each other is described by the

following steps, taken, as an example, as a node gets some service deployed:

1. All hosts in the configuration system are registered in the Foreman service, whose

primary function is to state which hostgroup (or cluster of machines) a host belongs

to.

2. When a node (“example.cern.ch” depicted in the figure) wants to configure itself,

the Puppet Agent on that node will ask the Puppet Master for its configuration.

The first thing the Puppet master will do, is to ask the Foreman service for what

hostgroup the node belongs to.

3. Puppet Master will find out what configuration needs to be applied to the node in

that hostgroup (e.g., what packages and configuration are needed to deploy a “web-

server/basic”). It does this by reading, from a Git repository, the Puppet manifests

(code) and Hiera (data) for that hostgroup.

47

CHAPTER 4. CONFIGURATION MANAGEMENT

Figure 4.3: An overview of a puppet run - only steps 2 to 5 (adapted from [97]).

4. Puppet Master then compiles the desired configuration for that node and hands it

back to the node’s Puppet Agent for it to apply.

5. If the node has any configuration that is not aligned with the desired configuration,

then the appropriate changes are made by the Puppet Agent. If the configuration is

already as desired, then Puppet Agent does nothing.

Steps from 2 to 5 describe a puppet run (see fig. 4.3).

Foreman Hostgroups, Git and Puppet at CERN

A hostgroup is Foreman’s concept of a group of computing nodes to facilitate the

configuration management of multiple hosts. By aggregating hosts in the same hostgroup

implies that they are all part of the same service, have some configuration in common

and are managed by the same group of people (SysAdmins).

Hostgroups are hierarchical which means that there is a top-level hostgroup repre-

senting the main service and there can be sub-hostgroups to represent different parts of

the service.

Similarly to sub-class concepts (class inheritance), the configurations added to any

hostgroup are inherited to the corresponding sub-hostgroups. For example, in the context

of the project we are part of, we have a development hostgroup called windows_dev to

aggregate all the servers (Linux and Windows) part of the WTS infrastructure. Inside this

48

4.2. SCM TOOLS: A BRIEF SURVEY

we have two sub-hostgroups, one for load balancers called lb and another for the Remote

Desktop servers called ts (see table 4.1).

Table 4.1: Foreman Hostgroups.

Hostgroup Purpose

windows_dev The top-level hostgroup for the testing WTS infrastructure

windows_dev/lb The hostgroup containing the load-balancer nodes of the testing WTS
infrastructure

windows_dev/ts The hostgroup containing the Remote Desktop servers of the testing
WTS infrastructure

Foreman also allows to set a specific environment to a hostgroup or a individual host

enabling SysAdmins to easily change which manifest (code) version should be applied to

each machine. An environment describes which git repository branches to use to fetch the

code, by default there are two: qa (Quality Assurance) and production. Each git repository

that stores Puppet manifests has also two default branches: qa and master. Choosing

the qa environment points the hosts to fetch code from the qa branch, whereas selecting

production makes hosts fetch the code located in master branch.

All git repositories containing Puppet code follow a specific directory layout to ensure

uniformity and to help the Puppet compiler to know where to look for the code. This

layout is organised as follows:

• Code - where the Puppet code (manifests, templates and files) is stored.

– Manifests (stored in code/manifests) - directory containing Puppet manifests.

– Files (stored in code/files) - directory where raw configuration files or other

kind of files should be stored so that they can be copied to the target nodes;

manifests describe exactly where they get copied to on the target system. This

directory is not mandatory, it should be used only when there’s the need to

copy such files.

– Templates (stored in code/templates) - directory where template files are stored.

Template files are files with placeholders that can be substituted by values

provided in the manifest.

• data - where the Hiera data for the hostgroups is stored.

– Hostgroup (stored in data/hostgroup) - contains the YAML files that provide

key-value pairs for the hostgroup compilation. These values are used at com-

pilation time.

When looking for which manifests to compile, Puppet compiler considers the full

hostgroup path, meaning, if it is a sub-hostgroup then it will traverse and compile from

the top-level hostgroup manifest to the bottom (see table 4.2).

49

CHAPTER 4. CONFIGURATION MANAGEMENT

Table 4.2: Puppet code and hostgroup organisation.

Hostgroup element File to look inside Classname to use

windows_dev code/manifests/init.pp hg_windows_dev

windows_dev/lb code/manifests/lb.pp hg_windows_dev::lb

windows_dev/ts code/manifests/ts.pp hg_windows_dev::ts

Manifests directory represents the top-level hostgroup, it contains a top-level manifest

called init.pp that is applicable to all the sub-hostgroups. For a host in the ts hostgroup,

Puppet comppiler will load and compile first the top-level manifest init.pp followed by

ts.pp. If there were other sub-hostgroups, the compilation process would continue perco-

lating down until the final sub-hostgroup that the host belongs to.

Figure 4.4 illustrates the Foreman web portal with some hosts - members of the win-
dows_dev hostgroup - and their information.

Figure 4.4: Foreman Hostgroup example.

4.2.3 Ansible

Introduction

Ansible was first released by Michael DeHaan in 2012 as a small side project, and

since then it gained a lot of traction and thousands of contributors on Github. As result

of its popularity, RedHat acquired Ansible in 2015 and, despite having an Enterprise

version, it still remains open source.

It is written entirely in Python and the main runner and all modules are compatible

with Python 2.6, meaning that they work with any version of Python2 above version 2.6.

DeHaan choose Python for Ansible as it would not require additional dependencies on

the machines that needed to be managed [88].

Ansible follows a push-based model and does not require any agent on the target

machines; it manages them by using remote management frameworks that already exist

50

4.2. SCM TOOLS: A BRIEF SURVEY

natively on operating systems, like SSH for Linux/UNIX and WinRM for Windows [98].

Note that WinRM [99] enables the remote management of Windows machines as it is the

Microsoft implementation of the WS-Man protocol [100] - a firewall-friendly protocol

based on SOAP [101] that allows hardware and operating systems, from different vendors,

to interoperate.

Furthermore, Ansible relies on the authentication methods of such frameworks and

does not require any dedicated users or credentials. Hence, it does not require adminis-

trator access, leveraging sudo, su, and other privilege escalation methods on request when

necessary.

Access to the control server (or source control) does not automatically grants access

to remote hosts, as any user that wants to push content and/or exercise remote control

must also have credentials on the remote systems.

Similarly, by following a push-based model where only needed code (called Ansible

“modules”) is sent to remote machines, these cannot observe or interfere on how other

machines are configured. Ansible also allows scripts and commands to be executed, thus

offering some orchestration capabilities.

In addition, the agentless property means that no additional resources are consumed

on managed machines when Ansible is not actively managing them. Altogether, these

attributes are ideal for high-security environments or high-performance cases where

there are concerns about the stability or existence of a local management agent, but are

generally useful benefits in all computing areas [102].

Figure 4.5: Ansible architecture overview [103].

Fig. 4.5 shows a general overview of how Ansible works. Similarly to the push-based

model, the Ansible Control Machine (named Provisioner Machine in the figure) can

retrieve the configuration files stored in a Version Control System (VCS) and apply them

to the remote machines. The Ansible Control Machine has access to both the VCS and

the target machines and has the ability to deliver specific configurations for different

machine groups. This machine has to run Linux and acts like a master server, as it is

51

CHAPTER 4. CONFIGURATION MANAGEMENT

the fundamental entity that communicates with the remote machines, which may run

Linux/UNIX or Windows.

In Ansible, configurations are idempotent and the configuration files, called play-

books, are written in a declarative paradigm using YAML - a data representation language

(as JSON or XML) that intentionally tries to not be a programming language or script,

but rather a model of a configuration or a process. YAML is commonly used for data

configuration due to a simple syntax which makes it easy to read and use.

Besides playbooks, there are other elements that compose Ansible’s architecture (see

fig. 4.6):

• Inventories - files describing hosts and groups of hosts which need to be managed;

• Modules - programs provided by Ansible (Core Modules) and the open source

community (Custom Modules) that enable the configuration and management of

system resources (e.g. services, software packages, files). Modules are usually

written in Python, but can also be written in PowerShell, and are directly executed

on remote hosts through playbooks;

• Plugins - pieces of code that augment Ansible’s core functionality. For example,

Action plugins are like front-ends to modules and can execute tasks on the controller

before calling the modules themselves;

• APIs - allowing interaction with, e.g., cloud services, public or private;

• Ansible Config - a file that describes the configuration settings of Ansible software

installed in the Control Machine. For example, it describes where the module’s

library folder is located in the local filesystem.

Figure 4.6: Ansible components [104].

52

4.2. SCM TOOLS: A BRIEF SURVEY

YAML Basics

YAML uses an approach based on indentation to describe data in a structured and

hierarchic way. It relies on lists and dictionaries to structure data; listing 3 shows a few

examples of the YAML syntax.

Although not mandatory, a YAML document usually starts with three dashes (“- - -”)

and ends with three dots (“...”) to denote its beginning and end.

A list may be declared using a name followed by a colon and a set of additional lines,

all beginning at the same indentation level, and starting with a dash and a space (“- ”) to

describe the members of the list. A dictionary is represented in a simple key: value form

where the colon must be followed by a space. In YAML, spacing is important because it

defines the structure of data.

1 ---

2 # A list of fruits

3 fruits:

4 - Apple

5 - Orange

6 - Strawberry

7 - Mango

8

9 # An alternative syntax for a list

10 fruits: ['Apple', 'Orange', 'Strawberry', 'Mango']

11

12 # A dictionary representing an employee record

13 martin:

14 name: Martin D'vloper

15 job: Developer

16 skill: Elite

17

18 # An alternative syntax for a dictionary

19 martin: {name: Martin D'vloper, job: Developer, skill: Elite}

20

21 # A dictionary with a list value

22 - martin:

23 name: Martin D'vloper

24 job: Developer

25 skills:

26 - python

27 - perl

28 - pascal

29 ...

Listing 3: YAML syntax examples [105].

Inventory and Playbooks

In Ansible, the way remote systems are configured and managed is fairly simple:

one must define groups of hosts in the inventory file and describe the configurations in

playbooks targeted at specific groups. Fig. 4.7 demonstrates how inventory and playbooks

are used by Ansible to manage configurations in the remote machines: both are stored

in the Ansible Control Machine (named “Management Node” in the figure) and, upon

explicit invocation of the playbook, the configurations are applied to the target host

53

CHAPTER 4. CONFIGURATION MANAGEMENT

groups. A playbook file can have configurations for different host groups, so the same

playbook can do different actions in each group of machines.

Figure 4.7: Inventory and playbooks in Ansible [106].

The inventory file, also called hosts file, can be written in many formats, but Ansible

uses mainly two formats: INI (.ini) and YAML (.yaml or .yml). Listing 4 shows an example

of an inventory file using the INI format: it contains one host (machine) without a group,

and two host groups (webservers and databases), each with two machines. By default, all

the hosts are members of the all group, so that playbooks can target all the machines

described in the inventory. The YAML version of the example inventory is illustrated in

listing 5.

1 mail.example.com

2

3 [webservers]

4 foo.example.com

5 bar.example.com

6

7 [dbservers]

8 one.example.com

9 two.example.com

Listing 4: Example of an inventory file using the INI format.

Playbooks are also expressed in YAML and they are composed by one or more “plays”

in a list. The goal of a play is to map a group of hosts to some well defined roles, repre-

sented by what Ansible calls tasks, which essentially are no more than calls to module.

Each task has a name and is followed by the module’s name and attributes. Tasks de-

scribe the resources to configure, manage or execute (services, file, software packages,

etc.). Listing 6 shows an example of a playbook with just one play, while listing 7 depicts

a playbook with two plays.

54

4.2. SCM TOOLS: A BRIEF SURVEY

1 ---

2 all:

3 hosts:

4 mail.example.com

5 children:

6 webservers:

7 hosts:

8 foo.example.com:

9 bar.example.com:

10 dbservers:

11 hosts:

12 one.example.com:

13 two.example.com:

14 ...

Listing 5: Example of an inventory file using the YAML format.

1 ---

2 - hosts: webservers

3 vars:

4 http_port: 80

5 max_clients: 200

6 remote_user: root

7 tasks:

8 - name: ensure apache is at the latest version

9 yum: name=httpd state=latest

10 - name: write the apache config file

11 template: src=/srv/httpd.j2 dest=/etc/httpd.conf

12 - name: ensure apache is running (and enable it at boot)

13 service: name=httpd state=started enabled=yes

14 ...

Listing 6: Playbook with one play.

1 ---

2 # play 1

3 - hosts: webservers

4 remote_user: root

5 tasks:

6 - name: ensure apache is at the latest version

7 yum: name=httpd state=latest

8 - name: write the apache config file

9 template: src=/srv/httpd.j2 dest=/etc/httpd.conf

10

11 # play 2

12 - hosts: databases

13 remote_user: root

14 tasks:

15 - name: ensure postgresql is at the latest version

16 yum: name=postgresql state=latest

17 - name: ensure that postgresql is started

18 service: name=postgresql state=started

19 ...

Listing 7: Playbook with two plays.

55

CHAPTER 4. CONFIGURATION MANAGEMENT

4.2.4 PowerShell DSC

Introduction

Windows PowerShell Desired State Configuration (DSC) is a configuration manage-

ment platform based on open standards that allows SysAdmins to define the desired

configuration state of a host and ensure that the machine is always kept in that state.

The notion of desired state covers a lot, from installed software to configuration settings,

from the OS to applications and services. DSC is designed to handle all this configuration

data and execute it consistently and repeatedly; furthermore, DSC configurations are

idempotent.

PowerShell DSC is a feature of PowerShell that is part of the Windows Management

Framework (WMF) and requires PowerShell version 4 or later. Recently Microsoft has

extended the support for Linux, releasing PowerShell for Linux [107].

DSC consists of three main components: configurations, resources and the Local

Configuration Manager (LCM) [10].

• Configurations - scripts written in PowerShell Desired State Configuration DSL

- a language with a PowerShell-based syntax and a declarative paradigm, used to

define and configure instances of resources;

• Resources - code included in PowerShell modules that allows us to manage and

configure system resources (files, services, server roles, OS settings, applications,

etc.). A PowerShell module can provide multiple DSC resources;

• Local Configuration Manager (LCM) - the engine by which DSC facilitates the

interaction between resources and configurations. The LCM regularly polls the

system using the control flow implemented by resources to ensure that the state

defined by a configuration is maintained. If there is a configuration drift, the LCM

makes calls to the code in resources to re-apply the desired configuration.

DSC requires both a data file and a configuration file which are later translated into

a text file that uses the MOF [108]. This file is then parsed and executed on the target

machine, using DSC features that know how to configure the system.

The MOF was defined by the Distributed Management Task Force (DMTF), which is

a vendor-neutral organisation that works towards standardised inter-operation between

distinct platforms. The DMTF defined the MOF syntax and format so that any vendor or

system can implement it, making it possible for third-party tools to manage configura-

tions on Windows machines.

PowerShell DSC can be deployed using either a push or a pull model to manage

configurations (see fig. 4.8). In either model, DSC uses an auxiliary host: a “central”

workstation to push configurations to the target machines, in the push model, or a server

(a.k.a. Pull Server) in the pull model. In the push model, the workstation can be a

Windows computer with the required PowerShell and WMF versions in order to run the

56

4.2. SCM TOOLS: A BRIEF SURVEY

DSC configuration scripts, whereas in the pull model, a pull server as to be set up to run

the DSC Service and the clients (target nodes) must be configured to fetch configurations

from the Pull Server.

Figure 4.8: PowerShell DSC push and pull models overview (adapted from [109]).

Both approaches are composed by three phases [110]:

• Authoring - the DSC configuration is created through PowerShell or by third party

languages and tools. The output from the Authoring Phase is one or more MOF

files, the format which is consumable by DSC;

• Staging - DSC data (MOF files) is staged. In case of adopting the pull model, DSC

data and custom providers are kept on the Pull Server; otherwise, when using the

push model, DSC data is pushed to the target system;

• Execution (a.k.a. “Make it so”) - applies the MOF files that are either pulled or

pushed to the “Local Configuration Store” (part of the LCM) that contains the cur-

rent, previous and the desired state configuration. The configuration then gets

parsed and the relevant resources implement the changes. When the LCM executes

the MOF successfully, it renames the the pending.mof file to current.mof file (see

fig. 4.9).

Figure 4.9: PowerShell DSC execution phase [111].

57

CHAPTER 4. CONFIGURATION MANAGEMENT

Figure 4.10 illustrates how the DSC push model works: first, the PowerShell configu-

ration script (PS) has to be written, then compiled to a MOF file and finally executed by

the target machine’s LCM. In the push model, configurations must be manually pushed

to the machines using a cmdlet (command line program) and the DSC resources must

already be available in the machines; if not, they must be installed first.

This model also enables to push DSC configurations locally in a standalone manner,

as they follow the same workflow. This is the easiest to set up and most flexible of the two

DSC methods, but the hardest to maintain in large installations and in the long term.

Figure 4.10: PowerShell DSC push model [111].

In a pull scenario, illustrated in fig. 4.11, the target machines have their LCM con-

figured to periodically contact the Pull Server and fetch the latest configurations (MOF

files) as well as the required DSC resources to execute such configurations. Each remote

machine contacts the Pull Server using the server’s Unique Resource Identifier (URI) and

passes its name or a unique identifier to retrieve its specific configuration and verifies if

all the custom resources are available; if not, those are downloaded to the target system.

Of the two DSC methods, the Pull Server is the harder to set up, but the easiest to

maintain in large node installations and in the long term; it is suitable in server environ-

ments that have a lot of transient machines, like cloud or virtualised data centre environ-

ments where servers are created and destroyed frequently, and DSC configurations can

be applied on a triggered basis.

58

4.2. SCM TOOLS: A BRIEF SURVEY

Figure 4.11: PowerShell DSC pull model [111].

PowerShell DSC Scripts

PowerShell DSC configuration scripts are, in short, PowerShell scripts that define a

special type of function that describes the configuration; they have the following struc-

ture:

• Configuration block - the outermost script block defined by the Configuration key-

word, followed by the name of the function.

• Node blocks - one or more blocks inside the Configuration that define the configura-

tion’s target nodes (computers).

• Resource blocks - one or more blocks inside the Node block that describe the con-

figurations and their properties. Resources are specified their names and followed

by the name chosen for the configuration; settings are defined in the form property
= value, using a declarative approach.

Only resource blocks are declarative, since in a Configuration block it is possible to

write PowerShell (imperative) code. In addition, DSC configuration scripts are allowed to

have PowerShell code before or after the DSC Configuration block, i.e., a DSC configura-

tion script could be nested inside a larger script or in a standalone script. For that reason,

they also have the same file extension (.ps1) as PowerShell scripts.

An example of a DSC configuration script is depicted in listing 8. It describes the

installation of a web server with a its first HTML file. The Node block specifies the target

node to be configured, in this case the localhost. The configuration calls two resources:

WindowsFeature, to install a web server (in this case, Microsoft IIS - Internet Information

Server) and File to copy a HTML file to the web server’s content folder. Resources ensure

that the target node is/will be in the state defined by the configuration.

59

CHAPTER 4. CONFIGURATION MANAGEMENT

1 ---

2 Configuration WebsiteTest {

3

4 # Import the module that contains the resources we're using.

5 Import-DscResource -ModuleName PsDesiredStateConfiguration

6

7 # The Node statement specifies which targets this configuration will be applied to.

8 Node 'localhost' {

9

10 # The first resource block ensures that the Web-Server (IIS) feature is enabled.

11 WindowsFeature WebServer {

12 Ensure = "Present"

13 Name = "Web-Server"

14 }

15

16 # The second resource block ensures that the website content copied to the

website root folder.↪→
17 File WebsiteContent {

18 Ensure = 'Present'

19 SourcePath = 'c:\test\index.htm'

20 DestinationPath = 'c:\inetpub\wwwroot'

21 }

22 }

23 }

Listing 8: PowerShell DSC configuration script example [112].

4.3 SCM Tools’ Evaluation

The SCM tools described in the previous sections (Puppet, Ansible and PowerShell

DSC) enable the management of configurations of multiple systems in a programmatic

way. Each tool has its own, particular, set of features and properties; therefore, in order

to figure out which one would serve us better in the process of automating the configu-

ration of the WTS infrastructure, we had not only to compare their features, but also to

effectively use them on the field.

We’ve started the process by assembling, in table 4.3, the most relevant characteristics,

in order to summarise and better compare them against each other.

4.3.1 Tool Installation and Configuration

Puppet

In case of Puppet Master no deployment was needed, as we used CERN’s already

in-place Puppet installation. Anyway, it is important to stress that, in terms of the instal-

lation procedure, Puppet is the most difficult tool to deploy as it requires more configura-

tion steps, and the target nodes must have the agent installed and configured to contact

the Puppet master. Puppet also requires the installation of SSL certificates on both par-

ties: for an agent to communicate with the master it must generate its own certificate,

based on the master’s certificate, and then send it to the master to have it signed by the

master.

60

4.3. SCM TOOLS’ EVALUATION

Table 4.3: Characteristics of the evaluated SCM tools.

Puppet Ansible PowerShell DSC

Architecture Master-Agent Agentless Master-Agent

Delivery model pull push push/pull

Configuration
program
terminology

manifest playbook DSC configuration
script

Configuration
Language

Puppet DSL YAML PowerShell DSC DSL

Scalability
(manage multiple
nodes)

Yes Yes Yes

Basic resources
(create files,
install packages,
manage services)

Yes Yes Yes

Support for Cus-
tom/Community
Modules

Yes Yes Yes

Module
Repositories
(Official and
Community)

Puppet Forge and
GitHub

Ansible Galaxy
and GitHub

PowerShell Gallery and
Github

Management,
Monitoring and
Reporting
Visualisation
solutions

Free/Open Source:
The Foreman [113]
and Puppet
Dashboard [114]

Free/Open
Source:
The Foreman,
ARA [115] and
Tensor [116]

Non Existent, CLI or
Event Viewer
(Windows default
logging visualisation
program)

Commercial:
Puppet Console
(part of Puppet
Enterprise) [117]

Commercial:
Red Hat Ansible
Tower [118]

SCM tool
platform

Masters must run
on Linux

Ansible Control
Machine must
run on Linux

Pull Server must run
on Windows Server
2012 or higher

Target platform Windows/Linux Windows/Linux Windows/Linux

Windows-specific
resources

Yes Yes Yes

Orchestration
capabilities

Yes Yes, built-in Not Applicable

Redundancy Yes No No

As referred above, as we used CERN’s Puppet infrastructure, we didn’t have to face

the challenge of installing and and configuring Puppet Master(s). The only step needed

was to install Puppet Agent on the target machines, which was done by deploying a

pre-configured software package using CERN’s CMF tool (see section 2.3.4).

61

CHAPTER 4. CONFIGURATION MANAGEMENT

Ansible

Ansible was easy: for the Ansible Control Machine, we set up a CentOS 7 VM in

CERN’s OpenStack using a m2.small flavour; installation was just the download/install

of the software package (using the OS package manager - yum); and configuration was

accomplished through modifications of the configuration file. Although Ansible doesn’t

need agents on the managed hosts, Windows systems need to have WinRM properly

configured. But, thankfully, on the Ansible website there is a PowerShell script that

configures the WinRM service; so all we had to do was run the script on each machine.

PowerShell DSC

Setting up a PowerShell DSC Pull Server was a bit more difficult than setting Ansible,

but thanks to the DSC configuration scripts made available by Microsoft the process

was not very difficult (note that DSC configuration scripts can be always be executed

locally, in a standalone approach, when using the push model). The Pull Server was an

OpenStack-based VM with a m2.large flavour, running Windows.

The installation of the Pull Server required the generation of a Global Unique Identi-

fier (GUID) to serve as registration key so that clients could register themselves against

the server. This registration key is considered a secret that should only be shared between

the server and the clients. In the target machines a DSC configuration script as also

executed to set them up, which included the Pull Server’s URI and the registration key.

4.3.2 Testing the Tools

These tools were tested in a practical scenario with two Windows machines, posing

as clients (configuration targets), each running a different Windows version: Windows

Server 2012 R2 and Windows Server 2016. The goal was to use them to a) evaluate each

tool’s demand on the clients, i.e., what to install and configure, and b) see the tool at

work. The clients were, in fact, m2.large VMs (see flavours in 2.1.1) running on CERN’s

OpenStack private cloud service.

Each tool was used to configure the two target server machines and, after finishing

the tests with one tool the machines were recreated to ensure that they were clean and

ready to be configured again.

To test and compare the tools, we created a few configuration programs in each tool’s

language to test some standard resources (available in all languages), such as copying

files and manage services (see annexes I,II,III). All tools evaluated here do apply config-

urations, ensure idempotency and fix configuration drifts essentially the same way; the

differences reside in the programming language.

Nevertheless, DSC lacks the flexibility of the remaining tools as it does not offer a

centralised way of managing the host groups. In DSC, configurations (MOF files) have

a name (the name of the configuration file) and are stored in the Pull Server; each ma-

chine must be configured to track a specific configuration (using the configuration name)

and, therefore, to use a different configuration for a machine, the machine LCM must

62

4.3. SCM TOOLS’ EVALUATION

be reconfigured to track the new configuration. If the configuration is updated (while

keeping the same name), machines are still able to fetch and apply the new configuration.

This is an important aspect as it makes the management of configurations and machines

harder. Puppet and Ansible use hostgroups or an inventory file, something that allows us

to centrally manage groups of machines and the configurations targeted to those groups.

4.3.3 Integration with PowerShell DSC

Introduction

As PowerShell DSC allows to configure and manage some resources (e.g. manage

Group Policy rules) that are not available in the other SCM tools, but lacks some of the

capabilities and features they possess (like management of hosts groups), we decided to

evaluate the integration of Puppet and Ansible with PowerShell DSC.

Since PowerShell DSC allows other tools to use DSC resources, they can easily extend

the set of resources they manage by providing integration modules that bridge this gap.

Puppet and Ansible have such modules, and they enable the use of DSC resources in their

languages by offering the same syntax as their standard resources.

Puppet uses the puppetlabs-dsc to use DSC resources, whereas Ansibe uses win_dsc
module. Despite having the same purpose, these modules work differently, as Puppet

and Ansible have different architectures.

Puppet integration

In Puppet, the Puppet Master has all the “native” modules (bundles of resources) and

only sends them to the agent when they are present in the manifest; the agent then saves

the resources (Ruby code) locally for future runs (executions).

For the DSC module, Puppet does the same thing: only DSC resources in the manifest

are sent to the agent. One important thing to note is that DSC resources are written

in PowerShell code, but the puppetlabs-dsc module already comes with plenty of them

compiled to Ruby, so they can be used in manifests as “native” Puppet resources (a.k.a.

types). The module also provides a script that allows importing and compiling custom

DSC resources made available by the PowerShell community.

Ansible integration

Since Ansible is agentless, it takes a simpler approach that does not require the Control

Machine to transfer the DSC modules to the managed nodes. Instead, the win_dsc assumes

that the modules are already installed on the machines and remotely invokes (through

WinRM) the DSC resources. Hence, to use DSC resources, they must first be installed on

the remote machines.

Integration test

The goal of the test was to compare Puppet and Ansible approaches in terms of ease of

use and check if they apply the resources in the same way that PowerShell DSC does. The

63

CHAPTER 4. CONFIGURATION MANAGEMENT

test, in itself, was: "Force the Windows system to use a specified server as its Windows

Licensing Server"; in the test mockup, the server’s FQDN is server.test.localgpo.dsc.com. To

have a visual idea of how a SysAdmin could set it manually, using the Local Group Policy

Editor GUI (see fig. 4.12): he/she would first navigate to the Licensing Folder, then Select

the rule, and then change the setting to Enabled and fill the “License servers to use” field

with the appropriate FQDN (see fig. 4.13).

We have developed three different configuration programs, one for each tool; each

program uses the same community module, available on PowerShell Gallery, called Pol-
icyFileEditor. The module allows us to set Group Policy rules on Windows hosts and

contains a resource called cAdministrativeTemplateSetting that allows us to set a Group

Policy rule called Administrative templates (see section 2.3.2) which, finally, allows the

desired goal to be reached.

As a baseline, we developed a PowerShell DSC configuration script that sets the above-

mentioned rule; a sample of the code is depicted in listing 9, while the full code is

available in annex IV.

To apply the DSC configurations, the nodes’ LCM was configured to fetch the DSC

configuration (MOF file) from the Pull Server; this initial step, executed on each machine’s

LCM, also registers the host against the Pull Server. The file contents were created using

the DSC configuration script as its basis.

Figure 4.12: Group Policy GUI displaying the rule to set.

Puppet Integration test

For Puppet, we had to use the puppetlabs-dsc module to generate the corresponding

Puppet resources (in Ruby) from the PolicyFileEditor DSC module. Once compiled, the

resources had to be uploaded to the puppetlabs-dsc module repository at CERN so that

the Puppet Masters could find the resource when compiling the catalog. Only then, the

64

4.3. SCM TOOLS’ EVALUATION

Figure 4.13: Group Policy GUI displaying the settings of the rule to set.

1 Configuration LocalGPO

2 {

3 param([string[]] $NodeName = 'localhost')

4

5 Import-DSCResource -ModuleName PolicyFileEditor

6

7 Node $NodeName

8 {

9 cAdministrativeTemplateSetting RDPLicensing

10 {

11 KeyValueName = "SOFTWARE\Policies\Microsoft\Windows NT\Terminal

Services\LicenseServers"↪→
12 PolicyType = "Machine"

13 Data = ("server.test.localgpo.dsc.com")

14 Ensure = "Present"

15 Type = "String"

16 }

17 }

18 }

Listing 9: PowerShell DSC configuration script to set a Group Policy rule.

Puppet manifest equivalent to the DSC configuration script was developed and later

applied to the target machines. A more detailed explanation, about this module and the

work we have done with it, is available in subsection 4.4.5.

A sample of this code is depicted in listing 10 and the full code with the remaining

Group Policy rules can be found in annex V. The main syntactic difference between

65

CHAPTER 4. CONFIGURATION MANAGEMENT

Puppet’s code and the PowerShell DSC configuration script in listing 9 is that both re-

source and attribute’s names are prefixed by “dsc_” and are all lowercase. This is to avoid

collisions with other Puppet resources and attributes.

To apply the configurations to the machines, the machines were added to a new

hostgroup (in Foreman) and this manifest was assigned to the group. Later, Puppet

agents could fetch and apply the correct configurations targeted at those machines.

1 class hg_windows_dev::dsc_tests {

2 # Remote Desktop Services\Remote Desktop Session Host\Licensing\Use the specified

3 dsc_cadministrativetemplatesetting { 'test-dsc_cAdministrativeTemplateSetting License

Server':↪→
4 dsc_keyvaluename => 'SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\LicenseServers',↪→
5 dsc_policytype => 'Machine',

6 dsc_data => 'server.test.localgpo.dsc.com',

7 dsc_ensure => 'Present',

8 dsc_type => 'String',

9 }

10 }

Listing 10: Puppet manifest using a DSC to set a Group Policy rule.

Ansible Integration test

The Ansible integration with DSC was simpler than the other tools’ approaches in

some aspects. First, the playbook was simpler and easier to develop and read. Unlike

Puppet, Ansible uses the original DSC resource and attribute names making it easier

to transcode the PowerShell DSC script to YAML. Then, the assignment of hosts to

a hostgroup was as simple as adding their names to the inventory file and define the

group’s name (windows-ansible in this case). Finally, in addition to the WinRM setup

already discussed in the previous section, the PolicyFileEditor module had to be installed

on each machine so that the playbook could call its resources.

A sample of the playbook we developed is depicted in listing 11 and the full code is

available in annex VI.

4.3.4 Evaluation Results

The tests we have performed, and in particular the integration with PowerShell

DSC, gave us a practical sense how these tools work and showed their advantages and

limitations.

Puppet is the most mature of the tools tested as it keeps maintaining compliance

across the managed nodes due to its master-agent architecture and pull model: agents

periodically check with the masters if their current configuration state is up-to-date and,

if not, the most recent one is pulled and applied. Another advantage is that it allows a

simplified management of groups of machines and their configurations, and also provides

detailed reports.

66

4.3. SCM TOOLS’ EVALUATION

1 ---

2 - hosts: windows-ansible

3 tasks:

4 # GPO rules

5 # Remote Desktop Services\Remote Desktop Session Host\Licensing\Use the specified

6 - name: Set RDP Licensing server

7 win_dsc:

8 resource_name: cAdministrativeTemplateSetting

9 Ensure: "Present"

10 KeyValueName: "SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\LicenseServers"↪→
11 PolicyType: "Machine"

12 Data: "server.test.localgpo.dsc.com"

13 ...

Listing 11: Ansible playbook using a DSC to set a Group Policy rule.

Puppet’s drawbacks are: a complex installation process; the language’s learning curve;

the procedure required to integrate custom DSC resources; and, finally, it requires an ad-

ditional product, MCollective, if one wants to centrally trigger the execution of manifests.

Ansible’s agentless architecture and push model warrants a simple setup procedure.

In addition, the language is very easy to learn, the management of groups of machines

and their configurations is also simple, and the level of reporting is also very detailed

(offering multiple verbose levels).

Ansible’s drawbacks are:since it uses a push model, maintaining compliance requires a

schedule task has to be set up in the Control Machine to periodically trigger the execution

of a playbook. Therefore it does not scale well for environments where compliance is

important. It follows a “set it up once and let it be” philosophy that gives SysAdmins

more flexibility by allowing them to push configurations whenever they need.

It is fairly simple to integrate PowerShell DSC into Ansible, as it keeps the same

names; however, PowerShell DSC modules have to be installed on each machine first,

which requires another deployment step. Ansible scales well but, when compared to

Puppet, requires more interactions between the managing and managed hosts.

PowerShell DSC is a tool that offers plenty of resources (both from Microsoft and the

community) designed to configure and manage Windows OS as well as other Microsoft

products. It benefits from the use of the PowerShell language and engine, which make

it easy to learn and use - in particular for Windows SysAdmins that already develop

PowerShell scripts. It provides the flexibility to use both push and pull models, but the

management of groups and configurations in the pull scenario is more complex when

compared to the other tools.

Ultimately, PowerShell DSC is not as mature as other SCM tools in terms of features;

Microsoft has stated that the product is there to offer a programmatic way to configure

their systems; therefore they welcome its integration with other, more powerful, SCM

tools.

67

CHAPTER 4. CONFIGURATION MANAGEMENT

Table 4.4 reflects the conclusions drawn from the use and tests performed with these

tools.

Table 4.4: Evaluation results for the surveyed SCM tools.

Puppet Ansible PoweShell DSC

Language Learning curve
(Easy, Medium, Hard)

Medium Easy Easy

Infrastructure Set up
(Easy, Medium, Hard)

Hard Easy Medium

Reporting and Logging (Debug) Detailed Very
Detailed

Detailed

Integration with DSC
(use of custom resources)

Good but
Difficult

Good
and Easy

Not Applicable

Ensure configuration compliance Good Good Good

Configuration Management of groups of
machines
(Easy, Medium, Hard)

Easy Easy Hard

In the end, Puppet was chosen to configure WTS infrastructure mainly because of

three reasons: there is a dedicated team for the configuration management infrastructure

at CERN that gives support to other users (i.e., other teams in the IT Department); using

a different SCM tool would require a) the deployment of its infrastructure and b) the

creation of another team; and, finally, the WTS’s team limited human resources (only 3

people).

Furthermore, the adoption of Puppet was a decision from the IT department man-

agement board, and other teams should follow its strategy and adopt the chosen tools;

however teams can come up with different tools if they find they solve the problems in a

better way.

Although this evaluation didn’t change the SCM tool adopted for the WTS infrastruc-

ture, it certainly showed what other tools have to offer.

4.4 WTS Configuration Management using Puppet

In the previous section, we have justified Puppet’s choice as the SCM tool to configure

WTS infrastructure. We will now see how Puppet allows the small team responsible for

this infrastructure to deploy and manage configurations of its multiple hosts. As the

focus is on the Remote Desktop hosts, the configurations we have developed are targeted

to Windows Server systems running RDS.

Our contribution to a higher-level of automation in the management of WTS config-

urations, using Puppet, can be illustrated by manifest (script) depicted in annex XVIII;

the work includes not only the re-use of standard Puppet but also community modules,

and our own contributions, that we have made available to the community. As such,

68

4.4. WTS CONFIGURATION MANAGEMENT USING PUPPET

we will now describe the Puppet modules that we have developed and/or modified and

published.

4.4.1 Puppet-wmi module

puppet-wmi was the first module that we have modified; in particular, we improved

the configuration of a RDS through a specific property that could be changed using WMI.

This module is a community module available on the Puppet Forge - the website with

all community modules - and its source code could be found on GitHub repository; it

defines a Puppet type (resource) that is able to change WMI settings - settings that can

only be changed through WMI - using Puppet exec resources and PowerShell commands.

The problem was that the module was not updated since 2014 and could only be used in

specific cases - i.e., is was not sufficiently generic.

To understand the problem and how we addressed it, some context is necessary: WMI

has classes to enable the manipulation certain internal Windows settings and most, but

not all, classes have methods (getters and setters) that return or change properties (vari-

ables). The original module (depicted in listing 12) was assuming that all properties had

a corresponding set method, which is not true - an example being the RDS property we

wanted to configure.

Consequently, the module needed to be extended in order to provide another way

of changing a WMI setting - by changing the property directly without using a class

method. Thus, we extended the module by changing the arguments’ values, removing

the set method assumption and writing the necessary code to solve the above scenario.

Listing 13 shows the improved version. To browse the full code see annex VIII.

As a result of this improvement, the module can now be used by Puppet developers

to apply similar configurations. The updated version of this module can be found in a

repository available on GitHub [119] and also on Puppet Forge [120].

Note: for unknown reasons the author of the original module removed the module

from the Git repository: at the time of this writing, only the module’s description was

available on Puppet Forge [121] but the detailed code can be found in annex VII.

4.4.2 puppet-sslcertificate module

The automation of the installation of SSL certificates was very important in WTS; we

found that there was a puppet-sslcertificate [122, 123] available specifically for that purpose

on the Puppet Forge repository. This module defines a Puppet resource with the name

sslcertificate that checks if a certificate is already present and, if not, installs it storing it

in the Windows local certificate store.

To perform that task, it dynamically creates two PowerShell scripts and executes

them. A generic version of the PowerShell scripts is stored in a template format (ERB -

Embedded Ruby) and has template variables that Puppet replaces with variables declared

69

CHAPTER 4. CONFIGURATION MANAGEMENT

1 # == Defined Type: wmi

2 # This module is a defined type for manipulating WMI Objects with Puppet.

3 #

4 # === Examples

5 # wmi { 'Remote Desktop - Network Level Authentication' :

6 # wmi_namespace => 'root/cimv2/terminalservices',

7 # wmi_class => 'Win32_TSGeneralSetting',

8 # wmi_property => 'UserAuthenticationRequired',

9 # wmi_value => 1,

10 # }

11 define wmi (

12 $wmi_namespace, $wmi_property, $wmi_class, $wmi_value, $wmi_method =

"Set${wmi_property}") {↪→
13

14 $wmi_array = ["-Namespace ${wmi_namespace}", "-Class ${wmi_class}",]

15 $wmi_data = join($wmi_array,' ')

16 $wmi_ps = "Get-WmiObject ${wmi_data}"

17 $wmi_chk = "If ((\$wmiobject.${wmi_property}) -like '${wmi_value}')"

18

19 exec { $name :

20 command => "\$wmiobject=${wmi_ps};\$wmiobject.${wmi_method}(${wmi_value})",

21 onlyif => "\$wmiobject=${wmi_ps};${wmi_chk} { exit 1 }",

22 provider => powershell,

23 }

24 }

Listing 12: Original version of puppet-wmi module.

in the module’s manifest by using the template function. The PowerShell (PS) code is,

naturally, driven by the arguments passed to the resource. One script is responsible for

verifying if the certificate is already installed, while the other one installs the certificate.

The existing version of the module was creating and storing the PS scripts in a hard-

coded temporary location (in the target’s machine filesystem) and was installing the cer-

tificate as exportable (default setting, if not explicitly set). The certificate’s exportability

property denotes if a certificate, after being installed, can be exported to other computers.

For WTS configuration, we needed this module but the above mentioned limitations

were unacceptable due to security reasons (the VMs prepared by the WTS team for ded-

icated clusters are delivered to other departments/groups at CERN which can then ad-

minister the hosts, and thus have local access to the scripts and certificates).

So we went on and improved the module’s code and script templates, as follows: in

the code, two more arguments were added - one (named scripts_dir) to specify the scripts’

location, and another (named exportable) to set the exportability of the certificates (see

listing 14). In addition, a conditional statement was added to pass the exportability

argument to the script templates (see annex chapters XIII and XIV).

For comparison purposes, the original code and templates are listed in annex chap-

ters IX to XI. As this is an open source module, these improvements were submitted and

accepted in the GitHub repository [124].

70

4.4. WTS CONFIGURATION MANAGEMENT USING PUPPET

1 # == Defined Type: wmi

2 # This module is a defined type for manipulating WMI Objects with Puppet.

3 #

4 # This example use specified methods.

5 # wmi { 'Remote Desktop - Allow Connections' :

6 # wmi_namespace => 'root/cimv2/terminalservices',

7 # wmi_class => 'Win32_TerminalServiceSetting',

8 # wmi_property => 'AllowTSConnections',

9 # wmi_value => '1',

10 # wmi_method => 'SetAllowTSConnections',

11 #}

12 define wmi ($wmi_namespace, $wmi_property, $wmi_class, $wmi_value, $wmi_method = "") {

13 $wmi_array = ["-Namespace ${wmi_namespace}", "-Class ${wmi_class}",]

14 $wmi_data = join($wmi_array, ' ')

15 $wmi_ps = "Get-WmiObject ${wmi_data}"

16 $wmi_chk = "If ((\$wmiobject.${wmi_property}) -like '${wmi_value}')"

17

18 if $wmi_method != "" {

19 $wmi_pscommand = "\$wmiobject=${wmi_ps};\$wmiobject.${wmi_method}('${wmi_value}')"

20 } else {

21 $wmi_pscommand = "${wmi_ps} | Set-WmiInstance -Arguments

@{${wmi_property}='${wmi_value}'}"↪→
22 }

23

24 exec { $name:

25 command => "${wmi_pscommand}",

26 onlyif => "\$wmiobject=${wmi_ps};${wmi_chk} {exit 1} else {exit 0}",

27 provider => powershell,

28 }

29 }

Listing 13: Improved version of puppet-wmi module [119].

4.4.3 cernsslcertificate module

Although we were successful in extending the puppet-sslcertificate module to better

suit our needs, it still had one problem: the certificate’s password had to be passed as

argument in plain-text and, consequently, the scripts stored in the target machines also

had a plain-text password. Furthermore, in order to use this resource in the WTS puppet

manifest, the password had to be hard-coded, and that is not a good practice for security

reasons; Git repositories at CERN (GitLab) are shared between multiple users, and if by

chance this code is copied or published online it can cause a security breach.

We found that the most elegant solution would be to create another module that

served as wrapper around puppet-sslcertificate to a) take advantage of the improvements

previously made and b) override some “standard” resources in order to adapt to the

CERN’s use case. As a consequence, puppet-sslcertificate could be decoupled and thus

evolve/be updated independently, and the new module, called cernsslcertificate, would

still be able to use the standard puppet-sslcertificate.

cernsslcertificate now installs the certificates and saves the scripts with the plain-text

password in a more protected directory, only accessible by the SYSTEM account of the

71

CHAPTER 4. CONFIGURATION MANAGEMENT

1 define sslcertificate ($password, $location, $thumbprint, $root_store = 'LocalMachine',

2 $store_dir = 'My', $scripts_dir = 'C:\temp', $exportable = true) {

3

4 validate_re($name, '^(.)+$', "Must pass name to ${module_name}[${title}]")

5 validate_re($location, '^(.)+$', "Must pass location to ${module_name}[${title}]")

6 validate_re($thumbprint, '^(.)+$', "Must pass a certificate thumbprint to

${module_name}[${title}]")↪→
7

8 ensure_resource('file', $scripts_dir, {

9 ensure => directory

10 })

11

12 if $exportable {

13 $key_storage_flags = 'Exportable,PersistKeySet'

14 } else {

15 $key_storage_flags = 'PersistKeySet'

16 }

17

18 file { "inspect-${name}-certificate.ps1":

19 ensure => present,

20 path => "${scripts_dir}\\inspect-${name}.ps1",

21 content => template('sslcertificate/inspect.ps1.erb'),

22 require => File[$scripts_dir],

23 }

24

25 file { "import-${name}-certificate.ps1":

26 ensure => present,

27 path => "${scripts_dir}\\import-${name}.ps1",

28 content => template('sslcertificate/import.ps1.erb'),

29 require => File[$scripts_dir],

30 }

31

32 exec { "Install-${name}-SSLCert":

33 provider => powershell,

34 command => "${scripts_dir}\\import-${name}.ps1",

35 onlyif => "${scripts_dir}\\inspect-${name}.ps1",

36 logoutput => true,

37 require => [File["inspect-${name}-certificate.ps1"],

File["import-${name}-certificate.ps1"]],↪→
38 }

39 }

Listing 14: Improved version of puppet-sslcertificate module manifest.

Windows machine. Thanks to the usage of resources from another module called teigi, it

was possible to still use the sslcertificate resource without having the plain-text password

hard-coded in the manifest (see subsection 4.4.4).

The full code is depicted in annex XV and it shows the use of the teigi module and

the overridden resources. Basically, cernsslcertificate calls sslcertificate resource providing

a teigi key as password (see subsection 4.4.4) while overriding the existing file and exec
resources (see listing 14) to solve the hard-coded password problem.

Hence, the strategy was to rename the scripts produced by the sslcertificate, using

72

4.4. WTS CONFIGURATION MANAGEMENT USING PUPPET

with the “.withoutteigi” suffix, since they contain the teigi key not the certificate’s pass-

word. Figure 4.14 illustrates in a flowchart format the strategy while the next paragraphs

describe it.

First the scripts are renamed, and then they are fed to the teigi resources to generate

the final script files with the teigi key replaced by the certificate’s password. Furthermore,

the exec resource that runs the scripts was also overridden so that it could execute only

after the final scripts were produced by the teigi::secret::subfile resources.

Another important aspect is how these resources were overridden in order to not

totally disrupt the resources declared in puppet-sslcertificate, but instead “inject” the teigi
code in between the template resolution (replacement of variables) and the execution

of the final scripts. The flowchart of figure 4.15 illustrates the execution steps of the

cernsslcertificate module.

This overriding of resources was done using two features of the Puppet language:

relationship attributes and resource collectors (a.k.a. spaceship operator).

As explained in the examples of subsection 4.2.2, relationship attributes allow to

specify when the a resource should run; in this module, before and require attributes

were used to force each teigi::secret::subfile to execute before the exec resource that would

execute the scripts and after the corresponding file resources that generate the filled

template scripts (without password).

The second feature, resource collectors, enable to select a group of resources by

searching the attributes of every resource in the catalog. This search is independent

of evaluation-order (that is, it even includes resources which haven’t yet been declared at

the time the collector is written) [125]. The way to use it is through the spaceship oper-

ator: ResourceType <| condition |>. A usage example of spaceship operator can be found

in a sample of the cernsslcertificate code (depicted in listing 15) where file resources are

being collected based on their title (which have the same as each script name - stored in

variables). When collecting the resource, its properties can be overridden. In the example,

path attribute’s value is being overridden by another value - in this case the path is being

set to the scripts_dir directory’s path and the scripts are being renamed by adding the

“.withoutteigi” at the end.

4.4.4 teigi module and teigi_subfile resource

The teigi module was developed in 2013 at CERN and its goal is to use secrets (e.g.

passwords) on Puppet managed machines because the traditional Puppet mechanisms

weren’t particularly helpful, since Puppet compiles the catalog on the Puppet Master.

teigi is not just a module, it has also a service infrastructure behind that offers a cen-

trally protected key-value store for secrets. It uses the the node credentials (Kerberos)

and the hostgroup membership to authorise the access to the secrets [126]. teigi allows

to avoid hard-code the passwords by specifying a key (a.k.a. teigi_key) that has a corre-

sponding value (the real password) stored in the teigi centrally protected key-value store.

73

CHAPTER 4. CONFIGURATION MANAGEMENT

Figure 4.14: Cernsslcertificate logic
flowchart.

Figure 4.15: Cernsslcertificate execution
flowchart.

1 $inspect_script_name = "inspect-${cert_filename}-certificate.ps1"

2 $import_script_name = "import-${cert_filename}-certificate.ps1"

3

4 # Override scripts location and names defined by sslcertificate module.

5 # This will produce script files without the password in them.

6 File <| title == "${inspect_script_name}" |> {

7 path => "${scripts_dir}\\${inspect_script_name}.withoutteigi",

8 }

9

10 File <| title == "${import_script_name}" |> {

11 path => "${scripts_dir}\\${import_script_name}.withoutteigi",

12 }

Listing 15: Sample of cernsslcertificate module showing the use of resource collectors.

When using it in a manifest, the lookup and replacement of the key by the password is

only occurs at the agent when it runs applies the catalog. Before we started to configure

WTS using Puppet, it was being used mainly to configure Linux machines, so there was

no implementation of teigi’s module for Windows. In Puppet each resource can have

different implementations, written in Ruby - called providers - for different operating

systems in order to offer a unique declaration syntax, thus reducing the developer’s (or

SysAdmin’s) effort to configure different platforms. However, some properties may have

74

4.4. WTS CONFIGURATION MANAGEMENT USING PUPPET

different behaviours, depending on the OS.

In teigi’s case, there was no provider for Windows systems for a particular resource -

the sub-file resource (teigi::secret::subfile) - that could solve the password problem found

in the cernsslcertificate module. To fix it, we had to develop a new provider for Windows;

the code was, naturally, based on the existing Linux provider.

Since the Linux version of the resource also had attributes to manage file permissions

using a Unix-like notation (owner/user,group,other), it required some modifications to

work with Windows. Furthermore, the corresponding resource manifest - teigi_subfile.pp
had to be changed to contemplate the new provider, since the permissions had to be

different. The full provider code is listed in annex XVI and the improved version of the

teigi_subfile manifest is detailed in annex XVII.

4.4.5 Building Puppet types from DSC modules

Sometimes, e.g., when a new DSC module must be “imported” into Puppet, or some

DSC modules have been updated or a new version of the puppetlabs-dsc module has been

released, one must do a build to (re-)generate new Puppet types.

The puppetlabs-dsc module module was developed by Puppet (the company was previ-

ously called Puppet Labs [127]) to generate Puppet types (resources) based on PowerShell

DSC modules so that these modules can be used as Puppet resources in manifests (note

that, in Puppet, the words types and resources can be used interchangeably).

In DSC, a module usually comes with various resources; for developers, these re-

sources are similar to other Puppet resources, the only syntactic difference is that their

name and their attributes start with “dsc_”.

The puppetlabs-dsc module is delivered with some of the most used DSC modules

(from Microsoft) already included, but it offers an instruction guide on how to build new

Puppet types from DSC modules (either from Microsoft or the community) which, in the

context of puppetlabs-dsc are called custom types.

The build is to be performed on a Linux machine, and the build environment requires

some software packages - although, not all the packages listed in the guide are really

necessary; we had to figure them out by iterating the building process multiple times

until we found those really needed. The process benefits from having a purposely built

Linux host, with a clean environment, therefore we have created an OpenStack VM and

configured it (using Puppet) for that task.

However, we had some difficulties when configuring the VM its environment due

to two main reasons: 1) Ubuntu was the best distribution to support the building pro-

cess, mainly because of its package manager aptitude which had all the required software

packages; 2) the Ubuntu image was not available in CERN’s OpenStack private cloud.

Conversely, the other Linux distribution images available on CERN’s cloud (CentOS, Sci-

entific Linux and Fedora) required a more complex installation of the software packages

75

CHAPTER 4. CONFIGURATION MANAGEMENT

necessary for the build environment, and they come with pre-loaded software that is not

needed for the builds.

For those reasons and because the building process is not done frequently, we decided

to try a different approach: create a Docker container [79]. This Docker container (and the

file that creates it - Docker file) basically defines which OS image the container should be

based on, and which packages should be deployed, thus creating a clean software environ-

ment for the building process. This Docker file is described in listing 16 and the project

repository is available online [128] as a contribution to the open source community.

1 FROM ubuntu:16.04

2

3 WORKDIR /root

4

5 # Update packages

6 RUN apt-get clean && apt-get update

7

8 # Install locale to build DSC modules

9 RUN apt-get install locales

10 RUN locale-gen en_US.UTF-8

11 # Set locale environment variables

12 ENV LANG=en_US.UTF-8

13 ENV LANGUAGE=en_US.UTF-8

14 ENV LC_ALL=en_US.UTF-8

15

16 # Essential packages

17 RUN apt-get install git ruby ruby-dev build-essential libicu-dev libz-dev -y

18 RUN gem install bundler

19 RUN gem install semantic_puppet

20

21 # Non-essential but useful

22 RUN apt-get install vim tree curl -y

23

24 # Clone puppetlabs-dsc repository

25 RUN git clone https://github.com/puppetlabs/puppetlabs-dsc.git

Listing 16: Docker file to create a container to build Puppet types from DSC mod-
ules [128].

Two of the community DSC modules that were built with this module were: xSys-
temVirtualMemory and PolicyFileEditor. The first is intended to manage page file while

the second is to manage local Group Policy rules. Listing 17 shows how these DSC re-

sources are used in a puppet manifest after their puppet types have been built. Note that

dsc_cadministrativetemplatesetting is a resource part of the PolicyFileEditor module and

dsc_file is a resource pre-included in puppetlabs-dsc module.

A final note about the puppetlabs-dsc module: its design is not modular enough, since

a new version requires rebuilding any previously built DSC modules. Nevertheless, it

works well and its developers have plans to separate it in two (the module’s core code

base, and another module dedicated to custom types) [129].

76

4.4. WTS CONFIGURATION MANAGEMENT USING PUPPET

1 class hg_windows_dev::dsc_tests {

2

3 # test default puppet resource

4 file{'c:/puppet_file_resource.txt':

5 ensure => present,

6 content => 'This is a test! Using Puppet File resource.'

7 }

8

9 # test simple resource

10 dsc_file { 'create-file-DSC':

11 dsc_ensure => 'Present',

12 dsc_destinationpath => 'c:/puppet_dsc_file.txt',

13 dsc_contents => 'this is a test! Using DSC through Puppet'

14 }

15

16 # test a custom resource - Set a Group Policy rule

17 # Remote Desktop Services\Remote Desktop Session Host\Licensing\Use the specified''

18 dsc_cadministrativetemplatesetting { 'test-dsc_cAdministrativeTemplateSetting License

Server':↪→
19 dsc_keyvaluename => 'SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\LicenseServers',↪→
20 dsc_policytype => 'Machine',

21 dsc_data => 'server.test.com',

22 dsc_ensure => 'Present',

23 dsc_type => 'String',

24 }

25

26 # test a custom resource - set page file

27 dsc_xsystemvirtualmemory { 'set-pagefile-with-dsc':

28 dsc_configureoption => 'CustomSize',

29 dsc_initialsize => 2048,

30 dsc_maximumsize => 4096,

31 dsc_driveletter => 'C:'

32 }

33 }

Listing 17: Sample manifest using DSC resources

4.4.6 WTS Puppet manifests

The manifest that configures the Remote Desktop servers that compose the WTS infras-

tructure is a product of the incremental configuration settings needed and requested over

time for these machines. Hence, the manifest (see annex XVIII) shows the use of different

resources and more complex configurations composed by multiple resources.

It’s also possible to observe that there is a number of exec resources directly invoking

PowerShell code. The reason is that for some of the configurations there was no Puppet

resource to do it and they could be implemented by a few PowerShell commands inside

the exec resource; after all, this is what the exec resource is for.

One example of configurations that require multiple resources is the synchronisation

of the folder structure with special permissions (see lines 126 to 147). The goal of this

configuration is to have a folder and its contents (stored in a file server) properly sync’ed

with correct permissions on the target machines.

77

CHAPTER 4. CONFIGURATION MANAGEMENT

At first we were using just the file resource and the acl resource - a Windows-specific

module to set file permissions - since the file resource can be used to synchronise folders

and acl to set the permissions on a folder and its sub-folders. But, in practice, this two-

step strategy (involving two resources) was not working as expected: the folder structure

(including sub-files) was being copied but the permissions were not being applied to the

sub-folders, only to the top-level folder. After some experiments, we discovered that the

problem was that the acl resource was not recursively setting the permissions as it was

supposed and configured to do.

To solve this issue, we used a three-step approach: create a folder with the file resource;

apply the permissions to the folder with the acl resource; and execute a synchronisation

script with the exec resource. The reason why this approach works is because the copied

files and folders inherit the top-level folder permissions. The synchronisation script was

developed in PowerShell to verify if some file or folder has been changed w.r.t. the one

stored in the file server, and in that case deletes everything and copies them again. The

detailed script is described in annex XX.

Another manifest that we have developed, this one to configure a Remote Desktop

License server, which shows how a DSC resource can be used to set-up a Group Policy

setting, is described in annex XIX.

Furthermore, the modules described in the previous sections are present in this mani-

fest since they help manage the desired configurations for the WTS infrastructure.

78

C
h
a
p
t
e
r

5
Automation and Orchestration

This chapter starts by defining automation and orchestration, as well as discussing

some related concepts. Then, it presents two Microsoft tools, System Center Orchestrator

and Service Management Automation (SMA), both designed to leverage automation and

orchestration for Windows systems, and discusses their application to the WTS infras-

tructure. It concludes with a description of the work we have done with SMA in order to

automate some important tasks in the CERN’s WTS infrastructure.

5.1 Automation and Orchestration

Automation and orchestration are both essential in large-scale computing/cloud scenar-

ios, as they help SysAdmins to manage infrastructures in a more flexible and efficient way

by automating tasks in a programmatic way, The outcomes are: an infrastructure that can

dynamically scale; reduced operational costs, that result from an increase in SysAdmins’

efficiency, as they spend less time in manual interventions, and avoid errors.

Both concepts, Automation and Orchestration, share similar characteristics and bene-

fits, but they are nevertheless different: automation addresses the individual tasks that

must be accomplished (e.g. as formatting a disk, restarting a service or rebooting a server),

while orchestration describes the arrangement and coordination of automated tasks, re-

sulting in a consolidated process or workflow.

A (orchestration) workflow comes into play when such tasks must be done in a partic-

ular order or when the interaction with multiple entities is required (e.g. calling other ser-

vices’ APIs, registering servers in different services or storing data in multiple databases).

Orchestration is also used to perform concurrent (may be in parallel) operations on mul-

tiple targets.

79

CHAPTER 5. AUTOMATION AND ORCHESTRATION

5.1.1 Runbooks and Workflows

Runbooks [130, 131] describe a combination of procedures and operations that need to

be carried out by SysAdmins to accomplish a specific goal (e.g. install a software package,

configure a system in a specific way, perform maintenance procedures).

The runbook concept comes from a past where instructions and procedures required

to properly deploy, configure or operate a system had to be written in a physical book

form. Procedures can be, e.g., start, stop, supervise, and debug a system; but they can

also describe contingencies and the way special requests must be handled.

Runbooks are a way of describing how to manage a system, allowing SysAdmins

(other than those who created the runbook) with an appropriated level of expertise to

effectively operate it. Through runbook automation, these processes can be carried out

using software tools in a programmatic manner. In Microsoft’s terminology, runbooks are

files that contain a sequence of operations which can be described in the form of work-

flows (graphical and/or script-based) or scripts (e.g. PowerShell, Python and Bash) [132].

Microsoft’s use of the term runbook started with the introduction of the Orchestrator

product, which allows SysAdmins to describe, using graphical workflows, the operations

to be carried out (see fig. 5.1).

Figure 5.1: Orchestrator runbook example [133].

5.2 Evaluated Automation & Orchestration tools

For the WTS infrastructure, the main goals are automation and orchestration of fre-

quent operations carried out by SysAdmins, up to the point of a full provisioning of VMs

- which includes the deployment of the Puppet Agent (see fig. 5.2).

To orchestrate the WTS, two Microsoft products were evaluated: System Center Or-

chestrator and Service Management Automation. The two main reasons for this choice

80

5.2. EVALUATED AUTOMATION & ORCHESTRATION TOOLS

were: a) they were designed for Windows systems and, b) they are available through the

existing licensing contract with Microsoft.

• Create VM with Windows image

Apps
• Deploy and configure applications

Configure &
Maintain

• OS settings

Create VM

Au
to

m
at

io
n

&
 O

rc
he

st
ra

tio
n

To
ol

Configuration
Management
Framework

Figure 5.2: Provisioning steps of a VM in the WTS infrastructure.

5.2.1 System Center Orchestrator

Microsoft System Center Orchestrator (SCORCH) [13] or, in short, Orchestrator, is a

software product designed to automate repetitive or error-prone processes across the

data centre (DC), interacting, if needed, with multiple entities (both hardware, software

and services), in a way that the reliability of DC operations is improved. Orchestrator

is a standalone product but may be integrated with other services/tools to extend its

functionalities.

Orchestrator allows SysAdmins to automate, with Orchestrator runbooks, repetitive

or error-prone processes. Orchestrator runbooks are conceptually similar to scripts, in the

sense that they perform some set of operations in a sequential and repeatable manner; the

difference is that runbooks can be created by users that do not have a deep background

in scripting or programming; however, in more advanced scenarios, runbooks can also

include script components [134]. In Orchestrator, runbooks are designed through a drag-

and-drop GUI and then translated into .NET, PowerShell, or SSH commands to ultimately

automate tasks.

With Orchestrator it is possible to manage various System Center (the software suite

Orchestrator is a part of) components, as well as Active Directory, and automate tasks on

other OSs through the use of software modules (a.k.a. Integration Packs) [135].

Orchestrator’s architecture is composed of multiple components (adapted from [136]):

81

CHAPTER 5. AUTOMATION AND ORCHESTRATION

Figure 5.3: Orchestrator architecture [133].

• Runbook Designer is the GUI tool for creating and editing runbooks. A sub-

component of the Runbook Designer is the Runbook Tester, which is used to validate

the execution of runbooks.

• Orchestration Database is a Microsoft SQL Server database which stores runbooks,

their status and security delegation configuration. The database also stores the log

files and the configuration used in the Orchestrator deployment.

• Management Server is the core communication component of this architecture and

is responsible for coordinating the communication between the Runbook Designer

and the Orchestration database. There is only one Management Server per Orches-

trator deployment.

• Runbook Server is responsible for executing instances of runbooks. When a run-

book is invoked, a copy (instance) of the runbook is sent to its assigned Runbook

Server and then executed. The first installed Runbook Server is assigned the Pri-

mary role.

• Orchestrator Web service is the interface that enables applications to connect to

the Orchestrator. Typical tasks performed through this Web Service are runbook

status views, and start and stop actions.

• Orchestrator Browser Console is a Silverlight [137] supported web browser which

uses the Orchestrator Web Service to communicate with Orchestrator.

Summarising, Orchestrator helps SysAdmins to [138]:

82

5.2. EVALUATED AUTOMATION & ORCHESTRATION TOOLS

• Automate processes and enforce best practices for incident, change, and service-life-

cycle management;

• Reduce unanticipated errors and service delivery time by automating tasks across

responsibility groups within the IT organisation;

• Integrate non-Microsoft tools to enable interoperability across the data centre;

• Orchestrate tasks across systems for consistent, documented, and compliant activity.

5.2.2 Service Management Automation

Service Management Automation (SMA) is a software package delivered in the Win-

dows Azure Pack [139] - a software suite that brings Microsoft’s cloud technologies to

the data centre, to Windows Servers. Like Orchestrator, it enables SysAdmins to create,

run, and manage runbooks, helping them to automate and orchestrate IT business pro-

cesses. It is based on Azure Automation - the cloud management automation solution for

Microsoft’s Azure IaaS - but targeted to on-premises data centres.

Both SMA and Azure Automation use runbooks implemented as Windows PowerShell

Workflows whereas Orchestrator uses graphical runbooks. SMA follows the IaC approach

as it enables the management and automation of computing infrastructures using code.

A Windows PowerShell Workflow is similar to a PowerShell script but has some signif-

icant differences: a workflow is a sequence of programmed, connected steps, that perform

long-running tasks or require the coordination of multiple activities (steps) across multi-

ple managed nodes. The benefits of a workflow over a normal script include the ability

to simultaneously perform an action against multiple nodes and the ability to automati-

cally recover from failures. A more detailed explanation about PowerShell workflows is

described in section 5.3.

Windows PowerShell Workflows are well suited for executing tasks that need:

• To run for an extended period of time;

• To run in parallel for increased efficiency;

• To survive reboots and disconnected sessions;

• To be suspended and resumed without loss of data;

• To be throttled or connection-pooled in large-scale or high-availability environ-

ments.

Another feature of SMA is the Global Assets store, a central store capable of saving and

retrieving assets such as variables, credentials, certificates and connections [140]. This

store is useful to share static data among runbooks and enhances security by avoiding

sensitive information in the code (e.g. plain-text credentials).

The SMA architecture is composed of multiple components (see fig. 5.4):

83

CHAPTER 5. AUTOMATION AND ORCHESTRATION

Figure 5.4: SMA architecture [14].

• Automation web service which connects to Windows Azure Pack, authenticates

users and distributes runbook jobs to runbook workers.

• SQL Server databases that allow storage and retrieval of runbooks, runbook assets,

activities, integration modules, and runbook job information.

• Runbook workers to run the runbooks, and can be used for load balancing.

• Management Portal the web portal where runbooks are created, debugged, started

and stopped.

Dissecting runbook execution

When the SMA web service makes request - either through the Service Management

Portal or the Start-SmaRunbook PowerShell cmdlet (CLI command) - to start a runbook

execution, the web service creates a job - an runbook execution with the provided argu-

ments - and writes it to the SMA database for subsequent retrieval by one of the runbook

worker servers.

A runbook worker server runs a job, picked from the database, and remotely accesses

any computer or other resources that it needs to work with, as specified by the runbook

code (e.g., execute commands on remote computers). When a job is suspended or in-

terrupted, it may be resumed on a different runbook worker, as the state of the job is

recorded on the database server.

84

5.3. WINDOWS POWERSHELL WORKFLOWS CONCEPTS

Figure 5.5: SMA runbook execution steps [14].

SMA uses static queue partitions to load balance work among runbook workers and,

because of this, it cannot adjust its job scheduling when new workers are added, removed

or go offline. If a worker in the current deployment goes offline, it is still allocated jobs but

it cannot process them. Similarly, if a new worker, not configured in the current runbook

worker deployment - the configuration that defines all the workers that constitute the

SMA infrastructure - is started, it will not be assigned any jobs.

Choosing the Orchestration Tool for CERN

For the WTS infrastructure, the team has chosen to adopt Service Management Au-

tomation (SMA) as the tool to help manage, automate and orchestrate processes and

minimise the operational costs - mainly time and human labour - of the infrastructure.

System Center Orchestrator was considered but it had several drawbacks: a) it doesn’t

offer the same set of functionalities nor the IaC approach (and SMA does); b) Microsoft

has made public its intention to stop supporting and developing Orchestrator, as the new

designs are IaC- and PowerShell-based and target both the data centre and Microsoft’s

IaaS Azure cloud.

Another, also important reason for choosing SMA is that the WTS team members are

very familiar with the PowerShell syntax as it has been used to develop scripts that helped

automate some operational tasks.

5.3 Windows PowerShell Workflows Concepts

In order to better understand the work done with SMA and runbooks, it is important

to introduce the concepts behind Windows PowerShell Workflows, which were released

with the Azure Automation tools, for Azure, and with SMA, for on-premises data centres.

A Windows PowerShell Workflow (or just workflow, for short) is a script containing

a sequence of programmed steps that perform long-running tasks and/or require their

execution to be coordinated across multiple nodes. In terms of syntax, a workflow starts

with the workflow keyword, along with its name (also referred as the name of the runbook),

followed by the body (that looks like a PowerShell script) enclosed in braces. A workflow’s

body is composed of one or more tasks, called activities, that are executed sequentially;

85

CHAPTER 5. AUTOMATION AND ORCHESTRATION

the code in listing 18 depicts the basic structure of a Windows PowerShell Workflow with

parameters.

1 Workflow Test-Runbook

2 {

3 Param

4 (

5 [Parameter(Mandatory=<$True | $False>]

6 [Type]$<ParameterName>,

7

8 [Parameter(Mandatory=<$True | $False>]

9 [Type]$<ParameterName>

10)

11 <Activities>

12 }

Listing 18: Windows PowerShell Workflow basic structure (adapted from [141]).

A workflow (a.k.a runbook) file has a .ps1 suffix and is processed by Windows Work-

flow Foundation (WWF) “engine” [142, 143]. This shows the close ties between runbooks

and PowerShell scripts: the syntax and structure of is almost the same. And, to tighten

things up even more, there is a large set of PowerShell cmdlets that are available as ac-

tivities in WWF (however, some of these activities may be slightly different from their

corresponding cmdlets, e.g., less available options) [144]. The InlineScript construct,

however, allows any PowerShell cmdlet to be used; but their execution engine is now a

PowerShell-session process triggered by WWF’s engine (see subsection 5.3.1 for details).

In a workflow, each activity runs in its own session (a.k.a. runspace) in the workflow

process and the session management is done by Windows PowerShell Workflow itself;

activities cannot therefore share data, such as variables created in the session; however,

sessions do inherit all variables in the top-level workflow scope.

It is not possible to invoke methods in a workflow due to its design: the activities in

workflows are converted to XAML and they return serialised (XML-formatted) represen-

tations of objects. These objects have properties and property values, but the methods

are not available; nevertheless, workflows can define and then call functions which are

handled like other cmdlets. Functions may be declared the workflow scope or in Pow-

erShell modules (a.k.a. Integration Modules); functions defined in a workflow are not

visible by other SMA workflows. Code listing 19 depicts an example of a workflow calling

a function.

Integration Modules are packages containing PowerShell modules that provide sets

of cmdlets that can be imported to SMA in order to be invoked from runbooks.

There are plenty of modules developed by Microsoft and the developer community,

available in a repository called PowerShell Gallery [145]. A developer can author its own

module and import it to SMA, to automate some task or encapsulate a set of functions

that are frequently used by multiple runbooks. Once a module is imported into the

Automation server, it will be available to all Runbook Worker servers, which can then

86

5.3. WINDOWS POWERSHELL WORKFLOWS CONCEPTS

1 Workflow Test-Runbook

2 {

3 Test-Function -Name "test" # Calling function Test-Function

4

5 function Test-Function ([string] $Name) {

6 return $Name

7 }

8 }

Listing 19: Windows PowerShell Workflow calling a function.

execute it. Runbooks don’t need to explicitly include modules because, when execut-

ing a command/activity, modules are automatically loaded by the Windows PowerShell

Workflow,

5.3.1 InlineScript

The InlineScript activity runs a block of PowerShell commands in a separate, non-

Windows Workflow Foundation session, and returns its output to the workflow. While

most commands in a workflow are sent to WWF for processing, commands in an Inline-

Script block are processed by PowerShell.

The commands in an InlineScript script block run, by default, in a single session and

can share data, such as the values of variables.

The InlineScript activity supports a set of parameters, named Workflow Common

Parameters; as an example, the PSComputerName and PSCredential parameters allow to

specify that the script block must run on another host and specify the credentials to

execute the code. The syntax of this activity is depicted in the code listing 20.

1 InlineScript

2 {

3 <Script Block>

4 } <Common Parameters>

Listing 20: InlineScript syntax [141].

The most common use for the InlineScript in a workflow is to run a block of code on

another computer (see fig. 5.6). This is ideal for two scenarios where activities can’t be

used: when cmdlets in the runbook belong to the excluded set of cmdlets that can run in

workflows, or when there is a sequence of commands that must be performed locally on

the target host.

Code listing 21 shows an example of a workflow that connects to a remote host and

runs a set of commands that format any disk drive that is not initialised (raw). In this

example, a user credential is obtained from the SMA Global Asset store and is used as a

parameter to the InlineScript activity so that the code block can run with the required

87

CHAPTER 5. AUTOMATION AND ORCHESTRATION

Figure 5.6: Execution of PowerShell commands on remote computers using InlineScript
[141].

level of privileges. Inside the InlineScript block, there is a pipeline of PowerShell com-

mands that fetches the available disks in the remote computer, selects the ones that are

not initialised (raw), initialises and formats them to a NTFS filesystem.

1 Workflow Test-Runbook

2 {

3 $Cred = Get-AutomationPSCredential -Name 'adminuser'

4

5 InlineScript

6 {

7 Get-Disk | Where-Object partitionstyle -eq 'raw' |

8 Initialize-Disk -PartitionStyle MBR -PassThru |

9 New-Partition -AssignDriveLetter -UseMaximumSize |

10 Format-Volume -FileSystem NTFS -NewFileSystemLabel 'DATA' -Confirm:$false

11 } -PSComputerName 'server01.mydomain.com' -PSCredential $Cred

12 }

Listing 21: Formatting a new volume in a remote computer using an InlineScript [141].

The common parameter PSComputerName can have more than one computer name,

allowing the same code to be executed in multiple hosts in parallel. The computer names

are specified using a string separated by commas (e.g. “server01,server02,server03”).

The InlineScript activity can access variables from the workflow scope using the $Us-

ing: prefix for each variable. The output returned by the InlineScript block can be as-

signed to a variable. Code listing 22 illustrates how to pass and return values from an

InlineScript activity.

Although an InlineScript activity has many advantages it also has limitations: a) as it

is processed by the PowerShell engine, it is not possible to run other workflow activities

inside the InlineScript block; b) in case of a failure, it is not possible to resume the

InlineScript activity, only to restart it from the last checkpoint or from the beginning of

the runbook; and c) it hinders the scalability of the runbook as the execution of other

activities is held until the InlineScript block is finished.

88

5.3. WINDOWS POWERSHELL WORKFLOWS CONCEPTS

1 Workflow Test-Runbook

2 {

3 $data = "example"

4 $output = InlineScript

5 {

6 Write-Output "This is an $Using:data"

7 }

8 }

Listing 22: Passing and returning values from an InlineScript activity.

5.3.2 Checkpoints

Windows PowerShell Workflows have a persistence mechanism that helps them survive

failures by using checkpoints. A checkpoint is a snapshot of the current state of the

workflow that includes the current value for variables and any output generated to that

moment.

Checkpoint data is stored in the SMA database and preserved until another one is

taken, in which case the first checkpoint is overwritten, or until the runbook completes

(workflow finishes its execution). Checkpoints are taken by invoking the Checkpoint-
Workflow activity which immediately takes a snapshot and stores it in the database.

If a problem occurs (e.g. power outage) and the processing of the workflow is inter-

rupted, it can be resumed again near the point of interruption. A checkpoint also ensures

that an action will not occur more than once and have a negative effect - idempotency.

Also, if a runbook’s execution is suspended due to an error, when the job is resumed, it

will restart from the last checkpoint.

Listing 23 is a sample code where an error occurs after Activity2 causing the runbook

to suspend. When the job is resumed, it starts by running Activity2 since this was just

after the last checkpoint set.

1 Workflow Test-Runbook

2 {

3 <Activity1>

4 Checkpoint-Workflow

5 <Activity2>

6 <Error>

7 <Activity3>

8 }

Listing 23: Checkpoint-Workflow example.

Checkpoints should be taken after activities that may be prone to error and should

not be repeated in case of a failure. For example, if a runbook creates a VM checkpoints

could be taken both before and after the commands to create the VM, so that the if the

creation has failed, a new attempt can be made by resuming the runbook job from the

89

CHAPTER 5. AUTOMATION AND ORCHESTRATION

first checkpoint; and, if the creation was successful but the runbook job failed afterwards,

the job restart would not try to create the VM again.

There is some overhead associated to checkpoints, as they require that the data that

represents the current state to be serialised and stored in the database. Hence, if there

are operations (chunks of code) that take less time to repeat, are not critical and are

idempotent, the use of checkpoints should be carefully planned as they can negatively

impact the overall runbook execution time.

5.3.3 Parallel Execution

Windows PowerShell Workflows engine has the ability to execute a set of commands

in parallel; this feature is particularly useful in runbooks as it allows to concurrently

execute multiple actions that take a significant time to complete, increasing the overall

efficiency. For example, a runbook could provision a set of VMs in parallel, rather than

sequentially, and continue to the next action only after all VMs were provisioned.

In workflows there are two ways to execute a set of commands in parallel: using the

Parallel block or the ForEach -Parallel loop.

The Parallel block allows multiple commands inside the block to run concurrently.

As code listing 24 shows, Activity1 and Activity2 will start at the same time whereas

Activity3 will start only after both Activity1 and Activity2 have completed.

1 Workflow Test-Runbook

2 {

3 Parallel

4 {

5 <Activity1>

6 <Activity2>

7 }

8 <Activity3>

9 }

Listing 24: An example using the Parallel block.

If a set of commands needs to be executed sequentially inside the Parallel block,

then the Sequence block must be used. The Sequence script block runs in parallel with

other commands, but the commands within the block run sequentially. An example

that illustrates this behaviour is depicted in code listing 25 where Activity1, Activity2,

and Activity3 will start at the same time; Activity4 will start only after Activity3 has

completed; and Activity5 will start after all other activities have completed.

The ForEach -Parallel loop is used to process commands for each item in a collection

concurrently. The items in the collection are processed in parallel while the commands

inside the script block run sequentially. Code listing 26 shows an example using the

ForEach -Parallel loop. In the example, Activity1 will start at the same time for all items

in the collection and, for each item, Activity2 will start only after Activity1 is complete.

90

5.4. SERVICE MANAGEMENT AUTOMATION USAGE AT CERN

1 Workflow Test-Runbook

2 {

3 Parallel

4 {

5 <Activity1>

6 <Activity2>

7 Sequence

8 {

9 <Activity3>

10 <Activity4>

11 }

12 }

13 <Activity5>

14 }

Listing 25: An example using the Parallel block with a sequence of commands.

Finally, Activity3 will start only after both Activity1 and Activity2 have completed for all

items.

1 Workflow Test-Runbook

2 {

3 ForEach -Parallel ($<item> in $<collection>)

4 {

5 <Activity1>

6 <Activity2>

7 }

8 <Activity3>

9 }

Listing 26: An example using the ForEach -Parallel loop.

5.4 Service Management Automation usage at CERN

SMA was adopted and deployed by the WTS team to automate and orchestrate many

operational tasks of the infrastructure. First, SMA was deployed as a proof-of-concept

(PoC) in a single server running Windows Server 2012 R2 with all SMA components

(automation web service, database and runbook worker). In this stage, it was only used

in a development environment and a few runbooks (using Windows PowerShell Work-

flows) were developed to get familiar with the software and to explore its capabilities and

limitations, if any.

Later on, two identical infrastructures were deployed to serve two different environ-

ments: development and production. The development environment is used to develop

and test the runbooks against test servers - disposable VMs only used for testing, while

the production environment is where stable/tested runbooks are executed against the

production servers that form the WTS.

91

CHAPTER 5. AUTOMATION AND ORCHESTRATION

More recently, the development infrastructure was rebuilt using Windows Server 2016

and two VMs: one with all components, and the other as an additional runbook worker.

The reasons for this approach were: a) to adopt the latest Windows Server version, since it

provides more PowerShell cmdlets; and, b) to evaluate overall stability and performance

of SMA running under the new OS and with an additional, separate, runbook worker.

In both infrastructures, the database is not stored in a VM “local”, disk but in a Ceph

volume attached to the VM, to provide a simple form of fault tolerance (in case the VM

fails, the volume can be attached to another VM to ensure that the SMA service can

be quickly recovered) or if a server migration takes place (thus preserving the database

contents).

Although Microsoft recommends to have 3 runbook workers and a separate database

server [146], the infrastructures previously described was deployed with a minimalist

mindset by using a few but enough computing resources (VMs on OpenStack and storage

on Ceph) to run the existing runbooks.

With time, as more runbooks are developed to automate operations, if we find them

more computing intensive, more resources will be added. Despite SMA’s adoption is still

in an early stage, the plan is to scale up the infrastructure as SMA’s workload increases.

The team’s plan is to have a production infrastructure with three runbook workers and

two database servers for redundancy - a primary database server and a second fail-over

server.

5.5 Our Work with the SMA

During our stay with the CERN’s WTS team, a few runbooks were developed to increase

the level of automation and orchestration of the infrastructure; in this subsection we

describe two different contributions to this project: an Integration Module and a runbook

to create VMs for the WTS.

5.5.1 CERNOperations Integration Module

As explained in section 5.3, an Integration Module is a PowerShell module that defines

functions that can be imported into SMA and used in runbooks.

The CERNOperations module contains functions that perform many different oper-

ations and communicate with different systems. The module performs operations such

as testing if a server is reachable (connect to host), send notification e-mails, delete a VM

or a volume on the OpenStack cloud infrastructure, check status and trigger actions on a

VM’s CMF agent, etc.. The majority of these functions do interact with target hosts, either

to retrieve some data, or perform some operation; as such, they are a good showcase of

the orchestration capabilities of SMA.

As the module’s code is quite long, it’s impracticable to discuss everything here, so

please refer to annex XXI. Instead, we focus on some of the functions that are relevant to

92

5.5. OUR WORK WITH THE SMA

understand the create-vm-with-volume runbook which, as the name implies, creates a VM

with an attached volume.

WaitForVM

We start by describing the WaitForVM function which waits for a Windows VM hosted

on OpenStack to finish its provisioning process and be remotely accessible. This function

was designed to encapsulate the loop that waits for a VM while it is being provisioned,

so that runbooks like create-vm-with-volume and others in the future can use it before

starting to invoke commands on the VM.

The function code has two phases (see fig. 5.8, each one characterised by a busy-

waiting loop: the first loop waits for the VM to reach OpenStack’s running state (a.k.a.

“ACTIVE” state), after having been successfully created and powered up; the second loop

waits for the Windows OS to be fully installed and able to service remote commands

through WinRM. Both loops check the status of the VM’s OpenStack and WinRM states

and, if they haven’t reached the desired level, sleep for a given time and retry.

In the first phase, the current state of the VM is retrieved using a CLI-based command

that calls OpenStack’s API. This is accomplished through services made available by the

CERN’s dedicated management cluster, called AIADM (which stands for Agile Infrastruc-

ture Administration), which has all tools (e.g., a set of Python CLIs developed at CERN

called ai-tools [147]) that interact with other services’ APIs (like OpenStack, Foreman and

Puppet) and administer managed servers in the infrastructure.

Hence, to make a request to OpenStack from the PowerShell function, the Invoke-
SSHCommand cmdlet is used to invoke a command on an AIADM server through SSH.

Once the administration server executes the command, the result is returned by the

Invoke-SSHCommand (see fig. 5.7).

Note: the Invoke-SSHCommand cmdlet is part of a Integration Module called SSH

[148] that had to be imported into SMA.

Figure 5.7: Making a request to OpenStack through AIADM servers.

The commands that our module invoke on AIADM perform both a set and a get: they

set the OpenStack project where the VM is located, and get the VM’s state.

In the second phase, the Test-WSMan cmdlet is used to check if the VM is reachable

through WinRM. By default, Windows Server (since version 2012) have this service

enabled, thus it makes sense to wait for the operating system to be fully deployed and

WinRM service ready, so that the VM can execute commands sent through WinRM. The

93

CHAPTER 5. AUTOMATION AND ORCHESTRATION

function returns a null object in case the machine is not reachable via WinRM, otherwise

an object with the WinRM state is returned.

Figure 5.8: Flowchart of the WaitForVM function.

WaitForCMF

The WaitForCMF function waits for the CMF agent to finish installing all the software

applications on the deployed Windows server VM. It is, therefore, similar to WaitForVM.

As previously referred in section 2.3.4, a) CMF provides a way of, based on computer

groups (a.k.a. NSCs), distributing and installing applications on Windows systems, and

b) Windows images available on CERN’s OpenStack have the CMF agent pre-installed

so that, after the OS is installed and the VM boots up, applications can be installed

automatically.

As the CMF agent reports all the status changes to the CMF web service, we use the

web service SOAP-based API, in particular the CMFCompleted method, to ask for the last

reported status of the VM.

Therefore, similarly to WaitForVM, a busy-wait loop is used to wait until the CMF

agent reports that all the pending installations were concluded (see fig. 5.9). Figure 5.10

illustrates the request made from WaitForCMF function’s code to the CMF web service to

get the VM’s CMF agent status report.

94

5.5. OUR WORK WITH THE SMA

Figure 5.9: Flowchart of the WaitForCMF function.

Figure 5.10: Contact CMF Web Service to get the status of a VM’s CMF Agent.

DeleteVM

The DeleteVM function deletes a VM on OpenStack and all its information on Foreman

and Puppet DB. It invokes the ai-kill command on AIADM to trigger the deletion process:

kills a VM on CERN’s OpenStack private cloud, then deletes all its data on Foreman and

Puppet DB (see fig. 5.11).

Figure 5.11: Invoking ai-kill to delete Puppet-managed servers on OpenStack.

95

CHAPTER 5. AUTOMATION AND ORCHESTRATION

5.5.2 Runbook create-vm-with-volume

One of the most frequent tasks the WTS team has to do is the provisioning of new VMs

either to prepare new clusters or to replace existing ones. For this reason a major goal

was to develop a runbook that automates the creation of Windows server VMs for the

WTS infrastructure (see fig. 5.12); that was accomplished with the create-vm-with.volume
runbook, which creates a single Windows VM on CERN’s OpenStack, attaches a secondary

volume, and ensures that Puppet is running.

• Create VM with Windows image

Apps
• Deploy and configure applications

Configure &
Maintain

• OS settings

Create VM

Au
to

m
at

io
n

&
 O

rc
he

st
ra

tio
n

To
ol

Configuration
Management
Framework

Figure 5.12: Orchestrating the provisioning process of a VM in the WTS infrastructure.

The create-vm-with-volume runbook opens an SSH session to an AIADM server and

invokes the ai-bs-vm command from the ai-tools toolset, to create a Puppet-managed VM

on OpenStack. The ai-bs-vm-command creates a VM on OpenStack and registers it on

Foreman within a given hostgroup, thus defining where the VM’s Puppet agent has to

fetch configurations.

Furthermore, this command takes multiple arguments, but we highlight just the ones

we use: the Foreman hostgroup; the responsible user/group for the VM; a string of Open-

Stack information about the VM - project where the VM has to be created, availability

zone, flavor (hardware), OS image to install, and type and size of the volume to be created

and attached; and some metadata that specifies the CMF NSCs (groups) the VM must

belong in order to have the desired software applications.

The runbook’s code can be found in annex XXII, while the flowchart of figure 5.13

depicts all the operations performed by the runbook:

1. Create a VM using ai-bs-vm tool with the input arguments;

2. Check if any errors occurred when creating the VM; if so, delete the VM and its

volume using the delete functions of CERNOperations’ module;

3. Perform a Checkpoint-Workflow to avoid re-creating the VM in case SMA fails;

96

5.5. OUR WORK WITH THE SMA

4. Wait for VM to be up and able to service commands, using the WaitForVM function;

5. Wait for the CMF agent to finish the installation of all the applications, using the

WaitForCMF function;

6. Perform a Checkpoint-Workflow before restarting the VM;

7. Restart the VM to reload all the operating system services and install the SSL cer-

tificates (generated by CERNs Certification Authority and distributed by Active

Directory). The Restart-Computer cmdlet is used to restart the VM and wait for it to

boot up and be reachable through WinRM;

8. Perform a Checkpoint-Workflow before formatting the attached volume;

9. Format the attached volume to NTFS and label it “DATA”;

10. Check if Puppet could find the SSL certificates; if not, fix the Puppet installation

using the FixPuppetCert function from CERNOperations’ module;

11. Restart Puppet Agent service to reload Puppet and force it to fetch configurations;

12. Notify all the WTS SysAdmins through e-mail that the VM has been created, is

running, and Puppet will apply the desired configurations.

Before we had automated this task, it could take up to three hours just to install

and configure applications on a single VM, and that was without performing any OS

configuration; to that amount of time one has to add about thirty minutes, the time

required to create the VM itself on OpenStack.

The team usually creates VMs in small batches (two or three) and then joins them to

the corresponding clusters. SysAdmins, as humans in general, cannot multitask different

jobs - here, creating VMs, installing and configuring applications - that require a lot of

attention to details, or else mistakes do happen - and those are usually costly to recover

from.

In this scenario, the complete provisioning, configuration and validation of a batch

of servers was taking between one to two days (eight hour work days) - the validation

procedure was a manual one, and required additional efforts to check if the required

configurations and applications were in place. Thanks to the use of Puppet and CMF, this

validation is now mostly done when new configurations are applied - either in testing

phase or the first time they are used in production.

Thanks to the use of this runbook we were able to reduce the time to fully provision

and configure - with Puppet and CMF - a VM to two hours and a half, including OS

configurations. And if, after VM’s creation, it happens that some operations cannot be

automated, the time spent by SysAdmins on those tasks is minimal, when compared to

the savings brought in by automation.

97

CHAPTER 5. AUTOMATION AND ORCHESTRATION

Overall, the runbook helped reduce both SysAdmin’s manual interventions, error-

prone operations and the total provisioning and configuration time of the WTS’ VMs.

Although the create-vm-with-volume runbook only creates one VM at the time, it can

be executed multiple times to create as many VMs as desired without SysAdmin inter-

vention. As future work, another runbook may be developed to create multiple VMs

simultaneously by calling this one, e.g., in a ForEach -Parallel loop.

Runbooks such as create-vm-with-volume illustrate the automation and orchestration

capabilities of SMA, as they perform multiple operations on different systems to accom-

plish a single goal.

98

5.5. OUR WORK WITH THE SMA

Figure 5.13: Flowchart of the create-vm-with-volume runbook.

99

C
h
a
p
t
e
r

6
Conclusions & Future Work

6.1 Conclusions

With a team as small as three people, an infrastructure with the size of the WTS

(about 150 servers and growing) cannot be effectively managed and maintained without

the use of software tools that enable the automation of many operational tasks.

CERN’s IT Department tries to adopt free and open source tools as much as possible

to reduce costs, although it is not always an easy decision the choice between commercial

(sometimes referred as enterprise versions), mostly proprietary versions of the tools, and

free, open-source versions; IT managers have to analyse not only the product features, but

the costs associated, including support and documentation. Sometimes it pays off to use

enterprise tools because they have better support (help from specialised professionals),

compatibility, integration, documentation and are more easily deployed and require less

man-power (development or other tasks).

Since the IT Department started its Agile Infrastructure project, free and open source

tools have been chosen, such as OpenStack (to operate CERN data centres and provide a

private IaaS) and Puppet (to automate and manage configurations of VMs).

Although Puppet was the initial choice for the SCM tool, it was chosen at a time where

there was essentially only another SCM tool, Chef, that provided the required features to

manage CERN’s cloud infrastructure. Both tools, Puppet and Chef were initially released

to manage Linux/UNIX configurations; but, recently, they have been extended to support

Windows systems as well.

Things have now changed and, more recently, other tools have appeared in this area

of SCM and some of them are based on a different approach, while also supporting

configuration management of Windows systems.

101

CHAPTER 6. CONCLUSIONS & FUTURE WORK

Therefore, we explored two other configuration management tools - Ansible and Pow-

erShell DSC - to see if Puppet was still the best tool to automate and manage configura-

tions on the Windows servers that compose the WTS infrastructure. As a result of our

research and experimentation, we found that:

• Ansible is the easiest to set up and use, thanks to its design and the simplicity

of the YAML language, but doesn’t ensure compliance “out-of-the-box” - periodic

configuration runs to avoid drifts from the desired configuration;

• PowerShell DSC, Microsoft’s solution, offers plenty of resources designed to manage

Windows systems. Based on PowerShell - a scripting language commonly used by

Windows SysAdmins - it does not, however, provide the same level of management

of hostgroups and configurations as the other SCM tools;

• Puppet, on the other hand, uses a language that is more difficult to learn, and its

set up is more complex; but it has demonstrated to be a mature tool that is able to

ensure compliance and manage configurations properly.

In the end, the WTS team chose to take advantage of the Puppet-based configuration

management infrastructure already available at CERN, as it already has a dedicated

management team which also provides support for other CERN users.

As consequence, Puppet manifests were developed to configure the Windows servers

in the WTS infrastructure; these manifests had a good impact in the WTS team’s effort to

configure servers, as they greatly reduced manual configuration tasks and time spent to

deploy servers with the desired configurations. In addition, multiple improvements were

done in a few Puppet modules, and that has helped quite substantially the development

of Puppet manifests.

Despite the disparity, in Puppet, between the number of modules designed for Linux

and Windows, the use of the puppetlabs-dsc module, which enables the integration of

DSC resources already available to manage Windows systems, greatly reduces that above-

mentioned disparity. That integration is not easy but, nevertheless, it does provide a way

of managing resources using the same syntax as in Puppet manifests, and no modules are

required to be installed on the target machines as the agent downloads those required

on-demand from the master.

Configuration management, “per se”, is not enough to deliver the level of automation

needed for the WTS infrastructure, as it just provides an automated way of configuring

many servers. In order to perform maintenance tasks and provision customised Windows

Server machines, another tool was needed for the automation and orchestration. So,

Microsoft SMA was selected as it is based on PowerShell and enables the development of

scripts that can perform actions in multiple machines at once.

By using SMA, we were able to create PowerShell workflows to provision Windows

Server machines and execute some initial configuration tasks (done only once), such as

installing the Puppet agent, or formatting a secondary storage volume. SMA provides

102

6.2. FUTURE WORK

many features that make it a great tool for automation and orchestration tasks of Windows

machines, such as: the capability of running very long jobs with checkpoints, so they can

be resumed in case of an error that causes the job to be suspended; remote execution of

commands and script-blocks (blocks of code) on multiple machines in parallel; detailed

reporting and logging of the job’s execution; a centralised credential storage (to avoid

hard-coded passwords).

Before we started this project, it could take up to three hours just to to configure and

install applications on a single server, depending on the server’s required configurations,

plus the time needed to create a VM instance on OpenStack, which takes about thirty

minutes. The normal scenario is to create batches of two to three servers simultaneously

and then perform the required configurations and installations manually. As a SysAdmin

cannot multitask as computers do, he/she just performs operations in some machines

while waiting for others to finish. In this scenario, the complete provisioning, configura-

tion and validation of a batch of servers was taking between one to two days (eight hour

work days).

With the adoption of automation technologies, following a DevOps methodology, we

were able to reduce the 3,5 hours to roughly two hours and a half, for a single machine,

including the VM creation and the configuration (carried out by Puppet). Even if some

tasks still have to be done manually or require SysAdmin interaction, the time spent on

such tasks is minimal when compared to the time needed to perform repetitive tasks. The

key advantage is that multiple identical servers can be provisioned simultaneously in an

automated way.

Furthermore, in a large organisation where there are frequent staff changes (new staff
members and departure of others) and small teams have to manage large infrastructures,

like the WTS, it’s crucial to have “recipes” to ensure that repetitive tasks are done properly

and in an automated manner without relying on a specific person’s knowledge.

6.2 Future Work

Initially, the vision to leverage automation and orchestration to the WTS was based

on the integration of multiple software technologies: Puppet for configuration manage-

ment and SMA as a central component to automate tasks that involved integration with

other tools like Microsoft SCOM, for alarms and monitoring, and HAProxy to redirect

the RDP connections when some servers are being decommissioned or maintained.

This initial vision for the WTS is reflected in a conference poster [149] where some use

cases for SMA and PowerShell workflows were presented: actively check the connectivity

of Remote Desktop servers and reboot them in case of no response; clean the profiles

folder of a server when its disk has low space available (triggered by a SCOM alarm);

execution of maintenance tasks such as installing updates and patches. The last two cases

also illustrate the needed integration between SMA and HAProxy, as nodes need to be set

to “drain” mode so that no RDP traffic is directed to them.

103

CHAPTER 6. CONCLUSIONS & FUTURE WORK

No PowerShell workflows have been yet developed to integrate SCOM and HAProxy

and execute the tasks described above; hence, there is still room for further progress in

this area.

Furthermore, the use of SMA is still a work-in-progress, as we are still exploring it and

developing workflows to automate and orchestrate tasks. Its production infrastructure

also needs to be scaled up as it does not have the number of runbook workers recom-

mended by Microsoft - three, while we are using only one due to low workload, but more

is expected in the near future; and a secondary database server is planned to provide

redundancy for the data stored by SMA, in case of failure.

104

Bibliography

[1] K. Morris. Infrastructure as code: managing servers in the cloud. O’Reilly Media,

2016. isbn: 9781491924358. url: https://cds.cern.ch/record/2197640/

export/hx?ln=en.

[2] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer. “What is DevOps? A Sys-

tematic Mapping Study on Definitions and Practices.” In: Proceedings of the Sci-
entific Workshop Proceedings of XP2016 on - XP ’16 Workshops (2016), pp. 1–11.

issn: 07421222. doi: 10.1145/2962695.2962707. url: http://dl.acm.org/

citation.cfm?doid=2962695.2962707.

[3] A. Dyck, R. Penners, and H. Lichter. Towards Definitions for Release Engineering and
DevOps. 2015. url: https://www2.swc.rwth-aachen.de/docs/RELENG2015/

DevOpsVsRelEng.pdf.

[4] L. E. Lwakatare, P. Kuvaja, and M. Oivo. “Dimensions of devOps.” In: Lecture
Notes in Business Information Processing 212 (2015), pp. 212–217. issn: 18651348.

doi: 10.1007/978-3-319-18612-2_19.

[5] F. Erich, C. Amrit, and M. Daneva. “Report: DevOps Literature Review.” In:

(2014). doi: 10.13140/2.1.5125.1201. url: https.

[6] P. Debois. “Devops: A Software Revolution in the Making?” In: Cutter IT Jour-
nal 24.8 (2011), pp. 1–41. issn: 15227383. url: https://www.cutter.com/

article/devops-software-revolution-making-416511.

[7] R. Pressman. Software Engineering: A Practitioner’s Approach. 7th ed. New York,

NY, USA: McGraw-Hill, Inc., 2010. isbn: 0073375977, 9780073375977.

[8] Puppet. Puppet. url: https://puppet.com/product/how- puppet- works

(visited on 01/30/2017).

[9] Chef. Chef. url: https://www.chef.io/chef/ (visited on 01/30/2017).

[10] Microsoft. Windows PowerShell Desired State Configuration Overview | Microsoft
Docs. url: https://docs.microsoft.com/en-us/powershell/dsc/overview

(visited on 06/20/2017).

[11] L. Macvittie. Automation versus Orchestration. 2014. url: https://devops.com/

automation-versus-orchestration/ (visited on 01/30/2017).

105

https://cds.cern.ch/record/2197640/export/hx?ln=en
https://cds.cern.ch/record/2197640/export/hx?ln=en
https://doi.org/10.1145/2962695.2962707
http://dl.acm.org/citation.cfm?doid=2962695.2962707
http://dl.acm.org/citation.cfm?doid=2962695.2962707
https://www2.swc.rwth-aachen.de/docs/RELENG2015/DevOpsVsRelEng.pdf
https://www2.swc.rwth-aachen.de/docs/RELENG2015/DevOpsVsRelEng.pdf
https://doi.org/10.1007/978-3-319-18612-2_19
https://doi.org/10.13140/2.1.5125.1201
https
https://www.cutter.com/article/devops-software-revolution-making-416511
https://www.cutter.com/article/devops-software-revolution-making-416511
https://puppet.com/product/how-puppet-works
https://www.chef.io/chef/
https://docs.microsoft.com/en-us/powershell/dsc/overview
https://devops.com/automation-versus-orchestration/
https://devops.com/automation-versus-orchestration/

BIBLIOGRAPHY

[12] B. Saille. Automation – Orchestrator Back to Basics – Use Cases. 2013. url: https:

//blogs.technet.microsoft.com/privatecloud/2013/08/12/automation-

orchestrator-back-to-basics-use-cases-spotlight-1-of-5/ (visited on

01/30/2017).

[13] Microsoft. Orchestrator. url: https://technet.microsoft.com/en-us/system-

center-docs/orch/orchestrator (visited on 02/09/2017).

[14] Microsoft. Service Management Automation - Architecture. 2016. url: https:

//technet.microsoft.com/en-us/library/dn469259(v=sc.12).aspx (visited

on 02/14/2017).

[15] P Andrade, T Bell, J van Eldik, G McCance, B Panzer-Steindel, M Coelho dos

Santos, S Traylen and, and U Schwickerath. “Review of CERN Data Centre Infras-

tructure.” In: Journal of Physics: Conference Series 396.4 (2012), p. 042002. doi: 10.

1088/1742-6596/396/4/042002. url: http://stacks.iop.org/1742-6596/

396/i=4/a=042002?key=crossref.23670cb0bdd5ed06ad32f65944ef7af2.

[16] B Jones, G McCance, S Traylen, and N. B. Arias. “Scaling Agile Infrastructure to

People.” In: Journal of Physics: Conference Series 664.2 (2015), p. 022026. issn:

1742-6588. doi: 10.1088/1742-6596/664/2/022026. url: http://stacks.iop.

org/1742-6596/664/i=2/a=022026?key=crossref.e23da1c5d6a28483958f807976be7189.

[17] OpenStack. OpenStack. url: https://www.openstack.org/ (visited on 02/09/2017).

[18] CERN. CERN - OpenStack. url: https://clouddocs.web.cern.ch/clouddocs/

overview/overview.html (visited on 02/09/2017).

[19] Microsoft. Remote Desktop Services Overview. url: https://technet.microsoft.

com/en-us/library/cc725560(v=ws.11).aspx (visited on 01/14/2017).

[20] P. Mell and T. Grance. “The NIST definition of cloud computing.” In: NIST Special
Publication 145 (2011), p. 7. issn: 00845612. doi: 10.1136/emj.2010.096966.

arXiv: 2305-0543. url: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-145.pdf.

[21] B. Jones. “Using OpenStack and Puppet to deliver IaaS at CERN.” In: Nuclear
Electronics & Computing. 2013. url: nec2013.jinr.ru/files/12/openstack-

nec2013.pptx.

[22] OpenStack. OpenStack Docs: Introduction to OpenStack. url: https://docs.

openstack.org/security-guide/introduction/introduction-to-openstack.

html (visited on 09/07/2017).

[23] CERN. CERN Data Centre. url: http://information-technology.web.cern.

ch/about/computer-centre (visited on 01/14/2017).

[24] OpenStack. OpenStack Docs: Block Storage. url: https://docs.openstack.org/

security-guide/block-storage.html (visited on 09/09/2017).

106

https://blogs.technet.microsoft.com/privatecloud/2013/08/12/automation-orchestrator-back-to-basics-use-cases-spotlight-1-of-5/
https://blogs.technet.microsoft.com/privatecloud/2013/08/12/automation-orchestrator-back-to-basics-use-cases-spotlight-1-of-5/
https://blogs.technet.microsoft.com/privatecloud/2013/08/12/automation-orchestrator-back-to-basics-use-cases-spotlight-1-of-5/
https://technet.microsoft.com/en-us/system-center-docs/orch/orchestrator
https://technet.microsoft.com/en-us/system-center-docs/orch/orchestrator
https://technet.microsoft.com/en-us/library/dn469259(v=sc.12).aspx
https://technet.microsoft.com/en-us/library/dn469259(v=sc.12).aspx
https://doi.org/10.1088/1742-6596/396/4/042002
https://doi.org/10.1088/1742-6596/396/4/042002
http://stacks.iop.org/1742-6596/396/i=4/a=042002?key=crossref.23670cb0bdd5ed06ad32f65944ef7af2
http://stacks.iop.org/1742-6596/396/i=4/a=042002?key=crossref.23670cb0bdd5ed06ad32f65944ef7af2
https://doi.org/10.1088/1742-6596/664/2/022026
http://stacks.iop.org/1742-6596/664/i=2/a=022026?key=crossref.e23da1c5d6a28483958f807976be7189
http://stacks.iop.org/1742-6596/664/i=2/a=022026?key=crossref.e23da1c5d6a28483958f807976be7189
https://www.openstack.org/
https://clouddocs.web.cern.ch/clouddocs/overview/overview.html
https://clouddocs.web.cern.ch/clouddocs/overview/overview.html
https://technet.microsoft.com/en-us/library/cc725560(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/cc725560(v=ws.11).aspx
https://doi.org/10.1136/emj.2010.096966
http://arxiv.org/abs/2305-0543
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
nec2013.jinr.ru/files/12/openstack-nec2013.pptx
nec2013.jinr.ru/files/12/openstack-nec2013.pptx
https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html
https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html
https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html
http://information-technology.web.cern.ch/about/computer-centre
http://information-technology.web.cern.ch/about/computer-centre
https://docs.openstack.org/security-guide/block-storage.html
https://docs.openstack.org/security-guide/block-storage.html

BIBLIOGRAPHY

[25] OpenStack. HypervisorSupportMatrix - OpenStack. url: https://wiki.openstack.

org/wiki/HypervisorSupportMatrix (visited on 09/10/2017).

[26] KVM. KVM. url: http://www.linux-kvm.org/page/Main_Page (visited on

02/09/2017).

[27] Xen Project. The Xen Project. url: https://www.xenproject.org/ (visited on

09/10/2017).

[28] Microsoft. Hyper-V. url: https://technet.microsoft.com/en-us/library/

mt169373(v=ws.11).aspx (visited on 02/09/2017).

[29] VMWare. ESXi | Bare Metal Hypervisor | VMware. url: https://www.vmware.

com/products/esxi-and-esx.html (visited on 09/10/2017).

[30] E. Bugnion, J. Nieh, D. Tsafrir, and D. Tsafrir. Hardware and software support for
virtualization. Morgan & Claypool, 2017, p. 186. isbn: 9781627056885. url:

https://cds.cern.ch/record/2269601?ln=en.

[31] G. J. Popek and R. P. Goldberg. “Formal requirements for virtualizable third

generation architectures.” In: Communications of the ACM 17.7 (1974), pp. 412–

421. issn: 01635980. doi: 10.1145/957195.808061.

[32] Red Hat. Ceph storage. url: https://ceph.com/ceph-storage/ (visited on

02/09/2017).

[33] T Bell, B Bompastor, S Bukowiec, J Castro Leon, M. K. Denis, J van Eldik, M. F.

Lobo, L. F. Alvarez, D. F. Rodriguez, A Marino, B Moreira, B Noel, T Oulevey, W

Takase, A Wiebalck, and S Zilli. “Scaling the CERN OpenStack cloud.” In: Journal
of Physics: Conference Series 664.2 (2015), p. 022003. issn: 1742-6588. doi: 10.

1088/1742-6596/664/2/022003. url: http://stacks.iop.org/1742-6596/

664/i=2/a=022003?key=crossref.4c93e737e9bf77d7d92793f48ecc6e7f.

[34] B. Moreira. “CERN Cloud Architecture.” In: Ops Midcycle - High Performance
Computing with OpenStack - Manchester. 2016.

[35] B. Moreira. “Unveiling CERN Cloud Architecture.” In: Openstack Design Summit
– Tokyo, 2015. 2015.

[36] B. Moreira. “Deep Dive into the CERN Cloud Infrastructure.” In: Openstack Design
Summit - Hong Kong, 2013. 2013. url: http://www.openstack.org/assets/

presentation-media/Deep-Dive-into-the-CERN-Cloud-Infrastructure.

pdf.

[37] Microsoft. Remote Desktop Protocol (Windows). url: https://msdn.microsoft.

com/en-us/library/aa383015(v=vs.85).aspx (visited on 01/14/2017).

[38] Microsoft. Remote Desktop Protocol (RDP). url: https://support.microsoft.

com/en-us/help/186607/understanding-the-remote-desktop-protocol-

rdp (visited on 01/14/2017).

107

https://wiki.openstack.org/wiki/HypervisorSupportMatrix
https://wiki.openstack.org/wiki/HypervisorSupportMatrix
http://www.linux-kvm.org/page/Main_Page
https://www.xenproject.org/
https://technet.microsoft.com/en-us/library/mt169373(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/mt169373(v=ws.11).aspx
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://cds.cern.ch/record/2269601?ln=en
https://doi.org/10.1145/957195.808061
https://ceph.com/ceph-storage/
https://doi.org/10.1088/1742-6596/664/2/022003
https://doi.org/10.1088/1742-6596/664/2/022003
http://stacks.iop.org/1742-6596/664/i=2/a=022003?key=crossref.4c93e737e9bf77d7d92793f48ecc6e7f
http://stacks.iop.org/1742-6596/664/i=2/a=022003?key=crossref.4c93e737e9bf77d7d92793f48ecc6e7f
http://www.openstack.org/assets/presentation-media/Deep-Dive-into-the-CERN-Cloud-Infrastructure.pdf
http://www.openstack.org/assets/presentation-media/Deep-Dive-into-the-CERN-Cloud-Infrastructure.pdf
http://www.openstack.org/assets/presentation-media/Deep-Dive-into-the-CERN-Cloud-Infrastructure.pdf
https://msdn.microsoft.com/en-us/library/aa383015(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383015(v=vs.85).aspx
https://support.microsoft.com/en-us/help/186607/understanding-the-remote-desktop-protocol-rdp
https://support.microsoft.com/en-us/help/186607/understanding-the-remote-desktop-protocol-rdp
https://support.microsoft.com/en-us/help/186607/understanding-the-remote-desktop-protocol-rdp

BIBLIOGRAPHY

[39] HAProxy. HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer.

url: http://www.haproxy.org/#desc (visited on 02/09/2017).

[40] HAProxy. HAProxy version 1.7.2 - Starter Guide. url: http://cbonte.github.

io/haproxy-dconv/1.7/intro.html (visited on 02/09/2017).

[41] M. Anicas. HAProxy - An Introduction to HAProxy and Load Balancing Concepts
| DigitalOcean. 2014. url: https : / / www . digitalocean . com / community /

tutorials/an-introduction-to-haproxy-and-load-balancing-concepts#

types-of-load-balancing (visited on 02/09/2017).

[42] Keepalived. Keepalived for Linux. url: http://www.keepalived.org/ (visited on

02/09/2017).

[43] J. Ellingwood. Keepalived - How To Set Up Highly Available Web Servers with
Keepalived and Floating IPs on Ubuntu 14.04 | DigitalOcean. 2015. url: https:

//www.digitalocean.com/community/tutorials/how-to-set-up-highly-

available-web-servers-with-keepalived-and-floating-ips-on-ubuntu-

14-04 (visited on 02/11/2017).

[44] M. Turnbull. Open Source Windows service for reporting server load back to HAProxy
(load balancer feedback agent). url: http://www.loadbalancer.org/blog/open-

source-windows-service-for-reporting-server-load-back-to-haproxy-

load-balancer-feedback-agent (visited on 02/09/2017).

[45] Loadbalancer.org. HAProxy Feedback Agent. url: https://github.com/loadbalancer-

org/windows_feedback_agent (visited on 02/09/2017).

[46] Microsoft. Operations Manager Key Concepts. url: https://technet.microsoft.

com/library/hh230741.aspx.

[47] K. Greene. Getting started with Microsoft system center operations manager : a begin-
ner’s guide to help you design, deploy and administer your Systems Center Operations
Manager 2016 and 2012 R2 environments. Packt Publ., 2016. isbn: 9781785289743.

[48] Microsoft. Active Directory. url: https : / / msdn . microsoft . com / en - us /

library/bb742424.aspx#XSLTsection122121120120 (visited on 01/30/2017).

[49] B. Desmond. Active directory. O’Reilly Media, 2013, p. 709. isbn: 9781449320027.

[50] S. Reimer. Windows server 2008 Active Directory resource kit. Microsoft Press, 2008,

p. 827. isbn: 0735625158.

[51] Solveme.net. What is Active Directory Directory Service in details? ADDS. url:

http://solveme.net/index.php/active-directory.html (visited on 01/30/2017).

[52] Microsoft. JScript (ECMAScript3). url: https://msdn.microsoft.com/en-

us/library/hbxc2t98(v=vs.85).aspx (visited on 02/12/2017).

[53] Microsoft. What Is VBScript? url: https://msdn.microsoft.com/en- us/

library/1kw29xwf.aspx (visited on 02/12/2017).

108

http://www.haproxy.org/#desc
http://cbonte.github.io/haproxy-dconv/1.7/intro.html
http://cbonte.github.io/haproxy-dconv/1.7/intro.html
https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts#types-of-load-balancing
https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts#types-of-load-balancing
https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts#types-of-load-balancing
http://www.keepalived.org/
https://www.digitalocean.com/community/tutorials/how-to-set-up-highly-available-web-servers-with-keepalived-and-floating-ips-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-highly-available-web-servers-with-keepalived-and-floating-ips-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-highly-available-web-servers-with-keepalived-and-floating-ips-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-highly-available-web-servers-with-keepalived-and-floating-ips-on-ubuntu-14-04
http://www.loadbalancer.org/blog/open-source-windows-service-for-reporting-server-load-back-to-haproxy-load-balancer-feedback-agent
http://www.loadbalancer.org/blog/open-source-windows-service-for-reporting-server-load-back-to-haproxy-load-balancer-feedback-agent
http://www.loadbalancer.org/blog/open-source-windows-service-for-reporting-server-load-back-to-haproxy-load-balancer-feedback-agent
https://github.com/loadbalancer-org/windows_feedback_agent
https://github.com/loadbalancer-org/windows_feedback_agent
https://technet.microsoft.com/library/hh230741.aspx
https://technet.microsoft.com/library/hh230741.aspx
https://msdn.microsoft.com/en-us/library/bb742424.aspx#XSLTsection122121120120
https://msdn.microsoft.com/en-us/library/bb742424.aspx#XSLTsection122121120120
http://solveme.net/index.php/active-directory.html
https://msdn.microsoft.com/en-us/library/hbxc2t98(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/hbxc2t98(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/1kw29xwf.aspx
https://msdn.microsoft.com/en-us/library/1kw29xwf.aspx

BIBLIOGRAPHY

[54] Microsoft. Microsoft PowerShell. url: https://msdn.microsoft.com/en-us/

powershell/mt173057.aspx (visited on 02/09/2017).

[55] Microsoft. Windows Management Instrumentation (Windows). url: https://

msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx (visited on

01/30/2017).

[56] M. Hester and S. Dutkiewicz. Automating Microsoft Windows Server 2008 R2 with
Windows Powershell 2.0. Wiley Pub, 2011, p. 412. isbn: 9781118013861.

[57] Microsoft. About WMI (Windows). url: https://msdn.microsoft.com/en-

us/library/aa384642(v=vs.85).aspx (visited on 09/17/2017).

[58] CERN. CERN CMF - Help. url: https://cmf.web.cern.ch/cmf/Help/?kbid=

001001#1.

[59] Microsoft. Systems Management Server (SMS) (Windows Embedded Standard 2009).
url: https://msdn.microsoft.com/en-us/library/bb521519(v=winembedded.

51).aspx (visited on 02/14/2017).

[60] W. W. Rovce. “MANAGING THE DEVELOPMENT OF LARGE SOFTWARE SYS-

TEMS.” In: Proceedings of IEEE WESCON (1970). url: http://www.cs.umd.edu/

class/spring2003/cmsc838p/Process/waterfall.pdf.

[61] Tutorials Point. SDLC Waterfall Model. url: https://www.tutorialspoint.com/

sdlc/sdlc_waterfall_model.htm (visited on 07/01/2017).

[62] J. Villa and K. Bauer. Waterfall Model – TC1019 Fall 2016. 2016. url: https://

kenscourses.com/tc1019fall2016/syndicated/waterfall-model-4/#more-

37588 (visited on 07/13/2017).

[63] P. Poojary. What is DevOps. 2016. url: https://www.edureka.co/blog/what-

is- devops/?utm_source=blog&utm_medium=left- menu&utm_campaign=

devops-tutorial (visited on 06/01/2017).

[64] V. Chaturvedi. Introduction to DevOps. 2016. url: https://www.edureka.co/

blog/devops- tutorial?utm_source=blog&utm_medium=left- menu&utm_

campaign=devops-tutorial (visited on 06/01/2017).

[65] L. E. L. B, P. Kuvaja, and M. Oivo. “Relationship of DevOps to Agile, Lean and

Continuous Deployment A Multivocal Literature Review Study.” In: 10027 (2016),

pp. 399–415. doi: 10.1007/978-3-319-49094-6. url: http://link.springer.

com/10.1007/978-3-319-49094-6.

[66] J. Allspaw and J. Robbins. Web operations : keeping the data on time. O’Reilly

Media, 2010, p. 315. isbn: 9781449377441. url: https://cds.cern.ch/

record/1438357/export/hx?ln=en.

[67] P. Debois. “Agile infrastructure and operations: how infra-gile are you?” In:

(2008). url: http://www.jedi.be/presentations/IEEE-Agile-Infrastructure.

pdf.

109

https://msdn.microsoft.com/en-us/powershell/mt173057.aspx
https://msdn.microsoft.com/en-us/powershell/mt173057.aspx
https://msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa384642(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa384642(v=vs.85).aspx
https://cmf.web.cern.ch/cmf/Help/?kbid=001001#1
https://cmf.web.cern.ch/cmf/Help/?kbid=001001#1
https://msdn.microsoft.com/en-us/library/bb521519(v=winembedded.51).aspx
https://msdn.microsoft.com/en-us/library/bb521519(v=winembedded.51).aspx
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://kenscourses.com/tc1019fall2016/syndicated/waterfall-model-4/#more-37588
https://kenscourses.com/tc1019fall2016/syndicated/waterfall-model-4/#more-37588
https://kenscourses.com/tc1019fall2016/syndicated/waterfall-model-4/#more-37588
https://www.edureka.co/blog/what-is-devops/?utm_source=blog&utm_medium=left-menu&utm_campaign=devops-tutorial
https://www.edureka.co/blog/what-is-devops/?utm_source=blog&utm_medium=left-menu&utm_campaign=devops-tutorial
https://www.edureka.co/blog/what-is-devops/?utm_source=blog&utm_medium=left-menu&utm_campaign=devops-tutorial
https://www.edureka.co/blog/devops-tutorial?utm_source=blog&utm_medium=left-menu&utm_campaign=devops-tutorial
https://www.edureka.co/blog/devops-tutorial?utm_source=blog&utm_medium=left-menu&utm_campaign=devops-tutorial
https://www.edureka.co/blog/devops-tutorial?utm_source=blog&utm_medium=left-menu&utm_campaign=devops-tutorial
https://doi.org/10.1007/978-3-319-49094-6
http://link.springer.com/10.1007/978-3-319-49094-6
http://link.springer.com/10.1007/978-3-319-49094-6
https://cds.cern.ch/record/1438357/export/hx?ln=en
https://cds.cern.ch/record/1438357/export/hx?ln=en
http://www.jedi.be/presentations/IEEE-Agile-Infrastructure.pdf
http://www.jedi.be/presentations/IEEE-Agile-Infrastructure.pdf

BIBLIOGRAPHY

[68] Wikipedia. DevOps - Wikipedia. url: https://en.wikipedia.org/wiki/DevOps

(visited on 01/30/2017).

[69] Git. Git. url: https://git-scm.com/ (visited on 07/30/2017).

[70] Apache. Apache Subversion. url: https://subversion.apache.org/ (visited on

07/30/2017).

[71] Apache. Apache Ant - Welcome. url: http://ant.apache.org/ (visited on

07/30/2017).

[72] Apache. Maven – Welcome to Apache Maven. url: https://maven.apache.org/

(visited on 07/30/2017).

[73] Gradle. Gradle Build Tool. url: https://gradle.org/ (visited on 07/30/2017).

[74] Selenium. Selenium - Web Browser Automation. url: http://www.seleniumhq.

org/ (visited on 07/30/2017).

[75] JUnit. JUnit - About. url: http://junit.org/junit4/ (visited on 07/30/2017).

[76] S. Ambler. Development Sandboxes: An Agile ’Best Practice’. url: http://www.

agiledata.org/essays/sandboxes.html (visited on 07/30/2017).

[77] P. Murray. Traditional Development/Integration/Staging/Production Practice for Soft-
ware Development | Disruptive Library Technology Jester. 2006. url: http://dltj.

org/article/software-development-practice/ (visited on 07/30/2017).

[78] R. Ellison. “Software Testing Environments Best Practices.” In: Software Test-
ing Magazine (June 2016). url: http://www.softwaretestingmagazine.com/

knowledge/software-testing-environments-best-practices/.

[79] Docker. Docker - Build, Ship, and Run Any App, Anywhere. url: https://www.

docker.com/ (visited on 09/09/2017).

[80] Jenkins. Jenkins. url: https://jenkins.io/ (visited on 07/30/2017).

[81] Ansible. Ansible is Simple IT Automation. url: https://www.ansible.com/.

[82] Nagios. Nagios - The Industry Standard In IT Infrastructure Monitoring. url: https:

//www.nagios.org/ (visited on 07/30/2017).

[83] New Relic. Digital Performance Monitoring and Management | New Relic. url:

https://newrelic.com/ (visited on 07/30/2017).

[84] Sensu. Sensu | Full-stack monitoring for today’s business. url: https://sensuapp.

org/ (visited on 07/30/2017).

[85] R. Ahmed. Ansible Tutorial | Ansible Playbooks And Adhoc Commands | Edureka.

2016. url: https://www.edureka.co/blog/ansible-tutorial/ (visited on

06/01/2017).

[86] A. Perilli. Why Red Hat Acquired Ansible. 2015. url: https://www.redhat.com/

en/blog/why-red-hat-acquired-ansible (visited on 08/27/2017).

110

https://en.wikipedia.org/wiki/DevOps
https://git-scm.com/
https://subversion.apache.org/
http://ant.apache.org/
https://maven.apache.org/
https://gradle.org/
http://www.seleniumhq.org/
http://www.seleniumhq.org/
http://junit.org/junit4/
http://www.agiledata.org/essays/sandboxes.html
http://www.agiledata.org/essays/sandboxes.html
http://dltj.org/article/software-development-practice/
http://dltj.org/article/software-development-practice/
http://www.softwaretestingmagazine.com/knowledge/software-testing-environments-best-practices/
http://www.softwaretestingmagazine.com/knowledge/software-testing-environments-best-practices/
https://www.docker.com/
https://www.docker.com/
https://jenkins.io/
https://www.ansible.com/
https://www.nagios.org/
https://www.nagios.org/
https://newrelic.com/
https://sensuapp.org/
https://sensuapp.org/
https://www.edureka.co/blog/ansible-tutorial/
https://www.redhat.com/en/blog/why-red-hat-acquired-ansible
https://www.redhat.com/en/blog/why-red-hat-acquired-ansible

BIBLIOGRAPHY

[87] YAML. YAML Ain’t Markup Language. url: http://www.yaml.org/start.html

(visited on 08/27/2017).

[88] M. Heap. Ansible : from beginner to pro. Apress, 2016. isbn: 9781484216606.

[89] Linux Information Project. Daemon Definition. 2005. url: http://www.linfo.

org/daemon.html (visited on 02/11/2017).

[90] S. Krum, W. Van Hevelingen, B. Kero, J. Turnbull, and J. McCune. Pro Puppet;
2nd ed. The expert’s voice in open source. New York, NY: Apress, 2013. url:

https://cds.cern.ch/record/1665292.

[91] Puppet. Getting started with classification — Documentation — Puppet. 2017. url:

https://docs.puppet.com/pe/latest/console_classes_groups_getting_

started.html (visited on 09/14/2017).

[92] Puppet. Grouping and classifying nodes — Documentation — Puppet. 2017. url:

https://docs.puppet.com/pe/2017.2/console_classes_groups.html

(visited on 09/14/2017).

[93] D. Lidral-Porter. “Node Classifier Fundamentals - Dan Lidral-Porter, Puppet Labs

| Puppet.” In: Puppetconf 2014. 2014. url: https://puppet.com/presentations/

node-classifier-fundamentals-dan-lidral-porter-puppet-labs.

[94] Puppet. Language: Resources — Documentation — Puppet. 2017. url: https:

//docs.puppet.com/puppet/5.1/lang_resources.html#namenamevar (visited

on 09/16/2017).

[95] Puppet. Language: Data types: Strings — Documentation — Puppet. 2017. url:

https://docs.puppet.com/puppet/latest/lang_data_string.html#double-

quoted-strings (visited on 09/17/2017).

[96] Puppet. Language: Conditional statements and expressions — Documentation — Pup-
pet. 2017. url: https://docs.puppet.com/puppet/5.2/lang_conditional.

html (visited on 09/17/2017).

[97] CERN. Puppet infrastructure - CERN. url: http://configdocs.web.cern.ch/

configdocs/overview/system.html (visited on 02/14/2017).

[98] Red Hat. “Ansible In Depth.” In: (2016). url: https://www.ansible.com/

ansible-in-depth-whitepaper.

[99] Microsoft. Windows Remote Management (Windows). url: https://msdn.microsoft.

com/en-us/library/aa384426(v=vs.85).aspx (visited on 09/21/2017).

[100] DMTF. WS-MAN. 2013. url: https://www.dmtf.org/standards/wsman

(visited on 09/21/2017).

[101] W. W. W. Consortium. Simple Object Access Protocol. 2000. url: https://www.w3.

org/TR/2000/NOTE-SOAP-20000508 (visited on 09/21/2017).

111

http://www.yaml.org/start.html
http://www.linfo.org/daemon.html
http://www.linfo.org/daemon.html
https://cds.cern.ch/record/1665292
https://docs.puppet.com/pe/latest/console_classes_groups_getting_started.html
https://docs.puppet.com/pe/latest/console_classes_groups_getting_started.html
https://docs.puppet.com/pe/2017.2/console_classes_groups.html
https://puppet.com/presentations/node-classifier-fundamentals-dan-lidral-porter-puppet-labs
https://puppet.com/presentations/node-classifier-fundamentals-dan-lidral-porter-puppet-labs
https://docs.puppet.com/puppet/5.1/lang_resources.html#namenamevar
https://docs.puppet.com/puppet/5.1/lang_resources.html#namenamevar
https://docs.puppet.com/puppet/latest/lang_data_string.html#double-quoted-strings
https://docs.puppet.com/puppet/latest/lang_data_string.html#double-quoted-strings
https://docs.puppet.com/puppet/5.2/lang_conditional.html
https://docs.puppet.com/puppet/5.2/lang_conditional.html
http://configdocs.web.cern.ch/configdocs/overview/system.html
http://configdocs.web.cern.ch/configdocs/overview/system.html
https://www.ansible.com/ansible-in-depth-whitepaper
https://www.ansible.com/ansible-in-depth-whitepaper
https://msdn.microsoft.com/en-us/library/aa384426(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa384426(v=vs.85).aspx
https://www.dmtf.org/standards/wsman
https://www.w3.org/TR/2000/NOTE-SOAP-20000508
https://www.w3.org/TR/2000/NOTE-SOAP-20000508

BIBLIOGRAPHY

[102] Red Hat. “The Benefits of Agentless Architecture.” In: (2016), pp. 1–6. url:

https://www.ansible.com/benefits-of-agentless-architecture.

[103] J. McAllister. Implementing DevOps with Ansible 2. Packt Publishing, 2017. isbn:

9781787126510. url: http://cds.cern.ch/record/2279889?ln=en.

[104] M. Mohaan and R. Raithatha. Learning Ansible : use Ansible to configure your
systems, deploy software, and orchestrate advanced IT tasks. Packt Publ., 2014. isbn:

9781783550647. url: http://cds.cern.ch/record/1985665?ln=en.

[105] Red Hat. YAML Syntax — Ansible Documentation. url: http://docs.ansible.

com/ansible/latest/YAMLSyntax.html (visited on 09/21/2017).

[106] G. Garcia. Ansible 2 - Cloud Modules. 2015. url: http://slides.com/guidogarcia/

ansible-2-0#/2 (visited on 09/21/2017).

[107] Microsoft. Get started with Desired State Configuration (DSC) for Linux | Microsoft
Docs. url: https://docs.microsoft.com/en-us/powershell/dsc/lnxgettingstarted

(visited on 09/22/2017).

[108] Distributed Management Task Force. CIM and MOF Tutorial. 2017. url: https:

//www.dmtf.org/education/mof (visited on 09/21/2017).

[109] M. Gray. “An Overview of Windows PowerShell Desired State Configuration.” In:

TechEd Europe 2014. 2014. url: http://video.ch9.ms/sessions/teched/eu/

2014/CDP-B360.pptx.

[110] T. Turpijn. Introducing PowerShell Desired State Configuration (DSC) | Building
Clouds. 2013. url: https://blogs.technet.microsoft.com/privatecloud/

2013/08/30/introducing-powershell-desired-state-configuration-dsc/

(visited on 09/22/2017).

[111] J. Pogran. Learning PowerShell DSC. Packt Publishing, 2015. isbn: 9781783980703.

url: http://cds.cern.ch/record/2113778.

[112] Microsoft. Desired State Configuration Quick Start | Microsoft Docs. url: https:

/ / docs . microsoft . com / en - us / powershell / dsc / quickstart (visited on

09/22/2017).

[113] Foreman. Foreman. 2017. url: https://www.theforeman.org/ (visited on

09/22/2017).

[114] Sodabrew. Puppet Dashboard. 2017. url: https://github.com/sodabrew/

puppet-dashboard (visited on 09/22/2017).

[115] Red Hat. ARA. 2016. url: https://ara.readthedocs.io/en/latest/index.

html (visited on 09/23/2017).

[116] I. Pearson. Tensor. 2017. url: https://github.com/pearsonappeng/tensor/

wiki (visited on 09/23/2017).

112

https://www.ansible.com/benefits-of-agentless-architecture
http://cds.cern.ch/record/2279889?ln=en
http://cds.cern.ch/record/1985665?ln=en
http://docs.ansible.com/ansible/latest/YAMLSyntax.html
http://docs.ansible.com/ansible/latest/YAMLSyntax.html
http://slides.com/guidogarcia/ansible-2-0#/2
http://slides.com/guidogarcia/ansible-2-0#/2
https://docs.microsoft.com/en-us/powershell/dsc/lnxgettingstarted
https://www.dmtf.org/education/mof
https://www.dmtf.org/education/mof
http://video.ch9.ms/sessions/teched/eu/2014/CDP-B360.pptx
http://video.ch9.ms/sessions/teched/eu/2014/CDP-B360.pptx
https://blogs.technet.microsoft.com/privatecloud/2013/08/30/introducing-powershell-desired-state-configuration-dsc/
https://blogs.technet.microsoft.com/privatecloud/2013/08/30/introducing-powershell-desired-state-configuration-dsc/
http://cds.cern.ch/record/2113778
https://docs.microsoft.com/en-us/powershell/dsc/quickstart
https://docs.microsoft.com/en-us/powershell/dsc/quickstart
https://www.theforeman.org/
https://github.com/sodabrew/puppet-dashboard
https://github.com/sodabrew/puppet-dashboard
https://ara.readthedocs.io/en/latest/index.html
https://ara.readthedocs.io/en/latest/index.html
https://github.com/pearsonappeng/tensor/wiki
https://github.com/pearsonappeng/tensor/wiki

BIBLIOGRAPHY

[117] Puppet. Introduction to Puppet Enterprise Console | Puppet. 2015. url: https:

//puppet.com/presentations/introduction-puppet-enterprise-console

(visited on 09/23/2017).

[118] Red Hat. Ansible Tower | Ansible.com. url: https://www.ansible.com/tower

(visited on 09/23/2017).

[119] R. Gaspar. Contribution to puppet-wmi module. 2017. url: https://github.com/

ricardogaspar2/puppet-wmi.

[120] R. Gaspar. Contribution to puppet-wmi module (Puppet Forge). 2017. url: https:

//forge.puppet.com/ricardogaspar2/wmi/readme.

[121] M. Stone. souldo/wmi · Puppet Forge. url: https://forge.puppet.com/souldo/

wmi (visited on 09/19/2017).

[122] Puppet. puppet/sslcertificate · Puppet Forge. 2014. url: https://forge.puppet.

com/puppet/sslcertificate (visited on 09/19/2017).

[123] Puppet. puppet-sslcertificate - GitHub. 2014. url: https : / / github . com /

voxpupuli/puppet-sslcertificate (visited on 09/19/2017).

[124] R. Gaspar. Contribution to puppet-sslcertificate module. 2017. url: https://

github.com/voxpupuli/puppet-sslcertificate/pull/46.

[125] Puppet. Language: Resource collectors — Documentation — Puppet. 2017. url:

https://docs.puppet.com/puppet/5.2/lang_collectors.html (visited on

09/20/2017).

[126] B. Jones. TeigiVault - Secrets for puppet. 2013. url: https://twiki.cern.ch/

twiki/bin/view/Main/TeigiVault (visited on 09/19/2017).

[127] Puppet. Puppet Labs is now Puppet | Puppet. 2016. url: https://puppet.com/

puppet-labs-is-puppet (visited on 09/18/2017).

[128] R. Gaspar. A Docker container to build Puppet types based on PowerShell DSC re-
sources. 2017. url: https://github.com/ricardogaspar2/puppet-dsc-build.

[129] G. Sarti. Fundamental changes to the PowerShell DSC Module. 2017. url: https:

//groups.google.com/forum/#!searchin/puppet-dev/For$20Comment$20-

$20Fundamental$20changes$20to$20the$20PowerShell$20DSC$20Module%

7Csort:relevance/puppet-dev/uQ642U3BwoQ/sQ1eRTpCCQAJ (visited on 09/18/2017).

[130] Microsoft. Microsoft - Runbook Concepts. 2016. url: https://technet.microsoft.

com/en-us/library/hh403820(v=sc.12).aspx (visited on 02/12/2017).

[131] Microsoft. Contents of a Run Book. 2012. url: https://technet.microsoft.

com/library/Cc917702 (visited on 02/14/2017).

[132] Microsoft. Azure Automation Runbook Types | Microsoft Docs. 2016. url: https:

//docs.microsoft.com/en- us/azure/automation/automation- runbook-

types#graphical-runbooks (visited on 02/12/2017).

113

https://puppet.com/presentations/introduction-puppet-enterprise-console
https://puppet.com/presentations/introduction-puppet-enterprise-console
https://www.ansible.com/tower
https://github.com/ricardogaspar2/puppet-wmi
https://github.com/ricardogaspar2/puppet-wmi
https://forge.puppet.com/ricardogaspar2/wmi/readme
https://forge.puppet.com/ricardogaspar2/wmi/readme
https://forge.puppet.com/souldo/wmi
https://forge.puppet.com/souldo/wmi
https://forge.puppet.com/puppet/sslcertificate
https://forge.puppet.com/puppet/sslcertificate
https://github.com/voxpupuli/puppet-sslcertificate
https://github.com/voxpupuli/puppet-sslcertificate
https://github.com/voxpupuli/puppet-sslcertificate/pull/46
https://github.com/voxpupuli/puppet-sslcertificate/pull/46
https://docs.puppet.com/puppet/5.2/lang_collectors.html
https://twiki.cern.ch/twiki/bin/view/Main/TeigiVault
https://twiki.cern.ch/twiki/bin/view/Main/TeigiVault
https://puppet.com/puppet-labs-is-puppet
https://puppet.com/puppet-labs-is-puppet
https://github.com/ricardogaspar2/puppet-dsc-build
https://groups.google.com/forum/#!searchin/puppet-dev/For$20Comment$20-$20Fundamental$20changes$20to$20the$20PowerShell$20DSC$20Module%7Csort:relevance/puppet-dev/uQ642U3BwoQ/sQ1eRTpCCQAJ
https://groups.google.com/forum/#!searchin/puppet-dev/For$20Comment$20-$20Fundamental$20changes$20to$20the$20PowerShell$20DSC$20Module%7Csort:relevance/puppet-dev/uQ642U3BwoQ/sQ1eRTpCCQAJ
https://groups.google.com/forum/#!searchin/puppet-dev/For$20Comment$20-$20Fundamental$20changes$20to$20the$20PowerShell$20DSC$20Module%7Csort:relevance/puppet-dev/uQ642U3BwoQ/sQ1eRTpCCQAJ
https://groups.google.com/forum/#!searchin/puppet-dev/For$20Comment$20-$20Fundamental$20changes$20to$20the$20PowerShell$20DSC$20Module%7Csort:relevance/puppet-dev/uQ642U3BwoQ/sQ1eRTpCCQAJ
https://technet.microsoft.com/en-us/library/hh403820(v=sc.12).aspx
https://technet.microsoft.com/en-us/library/hh403820(v=sc.12).aspx
https://technet.microsoft.com/library/Cc917702
https://technet.microsoft.com/library/Cc917702
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types#graphical-runbooks
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types#graphical-runbooks
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types#graphical-runbooks

BIBLIOGRAPHY

[133] Microsoft. Orchestrator Architecture. 2016. url: https://technet.microsoft.

com/en-us/library/hh420377(v=sc.12).aspx (visited on 02/12/2017).

[134] Microsoft System Center : designing orchestrator runbooks. Microsoft Press, 2013.

isbn: 9780735682986.

[135] M. Oliveira. Microsoft System Center Orchestrator 2012 R2 essentials : design, imple-
ment, and improve your infrastructure administration with System Center Orchestra-
tor 2012 R2’s automation process. Packt Publ., 2015. isbn: 9781785287589.

[136] S. Erskine, A. Baumgarten, and S. Beaumont. Microsoft System Center 2012 Orches-
trator cookbook. Packt Pub, 2013. isbn: 9781849688505.

[137] Microsoft. Microsoft Silverlight. url: https://www.microsoft.com/silverlight/

what-is-silverlight/ (visited on 02/12/2017).

[138] Microsoft. About Runbooks in Service Manager. url: https://technet.microsoft.

com/en-us/library/hh519715(v=sc.12).aspx (visited on 02/12/2017).

[139] Microsoft. Windows Azure Pack overview. url: https://www.microsoft.com/en-

us/cloud-platform/windows-azure-pack (visited on 02/12/2017).

[140] Microsoft. Simplify runbook authoring with global assets | Microsoft Docs. 2017.

url: https://docs.microsoft.com/en-us/system-center/sma/manage-

global-assets?view=sc-sma-1711 (visited on 10/15/2017).

[141] Microsoft. Windows PowerShell Workflow Concepts. 2016. url: https://docs.

microsoft.com/en-us/system-center/sma/overview-powershell-workflows

(visited on 10/15/2017).

[142] U. Windows, W. Foundation, and D. Chappell. “The Workflow Way.” In: April

(2009). url: https://msdn.microsoft.com/en-us/library/dd851337.aspx.

[143] M. Miller. A Developer’s Introduction to Windows Workflow Foundation (WF) in
.NET 4. 2010. url: https://msdn.microsoft.com/en-us/library/ee342461.

aspx (visited on 10/15/2017).

[144] Microsoft. Using Activities in Script Workflows. 2015. url: https://technet.

microsoft.com/en-us/library/jj574194.aspx (visited on 10/15/2017).

[145] Microsoft. PowerShell Gallery.

[146] Microsoft. System requirements for Service Management Automation | Microsoft
Docs. 2016. url: https://docs.microsoft.com/en-us/system-center/sma/

system-requirements?view=sc-sma-1711 (visited on 10/15/2017).

[147] I. Ahmad Khan. ai-tools. 2011. url: https://github.com/iahmad-khan/ai-

tools.

[148] J. Levy. PowerShell SSH module. 2015. url: https://www.powershellgallery.

com/packages/SSH/1.0.0 (visited on 10/15/2017).

114

https://technet.microsoft.com/en-us/library/hh420377(v=sc.12).aspx
https://technet.microsoft.com/en-us/library/hh420377(v=sc.12).aspx
https://www.microsoft.com/silverlight/what-is-silverlight/
https://www.microsoft.com/silverlight/what-is-silverlight/
https://technet.microsoft.com/en-us/library/hh519715(v=sc.12).aspx
https://technet.microsoft.com/en-us/library/hh519715(v=sc.12).aspx
https://www.microsoft.com/en-us/cloud-platform/windows-azure-pack
https://www.microsoft.com/en-us/cloud-platform/windows-azure-pack
https://docs.microsoft.com/en-us/system-center/sma/manage-global-assets?view=sc-sma-1711
https://docs.microsoft.com/en-us/system-center/sma/manage-global-assets?view=sc-sma-1711
https://docs.microsoft.com/en-us/system-center/sma/overview-powershell-workflows
https://docs.microsoft.com/en-us/system-center/sma/overview-powershell-workflows
https://msdn.microsoft.com/en-us/library/dd851337.aspx
https://msdn.microsoft.com/en-us/library/ee342461.aspx
https://msdn.microsoft.com/en-us/library/ee342461.aspx
https://technet.microsoft.com/en-us/library/jj574194.aspx
https://technet.microsoft.com/en-us/library/jj574194.aspx
https://docs.microsoft.com/en-us/system-center/sma/system-requirements?view=sc-sma-1711
https://docs.microsoft.com/en-us/system-center/sma/system-requirements?view=sc-sma-1711
https://github.com/iahmad-khan/ai-tools
https://github.com/iahmad-khan/ai-tools
https://www.powershellgallery.com/packages/SSH/1.0.0
https://www.powershellgallery.com/packages/SSH/1.0.0

BIBLIOGRAPHY

[149] S. Bukowiec, R. Gaspar, and T. S. Cern. “Windows Terminal Servers Orches-

tration 2016.” In: (2016). url: https://indico.cern.ch/event/505613/

contributions/2227326/attachments/1346795/2037188/Poster-v3-31.pdf.

115

https://indico.cern.ch/event/505613/contributions/2227326/attachments/1346795/2037188/Poster-v3-31.pdf
https://indico.cern.ch/event/505613/contributions/2227326/attachments/1346795/2037188/Poster-v3-31.pdf

A
n
n
e
x

I
Puppet test manifest

1 class hg_playground::rchavesg::puppet_test {

2 # Change the value of a registry key

3 registry::value { 'Disable UAC':

4 key => 'HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System',

5 value => 'EnableLUA',

6 data => '0',

7 type => 'dword'

8 }

9

10 # Stop a service - desable firewall

11 service { 'MpsSvc':

12 ensure => stopped,

13 enable => false

14 }

15

16 # Exec command - Set Powershell Execution Policy to unrestricted

17 exec { 'Set PowerShell execution policy unrestricted':

18 command => 'Set-ExecutionPolicy Unrestricted',

19 unless => 'if ((Get-ExecutionPolicy -Scope LocalMachine) -eq "Unrestricted") { exit

0 } else { exit 1 }',↪→

20 provider => powershell

21 }

22

23 # File resource - Copy network directory to c:\temp (recursively)

24 file { 'Copy a directory':

25 ensure => directory,

26 path => 'C:/temp',

27 recurse => true,

28 source => '//servershare/shareddir'

29 }

117

ANNEX I. PUPPET TEST MANIFEST

30

31 # Install Remote Desktop Session Host server role

32 windowsfeature { 'RDS-RD-Server':

33 ensure => present,

34 restart => true

35 }

36 }

118

A
n
n
e
x

II
Ansible test playbook

1 ---

2 - hosts: windows-ansible

3 tasks:

4 # Change the value of a registry key

5 - name: Disable UAC

6 win_regedit:

7 path: 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System'

8 name: 'EnableLUA'

9 data: 0

10 type: dword

11

12 # Stop a service - disable firewall

13 - name: Disable Firewall

14 win_service:

15 name: MpsSvc

16 state: stopped

17

18 # Execute a command - Set Powershell Execution Policy to unrestricted

19 - name: Set PowerShell Execution Policy

20 win_command: Set-ExecutionPolicy Unrestricted

21

22 # Copy network directory to c:\temp (recursively)

23 - name: Copy directory

24 win_copy:

25 src: \\servershare\shareddir

26 dest: c:\Temp

27

28 # Install Remote Desktop Session Host server role

29 - name: Install RDS

30 win_feature:

119

ANNEX II. ANSIBLE TEST PLAYBOOK

31 name: RDS-RD-Server

32 state: present

33 restart: True

34 ...

120

A
n
n
e
x

III
PowerShell DSC test configuration

script

1 Configuration DSCtest

2 {

3 param

4 (

5 [string[]] $NodeName = 'localhost'

6)

7

8 Import-DscResource -ModuleName PSDesiredStateConfiguration

9

10 Node $NodeName

11 {

12 # Change the value of a registry key

13 Registry DisableUAC

14 {

15 Ensure = "Present"

16 Key =

"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System"↪→

17 ValueName = "EnableLUA"

18 ValueData = "0"

19 ValueType = "Dword"

20 }

21

22 # Stop a service - disable firewall

23 Service DisableFirewall

24 {

25 Name = "MpsSvc"

26 State = "Stopped"

27 }

121

ANNEX III . POWERSHELL DSC TEST CONFIGURATION SCRIPT

28

29 # Set Powershell Execution Policy to unrestricted

30 Script SetExecutionPolicy

31 {

32 SetScript = { Set-ExecutionPolicy Unrestricted }

33

34 TestScript = {

35 if ((Get-ExecutionPolicy -Scope LocalMachine) -eq "Unrestricted") {

36 return $true

37 }else {

38 return $false

39 }

40 }

41

42 GetScript = { @{ Result = (Get-ExecutionPolicy -Scope LocalMachine) } }

43 }

44

45 # Copy network directory to c:\temp (recursively)

46 File CopyDirectory

47 {

48 Ensure = "Present"

49 Type = "Directory"

50 Recurse = $true

51 SourcePath = "\\servershare\shareddir"

52 DestinationPath = "C:\temp"

53 }

54

55 # Install Remote Desktop Session Host server role

56 WindowsFeature RDSServer

57 {

58 Ensure = "Present"

59 Name = "RDS-RD-Server"

60 }

61 }

62

63 }

64

65 DSCtest

66 Start-DscConfiguration -Path .\DSCtest -Wait -Force -Verbose

122

A
n
n
e
x

IV
DSC configuration script to set Group

Policy rules

1 Configuration LocalGPO

2 {

3 param([string[]] $NodeName = 'localhost')

4

5 Import-DSCResource -ModuleName PolicyFileEditor

6

7 Node $NodeName

8 {

9 cAdministrativeTemplateSetting RDSLicensing

10 {

11 KeyValueName = "SOFTWARE\Policies\Microsoft\Windows NT\Terminal

Services\LicenseServers"↪→

12 PolicyType = "Machine"

13 Data = ("server.test.localgpo.dsc.com")

14 Ensure = "Present"

15 Type = "String"

16 }

17

18 cAdministrativeTemplateSetting RDSBrokerFarm

19 {

20 KeyValueName = "SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\SessionDirectoryClusterName"↪→

21 PolicyType = "Machine"

22 Data = ("server.test.localgpo.dsc.com")

23 Ensure = "Present"

24 Type = "String"

25 }

26

123

ANNEX IV. DSC CONFIGURATION SCRIPT TO SET GROUP POLICY RULES

27 cAdministrativeTemplateSetting RDSBrokerName

28 {

29 KeyValueName = "SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\SessionDirectoryLocation"↪→

30 PolicyType = "Machine"

31 Data = ("server.test.localgpo.dsc.com")

32 Ensure = "Present"

33 Type = "String"

34 }

35

36 cAdministrativeTemplateSetting RDSLicensemode

37 {

38 KeyValueName = "SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\LicensingMode"↪→

39 PolicyType = "Machine"

40 Data = "2" # Per Device = 2; Per User = 4

41 Ensure = "Present"

42 Type = "DWord"

43 }

44 }

45 }

124

A
n
n
e
x

V
Manifest to set Group Policy rules using

DSC resources

1 class hg_windows_dev::dsc_tests {

2 # test a custom resource

3 # Remote Desktop Services\Remote Desktop Session Host\Licensing\Use the specified

4 dsc_cadministrativetemplatesetting { 'test-dsc_cAdministrativeTemplateSetting License

Server':↪→

5 dsc_keyvaluename => 'SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\LicenseServers',↪→

6 dsc_policytype => 'Machine',

7 dsc_data => 'server.test.localgpo.puppet-dsc.com',

8 dsc_ensure => 'Present',

9 dsc_type => 'String',

10 }

11

12 # Remote Desktop Services\Remote Desktop Session Host\RD Connection Broker\Configure RD

Connection Broker farm Name↪→

13 dsc_cadministrativetemplatesetting { 'test-dsc_cAdministrativeTemplateSetting RD

Connection Broker farm Name':↪→

14 dsc_keyvaluename => 'SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\SessionDirectoryClusterName',↪→

15 dsc_policytype => 'Machine',

16 dsc_data => 'server.test.localgpo.puppet-dsc.com',

17 dsc_ensure => 'Present',

18 dsc_type => 'String',

19

20 }

21 # Remote Desktop Services\Remote Desktop Session Host\RD Connection Broker\Configure RD

Connection Broker server Name↪→

22 dsc_cadministrativetemplatesetting { 'test-dsc_cAdministrativeTemplateSetting RD

Connection Broker server Name':↪→

125

ANNEX V. MANIFEST TO SET GROUP POLICY RULES USING DSC

RESOURCES

23 dsc_keyvaluename => 'SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\SessionDirectoryLocation',↪→

24 dsc_policytype => 'Machine',

25 dsc_data => 'server.test.localgpo.puppet-dsc.com',

26 dsc_ensure => 'Present',

27 dsc_type => 'String',

28

29 }

30

31 # Windows Components/Remote Desktop Services/Remote Desktop Session Host/Licensing

32 dsc_cadministrativetemplatesetting { 'test-dsc_cAdministrativeTemplateSetting dword':

33 dsc_keyvaluename => 'SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\LicensingMode',↪→

34 dsc_policytype => 'Machine',

35 dsc_data => '2', # Per Device =2; Per User = 4

36 dsc_ensure => 'Present',

37 dsc_type => 'DWord',

38 }

39 }

126

A
n
n
e
x

VI
Ansible playbook to set Group Policy

rules using DSC resources

1 ---

2 - hosts: windows-ansible

3 tasks:

4 # GPO rules

5 # Remote Desktop Services\Remote Desktop Session Host\Licensing\Use the specified

6 - name: Set RDP Licensing server

7 win_dsc:

8 resource_name: cAdministrativeTemplateSetting

9 Ensure: "Present"

10 KeyValueName: "SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\LicenseServers"↪→

11 PolicyType: "Machine"

12 Data: "server.test.localgpo.puppet-dsc.com"

13 Type: "String"

14

15 # Remote Desktop Services\Remote Desktop Session Host\RD Connection Broker\Configure

RD Connection Broker farm Name↪→

16 - name: Set RD Connection Broker farm Name

17 win_dsc:

18 resource_name: cAdministrativeTemplateSetting

19 Ensure: "Present"

20 KeyValueName: "SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\SessionDirectoryClusterName"↪→

21 PolicyType: "Machine"

22 Data: "server.test.localgpo.puppet-dsc.com"

23 Type: "String"

24

25 # Remote Desktop Services\Remote Desktop Session Host\RD Connection Broker\Configure

RD Connection Broker server Name↪→

127

ANNEX VI. ANSIBLE PLAYBOOK TO SET GROUP POLICY RULES USING DSC

RESOURCES

26 - name: Set RD Connection Broker server Name

27 win_dsc:

28 resource_name: cAdministrativeTemplateSetting

29 Ensure: "Present"

30 KeyValueName: "SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\SessionDirectoryLocation"↪→

31 PolicyType: "Machine"

32 Data: "server.test.localgpo.puppet-dsc.com"

33 Type: "String"

34

35 # Remote Desktop Services\Remote Desktop Session Host\RD Connection Broker\Join RD

Connection Broker↪→

36 - name: "Join RD Connection Broker"

37 win_dsc:

38 resource_name: cAdministrativeTemplateSetting

39 Ensure: "Present"

40 KeyValueName: "SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\SessionDirectoryActive"↪→

41 PolicyType: "Machine"

42 Data: "1" #Enable

43 Type: "DWord"

44

45 # Remote Desktop Services\Remote Desktop Session Host\Licensing

46 - name: "Set the Remote Desktop licensing mode"

47 win_dsc:

48 resource_name: cAdministrativeTemplateSetting

49 Ensure: "Present"

50 KeyValueName: "SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\LicensingMode"↪→

51 PolicyType: "Machine"

52 Data: "2" # Per Device =2; Per User = 4

53 Type: "DWord"

128

A
n
n
e
x

VII
Original version of puppet-wmi module

1 # == Defined Type: wmi

2 # This module is a defined type for manipulating WMI Objects with Puppet.

3 #

4 # === Parameters

5 # $wmi_namespace - The object's namespace.

6 # $wmi_class - The class name.

7 # $wmi_property - The property you wish to manage.

8 # $wmi_value - The value you wish for the property

9 # $wmi_method - The method to set the value, defaults to set${wmi_property}.

10 #

11 # === Examples

12 # wmi { 'Remote Desktop - Network Level Authentication' :

13 # wmi_namespace => 'root/cimv2/terminalservices',

14 # wmi_class => 'Win32_TSGeneralSetting',

15 # wmi_property => 'UserAuthenticationRequired',

16 # wmi_value => 1,

17 # }

18 # wmi { 'Remote Desktop - Allow Connections' :

19 # wmi_namespace => 'root/cimv2/terminalservices',

20 # wmi_class => 'Win32_TerminalServiceSetting',

21 # wmi_property => 'AllowTSConnections',

22 # wmi_value => 1

23 # }

24 #

25 # === Authors

26 # Matthew Stone <matt@souldo.net>

27 # === Copyright

28 # Copyright 2014 Matthew Stone, unless otherwise noted.

29 #

30 define wmi (

129

ANNEX VII. ORIGINAL VERSION OF PUPPET-WMI MODULE

31 $wmi_namespace, $wmi_property, $wmi_class, $wmi_value, $wmi_method =

"Set${wmi_property}") {↪→

32

33 $wmi_array = ["-Namespace ${wmi_namespace}",

34 "-Class ${wmi_class}",]

35 $wmi_data = join($wmi_array,' ')

36 $wmi_ps = "Get-WmiObject ${wmi_data}"

37 $wmi_chk = "If ((\$wmiobject.${wmi_property}) -like '${wmi_value}')"

38

39 exec { $name :

40 command => "\$wmiobject=${wmi_ps};\$wmiobject.${wmi_method}(${wmi_value})",

41 onlyif => "\$wmiobject=${wmi_ps};${wmi_chk} { exit 1 }",

42 provider => powershell,

43 }

44 }

130

A
n
n
e
x

VIII
Improved version of puppet-wmi module

This version of the module can is available on GitHub [119].

1 # == Defined Type: wmi

2 # This module is a defined type for manipulating WMI Objects with Puppet.

3 #

4 # === Parameters

5 # $wmi_namespace - The object's namespace.

6 # $wmi_class - The class name.

7 # $wmi_property - The property you wish to manage.

8 # $wmi_value - The value you wish for the property

9 # $wmi_method - The method to set the value, defaults to set${wmi_property}.

10 #

11 # === Examples

12 # To use the wmi type, you must specify as least the namespace, class, property and value

(as shown below).↪→

13 # When a value for `wmi_method` is not provided it will change only the property

specified.↪→

14 # Otherwise, it will use the method provided.

15 # Be aware that you should always use the class method whenever it is available.

16 # That's the correct usage. Otherwise the property might not be changed properly.

17 #

18 # This example will set the property value directly without calling any method.

19 # Because there isn't any available.

20 # wmi { 'Change RDS RDP-TCP Environment Setting':

21 # wmi_namespace => 'root/cimv2/terminalservices',

22 # wmi_class => 'Win32_TSEnvironmentSetting',

23 # wmi_property => 'InitialProgramPolicy',

24 # wmi_value => '2',

25 #}

26 #

27 # This example use specified methods.

131

ANNEX VIII . IMPROVED VERSION OF PUPPET-WMI MODULE

28 # wmi { 'Remote Desktop - Allow Connections' :

29 # wmi_namespace => 'root/cimv2/terminalservices',

30 # wmi_class => 'Win32_TerminalServiceSetting',

31 # wmi_property => 'AllowTSConnections',

32 # wmi_value => '1',

33 # wmi_method => 'SetAllowTSConnections',

34 #}

35 # === Authors

36 # Matthew Stone <matt@souldo.net>

37 # Changed by Ricardo Gaspar <ricardo.gaspar@cern.ch>

38 # === Copyright

39 # Copyright 2014 Matthew Stone, unless otherwise noted.

40 #

41 define wmi ($wmi_namespace, $wmi_property, $wmi_class, $wmi_value, $wmi_method = "") {

42 $wmi_array = ["-Namespace ${wmi_namespace}", "-Class ${wmi_class}",]

43 $wmi_data = join($wmi_array, ' ')

44 $wmi_ps = "Get-WmiObject ${wmi_data}"

45 $wmi_chk = "If ((\$wmiobject.${wmi_property}) -like '${wmi_value}')"

46

47 if $wmi_method != "" {

48 $wmi_pscommand = "\$wmiobject=${wmi_ps};\$wmiobject.${wmi_method}('${wmi_value}')"

49 } else {

50 $wmi_pscommand = "${wmi_ps} | Set-WmiInstance -Arguments

@{${wmi_property}='${wmi_value}'}"↪→

51 }

52

53 exec { $name:

54 command => "${wmi_pscommand}",

55 onlyif => "\$wmiobject=${wmi_ps};${wmi_chk} {exit 1} else {exit 0}",

56 provider => powershell,

57 }

58 }

132

A
n
n
e
x

IX
Original version of puppet-sslcertificate

module manifest

1 # Author:: Paul Stack (mailto:pstack@opentable.com)

2 # Copyright:: Copyright (c) 2013 OpenTable Inc

3 # License:: MIT

4

5 # == Define: sslcertificate

6 #

7 # This defined type will install SSL Certs on windows

8 #

9 # === Requirements/Dependencies

10 #

11 # Currently reequires the puppetlabs/stdlib module on the Puppet Forge in

12 # order to validate much of the the provided configuration.

13 #

14 # === Parameters

15 #

16 # [*password*]

17 # The password for the given certifcate

18 #

19 # [*location*]

20 # The location to store intermediate certificates

21 #

22 # [*thumbprint*]

23 # The thumbprint used to verify the certifcate

24 #

25 # [*store_dir*]

26 # The certifcate store where the certifcate will be installed to

27 #

28 # [*root_store*]

133

ANNEX IX. ORIGINAL VERSION OF PUPPET-SSLCERTIFICATE MODULE

MANIFEST

29 # The store location for the given certifcation store. Either LocalMachine or CurrentUser

30 #

31 # === Examples

32 #

33 # To install a certificate in the My directory of the LocalMachine root store:

34 #

35 # sslcertificate { "Install-PFX-Certificate" :

36 # name => 'mycert.pfx',

37 # password => 'password123',

38 # location => 'C:\',

39 # thumbprint => '07E5C1AF7F5223CB975CC29B5455642F5570798B'

40 # }

41 #

42 # To install a certifcate in an alterntative direcotory:

43 #

44 # sslcertificate { "Install-Intermediate-Certificate" :

45 # name => 'go_daddy_intermediate.p7b',

46 # location => 'C:\',

47 # store_dir => 'CA',

48 # root_store => 'LocalMachine',

49 # thumbprint => '07E5C1AF7F5223CB975CC29B5455642F5570798B'

50 # }

51 #

52 define sslcertificate($password, $location, $thumbprint, $root_store = 'LocalMachine',

$store_dir = 'My') {↪→

53 validate_re($name, '^(.)+$',"Must pass name to ${module_name}[${title}]")

54 validate_re($location, '^(.)+$',"Must pass location to ${module_name}[${title}]")

55 validate_re($thumbprint, '^(.)+$', "Must pass a certificate thumbprint to

${module_name}[${title}]")↪→

56

57 ensure_resource('file', 'C:\temp', { ensure => directory })

58

59 file { "inspect-${name}-certificate.ps1" :

60 ensure => present,

61 path => "C:\\temp\\inspect-${name}.ps1",

62 content => template('sslcertificate/inspect.ps1.erb'),

63 require => File['C:\temp'],

64 }

65

66 file { "import-${name}-certificate.ps1" :

67 ensure => present,

68 path => "C:\\temp\\import-${name}.ps1",

69 content => template('sslcertificate/import.ps1.erb'),

70 require => File['C:\temp'],

71 }

72

73 exec { "Install-${name}-SSLCert":

74 provider => powershell,

75 command => "c:\\temp\\import-${name}.ps1",

76 onlyif => "c:\\temp\\inspect-${name}.ps1",

134

77 logoutput => true,

78 require => [File["inspect-${name}-certificate.ps1"],

File["import-${name}-certificate.ps1"]],↪→

79 }

80 }

135

A
n
n
e
x

X
Original version of inspect.ps1.erb

template

1 $pfx = new-object System.Security.Cryptography.X509Certificates.X509Certificate2

2

3 $certificate = gi <%= @location %>\<%= @name %>

4 switch -regex ($certificate.Extension.ToUpper()) {

5 ".CER|.DER|.P12" {

6 $pfx.import("<%= @location %>\\<%= @name %>","<%= @password

%>","Exportable,PersistKeySet")↪→

7 }

8 ".CRT" {

9 $pfx.Import([System.IO.File]::ReadAllBytes("<%= @location %>\\<%= @name %>"))

10 }

11 ".P7B|.SST" {

12 $pfx = new-object

System.Security.Cryptography.X509Certificates.X509Certificate2Collection↪→

13 $pfx.Import([System.IO.File]::ReadAllBytes("<%= @location %>\\<%= @name %>"))

14 }

15 ".PFX" {

16 $pfx = new-object

System.Security.Cryptography.X509Certificates.X509Certificate2Collection↪→

17 $pfx.import("<%= @location %>\\<%= @name %>","<%= @password

%>","Exportable,PersistKeySet")↪→

18 }

19 }

20

21

22 $installedCerts = @(Get-ChildItem -R cert:\<%= @root_store %>\<%= @store_dir %>)

23 $intermediateCerts = @(Get-ChildItem -R cert:\<%= @root_store %>\CA)

24

137

ANNEX X. ORIGINAL VERSION OF INSPECT.PS1.ERB TEMPLATE

25 $installedCertCount = 0

26 $installedIntermediateCount = 0

27

28

29 if (($pfx -ne $null) -and ($installedCerts -ne $null) -and ($intermediateCerts -ne

$null)) {↪→

30 foreach($cert in $pfx)

31 {

32 if($cert.Thumbprint -ne "<%= @thumbprint %>") {

33 foreach ($intermediate in $intermediateCerts) {

34 if($intermediate.Thumbprint -eq $cert.Thumbprint) {

35 $installedIntermediateCount ++

36 }

37 }

38 }

39 else {

40 foreach ($installedCert in $installedCerts) {

41 if($installedCert.Thumbprint -eq $cert.Thumbprint) {

42 $installedCertCount ++

43 }

44 }

45 }

46 }

47

48 # When $pfx.Count is $null, $pfx is an instance of X509Certificate2, not

X509Certificate2Collection, so↪→

49 # ensure that only a single certificate has been installed.

50 if (($pfx.Count -eq $null) -and ($installedCertCount -eq 1) -and

($installedIntermediateCount -eq 0)) {↪→

51 exit 1

52 }

53 elseif (($installedCertCount + $installedIntermediateCount) -eq $pfx.Count) {

54 exit 1

55 }

56 }

57

58 exit 0

138

A
n
n
e
x

XI
Original version of import.ps1.erb

template

1 $pfx = new-object System.Security.Cryptography.X509Certificates.X509Certificate2

2

3 $cert = gi <%= @location %>/<%= @name %>

4

5 switch -regex ($cert.Extension.ToUpper()) {

6 ".CER|.DER|.P12" {

7 $pfx.import("<%= @location %>\\<%= @name %>","<%= @password

%>","Exportable,PersistKeySet")↪→

8 }

9 ".CRT" {

10 $pfx.Import([System.IO.File]::ReadAllBytes("<%= @location %>\\<%= @name %>"))

11 }

12 ".P7B|.SST" {

13 $pfx = new-object

System.Security.Cryptography.X509Certificates.X509Certificate2Collection↪→

14 $pfx.Import([System.IO.File]::ReadAllBytes("<%= @location %>\\<%= @name %>"))

15 }

16 ".PFX|.P12" {

17 $pfx = new-object

System.Security.Cryptography.X509Certificates.X509Certificate2Collection↪→

18 $pfx.import("<%= @location %>\\<%= @name %>","<%= @password

%>","Exportable,PersistKeySet")↪→

19 }

20 }

21

22 $store = new-object System.Security.Cryptography.X509Certificates.X509Store("<%=

@store_dir %>","<%= @root_store %>")↪→

23 $store.open([System.Security.Cryptography.X509Certificates.OpenFlags]::ReadWrite)

139

ANNEX XI. ORIGINAL VERSION OF IMPORT.PS1.ERB TEMPLATE

24

25 $intermediatestore = new-object

System.Security.Cryptography.X509Certificates.X509Store("CA","<%= @root_store %>")↪→

26 $intermediatestore.open([System.Security.Cryptography.X509Certificates.OpenFlags]::ReadWrite)

27

28 foreach($cert in $pfx) {

29 if($cert.Thumbprint -ne "<%= @thumbprint %>") {

30 $intermediatestore.Add($cert)

31 }

32 else {

33 $store.Add($cert)

34 }

35 }

36

37

38

39 $store.close()

140

A
n
n
e
x

XII
Improved version of puppet-sslcertificate

module manifest

1 # Author:: Paul Stack (mailto:pstack@opentable.com)

2 # Copyright:: Copyright (c) 2013 OpenTable Inc

3 # License:: MIT

4 # == Define: sslcertificate

5 #

6 # This defined type will install SSL Certs on windows

7 #

8 # === Requirements/Dependencies

9 #

10 # Currently reequires the puppetlabs/stdlib module on the Puppet Forge in

11 # order to validate much of the the provided configuration.

12 #

13 # === Parameters

14 #

15 # [*password*]

16 # The password for the given certifcate

17 #

18 # [*location*]

19 # The location to store intermediate certificates.

20 # Do not end the string with any forward or backslash.

21 #

22 # [*thumbprint*]

23 # The thumbprint used to verify the certifcate

24 #

25 # [*store_dir*]

26 # The certifcate store where the certifcate will be installed to

27 #

28 # [*root_store*]

141

ANNEX XII. IMPROVED VERSION OF PUPPET-SSLCERTIFICATE MODULE

MANIFEST

29 # The store location for the given certifcation store. Either LocalMachine or CurrentUser

30 #

31 # [*scripts_dir*]

32 # The directory where the scripts to verify and install the certificates will be stored.

33 # By default is C:\temp

34 #

35 # [*is_exportable*]

36 # Flag to set the key as exportable. true == exportable; false == not exportable.

37 # By default is set to true.

38 # === Examples

39 #

40 # To install a certificate in the My directory of the LocalMachine root store:

41 #

42 # sslcertificate { "Install-PFX-Certificate" :

43 # name => 'mycert.pfx',

44 # password => 'password123',

45 # location => 'C:',

46 # thumbprint => '07E5C1AF7F5223CB975CC29B5455642F5570798B'

47 # }

48 #

49 # To install a certifcate in an alternative directory:

50 #

51 # sslcertificate { "Install-Intermediate-Certificate" :

52 # name => 'go_daddy_intermediate.p7b',

53 # location => 'C:',

54 # store_dir => 'CA',

55 # root_store => 'LocalMachine',

56 # thumbprint => '07E5C1AF7F5223CB975CC29B5455642F5570798B'

57 # }

58 #

59 # To install a certificate in the My directory of the LocalMachine root store

60 # using a different directory to store the scripts:

61 #

62 # sslcertificate { "Install-PFX-Certificate" :

63 # name => 'mycert.pfx',

64 # password => 'password123',

65 # location => 'C:',

66 # thumbprint => '07E5C1AF7F5223CB975CC29B5455642F5570798B',

67 # scripts_dir => 'C:\scripts_dir'

68 # }

69 #

70 # To install a certificate in the My directory of the LocalMachine root store

71 # and set the key as not exportable:

72 #

73 # sslcertificate { "Install-PFX-Certificate" :

74 # name => 'mycert.pfx',

75 # password => 'password123',

76 # location => 'C:',

77 # thumbprint => '07E5C1AF7F5223CB975CC29B5455642F5570798B',

78 # exportable => false

142

79 # }

80 #

81 define sslcertificate (

82 $password,

83 $location,

84 $thumbprint,

85 $root_store = 'LocalMachine',

86 $store_dir = 'My',

87 $scripts_dir = 'C:\temp',

88 $exportable = true) {

89 validate_re($name, '^(.)+$', "Must pass name to ${module_name}[${title}]")

90 validate_re($location, '^(.)+$', "Must pass location to ${module_name}[${title}]")

91 validate_re($thumbprint, '^(.)+$', "Must pass a certificate thumbprint to

${module_name}[${title}]")↪→

92

93 ensure_resource('file', $scripts_dir, {

94 ensure => directory

95 })

96

97 if $exportable {

98 $key_storage_flags = 'Exportable,PersistKeySet'

99 } else {

100 $key_storage_flags = 'PersistKeySet'

101 }

102

103 file { "inspect-${name}-certificate.ps1":

104 ensure => present,

105 path => "${scripts_dir}\\inspect-${name}.ps1",

106 content => template('sslcertificate/inspect.ps1.erb'),

107 require => File[$scripts_dir],

108 }

109

110 file { "import-${name}-certificate.ps1":

111 ensure => present,

112 path => "${scripts_dir}\\import-${name}.ps1",

113 content => template('sslcertificate/import.ps1.erb'),

114 require => File[$scripts_dir],

115 }

116

117 exec { "Install-${name}-SSLCert":

118 provider => powershell,

119 command => "${scripts_dir}\\import-${name}.ps1",

120 onlyif => "${scripts_dir}\\inspect-${name}.ps1",

121 logoutput => true,

122 require => [File["inspect-${name}-certificate.ps1"],

File["import-${name}-certificate.ps1"]],↪→

123 }

124 }

143

A
n
n
e
x

XIII
Improved version of inspect.ps1.erb

template

1 $pfx = new-object System.Security.Cryptography.X509Certificates.X509Certificate2

2

3 $certificate = gi "<%= @location %>\<%= @name %>"

4 switch -regex ($certificate.Extension.ToUpper()) {

5 ".CER|.DER|.P12" {

6 $pfx.import("<%= @location %>\<%= @name %>","<%= @password %>","<%=

@key_storage_flags %>")↪→

7 }

8 ".CRT" {

9 $pfx.Import([System.IO.File]::ReadAllBytes("<%= @location %>\<%= @name %>"))

10 }

11 ".P7B|.SST" {

12 $pfx = new-object

System.Security.Cryptography.X509Certificates.X509Certificate2Collection↪→

13 $pfx.Import([System.IO.File]::ReadAllBytes("<%= @location %>\<%= @name %>"))

14 }

15 ".PFX" {

16 $pfx = new-object

System.Security.Cryptography.X509Certificates.X509Certificate2Collection↪→

17 $pfx.import("<%= @location %>\<%= @name %>","<%= @password %>","<%=

@key_storage_flags %>")↪→

18 }

19 }

20

21

22 $installedCerts = @(Get-ChildItem -R cert:\<%= @root_store %>\<%= @store_dir %>)

23 $intermediateCerts = @(Get-ChildItem -R cert:\<%= @root_store %>\CA)

24

145

ANNEX XIII . IMPROVED VERSION OF INSPECT.PS1.ERB TEMPLATE

25 $installedCertCount = 0

26 $installedIntermediateCount = 0

27

28

29 if (($pfx -ne $null) -and ($installedCerts -ne $null) -and ($intermediateCerts -ne

$null)) {↪→

30 foreach($cert in $pfx)

31 {

32 if($cert.Thumbprint -ne "<%= @thumbprint %>") {

33 foreach ($intermediate in $intermediateCerts) {

34 if($intermediate.Thumbprint -eq $cert.Thumbprint) {

35 $installedIntermediateCount ++

36 }

37 }

38 }

39 else {

40 foreach ($installedCert in $installedCerts) {

41 if($installedCert.Thumbprint -eq $cert.Thumbprint) {

42 $installedCertCount ++

43 }

44 }

45 }

46 }

47

48 # When $pfx.Count is $null, $pfx is an instance of X509Certificate2, not

X509Certificate2Collection, so↪→

49 # ensure that only a single certificate has been installed.

50 if (($pfx.Count -eq $null) -and ($installedCertCount -eq 1) -and

($installedIntermediateCount -eq 0)) {↪→

51 exit 1

52 }

53 elseif (($installedCertCount + $installedIntermediateCount) -eq $pfx.Count) {

54 exit 1

55 }

56 }

57

58 exit 0

146

A
n
n
e
x

XIV
Improved version of import.ps1.erb

template

1 $pfx = new-object System.Security.Cryptography.X509Certificates.X509Certificate2

2

3 $cert = gi "<%= @location %>\<%= @name %>"

4

5 switch -regex ($cert.Extension.ToUpper()) {

6 ".CER|.DER|.P12" {

7 $pfx.import("<%= @location %>\<%= @name %>","<%= @password %>","<%=

@key_storage_flags %>")↪→

8 }

9 ".CRT" {

10 $pfx.Import([System.IO.File]::ReadAllBytes("<%= @location %>\<%= @name %>"))

11 }

12 ".P7B|.SST" {

13 $pfx = new-object

System.Security.Cryptography.X509Certificates.X509Certificate2Collection↪→

14 $pfx.Import([System.IO.File]::ReadAllBytes("<%= @location %>\<%= @name %>"))

15 }

16 ".PFX" {

17 $pfx = new-object

System.Security.Cryptography.X509Certificates.X509Certificate2Collection↪→

18 $pfx.import("<%= @location %>\<%= @name %>","<%= @password %>","<%=

@key_storage_flags %>")↪→

19 }

20 }

21

22 $store = new-object System.Security.Cryptography.X509Certificates.X509Store("<%=

@store_dir %>","<%= @root_store %>")↪→

23 $store.open([System.Security.Cryptography.X509Certificates.OpenFlags]::ReadWrite)

147

ANNEX XIV. IMPROVED VERSION OF IMPORT.PS1.ERB TEMPLATE

24

25 $intermediatestore = new-object

System.Security.Cryptography.X509Certificates.X509Store("CA","<%= @root_store %>")↪→

26 $intermediatestore.open([System.Security.Cryptography.X509Certificates.OpenFlags]::ReadWrite)

27

28 foreach($cert in $pfx) {

29 if($cert.Thumbprint -ne "<%= @thumbprint %>") {

30 $intermediatestore.Add($cert)

31 }

32 else {

33 $store.Add($cert)

34 }

35 }

36

37

38

39 $store.close()

148

A
n
n
e
x

XV
cernsslcertificate module manifest

1 # This is a wrapper fot the sslcertificate module that allows to provide

2 # a password using the TEIGI module and thus avoiding the use of clear text passwords.

3 #

4 # This defined type will install SSL Certificates on windows

5 #

6 # === Requirements/Dependencies

7 # Same as sslcertificate

8 #

9 # === Parameters

10 #

11 # [*teigi_key*]

12 # TEIGI key that points to the password.

13 #

14 # [*location*]

15 # The location where the file certificate is.

16 # Do not end the string with any forward or backslash.

17 #

18 # [*thumbprint*]

19 # The thumbprint used to verify the certifcate

20 #

21 # [*store_dir*]

22 # The certifcate store where the certifcate will be installed to

23 #

24 # [*root_store*]

25 # The store location for the given certifcation store. Either LocalMachine or CurrentUser

26 #

27 # [*scripts_dir*]

28 # The directory where the scripts to verify and install the certificates will be stored.

29 # By default is C:\temp

30 #

149

ANNEX XV. CERNSSLCERTIFICATE MODULE MANIFEST

31 # [*exportable*]

32 # Flag to set the key as exportable. true == exportable; false == not exportable.

33 # By default is set to false.

34 # === Examples

35 #

36 # To install a certificate in the My directory of the LocalMachine root store:

37 #

38 # cernsslcertificate { "Install-PFX-Certificate" :

39 # name => 'mycert.pfx',

40 # teigi_key => 'passwordkey123',

41 # location => 'C:',

42 # thumbprint => '07E5C1AF7F5223CB975CC29B5455642F5570798B'

43 # }

44 #

45 # To install a certifcate in an alterntative direcotory:

46 #

47 # cernsslcertificate { "Install-Intermediate-Certificate" :

48 # name => 'go_daddy_intermediate.p7b',

49 # location => 'C:',

50 # store_dir => 'CA',

51 # root_store => 'LocalMachine',

52 # thumbprint => '07E5C1AF7F5223CB975CC29B5455642F5570798B'

53 # }

54 #

55 # To install a certificate in the My directory of the LocalMachine root store

56 # using a different directory to store the scripts:

57 #

58 # cernsslcertificate { "Install-PFX-Certificate" :

59 # name => 'mycert.pfx',

60 # teigi_key => 'passwordkey123',

61 # location => 'C:',

62 # thumbprint => '07E5C1AF7F5223CB975CC29B5455642F5570798B',

63 # scripts_dir => 'C:\scripts_dir'

64 # }

65 #

66 # To install a certificate in the My directory of the LocalMachine root store

67 # and set the key as exportable:

68 #

69 # cernsslcertificate { "Install-PFX-Certificate" :

70 # name => 'mycert.pfx',

71 # teigi_key => 'passwordkey123',

72 # location => 'C:',

73 # thumbprint => '07E5C1AF7F5223CB975CC29B5455642F5570798B',

74 # exportable => true

75 # }

76

77 define cernsslcertificate (

78 $teigi_key,

79 $location,

80 $thumbprint,

150

81 $root_store = 'LocalMachine',

82 $store_dir = 'My',

83 $scripts_dir = 'C:\ProgramData\PuppetLabs\puppet\cache\tbag\cert-scripts',

84 $exportable = false) {

85

86 $cert_filename = $name

87

88 sslcertificate { "Install-S{cert_filename}":

89 name => $cert_filename,

90 password => "%TEIGI__${teigi_key}__%",

91 location => $location,

92 thumbprint => $thumbprint,

93 scripts_dir => $scripts_dir,

94 exportable => $exportable,

95 }

96

97 $inspect_script_name = "inspect-${cert_filename}-certificate.ps1"

98 $import_script_name = "import-${cert_filename}-certificate.ps1"

99

100 # Override scripts location and names defined by sslcertificate module.

101 # This will produce script files without the password in them.

102 File <| title == "${inspect_script_name}" |> {

103 path => "${scripts_dir}\\${inspect_script_name}.withoutteigi",

104 }

105

106 File <| title == "${import_script_name}" |> {

107 path => "${scripts_dir}\\${import_script_name}.withoutteigi",

108 }

109

110 # Override exec commands to use he correct script file names

111 Exec <| title == "Install-${cert_filename}-SSLCert" |> {

112 command => "${scripts_dir}\\${import_script_name}",

113 onlyif => "${scripts_dir}\\${inspect_script_name}",

114 }

115

116 # These will be executed locally in each node. So the replacement and generation of

scripts that include the password will be done↪→

117 # by the host.

118 teigi::secret::sub_file { "${scripts_dir}\\${inspect_script_name}":

119 teigi_keys => [$teigi_key],

120 source =>

"${scripts_dir}\\inspect-${cert_filename}-certificate.ps1.withoutteigi",↪→

121 before => Exec["Install-${cert_filename}-SSLCert"],

122 require => File[$inspect_script_name],

123 owner => 'S-1-5-18',

124 group => 'S-1-5-32-544',

125 mode => '0700'

126 }

127

128 teigi::secret::sub_file { "${scripts_dir}\\${import_script_name}":

151

ANNEX XV. CERNSSLCERTIFICATE MODULE MANIFEST

129 teigi_keys => [$teigi_key],

130 source => "${scripts_dir}\\${import_script_name}.withoutteigi",

131 before => Exec["Install-${cert_filename}-SSLCert"],

132 require => File[$import_script_name],

133 owner => 'S-1-5-18',

134 group => 'S-1-5-32-544',

135 mode => '0700'

136 }

137

138 }

152

A
n
n
e
x

XVI
Windows provider for teigi_subfile

1 Puppet::Type.type(:teigi_sub_file).provide(:windows) do

2 desc 'Replace strings in a file with secrets from teigi'

3 ##

4 #### Code copied & adapted from the windows provider for file resource ###

5 ### located at /usr/share/ruby/vendor_ruby/puppet/provider/file/windows.rb ####

6 ##

7 confine operatingsystem: :windows

8 defaultfor osfamily: :windows

9 has_feature :manages_symlinks if Puppet.features.manages_symlinks?

10 include Puppet::Util::Warnings

11 if Puppet.features.microsoft_windows?

12 require 'puppet/util/windows'

13 include Puppet::Util::Windows::Security

14 end

15 # Determine if the account is valid, and if so, return the UID

16 def name2id(value)

17 Puppet::Util::Windows::SID.name_to_sid(value)

18 end

19 # If it's a valid SID, get the name. Otherwise, it's already a name,

20 # so just return it.

21 def id2name(id)

22 if Puppet::Util::Windows::SID.valid_sid?(id)

23 Puppet::Util::Windows::SID.sid_to_name(id)

24 else

25 id

26 end

27 end

28 # We use users and groups interchangeably, so use the same methods for both

29 # (the type expects different methods, so we have to oblige).

30 alias_method :uid2name, :id2name

153

ANNEX XVI. WINDOWS PROVIDER FOR TEIGI_SUBFILE

31 alias_method :gid2name, :id2name

32 alias_method :name2gid, :name2id

33 alias_method :name2uid, :name2id

34 def owner

35 return :absent unless File.stat(resource[:destfile])

36 get_owner(resource[:destfile])

37 end

38 def owner=(should)

39 set_owner(should, resource[:destfile])

40 rescue => detail

41 raise Puppet::Error, "Failed to set owner to '#{should}': #{detail}",

detail.backtrace↪→

42 end

43 def group

44 return :absent unless File.stat(resource[:destfile])

45 get_group(resource[:destfile])

46 end

47 def group=(should)

48 set_group(should, resource[:destfile])

49 rescue => detail

50 raise Puppet::Error, "Failed to set group to '#{should}': #{detail}",

detail.backtrace↪→

51 end

52 def mode

53 if File.stat(resource[:destfile])

54 mode = get_mode(resource[:destfile])

55 mode ? mode.to_s(8) : :absent

56 else

57 :absent

58 end

59 end

60 def mode=(value)

61 begin

62 set_mode(value.to_i(8), resource[:destfile])

63 rescue => detail

64 error = Puppet::Error.new("failed to set mode #{mode} on

#{resource[:destfile]}: #{detail.message}")↪→

65 error.set_backtrace detail.backtrace

66 raise error

67 end

68 :file_changed

69 end

70 ##

71 ############# End of the code copied! ################

72 ##

73 def create

74 target_contents = self.new_contents

75 if File.exist?(resource[:destfile])

76 target_current_contents = IO.read(resource[:destfile])

77 if target_current_contents == target_contents

154

78 set_perm

79 return true

80 end

81 end

82 File.open(resource[:destfile], File::WRONLY | File::TRUNC | File::CREAT) { |file|

file.write(target_contents) }↪→

83 set_perm

84 end

85 def destroy

86 FileUtils.rm resource[:destfile] if File.exist? resource[:destfile]

87 end

88 def exists?

89 return false unless File.exist?(resource[:destfile])

90 target_contents = self.new_contents

91 current_contents = IO.read(resource[:destfile])

92 return false unless target_contents == current_contents

93 dest_stat = File.stat(resource[:destfile])

94 unless dest_stat.mode.to_s(8)[-4..-1] =~ /^0?#{resource[:mode]}$/

95 return false

96 end

97 return false if uid2name(dest_stat.uid) != resource[:owner]

98 return false if gid2name(dest_stat.gid) != resource[:group]

99 true

100 end

101 def new_contents

102 secret_contents = get_contents

103 unless secret_contents['errors'].empty?

104 raise secret_contents['errors'].join("\n")

105 end

106 source_contents = self.source_contents

107 keys = []

108 if resource[:teigi_keys].is_a?(Array)

109 keys = resource[:teigi_keys]

110 elsif resource[:teigi_keys].is_a?(String)

111 keys.push(resource[:teigi_keys])

112 else

113 raise("Unknown type #{resource[:teigi_keys].class} for teigi_keys")

114 end

115 keys.each do |k|

116 tbreplaced = resource[:string].sub('keyname', k)

117 @my_value = secret_contents['content'][k]

118 if resource[:encode] && (resource[:encode] != :false)

119 @my_value = ERB::Util.url_encode(@my_value)

120 end

121 source_contents = source_contents.gsub(tbreplaced, @my_value)

122 end

123 source_contents

124 end

125 def source_contents

126 return @source_contents if defined?(@source_contents)

155

ANNEX XVI. WINDOWS PROVIDER FOR TEIGI_SUBFILE

127 @source_contents = IO.read(resource[:sourcefile])

128 @source_contents

129 end

130 def get_contents

131 return @results if defined?(@results)

132 dirpath = "#{Facter[:puppet_vardir].value}/tbag" # FIXME

133 @results = {}

134 @results['content'] = {}

135 @results['errors'] = {}

136 keys = []

137 if resource[:teigi_keys].is_a?(Array)

138 keys = resource[:teigi_keys]

139 elsif resource[:teigi_keys].is_a?(String)

140 keys.push(resource[:teigi_keys])

141 else

142 raise("Unknown type #{resource[:teigi_keys].class} for teigi_keys")

143 end

144 keys.each do |k|

145 k_path = [dirpath, k].join('/')

146 unless File.file?(k_path)

147 @results['errors'][k] = "teigisecret[\"#{k}\"] does not exist"

148 next

149 end

150 begin

151 @results['content'][k] = File.open(k_path, &:readline).chomp

152 rescue EOFError

153 # empty secret

154 @results['content'][k] = ''

155 end

156 end

157 @results

158 end

159 def set_perm

160 uid = name2uid(resource[:owner])

161 gid = name2gid(resource[:group])

162 self.owner = uid

163 self.group = gid

164 # Do not set mode if none is specified

165 if resource[:mode]

166 self.mode = resource[:mode]

167 end

168 end

169 end

156

A
n
n
e
x

XVII
Improved teigi_subfile manifest to

contemplate Windows systems

1 define teigi::secret::sub_file (

2 Optional[Array[String[1],1]] $teigi_keys = undef,

3 String $path=$title,

4 Optional[String] $template = undef,

5 Optional[String] $content = undef,

6 Optional[String] $source = undef,

7 Optional[String] $owner = undef,

8 Optional[String] $group = undef,

9 Optional[String] $mode = undef,

10 String $string = '%TEIGI__keyname__%',

11 Optional[Boolean] $encode = undef,

12) {

13

14 if $template and $source {

15 fail('$source and $template cannot be both set to teigi::sub::file')

16 } elsif $template and $content {

17 fail('$content and $template cannot be both set to teigi::sub::file')

18 } elsif $source and $content {

19 fail('$source and $content cannot be both set to teigi::sub::file')

20 } elsif $template {

21 $_mycontent = template($template)

22 $_mysource = undef

23 } elsif $source {

24 $_mycontent = undef

25 $_mysource = $source

26 } elsif $content {

27 $_mycontent = $content

28 $_mysource = undef

157

ANNEX XVII. IMPROVED TEIGI_SUBFILE MANIFEST TO CONTEMPLATE

WINDOWS SYSTEMS

29 } else {

30 fail('On of $source, $template or $content must be set to teigi::sub::file')

31 }

32

33 # If provided, use the values passed as arguments. Otherwise, use the default ones

34 if $owner {

35 $_owner = $owner

36 } else {

37 $_owner = $::kernel ? {

38 'windows' => 'S-1-5-18', # SYSTEM account

39 default => 'root',

40 }

41 }

42

43 if $group {

44 $_group = $group

45 } else {

46 $_group = $::kernel ? {

47 'windows' => 'S-1-5-32-544', # Administrators group account

48 default => 'root',

49 }

50 }

51

52 if $mode {

53 $_mode = $mode

54 } else {

55 $_mode = $::kernel ? {

56 'windows' => '0700',

57 default => '0400',

58 }

59 }

60

61 if $teigi_keys {

62 include ::teigi::tbag

63

64 $intermediate_file = md5($path)

65

66 $_intermediatemode = $::kernel ? {

67 'windows' => '0700',

68 default => '0400',

69 }

70

71 file{"${teigi::tbag::template_path}/${intermediate_file}":

72 ensure => file,

73 owner => $_owner,

74 group => $_group,

75 mode => $_intermediatemode,

76 content => $_mycontent,

77 source => $_mysource,

78 }

158

79

80 ensure_resource('teigisecret', $teigi_keys, {'path' => $teigi::tbag::path, 'url' =>

$teigi::tbag::url, 'urlargs' => $teigi::tbag::urlargs, 'metapath' =>

$teigi::tbag::metapath, 'require' => "File[${teigi::tbag::path}]"})

↪→

↪→

81

82 file{$path:

83 ensure => present,

84 owner => $_owner,

85 group => $_group,

86 mode => $_mode,

87 }

88

89 $_provider = $::kernel ? {

90 'windows' => 'windows',

91 default => 'posix'

92 }

93

94 teigi_sub_file{$title:

95 teigi_keys => $teigi_keys,

96 provider => $_provider,

97 string => $string,

98 owner => $_owner,

99 group => $_group,

100 mode => $_mode,

101 sourcefile => "${teigi::tbag::template_path}/${intermediate_file}",

102 destfile => $path,

103 require =>

[File["${teigi::tbag::template_path}/${intermediate_file}",$path],Teigisecret[$teigi_keys]],↪→

104 encode => $encode,

105 }

106 } else {

107

108 file{$path:

109 ensure => present,

110 owner => $_owner,

111 group => $_group,

112 mode => $_mode,

113 content => $_mycontent,

114 source => $_mysource,

115 }

116 }

117 }

159

A
n
n
e
x

XVIII
Puppet Manifest to configure Remote

Desktop Servers of CERN’s WTS

1 class hg_windows_infrastructure::ts {

2 if $::operatingsystem == 'windows' {

3 # Setting Powershell Execution Policy to unrestricted

4 exec { 'Set PowerShell execution policy unrestricted':

5 command => 'Set-ExecutionPolicy Unrestricted',

6 unless => 'if ((Get-ExecutionPolicy -Scope LocalMachine) -eq "Unrestricted") {

exit 0 } else { exit 1 }',↪→

7 provider => powershell

8 }

9 ####################################

10 # Setting registry key changes #

11 ####################################

12 registry::value { 'Disable UAC':

13 key => 'HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System',

14 value => 'EnableLUA',

15 data => '0',

16 type => 'dword'

17 }

18 registry::value { 'Set Updates':

19 key => 'HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\WindowsUpdate\Auto

Update',↪→

20 value => 'AUOptions',

21 data => '2',

22 type => 'dword'

23 }

24 registry::value { 'Set Updates2':

25 key => 'HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\WindowsUpdate\Auto

Update',↪→

26 value => 'IncludeRecommendedUpdates',

161

ANNEX XVIII . PUPPET MANIFEST TO CONFIGURE REMOTE DESKTOP

SERVERS OF CERN’S WTS

27 data => '1',

28 type => 'dword'

29 }

30 registry::value { 'Set IE Enhanced Security Configuration for Admins':

31 key => 'HKLM\SOFTWARE\Microsoft\Active Setup\Installed

Components\{A509B1A7-37EF-4b3f-8CFC-4F3A74704073}',↪→

32 value => 'IsInstalled',

33 data => '0',

34 type => 'dword'

35 }

36 registry::value { 'Set IE Enhanced Security Configuration for Users':

37 key => 'HKLM\SOFTWARE\Microsoft\Active Setup\Installed

Components\{A509B1A8-37EF-4b3f-8CFC-4F3A74704073}',↪→

38 value => 'IsInstalled',

39 data => '0',

40 type => 'dword'

41 }

42 registry::value { 'Disable Customer Experience Improvement Program':

43 key => 'HKLM\SOFTWARE\Microsoft\SQMClient\Windows',

44 value => 'CEIPEnable',

45 data => '0',

46 type => 'dword'

47 }

48 registry::value { 'Disable Initial Configuration Tasks':

49 key => 'HKLM\Software\Microsoft\ServerManager\Oobe',

50 value => 'DoNotOpenInitialConfigurationTasksAtLogon',

51 data => '1',

52 type => 'dword'

53 }

54 registry::value { 'Change Kerberos token size':

55 key => 'HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Kerberos\Parameters',

56 value => 'MaxTokenSize',

57 data => '0xffff',

58 type => 'dword'

59 }

60 # Set RDP

61 registry::value { 'Set RDP':

62 key => 'HKLM\SYSTEM\CurrentControlSet\Control\Terminal

Server\WinStations\RDP-Tcp',↪→

63 value => 'UserAuthentication',

64 data => '0',

65 type => 'dword'

66 }

67 # Install Remote Desktop Session Host role

68 windowsfeature { 'RDS-RD-Server':

69 ensure => present,

70 restart => true

71 }

72 wmi { 'Change RDS RDP-TCP Environment Setting':

73 wmi_namespace => 'root/cimv2/terminalservices',

162

74 wmi_class => 'Win32_TSEnvironmentSetting',

75 wmi_property => 'InitialProgramPolicy',

76 wmi_value => 2,

77 }

78 # Setting the page file

79 $pagefile_initialsize = 2048

80 $pagefile_maximumsize = 4096

81 exec { 'Set-pagefile':

82 command => "Get-CimInstance -ClassName Win32_ComputerSystem | Set-CimInstance

-Property @{ AutomaticManagedPageFile = \$false }; Get-CimInstance -ClassName

Win32_PageFileSetting | Set-CimInstance -Property @{InitialSize =

$pagefile_initialsize; MaximumSize = $pagefile_maximumsize}",

↪→

↪→

↪→

83 onlyif => "\$AutoManaged = (Get-CimInstance -ClassName

Win32_ComputerSystem).AutomaticManagedPagefile; \$PageFile = Get-CimInstance

-ClassName Win32_PageFileSetting; if(\$AutoManaged -or \$PageFile.InitialSize

-ne $pagefile_initialsize -or \$PageFile.MaximumSize -ne

$pagefile_maximumsize){exit 0} else {exit 1}",

↪→

↪→

↪→

↪→

84 provider => powershell

85 }

86 # Reboot after setting page file parameters

87 reboot { 'reboot after pagefile':

88 apply => finished,

89 subscribe => Exec['Set-pagefile'],

90 message => 'Puppet changed the page file settings. This computer will be rebooted

now.'↪→

91 }

92 # Change start type of Software Protection Service to Manual

93 if ($::operatingsystemrelease == '2008 R2') {

94 # Only for 2008 R2, 2012 R2 gives an error:Cannot enable sppsvc for manual start,

error was: Input/output error -↪→

95 # ChangeServiceConfig: Access is denied.

96 service { 'sppsvc': enable => manual }

97 }

98 # Enable Powershell Remoting

99 exec { 'Enable PS Remoting':

100 command => 'Enable-PSRemoting -Force -Confirm:$false',

101 unless => '$PSPermissionStr = (Get-PSSessionConfiguration).Permission |

Select-String "AccessDenied"; if ($PSPermissionStr.Length -eq 0) {exit 0} else

{exit 1}',

↪→

↪→

102 provider => powershell

103 }

104 # Disable IPV6 using windows_disable_ipv6 module

105 class { 'windows_disable_ipv6':

106 ipv6_disable => true,

107 ipv6_reboot => false

108 }

109 # Disable TCP Chimney and NetDMA

110 exec { 'Disable TCP Chimney':

111 command => 'netsh int tcp set global chimney=disabled',

163

ANNEX XVIII . PUPPET MANIFEST TO CONFIGURE REMOTE DESKTOP

SERVERS OF CERN’S WTS

112 unless => '$ChimneyState = netsh int tcp show global | Select-String "Chimney

Offload State"; if($ChimneyState -like "*disabled*") {exit 0} else { exit 1}',↪→

113 provider => powershell

114 }

115 registry::value { 'Disable NetDMA':

116 key => 'HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters',

117 value => 'EnableTCPA',

118 data => '0',

119 type => 'dword'

120 }

121

122 # Copy NICETasks folder (3 steps)

123 $nicetasks_source_dir = '//OFFUSCATEDPATH/TerminalServices/configuration/NICETasks'

124 $nicetasks_target_dir = 'C:/NICETasks'

125

126 #1 CreateMake sure folder a folder exists

127 file { $nicetasks_target_dir:

128 ensure => directory

129 }

130 #2 set permissions

131 acl { "set-permissions-${nicetasks_target_dir}":

132 target => $nicetasks_target_dir,

133 purge => true,

134 permissions => [

135 { identity => 'SYSTEM', rights => ["full"], child_types => 'all', affects =>

'all' },↪→

136 { identity => 'Administrators', rights => ["full"], child_types => 'all', affects

=> 'all' },↪→

137],

138 owner => 'Administrators',

139 inherit_parent_permissions => false,

140 require => File[$nicetasks_target_dir],

141 }

142 #3 sync folder contents

143 exec { 'Sync NICETasks':

144 command => "\\\\OFFUSCATEDPATH\\TerminalServices\\scripts\\Sync-Files.ps1

${nicetasks_source_dir} ${nicetasks_target_dir}",↪→

145 provider => powershell,

146 require => Acl["set-permissions-${nicetasks_target_dir}"]

147 }

148

149 $cert_thumbprint = 'OFFUSCATEDTHUMBPRINT'

150

151 # Import the some certificate

152 cernsslcertificate { 'INSTALL-CERTIFICATE':

153 name => 'OFFUSCATEDPCERTIFICATENAME.pfx',

154 teigi_key => 'cert_pwd',

155 location => '\\\\OFFUSCATEDPATH\\TerminalServices\\certificates',

156 thumbprint => $cert_thumbprint,

157 }

164

158

159 # check certificate permissions and reset to self-signed certificate

160 exec {'check cert permissions':

161 command => "\$Thumbprint = (Get-ChildItem cert:\\LocalMachine\\My | Where-Object

{\$_.Subject -match \"\$env:COMPUTERNAME.cern.ch\"}).Thumbprint;↪→

162 Get-WmiObject -Class Win32_TSGeneralSetting -Namespace

root\\cimv2\\TerminalServices | Set-WmiInstance -Arguments

@{SSLCertificateSHA1Hash = \$Thumbprint};",

↪→

↪→

163 onlyif => "\$keyName = (((Get-ChildItem Cert:\LocalMachine\My | Where-Object

{\$_.Thumbprint -like

'$cert_thumbprint'}).PrivateKey).CspKeyContainerInfo).UniqueKeyContainerName;

↪→

↪→

164 \$keyPath = 'C:\\ProgramData\\Microsoft\\Crypto\\RSA\MachineKeys';

165 \$fullPath = \$keyPath + '\\\' + \$keyName;

166 \$aclNetSvc = (Get-Acl -Path \$fullPath).Access | Where-Object

{\$_.IdentityReference -match 'NETWORK SERVICE'}↪→

167 If (\$aclNetSvc -ne \$null -and \$aclNetSvc.AccessControlType -eq 'Allow' -and

\$aclNetSvc.FileSystemRights -match 'Read')↪→

168 { exit 1 }

169 else

170 { exit 0 }",

171 provider => powershell,

172 require => Cernsslcertificate['INSTALL-CERTIFICATE']

173 }

174

175 # Install SSL Certificate in RD Session Host for RDP-TCP Connections

176 wmi { 'Install SSL Certificate for RDP':

177 wmi_namespace => 'root/cimv2/terminalservices',

178 wmi_class => 'Win32_TSGeneralSetting',

179 wmi_property => 'SSLCertificateSHA1Hash',

180 wmi_value => $cert_thumbprint, # Correct Certificate thumbprint,

181 require => Exec['check cert permissions']

182 }

183

184 }

185 }

165

A
n
n
e
x

XIX
Puppet Manifest to configure Remote

Desktop License server

1 class hg_windows_infrastructure::rds::win2012::lic {

2 if $::operatingsystem == 'windows' {

3

4 exec { 'Disable Firewall':

5 command => 'netsh advfirewall set allprofiles state off',

6 unless => '$FirewallState = netsh advfirewall show domainprofile state |

Select-String "State"; if($FirewallState -like "*OFF") { exit 0 } else { exit 1

}',

↪→

↪→

7 provider => powershell

8 }

9

10 # Install Remote Desktop Licensing

11 windowsfeature { 'RDS-Licensing':

12 ensure => present,

13 restart => true

14 }

15

16 # Install Remote Desktop Connection Broker

17 windowsfeature { 'RDS-Connection-Broker':

18 ensure => present,

19 restart => true

20 }

21

22 # Install Remote Desktop Licensing Tools

23 windowsfeature { 'RDS-Licensing-UI':

24 ensure => present,

25 restart => true

26 }

167

ANNEX XIX. PUPPET MANIFEST TO CONFIGURE REMOTE DESKTOP

LICENSE SERVER

27

28 # Remote Desktop Services enable license server security group

29 dsc_cadministrativetemplatesetting { 'Enable license server security group':

30 dsc_keyvaluename => 'SOFTWARE\\Policies\\Microsoft\\Windows NT\\Terminal

Services\\fSecureLicensing',↪→

31 dsc_policytype => 'Machine',

32 dsc_data => '1', # Enable

33 dsc_ensure => 'Present',

34 dsc_type => 4,

35 }

36

37 # Only members of this group can obtain RDS licenses and connect to the broker

38 group { 'RDS Endpoint Servers group membership':

39 name => 'RDS Endpoint Servers',

40 ensure => present,

41 members => ['cern\NICE Terminal Services Application Servers'],

42 auth_membership => false,

43 }

44

45 }

46 }

168

A
n
n
e
x

XX
Sync-Files PowerShell script to

synchronise a folder structure

1 Param(

2 [Parameter(Mandatory=$true)][string]$SourceDirPath,

3 [Parameter(Mandatory=$true)][string]$TargetDirPath

4)

5 # Exit codes for Puppet: Exit 0 - Success (no errors); Exit 1 - Failed (errors)

6

7 Function Compute-Hash {

8

9 Param($Path, $Algorithm)

10

11 if ($PSVersionTable.PSVersion.Major -ge 4) {

12 return $(Get-FileHash -Path $Path -Algorithm $Algorithm).Hash

13 } else {

14 $hash = [Security.Cryptography.HashAlgorithm]::Create($Algorithm)

15 $stream = ([IO.StreamReader]"$Path").BaseStream

16 $output = -join ($hash.ComputeHash($stream) | ForEach { "{0:x2}" -f $_ })

17 $stream.Close()

18 $object = New-Object -TypeName psobject -Property @{

19 Algorithm = $Algorithm

20 Hash = $output.ToUpper()

21 Path = $Path

22 }

23 return $object

24 }

25

26 }

27

28 #source dir must exist

169

ANNEX XX. SYNC-FILES POWERSHELL SCRIPT TO SYNCHRONISE A

FOLDER STRUCTURE

29 if(!(Test-Path $SourceDirPath)){

30 exit 1

31 }

32 # ! $_.PSIsContainer ignores directories

33 $SourceDirFiles = Get-ChildItem -Recurse -Path $SourceDirPath | where { !

$_.PSIsContainer }↪→

34

35 # target dir exists

36 if(Test-Path $TargetDirPath){

37 $TargetDirFiles = Get-ChildItem -Recurse -Path $TargetDirPath | where { !

$_.PSIsContainer }↪→

38 if($TargetDirFiles){

39

40 $TargetDirFileHashes = $TargetDirFiles| foreach {Compute-Hash -Path $_.FullName

-Algorithm MD5}↪→

41

42 # Compares file names

43 $FilesDiff = Compare-Object -ReferenceObject $SourceDirFiles -DifferenceObject

$TargetDirFiles↪→

44

45 # Compares file contents

46 $FileHashesDiff = Compare-Object -ReferenceObject $SourceDirFileHashes

-DifferenceObject $TargetDirFileHashes↪→

47

48 if(($FilesDiff.SideIndicator.Length -eq 0) -and

($FileHashesDiff.SideIndicator.Length -eq 0)){↪→

49 #echo 'empty - no diffs! Do nothing! exiting...' #TODO DEBUG

50 exit 0

51 } else {

52 #echo 'different trees. Deleting dir ...' #TODO DEBUG

53 Remove-Item $TargetDirPath* -Recurse -Force

54 }

55 }

56 }

57 Copy-Item $SourceDirPath* -Destination $TargetDirPath -Recurse

58 exit 0

170

A
n
n
e
x

XXI
CERNOperations SMA Integration

Module

1 <#

2 .SYNOPSIS

3 Common functions for CERN Operations

4 Last Update: 26/10/2017

5 Authors: Sebastian Buckowiec, Ricardo Gaspar

6

7 Disclaimer: Not the original version! Using non-real CERN users, URIs and server

addresses for security purposes.↪→

8 #>

9

10 # Global Variables

11 $CMFProductionSOAPURI = "https://someweburiatcern.asmx?WSDL" #production

12

13 function Test-Health {

14 param(

15 [Parameter(Mandatory = $True)]

16 [ValidateNotNullOrEmpty()]

17 [String]

18 $ComputerName,

19

20 [Parameter(Mandatory = $False)]

21 [ValidateNotNullOrEmpty()]

22 [int]

23 $Port,

24

25 [Parameter(Mandatory = $False)]

26 [ValidateNotNullOrEmpty()]

27 [int]

171

ANNEX XXI. CERNOPERATIONS SMA INTEGRATION MODULE

28 $Fall = 3

29)

30

31 Clear-DnsClientCache

32

33 if (!$Port) {

34 $cmd = "Test-NetConnection -ComputerName $ComputerName -WarningAction

SilentlyContinue -InformationLevel Quiet"↪→

35 }

36 else {

37 $cmd = "Test-NetConnection -ComputerName $ComputerName -Port $Port -WarningAction

SilentlyContinue -InformationLevel Quiet"↪→

38 }

39

40 $TestResult = Invoke-Expression $cmd

41 if (!$TestResult) {

42 for ($i = 1; $i -lt $Fall; $i++) {

43 Start-Sleep 3

44 Clear-DnsClientCache

45 $TestResult = Invoke-Expression $cmd

46 if ($TestResult) {

47 return $True

48 }

49 }

50 }

51 else {

52 return $True

53 }

54

55 return $False

56 }

57

58 function Send-Notification {

59 param(

60 [Parameter(Mandatory = $True)]

61 [ValidateNotNullOrEmpty()]

62 [String]

63 $To,

64

65 [Parameter(Mandatory = $True)]

66 [ValidateNotNullOrEmpty()]

67 [String]

68 $Subject,

69

70 [Parameter(Mandatory = $True)]

71 [ValidateNotNullOrEmpty()]

72 [String]

73 $Body

74)

75

172

76 $notifRecipients = $To -split "," | % { $_.trim() }

77

78 Send-MailMessage -To $notifRecipients -From "someadminuser@cern.ch" -Subject $Subject

-Body $Body -SmtpServer somecernmailserver.cern.ch↪→

79

80 }

81

82

83 <#

84 .SYNOPSIS

85 DeleteVolume function deletes a volume based on its ID.

86

87 .DESCRIPTION

88 DeleteVolume function deletes a volume based on its ID.

89 It conctacts the administration server (aiadm) in other to invoke the 'openstack

volume delete' command that deletes the volume on OpenStack.↪→

90

91 This operation should be done on volumes that are not attached to any VM.

92

93 It returns the message retruned by openstack command.

94

95 .PARAMETER VolumeID

96 The volume identifier on OpenStack.

97

98 .PARAMETER Connection

99 The connection object to be used. It contains the user and password to be used and

the server name to connect to.↪→

100

101 .PARAMETER OpenStackProject

102 The OpenStack project under which the volume was created.

103

104 .EXAMPLE

105 $deleteVolResult = DeleteVolume -VolumeID "7c123423-5ca0-495f-b84a-69db5a76541c"

-Connection $Conn -OpenStackProject "my openstack project"↪→

106

107 .NOTES

108 This operation should be done on volumes that are not attached to any VM.

109 #>

110 function DeleteVolume {

111 [CmdletBinding(DefaultParameterSetName = 'SpecifyConnectionFields')]

112 param(

113 [Parameter(Mandatory = $True)]

114 [ValidateNotNullOrEmpty()]

115 [string] $VolumeID,

116

117 [Parameter(ParameterSetName = 'UseConnectionObject', Mandatory = $True)]

118 [ValidateNotNullOrEmpty()]

119 [Hashtable]

120 $Connection,

121

173

ANNEX XXI. CERNOPERATIONS SMA INTEGRATION MODULE

122 [Parameter(Mandatory = $True)]

123 [ValidateNotNullOrEmpty()]

124 [string] $OpenStackProject

125)

126

127 $deleteVolumeCmd = [Scriptblock]::Create("eval `$(ai-rc $OpenStackProject); openstack

volume delete $VolumeID")↪→

128 $deleteVolumeCmdResult = Invoke-SSHCommand -Connection $Connection -ScriptBlock

$deleteVolumeCmd↪→

129 return $deleteVolumeCmdResult.Result

130 }

131

132

133 <#

134 .SYNOPSIS

135 DeleteVM function deletes a VM based on its name.

136

137 .DESCRIPTION

138 DeleteVM function deletes a VM based on its name on OpenStack.

139 It conctacts the administration server (aiadm) in other to invoke the ai-kill command

line tool that kills the VM on OpenStack and cleans its records on Foreman.↪→

140

141 It returns the message retruned by ai-kill command.

142 .PARAMETER VMName

143 The name of the VM.

144

145 .PARAMETER Connection

146 The connection object to be used. It contains the user and password to be used and

the server name to connect to.↪→

147

148 .PARAMETER OpenStackProject

149 The OpenStack project under which the volume was created.

150

151 .EXAMPLE

152 $deleteVMResult = DeleteVm -VMName "mycomputername" -Connection $Conn

-OpenStackProject "my openstack project"↪→

153

154 #>

155

156 function DeleteVM {

157 [CmdletBinding(DefaultParameterSetName = 'SpecifyConnectionFields')]

158 param(

159 [Parameter(Mandatory = $True)]

160 [ValidateNotNullOrEmpty()]

161 [string] $VMName,

162

163 [Parameter(ParameterSetName = 'UseConnectionObject', Mandatory = $True)]

164 [ValidateNotNullOrEmpty()]

165 [Hashtable]

166 $Connection,

174

167

168 [Parameter(Mandatory = $True)]

169 [ValidateNotNullOrEmpty()]

170 [string] $OpenStackProject

171)

172

173 $deleteVMCmd = [Scriptblock]::Create("eval `$(ai-rc $OpenStackProject); ai-kill-vm

$VMName")↪→

174 $deleteVMCmdResult = Invoke-SSHCommand -Connection $Connection -ScriptBlock

$deleteVMCmd↪→

175 return $deleteVMCmdResult.Result

176 }

177

178 <#

179 .SYNOPSIS

180 WaitForVM function waits for the VM to be reachable through WinRM.

181

182 .DESCRIPTION

183 WaitForVM function waits for the VM to be reachable through WinRM.

184 It tries to reach the VM multiple times, using a given sleep interval, until the VM

responds.↪→

185 First it waits for the VM to be in an 'ACTIVE' state on OpenStack, if it reaches the

'ERROR' state then the function throws an exception indicating that the VM was not

created, exception message:"[WaitForVM function] an error occured when creating the

VM on OpenStack."

↪→

↪→

↪→

186

187 After the VM reaches the 'ACTIVE' state, then the funcion waits for the VM to be

reachable through WinRM (Windows Remote Management Protocol).↪→

188

189 At the end it returns the total time slept until the machine is running and

reacheable by WinRM.↪→

190

191 .PARAMETER SleepInterval

192 The time in seconds betweent each connection atempt.

193

194 .PARAMETER VMName

195 The name of the VM.

196

197 .PARAMETER Connection

198 The connection object to be used. It contains the user and password to be used and

the server name to connect to.↪→

199

200 .PARAMETER OpenStackProject

201 The OpenStack project under which the VM was created.

202

203 .EXAMPLE

204 Sleep for 300 secs = 5 min, until VM is ready to receive commands

205 WaitForVM -SleepInterval 300 -VMName "mycomputername" -Connection $Connection

-OpenStackProject "my openstack project"↪→

206

175

ANNEX XXI. CERNOPERATIONS SMA INTEGRATION MODULE

207 .EXAMPLE

208 try {

209 $totalWaitTime = WaitForVM -SleepInterval 300 -VMName "mycomputername"

-Connection $Connection -OpenStackProject "my openstack project" # Sleep for 300 secs

= 5 min, until VM is ready to receive commands

↪→

↪→

210 }

211 catch {

212 Write-Output "An error occured when creating the VM on OpenStack."

213 }

214 #>

215

216 function WaitForVM {

217 [CmdletBinding(DefaultParameterSetName = 'SpecifyConnectionFields')]

218 param(

219 [Parameter(Mandatory = $True)]

220 [ValidateNotNullOrEmpty()]

221 [int] $SleepInterval,

222

223 [Parameter(Mandatory = $True)]

224 [ValidateNotNullOrEmpty()]

225 [string] $VMName,

226

227 [Parameter(ParameterSetName = 'UseConnectionObject', Mandatory = $True)]

228 [ValidateNotNullOrEmpty()]

229 [Hashtable]

230 $Connection,

231

232 [Parameter(Mandatory = $True)]

233 [ValidateNotNullOrEmpty()]

234 [string] $OpenStackProject

235)

236

237 $totalTimeSlept = 0

238 $vmStatusCmd = [Scriptblock]::Create("eval `$(ai-rc $OpenStackProject); openstack

server show $VMName -c status -f value")↪→

239

240 Write-Verbose "[WaitForVM function] Wainting for the VM to be ACTIVE."

241 # wait for VM to be running (OpenStack status = ACTIVE)

242 Do {

243 $vmStatus = Invoke-SSHCommand -Connection $Connection -ScriptBlock $vmStatusCmd

244 $vmStatusResult = ($vmStatus.Result).Trim().ToUpper()

245

246 switch ($vmStatusResult) {

247 "ERROR" {

248 Write-Verbose "[WaitForVM function] an error occured when creating the VM

on OpenStack. vmStatusResult = $vmStatusResult."↪→

249 throw "[WaitForVM function] an error occured when creating the VM on

OpenStack."↪→

250 }

251 "ACTIVE" {

176

252 Write-Verbose "[WaitForVM function] VM is now ACTIVE, total time slept so

far = $totalTimeSlept."↪→

253 break

254 }

255 Default {

256 Write-Verbose "[WaitForVM function] VM is being created (BUILD). Sleeping

for $SleepInterval seconds."↪→

257 Start-Sleep -Seconds $SleepInterval

258 $totalTimeSlept += $SleepInterval

259 }

260 }

261 } Until ($vmStatusResult -eq "ACTIVE")

262

263 Write-Verbose "[WaitForVM function] Wainting for the VM to be reacheable by WinRM."

264 # wait for VM to be reacheable by WinRM

265 Do {

266 $winRMconnection = Test-Wsman $VMName -ErrorAction SilentlyContinue

267 if ($winRMconnection) {

268 Write-Verbose "[WaitForVM function] WinRM OK! `r`n total time slept:

$totalTimeSlept seconds."↪→

269 }

270 else {

271 Write-Verbose "[WaitForVM function] WinRM not yet available. Sleeping for

$SleepInterval seconds."↪→

272 Start-Sleep -Seconds $SleepInterval

273 $totalTimeSlept += $SleepInterval

274 }

275 } Until ($winRMconnection)

276

277 return $totalTimeSlept

278 }

279

280

281 <#

282 .SYNOPSIS

283 WaitForCMF function Waits for the VM's CMF agent to finish the deployment of pending

packages.↪→

284

285 .DESCRIPTION

286 WaitForCMF function Waits for the VM's CMF agent to finish the deployment of pending

packages.↪→

287 It tries multiple times, using a given sleep interval, until the CMF indicates that

it completed all the installations.↪→

288

289 .PARAMETER SleepInterval

290 The time in seconds betweent each connection atempt.

291

292 .PARAMETER VMName

293 The name of the VM.

294

177

ANNEX XXI. CERNOPERATIONS SMA INTEGRATION MODULE

295 .EXAMPLE

296 $totalWaitTimeCMF = WaitForCMF -SleepInterval 180 -VMName "mycomputername"

297

298 .EXAMPLE

299 WaitForCMF -SleepInterval 180 -VMName "mycomputername"

300 #>

301 function WaitForCMF {

302 param(

303 [Parameter(Mandatory = $True)]

304 [ValidateNotNullOrEmpty()]

305 [int] $SleepInterval,

306

307 [Parameter(Mandatory = $True)]

308 [ValidateNotNullOrEmpty()]

309 [string] $VMName

310)

311

312 Write-Verbose "[WaitForCMF function]"

313 $totalTimeSlept = 0

314

315 $URI = $CMFProductionSOAPURI

316

317 $CMFWebSvc = New-WebServiceProxy -Uri $URI -namespace WebServiceProxy -Class

NSCMgtSoap↪→

318

319 Do {

320 Write-Verbose "[WaitForCMF function] Getting status of the computer $VMName"

321 $CMFStatusCompleted = $CMFWebSvc.CMFCompleted($VMName)

322 if (!$CMFStatusCompleted) {

323 Write-Verbose "[WaitForCMF function] CMF is NOT finished yet! Sleeping for

$SleepInterval seconds."↪→

324 Start-Sleep -Seconds $SleepInterval

325 $totalTimeSlept += $SleepInterval

326 }

327 else {

328 Write-Verbose "[WaitForCMF function] CMF finished!"

329 }

330 } Until ($CMFStatusCompleted)

331

332 return $totalTimeSlept

333 }

334

335 <#

336 .SYNOPSIS

337 Copies a file or an directory available localy on the SMA worker or in a network path to

a target computer.↪→

338 .DESCRIPTION

339 Copies a file or an entire directory available localy on the SMA worker or in a network

path to a target computer.↪→

340 .PARAMETER ComputerName

178

341 Name of the computer to copy the file.

342 .PARAMETER SourcePath

343 Path to the file or directory to be copied.

344 Path to files must include the file extension (see examples).

345 Path to directory should include the last slash (\) (see examples).

346 .PARAMETER TargetDirPath

347 Path to the directory where the file or directory must be copied on the target computer.

348 In case of copying a directory, it will copy the whole directory (including sub-files and

sub-directories) specified in the SourcePath into the directory specified in

TargetDirPath.

↪→

↪→

349 Default value : "C:\Windows\Temp\SMA_files"

350 .PARAMETER Credential

351 PSCredential object containing the credentials with authotized access to invoke

operations on target computer.↪→

352 .EXAMPLE

353 # Copy a single file

354 Copy-RemoteFiles -ComputerName "myservername" -SourcePath "\\fileserver\file.ps1"

-Credential $Cred↪→

355 .EXAMPLE

356 # Copy a single file specifying the target directory

357 Copy-RemoteFiles -ComputerName "myservername" -SourcePath "\\fileserver\file.ps1"

-TargetDirPath "C:\mydir" -Credential $Cred↪→

358 .EXAMPLE

359 # Copy a directory

360 Copy-RemoteFiles -ComputerName "myservername" -SourcePath "\\fileserver\directory\"

-Credential $Cred↪→

361 .EXAMPLE

362 # Copy a directory specifying the target directory

363 Copy-RemoteFiles -ComputerName "myservername" -SourcePath "\\fileserver\directory\"

-TargetDirPath "C:\mydir" -Credential $Cred↪→

364 #>

365 function Copy-RemoteFiles {

366 param(

367 [Parameter(Mandatory = $True)]

368 [ValidateNotNullOrEmpty()]

369 [string] $ComputerName,

370

371 [Parameter(Mandatory = $True)]

372 [ValidateNotNullOrEmpty()]

373 [string] $SourcePath,

374

375 [string] $TargetDirPath = "C:\Windows\Temp\SMA_files",

376

377 [Parameter(Mandatory = $True)]

378 [ValidateNotNullOrEmpty()]

379 [PSCredential] $Credential

380

381)

382

383 $session = New-PSSession -ComputerName $ComputerName -Credential $Credential

179

ANNEX XXI. CERNOPERATIONS SMA INTEGRATION MODULE

384

385 $sourceItem = Get-Item $SourcePath

386 $targetFilePath = Join-Path $TargetDirPath $sourceItem.Name

387

388 Write-Verbose "tragetFilePath=$targetFilePath"

389

390 # create directory if it does not exist, if it exists there are no side effects

391 $createScriptsDirCMD = [Scriptblock]::Create("New-Item -ItemType directory -Path

$TargetDirPath -Force")↪→

392 $createScriptsDirCMDResult = Invoke-Command -Session $session -ScriptBlock

$createScriptsDirCMD↪→

393

394 Write-Verbose "$createScriptsDirCMDResult"

395

396 try {

397 # case insensitve switch

398 switch ($sourceItem.GetType().Name) {

399 "FileInfo" {

400 $copyResult = Copy-Item -Path $SourcePath -Destination $targetFilePath

-ToSession $session↪→

401 }

402 "DirectoryInfo" {

403 $copyResult = Copy-Item -Path $SourcePath -Destination $targetFilePath

-ToSession $session -Recurse↪→

404 }

405 }

406 Write-Verbose "$copyResult"

407 Write-Verbose "file $SourcePath copied to $TargetDirPath"

408 }

409 catch {

410 Write-Verbose "An error occured when copying $SourcePath to $TargetDirPath"

411 }

412

413 Remove-PSSession $session

414 }

415

416 <#

417 .SYNOPSIS

418 Copies a executable file available localy on the SMA worker or in a network path to a

target computer and executes it on the target computer.↪→

419

420 .DESCRIPTION

421 Copies a executable file available localy on the SMA worker or in a network path to a

target computer and executes it on the target computer.↪→

422

423 .PARAMETER ComputerName

424 Name of the computer to copy the file.

425

426 .PARAMETER SourcePath

427 Path to the executable file to be copied and executed.

180

428

429 .PARAMETER TargetDirPath

430 Path to the directory where the executable file must be copied on the target computer.

431 Default is : "C:\Windows\Temp\SMA_files"

432

433 .PARAMETER TargetScriptArguments

434 A string with the arguments to pass to the script.

435

436 .PARAMETER DeleteFilesAfterwards

437 When specified, deletes the executable file after it has been executed.

438

439 .PARAMETER Credential

440 PSCredential object containing the credentials with authotized access to invoke

operations on target computer.↪→

441

442 .EXAMPLE

443 Copy-ExecuteScript -ComputerName "myservername" -SourcePath "\\fileserver\file.ps1"

-TargetDirPath -Credential $Cred↪→

444

445 .EXAMPLE

446 Copy-ExecuteScript -ComputerName "myservername" -SourcePath "\\fileserver\file.ps1"

-TargetDirPath "C:\Windows\Temp\SMA_files" -TargetScriptArguments "-AnArgument x"

-Credential $Cred -DeleteFilesAfterwards

↪→

↪→

447 #>

448 function Copy-ExecuteScript {

449 param(

450 [Parameter(Mandatory = $True)]

451 [ValidateNotNullOrEmpty()]

452 [string] $ComputerName,

453

454 [Parameter(Mandatory = $True)]

455 [ValidateNotNullOrEmpty()]

456 [string] $SourcePath,

457

458 [string] $TargetDirPath = "C:\Windows\Temp\SMA_files",

459

460 [string] $TargetScriptArguments,

461

462 [switch] $DeleteFilesAfterwards,

463

464 [Parameter(Mandatory = $True)]

465 [ValidateNotNullOrEmpty()]

466 [PSCredential] $Credential

467

468)

469

470 $session = New-PSSession -ComputerName $ComputerName -Credential $Credential

471

472 Copy-RemoteFiles -ComputerName $ComputerName -SourcePath $SourcePath -TargetDirPath

$TargetDirPath -Credential $Credential↪→

181

ANNEX XXI. CERNOPERATIONS SMA INTEGRATION MODULE

473

474 $sourceScriptPath = Get-Item $SourcePath

475 $targetScriptPath = Join-Path $TargetDirPath $sourceScriptPath.Name

476

477 if ($TargetScriptArguments) {

478 $targetScriptCommand = "$targetScriptPath $TargetScriptArguments"

479 }

480 else {

481 $targetScriptCommand = $targetScriptPath

482 }

483

484 if ($DeleteFilesAfterwards) {

485 $executeScriptCMD = [Scriptblock]::Create("$targetScriptCommand; Remove-Item

$TargetDirPath -Recurse -Force")↪→

486 }

487 else {

488 $executeScriptCMD = [Scriptblock]::Create("$targetScriptCommand")

489 }

490

491 Write-Verbose "Running Command: `r`n $($executeScriptCMD.ToString())"

492

493 Invoke-Command -Session $session -ScriptBlock $executeScriptCMD

494

495 Remove-PSSession $session

496 }

497

498 <#

499 .SYNOPSIS

500 Regenerates puppet certificate on the target computer.

501

502 .DESCRIPTION

503 Regenerates puppet certificate on the target computer.

504

505 .PARAMETER ComputerName

506 Name of the computer to regenerate the puppet certificate.

507

508 .PARAMETER Credential

509 PSCredential object containing the credentials with authotized access to invoke

operations on target computer.↪→

510

511 .EXAMPLE

512 FixPuppetCert -ComputerName "myservername" -Credential $Cred

513

514 #>

515 function FixPuppetCert {

516 param(

517 [Parameter(Mandatory = $True)]

518 [ValidateNotNullOrEmpty()]

519 [string] $ComputerName,

520

182

521 [Parameter(Mandatory = $True)]

522 [ValidateNotNullOrEmpty()]

523 [PSCredential] $Credential

524

525)

526

527 $OpenSSLDirPath = "\\fileserver\openssl\"

528 $GenCertScriptPath = "\\fileserver\certfixscript.ps1"

529 $TargetDirPath = "C:\Windows\Temp\SMA_files\"

530

531 $session = New-PSSession -ComputerName $ComputerName -Credential $Credential

532

533 # Copy Openssl files required by the certificate regenerator script

534 Copy-RemoteFiles -ComputerName $ComputerName -SourcePath $OpenSSLDirPath

-TargetDirPath $TargetDirPath -Credential $Credential↪→

535

536

537 # Copy and execute certificate regenerator script

538 Copy-ExecuteScript -ComputerName $ComputerName -SourcePath $GenCertScriptPath

-TargetDirPath $TargetDirPath -TargetScriptArguments "-OpenSSLExecutablePath

$TargetDirPath\openssl\openssl.exe" -Credential $Credential

↪→

↪→

539

540

541 Remove-PSSession $session

542 }

543

544 <#

545 .SYNOPSIS

546 Add a computer to a given CMF Name Set of Computers (NSC).

547 .DESCRIPTION

548 Add a computer to a given CMF Name Set of Computers (NSC).

549

550 .PARAMETER ComputerName

551 Name of the computer to add to the NSC.

552

553 .PARAMETER NSCid

554 The number ID of the NSC.

555

556 .PARAMETER Credential

557 PSCredential object containing the credentials with authotized access to invoke

operations on target computer.↪→

558

559 .EXAMPLE

560 CMFAddComputerToNSC -ComputerName "myservername" -NSCid "1059 -Credential $Cred

561

562 .NOTES

563 The add to NSC operation is and MUST be invoked from the target computer in order to be

successful.↪→

564 #>

565 function CMFAddComputerToNSC {

183

ANNEX XXI. CERNOPERATIONS SMA INTEGRATION MODULE

566 Param(

567 [Parameter(Mandatory = $true)]

568 [string] $ComputerName,

569

570 [Parameter(Mandatory = $true)]

571 [string] $NSCid,

572

573 [Parameter(Mandatory = $True)]

574 [ValidateNotNullOrEmpty()]

575 [PSCredential] $Credential

576)

577 $URI = $CMFProductionSOAPURI

578

579

580 $session = New-PSSession -ComputerName $ComputerName -Credential $Credential

581

582 # IMPORTANT: In order to work you run this script from the Computer you want to add

to NSC.↪→

583 Write-Verbose "Adding the computer $ComputerName to NSC $NSCid"

584

585 Invoke-Command -Session $session -ScriptBlock {$CMFWebSvc = New-WebServiceProxy -Uri

$Using:URI -namespace WebServiceProxy -Class NSCMgtSoap↪→

586 $result = $CMFWebSvc.AddComputerToNSC($Using:ComputerName, $Using:NSCid)

587 if ($result) {

588 Write-Output "The following error occured:"

589 $result

590 }

591 else {

592 Write-Output "Computer $Using:ComputerName successfully added to NSC

$Using:NSCid"↪→

593 }

594 }

595

596 Remove-PSSession $session

597 }

598

599

600 <#

601 .SYNOPSIS

602 Trigger the CMF agent of a computer to install the schecduled software packages.

603

604 .DESCRIPTION

605 Trigger the CMF agent of a computer to install the schecduled software packages.

606

607 .PARAMETER ComputerName

608 Name of the computer to trigger the execution of pending actions (install CMF packages).

609

610 .EXAMPLE

611 CMFExecPendingActions -ComputerName "myservername"

612 #>

184

613 function CMFExecPendingActions {

614 Param(

615 [Parameter(Mandatory = $true)]

616 [string] $ComputerName

617)

618

619 $URI = $CMFProductionSOAPURI

620

621 $CMFWebSvc = New-WebServiceProxy -Uri $URI -namespace WebServiceProxy -Class

NSCMgtSoap↪→

622

623 Write-Verbose "Asking CMF agent of computer $ComputerName to execute the pending

actions."↪→

624 $result = $CMFWebSvc.ExecutependingActions($ComputerName)

625

626 if ($result) {

627 Write-Output "The following error occured:`r`n $result"

628 }

629 else {

630 Write-Output "Computer $ComputerName is now executing the pending actions."

631 }

632

633 }

634

635 <#

636 .SYNOPSIS

637 Get a list of the software packages scheduled to be installed on a computer.

638

639 .DESCRIPTION

640 Get a list of the software packages scheduled to be installed on a computer in a string

object.↪→

641 If the computer does not exist returns $null.

642

643 .PARAMETER ComputerName

644 Name of the computer to get the list of missing software packages.

645

646 .PARAMETER ReturnValuesOnly

647 Flag parameter to supress any output messages and get only the result values.

648 When specified, no messages are displayed in the console and only returns the string

object containing the missing software packages. In this case, if there are no

packages to install a $null value is returned.

↪→

↪→

649

650 .EXAMPLE

651 Example with output messages.

652 CMFGetPendingActions -ComputerName "myservername"

653

654 .EXAMPLE

655 Example returning only the packages in a string object.

656 CMFGetPendingActions -ComputerName "myservername" -ReturnValuesOnly

657

185

ANNEX XXI. CERNOPERATIONS SMA INTEGRATION MODULE

658 .NOTES

659 The ReturnValuesOnly flag is intended to be used when some other program needs to do

something with the list of packages (string obeject) because, in PowerShell, the

messages written to the console are also returned as values by the functions. With

this flag parameter only the value is returned so that developers don't have to parse

or filter the returned values.

↪→

↪→

↪→

↪→

660 #>

661 function CMFGetPendingActions {

662 Param(

663 [Parameter(Mandatory = $true)]

664 [string] $ComputerName,

665

666 [switch] $ReturnValuesOnly

667)

668

669 $URI = $CMFProductionSOAPURI

670

671 $CMFWebSvc = New-WebServiceProxy -Uri $URI -namespace WebServiceProxy -Class

NSCMgtSoap↪→

672

673 $pendingActions = $CMFWebSvc.GetPendingActions($ComputerName)

674

675 # in case of just wanting the values ($null if no value)

676 if ($ReturnValuesOnly) {

677 return $pendingActions

678 }

679

680 if (!$pendingActions) {

681 Write-Output "There are no pending actions!"

682 }

683 else {

684 # Display each package in each line

685 $pendingActionsString = ""

686 foreach ($item in $pendingActions) {

687 $pendingActionsString += "- $item`r`n"
688 }

689 Write-Output "There are pending actions:"

690 $pendingActionsString

691 }

692 }

693

694 <#

695 .SYNOPSIS

696 Get the CMF Agent status of a computer.

697

698 .DESCRIPTION

699 Get the CMF Agent status of a computer.

700 Returns a boolean value: $true if all the software packages are installed and $false if

the CMF agent is still installing packages.↪→

701 If the computer does not exist returns $null.

186

702

703 .PARAMETER ComputerName

704 Name of the computer to check CMF Agent status.

705

706 .PARAMETER ReturnValuesOnly

707 Flag parameter to supress any output messages and get only the result value.

708 When specified, no messages are displayed in the console and only returns the boolean

value that indicates if the CMF Agent finished installing the sofware packages or

not.

↪→

↪→

709

710 .EXAMPLE

711 Example with output messages.

712 CMFGetStatus -ComputerName "myservername"

713

714 .EXAMPLE

715 Example returning only the status in a boolean result.

716 CMFGetStatus -ComputerName "myservername" -ReturnValuesOnly

717

718 .NOTES

719 The ReturnValuesOnly flag is intended to be used when some other program needs to do

something with the result value (boolean) because, in PowerShell, the messages

written to the console are also returned as values by the functions. With this flag

parameter only the value is returned so that developers don't have to parse or filter

the returned values.

↪→

↪→

↪→

↪→

720 #>

721 function CMFGetStatus {

722 Param(

723 [Parameter(Mandatory = $true)]

724 [string] $ComputerName,

725

726 [switch] $ReturnValuesOnly

727)

728

729 $URI = $CMFProductionSOAPURI

730

731 $CMFWebSvc = New-WebServiceProxy -Uri $URI -namespace WebServiceProxy -Class

NSCMgtSoap↪→

732

733 $CMFComputerStatus = $CMFWebSvc.CMFCompleted($ComputerName)

734

735 if ($ReturnValuesOnly) {

736 return $CMFComputerStatus

737 }

738

739 if (!$CMFComputerStatus) {

740 Write-Output "CMF is NOT finished yet!"

741 }

742 else {

743 Write-Output "CMF finished!"

744 }

187

ANNEX XXI. CERNOPERATIONS SMA INTEGRATION MODULE

745 }

746

747 Export-ModuleMember *

188

A
n
n
e
x

XXII
create-vm-with-volume Runbook

1 <#

2 .SYNOPSIS

3 Workflow to create CERN Windows VM with a second volume attached.

4

5 .DESCRIPTION

6 Worfklow designed to create new Windows VMs in CERN infrastructure with a second volume

attached.↪→

7 It uses ai-bs-vm commandline tool to create the VM in OpenStack, register in Foreman

hostgroup and add it to NSCs on CMF.↪→

8

9 .NOTES

10 Author: Ricardo Gaspar (ricardo.gaspar@cern.ch)

11 Last update: 25/10/2017

12

13 .PARAMETER OpenStackProject

14 'OpenStackProject' is the OpenStack project where the VM will be created.

15

16 .PARAMETER Hostgroup

17 'Hostgroup' is the Foreman hostgroup where the VM will be placed.

18

19 .PARAMETER Environment

20 'Environment' is the Foreman environment where the VM will be placed.

21 Common values can be: 'qa','production'.

22 Default value: 'production'

23

24 .PARAMETER NovaImage

25 'NovaImage' is the OS image name available on OpenStack Nova to be installed on the VM.

26 Check the available images on OpenStack or run 'openstack image list' in AIADM.

27 Default value: 'Windows 2016 Standard'

28

189

ANNEX XXII. CREATE-VM-WITH-VOLUME RUNBOOK

29 .PARAMETER NovaFlavor

30 'NovaFlavor' is the OpenStack Nova VM flavour. Windows machines require a minimum of 40GB

of disk space, so 'm2.large' flavor is the minimum flavor.↪→

31 Check the available flavors on OpenStack or run 'openstack flavor list' in AIADM.

32 Default value: 'm2.xlarge'

33

34 .PARAMETER LANDBResponsible

35 'LANDBResponsible' is the LAN DB responsible user/group (main responsible) for the VM.

The user/group must exist in e-groups and Active Directory.↪→

36 Default value: 'SUPPORT-WINDOWS-SERVERS'

37

38 .PARAMETER LANDBMainUser

39 'LANDBMainUser' is the LAN DB main user user/group for the VM. The user/group must exist

in e-groups and Active Directory.↪→

40 Default value: 'bukowiec'

41

42 .PARAMETER AvailabilityZone

43 'AvailabilityZone' is the datacenter's availability zone where the VM will be placed.

44 Check the existing availability zones on OpenStack or run 'openstack availability zone

list' in AIADM.↪→

45 Default value: 'cern-geneva-a'

46

47 .PARAMETER CMFMemberships

48 'CMFMemberships' is a list of the CMF NSCs to which VM must be member. This parameter is

a list of strings separated by commas.↪→

49 Example: '1059,1304'

50 Default value: '1059'

51

52 .PARAMETER VolumeSize

53 VolumeSize' is the size of the volume to be created and attached to the VM.

54 This parameter follows the same structure as the --nova-attach-new-volume argument of

'ai-bs-vm' tool.↪→

55 For more info check the manual page: 'man ai-bs-vm' in AIADM.

56 Values should be like "xGB" or "xTB" (1TB = 1000GB), where x is an integer > 0.

57 Example: '1GB'

58 Default value: '100GB'

59

60 .PARAMETER VolumeType

61 'VolumeType' is the type of the volume to be created and attached to the VM.

62 Values can be: standard, io1, cp1, cpio1, wig-io1, wig-cp1, wig-cpio1

63 Default value: 'io1'

64

65 .PARAMETER VMName

66 'VMName' is the hostname of the VM that will be created.

67

68 .EXAMPLE

69 Example using default values:

70 create-vm-with-volume -OpenStackProject "IT Windows Terminal Service Dev" -Hostgroup

"windows_dev/ts" -AvailabilityZone "cern-geneva-c" -CMFMemberships "1059,1304"

-VolumeSize "1GB" -VMName "MyVM"

↪→

↪→

190

71

72 .EXAMPLE

73 Example with all parameters:

74 create-vm-with-volume -OpenStackProject "IT Windows Terminal Service Dev" -Hostgroup

"windows_dev/ts" -Environment "qa" -NovaImage "Windows 2016 Standard" -NovaFlavor

"m2.large" -LANDBResponsible "SUPPORT-WINDOWS-SERVERS" -AvailabilityZone

"cern-geneva-c" -CMFMemberships "1059,1304" -VolumeSize "1GB" -VolumeType "standard"

-VMName "MyVM"

↪→

↪→

↪→

↪→

75 #>

76 workflow create-vm-with-volume {

77 param(

78

79 [Parameter(Mandatory = $False)]

80 [string] $OpenStackProject = "IT Windows Terminal Service",

81

82 [Parameter(Mandatory = $True)]

83 [string] $Hostgroup,

84

85 [Parameter(Mandatory = $False)]

86 [string] $Environment = "production",

87

88 [Parameter(Mandatory = $False)]

89 [string] $NovaImage = "Windows 2016 Standard",

90

91 [Parameter(Mandatory = $False)]

92 [string] $NovaFlavor = "m2.xlarge",

93

94 [Parameter(Mandatory = $False)]

95 [string] $LANDBResponsible = "SUPPORT-WINDOWS-SERVERS",

96

97 [Parameter(Mandatory = $False)]

98 [string] $LANDBMainUser,

99

100 [Parameter(Mandatory = $False)]

101 [string] $AvailabilityZone = "cern-geneva-a",

102

103 [Parameter(Mandatory = $False)]

104 [string] $CMFMemberships = "1059",

105

106 [Parameter(Mandatory = $False)]

107 [string] $VolumeSize = "100GB",

108

109 [Parameter(Mandatory = $False)]

110 [string] $VolumeType = "io1",

111

112 [Parameter(Mandatory = $True)]

113 [string] $VMName

114

115)

116 # preference variabbles for troubleshooting

191

ANNEX XXII. CREATE-VM-WITH-VOLUME RUNBOOK

117 $VerbosePreference = "Continue"

118 $DebugPreference = "Continue"

119 $WarningPreference = "Continue"

120 $ErrorActionPreference = "Continue"

121

122 $Conn = Get-AutomationConnection -Name 'adminconnection'

123 $Cred = Get-AutomationPSCredential -Name 'adminuser'

124

125 # Manipulating input parameters

126 $OpenStackProject = "'$OpenStackProject'" # enquoting OpenStackProject variable

127 $NovaImage = "'$NovaImage'" # enquoting NovaImage variable

128 $VolumeSettings = $VolumeSize + ":delete-on-terminate:type=" + $VolumeType

129 $VolumeLabel = "DATA"

130

131 $AIBSVMExitCodes = "EXIT CODES

132 0 All operations executed successfully.

133 2 Bad command line.

134 3 Bad user environment (no OpenStack's openrc.sh has been sourced)

135 4 Kerberos TGT not-existent or expired.

136 5 FQDN is invalid.

137 6 Userdata generation failed.

138 7 Userdata dump failed.

139 10 Foreman registration failed.

140 20 Host staging failed.

141 30 Nova boot failed.

142 40 Cinder volume operation failed.

143 50 Openstack authorization error"

144

145 if (!$CMFMemberships) {

146 Write-Verbose "Composing command to create VM: `r`n eval `$(ai-rc
$OpenStackProject); ai-bs-vm --foreman-hostgroup $Hostgroup

--foreman-environment $Environment --nova-image $NovaImage --nova-flavor

$NovaFlavor --landb-responsible=$LANDBResponsible

--landb-mainuser=$LANDBMainUser --nova-availabilityzone $AvailabilityZone

--nova-attach-new-volume disk1=$VolumeSettings $VMName"

↪→

↪→

↪→

↪→

↪→

147

148 $vmCreateCmd = [Scriptblock]::Create("eval `$(ai-rc $OpenStackProject); ai-bs-vm

--foreman-hostgroup $Hostgroup --foreman-environment $Environment

--nova-image $NovaImage --nova-flavor $NovaFlavor

--landb-responsible=$LANDBResponsible --landb-mainuser=$LANDBMainUser

--nova-availabilityzone $AvailabilityZone --nova-attach-new-volume

disk1=$VolumeSettings $VMName")

↪→

↪→

↪→

↪→

↪→

149 }

150 else {

151 # Using CMF memberships

192

152 Write-Verbose "Composing command to create VM: `r`n eval `$(ai-rc
$OpenStackProject); mkdir -p cmf_memberships_dir; echo

`$'#cmf\n[NSC]\nMembership=$CMFMemberships' >

cmf_memberships_dir/cmf_memberships.txt; ai-bs-vm --foreman-hostgroup

$Hostgroup --foreman-environment $Environment --nova-image $NovaImage

--nova-flavor $NovaFlavor --landb-responsible=$LANDBResponsible

--landb-mainuser=$LANDBMainUser --nova-availabilityzone $AvailabilityZone

--nova-attach-new-volume disk1=$VolumeSettings --userdata-dir

cmf_memberships_dir $VMName"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

153

154 $vmCreateCmd = [Scriptblock]::Create("eval `$(ai-rc $OpenStackProject); mkdir -p

cmf_memberships_dir; echo `$'#cmf\n[NSC]\nMembership=$CMFMemberships' >

cmf_memberships_dir/cmf_memberships.txt; ai-bs-vm --foreman-hostgroup

$Hostgroup --foreman-environment $Environment --nova-image $NovaImage

--nova-flavor $NovaFlavor --landb-responsible=$LANDBResponsible

--landb-mainuser=$LANDBMainUser --nova-availabilityzone $AvailabilityZone

--nova-attach-new-volume disk1=$VolumeSettings --userdata-dir

cmf_memberships_dir $VMName")

↪→

↪→

↪→

↪→

↪→

↪→

↪→

155 }

156

157 $StartWorkflowTime = Get-Date -Format G

158 Write-Output "$StartWorkflowTime - Creating VM."

159

160 $vmCreateCmdResult = Invoke-SSHCommand -Connection $Conn -ScriptBlock $vmCreateCmd

161 $VolumeID = GetVolumeIDFromErrorMsg -ErrorMsg $vmCreateCmdResult.Error

162

163 Write-Verbose "Command executed: $($vmCreateCmdResult.CommandText)"

164

165 if ($vmCreateCmdResult.ExitStatus -ne 0) {

166 Write-Output "$(Get-Date -Format G) - It was not possible to create the VM. The

Error: `r`n $($vmCreateCmdResult.Error) `r`n ExitCode:

$($vmCreateCmdResult.ExitStatus) `r`n Check the ai-bs-vm Exit Codes by runing

'man ai-bs-vm' on a aiadm machine."

↪→

↪→

↪→

167 Write-Error "It was not possible to create the VM. The Error: `r`n
$($vmCreateCmdResult.Error) `r`n ExitCode: $($vmCreateCmdResult.ExitStatus)

`r`n Check the ai-bs-vm Exit Codes by runing 'man ai-bs-vm' on a aiadm

machine."

↪→

↪→

↪→

168 if ($VolumeID) {

169 Write-Output "$(Get-Date -Format G) - Deleting volume $VolumeID"

170 $deleteVolResult = DeleteVolume -VolumeID $VolumeID -Connection $Conn

-OpenStackProject $OpenStackProject↪→

171 Write-Verbose "delete volume result:`r`n $($deleteVolResult)"

172 }

173 Write-Output "$AIBSVMExitCodes"

174 Write-Output "$(Get-Date -Format G) - Finished with errors. VM not created."

175 exit

176 }

177 else {

178 Write-Verbose "Create VM command output `r`n $($vmCreateCmdResult.Error)"

179 }

193

ANNEX XXII. CREATE-VM-WITH-VOLUME RUNBOOK

180 Write-Verbose "VM Created. Now doing a Checkpoint-Workflow."

181

182 Checkpoint-Workflow

183

184 Write-Output "$(Get-Date -Format G) - Waiting for VM to be up and running."

185 try {

186 $totalWaitTime = WaitForVM -SleepInterval 300 -VMName $VMName -Connection $Conn

-OpenStackProject $OpenStackProject # Sleep for 300 secs = 5 min, until VM is

ready to receive commands

↪→

↪→

187 }

188 catch {

189 Write-Output "$(Get-Date -Format G) - an error occured when creating the VM on

OpenStack."↪→

190 Write-Output "$(Get-Date -Format G) - Deleting VM $VMName"

191 $deleteVMResult = DeleteVm -VMName $VMName -Connection $Conn -OpenStackProject

$OpenStackProject↪→

192 Write-Verbose "Delete VM result:`r`n $($deleteVMResult)"

193

194 Write-Output "$(Get-Date -Format G) - Deleting volume $VolumeID"

195 $deleteVolResult = DeleteVolume -VolumeID $VolumeID -Connection $Conn

-OpenStackProject $OpenStackProject↪→

196 Write-Verbose "Delete volume result:`r`n $($deleteVolResult)"

197

198 Write-Output "$(Get-Date -Format G) - Finished with errors. VM not created."

199 exit

200 }

201

202 Write-Output "$(Get-Date -Format G) - VM is ready. Now waiting for CMF to install all

the packages."↪→

203 $totalWaitTimeCMF = WaitForCMF -SleepInterval 180 -VMName $VMName

204 Write-Verbose "CMF is ready. Now doing a Checkpoint-Workflow."

205

206 Checkpoint-Workflow

207

208 Write-Output "$(Get-Date -Format G) - Rebooting VM."

209 InlineScript {

210 Restart-Computer -Wait -For WinRM -ComputerName $Using:VMName -Force

211 }

212

213 Write-Verbose "VM restarted. Now doing a Checkpoint-Workflow."

214 Checkpoint-Workflow

215

216 Write-Output "$(Get-Date -Format G) - Formatting volume."

217 # Format the attached volume.

218 InlineScript

219 {

220 Write-Verbose "Invoking command to Initialize, Create and Format the new Disk"

194

221 Write-Verbose "Formatting Volume using PoweShell code: Get-Disk | Where-Object

partitionstyle -eq 'raw' | Initialize-Disk -PartitionStyle MBR -PassThru |

New-Partition -AssignDriveLetter -UseMaximumSize | Format-Volume -FileSystem

NTFS -NewFileSystemLabel $Using:VolumeLabel -Confirm:$false"

↪→

↪→

↪→

222

223 $formatDiskResult = Get-Disk |

224 Where-Object partitionstyle -eq 'raw' |

225 Initialize-Disk -PartitionStyle MBR -PassThru |

226 New-Partition -AssignDriveLetter -UseMaximumSize |

227 Format-Volume -FileSystem NTFS -NewFileSystemLabel $Using:VolumeLabel

-Confirm:$false↪→

228 } -PSComputerName $VMName

229

230

231 Checkpoint-Workflow

232

233 # Get all puppet errors from the event log

234 $puppetErrors = Get-EventLog -LogName "Application" -Source "Puppet" -EntryType

"Error" -PSComputerName $VMName -After $StartWorkflowTime↪→

235

236 # Filter errors: get only certificate related errors

237 $puppetCertErrors = $puppetErrors | Where-Object {$_.Message -like "*certificate*"

-or $_.Message -like "*SSL*" -or $_.Message -like "*503*"}↪→

238

239 # Count the number of certificate related errors to see if there are any

240 $puppetCertErrorsCount = ($puppetCertErrors | Measure-Object).Count

241 Write-Verbose "total puppet cert errors: $puppetCertErrorsCount"

242

243 if ($puppetCertErrorsCount -gt 0) {

244 Write-Output "$(Get-Date -Format G) - Fixing puppet certificate on $VMName."

245 FixPuppetCert -ComputerName $VMName -Credential $Cred

246

247 Write-Output "$(Get-Date -Format G) - Rebooting VM."

248 InlineScript {

249 Restart-Computer -Wait -For WinRM -ComputerName $Using:VMName -Force

250 }

251

252 Write-Verbose "VM restarted. Now doing a Checkpoint-Workflow."

253 Checkpoint-Workflow

254 }

255

256 Write-Output "$(Get-Date -Format G) - Restart Puppet Agent Service."

257 InlineScript

258 {

259 Write-Verbose "Check puppet service status: `r`n $((Get-Service puppet).Status)"

260

261 Write-Verbose "Stopping puppet service"

262 Stop-Service puppet

263 Write-Verbose "Check puppet service status: `r`n $((Get-Service puppet).Status)"

264

195

ANNEX XXII. CREATE-VM-WITH-VOLUME RUNBOOK

265 Write-Verbose "Starting puppet service"

266 Start-Service puppet

267 Write-Verbose "Check puppet service status: `r`n $((Get-Service puppet).Status)"

268

269 } -PSComputerName $VMName

270

271 $EndWorkflowTime = Get-Date -Format G

272 $TotalWorkflowTime = New-TimeSpan -Start $StartWorkflowTime -End $EndWorkflowTime

273 Write-Output "$EndWorkflowTime - Finished. VM created with an attached volume. Total

time: $TotalWorkflowTime"↪→

274

275 # Send e-mail

276 $notifyAdmins = Get-AutomationVariable -Name "NotifyAdmins"

277

278 Send-Notification -To $notifyAdmins -Subject "VM $VMName created" -Body "VMName:

$VMName `r`n Image: $NovaImage `r`n Flavor: $NovaFlavor `r`n Foreman Hostgroup:

$Hostgroup `r`n Environment: $Environment `r`n LANDB responsible:

$LANDBResponsible `r`n Availability zone: $AvailabilityZone `r`n CMF Memberships:

$CMFMemberships `r`n Volume attached size: $VolumeSize `r`n Volume attached type:

$VolumeType `r`n Total time spent: $TotalWorkflowTime.`r`n`r`n Puppet Agent will

start executing and soon the first report will appear on Foreman (max. 60 min.)."

↪→

↪→

↪→

↪→

↪→

↪→

279

280 ###

281 ## Wokflow code finished ##

282 ## Auxiliary Functions below ##

283 ###

284

285

286 <#

287 .SYNOPSIS

288 GetVolumeIDFromErrorMsg function finds the VolumeID that comes in the output of the

VM creation command.↪→

289 In this output there are a lot of lines, so it needs to be parsed to get the VolumeID

created by the command.↪→

290

291 .DESCRIPTION

292 Parse the output error message from the command to create a VM ('ai-bs-vm') and

retrieve the VolumeID.↪→

293

294 .PARAMETER ErrorMsg

295 The error message string that the VM create command produces.

296 .EXAMPLE

297 $VolumeID = GetVolumeIDFromErrorMsg -ErrorMsg $vmCreateCmdResult.Error

298 #>

299 function GetVolumeIDFromErrorMsg ([string] $ErrorMsg) {

300 $seprator = @("Getting volume", "from Cinder")

301 $resultStrings = $ErrorMsg.Split($seprator,

[System.StringSplitOptions]::RemoveEmptyEntries)↪→

302 if ($resultStrings.Count -gt 1) {

303 $VolumeIDstr = $resultStrings[1]

196

304 $VolumeID = $VolumeIDstr.Trim(' ', "'")

305 return $VolumeID

306 }

307 else {

308 return $null

309 }

310 }

311

312 }

197

	Contents
	List of Figures
	List of Tables
	Glossary
	Acronyms
	Introduction
	Context
	Motivation
	Contributions
	Document Organisation

	CERN's Windows Terminal Service Infrastructure
	The infrastructure
	CERN Cloud Infrastructure (OpenStack)
	Remote Desktop Services
	HAProxy

	Monitoring the WTS Operations: SCOM
	Management and Configuration of the WTS infrastructure
	Active Directory
	Group Policy
	Scripting
	Computer Management Framework

	Agility
	DevOps
	Before DevOps
	What is DevOps?

	Infrastructure as Code
	Principles of IaC

	Configuration Management

	Configuration Management
	SCM Tools: an Introduction
	SCM Tools: a brief survey
	Overview
	Puppet
	Ansible
	PowerShell DSC

	SCM Tools' Evaluation
	Tool Installation and Configuration
	Testing the Tools
	Integration with PowerShell DSC
	Evaluation Results

	WTS Configuration Management using Puppet
	Puppet-wmi module
	puppet-sslcertificate module
	cernsslcertificate module
	teigi module and teigi_subfile resource
	Building Puppet types from DSC modules
	WTS Puppet manifests

	Automation and Orchestration
	Automation and Orchestration
	Runbooks and Workflows

	Evaluated Automation & Orchestration tools
	System Center Orchestrator
	Service Management Automation

	Windows PowerShell Workflows Concepts
	InlineScript
	Checkpoints
	Parallel Execution

	Service Management Automation usage at CERN
	Our Work with the SMA
	CERNOperations Integration Module
	Runbook create-vm-with-volume

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography
	Puppet test manifest
	Ansible test playbook
	PowerShell DSC test configuration script
	DSC configuration script to set Group Policy rules
	Manifest to set Group Policy rules using DSC resources
	Ansible playbook to set Group Policy rules using DSC resources
	Original version of puppet-wmi module
	Improved version of puppet-wmi module
	Original version of puppet-sslcertificate module manifest
	Original version of inspect.ps1.erb template
	Original version of import.ps1.erb template
	Improved version of puppet-sslcertificate module manifest
	Improved version of inspect.ps1.erb template
	Improved version of import.ps1.erb template
	cernsslcertificate module manifest
	Windows provider for teigi_subfile
	Improved teigi_subfile manifest to contemplate Windows systems
	Puppet Manifest to configure Remote Desktop Servers of CERN's WTS
	Puppet Manifest to configure Remote Desktop License server
	Sync-Files PowerShell script to synchronise a folder structure
	CERNOperations SMA Integration Module
	create-vm-with-volume Runbook

